1 /* 2 * linux/mm/filemap.c 3 * 4 * Copyright (C) 1994-1999 Linus Torvalds 5 */ 6 7 /* 8 * This file handles the generic file mmap semantics used by 9 * most "normal" filesystems (but you don't /have/ to use this: 10 * the NFS filesystem used to do this differently, for example) 11 */ 12 #include <linux/module.h> 13 #include <linux/slab.h> 14 #include <linux/compiler.h> 15 #include <linux/fs.h> 16 #include <linux/uaccess.h> 17 #include <linux/aio.h> 18 #include <linux/capability.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/mm.h> 21 #include <linux/swap.h> 22 #include <linux/mman.h> 23 #include <linux/pagemap.h> 24 #include <linux/file.h> 25 #include <linux/uio.h> 26 #include <linux/hash.h> 27 #include <linux/writeback.h> 28 #include <linux/backing-dev.h> 29 #include <linux/pagevec.h> 30 #include <linux/blkdev.h> 31 #include <linux/security.h> 32 #include <linux/syscalls.h> 33 #include <linux/cpuset.h> 34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */ 35 #include <linux/memcontrol.h> 36 #include <linux/mm_inline.h> /* for page_is_file_cache() */ 37 #include "internal.h" 38 39 /* 40 * FIXME: remove all knowledge of the buffer layer from the core VM 41 */ 42 #include <linux/buffer_head.h> /* for generic_osync_inode */ 43 44 #include <asm/mman.h> 45 46 47 /* 48 * Shared mappings implemented 30.11.1994. It's not fully working yet, 49 * though. 50 * 51 * Shared mappings now work. 15.8.1995 Bruno. 52 * 53 * finished 'unifying' the page and buffer cache and SMP-threaded the 54 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 55 * 56 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 57 */ 58 59 /* 60 * Lock ordering: 61 * 62 * ->i_mmap_lock (vmtruncate) 63 * ->private_lock (__free_pte->__set_page_dirty_buffers) 64 * ->swap_lock (exclusive_swap_page, others) 65 * ->mapping->tree_lock 66 * 67 * ->i_mutex 68 * ->i_mmap_lock (truncate->unmap_mapping_range) 69 * 70 * ->mmap_sem 71 * ->i_mmap_lock 72 * ->page_table_lock or pte_lock (various, mainly in memory.c) 73 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock) 74 * 75 * ->mmap_sem 76 * ->lock_page (access_process_vm) 77 * 78 * ->i_mutex (generic_file_buffered_write) 79 * ->mmap_sem (fault_in_pages_readable->do_page_fault) 80 * 81 * ->i_mutex 82 * ->i_alloc_sem (various) 83 * 84 * ->inode_lock 85 * ->sb_lock (fs/fs-writeback.c) 86 * ->mapping->tree_lock (__sync_single_inode) 87 * 88 * ->i_mmap_lock 89 * ->anon_vma.lock (vma_adjust) 90 * 91 * ->anon_vma.lock 92 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 93 * 94 * ->page_table_lock or pte_lock 95 * ->swap_lock (try_to_unmap_one) 96 * ->private_lock (try_to_unmap_one) 97 * ->tree_lock (try_to_unmap_one) 98 * ->zone.lru_lock (follow_page->mark_page_accessed) 99 * ->zone.lru_lock (check_pte_range->isolate_lru_page) 100 * ->private_lock (page_remove_rmap->set_page_dirty) 101 * ->tree_lock (page_remove_rmap->set_page_dirty) 102 * ->inode_lock (page_remove_rmap->set_page_dirty) 103 * ->inode_lock (zap_pte_range->set_page_dirty) 104 * ->private_lock (zap_pte_range->__set_page_dirty_buffers) 105 * 106 * ->task->proc_lock 107 * ->dcache_lock (proc_pid_lookup) 108 */ 109 110 /* 111 * Remove a page from the page cache and free it. Caller has to make 112 * sure the page is locked and that nobody else uses it - or that usage 113 * is safe. The caller must hold the mapping's tree_lock. 114 */ 115 void __remove_from_page_cache(struct page *page) 116 { 117 struct address_space *mapping = page->mapping; 118 119 radix_tree_delete(&mapping->page_tree, page->index); 120 page->mapping = NULL; 121 mapping->nrpages--; 122 __dec_zone_page_state(page, NR_FILE_PAGES); 123 BUG_ON(page_mapped(page)); 124 mem_cgroup_uncharge_cache_page(page); 125 126 /* 127 * Some filesystems seem to re-dirty the page even after 128 * the VM has canceled the dirty bit (eg ext3 journaling). 