xref: /openbmc/linux/mm/filemap.c (revision b627b4ed)
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/compiler.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include <linux/mm_inline.h> /* for page_is_file_cache() */
37 #include "internal.h"
38 
39 /*
40  * FIXME: remove all knowledge of the buffer layer from the core VM
41  */
42 #include <linux/buffer_head.h> /* for generic_osync_inode */
43 
44 #include <asm/mman.h>
45 
46 
47 /*
48  * Shared mappings implemented 30.11.1994. It's not fully working yet,
49  * though.
50  *
51  * Shared mappings now work. 15.8.1995  Bruno.
52  *
53  * finished 'unifying' the page and buffer cache and SMP-threaded the
54  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
55  *
56  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
57  */
58 
59 /*
60  * Lock ordering:
61  *
62  *  ->i_mmap_lock		(vmtruncate)
63  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
64  *      ->swap_lock		(exclusive_swap_page, others)
65  *        ->mapping->tree_lock
66  *
67  *  ->i_mutex
68  *    ->i_mmap_lock		(truncate->unmap_mapping_range)
69  *
70  *  ->mmap_sem
71  *    ->i_mmap_lock
72  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
73  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
74  *
75  *  ->mmap_sem
76  *    ->lock_page		(access_process_vm)
77  *
78  *  ->i_mutex			(generic_file_buffered_write)
79  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
80  *
81  *  ->i_mutex
82  *    ->i_alloc_sem             (various)
83  *
84  *  ->inode_lock
85  *    ->sb_lock			(fs/fs-writeback.c)
86  *    ->mapping->tree_lock	(__sync_single_inode)
87  *
88  *  ->i_mmap_lock
89  *    ->anon_vma.lock		(vma_adjust)
90  *
91  *  ->anon_vma.lock
92  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
93  *
94  *  ->page_table_lock or pte_lock
95  *    ->swap_lock		(try_to_unmap_one)
96  *    ->private_lock		(try_to_unmap_one)
97  *    ->tree_lock		(try_to_unmap_one)
98  *    ->zone.lru_lock		(follow_page->mark_page_accessed)
99  *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
100  *    ->private_lock		(page_remove_rmap->set_page_dirty)
101  *    ->tree_lock		(page_remove_rmap->set_page_dirty)
102  *    ->inode_lock		(page_remove_rmap->set_page_dirty)
103  *    ->inode_lock		(zap_pte_range->set_page_dirty)
104  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
105  *
106  *  ->task->proc_lock
107  *    ->dcache_lock		(proc_pid_lookup)
108  */
109 
110 /*
111  * Remove a page from the page cache and free it. Caller has to make
112  * sure the page is locked and that nobody else uses it - or that usage
113  * is safe.  The caller must hold the mapping's tree_lock.
114  */
115 void __remove_from_page_cache(struct page *page)
116 {
117 	struct address_space *mapping = page->mapping;
118 
119 	radix_tree_delete(&mapping->page_tree, page->index);
120 	page->mapping = NULL;
121 	mapping->nrpages--;
122 	__dec_zone_page_state(page, NR_FILE_PAGES);
123 	BUG_ON(page_mapped(page));
124 	mem_cgroup_uncharge_cache_page(page);
125 
126 	/*
127 	 * Some filesystems seem to re-dirty the page even after
128 	 * the VM has canceled the dirty bit (eg ext3 journaling).
129 	 *
130 	 * Fix it up by doing a final dirty accounting check after
131 	 * having removed the page entirely.
132 	 */
133 	if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
134 		dec_zone_page_state(page, NR_FILE_DIRTY);
135 		dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
136 	}
137 }
138 
139 void remove_from_page_cache(struct page *page)
140 {
141 	struct address_space *mapping = page->mapping;
142 
143 	BUG_ON(!PageLocked(page));
144 
145 	spin_lock_irq(&mapping->tree_lock);
146 	__remove_from_page_cache(page);
147 	spin_unlock_irq(&mapping->tree_lock);
148 }
149 
150 static int sync_page(void *word)
151 {
152 	struct address_space *mapping;
153 	struct page *page;
154 
155 	page = container_of((unsigned long *)word, struct page, flags);
156 
157 	/*
158 	 * page_mapping() is being called without PG_locked held.
159 	 * Some knowledge of the state and use of the page is used to
160 	 * reduce the requirements down to a memory barrier.
161 	 * The danger here is of a stale page_mapping() return value
162 	 * indicating a struct address_space different from the one it's
163 	 * associated with when it is associated with one.
164 	 * After smp_mb(), it's either the correct page_mapping() for
165 	 * the page, or an old page_mapping() and the page's own
166 	 * page_mapping() has gone NULL.
167 	 * The ->sync_page() address_space operation must tolerate
168 	 * page_mapping() going NULL. By an amazing coincidence,
169 	 * this comes about because none of the users of the page
170 	 * in the ->sync_page() methods make essential use of the
171 	 * page_mapping(), merely passing the page down to the backing
172 	 * device's unplug functions when it's non-NULL, which in turn
173 	 * ignore it for all cases but swap, where only page_private(page) is
174 	 * of interest. When page_mapping() does go NULL, the entire
175 	 * call stack gracefully ignores the page and returns.
176 	 * -- wli
177 	 */
178 	smp_mb();
179 	mapping = page_mapping(page);
180 	if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
181 		mapping->a_ops->sync_page(page);
182 	io_schedule();
183 	return 0;
184 }
185 
186 static int sync_page_killable(void *word)
187 {
188 	sync_page(word);
189 	return fatal_signal_pending(current) ? -EINTR : 0;
190 }
191 
192 /**
193  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
194  * @mapping:	address space structure to write
195  * @start:	offset in bytes where the range starts
196  * @end:	offset in bytes where the range ends (inclusive)
197  * @sync_mode:	enable synchronous operation
198  *
199  * Start writeback against all of a mapping's dirty pages that lie
200  * within the byte offsets <start, end> inclusive.
201  *
202  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
203  * opposed to a regular memory cleansing writeback.  The difference between
204  * these two operations is that if a dirty page/buffer is encountered, it must
205  * be waited upon, and not just skipped over.
206  */
207 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
208 				loff_t end, int sync_mode)
209 {
210 	int ret;
211 	struct writeback_control wbc = {
212 		.sync_mode = sync_mode,
213 		.nr_to_write = LONG_MAX,
214 		.range_start = start,
215 		.range_end = end,
216 	};
217 
218 	if (!mapping_cap_writeback_dirty(mapping))
219 		return 0;
220 
221 	ret = do_writepages(mapping, &wbc);
222 	return ret;
223 }
224 
225 static inline int __filemap_fdatawrite(struct address_space *mapping,
226 	int sync_mode)
227 {
228 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
229 }
230 
231 int filemap_fdatawrite(struct address_space *mapping)
232 {
233 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
234 }
235 EXPORT_SYMBOL(filemap_fdatawrite);
236 
237 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
238 				loff_t end)
239 {
240 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
241 }
242 EXPORT_SYMBOL(filemap_fdatawrite_range);
243 
244 /**
245  * filemap_flush - mostly a non-blocking flush
246  * @mapping:	target address_space
247  *
248  * This is a mostly non-blocking flush.  Not suitable for data-integrity
249  * purposes - I/O may not be started against all dirty pages.
250  */
251 int filemap_flush(struct address_space *mapping)
252 {
253 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
254 }
255 EXPORT_SYMBOL(filemap_flush);
256 
257 /**
258  * wait_on_page_writeback_range - wait for writeback to complete
259  * @mapping:	target address_space
260  * @start:	beginning page index
261  * @end:	ending page index
262  *
263  * Wait for writeback to complete against pages indexed by start->end
264  * inclusive
265  */
266 int wait_on_page_writeback_range(struct address_space *mapping,
267 				pgoff_t start, pgoff_t end)
268 {
269 	struct pagevec pvec;
270 	int nr_pages;
271 	int ret = 0;
272 	pgoff_t index;
273 
274 	if (end < start)
275 		return 0;
276 
277 	pagevec_init(&pvec, 0);
278 	index = start;
279 	while ((index <= end) &&
280 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
281 			PAGECACHE_TAG_WRITEBACK,
282 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
283 		unsigned i;
284 
285 		for (i = 0; i < nr_pages; i++) {
286 			struct page *page = pvec.pages[i];
287 
288 			/* until radix tree lookup accepts end_index */
289 			if (page->index > end)
290 				continue;
291 
292 			wait_on_page_writeback(page);
293 			if (PageError(page))
294 				ret = -EIO;
295 		}
296 		pagevec_release(&pvec);
297 		cond_resched();
298 	}
299 
300 	/* Check for outstanding write errors */
301 	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
302 		ret = -ENOSPC;
303 	if (test_and_clear_bit(AS_EIO, &mapping->flags))
304 		ret = -EIO;
305 
306 	return ret;
307 }
308 
309 /**
310  * sync_page_range - write and wait on all pages in the passed range
311  * @inode:	target inode
312  * @mapping:	target address_space
313  * @pos:	beginning offset in pages to write
314  * @count:	number of bytes to write
315  *
316  * Write and wait upon all the pages in the passed range.  This is a "data
317  * integrity" operation.  It waits upon in-flight writeout before starting and
318  * waiting upon new writeout.  If there was an IO error, return it.
319  *
320  * We need to re-take i_mutex during the generic_osync_inode list walk because
321  * it is otherwise livelockable.
322  */
323 int sync_page_range(struct inode *inode, struct address_space *mapping,
324 			loff_t pos, loff_t count)
325 {
326 	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
327 	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
328 	int ret;
329 
330 	if (!mapping_cap_writeback_dirty(mapping) || !count)
331 		return 0;
332 	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
333 	if (ret == 0) {
334 		mutex_lock(&inode->i_mutex);
335 		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
336 		mutex_unlock(&inode->i_mutex);
337 	}
338 	if (ret == 0)
339 		ret = wait_on_page_writeback_range(mapping, start, end);
340 	return ret;
341 }
342 EXPORT_SYMBOL(sync_page_range);
343 
344 /**
345  * sync_page_range_nolock - write & wait on all pages in the passed range without locking
346  * @inode:	target inode
347  * @mapping:	target address_space
348  * @pos:	beginning offset in pages to write
349  * @count:	number of bytes to write
350  *
351  * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
352  * as it forces O_SYNC writers to different parts of the same file
353  * to be serialised right until io completion.
