1 /* 2 * linux/mm/filemap.c 3 * 4 * Copyright (C) 1994-1999 Linus Torvalds 5 */ 6 7 /* 8 * This file handles the generic file mmap semantics used by 9 * most "normal" filesystems (but you don't /have/ to use this: 10 * the NFS filesystem used to do this differently, for example) 11 */ 12 #include <linux/module.h> 13 #include <linux/slab.h> 14 #include <linux/compiler.h> 15 #include <linux/fs.h> 16 #include <linux/uaccess.h> 17 #include <linux/aio.h> 18 #include <linux/capability.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/mm.h> 21 #include <linux/swap.h> 22 #include <linux/mman.h> 23 #include <linux/pagemap.h> 24 #include <linux/file.h> 25 #include <linux/uio.h> 26 #include <linux/hash.h> 27 #include <linux/writeback.h> 28 #include <linux/pagevec.h> 29 #include <linux/blkdev.h> 30 #include <linux/security.h> 31 #include <linux/syscalls.h> 32 #include <linux/cpuset.h> 33 #include "filemap.h" 34 #include "internal.h" 35 36 /* 37 * FIXME: remove all knowledge of the buffer layer from the core VM 38 */ 39 #include <linux/buffer_head.h> /* for generic_osync_inode */ 40 41 #include <asm/mman.h> 42 43 static ssize_t 44 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, 45 loff_t offset, unsigned long nr_segs); 46 47 /* 48 * Shared mappings implemented 30.11.1994. It's not fully working yet, 49 * though. 50 * 51 * Shared mappings now work. 15.8.1995 Bruno. 52 * 53 * finished 'unifying' the page and buffer cache and SMP-threaded the 54 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 55 * 56 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 57 */ 58 59 /* 60 * Lock ordering: 61 * 62 * ->i_mmap_lock (vmtruncate) 63 * ->private_lock (__free_pte->__set_page_dirty_buffers) 64 * ->swap_lock (exclusive_swap_page, others) 65 * ->mapping->tree_lock 66 * 67 * ->i_mutex 68 * ->i_mmap_lock (truncate->unmap_mapping_range) 69 * 70 * ->mmap_sem 71 * ->i_mmap_lock 72 * ->page_table_lock or pte_lock (various, mainly in memory.c) 73 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock) 74 * 75 * ->mmap_sem 76 * ->lock_page (access_process_vm) 77 * 78 * ->i_mutex (generic_file_buffered_write) 79 * ->mmap_sem (fault_in_pages_readable->do_page_fault) 80 * 81 * ->i_mutex 82 * ->i_alloc_sem (various) 83 * 84 * ->inode_lock 85 * ->sb_lock (fs/fs-writeback.c) 86 * ->mapping->tree_lock (__sync_single_inode) 87 * 88 * ->i_mmap_lock 89 * ->anon_vma.lock (vma_adjust) 90 * 91 * ->anon_vma.lock 92 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 93 * 94 * ->page_table_lock or pte_lock 95 * ->swap_lock (try_to_unmap_one) 96 * ->private_lock (try_to_unmap_one) 97 * ->tree_lock (try_to_unmap_one) 98 * ->zone.lru_lock (follow_page->mark_page_accessed) 99 * ->zone.lru_lock (check_pte_range->isolate_lru_page) 100 * ->private_lock (page_remove_rmap->set_page_dirty) 101 * ->tree_lock (page_remove_rmap->set_page_dirty) 102 * ->inode_lock (page_remove_rmap->set_page_dirty) 103 * ->inode_lock (zap_pte_range->set_page_dirty) 104 * ->private_lock (zap_pte_range->__set_page_dirty_buffers) 105 * 106 * ->task->proc_lock 107 * ->dcache_lock (proc_pid_lookup) 108 */ 109 110 /* 111 * Remove a page from the page cache and free it. Caller has to make 112 * sure the page is locked and that nobody else uses it - or that usage 113 * is safe. The caller must hold a write_lock on the mapping's tree_lock. 114 */ 115 void __remove_from_page_cache(struct page *page) 116 { 117 struct address_space *mapping = page->mapping; 118 119 radix_tree_delete(&mapping->page_tree, page->index); 120 page->mapping = NULL; 121 mapping->nrpages--; 122 __dec_zone_page_state(page, NR_FILE_PAGES); 123 BUG_ON(page_mapped(page)); 124 } 125 126 void remove_from_page_cache(struct page *page) 127 { 128 struct address_space *mapping = page->mapping; 129 130 BUG_ON(!PageLocked(page)); 131 132 write_lock_irq(&mapping->tree_lock); 133 __remove_from_page_cache(page); 134 write_unlock_irq(&mapping->tree_lock); 135 } 136 137 static int sync_page(void *word) 138 { 139 struct address_space *mapping; 140 struct page *page; 141 142 page = container_of((unsigned long *)word, struct page, flags); 143 144 /* 145 * page_mapping() is being called without PG_locked held. 146 * Some knowledge of the state and use of the page is used to 147 * reduce the requirements down to a memory barrier. 148 * The danger here is of a stale page_mapping() return value 149 * indicating a struct address_space different from the one it's 150 * associated with when it is associated with one. 151 * After smp_mb(), it's either the correct page_mapping() for 152 * the page, or an old page_mapping() and the page's own 153 * page_mapping() has gone NULL. 154 * The ->sync_page() address_space operation must tolerate 155 * page_mapping() going NULL. By an amazing coincidence, 156 * this comes about because none of the users of the page 157 * in the ->sync_page() methods make essential use of the 158 * page_mapping(), merely passing the page down to the backing 159 * device's unplug functions when it's non-NULL, which in turn 160 * ignore it for all cases but swap, where only page_private(page) is 161 * of interest. When page_mapping() does go NULL, the entire 162 * call stack gracefully ignores the page and returns. 163 * -- wli 164 */ 165 smp_mb(); 166 mapping = page_mapping(page); 167 if (mapping && mapping->a_ops && mapping->a_ops->sync_page) 168 mapping->a_ops->sync_page(page); 169 io_schedule(); 170 return 0; 171 } 172 173 /** 174 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 175 * @mapping: address space structure to write 176 * @start: offset in bytes where the range starts 177 * @end: offset in bytes where the range ends (inclusive) 178 * @sync_mode: enable synchronous operation 179 * 180 * Start writeback against all of a mapping's dirty pages that lie 181 * within the byte offsets <start, end> inclusive. 182 * 183 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 184 * opposed to a regular memory cleansing writeback. The difference between 185 * these two operations is that if a dirty page/buffer is encountered, it must 186 * be waited upon, and not just skipped over. 187 */ 188 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 189 loff_t end, int sync_mode) 190 { 191 int ret; 192 struct writeback_control wbc = { 193 .sync_mode = sync_mode, 194 .nr_to_write = mapping->nrpages * 2, 195 .range_start = start, 196 .range_end = end, 197 }; 198 199 if (!mapping_cap_writeback_dirty(mapping)) 200 return 0; 201 202 ret = do_writepages(mapping, &wbc); 203 return ret; 204 } 205 206 static inline int __filemap_fdatawrite(struct address_space *mapping, 207 int sync_mode) 208 { 209 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 210 } 211 212 int filemap_fdatawrite(struct address_space *mapping) 213 { 214 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 215 } 216 EXPORT_SYMBOL(filemap_fdatawrite); 217 218 static int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 219 loff_t end) 220 { 221 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 222 } 223 224 /** 225 * filemap_flush - mostly a non-blocking flush 226 * @mapping: target address_space 227 * 228 * This is a mostly non-blocking flush. Not suitable for data-integrity 229 * purposes - I/O may not be started against all dirty pages. 230 */ 231 int filemap_flush(struct address_space *mapping) 232 { 233 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 234 } 235 EXPORT_SYMBOL(filemap_flush); 236 237 /** 238 * wait_on_page_writeback_range - wait for writeback to complete 239 * @mapping: target address_space 240 * @start: beginning page index 241 * @end: ending page index 242 * 243 * Wait for writeback to complete against pages indexed by start->end 244 * inclusive 245 */ 246 int wait_on_page_writeback_range(struct address_space *mapping, 247 pgoff_t start, pgoff_t end) 248 { 249 struct pagevec pvec; 250 int nr_pages; 251 int ret = 0; 252 pgoff_t index; 253 254 if (end < start) 255 return 0; 256 257 pagevec_init(&pvec, 0); 258 index = start; 259 while ((index <= end) && 260 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 261 PAGECACHE_TAG_WRITEBACK, 262 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) { 263 unsigned i; 264 265 for (i = 0; i < nr_pages; i++) { 266 struct page *page = pvec.pages[i]; 267 268 /* until radix tree lookup accepts end_index */ 269 if (page->index > end) 270 continue; 271 272 wait_on_page_writeback(page); 273 if (PageError(page)) 274 ret = -EIO; 275 } 276 pagevec_release(&pvec); 277 cond_resched(); 278 } 279 280 /* Check for outstanding write errors */ 281 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 282 ret = -ENOSPC; 283 if (test_and_clear_bit(AS_EIO, &mapping->flags)) 284 ret = -EIO; 285 286 return ret; 287 } 288 289 /** 290 * sync_page_range - write and wait on all pages in the passed range 291 * @inode: target inode 292 * @mapping: target address_space 293 * @pos: beginning offset in pages to write 294 * @count: number of bytes to write 295 * 296 * Write and wait upon all the pages in the passed range. This is a "data 297 * integrity" operation. It waits upon in-flight writeout before starting and 298 * waiting upon new writeout. If there was an IO error, return it. 299 * 300 * We need to re-take i_mutex during the generic_osync_inode list walk because 301 * it is otherwise livelockable. 