129 * 130 * Fix it up by doing a final dirty accounting check after 131 * having removed the page entirely. 132 */ 133 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) { 134 dec_zone_page_state(page, NR_FILE_DIRTY); 135 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE); 136 } 137 } 138 139 void remove_from_page_cache(struct page *page) 140 { 141 struct address_space *mapping = page->mapping; 142 143 BUG_ON(!PageLocked(page)); 144 145 spin_lock_irq(&mapping->tree_lock); 146 __remove_from_page_cache(page); 147 spin_unlock_irq(&mapping->tree_lock); 148 } 149 150 static int sync_page(void *word) 151 { 152 struct address_space *mapping; 153 struct page *page; 154 155 page = container_of((unsigned long *)word, struct page, flags); 156 157 /* 158 * page_mapping() is being called without PG_locked held. 159 * Some knowledge of the state and use of the page is used to 160 * reduce the requirements down to a memory barrier. 161 * The danger here is of a stale page_mapping() return value 162 * indicating a struct address_space different from the one it's 163 * associated with when it is associated with one. 164 * After smp_mb(), it's either the correct page_mapping() for 165 * the page, or an old page_mapping() and the page's own 166 * page_mapping() has gone NULL. 167 * The ->sync_page() address_space operation must tolerate 168 * page_mapping() going NULL. By an amazing coincidence, 169 * this comes about because none of the users of the page 170 * in the ->sync_page() methods make essential use of the 171 * page_mapping(), merely passing the page down to the backing 172 * device's unplug functions when it's non-NULL, which in turn 173 * ignore it for all cases but swap, where only page_private(page) is 174 * of interest. When page_mapping() does go NULL, the entire 175 * call stack gracefully ignores the page and returns. 176 * -- wli 177 */ 178 smp_mb(); 179 mapping = page_mapping(page); 180 if (mapping && mapping->a_ops && mapping->a_ops->sync_page) 181 mapping->a_ops->sync_page(page); 182 io_schedule(); 183 return 0; 184 } 185 186 static int sync_page_killable(void *word) 187 { 188 sync_page(word); 189 return fatal_signal_pending(current) ? -EINTR : 0; 190 } 191 192 /** 193 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 194 * @mapping: address space structure to write 195 * @start: offset in bytes where the range starts 196 * @end: offset in bytes where the range ends (inclusive) 197 * @sync_mode: enable synchronous operation 198 * 199 * Start writeback against all of a mapping's dirty pages that lie 200 * within the byte offsets <start, end> inclusive. 201 * 202 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 203 * opposed to a regular memory cleansing writeback. The difference between 204 * these two operations is that if a dirty page/buffer is encountered, it must 205 * be waited upon, and not just skipped over. 206 */ 207 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 208 loff_t end, int sync_mode) 209 { 210 int ret; 211 struct writeback_control wbc = { 212 .sync_mode = sync_mode, 213 .nr_to_write = LONG_MAX, 214 .range_start = start, 215 .range_end = end, 216 }; 217 218 if (!mapping_cap_writeback_dirty(mapping)) 219 return 0; 220 221 ret = do_writepages(mapping, &wbc); 222 return ret; 223 } 224 225 static inline int __filemap_fdatawrite(struct address_space *mapping, 226 int sync_mode) 227 { 228 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 