xref: /openbmc/linux/mm/filemap.c (revision c51d39010a1bccc9c1294e2d7c00005aefeb2b5c)
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/hugetlb.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include <linux/rmap.h>
38 #include "internal.h"
39 
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/filemap.h>
42 
43 /*
44  * FIXME: remove all knowledge of the buffer layer from the core VM
45  */
46 #include <linux/buffer_head.h> /* for try_to_free_buffers */
47 
48 #include <asm/mman.h>
49 
50 /*
51  * Shared mappings implemented 30.11.1994. It's not fully working yet,
52  * though.
53  *
54  * Shared mappings now work. 15.8.1995  Bruno.
55  *
56  * finished 'unifying' the page and buffer cache and SMP-threaded the
57  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
58  *
59  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60  */
61 
62 /*
63  * Lock ordering:
64  *
65  *  ->i_mmap_rwsem		(truncate_pagecache)
66  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
67  *      ->swap_lock		(exclusive_swap_page, others)
68  *        ->mapping->tree_lock
69  *
70  *  ->i_mutex
71  *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
72  *
73  *  ->mmap_sem
74  *    ->i_mmap_rwsem
75  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
76  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
77  *
78  *  ->mmap_sem
79  *    ->lock_page		(access_process_vm)
80  *
81  *  ->i_mutex			(generic_perform_write)
82  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
83  *
84  *  bdi->wb.list_lock
85  *    sb_lock			(fs/fs-writeback.c)
86  *    ->mapping->tree_lock	(__sync_single_inode)
87  *
88  *  ->i_mmap_rwsem
89  *    ->anon_vma.lock		(vma_adjust)
90  *
91  *  ->anon_vma.lock
92  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
93  *
94  *  ->page_table_lock or pte_lock
95  *    ->swap_lock		(try_to_unmap_one)
96  *    ->private_lock		(try_to_unmap_one)
97  *    ->tree_lock		(try_to_unmap_one)
98  *    ->zone_lru_lock(zone)	(follow_page->mark_page_accessed)
99  *    ->zone_lru_lock(zone)	(check_pte_range->isolate_lru_page)
100  *    ->private_lock		(page_remove_rmap->set_page_dirty)
101  *    ->tree_lock		(page_remove_rmap->set_page_dirty)
102  *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
103  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
104  *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
105  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
106  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
107  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
108  *
109  * ->i_mmap_rwsem
110  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
111  */
112 
113 static int page_cache_tree_insert(struct address_space *mapping,
114 				  struct page *page, void **shadowp)
115 {
116 	struct radix_tree_node *node;
117 	void **slot;
118 	int error;
119 
120 	error = __radix_tree_create(&mapping->page_tree, page->index, 0,
121 				    &node, &slot);
122 	if (error)
123 		return error;
124 	if (*slot) {
125 		void *p;
126 
127 		p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
128 		if (!radix_tree_exceptional_entry(p))
129 			return -EEXIST;
130 
131 		mapping->nrexceptional--;
132 		if (!dax_mapping(mapping)) {
133 			if (shadowp)
134 				*shadowp = p;
135 			if (node)
136 				workingset_node_shadows_dec(node);
137 		} else {
138 			/* DAX can replace empty locked entry with a hole */
139 			WARN_ON_ONCE(p !=
140 				(void *)(RADIX_TREE_EXCEPTIONAL_ENTRY |
141 					 RADIX_DAX_ENTRY_LOCK));
142 			/* DAX accounts exceptional entries as normal pages */
143 			if (node)
144 				workingset_node_pages_dec(node);
145 			/* Wakeup waiters for exceptional entry lock */
146 			dax_wake_mapping_entry_waiter(mapping, page->index,
147 						      false);
148 		}
149 	}
150 	radix_tree_replace_slot(slot, page);
151 	mapping->nrpages++;
152 	if (node) {
153 		workingset_node_pages_inc(node);
154 		/*
155 		 * Don't track node that contains actual pages.
156 		 *
157 		 * Avoid acquiring the list_lru lock if already
158 		 * untracked.  The list_empty() test is safe as
159 		 * node->private_list is protected by
160 		 * mapping->tree_lock.
161 		 */
162 		if (!list_empty(&node->private_list))
163 			list_lru_del(&workingset_shadow_nodes,
164 				     &node->private_list);
165 	}
166 	return 0;
167 }
168 
169 static void page_cache_tree_delete(struct address_space *mapping,
170 				   struct page *page, void *shadow)
171 {
172 	int i, nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
173 
174 	VM_BUG_ON_PAGE(!PageLocked(page), page);
175 	VM_BUG_ON_PAGE(PageTail(page), page);
176 	VM_BUG_ON_PAGE(nr != 1 && shadow, page);
177 
178 	for (i = 0; i < nr; i++) {
179 		struct radix_tree_node *node;
180 		void **slot;
181 
182 		__radix_tree_lookup(&mapping->page_tree, page->index + i,
183 				    &node, &slot);
184 
185 		radix_tree_clear_tags(&mapping->page_tree, node, slot);
186 
187 		if (!node) {
188 			VM_BUG_ON_PAGE(nr != 1, page);
189 			/*
190 			 * We need a node to properly account shadow
191 			 * entries. Don't plant any without. XXX
192 			 */
193 			shadow = NULL;
194 		}
195 
196 		radix_tree_replace_slot(slot, shadow);
197 
198 		if (!node)
199 			break;
200 
201 		workingset_node_pages_dec(node);
202 		if (shadow)
203 			workingset_node_shadows_inc(node);
204 		else
205 			if (__radix_tree_delete_node(&mapping->page_tree, node))
206 				continue;
207 
208 		/*
209 		 * Track node that only contains shadow entries. DAX mappings
210 		 * contain no shadow entries and may contain other exceptional
211 		 * entries so skip those.
212 		 *
213 		 * Avoid acquiring the list_lru lock if already tracked.
214 		 * The list_empty() test is safe as node->private_list is
215 		 * protected by mapping->tree_lock.
216 		 */
217 		if (!dax_mapping(mapping) && !workingset_node_pages(node) &&
218 				list_empty(&node->private_list)) {
219 			node->private_data = mapping;
220 			list_lru_add(&workingset_shadow_nodes,
221 					&node->private_list);
222 		}
223 	}
224 
225 	if (shadow) {
226 		mapping->nrexceptional += nr;
227 		/*
228 		 * Make sure the nrexceptional update is committed before
229 		 * the nrpages update so that final truncate racing
230 		 * with reclaim does not see both counters 0 at the
231 		 * same time and miss a shadow entry.
232 		 */
233 		smp_wmb();
234 	}
235 	mapping->nrpages -= nr;
236 }
237 
238 /*
239  * Delete a page from the page cache and free it. Caller has to make
240  * sure the page is locked and that nobody else uses it - or that usage
241  * is safe.  The caller must hold the mapping's tree_lock.
242  */
243 void __delete_from_page_cache(struct page *page, void *shadow)
244 {
245 	struct address_space *mapping = page->mapping;
246 	int nr = hpage_nr_pages(page);
247 
248 	trace_mm_filemap_delete_from_page_cache(page);
249 	/*
250 	 * if we're uptodate, flush out into the cleancache, otherwise
251 	 * invalidate any existing cleancache entries.  We can't leave
252 	 * stale data around in the cleancache once our page is gone
253 	 */
254 	if (PageUptodate(page) && PageMappedToDisk(page))
255 		cleancache_put_page(page);
256 	else
257 		cleancache_invalidate_page(mapping, page);
258 
259 	VM_BUG_ON_PAGE(PageTail(page), page);
260 	VM_BUG_ON_PAGE(page_mapped(page), page);
261 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
262 		int mapcount;
263 
264 		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
265 			 current->comm, page_to_pfn(page));
266 		dump_page(page, "still mapped when deleted");
267 		dump_stack();
268 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
269 
270 		mapcount = page_mapcount(page);
271 		if (mapping_exiting(mapping) &&
272 		    page_count(page) >= mapcount + 2) {
273 			/*
274 			 * All vmas have already been torn down, so it's
275 			 * a good bet that actually the page is unmapped,
276 			 * and we'd prefer not to leak it: if we're wrong,
277 			 * some other bad page check should catch it later.
278 			 */
279 			page_mapcount_reset(page);
280 			page_ref_sub(page, mapcount);
281 		}
282 	}
283 
284 	page_cache_tree_delete(mapping, page, shadow);
285 
286 	page->mapping = NULL;
287 	/* Leave page->index set: truncation lookup relies upon it */
288 
289 	/* hugetlb pages do not participate in page cache accounting. */
290 	if (!PageHuge(page))
291 		__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
292 	if (PageSwapBacked(page)) {
293 		__mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
294 		if (PageTransHuge(page))
295 			__dec_node_page_state(page, NR_SHMEM_THPS);
296 	} else {
297 		VM_BUG_ON_PAGE(PageTransHuge(page) && !PageHuge(page), page);
298 	}
299 
300 	/*
301 	 * At this point page must be either written or cleaned by truncate.
302 	 * Dirty page here signals a bug and loss of unwritten data.
303 	 *
304 	 * This fixes dirty accounting after removing the page entirely but
305 	 * leaves PageDirty set: it has no effect for truncated page and
306 	 * anyway will be cleared before returning page into buddy allocator.
307 	 */
308 	if (WARN_ON_ONCE(PageDirty(page)))
309 		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
310 }
311 
312 /**
313  * delete_from_page_cache - delete page from page cache
314  * @page: the page which the kernel is trying to remove from page cache
315  *
316  * This must be called only on pages that have been verified to be in the page
317  * cache and locked.  It will never put the page into the free list, the caller
318  * has a reference on the page.
319  */
320 void delete_from_page_cache(struct page *page)
321 {
322 	struct address_space *mapping = page_mapping(page);
323 	unsigned long flags;
324 	void (*freepage)(struct page *);
325 
326 	BUG_ON(!PageLocked(page));
327 
328 	freepage = mapping->a_ops->freepage;
329 
330 	spin_lock_irqsave(&mapping->tree_lock, flags);
331 	__delete_from_page_cache(page, NULL);
332 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
333 
334 	if (freepage)
335 		freepage(page);
336 
337 	if (PageTransHuge(page) && !PageHuge(page)) {
338 		page_ref_sub(page, HPAGE_PMD_NR);
339 		VM_BUG_ON_PAGE(page_count(page) <= 0, page);
340 	} else {
341 		put_page(page);
342 	}
343 }
344 EXPORT_SYMBOL(delete_from_page_cache);
345 
346 int filemap_check_errors(struct address_space *mapping)
347 {
348 	int ret = 0;
349 	/* Check for outstanding write errors */
350 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
351 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
352 		ret = -ENOSPC;
353 	if (test_bit(AS_EIO, &mapping->flags) &&
354 	    test_and_clear_bit(AS_EIO, &mapping->flags))
355 		ret = -EIO;
356 	return ret;
357 }
358 EXPORT_SYMBOL(filemap_check_errors);
359 
360 /**
361  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
362  * @mapping:	address space structure to write
363  * @start:	offset in bytes where the range starts
364  * @end:	offset in bytes where the range ends (inclusive)
365  * @sync_mode:	enable synchronous operation
366  *
367  * Start writeback against all of a mapping's dirty pages that lie
368  * within the byte offsets <start, end> inclusive.
369  *
370  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
371  * opposed to a regular memory cleansing writeback.  The difference between
372  * these two operations is that if a dirty page/buffer is encountered, it must
373  * be waited upon, and not just skipped over.
374  */
375 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
376 				loff_t end, int sync_mode)
377 {
378 	int ret;
379 	struct writeback_control wbc = {
380 		.sync_mode = sync_mode,
381 		.nr_to_write = LONG_MAX,
382 		.range_start = start,
383 		.range_end = end,
384 	};
385 
386 	if (!mapping_cap_writeback_dirty(mapping))
387 		return 0;
388 
389 	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
390 	ret = do_writepages(mapping, &wbc);
391 	wbc_detach_inode(&wbc);
392 	return ret;
393 }
394 
395 static inline int __filemap_fdatawrite(struct address_space *mapping,
396 	int sync_mode)
397 {
398 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
399 }
400 
401 int filemap_fdatawrite(struct address_space *mapping)
402 {
403 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
404 }
405 EXPORT_SYMBOL(filemap_fdatawrite);
406 
407 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
408 				loff_t end)
409 {
410 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
411 }
412 EXPORT_SYMBOL(filemap_fdatawrite_range);
413 
414 /**
415  * filemap_flush - mostly a non-blocking flush
416  * @mapping:	target address_space
417  *
418  * This is a mostly non-blocking flush.  Not suitable for data-integrity
419  * purposes - I/O may not be started against all dirty pages.