354  */
355 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
356 			   loff_t pos, loff_t count)
357 {
358 	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
359 	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
360 	int ret;
361 
362 	if (!mapping_cap_writeback_dirty(mapping) || !count)
363 		return 0;
364 	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
365 	if (ret == 0)
366 		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
367 	if (ret == 0)
368 		ret = wait_on_page_writeback_range(mapping, start, end);
369 	return ret;
370 }
371 EXPORT_SYMBOL(sync_page_range_nolock);
372 
373 /**
374  * filemap_fdatawait - wait for all under-writeback pages to complete
375  * @mapping: address space structure to wait for
376  *
377  * Walk the list of under-writeback pages of the given address space
378  * and wait for all of them.
379  */
380 int filemap_fdatawait(struct address_space *mapping)
381 {
382 	loff_t i_size = i_size_read(mapping->host);
383 
384 	if (i_size == 0)
385 		return 0;
386 
387 	return wait_on_page_writeback_range(mapping, 0,
388 				(i_size - 1) >> PAGE_CACHE_SHIFT);
389 }
390 EXPORT_SYMBOL(filemap_fdatawait);
391 
392 int filemap_write_and_wait(struct address_space *mapping)
393 {
394 	int err = 0;
395 
396 	if (mapping->nrpages) {
397 		err = filemap_fdatawrite(mapping);
398 		/*
399 		 * Even if the above returned error, the pages may be
400 		 * written partially (e.g. -ENOSPC), so we wait for it.
401 		 * But the -EIO is special case, it may indicate the worst
402 		 * thing (e.g. bug) happened, so we avoid waiting for it.
403 		 */
404 		if (err != -EIO) {
405 			int err2 = filemap_fdatawait(mapping);
406 			if (!err)
407 				err = err2;
408 		}
409 	}
410 	return err;
411 }
412 EXPORT_SYMBOL(filemap_write_and_wait);
413 
414 /**
415  * filemap_write_and_wait_range - write out & wait on a file range
416  * @mapping:	the address_space for the pages
417  * @lstart:	offset in bytes where the range starts
418  * @lend:	offset in bytes where the range ends (inclusive)
419  *
420  * Write out and wait upon file offsets lstart->lend, inclusive.
421  *
422  * Note that `lend' is inclusive (describes the last byte to be written) so
423  * that this function can be used to write to the very end-of-file (end = -1).
424  */
425 int filemap_write_and_wait_range(struct address_space *mapping,
426 				 loff_t lstart, loff_t lend)
427 {
428 	int err = 0;
429 
430 	if (mapping->nrpages) {
431 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
432 						 WB_SYNC_ALL);
433 		/* See comment of filemap_write_and_wait() */
434 		if (err != -EIO) {
435 			int err2 = wait_on_page_writeback_range(mapping,
436 						lstart >> PAGE_CACHE_SHIFT,
437 						lend >> PAGE_CACHE_SHIFT);
438 			if (!err)
439 				err = err2;
440 		}
441 	}
442 	return err;
443 }
444 
445 /**
446  * add_to_page_cache_locked - add a locked page to the pagecache
447  * @page:	page to add
448  * @mapping:	the page's address_space
449  * @offset:	page index
450  * @gfp_mask:	page allocation mode
451  *
452  * This function is used to add a page to the pagecache. It must be locked.
453  * This function does not add the page to the LRU.  The caller must do that.
454  */
455 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
456 		pgoff_t offset, gfp_t gfp_mask)
457 {
458 	int error;
459 
460 	VM_BUG_ON(!PageLocked(page));
461 
462 	error = mem_cgroup_cache_charge(page, current->mm,
463 					gfp_mask & GFP_RECLAIM_MASK);
464 	if (error)
465 		goto out;
466 
467 	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
468 	if (error == 0) {
469 		page_cache_get(page);
470 		page->mapping = mapping;
471 		page->index = offset;
472 
473 		spin_lock_irq(&mapping->tree_lock);
474 		error = radix_tree_insert(&mapping->page_tree, offset, page);
475 		if (likely(!error)) {
476 			mapping->nrpages++;
477 			__inc_zone_page_state(page, NR_FILE_PAGES);
478 		} else {
479 			page->mapping = NULL;
480 			mem_cgroup_uncharge_cache_page(page);
481 			page_cache_release(page);
482 		}
483 
484 		spin_unlock_irq(&mapping->tree_lock);
485 		radix_tree_preload_end();
486 	} else
487 		mem_cgroup_uncharge_cache_page(page);
488 out:
489 	return error;
490 }
491 EXPORT_SYMBOL(add_to_page_cache_locked);
492 
493 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
494 				pgoff_t offset, gfp_t gfp_mask)
495 {
496 	int ret;
497 
498 	/*
499 	 * Splice_read and readahead add shmem/tmpfs pages into the page cache
500 	 * before shmem_readpage has a chance to mark them as SwapBacked: they
501 	 * need to go on the active_anon lru below, and mem_cgroup_cache_charge
502 	 * (called in add_to_page_cache) needs to know where they're going too.
503 	 */
504 	if (mapping_cap_swap_backed(mapping))
505 		SetPageSwapBacked(page);
506 
507 	ret = add_to_page_cache(page, mapping, offset, gfp_mask);
508 	if (ret == 0) {
509 		if (page_is_file_cache(page))
510 			lru_cache_add_file(page);
511 		else
512 			lru_cache_add_active_anon(page);
513 	}
514 	return ret;
515 }
516 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
517 
518 #ifdef CONFIG_NUMA
519 struct page *__page_cache_alloc(gfp_t gfp)
520 {
521 	if (cpuset_do_page_mem_spread()) {
522 		int n = cpuset_mem_spread_node();
523 		return alloc_pages_node(n, gfp, 0);
524 	}
525 	return alloc_pages(gfp, 0);
526 }
527 EXPORT_SYMBOL(__page_cache_alloc);
528 #endif
529 
530 static int __sleep_on_page_lock(void *word)
531 {
532 	io_schedule();
533 	return 0;
534 }
535 
536 /*
537  * In order to wait for pages to become available there must be
538  * waitqueues associated with pages. By using a hash table of
539  * waitqueues where the bucket discipline is to maintain all
540  * waiters on the same queue and wake all when any of the pages
541  * become available, and for the woken contexts to check to be
542  * sure the appropriate page became available, this saves space
543  * at a cost of "thundering herd" phenomena during rare hash
544  * collisions.
545  */
546 static wait_queue_head_t *page_waitqueue(struct page *page)
547 {
548 	const struct zone *zone = page_zone(page);
549 
550 	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
551 }
552 
553 static inline void wake_up_page(struct page *page, int bit)
554 {
555 	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
556 }
557 
558 void wait_on_page_bit(struct page *page, int bit_nr)
559 {
560 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
561 
562 	if (test_bit(bit_nr, &page->flags))
563 		__wait_on_bit(page_waitqueue(page), &wait, sync_page,
564 							TASK_UNINTERRUPTIBLE);
565 }
566 EXPORT_SYMBOL(wait_on_page_bit);
567 
568 /**
569  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
570  * @page: Page defining the wait queue of interest
571  * @waiter: Waiter to add to the queue
572  *
573  * Add an arbitrary @waiter to the wait queue for the nominated @page.
574  */
575 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
576 {
577 	wait_queue_head_t *q = page_waitqueue(page);
578 	unsigned long flags;
579 
580 	spin_lock_irqsave(&q->lock, flags);
581 	__add_wait_queue(q, waiter);
582 	spin_unlock_irqrestore(&q->lock, flags);
583 }
584 EXPORT_SYMBOL_GPL(add_page_wait_queue);
585 
586 /**
587  * unlock_page - unlock a locked page
588  * @page: the page
589  *
590  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
591  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
592  * mechananism between PageLocked pages and PageWriteback pages is shared.
593  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
594  *
595  * The mb is necessary to enforce ordering between the clear_bit and the read
596  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
597  */
598 void unlock_page(struct page *page)
599 {
600 	VM_BUG_ON(!PageLocked(page));
601 	clear_bit_unlock(PG_locked, &page->flags);
602 	smp_mb__after_clear_bit();
603 	wake_up_page(page, PG_locked);
604 }
605 EXPORT_SYMBOL(unlock_page);
606 
607 /**
608  * end_page_writeback - end writeback against a page
609  * @page: the page
610  */
611 void end_page_writeback(struct page *page)
612 {
613 	if (TestClearPageReclaim(page))
614 		rotate_reclaimable_page(page);
615 
616 	if (!test_clear_page_writeback(page))
617 		BUG();
618 
619 	smp_mb__after_clear_bit();
620 	wake_up_page(page, PG_writeback);
621 }
622 EXPORT_SYMBOL(end_page_writeback);
623 
624 /**
625  * __lock_page - get a lock on the page, assuming we need to sleep to get it
626  * @page: the page to lock
627  *
628  * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary.  If some
629  * random driver's requestfn sets TASK_RUNNING, we could busywait.  However
630  * chances are that on the second loop, the block layer's plug list is empty,
631  * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
632  */
633 void __lock_page(struct page *page)
634 {
635 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
636 
637 	__wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
638 							TASK_UNINTERRUPTIBLE);
639 }
640 EXPORT_SYMBOL(__lock_page);
641 
642 int __lock_page_killable(struct page *page)
643 {
644 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
645 
646 	return __wait_on_bit_lock(page_waitqueue(page), &wait,
647 					sync_page_killable, TASK_KILLABLE);
648 }
649 EXPORT_SYMBOL_GPL(__lock_page_killable);
650 
651 /**
652  * __lock_page_nosync - get a lock on the page, without calling sync_page()
653  * @page: the page to lock
654  *
655  * Variant of lock_page that does not require the caller to hold a reference
656  * on the page's mapping.
