1 /* 2 * linux/mm/filemap.c 3 * 4 * Copyright (C) 1994-1999 Linus Torvalds 5 */ 6 7 /* 8 * This file handles the generic file mmap semantics used by 9 * most "normal" filesystems (but you don't /have/ to use this: 10 * the NFS filesystem used to do this differently, for example) 11 */ 12 #include <linux/module.h> 13 #include <linux/slab.h> 14 #include <linux/compiler.h> 15 #include <linux/fs.h> 16 #include <linux/uaccess.h> 17 #include <linux/aio.h> 18 #include <linux/capability.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/mm.h> 21 #include <linux/swap.h> 22 #include <linux/mman.h> 23 #include <linux/pagemap.h> 24 #include <linux/file.h> 25 #include <linux/uio.h> 26 #include <linux/hash.h> 27 #include <linux/writeback.h> 28 #include <linux/backing-dev.h> 29 #include <linux/pagevec.h> 30 #include <linux/blkdev.h> 31 #include <linux/security.h> 32 #include <linux/syscalls.h> 33 #include <linux/cpuset.h> 34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */ 35 #include <linux/memcontrol.h> 36 #include <linux/mm_inline.h> /* for page_is_file_cache() */ 37 #include "internal.h" 38 39 /* 40 * FIXME: remove all knowledge of the buffer layer from the core VM 41 */ 42 #include <linux/buffer_head.h> /* for generic_osync_inode */ 43 44 #include <asm/mman.h> 45 46 47 /* 48 * Shared mappings implemented 30.11.1994. It's not fully working yet, 49 * though. 50 * 51 * Shared mappings now work. 15.8.1995 Bruno. 52 * 53 * finished 'unifying' the page and buffer cache and SMP-threaded the 54 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 55 * 56 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 57 */ 58 59 /* 60 * Lock ordering: 61 * 62 * ->i_mmap_lock (vmtruncate) 63 * ->private_lock (__free_pte->__set_page_dirty_buffers) 64 * ->swap_lock (exclusive_swap_page, others) 65 * ->mapping->tree_lock 66 * 67 * ->i_mutex 68 * ->i_mmap_lock (truncate->unmap_mapping_range) 69 * 70 * ->mmap_sem 71 * ->i_mmap_lock 72 * ->page_table_lock or pte_lock (various, mainly in memory.c) 73 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock) 74 * 75 * ->mmap_sem 76 * ->lock_page (access_process_vm) 77 * 78 * ->i_mutex (generic_file_buffered_write) 79 * ->mmap_sem (fault_in_pages_readable->do_page_fault) 80 * 81 * ->i_mutex 82 * ->i_alloc_sem (various) 83 * 84 * ->inode_lock 85 * ->sb_lock (fs/fs-writeback.c) 86 * ->mapping->tree_lock (__sync_single_inode) 87 * 88 * ->i_mmap_lock 89 * ->anon_vma.lock (vma_adjust) 90 * 91 * ->anon_vma.lock 92 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 93 * 94 * ->page_table_lock or pte_lock 95 * ->swap_lock (try_to_unmap_one) 96 * ->private_lock (try_to_unmap_one) 97 * ->tree_lock (try_to_unmap_one) 98 * ->zone.lru_lock (follow_page->mark_page_accessed) 99 * ->zone.lru_lock (check_pte_range->isolate_lru_page) 100 * ->private_lock (page_remove_rmap->set_page_dirty) 101 * ->tree_lock (page_remove_rmap->set_page_dirty) 102 * ->inode_lock (page_remove_rmap->set_page_dirty) 103 * ->inode_lock (zap_pte_range->set_page_dirty) 104 * ->private_lock (zap_pte_range->__set_page_dirty_buffers) 105 * 106 * ->task->proc_lock 107 * ->dcache_lock (proc_pid_lookup) 108 */ 109 110 /* 111 * Remove a page from the page cache and free it. Caller has to make 112 * sure the page is locked and that nobody else uses it - or that usage 113 * is safe. The caller must hold the mapping's tree_lock. 114 */ 115 void __remove_from_page_cache(struct page *page) 116 { 117 struct address_space *mapping = page->mapping; 118 119 radix_tree_delete(&mapping->page_tree, page->index); 120 page->mapping = NULL; 121 mapping->nrpages--; 122 __dec_zone_page_state(page, NR_FILE_PAGES); 123 BUG_ON(page_mapped(page)); 124 mem_cgroup_uncharge_cache_page(page); 125 126 /* 127 * Some filesystems seem to re-dirty the page even after 128 * the VM has canceled the dirty bit (eg ext3 journaling). 129 * 130 * Fix it up by doing a final dirty accounting check after 131 * having removed the page entirely. 132 */ 133 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) { 134 dec_zone_page_state(page, NR_FILE_DIRTY); 135 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE); 136 } 137 } 138 139 void remove_from_page_cache(struct page *page) 140 { 141 struct address_space *mapping = page->mapping; 142 143 BUG_ON(!PageLocked(page)); 144 145 spin_lock_irq(&mapping->tree_lock); 146 __remove_from_page_cache(page); 147 spin_unlock_irq(&mapping->tree_lock); 148 } 149 150 static int sync_page(void *word) 151 { 152 struct address_space *mapping; 153 struct page *page; 154 155 page = container_of((unsigned long *)word, struct page, flags); 156 157 /* 158 * page_mapping() is being called without PG_locked held. 159 * Some knowledge of the state and use of the page is used to 160 * reduce the requirements down to a memory barrier. 161 * The danger here is of a stale page_mapping() return value 162 * indicating a struct address_space different from the one it's 163 * associated with when it is associated with one. 164 * After smp_mb(), it's either the correct page_mapping() for 165 * the page, or an old page_mapping() and the page's own 166 * page_mapping() has gone NULL. 167 * The ->sync_page() address_space operation must tolerate 168 * page_mapping() going NULL. By an amazing coincidence, 169 * this comes about because none of the users of the page 170 * in the ->sync_page() methods make essential use of the 171 * page_mapping(), merely passing the page down to the backing 172 * device's unplug functions when it's non-NULL, which in turn 173 * ignore it for all cases but swap, where only page_private(page) is 174 * of interest. When page_mapping() does go NULL, the entire 175 * call stack gracefully ignores the page and returns. 176 * -- wli 177 */ 178 smp_mb(); 179 mapping = page_mapping(page); 180 if (mapping && mapping->a_ops && mapping->a_ops->sync_page) 181 mapping->a_ops->sync_page(page); 182 io_schedule(); 183 return 0; 184 } 185 186 static int sync_page_killable(void *word) 187 { 188 sync_page(word); 189 return fatal_signal_pending(current) ? -EINTR : 0; 190 } 191 192 /** 193 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 194 * @mapping: address space structure to write 195 * @start: offset in bytes where the range starts 196 * @end: offset in bytes where the range ends (inclusive) 197 * @sync_mode: enable synchronous operation 198 * 199 * Start writeback against all of a mapping's dirty pages that lie 200 * within the byte offsets <start, end> inclusive. 201 * 202 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 203 * opposed to a regular memory cleansing writeback. The difference between 204 * these two operations is that if a dirty page/buffer is encountered, it must 205 * be waited upon, and not just skipped over. 206 */ 207 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 208 loff_t end, int sync_mode) 209 { 210 int ret; 211 struct writeback_control wbc = { 212 .sync_mode = sync_mode, 213 .nr_to_write = LONG_MAX, 214 .range_start = start, 215 .range_end = end, 216 }; 217 218 if (!mapping_cap_writeback_dirty(mapping)) 219 return 0; 220 221 ret = do_writepages(mapping, &wbc); 222 return ret; 223 } 224 225 static inline int __filemap_fdatawrite(struct address_space *mapping, 226 int sync_mode) 227 { 228 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 229 } 230 231 int filemap_fdatawrite(struct address_space *mapping) 232 { 233 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 234 } 235 EXPORT_SYMBOL(filemap_fdatawrite); 236 237 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 238 loff_t end) 239 { 240 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 241 } 242 EXPORT_SYMBOL(filemap_fdatawrite_range); 243 244 /** 245 * filemap_flush - mostly a non-blocking flush 246 * @mapping: target address_space 247 * 248 * This is a mostly non-blocking flush. Not suitable for data-integrity 249 * purposes - I/O may not be started against all dirty pages. 250 */ 251 int filemap_flush(struct address_space *mapping) 252 { 253 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 254 } 255 EXPORT_SYMBOL(filemap_flush); 256 257 /** 258 * wait_on_page_writeback_range - wait for writeback to complete 259 * @mapping: target address_space 260 * @start: beginning page index 261 * @end: ending page index 262 * 263 * Wait for writeback to complete against pages indexed by start->end 264 * inclusive 265 */ 266 int wait_on_page_writeback_range(struct address_space *mapping, 267 pgoff_t start, pgoff_t end) 268 { 269 struct pagevec pvec; 270 int nr_pages; 271 int ret = 0; 272 pgoff_t index; 273 274 if (end < start) 275 return 0; 276 277 pagevec_init(&pvec, 0); 278 index = start; 279 while ((index <= end) && 280 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 281 PAGECACHE_TAG_WRITEBACK, 282 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) { 283 unsigned i; 284 285 for (i = 0; i < nr_pages; i++) { 286 struct page *page = pvec.pages[i]; 287 288 /* until radix tree lookup accepts end_index */ 289 if (page->index > end) 290 continue; 291 292 wait_on_page_writeback(page); 293 if (PageError(page)) 294 ret = -EIO; 295 } 296 pagevec_release(&pvec); 297 cond_resched(); 298 } 299 300 /* Check for outstanding write errors */ 301 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 302 ret = -ENOSPC; 303 if (test_and_clear_bit(AS_EIO, &mapping->flags)) 304 ret = -EIO; 305 306 return ret; 307 } 308 309 /** 310 * sync_page_range - write and wait on all pages in the passed range 311 * @inode: target inode 312 * @mapping: target address_space 313 * @pos: beginning offset in pages to write 314 * @count: number of bytes to write 315 * 316 * Write and wait upon all the pages in the passed range. This is a "data 317 * integrity" operation. It waits upon in-flight writeout before starting and 318 * waiting upon new writeout. If there was an IO error, return it. 319 * 320 * We need to re-take i_mutex during the generic_osync_inode list walk because 321 * it is otherwise livelockable. 