302 */ 303 int sync_page_range(struct inode *inode, struct address_space *mapping, 304 loff_t pos, loff_t count) 305 { 306 pgoff_t start = pos >> PAGE_CACHE_SHIFT; 307 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT; 308 int ret; 309 310 if (!mapping_cap_writeback_dirty(mapping) || !count) 311 return 0; 312 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1); 313 if (ret == 0) { 314 mutex_lock(&inode->i_mutex); 315 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA); 316 mutex_unlock(&inode->i_mutex); 317 } 318 if (ret == 0) 319 ret = wait_on_page_writeback_range(mapping, start, end); 320 return ret; 321 } 322 EXPORT_SYMBOL(sync_page_range); 323 324 /** 325 * sync_page_range_nolock 326 * @inode: target inode 327 * @mapping: target address_space 328 * @pos: beginning offset in pages to write 329 * @count: number of bytes to write 330 * 331 * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea 332 * as it forces O_SYNC writers to different parts of the same file 333 * to be serialised right until io completion. 334 */ 335 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping, 336 loff_t pos, loff_t count) 337 { 338 pgoff_t start = pos >> PAGE_CACHE_SHIFT; 339 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT; 340 int ret; 341 342 if (!mapping_cap_writeback_dirty(mapping) || !count) 343 return 0; 344 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1); 345 if (ret == 0) 346 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA); 347 if (ret == 0) 348 ret = wait_on_page_writeback_range(mapping, start, end); 349 return ret; 350 } 351 EXPORT_SYMBOL(sync_page_range_nolock); 352 353 /** 354 * filemap_fdatawait - wait for all under-writeback pages to complete 355 * @mapping: address space structure to wait for 356 * 357 * Walk the list of under-writeback pages of the given address space 358 * and wait for all of them. 359 */ 360 int filemap_fdatawait(struct address_space *mapping) 361 { 362 loff_t i_size = i_size_read(mapping->host); 363 364 if (i_size == 0) 365 return 0; 366 367 return wait_on_page_writeback_range(mapping, 0, 368 (i_size - 1) >> PAGE_CACHE_SHIFT); 369 } 370 EXPORT_SYMBOL(filemap_fdatawait); 371 372 int filemap_write_and_wait(struct address_space *mapping) 373 { 374 int err = 0; 375 376 if (mapping->nrpages) { 377 err = filemap_fdatawrite(mapping); 378 /* 379 * Even if the above returned error, the pages may be 380 * written partially (e.g. -ENOSPC), so we wait for it. 381 * But the -EIO is special case, it may indicate the worst 382 * thing (e.g. bug) happened, so we avoid waiting for it. 383 */ 384 if (err != -EIO) { 385 int err2 = filemap_fdatawait(mapping); 386 if (!err) 387 err = err2; 388 } 389 } 390 return err; 391 } 392 EXPORT_SYMBOL(filemap_write_and_wait); 393 394 /** 395 * filemap_write_and_wait_range - write out & wait on a file range 396 * @mapping: the address_space for the pages 397 * @lstart: offset in bytes where the range starts 398 * @lend: offset in bytes where the range ends (inclusive) 399 * 400 * Write out and wait upon file offsets lstart->lend, inclusive. 401 * 402 * Note that `lend' is inclusive (describes the last byte to be written) so 403 * that this function can be used to write to the very end-of-file (end = -1). 404 */ 405 int filemap_write_and_wait_range(struct address_space *mapping, 406 loff_t lstart, loff_t lend) 407 { 408 int err = 0; 409 410 if (mapping->nrpages) { 411 err = __filemap_fdatawrite_range(mapping, lstart, lend, 412 WB_SYNC_ALL); 413 /* See comment of filemap_write_and_wait() */ 414 if (err != -EIO) { 415 int err2 = wait_on_page_writeback_range(mapping, 416 lstart >> PAGE_CACHE_SHIFT, 417 lend >> PAGE_CACHE_SHIFT); 418 if (!err) 419 err = err2; 420 } 421 } 422 return err; 423 } 424 425 /** 426 * add_to_page_cache - add newly allocated pagecache pages 427 * @page: page to add 428 * @mapping: the page's address_space 429 * @offset: page index 430 * @gfp_mask: page allocation mode 431 * 432 * This function is used to add newly allocated pagecache pages; 433 * the page is new, so we can just run SetPageLocked() against it. 434 * The other page state flags were set by rmqueue(). 435 * 436 * This function does not add the page to the LRU. The caller must do that. 437 */ 438 int add_to_page_cache(struct page *page, struct address_space *mapping, 439 pgoff_t offset, gfp_t gfp_mask) 440 { 441 int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM); 442 443 if (error == 0) { 444 write_lock_irq(&mapping->tree_lock); 445 error = radix_tree_insert(&mapping->page_tree, offset, page); 446 if (!error) { 447 page_cache_get(page); 448 SetPageLocked(page); 449 page->mapping = mapping; 450 page->index = offset; 451 mapping->nrpages++; 452 __inc_zone_page_state(page, NR_FILE_PAGES); 453 } 454 write_unlock_irq(&mapping->tree_lock); 455 radix_tree_preload_end(); 456 } 457 return error; 458 } 459 EXPORT_SYMBOL(add_to_page_cache); 460 461 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 462 pgoff_t offset, gfp_t gfp_mask) 463 { 464 int ret = add_to_page_cache(page, mapping, offset, gfp_mask); 465 if (ret == 0) 466 lru_cache_add(page); 467 return ret; 468 } 469 470 #ifdef CONFIG_NUMA 471 struct page *__page_cache_alloc(gfp_t gfp) 472 { 473 if (cpuset_do_page_mem_spread()) { 474 int n = cpuset_mem_spread_node(); 475 return alloc_pages_node(n, gfp, 0); 476 } 477 return alloc_pages(gfp, 0); 478 } 479 EXPORT_SYMBOL(__page_cache_alloc); 480 #endif 481 482 static int __sleep_on_page_lock(void *word) 483 { 484 io_schedule(); 485 return 0; 486 } 487 488 /* 489 * In order to wait for pages to become available there must be 490 * waitqueues associated with pages. By using a hash table of 491 * waitqueues where the bucket discipline is to maintain all 492 * waiters on the same queue and wake all when any of the pages 493 * become available, and for the woken contexts to check to be 494 * sure the appropriate page became available, this saves space 495 * at a cost of "thundering herd" phenomena during rare hash 496 * collisions. 497 */ 498 static wait_queue_head_t *page_waitqueue(struct page *page) 499 { 500 const struct zone *zone = page_zone(page); 501 502 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)]; 503 } 504 505 static inline void wake_up_page(struct page *page, int bit) 506 { 507 __wake_up_bit(page_waitqueue(page), &page->flags, bit); 508 } 509 510 void fastcall wait_on_page_bit(struct page *page, int bit_nr) 511 { 512 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr); 513 514 if (test_bit(bit_nr, &page->flags)) 515 __wait_on_bit(page_waitqueue(page), &wait, sync_page, 516 TASK_UNINTERRUPTIBLE); 517 } 518 EXPORT_SYMBOL(wait_on_page_bit); 519 520 /** 521 * unlock_page - unlock a locked page 522 * @page: the page 523 * 524 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). 525 * Also wakes sleepers in wait_on_page_writeback() because the wakeup 526 * mechananism between PageLocked pages and PageWriteback pages is shared. 527 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. 528 * 529 * The first mb is necessary to safely close the critical section opened by the 530 * TestSetPageLocked(), the second mb is necessary to enforce ordering between 531 * the clear_bit and the read of the waitqueue (to avoid SMP races with a 532 * parallel wait_on_page_locked()). 