657  */
658 void __lock_page_nosync(struct page *page)
659 {
660 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
661 	__wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
662 							TASK_UNINTERRUPTIBLE);
663 }
664 
665 /**
666  * find_get_page - find and get a page reference
667  * @mapping: the address_space to search
668  * @offset: the page index
669  *
670  * Is there a pagecache struct page at the given (mapping, offset) tuple?
671  * If yes, increment its refcount and return it; if no, return NULL.
672  */
673 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
674 {
675 	void **pagep;
676 	struct page *page;
677 
678 	rcu_read_lock();
679 repeat:
680 	page = NULL;
681 	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
682 	if (pagep) {
683 		page = radix_tree_deref_slot(pagep);
684 		if (unlikely(!page || page == RADIX_TREE_RETRY))
685 			goto repeat;
686 
687 		if (!page_cache_get_speculative(page))
688 			goto repeat;
689 
690 		/*
691 		 * Has the page moved?
692 		 * This is part of the lockless pagecache protocol. See
693 		 * include/linux/pagemap.h for details.
694 		 */
695 		if (unlikely(page != *pagep)) {
696 			page_cache_release(page);
697 			goto repeat;
698 		}
699 	}
700 	rcu_read_unlock();
701 
702 	return page;
703 }
704 EXPORT_SYMBOL(find_get_page);
705 
706 /**
707  * find_lock_page - locate, pin and lock a pagecache page
708  * @mapping: the address_space to search
709  * @offset: the page index
710  *
711  * Locates the desired pagecache page, locks it, increments its reference
712  * count and returns its address.
713  *
714  * Returns zero if the page was not present. find_lock_page() may sleep.
715  */
716 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
717 {
718 	struct page *page;
719 
720 repeat:
721 	page = find_get_page(mapping, offset);
722 	if (page) {
723 		lock_page(page);
724 		/* Has the page been truncated? */
725 		if (unlikely(page->mapping != mapping)) {
726 			unlock_page(page);
727 			page_cache_release(page);
728 			goto repeat;
729 		}
730 		VM_BUG_ON(page->index != offset);
731 	}
732 	return page;
733 }
734 EXPORT_SYMBOL(find_lock_page);
735 
736 /**
737  * find_or_create_page - locate or add a pagecache page
738  * @mapping: the page's address_space
739  * @index: the page's index into the mapping
740  * @gfp_mask: page allocation mode
741  *
742  * Locates a page in the pagecache.  If the page is not present, a new page
743  * is allocated using @gfp_mask and is added to the pagecache and to the VM's
744  * LRU list.  The returned page is locked and has its reference count
745  * incremented.
746  *
747  * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
748  * allocation!
749  *
750  * find_or_create_page() returns the desired page's address, or zero on
751  * memory exhaustion.
752  */
753 struct page *find_or_create_page(struct address_space *mapping,
754 		pgoff_t index, gfp_t gfp_mask)
755 {
756 	struct page *page;
757 	int err;
758 repeat:
759 	page = find_lock_page(mapping, index);
760 	if (!page) {
761 		page = __page_cache_alloc(gfp_mask);
762 		if (!page)
763 			return NULL;
764 		/*
765 		 * We want a regular kernel memory (not highmem or DMA etc)
766 		 * allocation for the radix tree nodes, but we need to honour
767 		 * the context-specific requirements the caller has asked for.
768 		 * GFP_RECLAIM_MASK collects those requirements.
769 		 */
770 		err = add_to_page_cache_lru(page, mapping, index,
771 			(gfp_mask & GFP_RECLAIM_MASK));
772 		if (unlikely(err)) {
773 			page_cache_release(page);
774 			page = NULL;
775 			if (err == -EEXIST)
776 				goto repeat;
777 		}
778 	}
779 	return page;
780 }
781 EXPORT_SYMBOL(find_or_create_page);
782 
783 /**
784  * find_get_pages - gang pagecache lookup
785  * @mapping:	The address_space to search
786  * @start:	The starting page index
787  * @nr_pages:	The maximum number of pages
788  * @pages:	Where the resulting pages are placed
789  *
790  * find_get_pages() will search for and return a group of up to
791  * @nr_pages pages in the mapping.  The pages are placed at @pages.
792  * find_get_pages() takes a reference against the returned pages.
793  *
794  * The search returns a group of mapping-contiguous pages with ascending
795  * indexes.  There may be holes in the indices due to not-present pages.
796  *
797  * find_get_pages() returns the number of pages which were found.
798  */
799 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
800 			    unsigned int nr_pages, struct page **pages)
801 {
802 	unsigned int i;
803 	unsigned int ret;
804 	unsigned int nr_found;
805 
806 	rcu_read_lock();
807 restart:
808 	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
809 				(void ***)pages, start, nr_pages);
810 	ret = 0;
811 	for (i = 0; i < nr_found; i++) {
812 		struct page *page;
813 repeat:
814 		page = radix_tree_deref_slot((void **)pages[i]);
815 		if (unlikely(!page))
816 			continue;
817 		/*
818 		 * this can only trigger if nr_found == 1, making livelock
819 		 * a non issue.
820 		 */
821 		if (unlikely(page == RADIX_TREE_RETRY))
822 			goto restart;
823 
824 		if (!page_cache_get_speculative(page))
825 			goto repeat;
826 
827 		/* Has the page moved? */
828 		if (unlikely(page != *((void **)pages[i]))) {
829 			page_cache_release(page);
830 			goto repeat;
831 		}
832 
833 		pages[ret] = page;
834 		ret++;
835 	}
836 	rcu_read_unlock();
837 	return ret;
838 }
839 
840 /**
841  * find_get_pages_contig - gang contiguous pagecache lookup
842  * @mapping:	The address_space to search
843  * @index:	The starting page index
844  * @nr_pages:	The maximum number of pages
845  * @pages:	Where the resulting pages are placed
846  *
847  * find_get_pages_contig() works exactly like find_get_pages(), except
848  * that the returned number of pages are guaranteed to be contiguous.
849  *
850  * find_get_pages_contig() returns the number of pages which were found.
851  */
852 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
853 			       unsigned int nr_pages, struct page **pages)
854 {
855 	unsigned int i;
856 	unsigned int ret;
857 	unsigned int nr_found;
858 
859 	rcu_read_lock();
860 restart:
861 	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
862 				(void ***)pages, index, nr_pages);
863 	ret = 0;
864 	for (i = 0; i < nr_found; i++) {
865 		struct page *page;
866 repeat:
867 		page = radix_tree_deref_slot((void **)pages[i]);
868 		if (unlikely(!page))
869 			continue;
870 		/*
871 		 * this can only trigger if nr_found == 1, making livelock
872 		 * a non issue.
873 		 */
874 		if (unlikely(page == RADIX_TREE_RETRY))
875 			goto restart;
876 
877 		if (page->mapping == NULL || page->index != index)
878 			break;
879 
880 		if (!page_cache_get_speculative(page))
881 			goto repeat;
882 
883 		/* Has the page moved? */
884 		if (unlikely(page != *((void **)pages[i]))) {
885 			page_cache_release(page);
886 			goto repeat;
887 		}
888 
889 		pages[ret] = page;
890 		ret++;
891 		index++;
892 	}
893 	rcu_read_unlock();
894 	return ret;
895 }
896 EXPORT_SYMBOL(find_get_pages_contig);
897 
898 /**
899  * find_get_pages_tag - find and return pages that match @tag
900  * @mapping:	the address_space to search
901  * @index:	the starting page index
902  * @tag:	the tag index
903  * @nr_pages:	the maximum number of pages
904  * @pages:	where the resulting pages are placed
905  *
906  * Like find_get_pages, except we only return pages which are tagged with
907  * @tag.   We update @index to index the next page for the traversal.
908  */
909 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
910 			int tag, unsigned int nr_pages, struct page **pages)
911 {
912 	unsigned int i;
913 	unsigned int ret;
914 	unsigned int nr_found;
915 
916 	rcu_read_lock();
917 restart:
918 	nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
919 				(void ***)pages, *index, nr_pages, tag);
920 	ret = 0;
921 	for (i = 0; i < nr_found; i++) {
922 		struct page *page;
923 repeat:
924 		page = radix_tree_deref_slot((void **)pages[i]);
925 		if (unlikely(!page))
926 			continue;
927 		/*
928 		 * this can only trigger if nr_found == 1, making livelock
929 		 * a non issue.
930 		 */
931 		if (unlikely(page == RADIX_TREE_RETRY))
932 			goto restart;
933 
934 		if (!page_cache_get_speculative(page))
935 			goto repeat;
936 
937 		/* Has the page moved? */
938 		if (unlikely(page != *((void **)pages[i]))) {
939 			page_cache_release(page);
940 			goto repeat;
941 		}
942 
943 		pages[ret] = page;
944 		ret++;
945 	}
946 	rcu_read_unlock();
947 
948 	if (ret)
949 		*index = pages[ret - 1]->index + 1;
950 
951 	return ret;
952 }
953 EXPORT_SYMBOL(find_get_pages_tag);
954 
955 /**
956  * grab_cache_page_nowait - returns locked page at given index in given cache
957  * @mapping: target address_space
958  * @index: the page index
959  *
960  * Same as grab_cache_page(), but do not wait if the page is unavailable.
961  * This is intended for speculative data generators, where the data can
962  * be regenerated if the page couldn't be grabbed.  This routine should
963  * be safe to call while holding the lock for another page.
964  *
965  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
966  * and deadlock against the caller's locked page.
967  */
968 struct page *
969 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
970 {
971 	struct page *page = find_get_page(mapping, index);
972 
973 	if (page) {
974 		if (trylock_page(page))
975 			return page;
976 		page_cache_release(page);
977 		return NULL;
978 	}
979 	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
980 	if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
981 		page_cache_release(page);
982 		page = NULL;
983 	}
984 	return page;
985 }
986 EXPORT_SYMBOL(grab_cache_page_nowait);
987 
988 /*
989  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
990  * a _large_ part of the i/o request. Imagine the worst scenario:
991  *
992  *      ---R__________________________________________B__________
993  *         ^ reading here                             ^ bad block(assume 4k)
994  *
995  * read(R) => miss => readahead(R...B) => media error => frustrating retries
996  * => failing the whole request => read(R) => read(R+1) =>
997  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
998  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
999  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1000  *
1001  * It is going insane. Fix it by quickly scaling down the readahead size.