229 } 230 231 int filemap_fdatawrite(struct address_space *mapping) 232 { 233 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 234 } 235 EXPORT_SYMBOL(filemap_fdatawrite); 236 237 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 238 loff_t end) 239 { 240 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 241 } 242 EXPORT_SYMBOL(filemap_fdatawrite_range); 243 244 /** 245 * filemap_flush - mostly a non-blocking flush 246 * @mapping: target address_space 247 * 248 * This is a mostly non-blocking flush. Not suitable for data-integrity 249 * purposes - I/O may not be started against all dirty pages. 250 */ 251 int filemap_flush(struct address_space *mapping) 252 { 253 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 254 } 255 EXPORT_SYMBOL(filemap_flush); 256 257 /** 258 * wait_on_page_writeback_range - wait for writeback to complete 259 * @mapping: target address_space 260 * @start: beginning page index 261 * @end: ending page index 262 * 263 * Wait for writeback to complete against pages indexed by start->end 264 * inclusive 265 */ 266 int wait_on_page_writeback_range(struct address_space *mapping, 267 pgoff_t start, pgoff_t end) 268 { 269 struct pagevec pvec; 270 int nr_pages; 271 int ret = 0; 272 pgoff_t index; 273 274 if (end < start) 275 return 0; 276 277 pagevec_init(&pvec, 0); 278 index = start; 279 while ((index <= end) && 280 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 281 PAGECACHE_TAG_WRITEBACK, 282 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) { 283 unsigned i; 284 285 for (i = 0; i < nr_pages; i++) { 286 struct page *page = pvec.pages[i]; 287 288 /* until radix tree lookup accepts end_index */ 289 if (page->index > end) 290 continue; 291 292 wait_on_page_writeback(page); 293 if (PageError(page)) 294 ret = -EIO; 295 } 296 pagevec_release(&pvec); 297 cond_resched(); 298 } 299 300 /* Check for outstanding write errors */ 301 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 302 ret = -ENOSPC; 303 if (test_and_clear_bit(AS_EIO, &mapping->flags)) 304 ret = -EIO; 305 306 return ret; 307 } 308 309 /** 310 * sync_page_range - write and wait on all pages in the passed range 311 * @inode: target inode 312 * @mapping: target address_space 313 * @pos: beginning offset in pages to write 314 * @count: number of bytes to write 315 * 316 * Write and wait upon all the pages in the passed range. This is a "data 317 * integrity" operation. It waits upon in-flight writeout before starting and 318 * waiting upon new writeout. If there was an IO error, return it. 319 * 320 * We need to re-take i_mutex during the generic_osync_inode list walk because 321 * it is otherwise livelockable. 322 */ 323 int sync_page_range(struct inode *inode, struct address_space *mapping, 324 loff_t pos, loff_t count) 325 { 326 pgoff_t start = pos >> PAGE_CACHE_SHIFT; 327 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT; 328 int ret; 329 330 if (!mapping_cap_writeback_dirty(mapping) || !count) 331 return 0; 332 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1); 333 if (ret == 0) { 334 mutex_lock(&inode->i_mutex); 335 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA); 336 mutex_unlock(&inode->i_mutex); 337 } 338 if (ret == 0) 339 ret = wait_on_page_writeback_range(mapping, start, end); 340 return ret; 341 } 342 EXPORT_SYMBOL(sync_page_range); 343 344 /** 345 * sync_page_range_nolock - write & wait on all pages in the passed range without locking 346 * @inode: target inode 347 * @mapping: target address_space 348 * @pos: beginning offset in pages to write 349 * @count: number of bytes to write 350 * 351 * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea 352 * as it forces O_SYNC writers to different parts of the same file 353 * to be serialised right until io completion. 