420  */
421 int filemap_flush(struct address_space *mapping)
422 {
423 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
424 }
425 EXPORT_SYMBOL(filemap_flush);
426 
427 static int __filemap_fdatawait_range(struct address_space *mapping,
428 				     loff_t start_byte, loff_t end_byte)
429 {
430 	pgoff_t index = start_byte >> PAGE_SHIFT;
431 	pgoff_t end = end_byte >> PAGE_SHIFT;
432 	struct pagevec pvec;
433 	int nr_pages;
434 	int ret = 0;
435 
436 	if (end_byte < start_byte)
437 		goto out;
438 
439 	pagevec_init(&pvec, 0);
440 	while ((index <= end) &&
441 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
442 			PAGECACHE_TAG_WRITEBACK,
443 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
444 		unsigned i;
445 
446 		for (i = 0; i < nr_pages; i++) {
447 			struct page *page = pvec.pages[i];
448 
449 			/* until radix tree lookup accepts end_index */
450 			if (page->index > end)
451 				continue;
452 
453 			wait_on_page_writeback(page);
454 			if (TestClearPageError(page))
455 				ret = -EIO;
456 		}
457 		pagevec_release(&pvec);
458 		cond_resched();
459 	}
460 out:
461 	return ret;
462 }
463 
464 /**
465  * filemap_fdatawait_range - wait for writeback to complete
466  * @mapping:		address space structure to wait for
467  * @start_byte:		offset in bytes where the range starts
468  * @end_byte:		offset in bytes where the range ends (inclusive)
469  *
470  * Walk the list of under-writeback pages of the given address space
471  * in the given range and wait for all of them.  Check error status of
472  * the address space and return it.
473  *
474  * Since the error status of the address space is cleared by this function,
475  * callers are responsible for checking the return value and handling and/or
476  * reporting the error.
477  */
478 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
479 			    loff_t end_byte)
480 {
481 	int ret, ret2;
482 
483 	ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
484 	ret2 = filemap_check_errors(mapping);
485 	if (!ret)
486 		ret = ret2;
487 
488 	return ret;
489 }
490 EXPORT_SYMBOL(filemap_fdatawait_range);
491 
492 /**
493  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
494  * @mapping: address space structure to wait for
495  *
496  * Walk the list of under-writeback pages of the given address space
497  * and wait for all of them.  Unlike filemap_fdatawait(), this function
498  * does not clear error status of the address space.
499  *
500  * Use this function if callers don't handle errors themselves.  Expected
501  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
502  * fsfreeze(8)
503  */
504 void filemap_fdatawait_keep_errors(struct address_space *mapping)
505 {
506 	loff_t i_size = i_size_read(mapping->host);
507 
508 	if (i_size == 0)
509 		return;
510 
511 	__filemap_fdatawait_range(mapping, 0, i_size - 1);
512 }
513 
514 /**
515  * filemap_fdatawait - wait for all under-writeback pages to complete
516  * @mapping: address space structure to wait for
517  *
518  * Walk the list of under-writeback pages of the given address space
519  * and wait for all of them.  Check error status of the address space
520  * and return it.
521  *
522  * Since the error status of the address space is cleared by this function,
523  * callers are responsible for checking the return value and handling and/or
524  * reporting the error.
525  */
526 int filemap_fdatawait(struct address_space *mapping)
527 {
528 	loff_t i_size = i_size_read(mapping->host);
529 
530 	if (i_size == 0)
531 		return 0;
532 
533 	return filemap_fdatawait_range(mapping, 0, i_size - 1);
534 }
535 EXPORT_SYMBOL(filemap_fdatawait);
536 
537 int filemap_write_and_wait(struct address_space *mapping)
538 {
539 	int err = 0;
540 
541 	if ((!dax_mapping(mapping) && mapping->nrpages) ||
542 	    (dax_mapping(mapping) && mapping->nrexceptional)) {
543 		err = filemap_fdatawrite(mapping);
544 		/*
545 		 * Even if the above returned error, the pages may be
546 		 * written partially (e.g. -ENOSPC), so we wait for it.
547 		 * But the -EIO is special case, it may indicate the worst
548 		 * thing (e.g. bug) happened, so we avoid waiting for it.
549 		 */
550 		if (err != -EIO) {
551 			int err2 = filemap_fdatawait(mapping);
552 			if (!err)
553 				err = err2;
554 		}
555 	} else {
556 		err = filemap_check_errors(mapping);
557 	}
558 	return err;
559 }
560 EXPORT_SYMBOL(filemap_write_and_wait);
561 
562 /**
563  * filemap_write_and_wait_range - write out & wait on a file range
564  * @mapping:	the address_space for the pages
565  * @lstart:	offset in bytes where the range starts
566  * @lend:	offset in bytes where the range ends (inclusive)
567  *
568  * Write out and wait upon file offsets lstart->lend, inclusive.
569  *
570  * Note that `lend' is inclusive (describes the last byte to be written) so
571  * that this function can be used to write to the very end-of-file (end = -1).
572  */
573 int filemap_write_and_wait_range(struct address_space *mapping,
574 				 loff_t lstart, loff_t lend)
575 {
576 	int err = 0;
577 
578 	if ((!dax_mapping(mapping) && mapping->nrpages) ||
579 	    (dax_mapping(mapping) && mapping->nrexceptional)) {
580 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
581 						 WB_SYNC_ALL);
582 		/* See comment of filemap_write_and_wait() */
583 		if (err != -EIO) {
584 			int err2 = filemap_fdatawait_range(mapping,
585 						lstart, lend);
586 			if (!err)
587 				err = err2;
588 		}
589 	} else {
590 		err = filemap_check_errors(mapping);
591 	}
592 	return err;
593 }
594 EXPORT_SYMBOL(filemap_write_and_wait_range);
595 
596 /**
597  * replace_page_cache_page - replace a pagecache page with a new one
598  * @old:	page to be replaced
599  * @new:	page to replace with
600  * @gfp_mask:	allocation mode
601  *
602  * This function replaces a page in the pagecache with a new one.  On
603  * success it acquires the pagecache reference for the new page and
604  * drops it for the old page.  Both the old and new pages must be
605  * locked.  This function does not add the new page to the LRU, the
606  * caller must do that.
607  *
608  * The remove + add is atomic.  The only way this function can fail is
609  * memory allocation failure.
610  */
611 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
612 {
613 	int error;
614 
615 	VM_BUG_ON_PAGE(!PageLocked(old), old);
616 	VM_BUG_ON_PAGE(!PageLocked(new), new);
617 	VM_BUG_ON_PAGE(new->mapping, new);
618 
619 	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
620 	if (!error) {
621 		struct address_space *mapping = old->mapping;
622 		void (*freepage)(struct page *);
623 		unsigned long flags;
624 
625 		pgoff_t offset = old->index;
626 		freepage = mapping->a_ops->freepage;
627 
628 		get_page(new);
629 		new->mapping = mapping;
630 		new->index = offset;
631 
632 		spin_lock_irqsave(&mapping->tree_lock, flags);
633 		__delete_from_page_cache(old, NULL);
634 		error = page_cache_tree_insert(mapping, new, NULL);
635 		BUG_ON(error);
636 
637 		/*
638 		 * hugetlb pages do not participate in page cache accounting.
639 		 */
640 		if (!PageHuge(new))
641 			__inc_node_page_state(new, NR_FILE_PAGES);
642 		if (PageSwapBacked(new))
643 			__inc_node_page_state(new, NR_SHMEM);
644 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
645 		mem_cgroup_migrate(old, new);
646 		radix_tree_preload_end();
647 		if (freepage)
648 			freepage(old);
649 		put_page(old);
650 	}
651 
652 	return error;
653 }
654 EXPORT_SYMBOL_GPL(replace_page_cache_page);
655 
656 static int __add_to_page_cache_locked(struct page *page,
657 				      struct address_space *mapping,
658 				      pgoff_t offset, gfp_t gfp_mask,
659 				      void **shadowp)
660 {
661 	int huge = PageHuge(page);
662 	struct mem_cgroup *memcg;
663 	int error;
664 
665 	VM_BUG_ON_PAGE(!PageLocked(page), page);
666 	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
667 
668 	if (!huge) {
669 		error = mem_cgroup_try_charge(page, current->mm,
670 					      gfp_mask, &memcg, false);
671 		if (error)
672 			return error;
673 	}
674 
675 	error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
676 	if (error) {
677 		if (!huge)
678 			mem_cgroup_cancel_charge(page, memcg, false);
679 		return error;
680 	}
681 
682 	get_page(page);
683 	page->mapping = mapping;
684 	page->index = offset;
685 
686 	spin_lock_irq(&mapping->tree_lock);
687 	error = page_cache_tree_insert(mapping, page, shadowp);
688 	radix_tree_preload_end();
689 	if (unlikely(error))
690 		goto err_insert;
691 
692 	/* hugetlb pages do not participate in page cache accounting. */
693 	if (!huge)
694 		__inc_node_page_state(page, NR_FILE_PAGES);
695 	spin_unlock_irq(&mapping->tree_lock);
696 	if (!huge)
697 		mem_cgroup_commit_charge(page, memcg, false, false);
698 	trace_mm_filemap_add_to_page_cache(page);
699 	return 0;
700 err_insert:
701 	page->mapping = NULL;
702 	/* Leave page->index set: truncation relies upon it */
703 	spin_unlock_irq(&mapping->tree_lock);
704 	if (!huge)
705 		mem_cgroup_cancel_charge(page, memcg, false);
706 	put_page(page);
707 	return error;
708 }
709 
710 /**
711  * add_to_page_cache_locked - add a locked page to the pagecache
712  * @page:	page to add
713  * @mapping:	the page's address_space
714  * @offset:	page index
715  * @gfp_mask:	page allocation mode
716  *
717  * This function is used to add a page to the pagecache. It must be locked.
718  * This function does not add the page to the LRU.  The caller must do that.
719  */
720 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
721 		pgoff_t offset, gfp_t gfp_mask)
722 {
723 	return __add_to_page_cache_locked(page, mapping, offset,
724 					  gfp_mask, NULL);
725 }
726 EXPORT_SYMBOL(add_to_page_cache_locked);
727 
728 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
729 				pgoff_t offset, gfp_t gfp_mask)
730 {
731 	void *shadow = NULL;
732 	int ret;
733 
734 	__SetPageLocked(page);
735 	ret = __add_to_page_cache_locked(page, mapping, offset,
736 					 gfp_mask, &shadow);
737 	if (unlikely(ret))
738 		__ClearPageLocked(page);
739 	else {
740 		/*
741 		 * The page might have been evicted from cache only
742 		 * recently, in which case it should be activated like
743 		 * any other repeatedly accessed page.
744 		 * The exception is pages getting rewritten; evicting other
745 		 * data from the working set, only to cache data that will
746 		 * get overwritten with something else, is a waste of memory.