1002  */
1003 static void shrink_readahead_size_eio(struct file *filp,
1004 					struct file_ra_state *ra)
1005 {
1006 	if (!ra->ra_pages)
1007 		return;
1008 
1009 	ra->ra_pages /= 4;
1010 }
1011 
1012 /**
1013  * do_generic_file_read - generic file read routine
1014  * @filp:	the file to read
1015  * @ppos:	current file position
1016  * @desc:	read_descriptor
1017  * @actor:	read method
1018  *
1019  * This is a generic file read routine, and uses the
1020  * mapping->a_ops->readpage() function for the actual low-level stuff.
1021  *
1022  * This is really ugly. But the goto's actually try to clarify some
1023  * of the logic when it comes to error handling etc.
1024  */
1025 static void do_generic_file_read(struct file *filp, loff_t *ppos,
1026 		read_descriptor_t *desc, read_actor_t actor)
1027 {
1028 	struct address_space *mapping = filp->f_mapping;
1029 	struct inode *inode = mapping->host;
1030 	struct file_ra_state *ra = &filp->f_ra;
1031 	pgoff_t index;
1032 	pgoff_t last_index;
1033 	pgoff_t prev_index;
1034 	unsigned long offset;      /* offset into pagecache page */
1035 	unsigned int prev_offset;
1036 	int error;
1037 
1038 	index = *ppos >> PAGE_CACHE_SHIFT;
1039 	prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1040 	prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1041 	last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1042 	offset = *ppos & ~PAGE_CACHE_MASK;
1043 
1044 	for (;;) {
1045 		struct page *page;
1046 		pgoff_t end_index;
1047 		loff_t isize;
1048 		unsigned long nr, ret;
1049 
1050 		cond_resched();
1051 find_page:
1052 		page = find_get_page(mapping, index);
1053 		if (!page) {
1054 			page_cache_sync_readahead(mapping,
1055 					ra, filp,
1056 					index, last_index - index);
1057 			page = find_get_page(mapping, index);
1058 			if (unlikely(page == NULL))
1059 				goto no_cached_page;
1060 		}
1061 		if (PageReadahead(page)) {
1062 			page_cache_async_readahead(mapping,
1063 					ra, filp, page,
1064 					index, last_index - index);
1065 		}
1066 		if (!PageUptodate(page)) {
1067 			if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1068 					!mapping->a_ops->is_partially_uptodate)
1069 				goto page_not_up_to_date;
1070 			if (!trylock_page(page))
1071 				goto page_not_up_to_date;
1072 			if (!mapping->a_ops->is_partially_uptodate(page,
1073 								desc, offset))
1074 				goto page_not_up_to_date_locked;
1075 			unlock_page(page);
1076 		}
1077 page_ok:
1078 		/*
1079 		 * i_size must be checked after we know the page is Uptodate.
1080 		 *
1081 		 * Checking i_size after the check allows us to calculate
1082 		 * the correct value for "nr", which means the zero-filled
1083 		 * part of the page is not copied back to userspace (unless
1084 		 * another truncate extends the file - this is desired though).
1085 		 */
1086 
1087 		isize = i_size_read(inode);
1088 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1089 		if (unlikely(!isize || index > end_index)) {
1090 			page_cache_release(page);
1091 			goto out;
1092 		}
1093 
1094 		/* nr is the maximum number of bytes to copy from this page */
1095 		nr = PAGE_CACHE_SIZE;
1096 		if (index == end_index) {
1097 			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1098 			if (nr <= offset) {
1099 				page_cache_release(page);
1100 				goto out;
1101 			}
1102 		}
1103 		nr = nr - offset;
1104 
1105 		/* If users can be writing to this page using arbitrary
1106 		 * virtual addresses, take care about potential aliasing
1107 		 * before reading the page on the kernel side.
1108 		 */
1109 		if (mapping_writably_mapped(mapping))
1110 			flush_dcache_page(page);
1111 
1112 		/*
1113 		 * When a sequential read accesses a page several times,
1114 		 * only mark it as accessed the first time.
1115 		 */
1116 		if (prev_index != index || offset != prev_offset)
1117 			mark_page_accessed(page);
1118 		prev_index = index;
1119 
1120 		/*
1121 		 * Ok, we have the page, and it's up-to-date, so
1122 		 * now we can copy it to user space...
1123 		 *
1124 		 * The actor routine returns how many bytes were actually used..
1125 		 * NOTE! This may not be the same as how much of a user buffer
1126 		 * we filled up (we may be padding etc), so we can only update
1127 		 * "pos" here (the actor routine has to update the user buffer
1128 		 * pointers and the remaining count).
1129 		 */
1130 		ret = actor(desc, page, offset, nr);
1131 		offset += ret;
1132 		index += offset >> PAGE_CACHE_SHIFT;
1133 		offset &= ~PAGE_CACHE_MASK;
1134 		prev_offset = offset;
1135 
1136 		page_cache_release(page);
1137 		if (ret == nr && desc->count)
1138 			continue;
1139 		goto out;
1140 
1141 page_not_up_to_date:
1142 		/* Get exclusive access to the page ... */
1143 		error = lock_page_killable(page);
1144 		if (unlikely(error))
1145 			goto readpage_error;
1146 
1147 page_not_up_to_date_locked:
1148 		/* Did it get truncated before we got the lock? */
1149 		if (!page->mapping) {
1150 			unlock_page(page);
1151 			page_cache_release(page);
1152 			continue;
1153 		}
1154 
1155 		/* Did somebody else fill it already? */
1156 		if (PageUptodate(page)) {
1157 			unlock_page(page);
1158 			goto page_ok;
1159 		}
1160 
1161 readpage:
1162 		/* Start the actual read. The read will unlock the page. */
1163 		error = mapping->a_ops->readpage(filp, page);
1164 
1165 		if (unlikely(error)) {
1166 			if (error == AOP_TRUNCATED_PAGE) {
1167 				page_cache_release(page);
1168 				goto find_page;
1169 			}
1170 			goto readpage_error;
1171 		}
1172 
1173 		if (!PageUptodate(page)) {
1174 			error = lock_page_killable(page);
1175 			if (unlikely(error))
1176 				goto readpage_error;
1177 			if (!PageUptodate(page)) {
1178 				if (page->mapping == NULL) {
1179 					/*
1180 					 * invalidate_inode_pages got it
1181 					 */
1182 					unlock_page(page);
1183 					page_cache_release(page);
1184 					goto find_page;
1185 				}
1186 				unlock_page(page);
1187 				shrink_readahead_size_eio(filp, ra);
1188 				error = -EIO;
1189 				goto readpage_error;
1190 			}
1191 			unlock_page(page);
1192 		}
1193 
1194 		goto page_ok;
1195 
1196 readpage_error:
1197 		/* UHHUH! A synchronous read error occurred. Report it */
1198 		desc->error = error;
1199 		page_cache_release(page);
1200 		goto out;
1201 
1202 no_cached_page:
1203 		/*
1204 		 * Ok, it wasn't cached, so we need to create a new
1205 		 * page..
1206 		 */
1207 		page = page_cache_alloc_cold(mapping);
1208 		if (!page) {
1209 			desc->error = -ENOMEM;
1210 			goto out;
1211 		}
1212 		error = add_to_page_cache_lru(page, mapping,
1213 						index, GFP_KERNEL);
1214 		if (error) {
1215 			page_cache_release(page);
1216 			if (error == -EEXIST)
1217 				goto find_page;
1218 			desc->error = error;
1219 			goto out;
1220 		}
1221 		goto readpage;
1222 	}
1223 
1224 out:
1225 	ra->prev_pos = prev_index;
1226 	ra->prev_pos <<= PAGE_CACHE_SHIFT;
1227 	ra->prev_pos |= prev_offset;
1228 
1229 	*ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1230 	file_accessed(filp);
1231 }
1232 
1233 int file_read_actor(read_descriptor_t *desc, struct page *page,
1234 			unsigned long offset, unsigned long size)
1235 {
1236 	char *kaddr;
1237 	unsigned long left, count = desc->count;
1238 
1239 	if (size > count)
1240 		size = count;
1241 
1242 	/*
1243 	 * Faults on the destination of a read are common, so do it before
1244 	 * taking the kmap.
1245 	 */
1246 	if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1247 		kaddr = kmap_atomic(page, KM_USER0);
1248 		left = __copy_to_user_inatomic(desc->arg.buf,
1249 						kaddr + offset, size);
1250 		kunmap_atomic(kaddr, KM_USER0);
1251 		if (left == 0)
1252 			goto success;
1253 	}
1254 
1255 	/* Do it the slow way */
1256 	kaddr = kmap(page);
1257 	left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1258 	kunmap(page);
1259 
1260 	if (left) {
1261 		size -= left;
1262 		desc->error = -EFAULT;
1263 	}
1264 success:
1265 	desc->count = count - size;
1266 	desc->written += size;
1267 	desc->arg.buf += size;
1268 	return size;
1269 }
1270 
1271 /*
1272  * Performs necessary checks before doing a write
1273  * @iov:	io vector request
1274  * @nr_segs:	number of segments in the iovec
1275  * @count:	number of bytes to write
1276  * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1277  *
1278  * Adjust number of segments and amount of bytes to write (nr_segs should be
1279  * properly initialized first). Returns appropriate error code that caller
1280  * should return or zero in case that write should be allowed.
1281  */
1282 int generic_segment_checks(const struct iovec *iov,
1283 			unsigned long *nr_segs, size_t *count, int access_flags)
1284 {
1285 	unsigned long   seg;
1286 	size_t cnt = 0;
1287 	for (seg = 0; seg < *nr_segs; seg++) {
1288 		const struct iovec *iv = &iov[seg];
1289 
1290 		/*
1291 		 * If any segment has a negative length, or the cumulative
1292 		 * length ever wraps negative then return -EINVAL.