533 */ 534 void fastcall unlock_page(struct page *page) 535 { 536 smp_mb__before_clear_bit(); 537 if (!TestClearPageLocked(page)) 538 BUG(); 539 smp_mb__after_clear_bit(); 540 wake_up_page(page, PG_locked); 541 } 542 EXPORT_SYMBOL(unlock_page); 543 544 /** 545 * end_page_writeback - end writeback against a page 546 * @page: the page 547 */ 548 void end_page_writeback(struct page *page) 549 { 550 if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) { 551 if (!test_clear_page_writeback(page)) 552 BUG(); 553 } 554 smp_mb__after_clear_bit(); 555 wake_up_page(page, PG_writeback); 556 } 557 EXPORT_SYMBOL(end_page_writeback); 558 559 /** 560 * __lock_page - get a lock on the page, assuming we need to sleep to get it 561 * @page: the page to lock 562 * 563 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some 564 * random driver's requestfn sets TASK_RUNNING, we could busywait. However 565 * chances are that on the second loop, the block layer's plug list is empty, 566 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE. 567 */ 568 void fastcall __lock_page(struct page *page) 569 { 570 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 571 572 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page, 573 TASK_UNINTERRUPTIBLE); 574 } 575 EXPORT_SYMBOL(__lock_page); 576 577 /* 578 * Variant of lock_page that does not require the caller to hold a reference 579 * on the page's mapping. 580 */ 581 void fastcall __lock_page_nosync(struct page *page) 582 { 583 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 584 __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock, 585 TASK_UNINTERRUPTIBLE); 586 } 587 588 /** 589 * find_get_page - find and get a page reference 590 * @mapping: the address_space to search 591 * @offset: the page index 592 * 593 * Is there a pagecache struct page at the given (mapping, offset) tuple? 594 * If yes, increment its refcount and return it; if no, return NULL. 595 */ 596 struct page * find_get_page(struct address_space *mapping, unsigned long offset) 597 { 598 struct page *page; 599 600 read_lock_irq(&mapping->tree_lock); 601 page = radix_tree_lookup(&mapping->page_tree, offset); 602 if (page) 603 page_cache_get(page); 604 read_unlock_irq(&mapping->tree_lock); 605 return page; 606 } 607 EXPORT_SYMBOL(find_get_page); 608 609 /** 610 * find_lock_page - locate, pin and lock a pagecache page 611 * @mapping: the address_space to search 612 * @offset: the page index 613 * 614 * Locates the desired pagecache page, locks it, increments its reference 615 * count and returns its address. 616 * 617 * Returns zero if the page was not present. find_lock_page() may sleep. 618 */ 619 struct page *find_lock_page(struct address_space *mapping, 620 unsigned long offset) 621 { 622 struct page *page; 623 624 read_lock_irq(&mapping->tree_lock); 625 repeat: 626 page = radix_tree_lookup(&mapping->page_tree, offset); 627 if (page) { 628 page_cache_get(page); 629 if (TestSetPageLocked(page)) { 630 read_unlock_irq(&mapping->tree_lock); 631 __lock_page(page); 632 read_lock_irq(&mapping->tree_lock); 633 634 /* Has the page been truncated while we slept? */ 635 if (unlikely(page->mapping != mapping || 636 page->index != offset)) { 637 unlock_page(page); 638 page_cache_release(page); 639 goto repeat; 640 } 641 } 642 } 643 read_unlock_irq(&mapping->tree_lock); 644 return page; 645 } 646 EXPORT_SYMBOL(find_lock_page); 647 648 /** 649 * find_or_create_page - locate or add a pagecache page 650 * @mapping: the page's address_space 651 * @index: the page's index into the mapping 652 * @gfp_mask: page allocation mode 653 * 654 * Locates a page in the pagecache. If the page is not present, a new page 655 * is allocated using @gfp_mask and is added to the pagecache and to the VM's 656 * LRU list. The returned page is locked and has its reference count 657 * incremented. 658 * 659 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic 660 * allocation! 661 * 662 * find_or_create_page() returns the desired page's address, or zero on 663 * memory exhaustion. 664 */ 665 struct page *find_or_create_page(struct address_space *mapping, 666 unsigned long index, gfp_t gfp_mask) 667 { 668 struct page *page, *cached_page = NULL; 669 int err; 670 repeat: 671 page = find_lock_page(mapping, index); 672 if (!page) { 673 if (!cached_page) { 674 cached_page = 675 __page_cache_alloc(gfp_mask); 676 if (!cached_page) 677 return NULL; 678 } 679 err = add_to_page_cache_lru(cached_page, mapping, 680 index, gfp_mask); 681 if (!err) { 682 page = cached_page; 683 cached_page = NULL; 684 } else if (err == -EEXIST) 685 goto repeat; 686 } 687 if (cached_page) 688 page_cache_release(cached_page); 689 return page; 690 } 691 EXPORT_SYMBOL(find_or_create_page); 692 693 /** 694 * find_get_pages - gang pagecache lookup 695 * @mapping: The address_space to search 696 * @start: The starting page index 697 * @nr_pages: The maximum number of pages 698 * @pages: Where the resulting pages are placed 699 * 700 * find_get_pages() will search for and return a group of up to 701 * @nr_pages pages in the mapping. The pages are placed at @pages. 702 * find_get_pages() takes a reference against the returned pages. 703 * 704 * The search returns a group of mapping-contiguous pages with ascending 705 * indexes. There may be holes in the indices due to not-present pages. 706 * 707 * find_get_pages() returns the number of pages which were found. 708 */ 709 unsigned find_get_pages(struct address_space *mapping, pgoff_t start, 710 unsigned int nr_pages, struct page **pages) 711 { 712 unsigned int i; 713 unsigned int ret; 714 715 read_lock_irq(&mapping->tree_lock); 716 ret = radix_tree_gang_lookup(&mapping->page_tree, 717 (void **)pages, start, nr_pages); 718 for (i = 0; i < ret; i++) 719 page_cache_get(pages[i]); 720 read_unlock_irq(&mapping->tree_lock); 721 return ret; 722 } 723 724 /** 725 * find_get_pages_contig - gang contiguous pagecache lookup 726 * @mapping: The address_space to search 727 * @index: The starting page index 728 * @nr_pages: The maximum number of pages 729 * @pages: Where the resulting pages are placed 730 * 731 * find_get_pages_contig() works exactly like find_get_pages(), except 732 * that the returned number of pages are guaranteed to be contiguous. 733 * 734 * find_get_pages_contig() returns the number of pages which were found. 735 */ 736 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, 737 unsigned int nr_pages, struct page **pages) 738 { 739 unsigned int i; 740 unsigned int ret; 741 742 read_lock_irq(&mapping->tree_lock); 743 ret = radix_tree_gang_lookup(&mapping->page_tree, 744 (void **)pages, index, nr_pages); 745 for (i = 0; i < ret; i++) { 746 if (pages[i]->mapping == NULL || pages[i]->index != index) 747 break; 748 749 page_cache_get(pages[i]); 750 index++; 751 } 752 read_unlock_irq(&mapping->tree_lock); 753 return i; 754 } 755 EXPORT_SYMBOL(find_get_pages_contig); 756 757 /** 758 * find_get_pages_tag - find and return pages that match @tag 759 * @mapping: the address_space to search 760 * @index: the starting page index 761 * @tag: the tag index 762 * @nr_pages: the maximum number of pages 763 * @pages: where the resulting pages are placed 764 * 765 * Like find_get_pages, except we only return pages which are tagged with 766 * @tag. We update @index to index the next page for the traversal. 767 */ 768 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, 769 int tag, unsigned int nr_pages, struct page **pages) 770 { 771 unsigned int i; 772 unsigned int ret; 773 774 read_lock_irq(&mapping->tree_lock); 775 ret = radix_tree_gang_lookup_tag(&mapping->page_tree, 776 (void **)pages, *index, nr_pages, tag); 777 for (i = 0; i < ret; i++) 778 page_cache_get(pages[i]); 779 if (ret) 780 *index = pages[ret - 1]->index + 1; 781 read_unlock_irq(&mapping->tree_lock); 782 return ret; 783 } 784 EXPORT_SYMBOL(find_get_pages_tag); 785 786 /** 787 * grab_cache_page_nowait - returns locked page at given index in given cache 788 * @mapping: target address_space 789 * @index: the page index 790 * 791 * Same as grab_cache_page(), but do not wait if the page is unavailable. 