747 		 */
748 		if (!(gfp_mask & __GFP_WRITE) &&
749 		    shadow && workingset_refault(shadow)) {
750 			SetPageActive(page);
751 			workingset_activation(page);
752 		} else
753 			ClearPageActive(page);
754 		lru_cache_add(page);
755 	}
756 	return ret;
757 }
758 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
759 
760 #ifdef CONFIG_NUMA
761 struct page *__page_cache_alloc(gfp_t gfp)
762 {
763 	int n;
764 	struct page *page;
765 
766 	if (cpuset_do_page_mem_spread()) {
767 		unsigned int cpuset_mems_cookie;
768 		do {
769 			cpuset_mems_cookie = read_mems_allowed_begin();
770 			n = cpuset_mem_spread_node();
771 			page = __alloc_pages_node(n, gfp, 0);
772 		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
773 
774 		return page;
775 	}
776 	return alloc_pages(gfp, 0);
777 }
778 EXPORT_SYMBOL(__page_cache_alloc);
779 #endif
780 
781 /*
782  * In order to wait for pages to become available there must be
783  * waitqueues associated with pages. By using a hash table of
784  * waitqueues where the bucket discipline is to maintain all
785  * waiters on the same queue and wake all when any of the pages
786  * become available, and for the woken contexts to check to be
787  * sure the appropriate page became available, this saves space
788  * at a cost of "thundering herd" phenomena during rare hash
789  * collisions.
790  */
791 wait_queue_head_t *page_waitqueue(struct page *page)
792 {
793 	return bit_waitqueue(page, 0);
794 }
795 EXPORT_SYMBOL(page_waitqueue);
796 
797 void wait_on_page_bit(struct page *page, int bit_nr)
798 {
799 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
800 
801 	if (test_bit(bit_nr, &page->flags))
802 		__wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
803 							TASK_UNINTERRUPTIBLE);
804 }
805 EXPORT_SYMBOL(wait_on_page_bit);
806 
807 int wait_on_page_bit_killable(struct page *page, int bit_nr)
808 {
809 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
810 
811 	if (!test_bit(bit_nr, &page->flags))
812 		return 0;
813 
814 	return __wait_on_bit(page_waitqueue(page), &wait,
815 			     bit_wait_io, TASK_KILLABLE);
816 }
817 
818 int wait_on_page_bit_killable_timeout(struct page *page,
819 				       int bit_nr, unsigned long timeout)
820 {
821 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
822 
823 	wait.key.timeout = jiffies + timeout;
824 	if (!test_bit(bit_nr, &page->flags))
825 		return 0;
826 	return __wait_on_bit(page_waitqueue(page), &wait,
827 			     bit_wait_io_timeout, TASK_KILLABLE);
828 }
829 EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
830 
831 /**
832  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
833  * @page: Page defining the wait queue of interest
834  * @waiter: Waiter to add to the queue
835  *
836  * Add an arbitrary @waiter to the wait queue for the nominated @page.
837  */
838 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
839 {
840 	wait_queue_head_t *q = page_waitqueue(page);
841 	unsigned long flags;
842 
843 	spin_lock_irqsave(&q->lock, flags);
844 	__add_wait_queue(q, waiter);
845 	spin_unlock_irqrestore(&q->lock, flags);
846 }
847 EXPORT_SYMBOL_GPL(add_page_wait_queue);
848 
849 /**
850  * unlock_page - unlock a locked page
851  * @page: the page
852  *
853  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
854  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
855  * mechanism between PageLocked pages and PageWriteback pages is shared.
856  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
857  *
858  * The mb is necessary to enforce ordering between the clear_bit and the read
859  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
860  */
861 void unlock_page(struct page *page)
862 {
863 	page = compound_head(page);
864 	VM_BUG_ON_PAGE(!PageLocked(page), page);
865 	clear_bit_unlock(PG_locked, &page->flags);
866 	smp_mb__after_atomic();
867 	wake_up_page(page, PG_locked);
868 }
869 EXPORT_SYMBOL(unlock_page);
870 
871 /**
872  * end_page_writeback - end writeback against a page
873  * @page: the page
874  */
875 void end_page_writeback(struct page *page)
876 {
877 	/*
878 	 * TestClearPageReclaim could be used here but it is an atomic
879 	 * operation and overkill in this particular case. Failing to
880 	 * shuffle a page marked for immediate reclaim is too mild to
881 	 * justify taking an atomic operation penalty at the end of
882 	 * ever page writeback.
883 	 */
884 	if (PageReclaim(page)) {
885 		ClearPageReclaim(page);
886 		rotate_reclaimable_page(page);
887 	}
888 
889 	if (!test_clear_page_writeback(page))
890 		BUG();
891 
892 	smp_mb__after_atomic();
893 	wake_up_page(page, PG_writeback);
894 }
895 EXPORT_SYMBOL(end_page_writeback);
896 
897 /*
898  * After completing I/O on a page, call this routine to update the page
899  * flags appropriately
900  */
901 void page_endio(struct page *page, bool is_write, int err)
902 {
903 	if (!is_write) {
904 		if (!err) {
905 			SetPageUptodate(page);
906 		} else {
907 			ClearPageUptodate(page);
908 			SetPageError(page);
909 		}
910 		unlock_page(page);
911 	} else {
912 		if (err) {
913 			SetPageError(page);
914 			if (page->mapping)
915 				mapping_set_error(page->mapping, err);
916 		}
917 		end_page_writeback(page);
918 	}
919 }
920 EXPORT_SYMBOL_GPL(page_endio);
921 
922 /**
923  * __lock_page - get a lock on the page, assuming we need to sleep to get it
924  * @page: the page to lock
925  */
926 void __lock_page(struct page *page)
927 {
928 	struct page *page_head = compound_head(page);
929 	DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
930 
931 	__wait_on_bit_lock(page_waitqueue(page_head), &wait, bit_wait_io,
932 							TASK_UNINTERRUPTIBLE);
933 }
934 EXPORT_SYMBOL(__lock_page);
935 
936 int __lock_page_killable(struct page *page)
937 {
938 	struct page *page_head = compound_head(page);
939 	DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
940 
941 	return __wait_on_bit_lock(page_waitqueue(page_head), &wait,
942 					bit_wait_io, TASK_KILLABLE);
943 }
944 EXPORT_SYMBOL_GPL(__lock_page_killable);
945 
946 /*
947  * Return values:
948  * 1 - page is locked; mmap_sem is still held.
949  * 0 - page is not locked.
950  *     mmap_sem has been released (up_read()), unless flags had both
951  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
952  *     which case mmap_sem is still held.
953  *
954  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
955  * with the page locked and the mmap_sem unperturbed.
956  */
957 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
958 			 unsigned int flags)
959 {
960 	if (flags & FAULT_FLAG_ALLOW_RETRY) {
961 		/*
962 		 * CAUTION! In this case, mmap_sem is not released
963 		 * even though return 0.
964 		 */
965 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
966 			return 0;
967 
968 		up_read(&mm->mmap_sem);
969 		if (flags & FAULT_FLAG_KILLABLE)
970 			wait_on_page_locked_killable(page);
971 		else
972 			wait_on_page_locked(page);
973 		return 0;
974 	} else {
975 		if (flags & FAULT_FLAG_KILLABLE) {
976 			int ret;
977 
978 			ret = __lock_page_killable(page);
979 			if (ret) {
980 				up_read(&mm->mmap_sem);
981 				return 0;
982 			}
983 		} else
984 			__lock_page(page);
985 		return 1;
986 	}
987 }
988 
989 /**
990  * page_cache_next_hole - find the next hole (not-present entry)
991  * @mapping: mapping
992  * @index: index
993  * @max_scan: maximum range to search
994  *
995  * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
996  * lowest indexed hole.
997  *
998  * Returns: the index of the hole if found, otherwise returns an index
999  * outside of the set specified (in which case 'return - index >=
1000  * max_scan' will be true). In rare cases of index wrap-around, 0 will
1001  * be returned.
1002  *
1003  * page_cache_next_hole may be called under rcu_read_lock. However,
1004  * like radix_tree_gang_lookup, this will not atomically search a
1005  * snapshot of the tree at a single point in time. For example, if a
1006  * hole is created at index 5, then subsequently a hole is created at
1007  * index 10, page_cache_next_hole covering both indexes may return 10
1008  * if called under rcu_read_lock.
1009  */
1010 pgoff_t page_cache_next_hole(struct address_space *mapping,
1011 			     pgoff_t index, unsigned long max_scan)
1012 {
1013 	unsigned long i;
1014 
1015 	for (i = 0; i < max_scan; i++) {
1016 		struct page *page;
1017 
1018 		page = radix_tree_lookup(&mapping->page_tree, index);
1019 		if (!page || radix_tree_exceptional_entry(page))
1020 			break;
1021 		index++;
1022 		if (index == 0)
1023 			break;
1024 	}
1025 
1026 	return index;
1027 }
1028 EXPORT_SYMBOL(page_cache_next_hole);
1029 
1030 /**
1031  * page_cache_prev_hole - find the prev hole (not-present entry)
1032  * @mapping: mapping
1033  * @index: index
1034  * @max_scan: maximum range to search
1035  *
1036  * Search backwards in the range [max(index-max_scan+1, 0), index] for
1037  * the first hole.
1038  *
1039  * Returns: the index of the hole if found, otherwise returns an index
1040  * outside of the set specified (in which case 'index - return >=
1041  * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1042  * will be returned.
1043  *
1044  * page_cache_prev_hole may be called under rcu_read_lock. However,
1045  * like radix_tree_gang_lookup, this will not atomically search a
1046  * snapshot of the tree at a single point in time. For example, if a
1047  * hole is created at index 10, then subsequently a hole is created at
1048  * index 5, page_cache_prev_hole covering both indexes may return 5 if
1049  * called under rcu_read_lock.
1050  */
1051 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1052 			     pgoff_t index, unsigned long max_scan)
1053 {
1054 	unsigned long i;
1055 
1056 	for (i = 0; i < max_scan; i++) {
1057 		struct page *page;
1058 
1059 		page = radix_tree_lookup(&mapping->page_tree, index);
1060 		if (!page || radix_tree_exceptional_entry(page))
1061 			break;
1062 		index--;
1063 		if (index == ULONG_MAX)
1064 			break;
1065 	}
1066 
1067 	return index;
1068 }
1069 EXPORT_SYMBOL(page_cache_prev_hole);
1070 
1071 /**
1072  * find_get_entry - find and get a page cache entry
1073  * @mapping: the address_space to search
1074  * @offset: the page cache index
1075  *
1076  * Looks up the page cache slot at @mapping & @offset.  If there is a
1077  * page cache page, it is returned with an increased refcount.
1078  *
1079  * If the slot holds a shadow entry of a previously evicted page, or a
1080  * swap entry from shmem/tmpfs, it is returned.
1081  *
1082  * Otherwise, %NULL is returned.
1083  */
1084 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1085 {
1086 	void **pagep;
1087 	struct page *head, *page;
1088 
1089 	rcu_read_lock();
1090 repeat:
1091 	page = NULL;
1092 	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1093 	if (pagep) {
1094 		page = radix_tree_deref_slot(pagep);
1095 		if (unlikely(!page))
1096 			goto out;
1097 		if (radix_tree_exception(page)) {
1098 			if (radix_tree_deref_retry(page))
1099 				goto repeat;
1100 			/*
1101 			 * A shadow entry of a recently evicted page,
1102 			 * or a swap entry from shmem/tmpfs.  Return
1103 			 * it without attempting to raise page count.
1104 			 */
1105 			goto out;
1106 		}
1107 
1108 		head = compound_head(page);
1109 		if (!page_cache_get_speculative(head))
1110 			goto repeat;
1111 
1112 		/* The page was split under us? */
1113 		if (compound_head(page) != head) {
1114 			put_page(head);
1115 			goto repeat;
1116 		}
1117 
1118 		/*
1119 		 * Has the page moved?
1120 		 * This is part of the lockless pagecache protocol. See
1121 		 * include/linux/pagemap.h for details.
1122 		 */
1123 		if (unlikely(page != *pagep)) {
1124 			put_page(head);
1125 			goto repeat;
1126 		}
1127 	}
1128 out:
1129 	rcu_read_unlock();
1130 
1131 	return page;
1132 }
1133 EXPORT_SYMBOL(find_get_entry);
1134 
1135 /**
1136  * find_lock_entry - locate, pin and lock a page cache entry
1137  * @mapping: the address_space to search
1138  * @offset: the page cache index
1139  *
1140  * Looks up the page cache slot at @mapping & @offset.  If there is a
1141  * page cache page, it is returned locked and with an increased
1142  * refcount.
1143  *
1144  * If the slot holds a shadow entry of a previously evicted page, or a
1145  * swap entry from shmem/tmpfs, it is returned.