1293 		 */
1294 		cnt += iv->iov_len;
1295 		if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1296 			return -EINVAL;
1297 		if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1298 			continue;
1299 		if (seg == 0)
1300 			return -EFAULT;
1301 		*nr_segs = seg;
1302 		cnt -= iv->iov_len;	/* This segment is no good */
1303 		break;
1304 	}
1305 	*count = cnt;
1306 	return 0;
1307 }
1308 EXPORT_SYMBOL(generic_segment_checks);
1309 
1310 /**
1311  * generic_file_aio_read - generic filesystem read routine
1312  * @iocb:	kernel I/O control block
1313  * @iov:	io vector request
1314  * @nr_segs:	number of segments in the iovec
1315  * @pos:	current file position
1316  *
1317  * This is the "read()" routine for all filesystems
1318  * that can use the page cache directly.
1319  */
1320 ssize_t
1321 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1322 		unsigned long nr_segs, loff_t pos)
1323 {
1324 	struct file *filp = iocb->ki_filp;
1325 	ssize_t retval;
1326 	unsigned long seg;
1327 	size_t count;
1328 	loff_t *ppos = &iocb->ki_pos;
1329 
1330 	count = 0;
1331 	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1332 	if (retval)
1333 		return retval;
1334 
1335 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1336 	if (filp->f_flags & O_DIRECT) {
1337 		loff_t size;
1338 		struct address_space *mapping;
1339 		struct inode *inode;
1340 
1341 		mapping = filp->f_mapping;
1342 		inode = mapping->host;
1343 		if (!count)
1344 			goto out; /* skip atime */
1345 		size = i_size_read(inode);
1346 		if (pos < size) {
1347 			retval = filemap_write_and_wait_range(mapping, pos,
1348 					pos + iov_length(iov, nr_segs) - 1);
1349 			if (!retval) {
1350 				retval = mapping->a_ops->direct_IO(READ, iocb,
1351 							iov, pos, nr_segs);
1352 			}
1353 			if (retval > 0)
1354 				*ppos = pos + retval;
1355 			if (retval) {
1356 				file_accessed(filp);
1357 				goto out;
1358 			}
1359 		}
1360 	}
1361 
1362 	for (seg = 0; seg < nr_segs; seg++) {
1363 		read_descriptor_t desc;
1364 
1365 		desc.written = 0;
1366 		desc.arg.buf = iov[seg].iov_base;
1367 		desc.count = iov[seg].iov_len;
1368 		if (desc.count == 0)
1369 			continue;
1370 		desc.error = 0;
1371 		do_generic_file_read(filp, ppos, &desc, file_read_actor);
1372 		retval += desc.written;
1373 		if (desc.error) {
1374 			retval = retval ?: desc.error;
1375 			break;
1376 		}
1377 		if (desc.count > 0)
1378 			break;
1379 	}
1380 out:
1381 	return retval;
1382 }
1383 EXPORT_SYMBOL(generic_file_aio_read);
1384 
1385 static ssize_t
1386 do_readahead(struct address_space *mapping, struct file *filp,
1387 	     pgoff_t index, unsigned long nr)
1388 {
1389 	if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1390 		return -EINVAL;
1391 
1392 	force_page_cache_readahead(mapping, filp, index,
1393 					max_sane_readahead(nr));
1394 	return 0;
1395 }
1396 
1397 SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1398 {
1399 	ssize_t ret;
1400 	struct file *file;
1401 
1402 	ret = -EBADF;
1403 	file = fget(fd);
1404 	if (file) {
1405 		if (file->f_mode & FMODE_READ) {
1406 			struct address_space *mapping = file->f_mapping;
1407 			pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1408 			pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1409 			unsigned long len = end - start + 1;
1410 			ret = do_readahead(mapping, file, start, len);
1411 		}
1412 		fput(file);
1413 	}
1414 	return ret;
1415 }
1416 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1417 asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1418 {
1419 	return SYSC_readahead((int) fd, offset, (size_t) count);
1420 }
1421 SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1422 #endif
1423 
1424 #ifdef CONFIG_MMU
1425 /**
1426  * page_cache_read - adds requested page to the page cache if not already there
1427  * @file:	file to read
1428  * @offset:	page index
1429  *
1430  * This adds the requested page to the page cache if it isn't already there,
1431  * and schedules an I/O to read in its contents from disk.
1432  */
1433 static int page_cache_read(struct file *file, pgoff_t offset)
1434 {
1435 	struct address_space *mapping = file->f_mapping;
1436 	struct page *page;
1437 	int ret;
1438 
1439 	do {
1440 		page = page_cache_alloc_cold(mapping);
1441 		if (!page)
1442 			return -ENOMEM;
1443 
1444 		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1445 		if (ret == 0)
1446 			ret = mapping->a_ops->readpage(file, page);
1447 		else if (ret == -EEXIST)
1448 			ret = 0; /* losing race to add is OK */
1449 
1450 		page_cache_release(page);
1451 
1452 	} while (ret == AOP_TRUNCATED_PAGE);
1453 
1454 	return ret;
1455 }
1456 
1457 #define MMAP_LOTSAMISS  (100)
1458 
1459 /**
1460  * filemap_fault - read in file data for page fault handling
1461  * @vma:	vma in which the fault was taken
1462  * @vmf:	struct vm_fault containing details of the fault
1463  *
1464  * filemap_fault() is invoked via the vma operations vector for a
1465  * mapped memory region to read in file data during a page fault.
1466  *
1467  * The goto's are kind of ugly, but this streamlines the normal case of having
1468  * it in the page cache, and handles the special cases reasonably without
1469  * having a lot of duplicated code.
1470  */
1471 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1472 {
1473 	int error;
1474 	struct file *file = vma->vm_file;
1475 	struct address_space *mapping = file->f_mapping;
1476 	struct file_ra_state *ra = &file->f_ra;
1477 	struct inode *inode = mapping->host;
1478 	struct page *page;
1479 	pgoff_t size;
1480 	int did_readaround = 0;
1481 	int ret = 0;
1482 
1483 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1484 	if (vmf->pgoff >= size)
1485 		return VM_FAULT_SIGBUS;
1486 
1487 	/* If we don't want any read-ahead, don't bother */
1488 	if (VM_RandomReadHint(vma))
1489 		goto no_cached_page;
1490 
1491 	/*
1492 	 * Do we have something in the page cache already?
1493 	 */
1494 retry_find:
1495 	page = find_lock_page(mapping, vmf->pgoff);
1496 	/*
1497 	 * For sequential accesses, we use the generic readahead logic.
1498 	 */
1499 	if (VM_SequentialReadHint(vma)) {
1500 		if (!page) {
1501 			page_cache_sync_readahead(mapping, ra, file,
1502 							   vmf->pgoff, 1);
1503 			page = find_lock_page(mapping, vmf->pgoff);
1504 			if (!page)
1505 				goto no_cached_page;
1506 		}
1507 		if (PageReadahead(page)) {
1508 			page_cache_async_readahead(mapping, ra, file, page,
1509 							   vmf->pgoff, 1);
1510 		}
1511 	}
1512 
1513 	if (!page) {
1514 		unsigned long ra_pages;
1515 
1516 		ra->mmap_miss++;
1517 
1518 		/*
1519 		 * Do we miss much more than hit in this file? If so,
1520 		 * stop bothering with read-ahead. It will only hurt.
1521 		 */
1522 		if (ra->mmap_miss > MMAP_LOTSAMISS)
1523 			goto no_cached_page;
1524 
1525 		/*
1526 		 * To keep the pgmajfault counter straight, we need to
1527 		 * check did_readaround, as this is an inner loop.
1528 		 */
1529 		if (!did_readaround) {
1530 			ret = VM_FAULT_MAJOR;
1531 			count_vm_event(PGMAJFAULT);
1532 		}
1533 		did_readaround = 1;
1534 		ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1535 		if (ra_pages) {
1536 			pgoff_t start = 0;
1537 
1538 			if (vmf->pgoff > ra_pages / 2)
1539 				start = vmf->pgoff - ra_pages / 2;
1540 			do_page_cache_readahead(mapping, file, start, ra_pages);
1541 		}
1542 		page = find_lock_page(mapping, vmf->pgoff);
1543 		if (!page)
1544 			goto no_cached_page;
1545 	}
1546 
1547 	if (!did_readaround)
1548 		ra->mmap_miss--;
1549 
1550 	/*
1551 	 * We have a locked page in the page cache, now we need to check
1552 	 * that it's up-to-date. If not, it is going to be due to an error.
1553 	 */
1554 	if (unlikely(!PageUptodate(page)))
1555 		goto page_not_uptodate;
1556 
1557 	/* Must recheck i_size under page lock */
1558 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1559 	if (unlikely(vmf->pgoff >= size)) {
1560 		unlock_page(page);
1561 		page_cache_release(page);
1562 		return VM_FAULT_SIGBUS;
1563 	}
1564 
1565 	/*
1566 	 * Found the page and have a reference on it.
1567 	 */
1568 	ra->prev_pos = (loff_t)page->index << PAGE_CACHE_SHIFT;
1569 	vmf->page = page;
1570 	return ret | VM_FAULT_LOCKED;
1571 
1572 no_cached_page:
1573 	/*
1574 	 * We're only likely to ever get here if MADV_RANDOM is in
1575 	 * effect.
1576 	 */
1577 	error = page_cache_read(file, vmf->pgoff);
1578 
1579 	/*
1580 	 * The page we want has now been added to the page cache.
1581 	 * In the unlikely event that someone removed it in the
1582 	 * meantime, we'll just come back here and read it again.
1583 	 */
1584 	if (error >= 0)
1585 		goto retry_find;
1586 
1587 	/*
1588 	 * An error return from page_cache_read can result if the
1589 	 * system is low on memory, or a problem occurs while trying
1590 	 * to schedule I/O.
1591 	 */
1592 	if (error == -ENOMEM)
1593 		return VM_FAULT_OOM;
1594 	return VM_FAULT_SIGBUS;
1595 
1596 page_not_uptodate:
1597 	/* IO error path */
1598 	if (!did_readaround) {
1599 		ret = VM_FAULT_MAJOR;
1600 		count_vm_event(PGMAJFAULT);
1601 	}
1602 
1603 	/*
1604 	 * Umm, take care of errors if the page isn't up-to-date.