792 * This is intended for speculative data generators, where the data can 793 * be regenerated if the page couldn't be grabbed. This routine should 794 * be safe to call while holding the lock for another page. 795 * 796 * Clear __GFP_FS when allocating the page to avoid recursion into the fs 797 * and deadlock against the caller's locked page. 798 */ 799 struct page * 800 grab_cache_page_nowait(struct address_space *mapping, unsigned long index) 801 { 802 struct page *page = find_get_page(mapping, index); 803 804 if (page) { 805 if (!TestSetPageLocked(page)) 806 return page; 807 page_cache_release(page); 808 return NULL; 809 } 810 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS); 811 if (page && add_to_page_cache_lru(page, mapping, index, GFP_KERNEL)) { 812 page_cache_release(page); 813 page = NULL; 814 } 815 return page; 816 } 817 EXPORT_SYMBOL(grab_cache_page_nowait); 818 819 /* 820 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 821 * a _large_ part of the i/o request. Imagine the worst scenario: 822 * 823 * ---R__________________________________________B__________ 824 * ^ reading here ^ bad block(assume 4k) 825 * 826 * read(R) => miss => readahead(R...B) => media error => frustrating retries 827 * => failing the whole request => read(R) => read(R+1) => 828 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 829 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 830 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 831 * 832 * It is going insane. Fix it by quickly scaling down the readahead size. 833 */ 834 static void shrink_readahead_size_eio(struct file *filp, 835 struct file_ra_state *ra) 836 { 837 if (!ra->ra_pages) 838 return; 839 840 ra->ra_pages /= 4; 841 } 842 843 /** 844 * do_generic_mapping_read - generic file read routine 845 * @mapping: address_space to be read 846 * @_ra: file's readahead state 847 * @filp: the file to read 848 * @ppos: current file position 849 * @desc: read_descriptor 850 * @actor: read method 851 * 852 * This is a generic file read routine, and uses the 853 * mapping->a_ops->readpage() function for the actual low-level stuff. 854 * 855 * This is really ugly. But the goto's actually try to clarify some 856 * of the logic when it comes to error handling etc. 857 * 858 * Note the struct file* is only passed for the use of readpage. 859 * It may be NULL. 860 */ 861 void do_generic_mapping_read(struct address_space *mapping, 862 struct file_ra_state *_ra, 863 struct file *filp, 864 loff_t *ppos, 865 read_descriptor_t *desc, 866 read_actor_t actor) 867 { 868 struct inode *inode = mapping->host; 869 unsigned long index; 870 unsigned long offset; 871 unsigned long last_index; 872 unsigned long next_index; 873 unsigned long prev_index; 874 unsigned int prev_offset; 875 struct page *cached_page; 876 int error; 877 struct file_ra_state ra = *_ra; 878 879 cached_page = NULL; 880 index = *ppos >> PAGE_CACHE_SHIFT; 881 next_index = index; 882 prev_index = ra.prev_index; 883 prev_offset = ra.prev_offset; 884 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT; 885 offset = *ppos & ~PAGE_CACHE_MASK; 886 887 for (;;) { 888 struct page *page; 889 unsigned long end_index; 890 loff_t isize; 891 unsigned long nr, ret; 892 893 cond_resched(); 894 find_page: 895 page = find_get_page(mapping, index); 896 if (!page) { 897 page_cache_sync_readahead(mapping, 898 &ra, filp, 899 index, last_index - index); 900 page = find_get_page(mapping, index); 901 if (unlikely(page == NULL)) 902 goto no_cached_page; 903 } 904 if (PageReadahead(page)) { 905 page_cache_async_readahead(mapping, 906 &ra, filp, page, 907 index, last_index - index); 908 } 909 if (!PageUptodate(page)) 910 goto page_not_up_to_date; 911 page_ok: 912 /* 913 * i_size must be checked after we know the page is Uptodate. 914 * 915 * Checking i_size after the check allows us to calculate 916 * the correct value for "nr", which means the zero-filled 917 * part of the page is not copied back to userspace (unless 918 * another truncate extends the file - this is desired though). 919 */ 920 921 isize = i_size_read(inode); 922 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 923 if (unlikely(!isize || index > end_index)) { 924 page_cache_release(page); 925 goto out; 926 } 927 928 /* nr is the maximum number of bytes to copy from this page */ 929 nr = PAGE_CACHE_SIZE; 930 if (index == end_index) { 931 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 932 if (nr <= offset) { 933 page_cache_release(page); 934 goto out; 935 } 936 } 937 nr = nr - offset; 938 939 /* If users can be writing to this page using arbitrary 940 * virtual addresses, take care about potential aliasing 941 * before reading the page on the kernel side. 942 */ 943 if (mapping_writably_mapped(mapping)) 944 flush_dcache_page(page); 945 946 /* 947 * When a sequential read accesses a page several times, 948 * only mark it as accessed the first time. 949 */ 950 if (prev_index != index || offset != prev_offset) 951 mark_page_accessed(page); 952 prev_index = index; 953 954 /* 955 * Ok, we have the page, and it's up-to-date, so 956 * now we can copy it to user space... 957 * 958 * The actor routine returns how many bytes were actually used.. 959 * NOTE! This may not be the same as how much of a user buffer 960 * we filled up (we may be padding etc), so we can only update 961 * "pos" here (the actor routine has to update the user buffer 962 * pointers and the remaining count). 963 */ 964 ret = actor(desc, page, offset, nr); 965 offset += ret; 966 index += offset >> PAGE_CACHE_SHIFT; 967 offset &= ~PAGE_CACHE_MASK; 968 prev_offset = offset; 969 ra.prev_offset = offset; 970 971 page_cache_release(page); 972 if (ret == nr && desc->count) 973 continue; 974 goto out; 975 976 page_not_up_to_date: 977 /* Get exclusive access to the page ... */ 978 lock_page(page); 979 980 /* Did it get truncated before we got the lock? */ 981 if (!page->mapping) { 982 unlock_page(page); 983 page_cache_release(page); 984 continue; 985 } 986 987 /* Did somebody else fill it already? */ 988 if (PageUptodate(page)) { 989 unlock_page(page); 990 goto page_ok; 991 } 992 993 readpage: 994 /* Start the actual read. The read will unlock the page. */ 995 error = mapping->a_ops->readpage(filp, page); 996 997 if (unlikely(error)) { 998 if (error == AOP_TRUNCATED_PAGE) { 999 page_cache_release(page); 1000 goto find_page; 1001 } 1002 goto readpage_error; 1003 } 1004 1005 if (!PageUptodate(page)) { 1006 lock_page(page); 1007 if (!PageUptodate(page)) { 1008 if (page->mapping == NULL) { 1009 /* 1010 * invalidate_inode_pages got it 1011 */ 1012 unlock_page(page); 1013 page_cache_release(page); 1014 goto find_page; 1015 } 1016 unlock_page(page); 1017 error = -EIO; 1018 shrink_readahead_size_eio(filp, &ra); 1019 goto readpage_error; 1020 } 1021 unlock_page(page); 1022 } 1023 1024 goto page_ok; 1025 1026 readpage_error: 1027 /* UHHUH! A synchronous read error occurred. Report it */ 1028 desc->error = error; 1029 page_cache_release(page); 1030 goto out; 1031 1032 no_cached_page: 1033 /* 1034 * Ok, it wasn't cached, so we need to create a new 1035 * page.. 1036 */ 1037 if (!cached_page) { 1038 cached_page = page_cache_alloc_cold(mapping); 1039 if (!cached_page) { 1040 desc->error = -ENOMEM; 1041 goto out; 1042 } 1043 } 1044 error = add_to_page_cache_lru(cached_page, mapping, 1045 index, GFP_KERNEL); 1046 if (error) { 1047 if (error == -EEXIST) 1048 goto find_page; 1049 desc->error = error; 1050 goto out; 1051 } 1052 page = cached_page; 1053 cached_page = NULL; 1054 goto readpage; 1055 } 1056 1057 out: 1058 *_ra = ra; 1059 _ra->prev_index = prev_index; 1060 1061 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset; 1062 if (cached_page) 1063 page_cache_release(cached_page); 1064 if (filp) 1065 file_accessed(filp); 1066 } 1067 EXPORT_SYMBOL(do_generic_mapping_read); 1068 1069 int file_read_actor(read_descriptor_t *desc, struct page *page, 1070 unsigned long offset, unsigned long size) 1071 { 1072 char *kaddr; 1073 unsigned long left, count = desc->count; 1074 1075 if (size > count) 1076 size = count; 1077 1078 /* 1079 * Faults on the destination of a read are common, so do it before 1080 * taking the kmap. 1081 */ 1082 if (!fault_in_pages_writeable(desc->arg.buf, size)) { 1083 kaddr = kmap_atomic(page, KM_USER0); 1084 left = __copy_to_user_inatomic(desc->arg.buf, 1085 kaddr + offset, size); 1086 kunmap_atomic(kaddr, KM_USER0); 1087 if (left == 0) 1088 goto success; 1089 } 1090 1091 /* Do it the slow way */ 1092 kaddr = kmap(page); 1093 left = __copy_to_user(desc->arg.buf, kaddr + offset, size); 1094 kunmap(page); 1095 1096 if (left) { 1097 size -= left; 1098 desc->error = -EFAULT; 1099 } 1100 success: 1101 desc->count = count - size; 1102 desc->written += size; 1103 desc->arg.buf += size; 1104 return size; 1105 } 1106 1107 /* 1108 * Performs necessary checks before doing a write 1109 * @iov: io vector request 1110 * @nr_segs: number of segments in the iovec 1111 * @count: number of bytes to write 1112 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE 1113 * 1114 * Adjust number of segments and amount of bytes to write (nr_segs should be 1115 * properly initialized first). Returns appropriate error code that caller 1116 * should return or zero in case that write should be allowed. 