1146  *
1147  * Otherwise, %NULL is returned.
1148  *
1149  * find_lock_entry() may sleep.
1150  */
1151 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1152 {
1153 	struct page *page;
1154 
1155 repeat:
1156 	page = find_get_entry(mapping, offset);
1157 	if (page && !radix_tree_exception(page)) {
1158 		lock_page(page);
1159 		/* Has the page been truncated? */
1160 		if (unlikely(page_mapping(page) != mapping)) {
1161 			unlock_page(page);
1162 			put_page(page);
1163 			goto repeat;
1164 		}
1165 		VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1166 	}
1167 	return page;
1168 }
1169 EXPORT_SYMBOL(find_lock_entry);
1170 
1171 /**
1172  * pagecache_get_page - find and get a page reference
1173  * @mapping: the address_space to search
1174  * @offset: the page index
1175  * @fgp_flags: PCG flags
1176  * @gfp_mask: gfp mask to use for the page cache data page allocation
1177  *
1178  * Looks up the page cache slot at @mapping & @offset.
1179  *
1180  * PCG flags modify how the page is returned.
1181  *
1182  * FGP_ACCESSED: the page will be marked accessed
1183  * FGP_LOCK: Page is return locked
1184  * FGP_CREAT: If page is not present then a new page is allocated using
1185  *		@gfp_mask and added to the page cache and the VM's LRU
1186  *		list. The page is returned locked and with an increased
1187  *		refcount. Otherwise, %NULL is returned.
1188  *
1189  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1190  * if the GFP flags specified for FGP_CREAT are atomic.
1191  *
1192  * If there is a page cache page, it is returned with an increased refcount.
1193  */
1194 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1195 	int fgp_flags, gfp_t gfp_mask)
1196 {
1197 	struct page *page;
1198 
1199 repeat:
1200 	page = find_get_entry(mapping, offset);
1201 	if (radix_tree_exceptional_entry(page))
1202 		page = NULL;
1203 	if (!page)
1204 		goto no_page;
1205 
1206 	if (fgp_flags & FGP_LOCK) {
1207 		if (fgp_flags & FGP_NOWAIT) {
1208 			if (!trylock_page(page)) {
1209 				put_page(page);
1210 				return NULL;
1211 			}
1212 		} else {
1213 			lock_page(page);
1214 		}
1215 
1216 		/* Has the page been truncated? */
1217 		if (unlikely(page->mapping != mapping)) {
1218 			unlock_page(page);
1219 			put_page(page);
1220 			goto repeat;
1221 		}
1222 		VM_BUG_ON_PAGE(page->index != offset, page);
1223 	}
1224 
1225 	if (page && (fgp_flags & FGP_ACCESSED))
1226 		mark_page_accessed(page);
1227 
1228 no_page:
1229 	if (!page && (fgp_flags & FGP_CREAT)) {
1230 		int err;
1231 		if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1232 			gfp_mask |= __GFP_WRITE;
1233 		if (fgp_flags & FGP_NOFS)
1234 			gfp_mask &= ~__GFP_FS;
1235 
1236 		page = __page_cache_alloc(gfp_mask);
1237 		if (!page)
1238 			return NULL;
1239 
1240 		if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1241 			fgp_flags |= FGP_LOCK;
1242 
1243 		/* Init accessed so avoid atomic mark_page_accessed later */
1244 		if (fgp_flags & FGP_ACCESSED)
1245 			__SetPageReferenced(page);
1246 
1247 		err = add_to_page_cache_lru(page, mapping, offset,
1248 				gfp_mask & GFP_RECLAIM_MASK);
1249 		if (unlikely(err)) {
1250 			put_page(page);
1251 			page = NULL;
1252 			if (err == -EEXIST)
1253 				goto repeat;
1254 		}
1255 	}
1256 
1257 	return page;
1258 }
1259 EXPORT_SYMBOL(pagecache_get_page);
1260 
1261 /**
1262  * find_get_entries - gang pagecache lookup
1263  * @mapping:	The address_space to search
1264  * @start:	The starting page cache index
1265  * @nr_entries:	The maximum number of entries
1266  * @entries:	Where the resulting entries are placed
1267  * @indices:	The cache indices corresponding to the entries in @entries
1268  *
1269  * find_get_entries() will search for and return a group of up to
1270  * @nr_entries entries in the mapping.  The entries are placed at
1271  * @entries.  find_get_entries() takes a reference against any actual
1272  * pages it returns.
1273  *
1274  * The search returns a group of mapping-contiguous page cache entries
1275  * with ascending indexes.  There may be holes in the indices due to
1276  * not-present pages.
1277  *
1278  * Any shadow entries of evicted pages, or swap entries from
1279  * shmem/tmpfs, are included in the returned array.
1280  *
1281  * find_get_entries() returns the number of pages and shadow entries
1282  * which were found.
1283  */
1284 unsigned find_get_entries(struct address_space *mapping,
1285 			  pgoff_t start, unsigned int nr_entries,
1286 			  struct page **entries, pgoff_t *indices)
1287 {
1288 	void **slot;
1289 	unsigned int ret = 0;
1290 	struct radix_tree_iter iter;
1291 
1292 	if (!nr_entries)
1293 		return 0;
1294 
1295 	rcu_read_lock();
1296 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1297 		struct page *head, *page;
1298 repeat:
1299 		page = radix_tree_deref_slot(slot);
1300 		if (unlikely(!page))
1301 			continue;
1302 		if (radix_tree_exception(page)) {
1303 			if (radix_tree_deref_retry(page)) {
1304 				slot = radix_tree_iter_retry(&iter);
1305 				continue;
1306 			}
1307 			/*
1308 			 * A shadow entry of a recently evicted page, a swap
1309 			 * entry from shmem/tmpfs or a DAX entry.  Return it
1310 			 * without attempting to raise page count.
1311 			 */
1312 			goto export;
1313 		}
1314 
1315 		head = compound_head(page);
1316 		if (!page_cache_get_speculative(head))
1317 			goto repeat;
1318 
1319 		/* The page was split under us? */
1320 		if (compound_head(page) != head) {
1321 			put_page(head);
1322 			goto repeat;
1323 		}
1324 
1325 		/* Has the page moved? */
1326 		if (unlikely(page != *slot)) {
1327 			put_page(head);
1328 			goto repeat;
1329 		}
1330 export:
1331 		indices[ret] = iter.index;
1332 		entries[ret] = page;
1333 		if (++ret == nr_entries)
1334 			break;
1335 	}
1336 	rcu_read_unlock();
1337 	return ret;
1338 }
1339 
1340 /**
1341  * find_get_pages - gang pagecache lookup
1342  * @mapping:	The address_space to search
1343  * @start:	The starting page index
1344  * @nr_pages:	The maximum number of pages
1345  * @pages:	Where the resulting pages are placed
1346  *
1347  * find_get_pages() will search for and return a group of up to
1348  * @nr_pages pages in the mapping.  The pages are placed at @pages.
1349  * find_get_pages() takes a reference against the returned pages.
1350  *
1351  * The search returns a group of mapping-contiguous pages with ascending
1352  * indexes.  There may be holes in the indices due to not-present pages.
1353  *
1354  * find_get_pages() returns the number of pages which were found.
1355  */
1356 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1357 			    unsigned int nr_pages, struct page **pages)
1358 {
1359 	struct radix_tree_iter iter;
1360 	void **slot;
1361 	unsigned ret = 0;
1362 
1363 	if (unlikely(!nr_pages))
1364 		return 0;
1365 
1366 	rcu_read_lock();
1367 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1368 		struct page *head, *page;
1369 repeat:
1370 		page = radix_tree_deref_slot(slot);
1371 		if (unlikely(!page))
1372 			continue;
1373 
1374 		if (radix_tree_exception(page)) {
1375 			if (radix_tree_deref_retry(page)) {
1376 				slot = radix_tree_iter_retry(&iter);
1377 				continue;
1378 			}
1379 			/*
1380 			 * A shadow entry of a recently evicted page,
1381 			 * or a swap entry from shmem/tmpfs.  Skip
1382 			 * over it.
1383 			 */
1384 			continue;
1385 		}
1386 
1387 		head = compound_head(page);
1388 		if (!page_cache_get_speculative(head))
1389 			goto repeat;
1390 
1391 		/* The page was split under us? */
1392 		if (compound_head(page) != head) {
1393 			put_page(head);
1394 			goto repeat;
1395 		}
1396 
1397 		/* Has the page moved? */
1398 		if (unlikely(page != *slot)) {
1399 			put_page(head);
1400 			goto repeat;
1401 		}
1402 
1403 		pages[ret] = page;
1404 		if (++ret == nr_pages)
1405 			break;
1406 	}
1407 
1408 	rcu_read_unlock();
1409 	return ret;
1410 }
1411 
1412 /**
1413  * find_get_pages_contig - gang contiguous pagecache lookup
1414  * @mapping:	The address_space to search
1415  * @index:	The starting page index
1416  * @nr_pages:	The maximum number of pages
1417  * @pages:	Where the resulting pages are placed
1418  *
1419  * find_get_pages_contig() works exactly like find_get_pages(), except
1420  * that the returned number of pages are guaranteed to be contiguous.
1421  *
1422  * find_get_pages_contig() returns the number of pages which were found.
1423  */
1424 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1425 			       unsigned int nr_pages, struct page **pages)
1426 {
1427 	struct radix_tree_iter iter;
1428 	void **slot;
1429 	unsigned int ret = 0;
1430 
1431 	if (unlikely(!nr_pages))
1432 		return 0;
1433 
1434 	rcu_read_lock();
1435 	radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1436 		struct page *head, *page;
1437 repeat:
1438 		page = radix_tree_deref_slot(slot);
1439 		/* The hole, there no reason to continue */
1440 		if (unlikely(!page))
1441 			break;
1442 
1443 		if (radix_tree_exception(page)) {
1444 			if (radix_tree_deref_retry(page)) {
1445 				slot = radix_tree_iter_retry(&iter);
1446 				continue;
1447 			}
1448 			/*
1449 			 * A shadow entry of a recently evicted page,
1450 			 * or a swap entry from shmem/tmpfs.  Stop
1451 			 * looking for contiguous pages.
1452 			 */
1453 			break;
1454 		}
1455 
1456 		head = compound_head(page);
1457 		if (!page_cache_get_speculative(head))
1458 			goto repeat;
1459 
1460 		/* The page was split under us? */
1461 		if (compound_head(page) != head) {
1462 			put_page(head);
1463 			goto repeat;
1464 		}
1465 
1466 		/* Has the page moved? */
1467 		if (unlikely(page != *slot)) {
1468 			put_page(head);
1469 			goto repeat;
1470 		}
1471 
1472 		/*
1473 		 * must check mapping and index after taking the ref.
1474 		 * otherwise we can get both false positives and false
1475 		 * negatives, which is just confusing to the caller.
1476 		 */
1477 		if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1478 			put_page(page);
1479 			break;
1480 		}
1481 
1482 		pages[ret] = page;
1483 		if (++ret == nr_pages)
1484 			break;
1485 	}
1486 	rcu_read_unlock();
1487 	return ret;
1488 }
1489 EXPORT_SYMBOL(find_get_pages_contig);
1490 
1491 /**
1492  * find_get_pages_tag - find and return pages that match @tag
1493  * @mapping:	the address_space to search
1494  * @index:	the starting page index
1495  * @tag:	the tag index
1496  * @nr_pages:	the maximum number of pages
1497  * @pages:	where the resulting pages are placed
1498  *
1499  * Like find_get_pages, except we only return pages which are tagged with
1500  * @tag.   We update @index to index the next page for the traversal.
1501  */
1502 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1503 			int tag, unsigned int nr_pages, struct page **pages)
1504 {
1505 	struct radix_tree_iter iter;
1506 	void **slot;
1507 	unsigned ret = 0;
1508 
1509 	if (unlikely(!nr_pages))
1510 		return 0;
1511 
1512 	rcu_read_lock();
1513 	radix_tree_for_each_tagged(slot, &mapping->page_tree,
1514 				   &iter, *index, tag) {
1515 		struct page *head, *page;
1516 repeat:
1517 		page = radix_tree_deref_slot(slot);
1518 		if (unlikely(!page))
1519 			continue;
1520 
1521 		if (radix_tree_exception(page)) {
1522 			if (radix_tree_deref_retry(page)) {
1523 				slot = radix_tree_iter_retry(&iter);
1524 				continue;
1525 			}
1526 			/*
1527 			 * A shadow entry of a recently evicted page.