1605 	 * Try to re-read it _once_. We do this synchronously,
1606 	 * because there really aren't any performance issues here
1607 	 * and we need to check for errors.
1608 	 */
1609 	ClearPageError(page);
1610 	error = mapping->a_ops->readpage(file, page);
1611 	if (!error) {
1612 		wait_on_page_locked(page);
1613 		if (!PageUptodate(page))
1614 			error = -EIO;
1615 	}
1616 	page_cache_release(page);
1617 
1618 	if (!error || error == AOP_TRUNCATED_PAGE)
1619 		goto retry_find;
1620 
1621 	/* Things didn't work out. Return zero to tell the mm layer so. */
1622 	shrink_readahead_size_eio(file, ra);
1623 	return VM_FAULT_SIGBUS;
1624 }
1625 EXPORT_SYMBOL(filemap_fault);
1626 
1627 struct vm_operations_struct generic_file_vm_ops = {
1628 	.fault		= filemap_fault,
1629 };
1630 
1631 /* This is used for a general mmap of a disk file */
1632 
1633 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1634 {
1635 	struct address_space *mapping = file->f_mapping;
1636 
1637 	if (!mapping->a_ops->readpage)
1638 		return -ENOEXEC;
1639 	file_accessed(file);
1640 	vma->vm_ops = &generic_file_vm_ops;
1641 	vma->vm_flags |= VM_CAN_NONLINEAR;
1642 	return 0;
1643 }
1644 
1645 /*
1646  * This is for filesystems which do not implement ->writepage.
1647  */
1648 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1649 {
1650 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1651 		return -EINVAL;
1652 	return generic_file_mmap(file, vma);
1653 }
1654 #else
1655 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1656 {
1657 	return -ENOSYS;
1658 }
1659 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1660 {
1661 	return -ENOSYS;
1662 }
1663 #endif /* CONFIG_MMU */
1664 
1665 EXPORT_SYMBOL(generic_file_mmap);
1666 EXPORT_SYMBOL(generic_file_readonly_mmap);
1667 
1668 static struct page *__read_cache_page(struct address_space *mapping,
1669 				pgoff_t index,
1670 				int (*filler)(void *,struct page*),
1671 				void *data)
1672 {
1673 	struct page *page;
1674 	int err;
1675 repeat:
1676 	page = find_get_page(mapping, index);
1677 	if (!page) {
1678 		page = page_cache_alloc_cold(mapping);
1679 		if (!page)
1680 			return ERR_PTR(-ENOMEM);
1681 		err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1682 		if (unlikely(err)) {
1683 			page_cache_release(page);
1684 			if (err == -EEXIST)
1685 				goto repeat;
1686 			/* Presumably ENOMEM for radix tree node */
1687 			return ERR_PTR(err);
1688 		}
1689 		err = filler(data, page);
1690 		if (err < 0) {
1691 			page_cache_release(page);
1692 			page = ERR_PTR(err);
1693 		}
1694 	}
1695 	return page;
1696 }
1697 
1698 /**
1699  * read_cache_page_async - read into page cache, fill it if needed
1700  * @mapping:	the page's address_space
1701  * @index:	the page index
1702  * @filler:	function to perform the read
1703  * @data:	destination for read data
1704  *
1705  * Same as read_cache_page, but don't wait for page to become unlocked
1706  * after submitting it to the filler.
1707  *
1708  * Read into the page cache. If a page already exists, and PageUptodate() is
1709  * not set, try to fill the page but don't wait for it to become unlocked.
1710  *
1711  * If the page does not get brought uptodate, return -EIO.
1712  */
1713 struct page *read_cache_page_async(struct address_space *mapping,
1714 				pgoff_t index,
1715 				int (*filler)(void *,struct page*),
1716 				void *data)
1717 {
1718 	struct page *page;
1719 	int err;
1720 
1721 retry:
1722 	page = __read_cache_page(mapping, index, filler, data);
1723 	if (IS_ERR(page))
1724 		return page;
1725 	if (PageUptodate(page))
1726 		goto out;
1727 
1728 	lock_page(page);
1729 	if (!page->mapping) {
1730 		unlock_page(page);
1731 		page_cache_release(page);
1732 		goto retry;
1733 	}
1734 	if (PageUptodate(page)) {
1735 		unlock_page(page);
1736 		goto out;
1737 	}
1738 	err = filler(data, page);
1739 	if (err < 0) {
1740 		page_cache_release(page);
1741 		return ERR_PTR(err);
1742 	}
1743 out:
1744 	mark_page_accessed(page);
1745 	return page;
1746 }
1747 EXPORT_SYMBOL(read_cache_page_async);
1748 
1749 /**
1750  * read_cache_page - read into page cache, fill it if needed
1751  * @mapping:	the page's address_space
1752  * @index:	the page index
1753  * @filler:	function to perform the read
1754  * @data:	destination for read data
1755  *
1756  * Read into the page cache. If a page already exists, and PageUptodate() is
1757  * not set, try to fill the page then wait for it to become unlocked.
1758  *
1759  * If the page does not get brought uptodate, return -EIO.
1760  */
1761 struct page *read_cache_page(struct address_space *mapping,
1762 				pgoff_t index,
1763 				int (*filler)(void *,struct page*),
1764 				void *data)
1765 {
1766 	struct page *page;
1767 
1768 	page = read_cache_page_async(mapping, index, filler, data);
1769 	if (IS_ERR(page))
1770 		goto out;
1771 	wait_on_page_locked(page);
1772 	if (!PageUptodate(page)) {
1773 		page_cache_release(page);
1774 		page = ERR_PTR(-EIO);
1775 	}
1776  out:
1777 	return page;
1778 }
1779 EXPORT_SYMBOL(read_cache_page);
1780 
1781 /*
1782  * The logic we want is
1783  *
1784  *	if suid or (sgid and xgrp)
1785  *		remove privs
1786  */
1787 int should_remove_suid(struct dentry *dentry)
1788 {
1789 	mode_t mode = dentry->d_inode->i_mode;
1790 	int kill = 0;
1791 
1792 	/* suid always must be killed */
1793 	if (unlikely(mode & S_ISUID))
1794 		kill = ATTR_KILL_SUID;
1795 
1796 	/*
1797 	 * sgid without any exec bits is just a mandatory locking mark; leave
1798 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1799 	 */
1800 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1801 		kill |= ATTR_KILL_SGID;
1802 
1803 	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1804 		return kill;
1805 
1806 	return 0;
1807 }
1808 EXPORT_SYMBOL(should_remove_suid);
1809 
1810 static int __remove_suid(struct dentry *dentry, int kill)
1811 {
1812 	struct iattr newattrs;
1813 
1814 	newattrs.ia_valid = ATTR_FORCE | kill;
1815 	return notify_change(dentry, &newattrs);
1816 }
1817 
1818 int file_remove_suid(struct file *file)
1819 {
1820 	struct dentry *dentry = file->f_path.dentry;
1821 	int killsuid = should_remove_suid(dentry);
1822 	int killpriv = security_inode_need_killpriv(dentry);
1823 	int error = 0;
1824 
1825 	if (killpriv < 0)
1826 		return killpriv;
1827 	if (killpriv)
1828 		error = security_inode_killpriv(dentry);
1829 	if (!error && killsuid)
1830 		error = __remove_suid(dentry, killsuid);
1831 
1832 	return error;
1833 }
1834 EXPORT_SYMBOL(file_remove_suid);
1835 
1836 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1837 			const struct iovec *iov, size_t base, size_t bytes)
1838 {
1839 	size_t copied = 0, left = 0;
1840 
1841 	while (bytes) {
1842 		char __user *buf = iov->iov_base + base;
1843 		int copy = min(bytes, iov->iov_len - base);
1844 
1845 		base = 0;
1846 		left = __copy_from_user_inatomic(vaddr, buf, copy);
1847 		copied += copy;
1848 		bytes -= copy;
1849 		vaddr += copy;
1850 		iov++;
1851 
1852 		if (unlikely(left))
1853 			break;
1854 	}
1855 	return copied - left;
1856 }
1857 
1858 /*
1859  * Copy as much as we can into the page and return the number of bytes which
1860  * were sucessfully copied.  If a fault is encountered then return the number of
1861  * bytes which were copied.
1862  */
1863 size_t iov_iter_copy_from_user_atomic(struct page *page,
1864 		struct iov_iter *i, unsigned long offset, size_t bytes)
1865 {
1866 	char *kaddr;
1867 	size_t copied;
1868 
1869 	BUG_ON(!in_atomic());
1870 	kaddr = kmap_atomic(page, KM_USER0);
1871 	if (likely(i->nr_segs == 1)) {
1872 		int left;
1873 		char __user *buf = i->iov->iov_base + i->iov_offset;
1874 		left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
1875 		copied = bytes - left;
1876 	} else {
1877 		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1878 						i->iov, i->iov_offset, bytes);
1879 	}
1880 	kunmap_atomic(kaddr, KM_USER0);
1881 
1882 	return copied;
1883 }
1884 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1885 
1886 /*
1887  * This has the same sideeffects and return value as
1888  * iov_iter_copy_from_user_atomic().
1889  * The difference is that it attempts to resolve faults.
1890  * Page must not be locked.
1891  */
1892 size_t iov_iter_copy_from_user(struct page *page,
1893 		struct iov_iter *i, unsigned long offset, size_t bytes)
1894 {
1895 	char *kaddr;
1896 	size_t copied;
1897 
1898 	kaddr = kmap(page);
1899 	if (likely(i->nr_segs == 1)) {
1900 		int left;
1901 		char __user *buf = i->iov->iov_base + i->iov_offset;
1902 		left = __copy_from_user(kaddr + offset, buf, bytes);
1903 		copied = bytes - left;
1904 	} else {
1905 		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1906 						i->iov, i->iov_offset, bytes);
1907 	}
1908 	kunmap(page);
1909 	return copied;
1910 }
1911 EXPORT_SYMBOL(iov_iter_copy_from_user);
1912 
1913 void iov_iter_advance(struct iov_iter *i, size_t bytes)
1914 {
1915 	BUG_ON(i->count < bytes);
1916 
1917 	if (likely(i->nr_segs == 1)) {
1918 		i->iov_offset += bytes;
1919 		i->count -= bytes;
1920 	} else {
1921 		const struct iovec *iov = i->iov;
1922 		size_t base = i->iov_offset;
1923 
1924 		/*
1925 		 * The !iov->iov_len check ensures we skip over unlikely
1926 		 * zero-length segments (without overruning the iovec).