1117 */ 1118 int generic_segment_checks(const struct iovec *iov, 1119 unsigned long *nr_segs, size_t *count, int access_flags) 1120 { 1121 unsigned long seg; 1122 size_t cnt = 0; 1123 for (seg = 0; seg < *nr_segs; seg++) { 1124 const struct iovec *iv = &iov[seg]; 1125 1126 /* 1127 * If any segment has a negative length, or the cumulative 1128 * length ever wraps negative then return -EINVAL. 1129 */ 1130 cnt += iv->iov_len; 1131 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0)) 1132 return -EINVAL; 1133 if (access_ok(access_flags, iv->iov_base, iv->iov_len)) 1134 continue; 1135 if (seg == 0) 1136 return -EFAULT; 1137 *nr_segs = seg; 1138 cnt -= iv->iov_len; /* This segment is no good */ 1139 break; 1140 } 1141 *count = cnt; 1142 return 0; 1143 } 1144 EXPORT_SYMBOL(generic_segment_checks); 1145 1146 /** 1147 * generic_file_aio_read - generic filesystem read routine 1148 * @iocb: kernel I/O control block 1149 * @iov: io vector request 1150 * @nr_segs: number of segments in the iovec 1151 * @pos: current file position 1152 * 1153 * This is the "read()" routine for all filesystems 1154 * that can use the page cache directly. 1155 */ 1156 ssize_t 1157 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov, 1158 unsigned long nr_segs, loff_t pos) 1159 { 1160 struct file *filp = iocb->ki_filp; 1161 ssize_t retval; 1162 unsigned long seg; 1163 size_t count; 1164 loff_t *ppos = &iocb->ki_pos; 1165 1166 count = 0; 1167 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE); 1168 if (retval) 1169 return retval; 1170 1171 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ 1172 if (filp->f_flags & O_DIRECT) { 1173 loff_t size; 1174 struct address_space *mapping; 1175 struct inode *inode; 1176 1177 mapping = filp->f_mapping; 1178 inode = mapping->host; 1179 retval = 0; 1180 if (!count) 1181 goto out; /* skip atime */ 1182 size = i_size_read(inode); 1183 if (pos < size) { 1184 retval = generic_file_direct_IO(READ, iocb, 1185 iov, pos, nr_segs); 1186 if (retval > 0) 1187 *ppos = pos + retval; 1188 } 1189 if (likely(retval != 0)) { 1190 file_accessed(filp); 1191 goto out; 1192 } 1193 } 1194 1195 retval = 0; 1196 if (count) { 1197 for (seg = 0; seg < nr_segs; seg++) { 1198 read_descriptor_t desc; 1199 1200 desc.written = 0; 1201 desc.arg.buf = iov[seg].iov_base; 1202 desc.count = iov[seg].iov_len; 1203 if (desc.count == 0) 1204 continue; 1205 desc.error = 0; 1206 do_generic_file_read(filp,ppos,&desc,file_read_actor); 1207 retval += desc.written; 1208 if (desc.error) { 1209 retval = retval ?: desc.error; 1210 break; 1211 } 1212 if (desc.count > 0) 1213 break; 1214 } 1215 } 1216 out: 1217 return retval; 1218 } 1219 EXPORT_SYMBOL(generic_file_aio_read); 1220 1221 int file_send_actor(read_descriptor_t * desc, struct page *page, unsigned long offset, unsigned long size) 1222 { 1223 ssize_t written; 1224 unsigned long count = desc->count; 1225 struct file *file = desc->arg.data; 1226 1227 if (size > count) 1228 size = count; 1229 1230 written = file->f_op->sendpage(file, page, offset, 1231 size, &file->f_pos, size<count); 1232 if (written < 0) { 1233 desc->error = written; 1234 written = 0; 1235 } 1236 desc->count = count - written; 1237 desc->written += written; 1238 return written; 1239 } 1240 1241 static ssize_t 1242 do_readahead(struct address_space *mapping, struct file *filp, 1243 unsigned long index, unsigned long nr) 1244 { 1245 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage) 1246 return -EINVAL; 1247 1248 force_page_cache_readahead(mapping, filp, index, 1249 max_sane_readahead(nr)); 1250 return 0; 1251 } 1252 1253 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count) 1254 { 1255 ssize_t ret; 1256 struct file *file; 1257 1258 ret = -EBADF; 1259 file = fget(fd); 1260 if (file) { 1261 if (file->f_mode & FMODE_READ) { 1262 struct address_space *mapping = file->f_mapping; 1263 unsigned long start = offset >> PAGE_CACHE_SHIFT; 1264 unsigned long end = (offset + count - 1) >> PAGE_CACHE_SHIFT; 1265 unsigned long len = end - start + 1; 1266 ret = do_readahead(mapping, file, start, len); 1267 } 1268 fput(file); 1269 } 1270 return ret; 1271 } 1272 1273 #ifdef CONFIG_MMU 1274 static int FASTCALL(page_cache_read(struct file * file, unsigned long offset)); 1275 /** 1276 * page_cache_read - adds requested page to the page cache if not already there 1277 * @file: file to read 1278 * @offset: page index 1279 * 1280 * This adds the requested page to the page cache if it isn't already there, 1281 * and schedules an I/O to read in its contents from disk. 1282 */ 1283 static int fastcall page_cache_read(struct file * file, unsigned long offset) 1284 { 1285 struct address_space *mapping = file->f_mapping; 1286 struct page *page; 1287 int ret; 1288 1289 do { 1290 page = page_cache_alloc_cold(mapping); 1291 if (!page) 1292 return -ENOMEM; 1293 1294 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL); 1295 if (ret == 0) 1296 ret = mapping->a_ops->readpage(file, page); 1297 else if (ret == -EEXIST) 1298 ret = 0; /* losing race to add is OK */ 1299 1300 page_cache_release(page); 1301 1302 } while (ret == AOP_TRUNCATED_PAGE); 1303 1304 return ret; 1305 } 1306 1307 #define MMAP_LOTSAMISS (100) 1308 1309 /** 1310 * filemap_fault - read in file data for page fault handling 1311 * @vma: vma in which the fault was taken 1312 * @vmf: struct vm_fault containing details of the fault 1313 * 1314 * filemap_fault() is invoked via the vma operations vector for a 1315 * mapped memory region to read in file data during a page fault. 1316 * 1317 * The goto's are kind of ugly, but this streamlines the normal case of having 1318 * it in the page cache, and handles the special cases reasonably without 1319 * having a lot of duplicated code. 1320 */ 1321 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1322 { 1323 int error; 1324 struct file *file = vma->vm_file; 1325 struct address_space *mapping = file->f_mapping; 1326 struct file_ra_state *ra = &file->f_ra; 1327 struct inode *inode = mapping->host; 1328 struct page *page; 1329 unsigned long size; 1330 int did_readaround = 0; 1331 int ret = 0; 1332 1333 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1334 if (vmf->pgoff >= size) 1335 goto outside_data_content; 1336 1337 /* If we don't want any read-ahead, don't bother */ 1338 if (VM_RandomReadHint(vma)) 1339 goto no_cached_page; 1340 1341 /* 1342 * Do we have something in the page cache already? 1343 */ 1344 retry_find: 1345 page = find_lock_page(mapping, vmf->pgoff); 1346 /* 1347 * For sequential accesses, we use the generic readahead logic. 1348 */ 1349 if (VM_SequentialReadHint(vma)) { 1350 if (!page) { 1351 page_cache_sync_readahead(mapping, ra, file, 1352 vmf->pgoff, 1); 1353 page = find_lock_page(mapping, vmf->pgoff); 1354 if (!page) 1355 goto no_cached_page; 1356 } 1357 if (PageReadahead(page)) { 1358 page_cache_async_readahead(mapping, ra, file, page, 1359 vmf->pgoff, 1); 1360 } 1361 } 1362 1363 if (!page) { 1364 unsigned long ra_pages; 1365 1366 ra->mmap_miss++; 1367 1368 /* 1369 * Do we miss much more than hit in this file? If so, 1370 * stop bothering with read-ahead. It will only hurt. 1371 */ 1372 if (ra->mmap_miss > ra->mmap_hit + MMAP_LOTSAMISS) 1373 goto no_cached_page; 1374 1375 /* 1376 * To keep the pgmajfault counter straight, we need to 1377 * check did_readaround, as this is an inner loop. 1378 */ 1379 if (!did_readaround) { 1380 ret = VM_FAULT_MAJOR; 1381 count_vm_event(PGMAJFAULT); 1382 } 1383 did_readaround = 1; 1384 ra_pages = max_sane_readahead(file->f_ra.ra_pages); 1385 if (ra_pages) { 1386 pgoff_t start = 0; 1387 1388 if (vmf->pgoff > ra_pages / 2) 1389 start = vmf->pgoff - ra_pages / 2; 1390 do_page_cache_readahead(mapping, file, start, ra_pages); 1391 } 1392 page = find_lock_page(mapping, vmf->pgoff); 1393 if (!page) 1394 goto no_cached_page; 1395 } 1396 1397 if (!did_readaround) 1398 ra->mmap_hit++; 1399 1400 /* 1401 * We have a locked page in the page cache, now we need to check 1402 * that it's up-to-date. If not, it is going to be due to an error. 