1528 			 *
1529 			 * Those entries should never be tagged, but
1530 			 * this tree walk is lockless and the tags are
1531 			 * looked up in bulk, one radix tree node at a
1532 			 * time, so there is a sizable window for page
1533 			 * reclaim to evict a page we saw tagged.
1534 			 *
1535 			 * Skip over it.
1536 			 */
1537 			continue;
1538 		}
1539 
1540 		head = compound_head(page);
1541 		if (!page_cache_get_speculative(head))
1542 			goto repeat;
1543 
1544 		/* The page was split under us? */
1545 		if (compound_head(page) != head) {
1546 			put_page(head);
1547 			goto repeat;
1548 		}
1549 
1550 		/* Has the page moved? */
1551 		if (unlikely(page != *slot)) {
1552 			put_page(head);
1553 			goto repeat;
1554 		}
1555 
1556 		pages[ret] = page;
1557 		if (++ret == nr_pages)
1558 			break;
1559 	}
1560 
1561 	rcu_read_unlock();
1562 
1563 	if (ret)
1564 		*index = pages[ret - 1]->index + 1;
1565 
1566 	return ret;
1567 }
1568 EXPORT_SYMBOL(find_get_pages_tag);
1569 
1570 /**
1571  * find_get_entries_tag - find and return entries that match @tag
1572  * @mapping:	the address_space to search
1573  * @start:	the starting page cache index
1574  * @tag:	the tag index
1575  * @nr_entries:	the maximum number of entries
1576  * @entries:	where the resulting entries are placed
1577  * @indices:	the cache indices corresponding to the entries in @entries
1578  *
1579  * Like find_get_entries, except we only return entries which are tagged with
1580  * @tag.
1581  */
1582 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1583 			int tag, unsigned int nr_entries,
1584 			struct page **entries, pgoff_t *indices)
1585 {
1586 	void **slot;
1587 	unsigned int ret = 0;
1588 	struct radix_tree_iter iter;
1589 
1590 	if (!nr_entries)
1591 		return 0;
1592 
1593 	rcu_read_lock();
1594 	radix_tree_for_each_tagged(slot, &mapping->page_tree,
1595 				   &iter, start, tag) {
1596 		struct page *head, *page;
1597 repeat:
1598 		page = radix_tree_deref_slot(slot);
1599 		if (unlikely(!page))
1600 			continue;
1601 		if (radix_tree_exception(page)) {
1602 			if (radix_tree_deref_retry(page)) {
1603 				slot = radix_tree_iter_retry(&iter);
1604 				continue;
1605 			}
1606 
1607 			/*
1608 			 * A shadow entry of a recently evicted page, a swap
1609 			 * entry from shmem/tmpfs or a DAX entry.  Return it
1610 			 * without attempting to raise page count.
1611 			 */
1612 			goto export;
1613 		}
1614 
1615 		head = compound_head(page);
1616 		if (!page_cache_get_speculative(head))
1617 			goto repeat;
1618 
1619 		/* The page was split under us? */
1620 		if (compound_head(page) != head) {
1621 			put_page(head);
1622 			goto repeat;
1623 		}
1624 
1625 		/* Has the page moved? */
1626 		if (unlikely(page != *slot)) {
1627 			put_page(head);
1628 			goto repeat;
1629 		}
1630 export:
1631 		indices[ret] = iter.index;
1632 		entries[ret] = page;
1633 		if (++ret == nr_entries)
1634 			break;
1635 	}
1636 	rcu_read_unlock();
1637 	return ret;
1638 }
1639 EXPORT_SYMBOL(find_get_entries_tag);
1640 
1641 /*
1642  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1643  * a _large_ part of the i/o request. Imagine the worst scenario:
1644  *
1645  *      ---R__________________________________________B__________
1646  *         ^ reading here                             ^ bad block(assume 4k)
1647  *
1648  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1649  * => failing the whole request => read(R) => read(R+1) =>
1650  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1651  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1652  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1653  *
1654  * It is going insane. Fix it by quickly scaling down the readahead size.
1655  */
1656 static void shrink_readahead_size_eio(struct file *filp,
1657 					struct file_ra_state *ra)
1658 {
1659 	ra->ra_pages /= 4;
1660 }
1661 
1662 /**
1663  * do_generic_file_read - generic file read routine
1664  * @filp:	the file to read
1665  * @ppos:	current file position
1666  * @iter:	data destination
1667  * @written:	already copied
1668  *
1669  * This is a generic file read routine, and uses the
1670  * mapping->a_ops->readpage() function for the actual low-level stuff.
1671  *
1672  * This is really ugly. But the goto's actually try to clarify some
1673  * of the logic when it comes to error handling etc.
1674  */
1675 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1676 		struct iov_iter *iter, ssize_t written)
1677 {
1678 	struct address_space *mapping = filp->f_mapping;
1679 	struct inode *inode = mapping->host;
1680 	struct file_ra_state *ra = &filp->f_ra;
1681 	pgoff_t index;
1682 	pgoff_t last_index;
1683 	pgoff_t prev_index;
1684 	unsigned long offset;      /* offset into pagecache page */
1685 	unsigned int prev_offset;
1686 	int error = 0;
1687 
1688 	if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
1689 		return -EINVAL;
1690 	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
1691 
1692 	index = *ppos >> PAGE_SHIFT;
1693 	prev_index = ra->prev_pos >> PAGE_SHIFT;
1694 	prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1695 	last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1696 	offset = *ppos & ~PAGE_MASK;
1697 
1698 	for (;;) {
1699 		struct page *page;
1700 		pgoff_t end_index;
1701 		loff_t isize;
1702 		unsigned long nr, ret;
1703 
1704 		cond_resched();
1705 find_page:
1706 		page = find_get_page(mapping, index);
1707 		if (!page) {
1708 			page_cache_sync_readahead(mapping,
1709 					ra, filp,
1710 					index, last_index - index);
1711 			page = find_get_page(mapping, index);
1712 			if (unlikely(page == NULL))
1713 				goto no_cached_page;
1714 		}
1715 		if (PageReadahead(page)) {
1716 			page_cache_async_readahead(mapping,
1717 					ra, filp, page,
1718 					index, last_index - index);
1719 		}
1720 		if (!PageUptodate(page)) {
1721 			/*
1722 			 * See comment in do_read_cache_page on why
1723 			 * wait_on_page_locked is used to avoid unnecessarily
1724 			 * serialisations and why it's safe.
1725 			 */
1726 			error = wait_on_page_locked_killable(page);
1727 			if (unlikely(error))
1728 				goto readpage_error;
1729 			if (PageUptodate(page))
1730 				goto page_ok;
1731 
1732 			if (inode->i_blkbits == PAGE_SHIFT ||
1733 					!mapping->a_ops->is_partially_uptodate)
1734 				goto page_not_up_to_date;
1735 			/* pipes can't handle partially uptodate pages */
1736 			if (unlikely(iter->type & ITER_PIPE))
1737 				goto page_not_up_to_date;
1738 			if (!trylock_page(page))
1739 				goto page_not_up_to_date;
1740 			/* Did it get truncated before we got the lock? */
1741 			if (!page->mapping)
1742 				goto page_not_up_to_date_locked;
1743 			if (!mapping->a_ops->is_partially_uptodate(page,
1744 							offset, iter->count))
1745 				goto page_not_up_to_date_locked;
1746 			unlock_page(page);
1747 		}
1748 page_ok:
1749 		/*
1750 		 * i_size must be checked after we know the page is Uptodate.
1751 		 *
1752 		 * Checking i_size after the check allows us to calculate
1753 		 * the correct value for "nr", which means the zero-filled
1754 		 * part of the page is not copied back to userspace (unless
1755 		 * another truncate extends the file - this is desired though).
1756 		 */
1757 
1758 		isize = i_size_read(inode);
1759 		end_index = (isize - 1) >> PAGE_SHIFT;
1760 		if (unlikely(!isize || index > end_index)) {
1761 			put_page(page);
1762 			goto out;
1763 		}
1764 
1765 		/* nr is the maximum number of bytes to copy from this page */
1766 		nr = PAGE_SIZE;
1767 		if (index == end_index) {
1768 			nr = ((isize - 1) & ~PAGE_MASK) + 1;
1769 			if (nr <= offset) {
1770 				put_page(page);
1771 				goto out;
1772 			}
1773 		}
1774 		nr = nr - offset;
1775 
1776 		/* If users can be writing to this page using arbitrary
1777 		 * virtual addresses, take care about potential aliasing
1778 		 * before reading the page on the kernel side.
1779 		 */
1780 		if (mapping_writably_mapped(mapping))
1781 			flush_dcache_page(page);
1782 
1783 		/*
1784 		 * When a sequential read accesses a page several times,
1785 		 * only mark it as accessed the first time.
1786 		 */
1787 		if (prev_index != index || offset != prev_offset)
1788 			mark_page_accessed(page);
1789 		prev_index = index;
1790 
1791 		/*
1792 		 * Ok, we have the page, and it's up-to-date, so
1793 		 * now we can copy it to user space...
1794 		 */
1795 
1796 		ret = copy_page_to_iter(page, offset, nr, iter);
1797 		offset += ret;
1798 		index += offset >> PAGE_SHIFT;
1799 		offset &= ~PAGE_MASK;
1800 		prev_offset = offset;
1801 
1802 		put_page(page);
1803 		written += ret;
1804 		if (!iov_iter_count(iter))
1805 			goto out;
1806 		if (ret < nr) {
1807 			error = -EFAULT;
1808 			goto out;
1809 		}
1810 		continue;
1811 
1812 page_not_up_to_date:
1813 		/* Get exclusive access to the page ... */
1814 		error = lock_page_killable(page);
1815 		if (unlikely(error))
1816 			goto readpage_error;
1817 
1818 page_not_up_to_date_locked:
1819 		/* Did it get truncated before we got the lock? */
1820 		if (!page->mapping) {
1821 			unlock_page(page);
1822 			put_page(page);
1823 			continue;
1824 		}
1825 
1826 		/* Did somebody else fill it already? */
1827 		if (PageUptodate(page)) {
1828 			unlock_page(page);
1829 			goto page_ok;
1830 		}
1831 
1832 readpage:
1833 		/*
1834 		 * A previous I/O error may have been due to temporary
1835 		 * failures, eg. multipath errors.
1836 		 * PG_error will be set again if readpage fails.
1837 		 */
1838 		ClearPageError(page);
1839 		/* Start the actual read. The read will unlock the page. */
1840 		error = mapping->a_ops->readpage(filp, page);
1841 
1842 		if (unlikely(error)) {
1843 			if (error == AOP_TRUNCATED_PAGE) {
1844 				put_page(page);
1845 				error = 0;
1846 				goto find_page;
1847 			}
1848 			goto readpage_error;
1849 		}
1850 
1851 		if (!PageUptodate(page)) {
1852 			error = lock_page_killable(page);
1853 			if (unlikely(error))
1854 				goto readpage_error;
1855 			if (!PageUptodate(page)) {
1856 				if (page->mapping == NULL) {
1857 					/*
1858 					 * invalidate_mapping_pages got it
1859 					 */
1860 					unlock_page(page);
1861 					put_page(page);
1862 					goto find_page;
1863 				}
1864 				unlock_page(page);
1865 				shrink_readahead_size_eio(filp, ra);
1866 				error = -EIO;
1867 				goto readpage_error;
1868 			}
1869 			unlock_page(page);
1870 		}
1871 
1872 		goto page_ok;
1873 
1874 readpage_error:
1875 		/* UHHUH! A synchronous read error occurred. Report it */
1876 		put_page(page);
1877 		goto out;
1878 
1879 no_cached_page:
1880 		/*
1881 		 * Ok, it wasn't cached, so we need to create a new
1882 		 * page..