1927 		 */
1928 		while (bytes || unlikely(i->count && !iov->iov_len)) {
1929 			int copy;
1930 
1931 			copy = min(bytes, iov->iov_len - base);
1932 			BUG_ON(!i->count || i->count < copy);
1933 			i->count -= copy;
1934 			bytes -= copy;
1935 			base += copy;
1936 			if (iov->iov_len == base) {
1937 				iov++;
1938 				base = 0;
1939 			}
1940 		}
1941 		i->iov = iov;
1942 		i->iov_offset = base;
1943 	}
1944 }
1945 EXPORT_SYMBOL(iov_iter_advance);
1946 
1947 /*
1948  * Fault in the first iovec of the given iov_iter, to a maximum length
1949  * of bytes. Returns 0 on success, or non-zero if the memory could not be
1950  * accessed (ie. because it is an invalid address).
1951  *
1952  * writev-intensive code may want this to prefault several iovecs -- that
1953  * would be possible (callers must not rely on the fact that _only_ the
1954  * first iovec will be faulted with the current implementation).
1955  */
1956 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
1957 {
1958 	char __user *buf = i->iov->iov_base + i->iov_offset;
1959 	bytes = min(bytes, i->iov->iov_len - i->iov_offset);
1960 	return fault_in_pages_readable(buf, bytes);
1961 }
1962 EXPORT_SYMBOL(iov_iter_fault_in_readable);
1963 
1964 /*
1965  * Return the count of just the current iov_iter segment.
1966  */
1967 size_t iov_iter_single_seg_count(struct iov_iter *i)
1968 {
1969 	const struct iovec *iov = i->iov;
1970 	if (i->nr_segs == 1)
1971 		return i->count;
1972 	else
1973 		return min(i->count, iov->iov_len - i->iov_offset);
1974 }
1975 EXPORT_SYMBOL(iov_iter_single_seg_count);
1976 
1977 /*
1978  * Performs necessary checks before doing a write
1979  *
1980  * Can adjust writing position or amount of bytes to write.
1981  * Returns appropriate error code that caller should return or
1982  * zero in case that write should be allowed.
1983  */
1984 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1985 {
1986 	struct inode *inode = file->f_mapping->host;
1987 	unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1988 
1989         if (unlikely(*pos < 0))
1990                 return -EINVAL;
1991 
1992 	if (!isblk) {
1993 		/* FIXME: this is for backwards compatibility with 2.4 */
1994 		if (file->f_flags & O_APPEND)
1995                         *pos = i_size_read(inode);
1996 
1997 		if (limit != RLIM_INFINITY) {
1998 			if (*pos >= limit) {
1999 				send_sig(SIGXFSZ, current, 0);
2000 				return -EFBIG;
2001 			}
2002 			if (*count > limit - (typeof(limit))*pos) {
2003 				*count = limit - (typeof(limit))*pos;
2004 			}
2005 		}
2006 	}
2007 
2008 	/*
2009 	 * LFS rule
2010 	 */
2011 	if (unlikely(*pos + *count > MAX_NON_LFS &&
2012 				!(file->f_flags & O_LARGEFILE))) {
2013 		if (*pos >= MAX_NON_LFS) {
2014 			return -EFBIG;
2015 		}
2016 		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2017 			*count = MAX_NON_LFS - (unsigned long)*pos;
2018 		}
2019 	}
2020 
2021 	/*
2022 	 * Are we about to exceed the fs block limit ?
2023 	 *
2024 	 * If we have written data it becomes a short write.  If we have
2025 	 * exceeded without writing data we send a signal and return EFBIG.
2026 	 * Linus frestrict idea will clean these up nicely..
2027 	 */
2028 	if (likely(!isblk)) {
2029 		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2030 			if (*count || *pos > inode->i_sb->s_maxbytes) {
2031 				return -EFBIG;
2032 			}
2033 			/* zero-length writes at ->s_maxbytes are OK */
2034 		}
2035 
2036 		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2037 			*count = inode->i_sb->s_maxbytes - *pos;
2038 	} else {
2039 #ifdef CONFIG_BLOCK
2040 		loff_t isize;
2041 		if (bdev_read_only(I_BDEV(inode)))
2042 			return -EPERM;
2043 		isize = i_size_read(inode);
2044 		if (*pos >= isize) {
2045 			if (*count || *pos > isize)
2046 				return -ENOSPC;
2047 		}
2048 
2049 		if (*pos + *count > isize)
2050 			*count = isize - *pos;
2051 #else
2052 		return -EPERM;
2053 #endif
2054 	}
2055 	return 0;
2056 }
2057 EXPORT_SYMBOL(generic_write_checks);
2058 
2059 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2060 				loff_t pos, unsigned len, unsigned flags,
2061 				struct page **pagep, void **fsdata)
2062 {
2063 	const struct address_space_operations *aops = mapping->a_ops;
2064 
2065 	return aops->write_begin(file, mapping, pos, len, flags,
2066 							pagep, fsdata);
2067 }
2068 EXPORT_SYMBOL(pagecache_write_begin);
2069 
2070 int pagecache_write_end(struct file *file, struct address_space *mapping,
2071 				loff_t pos, unsigned len, unsigned copied,
2072 				struct page *page, void *fsdata)
2073 {
2074 	const struct address_space_operations *aops = mapping->a_ops;
2075 
2076 	mark_page_accessed(page);
2077 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2078 }
2079 EXPORT_SYMBOL(pagecache_write_end);
2080 
2081 ssize_t
2082 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2083 		unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2084 		size_t count, size_t ocount)
2085 {
2086 	struct file	*file = iocb->ki_filp;
2087 	struct address_space *mapping = file->f_mapping;
2088 	struct inode	*inode = mapping->host;
2089 	ssize_t		written;
2090 	size_t		write_len;
2091 	pgoff_t		end;
2092 
2093 	if (count != ocount)
2094 		*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2095 
2096 	write_len = iov_length(iov, *nr_segs);
2097 	end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2098 
2099 	written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2100 	if (written)
2101 		goto out;
2102 
2103 	/*
2104 	 * After a write we want buffered reads to be sure to go to disk to get
2105 	 * the new data.  We invalidate clean cached page from the region we're
2106 	 * about to write.  We do this *before* the write so that we can return
2107 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2108 	 */
2109 	if (mapping->nrpages) {
2110 		written = invalidate_inode_pages2_range(mapping,
2111 					pos >> PAGE_CACHE_SHIFT, end);
2112 		/*
2113 		 * If a page can not be invalidated, return 0 to fall back
2114 		 * to buffered write.
2115 		 */
2116 		if (written) {
2117 			if (written == -EBUSY)
2118 				return 0;
2119 			goto out;
2120 		}
2121 	}
2122 
2123 	written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2124 
2125 	/*
2126 	 * Finally, try again to invalidate clean pages which might have been
2127 	 * cached by non-direct readahead, or faulted in by get_user_pages()
2128 	 * if the source of the write was an mmap'ed region of the file
2129 	 * we're writing.  Either one is a pretty crazy thing to do,
2130 	 * so we don't support it 100%.  If this invalidation
2131 	 * fails, tough, the write still worked...
2132 	 */
2133 	if (mapping->nrpages) {
2134 		invalidate_inode_pages2_range(mapping,
2135 					      pos >> PAGE_CACHE_SHIFT, end);
2136 	}
2137 
2138 	if (written > 0) {
2139 		loff_t end = pos + written;
2140 		if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2141 			i_size_write(inode,  end);
2142 			mark_inode_dirty(inode);
2143 		}
2144 		*ppos = end;
2145 	}
2146 
2147 	/*
2148 	 * Sync the fs metadata but not the minor inode changes and
2149 	 * of course not the data as we did direct DMA for the IO.
2150 	 * i_mutex is held, which protects generic_osync_inode() from
2151 	 * livelocking.  AIO O_DIRECT ops attempt to sync metadata here.
2152 	 */
2153 out:
2154 	if ((written >= 0 || written == -EIOCBQUEUED) &&
2155 	    ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2156 		int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
2157 		if (err < 0)
2158 			written = err;
2159 	}
2160 	return written;
2161 }
2162 EXPORT_SYMBOL(generic_file_direct_write);
2163 
2164 /*
2165  * Find or create a page at the given pagecache position. Return the locked
2166  * page. This function is specifically for buffered writes.
2167  */
2168 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2169 					pgoff_t index, unsigned flags)
2170 {
2171 	int status;
2172 	struct page *page;
2173 	gfp_t gfp_notmask = 0;
2174 	if (flags & AOP_FLAG_NOFS)
2175 		gfp_notmask = __GFP_FS;
2176 repeat:
2177 	page = find_lock_page(mapping, index);
2178 	if (likely(page))
2179 		return page;
2180 
2181 	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
2182 	if (!page)
2183 		return NULL;
2184 	status = add_to_page_cache_lru(page, mapping, index,
2185 						GFP_KERNEL & ~gfp_notmask);
2186 	if (unlikely(status)) {
2187 		page_cache_release(page);
2188 		if (status == -EEXIST)
2189 			goto repeat;
2190 		return NULL;
2191 	}
2192 	return page;
2193 }
2194 EXPORT_SYMBOL(grab_cache_page_write_begin);
2195 
2196 static ssize_t generic_perform_write(struct file *file,
2197 				struct iov_iter *i, loff_t pos)
2198 {
2199 	struct address_space *mapping = file->f_mapping;
2200 	const struct address_space_operations *a_ops = mapping->a_ops;
2201 	long status = 0;
2202 	ssize_t written = 0;
2203 	unsigned int flags = 0;
2204 
2205 	/*
2206 	 * Copies from kernel address space cannot fail (NFSD is a big user).