322 */ 323 int sync_page_range(struct inode *inode, struct address_space *mapping, 324 loff_t pos, loff_t count) 325 { 326 pgoff_t start = pos >> PAGE_CACHE_SHIFT; 327 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT; 328 int ret; 329 330 if (!mapping_cap_writeback_dirty(mapping) || !count) 331 return 0; 332 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1); 333 if (ret == 0) { 334 mutex_lock(&inode->i_mutex); 335 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA); 336 mutex_unlock(&inode->i_mutex); 337 } 338 if (ret == 0) 339 ret = wait_on_page_writeback_range(mapping, start, end); 340 return ret; 341 } 342 EXPORT_SYMBOL(sync_page_range); 343 344 /** 345 * sync_page_range_nolock - write & wait on all pages in the passed range without locking 346 * @inode: target inode 347 * @mapping: target address_space 348 * @pos: beginning offset in pages to write 349 * @count: number of bytes to write 350 * 351 * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea 352 * as it forces O_SYNC writers to different parts of the same file 353 * to be serialised right until io completion. 354 */ 355 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping, 356 loff_t pos, loff_t count) 357 { 358 pgoff_t start = pos >> PAGE_CACHE_SHIFT; 359 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT; 360 int ret; 361 362 if (!mapping_cap_writeback_dirty(mapping) || !count) 363 return 0; 364 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1); 365 if (ret == 0) 366 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA); 367 if (ret == 0) 368 ret = wait_on_page_writeback_range(mapping, start, end); 369 return ret; 370 } 371 EXPORT_SYMBOL(sync_page_range_nolock); 372 373 /** 374 * filemap_fdatawait - wait for all under-writeback pages to complete 375 * @mapping: address space structure to wait for 376 * 377 * Walk the list of under-writeback pages of the given address space 378 * and wait for all of them. 379 */ 380 int filemap_fdatawait(struct address_space *mapping) 381 { 382 loff_t i_size = i_size_read(mapping->host); 383 384 if (i_size == 0) 385 return 0; 386 387 return wait_on_page_writeback_range(mapping, 0, 388 (i_size - 1) >> PAGE_CACHE_SHIFT); 389 } 390 EXPORT_SYMBOL(filemap_fdatawait); 391 392 int filemap_write_and_wait(struct address_space *mapping) 393 { 394 int err = 0; 395 396 if (mapping->nrpages) { 397 err = filemap_fdatawrite(mapping); 398 /* 399 * Even if the above returned error, the pages may be 400 * written partially (e.g. -ENOSPC), so we wait for it. 401 * But the -EIO is special case, it may indicate the worst 402 * thing (e.g. bug) happened, so we avoid waiting for it. 403 */ 404 if (err != -EIO) { 405 int err2 = filemap_fdatawait(mapping); 406 if (!err) 407 err = err2; 408 } 409 } 410 return err; 411 } 412 EXPORT_SYMBOL(filemap_write_and_wait); 413 414 /** 415 * filemap_write_and_wait_range - write out & wait on a file range 416 * @mapping: the address_space for the pages 417 * @lstart: offset in bytes where the range starts 418 * @lend: offset in bytes where the range ends (inclusive) 419 * 420 * Write out and wait upon file offsets lstart->lend, inclusive. 421 * 422 * Note that `lend' is inclusive (describes the last byte to be written) so 423 * that this function can be used to write to the very end-of-file (end = -1). 424 */ 425 int filemap_write_and_wait_range(struct address_space *mapping, 426 loff_t lstart, loff_t lend) 427 { 428 int err = 0; 429 430 if (mapping->nrpages) { 431 err = __filemap_fdatawrite_range(mapping, lstart, lend, 432 WB_SYNC_ALL); 433 /* See comment of filemap_write_and_wait() */ 434 if (err != -EIO) { 435 int err2 = wait_on_page_writeback_range(mapping, 436 lstart >> PAGE_CACHE_SHIFT, 437 lend >> PAGE_CACHE_SHIFT); 438 if (!err) 439 err = err2; 440 } 441 } 442 return err; 443 } 444 445 /** 446 * add_to_page_cache_locked - add a locked page to the pagecache 447 * @page: page to add 448 * @mapping: the page's address_space 449 * @offset: page index 450 * @gfp_mask: page allocation mode 451 * 452 * This function is used to add a page to the pagecache. It must be locked. 453 * This function does not add the page to the LRU. The caller must do that. 454 */ 455 int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 456 pgoff_t offset, gfp_t gfp_mask) 457 { 458 int error; 459 460 VM_BUG_ON(!PageLocked(page)); 461 462 error = mem_cgroup_cache_charge(page, current->mm, 463 gfp_mask & GFP_RECLAIM_MASK); 464 if (error) 465 goto out; 466 467 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM); 468 if (error == 0) { 469 page_cache_get(page); 470 page->mapping = mapping; 471 page->index = offset; 472 473 spin_lock_irq(&mapping->tree_lock); 474 error = radix_tree_insert(&mapping->page_tree, offset, page); 475 if (likely(!error)) { 476 mapping->nrpages++; 477 __inc_zone_page_state(page, NR_FILE_PAGES); 478 } else { 479 page->mapping = NULL; 480 mem_cgroup_uncharge_cache_page(page); 481 page_cache_release(page); 482 } 483 484 spin_unlock_irq(&mapping->tree_lock); 485 radix_tree_preload_end(); 486 } else 487 mem_cgroup_uncharge_cache_page(page); 488 out: 489 return error; 490 } 491 EXPORT_SYMBOL(add_to_page_cache_locked); 492 493 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 494 pgoff_t offset, gfp_t gfp_mask) 495 { 496 int ret; 497 498 /* 499 * Splice_read and readahead add shmem/tmpfs pages into the page cache 500 * before shmem_readpage has a chance to mark them as SwapBacked: they 501 * need to go on the active_anon lru below, and mem_cgroup_cache_charge 502 * (called in add_to_page_cache) needs to know where they're going too. 503 */ 504 if (mapping_cap_swap_backed(mapping)) 505 SetPageSwapBacked(page); 506 507 ret = add_to_page_cache(page, mapping, offset, gfp_mask); 508 if (ret == 0) { 509 if (page_is_file_cache(page)) 510 lru_cache_add_file(page); 511 else 512 lru_cache_add_active_anon(page); 513 } 514 return ret; 515 } 516 517 #ifdef CONFIG_NUMA 518 struct page *__page_cache_alloc(gfp_t gfp) 519 { 520 if (cpuset_do_page_mem_spread()) { 521 int n = cpuset_mem_spread_node(); 522 return alloc_pages_node(n, gfp, 0); 523 } 524 return alloc_pages(gfp, 0); 525 } 526 EXPORT_SYMBOL(__page_cache_alloc); 527 #endif 528 529 static int __sleep_on_page_lock(void *word) 530 { 531 io_schedule(); 532 return 0; 533 } 534 535 /* 536 * In order to wait for pages to become available there must be 537 * waitqueues associated with pages. By using a hash table of 538 * waitqueues where the bucket discipline is to maintain all 539 * waiters on the same queue and wake all when any of the pages 540 * become available, and for the woken contexts to check to be 541 * sure the appropriate page became available, this saves space 542 * at a cost of "thundering herd" phenomena during rare hash 543 * collisions. 544 */ 545 static wait_queue_head_t *page_waitqueue(struct page *page) 546 { 547 const struct zone *zone = page_zone(page); 548 549 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)]; 550 } 551 552 static inline void wake_up_page(struct page *page, int bit) 553 { 554 __wake_up_bit(page_waitqueue(page), &page->flags, bit); 555 } 556 557 void wait_on_page_bit(struct page *page, int bit_nr) 558 { 559 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr); 560 561 if (test_bit(bit_nr, &page->flags)) 562 __wait_on_bit(page_waitqueue(page), &wait, sync_page, 563 TASK_UNINTERRUPTIBLE); 564 } 565 EXPORT_SYMBOL(wait_on_page_bit); 566 567 /** 568 * unlock_page - unlock a locked page 569 * @page: the page 570 * 571 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). 572 * Also wakes sleepers in wait_on_page_writeback() because the wakeup 573 * mechananism between PageLocked pages and PageWriteback pages is shared. 574 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. 575 * 576 * The mb is necessary to enforce ordering between the clear_bit and the read 577 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()). 