1883 		 */
1884 		page = page_cache_alloc_cold(mapping);
1885 		if (!page) {
1886 			error = -ENOMEM;
1887 			goto out;
1888 		}
1889 		error = add_to_page_cache_lru(page, mapping, index,
1890 				mapping_gfp_constraint(mapping, GFP_KERNEL));
1891 		if (error) {
1892 			put_page(page);
1893 			if (error == -EEXIST) {
1894 				error = 0;
1895 				goto find_page;
1896 			}
1897 			goto out;
1898 		}
1899 		goto readpage;
1900 	}
1901 
1902 out:
1903 	ra->prev_pos = prev_index;
1904 	ra->prev_pos <<= PAGE_SHIFT;
1905 	ra->prev_pos |= prev_offset;
1906 
1907 	*ppos = ((loff_t)index << PAGE_SHIFT) + offset;
1908 	file_accessed(filp);
1909 	return written ? written : error;
1910 }
1911 
1912 /**
1913  * generic_file_read_iter - generic filesystem read routine
1914  * @iocb:	kernel I/O control block
1915  * @iter:	destination for the data read
1916  *
1917  * This is the "read_iter()" routine for all filesystems
1918  * that can use the page cache directly.
1919  */
1920 ssize_t
1921 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1922 {
1923 	struct file *file = iocb->ki_filp;
1924 	ssize_t retval = 0;
1925 	size_t count = iov_iter_count(iter);
1926 
1927 	if (!count)
1928 		goto out; /* skip atime */
1929 
1930 	if (iocb->ki_flags & IOCB_DIRECT) {
1931 		struct address_space *mapping = file->f_mapping;
1932 		struct inode *inode = mapping->host;
1933 		struct iov_iter data = *iter;
1934 		loff_t size;
1935 
1936 		size = i_size_read(inode);
1937 		retval = filemap_write_and_wait_range(mapping, iocb->ki_pos,
1938 					iocb->ki_pos + count - 1);
1939 		if (retval < 0)
1940 			goto out;
1941 
1942 		file_accessed(file);
1943 
1944 		retval = mapping->a_ops->direct_IO(iocb, &data);
1945 		if (retval >= 0) {
1946 			iocb->ki_pos += retval;
1947 			iov_iter_advance(iter, retval);
1948 		}
1949 
1950 		/*
1951 		 * Btrfs can have a short DIO read if we encounter
1952 		 * compressed extents, so if there was an error, or if
1953 		 * we've already read everything we wanted to, or if
1954 		 * there was a short read because we hit EOF, go ahead
1955 		 * and return.  Otherwise fallthrough to buffered io for
1956 		 * the rest of the read.  Buffered reads will not work for
1957 		 * DAX files, so don't bother trying.
1958 		 */
1959 		if (retval < 0 || !iov_iter_count(iter) || iocb->ki_pos >= size ||
1960 		    IS_DAX(inode))
1961 			goto out;
1962 	}
1963 
1964 	retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval);
1965 out:
1966 	return retval;
1967 }
1968 EXPORT_SYMBOL(generic_file_read_iter);
1969 
1970 #ifdef CONFIG_MMU
1971 /**
1972  * page_cache_read - adds requested page to the page cache if not already there
1973  * @file:	file to read
1974  * @offset:	page index
1975  * @gfp_mask:	memory allocation flags
1976  *
1977  * This adds the requested page to the page cache if it isn't already there,
1978  * and schedules an I/O to read in its contents from disk.
1979  */
1980 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
1981 {
1982 	struct address_space *mapping = file->f_mapping;
1983 	struct page *page;
1984 	int ret;
1985 
1986 	do {
1987 		page = __page_cache_alloc(gfp_mask|__GFP_COLD);
1988 		if (!page)
1989 			return -ENOMEM;
1990 
1991 		ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
1992 		if (ret == 0)
1993 			ret = mapping->a_ops->readpage(file, page);
1994 		else if (ret == -EEXIST)
1995 			ret = 0; /* losing race to add is OK */
1996 
1997 		put_page(page);
1998 
1999 	} while (ret == AOP_TRUNCATED_PAGE);
2000 
2001 	return ret;
2002 }
2003 
2004 #define MMAP_LOTSAMISS  (100)
2005 
2006 /*
2007  * Synchronous readahead happens when we don't even find
2008  * a page in the page cache at all.
2009  */
2010 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2011 				   struct file_ra_state *ra,
2012 				   struct file *file,
2013 				   pgoff_t offset)
2014 {
2015 	struct address_space *mapping = file->f_mapping;
2016 
2017 	/* If we don't want any read-ahead, don't bother */
2018 	if (vma->vm_flags & VM_RAND_READ)
2019 		return;
2020 	if (!ra->ra_pages)
2021 		return;
2022 
2023 	if (vma->vm_flags & VM_SEQ_READ) {
2024 		page_cache_sync_readahead(mapping, ra, file, offset,
2025 					  ra->ra_pages);
2026 		return;
2027 	}
2028 
2029 	/* Avoid banging the cache line if not needed */
2030 	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2031 		ra->mmap_miss++;
2032 
2033 	/*
2034 	 * Do we miss much more than hit in this file? If so,
2035 	 * stop bothering with read-ahead. It will only hurt.
2036 	 */
2037 	if (ra->mmap_miss > MMAP_LOTSAMISS)
2038 		return;
2039 
2040 	/*
2041 	 * mmap read-around
2042 	 */
2043 	ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2044 	ra->size = ra->ra_pages;
2045 	ra->async_size = ra->ra_pages / 4;
2046 	ra_submit(ra, mapping, file);
2047 }
2048 
2049 /*
2050  * Asynchronous readahead happens when we find the page and PG_readahead,
2051  * so we want to possibly extend the readahead further..
2052  */
2053 static void do_async_mmap_readahead(struct vm_area_struct *vma,
2054 				    struct file_ra_state *ra,
2055 				    struct file *file,
2056 				    struct page *page,
2057 				    pgoff_t offset)
2058 {
2059 	struct address_space *mapping = file->f_mapping;
2060 
2061 	/* If we don't want any read-ahead, don't bother */
2062 	if (vma->vm_flags & VM_RAND_READ)
2063 		return;
2064 	if (ra->mmap_miss > 0)
2065 		ra->mmap_miss--;
2066 	if (PageReadahead(page))
2067 		page_cache_async_readahead(mapping, ra, file,
2068 					   page, offset, ra->ra_pages);
2069 }
2070 
2071 /**
2072  * filemap_fault - read in file data for page fault handling
2073  * @vma:	vma in which the fault was taken
2074  * @vmf:	struct vm_fault containing details of the fault
2075  *
2076  * filemap_fault() is invoked via the vma operations vector for a
2077  * mapped memory region to read in file data during a page fault.
2078  *
2079  * The goto's are kind of ugly, but this streamlines the normal case of having
2080  * it in the page cache, and handles the special cases reasonably without
2081  * having a lot of duplicated code.
2082  *
2083  * vma->vm_mm->mmap_sem must be held on entry.
2084  *
2085  * If our return value has VM_FAULT_RETRY set, it's because
2086  * lock_page_or_retry() returned 0.
2087  * The mmap_sem has usually been released in this case.
2088  * See __lock_page_or_retry() for the exception.
2089  *
2090  * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2091  * has not been released.
2092  *
2093  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2094  */
2095 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2096 {
2097 	int error;
2098 	struct file *file = vma->vm_file;
2099 	struct address_space *mapping = file->f_mapping;
2100 	struct file_ra_state *ra = &file->f_ra;
2101 	struct inode *inode = mapping->host;
2102 	pgoff_t offset = vmf->pgoff;
2103 	struct page *page;
2104 	loff_t size;
2105 	int ret = 0;
2106 
2107 	size = round_up(i_size_read(inode), PAGE_SIZE);
2108 	if (offset >= size >> PAGE_SHIFT)
2109 		return VM_FAULT_SIGBUS;
2110 
2111 	/*
2112 	 * Do we have something in the page cache already?
2113 	 */
2114 	page = find_get_page(mapping, offset);
2115 	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2116 		/*
2117 		 * We found the page, so try async readahead before
2118 		 * waiting for the lock.
2119 		 */
2120 		do_async_mmap_readahead(vma, ra, file, page, offset);
2121 	} else if (!page) {
2122 		/* No page in the page cache at all */
2123 		do_sync_mmap_readahead(vma, ra, file, offset);
2124 		count_vm_event(PGMAJFAULT);
2125 		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
2126 		ret = VM_FAULT_MAJOR;
2127 retry_find:
2128 		page = find_get_page(mapping, offset);
2129 		if (!page)
2130 			goto no_cached_page;
2131 	}
2132 
2133 	if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
2134 		put_page(page);
2135 		return ret | VM_FAULT_RETRY;
2136 	}
2137 
2138 	/* Did it get truncated? */
2139 	if (unlikely(page->mapping != mapping)) {
2140 		unlock_page(page);
2141 		put_page(page);
2142 		goto retry_find;
2143 	}
2144 	VM_BUG_ON_PAGE(page->index != offset, page);
2145 
2146 	/*
2147 	 * We have a locked page in the page cache, now we need to check
2148 	 * that it's up-to-date. If not, it is going to be due to an error.
2149 	 */
2150 	if (unlikely(!PageUptodate(page)))
2151 		goto page_not_uptodate;
2152 
2153 	/*
2154 	 * Found the page and have a reference on it.
2155 	 * We must recheck i_size under page lock.
2156 	 */
2157 	size = round_up(i_size_read(inode), PAGE_SIZE);
2158 	if (unlikely(offset >= size >> PAGE_SHIFT)) {
2159 		unlock_page(page);
2160 		put_page(page);
2161 		return VM_FAULT_SIGBUS;
2162 	}
2163 
2164 	vmf->page = page;
2165 	return ret | VM_FAULT_LOCKED;
2166 
2167 no_cached_page:
2168 	/*
2169 	 * We're only likely to ever get here if MADV_RANDOM is in
2170 	 * effect.
2171 	 */
2172 	error = page_cache_read(file, offset, vmf->gfp_mask);
2173 
2174 	/*
2175 	 * The page we want has now been added to the page cache.
2176 	 * In the unlikely event that someone removed it in the
2177 	 * meantime, we'll just come back here and read it again.
2178 	 */
2179 	if (error >= 0)
2180 		goto retry_find;
2181 
2182 	/*
2183 	 * An error return from page_cache_read can result if the
2184 	 * system is low on memory, or a problem occurs while trying
2185 	 * to schedule I/O.
2186 	 */
2187 	if (error == -ENOMEM)
2188 		return VM_FAULT_OOM;
2189 	return VM_FAULT_SIGBUS;
2190 
2191 page_not_uptodate:
2192 	/*
2193 	 * Umm, take care of errors if the page isn't up-to-date.
2194 	 * Try to re-read it _once_. We do this synchronously,
2195 	 * because there really aren't any performance issues here
2196 	 * and we need to check for errors.