1403 */ 1404 if (unlikely(!PageUptodate(page))) 1405 goto page_not_uptodate; 1406 1407 /* Must recheck i_size under page lock */ 1408 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1409 if (unlikely(vmf->pgoff >= size)) { 1410 unlock_page(page); 1411 goto outside_data_content; 1412 } 1413 1414 /* 1415 * Found the page and have a reference on it. 1416 */ 1417 mark_page_accessed(page); 1418 ra->prev_index = page->index; 1419 vmf->page = page; 1420 return ret | VM_FAULT_LOCKED; 1421 1422 outside_data_content: 1423 /* 1424 * An external ptracer can access pages that normally aren't 1425 * accessible.. 1426 */ 1427 if (vma->vm_mm == current->mm) 1428 return VM_FAULT_SIGBUS; 1429 1430 /* Fall through to the non-read-ahead case */ 1431 no_cached_page: 1432 /* 1433 * We're only likely to ever get here if MADV_RANDOM is in 1434 * effect. 1435 */ 1436 error = page_cache_read(file, vmf->pgoff); 1437 1438 /* 1439 * The page we want has now been added to the page cache. 1440 * In the unlikely event that someone removed it in the 1441 * meantime, we'll just come back here and read it again. 1442 */ 1443 if (error >= 0) 1444 goto retry_find; 1445 1446 /* 1447 * An error return from page_cache_read can result if the 1448 * system is low on memory, or a problem occurs while trying 1449 * to schedule I/O. 1450 */ 1451 if (error == -ENOMEM) 1452 return VM_FAULT_OOM; 1453 return VM_FAULT_SIGBUS; 1454 1455 page_not_uptodate: 1456 /* IO error path */ 1457 if (!did_readaround) { 1458 ret = VM_FAULT_MAJOR; 1459 count_vm_event(PGMAJFAULT); 1460 } 1461 1462 /* 1463 * Umm, take care of errors if the page isn't up-to-date. 1464 * Try to re-read it _once_. We do this synchronously, 1465 * because there really aren't any performance issues here 1466 * and we need to check for errors. 1467 */ 1468 ClearPageError(page); 1469 error = mapping->a_ops->readpage(file, page); 1470 page_cache_release(page); 1471 1472 if (!error || error == AOP_TRUNCATED_PAGE) 1473 goto retry_find; 1474 1475 /* Things didn't work out. Return zero to tell the mm layer so. */ 1476 shrink_readahead_size_eio(file, ra); 1477 return VM_FAULT_SIGBUS; 1478 } 1479 EXPORT_SYMBOL(filemap_fault); 1480 1481 struct vm_operations_struct generic_file_vm_ops = { 1482 .fault = filemap_fault, 1483 }; 1484 1485 /* This is used for a general mmap of a disk file */ 1486 1487 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 1488 { 1489 struct address_space *mapping = file->f_mapping; 1490 1491 if (!mapping->a_ops->readpage) 1492 return -ENOEXEC; 1493 file_accessed(file); 1494 vma->vm_ops = &generic_file_vm_ops; 1495 vma->vm_flags |= VM_CAN_NONLINEAR; 1496 return 0; 1497 } 1498 1499 /* 1500 * This is for filesystems which do not implement ->writepage. 1501 */ 1502 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 1503 { 1504 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 1505 return -EINVAL; 1506 return generic_file_mmap(file, vma); 1507 } 1508 #else 1509 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 1510 { 1511 return -ENOSYS; 1512 } 1513 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) 1514 { 1515 return -ENOSYS; 1516 } 1517 #endif /* CONFIG_MMU */ 1518 1519 EXPORT_SYMBOL(generic_file_mmap); 1520 EXPORT_SYMBOL(generic_file_readonly_mmap); 1521 1522 static struct page *__read_cache_page(struct address_space *mapping, 1523 unsigned long index, 1524 int (*filler)(void *,struct page*), 1525 void *data) 1526 { 1527 struct page *page, *cached_page = NULL; 1528 int err; 1529 repeat: 1530 page = find_get_page(mapping, index); 1531 if (!page) { 1532 if (!cached_page) { 1533 cached_page = page_cache_alloc_cold(mapping); 1534 if (!cached_page) 1535 return ERR_PTR(-ENOMEM); 1536 } 1537 err = add_to_page_cache_lru(cached_page, mapping, 1538 index, GFP_KERNEL); 1539 if (err == -EEXIST) 1540 goto repeat; 1541 if (err < 0) { 1542 /* Presumably ENOMEM for radix tree node */ 1543 page_cache_release(cached_page); 1544 return ERR_PTR(err); 1545 } 1546 page = cached_page; 1547 cached_page = NULL; 1548 err = filler(data, page); 1549 if (err < 0) { 1550 page_cache_release(page); 1551 page = ERR_PTR(err); 1552 } 1553 } 1554 if (cached_page) 1555 page_cache_release(cached_page); 1556 return page; 1557 } 1558 1559 /* 1560 * Same as read_cache_page, but don't wait for page to become unlocked 1561 * after submitting it to the filler. 1562 */ 1563 struct page *read_cache_page_async(struct address_space *mapping, 1564 unsigned long index, 1565 int (*filler)(void *,struct page*), 1566 void *data) 1567 { 1568 struct page *page; 1569 int err; 1570 1571 retry: 1572 page = __read_cache_page(mapping, index, filler, data); 1573 if (IS_ERR(page)) 1574 return page; 1575 if (PageUptodate(page)) 1576 goto out; 1577 1578 lock_page(page); 1579 if (!page->mapping) { 1580 unlock_page(page); 1581 page_cache_release(page); 1582 goto retry; 1583 } 1584 if (PageUptodate(page)) { 1585 unlock_page(page); 1586 goto out; 1587 } 1588 err = filler(data, page); 1589 if (err < 0) { 1590 page_cache_release(page); 1591 return ERR_PTR(err); 1592 } 1593 out: 1594 mark_page_accessed(page); 1595 return page; 1596 } 1597 EXPORT_SYMBOL(read_cache_page_async); 1598 1599 /** 1600 * read_cache_page - read into page cache, fill it if needed 1601 * @mapping: the page's address_space 1602 * @index: the page index 1603 * @filler: function to perform the read 1604 * @data: destination for read data 1605 * 1606 * Read into the page cache. If a page already exists, and PageUptodate() is 1607 * not set, try to fill the page then wait for it to become unlocked. 1608 * 1609 * If the page does not get brought uptodate, return -EIO. 1610 */ 1611 struct page *read_cache_page(struct address_space *mapping, 1612 unsigned long index, 1613 int (*filler)(void *,struct page*), 1614 void *data) 1615 { 1616 struct page *page; 1617 1618 page = read_cache_page_async(mapping, index, filler, data); 1619 if (IS_ERR(page)) 1620 goto out; 1621 wait_on_page_locked(page); 1622 if (!PageUptodate(page)) { 1623 page_cache_release(page); 1624 page = ERR_PTR(-EIO); 1625 } 1626 out: 1627 return page; 1628 } 1629 EXPORT_SYMBOL(read_cache_page); 1630 1631 /* 1632 * If the page was newly created, increment its refcount and add it to the 1633 * caller's lru-buffering pagevec. This function is specifically for 1634 * generic_file_write(). 1635 */ 1636 static inline struct page * 1637 __grab_cache_page(struct address_space *mapping, unsigned long index, 1638 struct page **cached_page, struct pagevec *lru_pvec) 1639 { 1640 int err; 1641 struct page *page; 1642 repeat: 1643 page = find_lock_page(mapping, index); 1644 if (!page) { 1645 if (!*cached_page) { 1646 *cached_page = page_cache_alloc(mapping); 1647 if (!*cached_page) 1648 return NULL; 1649 } 1650 err = add_to_page_cache(*cached_page, mapping, 1651 index, GFP_KERNEL); 1652 if (err == -EEXIST) 1653 goto repeat; 1654 if (err == 0) { 1655 page = *cached_page; 1656 page_cache_get(page); 1657 if (!pagevec_add(lru_pvec, page)) 1658 __pagevec_lru_add(lru_pvec); 1659 *cached_page = NULL; 1660 } 1661 } 1662 return page; 1663 } 1664 1665 /* 1666 * The logic we want is 1667 * 1668 * if suid or (sgid and xgrp) 1669 * remove privs 1670 */ 1671 int should_remove_suid(struct dentry *dentry) 1672 { 1673 mode_t mode = dentry->d_inode->i_mode; 1674 int kill = 0; 1675 1676 /* suid always must be killed */ 1677 if (unlikely(mode & S_ISUID)) 1678 kill = ATTR_KILL_SUID; 1679 1680 /* 1681 * sgid without any exec bits is just a mandatory locking mark; leave 1682 * it alone. If some exec bits are set, it's a real sgid; kill it. 1683 */ 1684 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP))) 1685 kill |= ATTR_KILL_SGID; 1686 1687 if (unlikely(kill && !capable(CAP_FSETID))) 1688 return kill; 1689 1690 return 0; 1691 } 1692 EXPORT_SYMBOL(should_remove_suid); 1693 1694 int __remove_suid(struct dentry *dentry, int kill) 1695 { 1696 struct iattr newattrs; 1697 1698 newattrs.ia_valid = ATTR_FORCE | kill; 1699 return notify_change(dentry, &newattrs); 1700 } 1701 1702 int remove_suid(struct dentry *dentry) 1703 { 1704 int kill = should_remove_suid(dentry); 1705 1706 if (unlikely(kill)) 1707 return __remove_suid(dentry, kill); 1708 1709 return 0; 1710 } 1711 EXPORT_SYMBOL(remove_suid); 1712 1713 size_t 1714 __filemap_copy_from_user_iovec_inatomic(char *vaddr, 1715 const struct iovec *iov, size_t base, size_t bytes) 1716 { 1717 size_t copied = 0, left = 0; 1718 1719 while (bytes) { 1720 char __user *buf = iov->iov_base + base; 1721 int copy = min(bytes, iov->iov_len - base); 1722 1723 base = 0; 1724 left = __copy_from_user_inatomic_nocache(vaddr, buf, copy); 1725 copied += copy; 1726 bytes -= copy; 1727 vaddr += copy; 1728 iov++; 1729 1730 if (unlikely(left)) 1731 break; 1732 } 1733 return copied - left; 1734 } 1735 1736 /* 1737 * Performs necessary checks before doing a write 1738 * 1739 * Can adjust writing position or amount of bytes to write. 