578 */ 579 void unlock_page(struct page *page) 580 { 581 VM_BUG_ON(!PageLocked(page)); 582 clear_bit_unlock(PG_locked, &page->flags); 583 smp_mb__after_clear_bit(); 584 wake_up_page(page, PG_locked); 585 } 586 EXPORT_SYMBOL(unlock_page); 587 588 /** 589 * end_page_writeback - end writeback against a page 590 * @page: the page 591 */ 592 void end_page_writeback(struct page *page) 593 { 594 if (TestClearPageReclaim(page)) 595 rotate_reclaimable_page(page); 596 597 if (!test_clear_page_writeback(page)) 598 BUG(); 599 600 smp_mb__after_clear_bit(); 601 wake_up_page(page, PG_writeback); 602 } 603 EXPORT_SYMBOL(end_page_writeback); 604 605 /** 606 * __lock_page - get a lock on the page, assuming we need to sleep to get it 607 * @page: the page to lock 608 * 609 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some 610 * random driver's requestfn sets TASK_RUNNING, we could busywait. However 611 * chances are that on the second loop, the block layer's plug list is empty, 612 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE. 613 */ 614 void __lock_page(struct page *page) 615 { 616 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 617 618 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page, 619 TASK_UNINTERRUPTIBLE); 620 } 621 EXPORT_SYMBOL(__lock_page); 622 623 int __lock_page_killable(struct page *page) 624 { 625 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 626 627 return __wait_on_bit_lock(page_waitqueue(page), &wait, 628 sync_page_killable, TASK_KILLABLE); 629 } 630 631 /** 632 * __lock_page_nosync - get a lock on the page, without calling sync_page() 633 * @page: the page to lock 634 * 635 * Variant of lock_page that does not require the caller to hold a reference 636 * on the page's mapping. 637 */ 638 void __lock_page_nosync(struct page *page) 639 { 640 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 641 __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock, 642 TASK_UNINTERRUPTIBLE); 643 } 644 645 /** 646 * find_get_page - find and get a page reference 647 * @mapping: the address_space to search 648 * @offset: the page index 649 * 650 * Is there a pagecache struct page at the given (mapping, offset) tuple? 651 * If yes, increment its refcount and return it; if no, return NULL. 652 */ 653 struct page *find_get_page(struct address_space *mapping, pgoff_t offset) 654 { 655 void **pagep; 656 struct page *page; 657 658 rcu_read_lock(); 659 repeat: 660 page = NULL; 661 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset); 662 if (pagep) { 663 page = radix_tree_deref_slot(pagep); 664 if (unlikely(!page || page == RADIX_TREE_RETRY)) 665 goto repeat; 666 667 if (!page_cache_get_speculative(page)) 668 goto repeat; 669 670 /* 671 * Has the page moved? 672 * This is part of the lockless pagecache protocol. See 673 * include/linux/pagemap.h for details. 674 */ 675 if (unlikely(page != *pagep)) { 676 page_cache_release(page); 677 goto repeat; 678 } 679 } 680 rcu_read_unlock(); 681 682 return page; 683 } 684 EXPORT_SYMBOL(find_get_page); 685 686 /** 687 * find_lock_page - locate, pin and lock a pagecache page 688 * @mapping: the address_space to search 689 * @offset: the page index 690 * 691 * Locates the desired pagecache page, locks it, increments its reference 692 * count and returns its address. 693 * 694 * Returns zero if the page was not present. find_lock_page() may sleep. 695 */ 696 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset) 697 { 698 struct page *page; 699 700 repeat: 701 page = find_get_page(mapping, offset); 702 if (page) { 703 lock_page(page); 704 /* Has the page been truncated? */ 705 if (unlikely(page->mapping != mapping)) { 706 unlock_page(page); 707 page_cache_release(page); 708 goto repeat; 709 } 710 VM_BUG_ON(page->index != offset); 711 } 712 return page; 713 } 714 EXPORT_SYMBOL(find_lock_page); 715 716 /** 717 * find_or_create_page - locate or add a pagecache page 718 * @mapping: the page's address_space 719 * @index: the page's index into the mapping 720 * @gfp_mask: page allocation mode 721 * 722 * Locates a page in the pagecache. If the page is not present, a new page 723 * is allocated using @gfp_mask and is added to the pagecache and to the VM's 724 * LRU list. The returned page is locked and has its reference count 725 * incremented. 726 * 727 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic 728 * allocation! 729 * 730 * find_or_create_page() returns the desired page's address, or zero on 731 * memory exhaustion. 732 */ 733 struct page *find_or_create_page(struct address_space *mapping, 734 pgoff_t index, gfp_t gfp_mask) 735 { 736 struct page *page; 737 int err; 738 repeat: 739 page = find_lock_page(mapping, index); 740 if (!page) { 741 page = __page_cache_alloc(gfp_mask); 742 if (!page) 743 return NULL; 744 /* 745 * We want a regular kernel memory (not highmem or DMA etc) 746 * allocation for the radix tree nodes, but we need to honour 747 * the context-specific requirements the caller has asked for. 748 * GFP_RECLAIM_MASK collects those requirements. 749 */ 750 err = add_to_page_cache_lru(page, mapping, index, 751 (gfp_mask & GFP_RECLAIM_MASK)); 752 if (unlikely(err)) { 753 page_cache_release(page); 754 page = NULL; 755 if (err == -EEXIST) 756 goto repeat; 757 } 758 } 759 return page; 760 } 761 EXPORT_SYMBOL(find_or_create_page); 762 763 /** 764 * find_get_pages - gang pagecache lookup 765 * @mapping: The address_space to search 766 * @start: The starting page index 767 * @nr_pages: The maximum number of pages 768 * @pages: Where the resulting pages are placed 769 * 770 * find_get_pages() will search for and return a group of up to 771 * @nr_pages pages in the mapping. The pages are placed at @pages. 772 * find_get_pages() takes a reference against the returned pages. 773 * 774 * The search returns a group of mapping-contiguous pages with ascending 775 * indexes. There may be holes in the indices due to not-present pages. 776 * 777 * find_get_pages() returns the number of pages which were found. 778 */ 779 unsigned find_get_pages(struct address_space *mapping, pgoff_t start, 780 unsigned int nr_pages, struct page **pages) 781 { 782 unsigned int i; 783 unsigned int ret; 784 unsigned int nr_found; 785 786 rcu_read_lock(); 787 restart: 788 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree, 789 (void ***)pages, start, nr_pages); 790 ret = 0; 791 for (i = 0; i < nr_found; i++) { 792 struct page *page; 793 repeat: 794 page = radix_tree_deref_slot((void **)pages[i]); 795 if (unlikely(!page)) 796 continue; 797 /* 798 * this can only trigger if nr_found == 1, making livelock 799 * a non issue. 800 */ 801 if (unlikely(page == RADIX_TREE_RETRY)) 802 goto restart; 803 804 if (!page_cache_get_speculative(page)) 805 goto repeat; 806 807 /* Has the page moved? */ 808 if (unlikely(page != *((void **)pages[i]))) { 809 page_cache_release(page); 810 goto repeat; 811 } 812 813 pages[ret] = page; 814 ret++; 815 } 816 rcu_read_unlock(); 817 return ret; 818 } 819 820 /** 821 * find_get_pages_contig - gang contiguous pagecache lookup 822 * @mapping: The address_space to search 823 * @index: The starting page index 824 * @nr_pages: The maximum number of pages 825 * @pages: Where the resulting pages are placed 826 * 827 * find_get_pages_contig() works exactly like find_get_pages(), except 828 * that the returned number of pages are guaranteed to be contiguous. 829 * 830 * find_get_pages_contig() returns the number of pages which were found. 831 */ 832 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, 833 unsigned int nr_pages, struct page **pages) 834 { 835 unsigned int i; 836 unsigned int ret; 837 unsigned int nr_found; 838 839 rcu_read_lock(); 840 restart: 841 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree, 842 (void ***)pages, index, nr_pages); 843 ret = 0; 844 for (i = 0; i < nr_found; i++) { 845 struct page *page; 846 repeat: 847 page = radix_tree_deref_slot((void **)pages[i]); 848 if (unlikely(!page)) 849 continue; 850 /* 851 * this can only trigger if nr_found == 1, making livelock 852 * a non issue. 853 */ 854 if (unlikely(page == RADIX_TREE_RETRY)) 855 goto restart; 856 857 if (page->mapping == NULL || page->index != index) 858 break; 859 860 if (!page_cache_get_speculative(page)) 861 goto repeat; 862 863 /* Has the page moved? */ 864 if (unlikely(page != *((void **)pages[i]))) { 865 page_cache_release(page); 866 goto repeat; 867 } 868 869 pages[ret] = page; 870 ret++; 871 index++; 872 } 873 rcu_read_unlock(); 874 return ret; 875 } 876 EXPORT_SYMBOL(find_get_pages_contig); 877 878 /** 879 * find_get_pages_tag - find and return pages that match @tag 880 * @mapping: the address_space to search 881 * @index: the starting page index 882 * @tag: the tag index 883 * @nr_pages: the maximum number of pages 884 * @pages: where the resulting pages are placed 885 * 886 * Like find_get_pages, except we only return pages which are tagged with 887 * @tag. We update @index to index the next page for the traversal. 888 */ 889 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, 890 int tag, unsigned int nr_pages, struct page **pages) 891 { 892 unsigned int i; 893 unsigned int ret; 894 unsigned int nr_found; 895 896 rcu_read_lock(); 897 restart: 898 nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree, 899 (void ***)pages, *index, nr_pages, tag); 900 ret = 0; 901 for (i = 0; i < nr_found; i++) { 902 struct page *page; 903 repeat: 904 page = radix_tree_deref_slot((void **)pages[i]); 905 if (unlikely(!page)) 906 continue; 907 /* 908 * this can only trigger if nr_found == 1, making livelock 909 * a non issue. 