2197 	 */
2198 	ClearPageError(page);
2199 	error = mapping->a_ops->readpage(file, page);
2200 	if (!error) {
2201 		wait_on_page_locked(page);
2202 		if (!PageUptodate(page))
2203 			error = -EIO;
2204 	}
2205 	put_page(page);
2206 
2207 	if (!error || error == AOP_TRUNCATED_PAGE)
2208 		goto retry_find;
2209 
2210 	/* Things didn't work out. Return zero to tell the mm layer so. */
2211 	shrink_readahead_size_eio(file, ra);
2212 	return VM_FAULT_SIGBUS;
2213 }
2214 EXPORT_SYMBOL(filemap_fault);
2215 
2216 void filemap_map_pages(struct fault_env *fe,
2217 		pgoff_t start_pgoff, pgoff_t end_pgoff)
2218 {
2219 	struct radix_tree_iter iter;
2220 	void **slot;
2221 	struct file *file = fe->vma->vm_file;
2222 	struct address_space *mapping = file->f_mapping;
2223 	pgoff_t last_pgoff = start_pgoff;
2224 	loff_t size;
2225 	struct page *head, *page;
2226 
2227 	rcu_read_lock();
2228 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2229 			start_pgoff) {
2230 		if (iter.index > end_pgoff)
2231 			break;
2232 repeat:
2233 		page = radix_tree_deref_slot(slot);
2234 		if (unlikely(!page))
2235 			goto next;
2236 		if (radix_tree_exception(page)) {
2237 			if (radix_tree_deref_retry(page)) {
2238 				slot = radix_tree_iter_retry(&iter);
2239 				continue;
2240 			}
2241 			goto next;
2242 		}
2243 
2244 		head = compound_head(page);
2245 		if (!page_cache_get_speculative(head))
2246 			goto repeat;
2247 
2248 		/* The page was split under us? */
2249 		if (compound_head(page) != head) {
2250 			put_page(head);
2251 			goto repeat;
2252 		}
2253 
2254 		/* Has the page moved? */
2255 		if (unlikely(page != *slot)) {
2256 			put_page(head);
2257 			goto repeat;
2258 		}
2259 
2260 		if (!PageUptodate(page) ||
2261 				PageReadahead(page) ||
2262 				PageHWPoison(page))
2263 			goto skip;
2264 		if (!trylock_page(page))
2265 			goto skip;
2266 
2267 		if (page->mapping != mapping || !PageUptodate(page))
2268 			goto unlock;
2269 
2270 		size = round_up(i_size_read(mapping->host), PAGE_SIZE);
2271 		if (page->index >= size >> PAGE_SHIFT)
2272 			goto unlock;
2273 
2274 		if (file->f_ra.mmap_miss > 0)
2275 			file->f_ra.mmap_miss--;
2276 
2277 		fe->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2278 		if (fe->pte)
2279 			fe->pte += iter.index - last_pgoff;
2280 		last_pgoff = iter.index;
2281 		if (alloc_set_pte(fe, NULL, page))
2282 			goto unlock;
2283 		unlock_page(page);
2284 		goto next;
2285 unlock:
2286 		unlock_page(page);
2287 skip:
2288 		put_page(page);
2289 next:
2290 		/* Huge page is mapped? No need to proceed. */
2291 		if (pmd_trans_huge(*fe->pmd))
2292 			break;
2293 		if (iter.index == end_pgoff)
2294 			break;
2295 	}
2296 	rcu_read_unlock();
2297 }
2298 EXPORT_SYMBOL(filemap_map_pages);
2299 
2300 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2301 {
2302 	struct page *page = vmf->page;
2303 	struct inode *inode = file_inode(vma->vm_file);
2304 	int ret = VM_FAULT_LOCKED;
2305 
2306 	sb_start_pagefault(inode->i_sb);
2307 	file_update_time(vma->vm_file);
2308 	lock_page(page);
2309 	if (page->mapping != inode->i_mapping) {
2310 		unlock_page(page);
2311 		ret = VM_FAULT_NOPAGE;
2312 		goto out;
2313 	}
2314 	/*
2315 	 * We mark the page dirty already here so that when freeze is in
2316 	 * progress, we are guaranteed that writeback during freezing will
2317 	 * see the dirty page and writeprotect it again.
2318 	 */
2319 	set_page_dirty(page);
2320 	wait_for_stable_page(page);
2321 out:
2322 	sb_end_pagefault(inode->i_sb);
2323 	return ret;
2324 }
2325 EXPORT_SYMBOL(filemap_page_mkwrite);
2326 
2327 const struct vm_operations_struct generic_file_vm_ops = {
2328 	.fault		= filemap_fault,
2329 	.map_pages	= filemap_map_pages,
2330 	.page_mkwrite	= filemap_page_mkwrite,
2331 };
2332 
2333 /* This is used for a general mmap of a disk file */
2334 
2335 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2336 {
2337 	struct address_space *mapping = file->f_mapping;
2338 
2339 	if (!mapping->a_ops->readpage)
2340 		return -ENOEXEC;
2341 	file_accessed(file);
2342 	vma->vm_ops = &generic_file_vm_ops;
2343 	return 0;
2344 }
2345 
2346 /*
2347  * This is for filesystems which do not implement ->writepage.
2348  */
2349 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2350 {
2351 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2352 		return -EINVAL;
2353 	return generic_file_mmap(file, vma);
2354 }
2355 #else
2356 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2357 {
2358 	return -ENOSYS;
2359 }
2360 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2361 {
2362 	return -ENOSYS;
2363 }
2364 #endif /* CONFIG_MMU */
2365 
2366 EXPORT_SYMBOL(generic_file_mmap);
2367 EXPORT_SYMBOL(generic_file_readonly_mmap);
2368 
2369 static struct page *wait_on_page_read(struct page *page)
2370 {
2371 	if (!IS_ERR(page)) {
2372 		wait_on_page_locked(page);
2373 		if (!PageUptodate(page)) {
2374 			put_page(page);
2375 			page = ERR_PTR(-EIO);
2376 		}
2377 	}
2378 	return page;
2379 }
2380 
2381 static struct page *do_read_cache_page(struct address_space *mapping,
2382 				pgoff_t index,
2383 				int (*filler)(void *, struct page *),
2384 				void *data,
2385 				gfp_t gfp)
2386 {
2387 	struct page *page;
2388 	int err;
2389 repeat:
2390 	page = find_get_page(mapping, index);
2391 	if (!page) {
2392 		page = __page_cache_alloc(gfp | __GFP_COLD);
2393 		if (!page)
2394 			return ERR_PTR(-ENOMEM);
2395 		err = add_to_page_cache_lru(page, mapping, index, gfp);
2396 		if (unlikely(err)) {
2397 			put_page(page);
2398 			if (err == -EEXIST)
2399 				goto repeat;
2400 			/* Presumably ENOMEM for radix tree node */
2401 			return ERR_PTR(err);
2402 		}
2403 
2404 filler:
2405 		err = filler(data, page);
2406 		if (err < 0) {
2407 			put_page(page);
2408 			return ERR_PTR(err);
2409 		}
2410 
2411 		page = wait_on_page_read(page);
2412 		if (IS_ERR(page))
2413 			return page;
2414 		goto out;
2415 	}
2416 	if (PageUptodate(page))
2417 		goto out;
2418 
2419 	/*
2420 	 * Page is not up to date and may be locked due one of the following
2421 	 * case a: Page is being filled and the page lock is held
2422 	 * case b: Read/write error clearing the page uptodate status
2423 	 * case c: Truncation in progress (page locked)
2424 	 * case d: Reclaim in progress
2425 	 *
2426 	 * Case a, the page will be up to date when the page is unlocked.
2427 	 *    There is no need to serialise on the page lock here as the page
2428 	 *    is pinned so the lock gives no additional protection. Even if the
2429 	 *    the page is truncated, the data is still valid if PageUptodate as
2430 	 *    it's a race vs truncate race.
2431 	 * Case b, the page will not be up to date
2432 	 * Case c, the page may be truncated but in itself, the data may still
2433 	 *    be valid after IO completes as it's a read vs truncate race. The
2434 	 *    operation must restart if the page is not uptodate on unlock but
2435 	 *    otherwise serialising on page lock to stabilise the mapping gives
2436 	 *    no additional guarantees to the caller as the page lock is
2437 	 *    released before return.
2438 	 * Case d, similar to truncation. If reclaim holds the page lock, it
2439 	 *    will be a race with remove_mapping that determines if the mapping
2440 	 *    is valid on unlock but otherwise the data is valid and there is
2441 	 *    no need to serialise with page lock.
2442 	 *
2443 	 * As the page lock gives no additional guarantee, we optimistically
2444 	 * wait on the page to be unlocked and check if it's up to date and
2445 	 * use the page if it is. Otherwise, the page lock is required to
2446 	 * distinguish between the different cases. The motivation is that we
2447 	 * avoid spurious serialisations and wakeups when multiple processes
2448 	 * wait on the same page for IO to complete.
2449 	 */
2450 	wait_on_page_locked(page);
2451 	if (PageUptodate(page))
2452 		goto out;
2453 
2454 	/* Distinguish between all the cases under the safety of the lock */
2455 	lock_page(page);
2456 
2457 	/* Case c or d, restart the operation */
2458 	if (!page->mapping) {
2459 		unlock_page(page);
2460 		put_page(page);
2461 		goto repeat;
2462 	}
2463 
2464 	/* Someone else locked and filled the page in a very small window */
2465 	if (PageUptodate(page)) {
2466 		unlock_page(page);
2467 		goto out;
2468 	}
2469 	goto filler;
2470 
2471 out:
2472 	mark_page_accessed(page);
2473 	return page;
2474 }
2475 
2476 /**
2477  * read_cache_page - read into page cache, fill it if needed
2478  * @mapping:	the page's address_space
2479  * @index:	the page index
2480  * @filler:	function to perform the read
2481  * @data:	first arg to filler(data, page) function, often left as NULL
2482  *
2483  * Read into the page cache. If a page already exists, and PageUptodate() is
2484  * not set, try to fill the page and wait for it to become unlocked.
2485  *
2486  * If the page does not get brought uptodate, return -EIO.
2487  */
2488 struct page *read_cache_page(struct address_space *mapping,
2489 				pgoff_t index,
2490 				int (*filler)(void *, struct page *),
2491 				void *data)
2492 {
2493 	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2494 }
2495 EXPORT_SYMBOL(read_cache_page);
2496 
2497 /**
2498  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2499  * @mapping:	the page's address_space
2500  * @index:	the page index
2501  * @gfp:	the page allocator flags to use if allocating
2502  *
2503  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2504  * any new page allocations done using the specified allocation flags.
2505  *
2506  * If the page does not get brought uptodate, return -EIO.
2507  */
2508 struct page *read_cache_page_gfp(struct address_space *mapping,
2509 				pgoff_t index,
2510 				gfp_t gfp)
2511 {
2512 	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2513 
2514 	return do_read_cache_page(mapping, index, filler, NULL, gfp);
2515 }
2516 EXPORT_SYMBOL(read_cache_page_gfp);
2517 
2518 /*
2519  * Performs necessary checks before doing a write
2520  *
2521  * Can adjust writing position or amount of bytes to write.
2522  * Returns appropriate error code that caller should return or
2523  * zero in case that write should be allowed.
2524  */
2525 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2526 {
2527 	struct file *file = iocb->ki_filp;
2528 	struct inode *inode = file->f_mapping->host;
2529 	unsigned long limit = rlimit(RLIMIT_FSIZE);
2530 	loff_t pos;
2531 
2532 	if (!iov_iter_count(from))
2533 		return 0;
2534 
2535 	/* FIXME: this is for backwards compatibility with 2.4 */
2536 	if (iocb->ki_flags & IOCB_APPEND)
2537 		iocb->ki_pos = i_size_read(inode);
2538 
2539 	pos = iocb->ki_pos;
2540 
2541 	if (limit != RLIM_INFINITY) {
2542 		if (iocb->ki_pos >= limit) {
2543 			send_sig(SIGXFSZ, current, 0);
2544 			return -EFBIG;
2545 		}
2546 		iov_iter_truncate(from, limit - (unsigned long)pos);
2547 	}
2548 
2549 	/*
2550 	 * LFS rule
2551 	 */
2552 	if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2553 				!(file->f_flags & O_LARGEFILE))) {
2554 		if (pos >= MAX_NON_LFS)
2555 			return -EFBIG;
2556 		iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2557 	}
2558 
2559 	/*
2560 	 * Are we about to exceed the fs block limit ?
2561 	 *
2562 	 * If we have written data it becomes a short write.  If we have
2563 	 * exceeded without writing data we send a signal and return EFBIG.
2564 	 * Linus frestrict idea will clean these up nicely..