354 */ 355 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping, 356 loff_t pos, loff_t count) 357 { 358 pgoff_t start = pos >> PAGE_CACHE_SHIFT; 359 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT; 360 int ret; 361 362 if (!mapping_cap_writeback_dirty(mapping) || !count) 363 return 0; 364 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1); 365 if (ret == 0) 366 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA); 367 if (ret == 0) 368 ret = wait_on_page_writeback_range(mapping, start, end); 369 return ret; 370 } 371 EXPORT_SYMBOL(sync_page_range_nolock); 372 373 /** 374 * filemap_fdatawait - wait for all under-writeback pages to complete 375 * @mapping: address space structure to wait for 376 * 377 * Walk the list of under-writeback pages of the given address space 378 * and wait for all of them. 379 */ 380 int filemap_fdatawait(struct address_space *mapping) 381 { 382 loff_t i_size = i_size_read(mapping->host); 383 384 if (i_size == 0) 385 return 0; 386 387 return wait_on_page_writeback_range(mapping, 0, 388 (i_size - 1) >> PAGE_CACHE_SHIFT); 389 } 390 EXPORT_SYMBOL(filemap_fdatawait); 391 392 int filemap_write_and_wait(struct address_space *mapping) 393 { 394 int err = 0; 395 396 if (mapping->nrpages) { 397 err = filemap_fdatawrite(mapping); 398 /* 399 * Even if the above returned error, the pages may be 400 * written partially (e.g. -ENOSPC), so we wait for it. 401 * But the -EIO is special case, it may indicate the worst 402 * thing (e.g. bug) happened, so we avoid waiting for it. 403 */ 404 if (err != -EIO) { 405 int err2 = filemap_fdatawait(mapping); 406 if (!err) 407 err = err2; 408 } 409 } 410 return err; 411 } 412 EXPORT_SYMBOL(filemap_write_and_wait); 413 414 /** 415 * filemap_write_and_wait_range - write out & wait on a file range 416 * @mapping: the address_space for the pages 417 * @lstart: offset in bytes where the range starts 418 * @lend: offset in bytes where the range ends (inclusive) 419 * 420 * Write out and wait upon file offsets lstart->lend, inclusive. 421 * 422 * Note that `lend' is inclusive (describes the last byte to be written) so 423 * that this function can be used to write to the very end-of-file (end = -1). 424 */ 425 int filemap_write_and_wait_range(struct address_space *mapping, 426 loff_t lstart, loff_t lend) 427 { 428 int err = 0; 429 430 if (mapping->nrpages) { 431 err = __filemap_fdatawrite_range(mapping, lstart, lend, 432 WB_SYNC_ALL); 433 /* See comment of filemap_write_and_wait() */ 434 if (err != -EIO) { 435 int err2 = wait_on_page_writeback_range(mapping, 436 lstart >> PAGE_CACHE_SHIFT, 437 lend >> PAGE_CACHE_SHIFT); 438 if (!err) 439 err = err2; 440 } 441 } 442 return err; 443 } 444 445 /** 446 * add_to_page_cache_locked - add a locked page to the pagecache 447 * @page: page to add 448 * @mapping: the page's address_space 449 * @offset: page index 450 * @gfp_mask: page allocation mode 451 * 452 * This function is used to add a page to the pagecache. It must be locked. 