910 */ 911 if (unlikely(page == RADIX_TREE_RETRY)) 912 goto restart; 913 914 if (!page_cache_get_speculative(page)) 915 goto repeat; 916 917 /* Has the page moved? */ 918 if (unlikely(page != *((void **)pages[i]))) { 919 page_cache_release(page); 920 goto repeat; 921 } 922 923 pages[ret] = page; 924 ret++; 925 } 926 rcu_read_unlock(); 927 928 if (ret) 929 *index = pages[ret - 1]->index + 1; 930 931 return ret; 932 } 933 EXPORT_SYMBOL(find_get_pages_tag); 934 935 /** 936 * grab_cache_page_nowait - returns locked page at given index in given cache 937 * @mapping: target address_space 938 * @index: the page index 939 * 940 * Same as grab_cache_page(), but do not wait if the page is unavailable. 941 * This is intended for speculative data generators, where the data can 942 * be regenerated if the page couldn't be grabbed. This routine should 943 * be safe to call while holding the lock for another page. 944 * 945 * Clear __GFP_FS when allocating the page to avoid recursion into the fs 946 * and deadlock against the caller's locked page. 947 */ 948 struct page * 949 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index) 950 { 951 struct page *page = find_get_page(mapping, index); 952 953 if (page) { 954 if (trylock_page(page)) 955 return page; 956 page_cache_release(page); 957 return NULL; 958 } 959 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS); 960 if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) { 961 page_cache_release(page); 962 page = NULL; 963 } 964 return page; 965 } 966 EXPORT_SYMBOL(grab_cache_page_nowait); 967 968 /* 969 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 970 * a _large_ part of the i/o request. Imagine the worst scenario: 971 * 972 * ---R__________________________________________B__________ 973 * ^ reading here ^ bad block(assume 4k) 974 * 975 * read(R) => miss => readahead(R...B) => media error => frustrating retries 976 * => failing the whole request => read(R) => read(R+1) => 977 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 978 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 979 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 980 * 981 * It is going insane. Fix it by quickly scaling down the readahead size. 982 */ 983 static void shrink_readahead_size_eio(struct file *filp, 984 struct file_ra_state *ra) 985 { 986 if (!ra->ra_pages) 987 return; 988 989 ra->ra_pages /= 4; 990 } 991 992 /** 993 * do_generic_file_read - generic file read routine 994 * @filp: the file to read 995 * @ppos: current file position 996 * @desc: read_descriptor 997 * @actor: read method 998 * 999 * This is a generic file read routine, and uses the 1000 * mapping->a_ops->readpage() function for the actual low-level stuff. 1001 * 1002 * This is really ugly. But the goto's actually try to clarify some 1003 * of the logic when it comes to error handling etc. 1004 */ 1005 static void do_generic_file_read(struct file *filp, loff_t *ppos, 1006 read_descriptor_t *desc, read_actor_t actor) 1007 { 1008 struct address_space *mapping = filp->f_mapping; 1009 struct inode *inode = mapping->host; 1010 struct file_ra_state *ra = &filp->f_ra; 1011 pgoff_t index; 1012 pgoff_t last_index; 1013 pgoff_t prev_index; 1014 unsigned long offset; /* offset into pagecache page */ 1015 unsigned int prev_offset; 1016 int error; 1017 1018 index = *ppos >> PAGE_CACHE_SHIFT; 1019 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT; 1020 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1); 1021 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT; 1022 offset = *ppos & ~PAGE_CACHE_MASK; 1023 1024 for (;;) { 1025 struct page *page; 1026 pgoff_t end_index; 1027 loff_t isize; 1028 unsigned long nr, ret; 1029 1030 cond_resched(); 1031 find_page: 1032 page = find_get_page(mapping, index); 1033 if (!page) { 1034 page_cache_sync_readahead(mapping, 1035 ra, filp, 1036 index, last_index - index); 1037 page = find_get_page(mapping, index); 1038 if (unlikely(page == NULL)) 1039 goto no_cached_page; 1040 } 1041 if (PageReadahead(page)) { 1042 page_cache_async_readahead(mapping, 1043 ra, filp, page, 1044 index, last_index - index); 1045 } 1046 if (!PageUptodate(page)) { 1047 if (inode->i_blkbits == PAGE_CACHE_SHIFT || 1048 !mapping->a_ops->is_partially_uptodate) 1049 goto page_not_up_to_date; 1050 if (!trylock_page(page)) 1051 goto page_not_up_to_date; 1052 if (!mapping->a_ops->is_partially_uptodate(page, 1053 desc, offset)) 1054 goto page_not_up_to_date_locked; 1055 unlock_page(page); 1056 } 1057 page_ok: 1058 /* 1059 * i_size must be checked after we know the page is Uptodate. 1060 * 1061 * Checking i_size after the check allows us to calculate 1062 * the correct value for "nr", which means the zero-filled 1063 * part of the page is not copied back to userspace (unless 1064 * another truncate extends the file - this is desired though). 1065 */ 1066 1067 isize = i_size_read(inode); 1068 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 1069 if (unlikely(!isize || index > end_index)) { 1070 page_cache_release(page); 1071 goto out; 1072 } 1073 1074 /* nr is the maximum number of bytes to copy from this page */ 1075 nr = PAGE_CACHE_SIZE; 1076 if (index == end_index) { 1077 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 1078 if (nr <= offset) { 1079 page_cache_release(page); 1080 goto out; 1081 } 1082 } 1083 nr = nr - offset; 1084 1085 /* If users can be writing to this page using arbitrary 1086 * virtual addresses, take care about potential aliasing 1087 * before reading the page on the kernel side. 1088 */ 1089 if (mapping_writably_mapped(mapping)) 1090 flush_dcache_page(page); 1091 1092 /* 1093 * When a sequential read accesses a page several times, 1094 * only mark it as accessed the first time. 1095 */ 1096 if (prev_index != index || offset != prev_offset) 1097 mark_page_accessed(page); 1098 prev_index = index; 1099 1100 /* 1101 * Ok, we have the page, and it's up-to-date, so 1102 * now we can copy it to user space... 1103 * 1104 * The actor routine returns how many bytes were actually used.. 1105 * NOTE! This may not be the same as how much of a user buffer 1106 * we filled up (we may be padding etc), so we can only update 1107 * "pos" here (the actor routine has to update the user buffer 1108 * pointers and the remaining count). 1109 */ 1110 ret = actor(desc, page, offset, nr); 1111 offset += ret; 1112 index += offset >> PAGE_CACHE_SHIFT; 1113 offset &= ~PAGE_CACHE_MASK; 1114 prev_offset = offset; 1115 1116 page_cache_release(page); 1117 if (ret == nr && desc->count) 1118 continue; 1119 goto out; 1120 1121 page_not_up_to_date: 1122 /* Get exclusive access to the page ... */ 1123 error = lock_page_killable(page); 1124 if (unlikely(error)) 1125 goto readpage_error; 1126 1127 page_not_up_to_date_locked: 1128 /* Did it get truncated before we got the lock? */ 1129 if (!page->mapping) { 1130 unlock_page(page); 1131 page_cache_release(page); 1132 continue; 1133 } 1134 1135 /* Did somebody else fill it already? */ 1136 if (PageUptodate(page)) { 1137 unlock_page(page); 1138 goto page_ok; 1139 } 1140 1141 readpage: 1142 /* Start the actual read. The read will unlock the page. */ 1143 error = mapping->a_ops->readpage(filp, page); 1144 1145 if (unlikely(error)) { 1146 if (error == AOP_TRUNCATED_PAGE) { 1147 page_cache_release(page); 1148 goto find_page; 1149 } 1150 goto readpage_error; 1151 } 1152 1153 if (!PageUptodate(page)) { 1154 error = lock_page_killable(page); 1155 if (unlikely(error)) 1156 goto readpage_error; 1157 if (!PageUptodate(page)) { 1158 if (page->mapping == NULL) { 1159 /* 1160 * invalidate_inode_pages got it 1161 */ 1162 unlock_page(page); 1163 page_cache_release(page); 1164 goto find_page; 1165 } 1166 unlock_page(page); 1167 shrink_readahead_size_eio(filp, ra); 1168 error = -EIO; 1169 goto readpage_error; 1170 } 1171 unlock_page(page); 1172 } 1173 1174 goto page_ok; 1175 1176 readpage_error: 1177 /* UHHUH! A synchronous read error occurred. Report it */ 1178 desc->error = error; 1179 page_cache_release(page); 1180 goto out; 1181 1182 no_cached_page: 1183 /* 1184 * Ok, it wasn't cached, so we need to create a new 1185 * page.. 1186 */ 1187 page = page_cache_alloc_cold(mapping); 1188 if (!page) { 1189 desc->error = -ENOMEM; 1190 goto out; 1191 } 1192 error = add_to_page_cache_lru(page, mapping, 1193 index, GFP_KERNEL); 1194 if (error) { 1195 page_cache_release(page); 1196 if (error == -EEXIST) 1197 goto find_page; 1198 desc->error = error; 1199 goto out; 1200 } 1201 goto readpage; 1202 } 1203 1204 out: 1205 ra->prev_pos = prev_index; 1206 ra->prev_pos <<= PAGE_CACHE_SHIFT; 1207 ra->prev_pos |= prev_offset; 1208 1209 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset; 1210 file_accessed(filp); 1211 } 1212 1213 int file_read_actor(read_descriptor_t *desc, struct page *page, 1214 unsigned long offset, unsigned long size) 1215 { 1216 char *kaddr; 1217 unsigned long left, count = desc->count; 1218 1219 if (size > count) 1220 size = count; 1221 1222 /* 1223 * Faults on the destination of a read are common, so do it before 1224 * taking the kmap. 1225 */ 1226 if (!fault_in_pages_writeable(desc->arg.buf, size)) { 1227 kaddr = kmap_atomic(page, KM_USER0); 1228 left = __copy_to_user_inatomic(desc->arg.buf, 1229 kaddr + offset, size); 1230 kunmap_atomic(kaddr, KM_USER0); 1231 if (left == 0) 1232 goto success; 1233 } 1234 1235 /* Do it the slow way */ 1236 kaddr = kmap(page); 1237 left = __copy_to_user(desc->arg.buf, kaddr + offset, size); 1238 kunmap(page); 1239 1240 if (left) { 1241 size -= left; 1242 desc->error = -EFAULT; 1243 } 1244 success: 1245 desc->count = count - size; 1246 desc->written += size; 1247 desc->arg.buf += size; 1248 return size; 1249 } 1250 1251 /* 1252 * Performs necessary checks before doing a write 1253 * @iov: io vector request 1254 * @nr_segs: number of segments in the iovec 1255 * @count: number of bytes to write 1256 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE 1257 * 1258 * Adjust number of segments and amount of bytes to write (nr_segs should be 1259 * properly initialized first). Returns appropriate error code that caller 1260 * should return or zero in case that write should be allowed. 