1740 * Returns appropriate error code that caller should return or 1741 * zero in case that write should be allowed. 1742 */ 1743 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk) 1744 { 1745 struct inode *inode = file->f_mapping->host; 1746 unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; 1747 1748 if (unlikely(*pos < 0)) 1749 return -EINVAL; 1750 1751 if (!isblk) { 1752 /* FIXME: this is for backwards compatibility with 2.4 */ 1753 if (file->f_flags & O_APPEND) 1754 *pos = i_size_read(inode); 1755 1756 if (limit != RLIM_INFINITY) { 1757 if (*pos >= limit) { 1758 send_sig(SIGXFSZ, current, 0); 1759 return -EFBIG; 1760 } 1761 if (*count > limit - (typeof(limit))*pos) { 1762 *count = limit - (typeof(limit))*pos; 1763 } 1764 } 1765 } 1766 1767 /* 1768 * LFS rule 1769 */ 1770 if (unlikely(*pos + *count > MAX_NON_LFS && 1771 !(file->f_flags & O_LARGEFILE))) { 1772 if (*pos >= MAX_NON_LFS) { 1773 return -EFBIG; 1774 } 1775 if (*count > MAX_NON_LFS - (unsigned long)*pos) { 1776 *count = MAX_NON_LFS - (unsigned long)*pos; 1777 } 1778 } 1779 1780 /* 1781 * Are we about to exceed the fs block limit ? 1782 * 1783 * If we have written data it becomes a short write. If we have 1784 * exceeded without writing data we send a signal and return EFBIG. 1785 * Linus frestrict idea will clean these up nicely.. 1786 */ 1787 if (likely(!isblk)) { 1788 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) { 1789 if (*count || *pos > inode->i_sb->s_maxbytes) { 1790 return -EFBIG; 1791 } 1792 /* zero-length writes at ->s_maxbytes are OK */ 1793 } 1794 1795 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes)) 1796 *count = inode->i_sb->s_maxbytes - *pos; 1797 } else { 1798 #ifdef CONFIG_BLOCK 1799 loff_t isize; 1800 if (bdev_read_only(I_BDEV(inode))) 1801 return -EPERM; 1802 isize = i_size_read(inode); 1803 if (*pos >= isize) { 1804 if (*count || *pos > isize) 1805 return -ENOSPC; 1806 } 1807 1808 if (*pos + *count > isize) 1809 *count = isize - *pos; 1810 #else 1811 return -EPERM; 1812 #endif 1813 } 1814 return 0; 1815 } 1816 EXPORT_SYMBOL(generic_write_checks); 1817 1818 ssize_t 1819 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov, 1820 unsigned long *nr_segs, loff_t pos, loff_t *ppos, 1821 size_t count, size_t ocount) 1822 { 1823 struct file *file = iocb->ki_filp; 1824 struct address_space *mapping = file->f_mapping; 1825 struct inode *inode = mapping->host; 1826 ssize_t written; 1827 1828 if (count != ocount) 1829 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count); 1830 1831 written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs); 1832 if (written > 0) { 1833 loff_t end = pos + written; 1834 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 1835 i_size_write(inode, end); 1836 mark_inode_dirty(inode); 1837 } 1838 *ppos = end; 1839 } 1840 1841 /* 1842 * Sync the fs metadata but not the minor inode changes and 1843 * of course not the data as we did direct DMA for the IO. 1844 * i_mutex is held, which protects generic_osync_inode() from 1845 * livelocking. AIO O_DIRECT ops attempt to sync metadata here. 1846 */ 1847 if ((written >= 0 || written == -EIOCBQUEUED) && 1848 ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 1849 int err = generic_osync_inode(inode, mapping, OSYNC_METADATA); 1850 if (err < 0) 1851 written = err; 1852 } 1853 return written; 1854 } 1855 EXPORT_SYMBOL(generic_file_direct_write); 1856 1857 ssize_t 1858 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov, 1859 unsigned long nr_segs, loff_t pos, loff_t *ppos, 1860 size_t count, ssize_t written) 1861 { 1862 struct file *file = iocb->ki_filp; 1863 struct address_space * mapping = file->f_mapping; 1864 const struct address_space_operations *a_ops = mapping->a_ops; 1865 struct inode *inode = mapping->host; 1866 long status = 0; 1867 struct page *page; 1868 struct page *cached_page = NULL; 1869 size_t bytes; 1870 struct pagevec lru_pvec; 1871 const struct iovec *cur_iov = iov; /* current iovec */ 1872 size_t iov_base = 0; /* offset in the current iovec */ 1873 char __user *buf; 1874 1875 pagevec_init(&lru_pvec, 0); 1876 1877 /* 1878 * handle partial DIO write. Adjust cur_iov if needed. 1879 */ 1880 if (likely(nr_segs == 1)) 1881 buf = iov->iov_base + written; 1882 else { 1883 filemap_set_next_iovec(&cur_iov, &iov_base, written); 1884 buf = cur_iov->iov_base + iov_base; 1885 } 1886 1887 do { 1888 unsigned long index; 1889 unsigned long offset; 1890 size_t copied; 1891 1892 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */ 1893 index = pos >> PAGE_CACHE_SHIFT; 1894 bytes = PAGE_CACHE_SIZE - offset; 1895 1896 /* Limit the size of the copy to the caller's write size */ 1897 bytes = min(bytes, count); 1898 1899 /* We only need to worry about prefaulting when writes are from 1900 * user-space. NFSd uses vfs_writev with several non-aligned 1901 * segments in the vector, and limiting to one segment a time is 1902 * a noticeable performance for re-write 1903 */ 1904 if (!segment_eq(get_fs(), KERNEL_DS)) { 1905 /* 1906 * Limit the size of the copy to that of the current 1907 * segment, because fault_in_pages_readable() doesn't 1908 * know how to walk segments. 1909 */ 1910 bytes = min(bytes, cur_iov->iov_len - iov_base); 1911 1912 /* 1913 * Bring in the user page that we will copy from 1914 * _first_. Otherwise there's a nasty deadlock on 1915 * copying from the same page as we're writing to, 1916 * without it being marked up-to-date. 1917 */ 1918 fault_in_pages_readable(buf, bytes); 1919 } 1920 page = __grab_cache_page(mapping,index,&cached_page,&lru_pvec); 1921 if (!page) { 1922 status = -ENOMEM; 1923 break; 1924 } 1925 1926 if (unlikely(bytes == 0)) { 1927 status = 0; 1928 copied = 0; 1929 goto zero_length_segment; 1930 } 1931 1932 status = a_ops->prepare_write(file, page, offset, offset+bytes); 1933 if (unlikely(status)) { 1934 loff_t isize = i_size_read(inode); 1935 1936 if (status != AOP_TRUNCATED_PAGE) 1937 unlock_page(page); 1938 page_cache_release(page); 1939 if (status == AOP_TRUNCATED_PAGE) 1940 continue; 1941 /* 1942 * prepare_write() may have instantiated a few blocks 1943 * outside i_size. Trim these off again. 1944 */ 1945 if (pos + bytes > isize) 1946 vmtruncate(inode, isize); 1947 break; 1948 } 1949 if (likely(nr_segs == 1)) 1950 copied = filemap_copy_from_user(page, offset, 1951 buf, bytes); 1952 else 1953 copied = filemap_copy_from_user_iovec(page, offset, 1954 cur_iov, iov_base, bytes); 1955 flush_dcache_page(page); 1956 status = a_ops->commit_write(file, page, offset, offset+bytes); 1957 if (status == AOP_TRUNCATED_PAGE) { 1958 page_cache_release(page); 1959 continue; 1960 } 1961 zero_length_segment: 1962 if (likely(copied >= 0)) { 1963 if (!status) 1964 status = copied; 1965 1966 if (status >= 0) { 1967 written += status; 1968 count -= status; 1969 pos += status; 1970 buf += status; 1971 if (unlikely(nr_segs > 1)) { 1972 filemap_set_next_iovec(&cur_iov, 1973 &iov_base, status); 1974 if (count) 1975 buf = cur_iov->iov_base + 1976 iov_base; 1977 } else { 1978 iov_base += status; 1979 } 1980 } 1981 } 1982 if (unlikely(copied != bytes)) 1983 if (status >= 0) 1984 status = -EFAULT; 1985 unlock_page(page); 1986 mark_page_accessed(page); 1987 page_cache_release(page); 1988 if (status < 0) 1989 break; 1990 balance_dirty_pages_ratelimited(mapping); 1991 cond_resched(); 1992 } while (count); 1993 *ppos = pos; 1994 1995 if (cached_page) 1996 page_cache_release(cached_page); 1997 1998 /* 1999 * For now, when the user asks for O_SYNC, we'll actually give O_DSYNC 2000 */ 2001 if (likely(status >= 0)) { 2002 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 2003 if (!a_ops->writepage || !is_sync_kiocb(iocb)) 2004 status = generic_osync_inode(inode, mapping, 2005 OSYNC_METADATA|OSYNC_DATA); 2006 } 2007 } 2008 2009 /* 2010 * If we get here for O_DIRECT writes then we must have fallen through 2011 * to buffered writes (block instantiation inside i_size). So we sync 2012 * the file data here, to try to honour O_DIRECT expectations. 