453 * This function does not add the page to the LRU. The caller must do that. 454 */ 455 int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 456 pgoff_t offset, gfp_t gfp_mask) 457 { 458 int error; 459 460 VM_BUG_ON(!PageLocked(page)); 461 462 error = mem_cgroup_cache_charge(page, current->mm, 463 gfp_mask & GFP_RECLAIM_MASK); 464 if (error) 465 goto out; 466 467 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM); 468 if (error == 0) { 469 page_cache_get(page); 470 page->mapping = mapping; 471 page->index = offset; 472 473 spin_lock_irq(&mapping->tree_lock); 474 error = radix_tree_insert(&mapping->page_tree, offset, page); 475 if (likely(!error)) { 476 mapping->nrpages++; 477 __inc_zone_page_state(page, NR_FILE_PAGES); 478 } else { 479 page->mapping = NULL; 480 mem_cgroup_uncharge_cache_page(page); 481 page_cache_release(page); 482 } 483 484 spin_unlock_irq(&mapping->tree_lock); 485 radix_tree_preload_end(); 486 } else 487 mem_cgroup_uncharge_cache_page(page); 488 out: 489 return error; 490 } 491 EXPORT_SYMBOL(add_to_page_cache_locked); 492 493 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 494 pgoff_t offset, gfp_t gfp_mask) 495 { 496 int ret; 497 498 /* 499 * Splice_read and readahead add shmem/tmpfs pages into the page cache 500 * before shmem_readpage has a chance to mark them as SwapBacked: they 501 * need to go on the active_anon lru below, and mem_cgroup_cache_charge 502 * (called in add_to_page_cache) needs to know where they're going too. 503 */ 504 if (mapping_cap_swap_backed(mapping)) 505 SetPageSwapBacked(page); 506 507 ret = add_to_page_cache(page, mapping, offset, gfp_mask); 508 if (ret == 0) { 509 if (page_is_file_cache(page)) 510 lru_cache_add_file(page); 511 else 512 lru_cache_add_active_anon(page); 513 } 514 return ret; 515 } 516 EXPORT_SYMBOL_GPL(add_to_page_cache_lru); 517 518 #ifdef CONFIG_NUMA 519 struct page *__page_cache_alloc(gfp_t gfp) 520 { 521 if (cpuset_do_page_mem_spread()) { 522 int n = cpuset_mem_spread_node(); 523 return alloc_pages_node(n, gfp, 0); 524 } 525 return alloc_pages(gfp, 0); 526 } 527 EXPORT_SYMBOL(__page_cache_alloc); 528 #endif 529 530 static int __sleep_on_page_lock(void *word) 531 { 532 io_schedule(); 533 return 0; 534 } 535 536 /* 537 * In order to wait for pages to become available there must be 538 * waitqueues associated with pages. By using a hash table of 539 * waitqueues where the bucket discipline is to maintain all 540 * waiters on the same queue and wake all when any of the pages 541 * become available, and for the woken contexts to check to be 542 * sure the appropriate page became available, this saves space 543 * at a cost of "thundering herd" phenomena during rare hash 544 * collisions. 545 */ 546 static wait_queue_head_t *page_waitqueue(struct page *page) 547 { 548 const struct zone *zone = page_zone(page); 549 550 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)]; 551 } 552 553 static inline void wake_up_page(struct page *page, int bit) 554 { 555 __wake_up_bit(page_waitqueue(page), &page->flags, bit); 556 } 557 558 void wait_on_page_bit(struct page *page, int bit_nr) 559 { 560 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr); 561 562 if (test_bit(bit_nr, &page->flags)) 563 __wait_on_bit(page_waitqueue(page), &wait, sync_page, 564 TASK_UNINTERRUPTIBLE); 565 } 566 EXPORT_SYMBOL(wait_on_page_bit); 567 568 /** 569 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue 570 * @page: Page defining the wait queue of interest 571 * @waiter: Waiter to add to the queue 572 * 573 * Add an arbitrary @waiter to the wait queue for the nominated @page. 574 */ 575 void add_page_wait_queue(struct page *page, wait_queue_t *waiter) 576 { 577 wait_queue_head_t *q = page_waitqueue(page); 578 unsigned long flags; 579 580 spin_lock_irqsave(&q->lock, flags); 581 __add_wait_queue(q, waiter); 582 spin_unlock_irqrestore(&q->lock, flags); 583 } 584 EXPORT_SYMBOL_GPL(add_page_wait_queue); 585 586 /** 587 * unlock_page - unlock a locked page 588 * @page: the page 589 * 590 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). 591 * Also wakes sleepers in wait_on_page_writeback() because the wakeup 592 * mechananism between PageLocked pages and PageWriteback pages is shared. 