1261 */ 1262 int generic_segment_checks(const struct iovec *iov, 1263 unsigned long *nr_segs, size_t *count, int access_flags) 1264 { 1265 unsigned long seg; 1266 size_t cnt = 0; 1267 for (seg = 0; seg < *nr_segs; seg++) { 1268 const struct iovec *iv = &iov[seg]; 1269 1270 /* 1271 * If any segment has a negative length, or the cumulative 1272 * length ever wraps negative then return -EINVAL. 1273 */ 1274 cnt += iv->iov_len; 1275 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0)) 1276 return -EINVAL; 1277 if (access_ok(access_flags, iv->iov_base, iv->iov_len)) 1278 continue; 1279 if (seg == 0) 1280 return -EFAULT; 1281 *nr_segs = seg; 1282 cnt -= iv->iov_len; /* This segment is no good */ 1283 break; 1284 } 1285 *count = cnt; 1286 return 0; 1287 } 1288 EXPORT_SYMBOL(generic_segment_checks); 1289 1290 /** 1291 * generic_file_aio_read - generic filesystem read routine 1292 * @iocb: kernel I/O control block 1293 * @iov: io vector request 1294 * @nr_segs: number of segments in the iovec 1295 * @pos: current file position 1296 * 1297 * This is the "read()" routine for all filesystems 1298 * that can use the page cache directly. 1299 */ 1300 ssize_t 1301 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov, 1302 unsigned long nr_segs, loff_t pos) 1303 { 1304 struct file *filp = iocb->ki_filp; 1305 ssize_t retval; 1306 unsigned long seg; 1307 size_t count; 1308 loff_t *ppos = &iocb->ki_pos; 1309 1310 count = 0; 1311 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE); 1312 if (retval) 1313 return retval; 1314 1315 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ 1316 if (filp->f_flags & O_DIRECT) { 1317 loff_t size; 1318 struct address_space *mapping; 1319 struct inode *inode; 1320 1321 mapping = filp->f_mapping; 1322 inode = mapping->host; 1323 if (!count) 1324 goto out; /* skip atime */ 1325 size = i_size_read(inode); 1326 if (pos < size) { 1327 retval = filemap_write_and_wait_range(mapping, pos, 1328 pos + iov_length(iov, nr_segs) - 1); 1329 if (!retval) { 1330 retval = mapping->a_ops->direct_IO(READ, iocb, 1331 iov, pos, nr_segs); 1332 } 1333 if (retval > 0) 1334 *ppos = pos + retval; 1335 if (retval) { 1336 file_accessed(filp); 1337 goto out; 1338 } 1339 } 1340 } 1341 1342 for (seg = 0; seg < nr_segs; seg++) { 1343 read_descriptor_t desc; 1344 1345 desc.written = 0; 1346 desc.arg.buf = iov[seg].iov_base; 1347 desc.count = iov[seg].iov_len; 1348 if (desc.count == 0) 1349 continue; 1350 desc.error = 0; 1351 do_generic_file_read(filp, ppos, &desc, file_read_actor); 1352 retval += desc.written; 1353 if (desc.error) { 1354 retval = retval ?: desc.error; 1355 break; 1356 } 1357 if (desc.count > 0) 1358 break; 1359 } 1360 out: 1361 return retval; 1362 } 1363 EXPORT_SYMBOL(generic_file_aio_read); 1364 1365 static ssize_t 1366 do_readahead(struct address_space *mapping, struct file *filp, 1367 pgoff_t index, unsigned long nr) 1368 { 1369 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage) 1370 return -EINVAL; 1371 1372 force_page_cache_readahead(mapping, filp, index, 1373 max_sane_readahead(nr)); 1374 return 0; 1375 } 1376 1377 SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count) 1378 { 1379 ssize_t ret; 1380 struct file *file; 1381 1382 ret = -EBADF; 1383 file = fget(fd); 1384 if (file) { 1385 if (file->f_mode & FMODE_READ) { 1386 struct address_space *mapping = file->f_mapping; 1387 pgoff_t start = offset >> PAGE_CACHE_SHIFT; 1388 pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT; 1389 unsigned long len = end - start + 1; 1390 ret = do_readahead(mapping, file, start, len); 1391 } 1392 fput(file); 1393 } 1394 return ret; 1395 } 1396 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS 1397 asmlinkage long SyS_readahead(long fd, loff_t offset, long count) 1398 { 1399 return SYSC_readahead((int) fd, offset, (size_t) count); 1400 } 1401 SYSCALL_ALIAS(sys_readahead, SyS_readahead); 1402 #endif 1403 1404 #ifdef CONFIG_MMU 1405 /** 1406 * page_cache_read - adds requested page to the page cache if not already there 1407 * @file: file to read 1408 * @offset: page index 1409 * 1410 * This adds the requested page to the page cache if it isn't already there, 1411 * and schedules an I/O to read in its contents from disk. 1412 */ 1413 static int page_cache_read(struct file *file, pgoff_t offset) 1414 { 1415 struct address_space *mapping = file->f_mapping; 1416 struct page *page; 1417 int ret; 1418 1419 do { 1420 page = page_cache_alloc_cold(mapping); 1421 if (!page) 1422 return -ENOMEM; 1423 1424 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL); 1425 if (ret == 0) 1426 ret = mapping->a_ops->readpage(file, page); 1427 else if (ret == -EEXIST) 1428 ret = 0; /* losing race to add is OK */ 1429 1430 page_cache_release(page); 1431 1432 } while (ret == AOP_TRUNCATED_PAGE); 1433 1434 return ret; 1435 } 1436 1437 #define MMAP_LOTSAMISS (100) 1438 1439 /** 1440 * filemap_fault - read in file data for page fault handling 1441 * @vma: vma in which the fault was taken 1442 * @vmf: struct vm_fault containing details of the fault 1443 * 1444 * filemap_fault() is invoked via the vma operations vector for a 1445 * mapped memory region to read in file data during a page fault. 1446 * 1447 * The goto's are kind of ugly, but this streamlines the normal case of having 1448 * it in the page cache, and handles the special cases reasonably without 1449 * having a lot of duplicated code. 1450 */ 1451 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1452 { 1453 int error; 1454 struct file *file = vma->vm_file; 1455 struct address_space *mapping = file->f_mapping; 1456 struct file_ra_state *ra = &file->f_ra; 1457 struct inode *inode = mapping->host; 1458 struct page *page; 1459 pgoff_t size; 1460 int did_readaround = 0; 1461 int ret = 0; 1462 1463 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1464 if (vmf->pgoff >= size) 1465 return VM_FAULT_SIGBUS; 1466 1467 /* If we don't want any read-ahead, don't bother */ 1468 if (VM_RandomReadHint(vma)) 1469 goto no_cached_page; 1470 1471 /* 1472 * Do we have something in the page cache already? 1473 */ 1474 retry_find: 1475 page = find_lock_page(mapping, vmf->pgoff); 1476 /* 1477 * For sequential accesses, we use the generic readahead logic. 1478 */ 1479 if (VM_SequentialReadHint(vma)) { 1480 if (!page) { 1481 page_cache_sync_readahead(mapping, ra, file, 1482 vmf->pgoff, 1); 1483 page = find_lock_page(mapping, vmf->pgoff); 1484 if (!page) 1485 goto no_cached_page; 1486 } 1487 if (PageReadahead(page)) { 1488 page_cache_async_readahead(mapping, ra, file, page, 1489 vmf->pgoff, 1); 1490 } 1491 } 1492 1493 if (!page) { 1494 unsigned long ra_pages; 1495 1496 ra->mmap_miss++; 1497 1498 /* 1499 * Do we miss much more than hit in this file? If so, 1500 * stop bothering with read-ahead. It will only hurt. 1501 */ 1502 if (ra->mmap_miss > MMAP_LOTSAMISS) 1503 goto no_cached_page; 1504 1505 /* 1506 * To keep the pgmajfault counter straight, we need to 1507 * check did_readaround, as this is an inner loop. 1508 */ 1509 if (!did_readaround) { 1510 ret = VM_FAULT_MAJOR; 1511 count_vm_event(PGMAJFAULT); 1512 } 1513 did_readaround = 1; 1514 ra_pages = max_sane_readahead(file->f_ra.ra_pages); 1515 if (ra_pages) { 1516 pgoff_t start = 0; 1517 1518 if (vmf->pgoff > ra_pages / 2) 1519 start = vmf->pgoff - ra_pages / 2; 1520 do_page_cache_readahead(mapping, file, start, ra_pages); 1521 } 1522 page = find_lock_page(mapping, vmf->pgoff); 1523 if (!page) 1524 goto no_cached_page; 1525 } 1526 1527 if (!did_readaround) 1528 ra->mmap_miss--; 1529 1530 /* 1531 * We have a locked page in the page cache, now we need to check 1532 * that it's up-to-date. If not, it is going to be due to an error. 1533 */ 1534 if (unlikely(!PageUptodate(page))) 1535 goto page_not_uptodate; 1536 1537 /* Must recheck i_size under page lock */ 1538 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1539 if (unlikely(vmf->pgoff >= size)) { 1540 unlock_page(page); 1541 page_cache_release(page); 1542 return VM_FAULT_SIGBUS; 1543 } 1544 1545 /* 1546 * Found the page and have a reference on it. 1547 */ 1548 ra->prev_pos = (loff_t)page->index << PAGE_CACHE_SHIFT; 1549 vmf->page = page; 1550 return ret | VM_FAULT_LOCKED; 1551 1552 no_cached_page: 1553 /* 1554 * We're only likely to ever get here if MADV_RANDOM is in 1555 * effect. 