2207 	 */
2208 	if (segment_eq(get_fs(), KERNEL_DS))
2209 		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2210 
2211 	do {
2212 		struct page *page;
2213 		pgoff_t index;		/* Pagecache index for current page */
2214 		unsigned long offset;	/* Offset into pagecache page */
2215 		unsigned long bytes;	/* Bytes to write to page */
2216 		size_t copied;		/* Bytes copied from user */
2217 		void *fsdata;
2218 
2219 		offset = (pos & (PAGE_CACHE_SIZE - 1));
2220 		index = pos >> PAGE_CACHE_SHIFT;
2221 		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2222 						iov_iter_count(i));
2223 
2224 again:
2225 
2226 		/*
2227 		 * Bring in the user page that we will copy from _first_.
2228 		 * Otherwise there's a nasty deadlock on copying from the
2229 		 * same page as we're writing to, without it being marked
2230 		 * up-to-date.
2231 		 *
2232 		 * Not only is this an optimisation, but it is also required
2233 		 * to check that the address is actually valid, when atomic
2234 		 * usercopies are used, below.
2235 		 */
2236 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2237 			status = -EFAULT;
2238 			break;
2239 		}
2240 
2241 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2242 						&page, &fsdata);
2243 		if (unlikely(status))
2244 			break;
2245 
2246 		pagefault_disable();
2247 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2248 		pagefault_enable();
2249 		flush_dcache_page(page);
2250 
2251 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2252 						page, fsdata);
2253 		if (unlikely(status < 0))
2254 			break;
2255 		copied = status;
2256 
2257 		cond_resched();
2258 
2259 		iov_iter_advance(i, copied);
2260 		if (unlikely(copied == 0)) {
2261 			/*
2262 			 * If we were unable to copy any data at all, we must
2263 			 * fall back to a single segment length write.
2264 			 *
2265 			 * If we didn't fallback here, we could livelock
2266 			 * because not all segments in the iov can be copied at
2267 			 * once without a pagefault.
2268 			 */
2269 			bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2270 						iov_iter_single_seg_count(i));
2271 			goto again;
2272 		}
2273 		pos += copied;
2274 		written += copied;
2275 
2276 		balance_dirty_pages_ratelimited(mapping);
2277 
2278 	} while (iov_iter_count(i));
2279 
2280 	return written ? written : status;
2281 }
2282 
2283 ssize_t
2284 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2285 		unsigned long nr_segs, loff_t pos, loff_t *ppos,
2286 		size_t count, ssize_t written)
2287 {
2288 	struct file *file = iocb->ki_filp;
2289 	struct address_space *mapping = file->f_mapping;
2290 	const struct address_space_operations *a_ops = mapping->a_ops;
2291 	struct inode *inode = mapping->host;
2292 	ssize_t status;
2293 	struct iov_iter i;
2294 
2295 	iov_iter_init(&i, iov, nr_segs, count, written);
2296 	status = generic_perform_write(file, &i, pos);
2297 
2298 	if (likely(status >= 0)) {
2299 		written += status;
2300 		*ppos = pos + status;
2301 
2302 		/*
2303 		 * For now, when the user asks for O_SYNC, we'll actually give
2304 		 * O_DSYNC
2305 		 */
2306 		if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2307 			if (!a_ops->writepage || !is_sync_kiocb(iocb))
2308 				status = generic_osync_inode(inode, mapping,
2309 						OSYNC_METADATA|OSYNC_DATA);
2310 		}
2311   	}
2312 
2313 	/*
2314 	 * If we get here for O_DIRECT writes then we must have fallen through
2315 	 * to buffered writes (block instantiation inside i_size).  So we sync
2316 	 * the file data here, to try to honour O_DIRECT expectations.
2317 	 */
2318 	if (unlikely(file->f_flags & O_DIRECT) && written)
2319 		status = filemap_write_and_wait_range(mapping,
2320 					pos, pos + written - 1);
2321 
2322 	return written ? written : status;
2323 }
2324 EXPORT_SYMBOL(generic_file_buffered_write);
2325 
2326 static ssize_t
2327 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2328 				unsigned long nr_segs, loff_t *ppos)
2329 {
2330 	struct file *file = iocb->ki_filp;
2331 	struct address_space * mapping = file->f_mapping;
2332 	size_t ocount;		/* original count */
2333 	size_t count;		/* after file limit checks */
2334 	struct inode 	*inode = mapping->host;
2335 	loff_t		pos;
2336 	ssize_t		written;
2337 	ssize_t		err;
2338 
2339 	ocount = 0;
2340 	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2341 	if (err)
2342 		return err;
2343 
2344 	count = ocount;
2345 	pos = *ppos;
2346 
2347 	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2348 
2349 	/* We can write back this queue in page reclaim */
2350 	current->backing_dev_info = mapping->backing_dev_info;
2351 	written = 0;
2352 
2353 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2354 	if (err)
2355 		goto out;
2356 
2357 	if (count == 0)
2358 		goto out;
2359 
2360 	err = file_remove_suid(file);
2361 	if (err)
2362 		goto out;
2363 
2364 	file_update_time(file);
2365 
2366 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2367 	if (unlikely(file->f_flags & O_DIRECT)) {
2368 		loff_t endbyte;
2369 		ssize_t written_buffered;
2370 
2371 		written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2372 							ppos, count, ocount);
2373 		if (written < 0 || written == count)
2374 			goto out;
2375 		/*
2376 		 * direct-io write to a hole: fall through to buffered I/O
2377 		 * for completing the rest of the request.
2378 		 */
2379 		pos += written;
2380 		count -= written;
2381 		written_buffered = generic_file_buffered_write(iocb, iov,
2382 						nr_segs, pos, ppos, count,
2383 						written);
2384 		/*
2385 		 * If generic_file_buffered_write() retuned a synchronous error
2386 		 * then we want to return the number of bytes which were
2387 		 * direct-written, or the error code if that was zero.  Note
2388 		 * that this differs from normal direct-io semantics, which
2389 		 * will return -EFOO even if some bytes were written.
2390 		 */
2391 		if (written_buffered < 0) {
2392 			err = written_buffered;
2393 			goto out;
2394 		}
2395 
2396 		/*
2397 		 * We need to ensure that the page cache pages are written to
2398 		 * disk and invalidated to preserve the expected O_DIRECT
2399 		 * semantics.
2400 		 */
2401 		endbyte = pos + written_buffered - written - 1;
2402 		err = do_sync_mapping_range(file->f_mapping, pos, endbyte,
2403 					    SYNC_FILE_RANGE_WAIT_BEFORE|
2404 					    SYNC_FILE_RANGE_WRITE|
2405 					    SYNC_FILE_RANGE_WAIT_AFTER);
2406 		if (err == 0) {
2407 			written = written_buffered;
2408 			invalidate_mapping_pages(mapping,
2409 						 pos >> PAGE_CACHE_SHIFT,
2410 						 endbyte >> PAGE_CACHE_SHIFT);
2411 		} else {
2412 			/*
2413 			 * We don't know how much we wrote, so just return
2414 			 * the number of bytes which were direct-written
2415 			 */
2416 		}
2417 	} else {
2418 		written = generic_file_buffered_write(iocb, iov, nr_segs,
2419 				pos, ppos, count, written);
2420 	}
2421 out:
2422 	current->backing_dev_info = NULL;
2423 	return written ? written : err;
2424 }
2425 
2426 ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
2427 		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
2428 {
2429 	struct file *file = iocb->ki_filp;
2430 	struct address_space *mapping = file->f_mapping;
2431 	struct inode *inode = mapping->host;
2432 	ssize_t ret;
2433 
2434 	BUG_ON(iocb->ki_pos != pos);
2435 
2436 	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2437 			&iocb->ki_pos);
2438 
2439 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2440 		ssize_t err;
2441 
2442 		err = sync_page_range_nolock(inode, mapping, pos, ret);
2443 		if (err < 0)
2444 			ret = err;
2445 	}
2446 	return ret;
2447 }
2448 EXPORT_SYMBOL(generic_file_aio_write_nolock);
2449 
2450 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2451 		unsigned long nr_segs, loff_t pos)
2452 {
2453 	struct file *file = iocb->ki_filp;
2454 	struct address_space *mapping = file->f_mapping;
2455 	struct inode *inode = mapping->host;
2456 	ssize_t ret;
2457 
2458 	BUG_ON(iocb->ki_pos != pos);
2459 
2460 	mutex_lock(&inode->i_mutex);
2461 	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2462 			&iocb->ki_pos);
2463 	mutex_unlock(&inode->i_mutex);
2464 
2465 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2466 		ssize_t err;
2467 
2468 		err = sync_page_range(inode, mapping, pos, ret);
2469 		if (err < 0)
2470 			ret = err;
2471 	}
2472 	return ret;
2473 }
2474 EXPORT_SYMBOL(generic_file_aio_write);
2475 
2476 /**
2477  * try_to_release_page() - release old fs-specific metadata on a page
2478  *
2479  * @page: the page which the kernel is trying to free
2480  * @gfp_mask: memory allocation flags (and I/O mode)
2481  *
2482  * The address_space is to try to release any data against the page
2483  * (presumably at page->private).  If the release was successful, return `1'.
2484  * Otherwise return zero.
2485  *
2486  * This may also be called if PG_fscache is set on a page, indicating that the
2487  * page is known to the local caching routines.
2488  *
2489  * The @gfp_mask argument specifies whether I/O may be performed to release
2490  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2491  *
2492  */
2493 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2494 {
2495 	struct address_space * const mapping = page->mapping;
2496 
2497 	BUG_ON(!PageLocked(page));
2498 	if (PageWriteback(page))
2499 		return 0;
2500 
2501 	if (mapping && mapping->a_ops->releasepage)
2502 		return mapping->a_ops->releasepage(page, gfp_mask);
2503 	return try_to_free_buffers(page);
2504 }
2505 
2506 EXPORT_SYMBOL(try_to_release_page);
2507