593 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. 594 * 595 * The mb is necessary to enforce ordering between the clear_bit and the read 596 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()). 597 */ 598 void unlock_page(struct page *page) 599 { 600 VM_BUG_ON(!PageLocked(page)); 601 clear_bit_unlock(PG_locked, &page->flags); 602 smp_mb__after_clear_bit(); 603 wake_up_page(page, PG_locked); 604 } 605 EXPORT_SYMBOL(unlock_page); 606 607 /** 608 * end_page_writeback - end writeback against a page 609 * @page: the page 610 */ 611 void end_page_writeback(struct page *page) 612 { 613 if (TestClearPageReclaim(page)) 614 rotate_reclaimable_page(page); 615 616 if (!test_clear_page_writeback(page)) 617 BUG(); 618 619 smp_mb__after_clear_bit(); 620 wake_up_page(page, PG_writeback); 621 } 622 EXPORT_SYMBOL(end_page_writeback); 623 624 /** 625 * __lock_page - get a lock on the page, assuming we need to sleep to get it 626 * @page: the page to lock 627 * 628 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some 629 * random driver's requestfn sets TASK_RUNNING, we could busywait. However 630 * chances are that on the second loop, the block layer's plug list is empty, 631 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE. 632 */ 633 void __lock_page(struct page *page) 634 { 635 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 636 637 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page, 638 TASK_UNINTERRUPTIBLE); 639 } 640 EXPORT_SYMBOL(__lock_page); 641 642 int __lock_page_killable(struct page *page) 643 { 644 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 645 646 return __wait_on_bit_lock(page_waitqueue(page), &wait, 647 sync_page_killable, TASK_KILLABLE); 648 } 649 EXPORT_SYMBOL_GPL(__lock_page_killable); 650 651 /** 652 * __lock_page_nosync - get a lock on the page, without calling sync_page() 653 * @page: the page to lock 654 * 655 * Variant of lock_page that does not require the caller to hold a reference 656 * on the page's mapping. 657 */ 658 void __lock_page_nosync(struct page *page) 659 { 660 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 661 __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock, 662 TASK_UNINTERRUPTIBLE); 663 } 664 665 /** 666 * find_get_page - find and get a page reference 667 * @mapping: the address_space to search 668 * @offset: the page index 669 * 670 * Is there a pagecache struct page at the given (mapping, offset) tuple? 671 * If yes, increment its refcount and return it; if no, return NULL. 672 */ 673 struct page *find_get_page(struct address_space *mapping, pgoff_t offset) 674 { 675 void **pagep; 676 struct page *page; 677 678 rcu_read_lock(); 679 repeat: 680 page = NULL; 681 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset); 682 if (pagep) { 683 page = radix_tree_deref_slot(pagep); 684 if (unlikely(!page || page == RADIX_TREE_RETRY)) 685 goto repeat; 686 687 if (!page_cache_get_speculative(page)) 688 goto repeat; 689 690 /* 691 * Has the page moved? 692 * This is part of the lockless pagecache protocol. See 693 * include/linux/pagemap.h for details. 694 */ 695 if (unlikely(page != *pagep)) { 696 page_cache_release(page); 697 goto repeat; 698 } 699 } 700 rcu_read_unlock(); 701 702 return page; 703 } 704 EXPORT_SYMBOL(find_get_page); 705 706 /** 707 * find_lock_page - locate, pin and lock a pagecache page 708 * @mapping: the address_space to search 709 * @offset: the page index 710 * 711 * Locates the desired pagecache page, locks it, increments its reference 712 * count and returns its address. 