1556 */ 1557 error = page_cache_read(file, vmf->pgoff); 1558 1559 /* 1560 * The page we want has now been added to the page cache. 1561 * In the unlikely event that someone removed it in the 1562 * meantime, we'll just come back here and read it again. 1563 */ 1564 if (error >= 0) 1565 goto retry_find; 1566 1567 /* 1568 * An error return from page_cache_read can result if the 1569 * system is low on memory, or a problem occurs while trying 1570 * to schedule I/O. 1571 */ 1572 if (error == -ENOMEM) 1573 return VM_FAULT_OOM; 1574 return VM_FAULT_SIGBUS; 1575 1576 page_not_uptodate: 1577 /* IO error path */ 1578 if (!did_readaround) { 1579 ret = VM_FAULT_MAJOR; 1580 count_vm_event(PGMAJFAULT); 1581 } 1582 1583 /* 1584 * Umm, take care of errors if the page isn't up-to-date. 1585 * Try to re-read it _once_. We do this synchronously, 1586 * because there really aren't any performance issues here 1587 * and we need to check for errors. 1588 */ 1589 ClearPageError(page); 1590 error = mapping->a_ops->readpage(file, page); 1591 if (!error) { 1592 wait_on_page_locked(page); 1593 if (!PageUptodate(page)) 1594 error = -EIO; 1595 } 1596 page_cache_release(page); 1597 1598 if (!error || error == AOP_TRUNCATED_PAGE) 1599 goto retry_find; 1600 1601 /* Things didn't work out. Return zero to tell the mm layer so. */ 1602 shrink_readahead_size_eio(file, ra); 1603 return VM_FAULT_SIGBUS; 1604 } 1605 EXPORT_SYMBOL(filemap_fault); 1606 1607 struct vm_operations_struct generic_file_vm_ops = { 1608 .fault = filemap_fault, 1609 }; 1610 1611 /* This is used for a general mmap of a disk file */ 1612 1613 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 1614 { 1615 struct address_space *mapping = file->f_mapping; 1616 1617 if (!mapping->a_ops->readpage) 1618 return -ENOEXEC; 1619 file_accessed(file); 1620 vma->vm_ops = &generic_file_vm_ops; 1621 vma->vm_flags |= VM_CAN_NONLINEAR; 1622 return 0; 1623 } 1624 1625 /* 1626 * This is for filesystems which do not implement ->writepage. 1627 */ 1628 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 1629 { 1630 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 1631 return -EINVAL; 1632 return generic_file_mmap(file, vma); 1633 } 1634 #else 1635 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 1636 { 1637 return -ENOSYS; 1638 } 1639 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) 1640 { 1641 return -ENOSYS; 1642 } 1643 #endif /* CONFIG_MMU */ 1644 1645 EXPORT_SYMBOL(generic_file_mmap); 1646 EXPORT_SYMBOL(generic_file_readonly_mmap); 1647 1648 static struct page *__read_cache_page(struct address_space *mapping, 1649 pgoff_t index, 1650 int (*filler)(void *,struct page*), 1651 void *data) 1652 { 1653 struct page *page; 1654 int err; 1655 repeat: 1656 page = find_get_page(mapping, index); 1657 if (!page) { 1658 page = page_cache_alloc_cold(mapping); 1659 if (!page) 1660 return ERR_PTR(-ENOMEM); 1661 err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL); 1662 if (unlikely(err)) { 1663 page_cache_release(page); 1664 if (err == -EEXIST) 1665 goto repeat; 1666 /* Presumably ENOMEM for radix tree node */ 1667 return ERR_PTR(err); 1668 } 1669 err = filler(data, page); 1670 if (err < 0) { 1671 page_cache_release(page); 1672 page = ERR_PTR(err); 1673 } 1674 } 1675 return page; 1676 } 1677 1678 /** 1679 * read_cache_page_async - read into page cache, fill it if needed 1680 * @mapping: the page's address_space 1681 * @index: the page index 1682 * @filler: function to perform the read 1683 * @data: destination for read data 1684 * 1685 * Same as read_cache_page, but don't wait for page to become unlocked 1686 * after submitting it to the filler. 1687 * 1688 * Read into the page cache. If a page already exists, and PageUptodate() is 1689 * not set, try to fill the page but don't wait for it to become unlocked. 1690 * 1691 * If the page does not get brought uptodate, return -EIO. 1692 */ 1693 struct page *read_cache_page_async(struct address_space *mapping, 1694 pgoff_t index, 1695 int (*filler)(void *,struct page*), 1696 void *data) 1697 { 1698 struct page *page; 1699 int err; 1700 1701 retry: 1702 page = __read_cache_page(mapping, index, filler, data); 1703 if (IS_ERR(page)) 1704 return page; 1705 if (PageUptodate(page)) 1706 goto out; 1707 1708 lock_page(page); 1709 if (!page->mapping) { 1710 unlock_page(page); 1711 page_cache_release(page); 1712 goto retry; 1713 } 1714 if (PageUptodate(page)) { 1715 unlock_page(page); 1716 goto out; 1717 } 1718 err = filler(data, page); 1719 if (err < 0) { 1720 page_cache_release(page); 1721 return ERR_PTR(err); 1722 } 1723 out: 1724 mark_page_accessed(page); 1725 return page; 1726 } 1727 EXPORT_SYMBOL(read_cache_page_async); 1728 1729 /** 1730 * read_cache_page - read into page cache, fill it if needed 1731 * @mapping: the page's address_space 1732 * @index: the page index 1733 * @filler: function to perform the read 1734 * @data: destination for read data 1735 * 1736 * Read into the page cache. If a page already exists, and PageUptodate() is 1737 * not set, try to fill the page then wait for it to become unlocked. 1738 * 1739 * If the page does not get brought uptodate, return -EIO. 1740 */ 1741 struct page *read_cache_page(struct address_space *mapping, 1742 pgoff_t index, 1743 int (*filler)(void *,struct page*), 1744 void *data) 1745 { 1746 struct page *page; 1747 1748 page = read_cache_page_async(mapping, index, filler, data); 1749 if (IS_ERR(page)) 1750 goto out; 1751 wait_on_page_locked(page); 1752 if (!PageUptodate(page)) { 1753 page_cache_release(page); 1754 page = ERR_PTR(-EIO); 1755 } 1756 out: 1757 return page; 1758 } 1759 EXPORT_SYMBOL(read_cache_page); 1760 1761 /* 1762 * The logic we want is 1763 * 1764 * if suid or (sgid and xgrp) 1765 * remove privs 1766 */ 1767 int should_remove_suid(struct dentry *dentry) 1768 { 1769 mode_t mode = dentry->d_inode->i_mode; 1770 int kill = 0; 1771 1772 /* suid always must be killed */ 1773 if (unlikely(mode & S_ISUID)) 1774 kill = ATTR_KILL_SUID; 1775 1776 /* 1777 * sgid without any exec bits is just a mandatory locking mark; leave 1778 * it alone. If some exec bits are set, it's a real sgid; kill it. 1779 */ 1780 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP))) 1781 kill |= ATTR_KILL_SGID; 1782 1783 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode))) 1784 return kill; 1785 1786 return 0; 1787 } 1788 EXPORT_SYMBOL(should_remove_suid); 1789 1790 static int __remove_suid(struct dentry *dentry, int kill) 1791 { 1792 struct iattr newattrs; 1793 1794 newattrs.ia_valid = ATTR_FORCE | kill; 1795 return notify_change(dentry, &newattrs); 1796 } 1797 1798 int file_remove_suid(struct file *file) 1799 { 1800 struct dentry *dentry = file->f_path.dentry; 1801 int killsuid = should_remove_suid(dentry); 1802 int killpriv = security_inode_need_killpriv(dentry); 1803 int error = 0; 1804 1805 if (killpriv < 0) 1806 return killpriv; 1807 if (killpriv) 1808 error = security_inode_killpriv(dentry); 1809 if (!error && killsuid) 1810 error = __remove_suid(dentry, killsuid); 1811 1812 return error; 1813 } 1814 EXPORT_SYMBOL(file_remove_suid); 1815 1816 static size_t __iovec_copy_from_user_inatomic(char *vaddr, 1817 const struct iovec *iov, size_t base, size_t bytes) 1818 { 1819 size_t copied = 0, left = 0; 1820 1821 while (bytes) { 1822 char __user *buf = iov->iov_base + base; 1823 int copy = min(bytes, iov->iov_len - base); 1824 1825 base = 0; 1826 left = __copy_from_user_inatomic(vaddr, buf, copy); 1827 copied += copy; 1828 bytes -= copy; 1829 vaddr += copy; 1830 iov++; 1831 1832 if (unlikely(left)) 1833 break; 1834 } 1835 return copied - left; 1836 } 1837 1838 /* 1839 * Copy as much as we can into the page and return the number of bytes which 1840 * were sucessfully copied. If a fault is encountered then return the number of 1841 * bytes which were copied. 1842 */ 1843 size_t iov_iter_copy_from_user_atomic(struct page *page, 1844 struct iov_iter *i, unsigned long offset, size_t bytes) 1845 { 1846 char *kaddr; 1847 size_t copied; 1848 1849 BUG_ON(!in_atomic()); 1850 kaddr = kmap_atomic(page, KM_USER0); 1851 if (likely(i->nr_segs == 1)) { 1852 int left; 1853 char __user *buf = i->iov->iov_base + i->iov_offset; 1854 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes); 1855 copied = bytes - left; 1856 } else { 1857 copied = __iovec_copy_from_user_inatomic(kaddr + offset, 1858 i->iov, i->iov_offset, bytes); 1859 } 1860 kunmap_atomic(kaddr, KM_USER0); 1861 1862 return copied; 1863 } 1864 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic); 1865 1866 /* 1867 * This has the same sideeffects and return value as 1868 * iov_iter_copy_from_user_atomic(). 1869 * The difference is that it attempts to resolve faults. 1870 * Page must not be locked. 