2565 	 */
2566 	if (unlikely(pos >= inode->i_sb->s_maxbytes))
2567 		return -EFBIG;
2568 
2569 	iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2570 	return iov_iter_count(from);
2571 }
2572 EXPORT_SYMBOL(generic_write_checks);
2573 
2574 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2575 				loff_t pos, unsigned len, unsigned flags,
2576 				struct page **pagep, void **fsdata)
2577 {
2578 	const struct address_space_operations *aops = mapping->a_ops;
2579 
2580 	return aops->write_begin(file, mapping, pos, len, flags,
2581 							pagep, fsdata);
2582 }
2583 EXPORT_SYMBOL(pagecache_write_begin);
2584 
2585 int pagecache_write_end(struct file *file, struct address_space *mapping,
2586 				loff_t pos, unsigned len, unsigned copied,
2587 				struct page *page, void *fsdata)
2588 {
2589 	const struct address_space_operations *aops = mapping->a_ops;
2590 
2591 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2592 }
2593 EXPORT_SYMBOL(pagecache_write_end);
2594 
2595 ssize_t
2596 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
2597 {
2598 	struct file	*file = iocb->ki_filp;
2599 	struct address_space *mapping = file->f_mapping;
2600 	struct inode	*inode = mapping->host;
2601 	loff_t		pos = iocb->ki_pos;
2602 	ssize_t		written;
2603 	size_t		write_len;
2604 	pgoff_t		end;
2605 	struct iov_iter data;
2606 
2607 	write_len = iov_iter_count(from);
2608 	end = (pos + write_len - 1) >> PAGE_SHIFT;
2609 
2610 	written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2611 	if (written)
2612 		goto out;
2613 
2614 	/*
2615 	 * After a write we want buffered reads to be sure to go to disk to get
2616 	 * the new data.  We invalidate clean cached page from the region we're
2617 	 * about to write.  We do this *before* the write so that we can return
2618 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2619 	 */
2620 	if (mapping->nrpages) {
2621 		written = invalidate_inode_pages2_range(mapping,
2622 					pos >> PAGE_SHIFT, end);
2623 		/*
2624 		 * If a page can not be invalidated, return 0 to fall back
2625 		 * to buffered write.
2626 		 */
2627 		if (written) {
2628 			if (written == -EBUSY)
2629 				return 0;
2630 			goto out;
2631 		}
2632 	}
2633 
2634 	data = *from;
2635 	written = mapping->a_ops->direct_IO(iocb, &data);
2636 
2637 	/*
2638 	 * Finally, try again to invalidate clean pages which might have been
2639 	 * cached by non-direct readahead, or faulted in by get_user_pages()
2640 	 * if the source of the write was an mmap'ed region of the file
2641 	 * we're writing.  Either one is a pretty crazy thing to do,
2642 	 * so we don't support it 100%.  If this invalidation
2643 	 * fails, tough, the write still worked...
2644 	 */
2645 	if (mapping->nrpages) {
2646 		invalidate_inode_pages2_range(mapping,
2647 					      pos >> PAGE_SHIFT, end);
2648 	}
2649 
2650 	if (written > 0) {
2651 		pos += written;
2652 		iov_iter_advance(from, written);
2653 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2654 			i_size_write(inode, pos);
2655 			mark_inode_dirty(inode);
2656 		}
2657 		iocb->ki_pos = pos;
2658 	}
2659 out:
2660 	return written;
2661 }
2662 EXPORT_SYMBOL(generic_file_direct_write);
2663 
2664 /*
2665  * Find or create a page at the given pagecache position. Return the locked
2666  * page. This function is specifically for buffered writes.
2667  */
2668 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2669 					pgoff_t index, unsigned flags)
2670 {
2671 	struct page *page;
2672 	int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
2673 
2674 	if (flags & AOP_FLAG_NOFS)
2675 		fgp_flags |= FGP_NOFS;
2676 
2677 	page = pagecache_get_page(mapping, index, fgp_flags,
2678 			mapping_gfp_mask(mapping));
2679 	if (page)
2680 		wait_for_stable_page(page);
2681 
2682 	return page;
2683 }
2684 EXPORT_SYMBOL(grab_cache_page_write_begin);
2685 
2686 ssize_t generic_perform_write(struct file *file,
2687 				struct iov_iter *i, loff_t pos)
2688 {
2689 	struct address_space *mapping = file->f_mapping;
2690 	const struct address_space_operations *a_ops = mapping->a_ops;
2691 	long status = 0;
2692 	ssize_t written = 0;
2693 	unsigned int flags = 0;
2694 
2695 	/*
2696 	 * Copies from kernel address space cannot fail (NFSD is a big user).
2697 	 */
2698 	if (!iter_is_iovec(i))
2699 		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2700 
2701 	do {
2702 		struct page *page;
2703 		unsigned long offset;	/* Offset into pagecache page */
2704 		unsigned long bytes;	/* Bytes to write to page */
2705 		size_t copied;		/* Bytes copied from user */
2706 		void *fsdata;
2707 
2708 		offset = (pos & (PAGE_SIZE - 1));
2709 		bytes = min_t(unsigned long, PAGE_SIZE - offset,
2710 						iov_iter_count(i));
2711 
2712 again:
2713 		/*
2714 		 * Bring in the user page that we will copy from _first_.
2715 		 * Otherwise there's a nasty deadlock on copying from the
2716 		 * same page as we're writing to, without it being marked
2717 		 * up-to-date.
2718 		 *
2719 		 * Not only is this an optimisation, but it is also required
2720 		 * to check that the address is actually valid, when atomic
2721 		 * usercopies are used, below.
2722 		 */
2723 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2724 			status = -EFAULT;
2725 			break;
2726 		}
2727 
2728 		if (fatal_signal_pending(current)) {
2729 			status = -EINTR;
2730 			break;
2731 		}
2732 
2733 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2734 						&page, &fsdata);
2735 		if (unlikely(status < 0))
2736 			break;
2737 
2738 		if (mapping_writably_mapped(mapping))
2739 			flush_dcache_page(page);
2740 
2741 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2742 		flush_dcache_page(page);
2743 
2744 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2745 						page, fsdata);
2746 		if (unlikely(status < 0))
2747 			break;
2748 		copied = status;
2749 
2750 		cond_resched();
2751 
2752 		iov_iter_advance(i, copied);
2753 		if (unlikely(copied == 0)) {
2754 			/*
2755 			 * If we were unable to copy any data at all, we must
2756 			 * fall back to a single segment length write.
2757 			 *
2758 			 * If we didn't fallback here, we could livelock
2759 			 * because not all segments in the iov can be copied at
2760 			 * once without a pagefault.
2761 			 */
2762 			bytes = min_t(unsigned long, PAGE_SIZE - offset,
2763 						iov_iter_single_seg_count(i));
2764 			goto again;
2765 		}
2766 		pos += copied;
2767 		written += copied;
2768 
2769 		balance_dirty_pages_ratelimited(mapping);
2770 	} while (iov_iter_count(i));
2771 
2772 	return written ? written : status;
2773 }
2774 EXPORT_SYMBOL(generic_perform_write);
2775 
2776 /**
2777  * __generic_file_write_iter - write data to a file
2778  * @iocb:	IO state structure (file, offset, etc.)
2779  * @from:	iov_iter with data to write
2780  *
2781  * This function does all the work needed for actually writing data to a
2782  * file. It does all basic checks, removes SUID from the file, updates
2783  * modification times and calls proper subroutines depending on whether we
2784  * do direct IO or a standard buffered write.
2785  *
2786  * It expects i_mutex to be grabbed unless we work on a block device or similar
2787  * object which does not need locking at all.
2788  *
2789  * This function does *not* take care of syncing data in case of O_SYNC write.
2790  * A caller has to handle it. This is mainly due to the fact that we want to
2791  * avoid syncing under i_mutex.
2792  */
2793 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2794 {
2795 	struct file *file = iocb->ki_filp;
2796 	struct address_space * mapping = file->f_mapping;
2797 	struct inode 	*inode = mapping->host;
2798 	ssize_t		written = 0;
2799 	ssize_t		err;
2800 	ssize_t		status;
2801 
2802 	/* We can write back this queue in page reclaim */
2803 	current->backing_dev_info = inode_to_bdi(inode);
2804 	err = file_remove_privs(file);
2805 	if (err)
2806 		goto out;
2807 
2808 	err = file_update_time(file);
2809 	if (err)
2810 		goto out;
2811 
2812 	if (iocb->ki_flags & IOCB_DIRECT) {
2813 		loff_t pos, endbyte;
2814 
2815 		written = generic_file_direct_write(iocb, from);
2816 		/*
2817 		 * If the write stopped short of completing, fall back to
2818 		 * buffered writes.  Some filesystems do this for writes to
2819 		 * holes, for example.  For DAX files, a buffered write will
2820 		 * not succeed (even if it did, DAX does not handle dirty
2821 		 * page-cache pages correctly).
2822 		 */
2823 		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2824 			goto out;
2825 
2826 		status = generic_perform_write(file, from, pos = iocb->ki_pos);
2827 		/*
2828 		 * If generic_perform_write() returned a synchronous error
2829 		 * then we want to return the number of bytes which were
2830 		 * direct-written, or the error code if that was zero.  Note
2831 		 * that this differs from normal direct-io semantics, which
2832 		 * will return -EFOO even if some bytes were written.
2833 		 */
2834 		if (unlikely(status < 0)) {
2835 			err = status;
2836 			goto out;
2837 		}
2838 		/*
2839 		 * We need to ensure that the page cache pages are written to
2840 		 * disk and invalidated to preserve the expected O_DIRECT
2841 		 * semantics.
2842 		 */
2843 		endbyte = pos + status - 1;
2844 		err = filemap_write_and_wait_range(mapping, pos, endbyte);
2845 		if (err == 0) {
2846 			iocb->ki_pos = endbyte + 1;
2847 			written += status;
2848 			invalidate_mapping_pages(mapping,
2849 						 pos >> PAGE_SHIFT,
2850 						 endbyte >> PAGE_SHIFT);
2851 		} else {
2852 			/*
2853 			 * We don't know how much we wrote, so just return
2854 			 * the number of bytes which were direct-written
2855 			 */
2856 		}
2857 	} else {
2858 		written = generic_perform_write(file, from, iocb->ki_pos);
2859 		if (likely(written > 0))
2860 			iocb->ki_pos += written;
2861 	}
2862 out:
2863 	current->backing_dev_info = NULL;
2864 	return written ? written : err;
2865 }
2866 EXPORT_SYMBOL(__generic_file_write_iter);
2867 
2868 /**
2869  * generic_file_write_iter - write data to a file
2870  * @iocb:	IO state structure
2871  * @from:	iov_iter with data to write
2872  *
2873  * This is a wrapper around __generic_file_write_iter() to be used by most
2874  * filesystems. It takes care of syncing the file in case of O_SYNC file
2875  * and acquires i_mutex as needed.
2876  */
2877 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2878 {
2879 	struct file *file = iocb->ki_filp;
2880 	struct inode *inode = file->f_mapping->host;
2881 	ssize_t ret;
2882 
2883 	inode_lock(inode);
2884 	ret = generic_write_checks(iocb, from);
2885 	if (ret > 0)
2886 		ret = __generic_file_write_iter(iocb, from);
2887 	inode_unlock(inode);
2888 
2889 	if (ret > 0)
2890 		ret = generic_write_sync(iocb, ret);
2891 	return ret;
2892 }
2893 EXPORT_SYMBOL(generic_file_write_iter);
2894 
2895 /**
2896  * try_to_release_page() - release old fs-specific metadata on a page
2897  *
2898  * @page: the page which the kernel is trying to free
2899  * @gfp_mask: memory allocation flags (and I/O mode)
2900  *
2901  * The address_space is to try to release any data against the page
2902  * (presumably at page->private).  If the release was successful, return `1'.
2903  * Otherwise return zero.
2904  *
2905  * This may also be called if PG_fscache is set on a page, indicating that the
2906  * page is known to the local caching routines.
2907  *
2908  * The @gfp_mask argument specifies whether I/O may be performed to release
2909  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
2910  *
2911  */
2912 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2913 {
2914 	struct address_space * const mapping = page->mapping;
2915 
2916 	BUG_ON(!PageLocked(page));
2917 	if (PageWriteback(page))
2918 		return 0;
2919 
2920 	if (mapping && mapping->a_ops->releasepage)
2921 		return mapping->a_ops->releasepage(page, gfp_mask);
2922 	return try_to_free_buffers(page);
2923 }
2924 
2925 EXPORT_SYMBOL(try_to_release_page);
2926