2013 */ 2014 if (unlikely(file->f_flags & O_DIRECT) && written) 2015 status = filemap_write_and_wait(mapping); 2016 2017 pagevec_lru_add(&lru_pvec); 2018 return written ? written : status; 2019 } 2020 EXPORT_SYMBOL(generic_file_buffered_write); 2021 2022 static ssize_t 2023 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov, 2024 unsigned long nr_segs, loff_t *ppos) 2025 { 2026 struct file *file = iocb->ki_filp; 2027 struct address_space * mapping = file->f_mapping; 2028 size_t ocount; /* original count */ 2029 size_t count; /* after file limit checks */ 2030 struct inode *inode = mapping->host; 2031 loff_t pos; 2032 ssize_t written; 2033 ssize_t err; 2034 2035 ocount = 0; 2036 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ); 2037 if (err) 2038 return err; 2039 2040 count = ocount; 2041 pos = *ppos; 2042 2043 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE); 2044 2045 /* We can write back this queue in page reclaim */ 2046 current->backing_dev_info = mapping->backing_dev_info; 2047 written = 0; 2048 2049 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode)); 2050 if (err) 2051 goto out; 2052 2053 if (count == 0) 2054 goto out; 2055 2056 err = remove_suid(file->f_path.dentry); 2057 if (err) 2058 goto out; 2059 2060 file_update_time(file); 2061 2062 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ 2063 if (unlikely(file->f_flags & O_DIRECT)) { 2064 loff_t endbyte; 2065 ssize_t written_buffered; 2066 2067 written = generic_file_direct_write(iocb, iov, &nr_segs, pos, 2068 ppos, count, ocount); 2069 if (written < 0 || written == count) 2070 goto out; 2071 /* 2072 * direct-io write to a hole: fall through to buffered I/O 2073 * for completing the rest of the request. 2074 */ 2075 pos += written; 2076 count -= written; 2077 written_buffered = generic_file_buffered_write(iocb, iov, 2078 nr_segs, pos, ppos, count, 2079 written); 2080 /* 2081 * If generic_file_buffered_write() retuned a synchronous error 2082 * then we want to return the number of bytes which were 2083 * direct-written, or the error code if that was zero. Note 2084 * that this differs from normal direct-io semantics, which 2085 * will return -EFOO even if some bytes were written. 2086 */ 2087 if (written_buffered < 0) { 2088 err = written_buffered; 2089 goto out; 2090 } 2091 2092 /* 2093 * We need to ensure that the page cache pages are written to 2094 * disk and invalidated to preserve the expected O_DIRECT 2095 * semantics. 2096 */ 2097 endbyte = pos + written_buffered - written - 1; 2098 err = do_sync_mapping_range(file->f_mapping, pos, endbyte, 2099 SYNC_FILE_RANGE_WAIT_BEFORE| 2100 SYNC_FILE_RANGE_WRITE| 2101 SYNC_FILE_RANGE_WAIT_AFTER); 2102 if (err == 0) { 2103 written = written_buffered; 2104 invalidate_mapping_pages(mapping, 2105 pos >> PAGE_CACHE_SHIFT, 2106 endbyte >> PAGE_CACHE_SHIFT); 2107 } else { 2108 /* 2109 * We don't know how much we wrote, so just return 2110 * the number of bytes which were direct-written 2111 */ 2112 } 2113 } else { 2114 written = generic_file_buffered_write(iocb, iov, nr_segs, 2115 pos, ppos, count, written); 2116 } 2117 out: 2118 current->backing_dev_info = NULL; 2119 return written ? written : err; 2120 } 2121 2122 ssize_t generic_file_aio_write_nolock(struct kiocb *iocb, 2123 const struct iovec *iov, unsigned long nr_segs, loff_t pos) 2124 { 2125 struct file *file = iocb->ki_filp; 2126 struct address_space *mapping = file->f_mapping; 2127 struct inode *inode = mapping->host; 2128 ssize_t ret; 2129 2130 BUG_ON(iocb->ki_pos != pos); 2131 2132 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs, 2133 &iocb->ki_pos); 2134 2135 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 2136 ssize_t err; 2137 2138 err = sync_page_range_nolock(inode, mapping, pos, ret); 2139 if (err < 0) 2140 ret = err; 2141 } 2142 return ret; 2143 } 2144 EXPORT_SYMBOL(generic_file_aio_write_nolock); 2145 2146 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov, 2147 unsigned long nr_segs, loff_t pos) 2148 { 2149 struct file *file = iocb->ki_filp; 2150 struct address_space *mapping = file->f_mapping; 2151 struct inode *inode = mapping->host; 2152 ssize_t ret; 2153 2154 BUG_ON(iocb->ki_pos != pos); 2155 2156 mutex_lock(&inode->i_mutex); 2157 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs, 2158 &iocb->ki_pos); 2159 mutex_unlock(&inode->i_mutex); 2160 2161 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 2162 ssize_t err; 2163 2164 err = sync_page_range(inode, mapping, pos, ret); 2165 if (err < 0) 2166 ret = err; 2167 } 2168 return ret; 2169 } 2170 EXPORT_SYMBOL(generic_file_aio_write); 2171 2172 /* 2173 * Called under i_mutex for writes to S_ISREG files. Returns -EIO if something 2174 * went wrong during pagecache shootdown. 2175 */ 2176 static ssize_t 2177 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, 2178 loff_t offset, unsigned long nr_segs) 2179 { 2180 struct file *file = iocb->ki_filp; 2181 struct address_space *mapping = file->f_mapping; 2182 ssize_t retval; 2183 size_t write_len; 2184 pgoff_t end = 0; /* silence gcc */ 2185 2186 /* 2187 * If it's a write, unmap all mmappings of the file up-front. This 2188 * will cause any pte dirty bits to be propagated into the pageframes 2189 * for the subsequent filemap_write_and_wait(). 2190 */ 2191 if (rw == WRITE) { 2192 write_len = iov_length(iov, nr_segs); 2193 end = (offset + write_len - 1) >> PAGE_CACHE_SHIFT; 2194 if (mapping_mapped(mapping)) 2195 unmap_mapping_range(mapping, offset, write_len, 0); 2196 } 2197 2198 retval = filemap_write_and_wait(mapping); 2199 if (retval) 2200 goto out; 2201 2202 /* 2203 * After a write we want buffered reads to be sure to go to disk to get 2204 * the new data. We invalidate clean cached page from the region we're 2205 * about to write. We do this *before* the write so that we can return 2206 * -EIO without clobbering -EIOCBQUEUED from ->direct_IO(). 2207 */ 2208 if (rw == WRITE && mapping->nrpages) { 2209 retval = invalidate_inode_pages2_range(mapping, 2210 offset >> PAGE_CACHE_SHIFT, end); 2211 if (retval) 2212 goto out; 2213 } 2214 2215 retval = mapping->a_ops->direct_IO(rw, iocb, iov, offset, nr_segs); 2216 if (retval) 2217 goto out; 2218 2219 /* 2220 * Finally, try again to invalidate clean pages which might have been 2221 * faulted in by get_user_pages() if the source of the write was an 2222 * mmap()ed region of the file we're writing. That's a pretty crazy 2223 * thing to do, so we don't support it 100%. If this invalidation 2224 * fails and we have -EIOCBQUEUED we ignore the failure. 2225 */ 2226 if (rw == WRITE && mapping->nrpages) { 2227 int err = invalidate_inode_pages2_range(mapping, 2228 offset >> PAGE_CACHE_SHIFT, end); 2229 if (err && retval >= 0) 2230 retval = err; 2231 } 2232 out: 2233 return retval; 2234 } 2235 2236 /** 2237 * try_to_release_page() - release old fs-specific metadata on a page 2238 * 2239 * @page: the page which the kernel is trying to free 2240 * @gfp_mask: memory allocation flags (and I/O mode) 2241 * 2242 * The address_space is to try to release any data against the page 2243 * (presumably at page->private). If the release was successful, return `1'. 2244 * Otherwise return zero. 2245 * 2246 * The @gfp_mask argument specifies whether I/O may be performed to release 2247 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT). 2248 * 2249 * NOTE: @gfp_mask may go away, and this function may become non-blocking. 2250 */ 2251 int try_to_release_page(struct page *page, gfp_t gfp_mask) 2252 { 2253 struct address_space * const mapping = page->mapping; 2254 2255 BUG_ON(!PageLocked(page)); 2256 if (PageWriteback(page)) 2257 return 0; 2258 2259 if (mapping && mapping->a_ops->releasepage) 2260 return mapping->a_ops->releasepage(page, gfp_mask); 2261 return try_to_free_buffers(page); 2262 } 2263 2264 EXPORT_SYMBOL(try_to_release_page); 2265