1871 */ 1872 size_t iov_iter_copy_from_user(struct page *page, 1873 struct iov_iter *i, unsigned long offset, size_t bytes) 1874 { 1875 char *kaddr; 1876 size_t copied; 1877 1878 kaddr = kmap(page); 1879 if (likely(i->nr_segs == 1)) { 1880 int left; 1881 char __user *buf = i->iov->iov_base + i->iov_offset; 1882 left = __copy_from_user(kaddr + offset, buf, bytes); 1883 copied = bytes - left; 1884 } else { 1885 copied = __iovec_copy_from_user_inatomic(kaddr + offset, 1886 i->iov, i->iov_offset, bytes); 1887 } 1888 kunmap(page); 1889 return copied; 1890 } 1891 EXPORT_SYMBOL(iov_iter_copy_from_user); 1892 1893 void iov_iter_advance(struct iov_iter *i, size_t bytes) 1894 { 1895 BUG_ON(i->count < bytes); 1896 1897 if (likely(i->nr_segs == 1)) { 1898 i->iov_offset += bytes; 1899 i->count -= bytes; 1900 } else { 1901 const struct iovec *iov = i->iov; 1902 size_t base = i->iov_offset; 1903 1904 /* 1905 * The !iov->iov_len check ensures we skip over unlikely 1906 * zero-length segments (without overruning the iovec). 1907 */ 1908 while (bytes || unlikely(i->count && !iov->iov_len)) { 1909 int copy; 1910 1911 copy = min(bytes, iov->iov_len - base); 1912 BUG_ON(!i->count || i->count < copy); 1913 i->count -= copy; 1914 bytes -= copy; 1915 base += copy; 1916 if (iov->iov_len == base) { 1917 iov++; 1918 base = 0; 1919 } 1920 } 1921 i->iov = iov; 1922 i->iov_offset = base; 1923 } 1924 } 1925 EXPORT_SYMBOL(iov_iter_advance); 1926 1927 /* 1928 * Fault in the first iovec of the given iov_iter, to a maximum length 1929 * of bytes. Returns 0 on success, or non-zero if the memory could not be 1930 * accessed (ie. because it is an invalid address). 1931 * 1932 * writev-intensive code may want this to prefault several iovecs -- that 1933 * would be possible (callers must not rely on the fact that _only_ the 1934 * first iovec will be faulted with the current implementation). 1935 */ 1936 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes) 1937 { 1938 char __user *buf = i->iov->iov_base + i->iov_offset; 1939 bytes = min(bytes, i->iov->iov_len - i->iov_offset); 1940 return fault_in_pages_readable(buf, bytes); 1941 } 1942 EXPORT_SYMBOL(iov_iter_fault_in_readable); 1943 1944 /* 1945 * Return the count of just the current iov_iter segment. 1946 */ 1947 size_t iov_iter_single_seg_count(struct iov_iter *i) 1948 { 1949 const struct iovec *iov = i->iov; 1950 if (i->nr_segs == 1) 1951 return i->count; 1952 else 1953 return min(i->count, iov->iov_len - i->iov_offset); 1954 } 1955 EXPORT_SYMBOL(iov_iter_single_seg_count); 1956 1957 /* 1958 * Performs necessary checks before doing a write 1959 * 1960 * Can adjust writing position or amount of bytes to write. 1961 * Returns appropriate error code that caller should return or 1962 * zero in case that write should be allowed. 1963 */ 1964 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk) 1965 { 1966 struct inode *inode = file->f_mapping->host; 1967 unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; 1968 1969 if (unlikely(*pos < 0)) 1970 return -EINVAL; 1971 1972 if (!isblk) { 1973 /* FIXME: this is for backwards compatibility with 2.4 */ 1974 if (file->f_flags & O_APPEND) 1975 *pos = i_size_read(inode); 1976 1977 if (limit != RLIM_INFINITY) { 1978 if (*pos >= limit) { 1979 send_sig(SIGXFSZ, current, 0); 1980 return -EFBIG; 1981 } 1982 if (*count > limit - (typeof(limit))*pos) { 1983 *count = limit - (typeof(limit))*pos; 1984 } 1985 } 1986 } 1987 1988 /* 1989 * LFS rule 1990 */ 1991 if (unlikely(*pos + *count > MAX_NON_LFS && 1992 !(file->f_flags & O_LARGEFILE))) { 1993 if (*pos >= MAX_NON_LFS) { 1994 return -EFBIG; 1995 } 1996 if (*count > MAX_NON_LFS - (unsigned long)*pos) { 1997 *count = MAX_NON_LFS - (unsigned long)*pos; 1998 } 1999 } 2000 2001 /* 2002 * Are we about to exceed the fs block limit ? 2003 * 2004 * If we have written data it becomes a short write. If we have 2005 * exceeded without writing data we send a signal and return EFBIG. 2006 * Linus frestrict idea will clean these up nicely.. 2007 */ 2008 if (likely(!isblk)) { 2009 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) { 2010 if (*count || *pos > inode->i_sb->s_maxbytes) { 2011 return -EFBIG; 2012 } 2013 /* zero-length writes at ->s_maxbytes are OK */ 2014 } 2015 2016 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes)) 2017 *count = inode->i_sb->s_maxbytes - *pos; 2018 } else { 2019 #ifdef CONFIG_BLOCK 2020 loff_t isize; 2021 if (bdev_read_only(I_BDEV(inode))) 2022 return -EPERM; 2023 isize = i_size_read(inode); 2024 if (*pos >= isize) { 2025 if (*count || *pos > isize) 2026 return -ENOSPC; 2027 } 2028 2029 if (*pos + *count > isize) 2030 *count = isize - *pos; 2031 #else 2032 return -EPERM; 2033 #endif 2034 } 2035 return 0; 2036 } 2037 EXPORT_SYMBOL(generic_write_checks); 2038 2039 int pagecache_write_begin(struct file *file, struct address_space *mapping, 2040 loff_t pos, unsigned len, unsigned flags, 2041 struct page **pagep, void **fsdata) 2042 { 2043 const struct address_space_operations *aops = mapping->a_ops; 2044 2045 return aops->write_begin(file, mapping, pos, len, flags, 2046 pagep, fsdata); 2047 } 2048 EXPORT_SYMBOL(pagecache_write_begin); 2049 2050 int pagecache_write_end(struct file *file, struct address_space *mapping, 2051 loff_t pos, unsigned len, unsigned copied, 2052 struct page *page, void *fsdata) 2053 { 2054 const struct address_space_operations *aops = mapping->a_ops; 2055 2056 mark_page_accessed(page); 2057 return aops->write_end(file, mapping, pos, len, copied, page, fsdata); 2058 } 2059 EXPORT_SYMBOL(pagecache_write_end); 2060 2061 ssize_t 2062 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov, 2063 unsigned long *nr_segs, loff_t pos, loff_t *ppos, 2064 size_t count, size_t ocount) 2065 { 2066 struct file *file = iocb->ki_filp; 2067 struct address_space *mapping = file->f_mapping; 2068 struct inode *inode = mapping->host; 2069 ssize_t written; 2070 size_t write_len; 2071 pgoff_t end; 2072 2073 if (count != ocount) 2074 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count); 2075 2076 write_len = iov_length(iov, *nr_segs); 2077 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT; 2078 2079 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1); 2080 if (written) 2081 goto out; 2082 2083 /* 2084 * After a write we want buffered reads to be sure to go to disk to get 2085 * the new data. We invalidate clean cached page from the region we're 2086 * about to write. We do this *before* the write so that we can return 2087 * without clobbering -EIOCBQUEUED from ->direct_IO(). 2088 */ 2089 if (mapping->nrpages) { 2090 written = invalidate_inode_pages2_range(mapping, 2091 pos >> PAGE_CACHE_SHIFT, end); 2092 /* 2093 * If a page can not be invalidated, return 0 to fall back 2094 * to buffered write. 2095 */ 2096 if (written) { 2097 if (written == -EBUSY) 2098 return 0; 2099 goto out; 2100 } 2101 } 2102 2103 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs); 2104 2105 /* 2106 * Finally, try again to invalidate clean pages which might have been 2107 * cached by non-direct readahead, or faulted in by get_user_pages() 2108 * if the source of the write was an mmap'ed region of the file 2109 * we're writing. Either one is a pretty crazy thing to do, 2110 * so we don't support it 100%. If this invalidation 2111 * fails, tough, the write still worked... 2112 */ 2113 if (mapping->nrpages) { 2114 invalidate_inode_pages2_range(mapping, 2115 pos >> PAGE_CACHE_SHIFT, end); 2116 } 2117 2118 if (written > 0) { 2119 loff_t end = pos + written; 2120 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 2121 i_size_write(inode, end); 2122 mark_inode_dirty(inode); 2123 } 2124 *ppos = end; 2125 } 2126 2127 /* 2128 * Sync the fs metadata but not the minor inode changes and 2129 * of course not the data as we did direct DMA for the IO. 2130 * i_mutex is held, which protects generic_osync_inode() from 2131 * livelocking. AIO O_DIRECT ops attempt to sync metadata here. 2132 */ 2133 out: 2134 if ((written >= 0 || written == -EIOCBQUEUED) && 2135 ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 2136 int err = generic_osync_inode(inode, mapping, OSYNC_METADATA); 2137 if (err < 0) 2138 written = err; 2139 } 2140 return written; 2141 } 2142 EXPORT_SYMBOL(generic_file_direct_write); 2143 2144 /* 2145 * Find or create a page at the given pagecache position. Return the locked 2146 * page. This function is specifically for buffered writes. 2147 */ 2148 struct page *grab_cache_page_write_begin(struct address_space *mapping, 2149 pgoff_t index, unsigned flags) 2150 { 2151 int status; 2152 struct page *page; 2153 gfp_t gfp_notmask = 0; 2154 if (flags & AOP_FLAG_NOFS) 2155 gfp_notmask = __GFP_FS; 2156 repeat: 2157 page = find_lock_page(mapping, index); 2158 if (likely(page)) 2159 return page; 2160 2161 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask); 2162 if (!page) 2163 return NULL; 2164 status = add_to_page_cache_lru(page, mapping, index, 2165 GFP_KERNEL & ~gfp_notmask); 2166 if (unlikely(status)) { 2167 page_cache_release(page); 2168 if (status == -EEXIST) 2169 goto repeat; 2170 return NULL; 2171 } 2172 return page; 2173 } 2174 EXPORT_SYMBOL(grab_cache_page_write_begin); 2175 2176 static ssize_t generic_perform_write(struct file *file, 2177 struct iov_iter *i, loff_t pos) 2178 { 2179 struct address_space *mapping = file->f_mapping; 2180 const struct address_space_operations *a_ops = mapping->a_ops; 2181 long status = 0; 2182 ssize_t written = 0; 2183 unsigned int flags = 0; 2184 2185 /* 2186 * Copies from kernel address space cannot fail (NFSD is a big user). 2187 */ 2188 if (segment_eq(get_fs(), KERNEL_DS)) 2189 flags |= AOP_FLAG_UNINTERRUPTIBLE; 2190 2191 do { 2192 struct page *page; 2193 pgoff_t index; /* Pagecache index for current page */ 2194 unsigned long offset; /* Offset into pagecache page */ 2195 unsigned long bytes; /* Bytes to write to page */ 2196 size_t copied; /* Bytes copied from user */ 2197 void *fsdata; 2198 2199 offset = (pos & (PAGE_CACHE_SIZE - 1)); 2200 index = pos >> PAGE_CACHE_SHIFT; 2201 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset, 2202 iov_iter_count(i)); 2203 2204 again: 2205 2206 /* 2207 * Bring in the user page that we will copy from _first_. 2208 * Otherwise there's a nasty deadlock on copying from the 2209 * same page as we're writing to, without it being marked 2210 * up-to-date. 2211 * 2212 * Not only is this an optimisation, but it is also required 2213 * to check that the address is actually valid, when atomic 2214 * usercopies are used, below. 2215 */ 2216 if (unlikely(iov_iter_fault_in_readable(i, bytes))) { 2217 status = -EFAULT; 2218 break; 2219 } 2220 2221 status = a_ops->write_begin(file, mapping, pos, bytes, flags, 2222 &page, &fsdata); 2223 if (unlikely(status)) 2224 break; 2225 2226 pagefault_disable(); 2227 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); 2228 pagefault_enable(); 2229 flush_dcache_page(page); 2230 2231 status = a_ops->write_end(file, mapping, pos, bytes, copied, 2232 page, fsdata); 2233 if (unlikely(status < 0)) 2234 break; 2235 copied = status; 2236 2237 cond_resched(); 2238 2239 iov_iter_advance(i, copied); 2240 if (unlikely(copied == 0)) { 2241 /* 2242 * If we were unable to copy any data at all, we must 2243 * fall back to a single segment length write. 2244 * 2245 * If we didn't fallback here, we could livelock 2246 * because not all segments in the iov can be copied at 2247 * once without a pagefault. 2248 */ 2249 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset, 2250 iov_iter_single_seg_count(i)); 2251 goto again; 2252 } 2253 pos += copied; 2254 written += copied; 2255 2256 balance_dirty_pages_ratelimited(mapping); 2257 2258 } while (iov_iter_count(i)); 2259 2260 return written ? written : status; 2261 } 2262 2263 ssize_t 2264 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov, 2265 unsigned long nr_segs, loff_t pos, loff_t *ppos, 2266 size_t count, ssize_t written) 2267 { 2268 struct file *file = iocb->ki_filp; 2269 struct address_space *mapping = file->f_mapping; 2270 const struct address_space_operations *a_ops = mapping->a_ops; 2271 struct inode *inode = mapping->host; 2272 ssize_t status; 2273 struct iov_iter i; 2274 2275 iov_iter_init(&i, iov, nr_segs, count, written); 2276 status = generic_perform_write(file, &i, pos); 2277 2278 if (likely(status >= 0)) { 2279 written += status; 2280 *ppos = pos + status; 2281 2282 /* 2283 * For now, when the user asks for O_SYNC, we'll actually give 2284 * O_DSYNC 2285 */ 2286 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 2287 if (!a_ops->writepage || !is_sync_kiocb(iocb)) 2288 status = generic_osync_inode(inode, mapping, 2289 OSYNC_METADATA|OSYNC_DATA); 2290 } 2291 } 2292 2293 /* 2294 * If we get here for O_DIRECT writes then we must have fallen through 2295 * to buffered writes (block instantiation inside i_size). So we sync 2296 * the file data here, to try to honour O_DIRECT expectations. 2297 */ 2298 if (unlikely(file->f_flags & O_DIRECT) && written) 2299 status = filemap_write_and_wait_range(mapping, 2300 pos, pos + written - 1); 2301 2302 return written ? written : status; 2303 } 2304 EXPORT_SYMBOL(generic_file_buffered_write); 2305 2306 static ssize_t 2307 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov, 2308 unsigned long nr_segs, loff_t *ppos) 2309 { 2310 struct file *file = iocb->ki_filp; 2311 struct address_space * mapping = file->f_mapping; 2312 size_t ocount; /* original count */ 2313 size_t count; /* after file limit checks */ 2314 struct inode *inode = mapping->host; 2315 loff_t pos; 2316 ssize_t written; 2317 ssize_t err; 2318 2319 ocount = 0; 2320 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ); 2321 if (err) 2322 return err; 2323 2324 count = ocount; 2325 pos = *ppos; 2326 2327 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE); 2328 2329 /* We can write back this queue in page reclaim */ 2330 current->backing_dev_info = mapping->backing_dev_info; 2331 written = 0; 2332 2333 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode)); 2334 if (err) 2335 goto out; 2336 2337 if (count == 0) 2338 goto out; 2339 2340 err = file_remove_suid(file); 2341 if (err) 2342 goto out; 2343 2344 file_update_time(file); 2345 2346 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ 2347 if (unlikely(file->f_flags & O_DIRECT)) { 2348 loff_t endbyte; 2349 ssize_t written_buffered; 2350 2351 written = generic_file_direct_write(iocb, iov, &nr_segs, pos, 2352 ppos, count, ocount); 2353 if (written < 0 || written == count) 2354 goto out; 2355 /* 2356 * direct-io write to a hole: fall through to buffered I/O 2357 * for completing the rest of the request. 2358 */ 2359 pos += written; 2360 count -= written; 2361 written_buffered = generic_file_buffered_write(iocb, iov, 2362 nr_segs, pos, ppos, count, 2363 written); 2364 /* 2365 * If generic_file_buffered_write() retuned a synchronous error 2366 * then we want to return the number of bytes which were 2367 * direct-written, or the error code if that was zero. Note 2368 * that this differs from normal direct-io semantics, which 2369 * will return -EFOO even if some bytes were written. 2370 */ 2371 if (written_buffered < 0) { 2372 err = written_buffered; 2373 goto out; 2374 } 2375 2376 /* 2377 * We need to ensure that the page cache pages are written to 2378 * disk and invalidated to preserve the expected O_DIRECT 2379 * semantics. 2380 */ 2381 endbyte = pos + written_buffered - written - 1; 2382 err = do_sync_mapping_range(file->f_mapping, pos, endbyte, 2383 SYNC_FILE_RANGE_WAIT_BEFORE| 2384 SYNC_FILE_RANGE_WRITE| 2385 SYNC_FILE_RANGE_WAIT_AFTER); 2386 if (err == 0) { 2387 written = written_buffered; 2388 invalidate_mapping_pages(mapping, 2389 pos >> PAGE_CACHE_SHIFT, 2390 endbyte >> PAGE_CACHE_SHIFT); 2391 } else { 2392 /* 2393 * We don't know how much we wrote, so just return 2394 * the number of bytes which were direct-written 2395 */ 2396 } 2397 } else { 2398 written = generic_file_buffered_write(iocb, iov, nr_segs, 2399 pos, ppos, count, written); 2400 } 2401 out: 2402 current->backing_dev_info = NULL; 2403 return written ? written : err; 2404 } 2405 2406 ssize_t generic_file_aio_write_nolock(struct kiocb *iocb, 2407 const struct iovec *iov, unsigned long nr_segs, loff_t pos) 2408 { 2409 struct file *file = iocb->ki_filp; 2410 struct address_space *mapping = file->f_mapping; 2411 struct inode *inode = mapping->host; 2412 ssize_t ret; 2413 2414 BUG_ON(iocb->ki_pos != pos); 2415 2416 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs, 2417 &iocb->ki_pos); 2418 2419 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 2420 ssize_t err; 2421 2422 err = sync_page_range_nolock(inode, mapping, pos, ret); 2423 if (err < 0) 2424 ret = err; 2425 } 2426 return ret; 2427 } 2428 EXPORT_SYMBOL(generic_file_aio_write_nolock); 2429 2430 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov, 2431 unsigned long nr_segs, loff_t pos) 2432 { 2433 struct file *file = iocb->ki_filp; 2434 struct address_space *mapping = file->f_mapping; 2435 struct inode *inode = mapping->host; 2436 ssize_t ret; 2437 2438 BUG_ON(iocb->ki_pos != pos); 2439 2440 mutex_lock(&inode->i_mutex); 2441 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs, 2442 &iocb->ki_pos); 2443 mutex_unlock(&inode->i_mutex); 2444 2445 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 2446 ssize_t err; 2447 2448 err = sync_page_range(inode, mapping, pos, ret); 2449 if (err < 0) 2450 ret = err; 2451 } 2452 return ret; 2453 } 2454 EXPORT_SYMBOL(generic_file_aio_write); 2455 2456 /** 2457 * try_to_release_page() - release old fs-specific metadata on a page 2458 * 2459 * @page: the page which the kernel is trying to free 2460 * @gfp_mask: memory allocation flags (and I/O mode) 2461 * 2462 * The address_space is to try to release any data against the page 2463 * (presumably at page->private). If the release was successful, return `1'. 2464 * Otherwise return zero. 2465 * 2466 * The @gfp_mask argument specifies whether I/O may be performed to release 2467 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS). 2468 * 2469 */ 2470 int try_to_release_page(struct page *page, gfp_t gfp_mask) 2471 { 2472 struct address_space * const mapping = page->mapping; 2473 2474 BUG_ON(!PageLocked(page)); 2475 if (PageWriteback(page)) 2476 return 0; 2477 2478 if (mapping && mapping->a_ops->releasepage) 2479 return mapping->a_ops->releasepage(page, gfp_mask); 2480 return try_to_free_buffers(page); 2481 } 2482 2483 EXPORT_SYMBOL(try_to_release_page); 2484