713 * 714 * Returns zero if the page was not present. find_lock_page() may sleep. 715 */ 716 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset) 717 { 718 struct page *page; 719 720 repeat: 721 page = find_get_page(mapping, offset); 722 if (page) { 723 lock_page(page); 724 /* Has the page been truncated? */ 725 if (unlikely(page->mapping != mapping)) { 726 unlock_page(page); 727 page_cache_release(page); 728 goto repeat; 729 } 730 VM_BUG_ON(page->index != offset); 731 } 732 return page; 733 } 734 EXPORT_SYMBOL(find_lock_page); 735 736 /** 737 * find_or_create_page - locate or add a pagecache page 738 * @mapping: the page's address_space 739 * @index: the page's index into the mapping 740 * @gfp_mask: page allocation mode 741 * 742 * Locates a page in the pagecache. If the page is not present, a new page 743 * is allocated using @gfp_mask and is added to the pagecache and to the VM's 744 * LRU list. The returned page is locked and has its reference count 745 * incremented. 746 * 747 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic 748 * allocation! 749 * 750 * find_or_create_page() returns the desired page's address, or zero on 751 * memory exhaustion. 752 */ 753 struct page *find_or_create_page(struct address_space *mapping, 754 pgoff_t index, gfp_t gfp_mask) 755 { 756 struct page *page; 757 int err; 758 repeat: 759 page = find_lock_page(mapping, index); 760 if (!page) { 761 page = __page_cache_alloc(gfp_mask); 762 if (!page) 763 return NULL; 764 /* 765 * We want a regular kernel memory (not highmem or DMA etc) 766 * allocation for the radix tree nodes, but we need to honour 767 * the context-specific requirements the caller has asked for. 768 * GFP_RECLAIM_MASK collects those requirements. 769 */ 770 err = add_to_page_cache_lru(page, mapping, index, 771 (gfp_mask & GFP_RECLAIM_MASK)); 772 if (unlikely(err)) { 773 page_cache_release(page); 774 page = NULL; 775 if (err == -EEXIST) 776 goto repeat; 777 } 778 } 779 return page; 780 } 781 EXPORT_SYMBOL(find_or_create_page); 782 783 /** 784 * find_get_pages - gang pagecache lookup 785 * @mapping: The address_space to search 786 * @start: The starting page index 787 * @nr_pages: The maximum number of pages 788 * @pages: Where the resulting pages are placed 789 * 790 * find_get_pages() will search for and return a group of up to 791 * @nr_pages pages in the mapping. The pages are placed at @pages. 792 * find_get_pages() takes a reference against the returned pages. 793 * 794 * The search returns a group of mapping-contiguous pages with ascending 795 * indexes. There may be holes in the indices due to not-present pages. 796 * 797 * find_get_pages() returns the number of pages which were found. 798 */ 799 unsigned find_get_pages(struct address_space *mapping, pgoff_t start, 800 unsigned int nr_pages, struct page **pages) 801 { 802 unsigned int i; 803 unsigned int ret; 804 unsigned int nr_found; 805 806 rcu_read_lock(); 807 restart: 808 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree, 809 (void ***)pages, start, nr_pages); 810 ret = 0; 811 for (i = 0; i < nr_found; i++) { 812 struct page *page; 813 repeat: 814 page = radix_tree_deref_slot((void **)pages[i]); 815 if (unlikely(!page)) 816 continue; 817 /* 818 * this can only trigger if nr_found == 1, making livelock 819 * a non issue. 820 */ 821 if (unlikely(page == RADIX_TREE_RETRY)) 822 goto restart; 823 824 if (!page_cache_get_speculative(page)) 825 goto repeat; 826 827 /* Has the page moved? */ 828 if (unlikely(page != *((void **)pages[i]))) { 829 page_cache_release(page); 830 goto repeat; 831 } 832 833 pages[ret] = page; 834 ret++; 835 } 836 rcu_read_unlock(); 837 return ret; 838 } 839 840 /** 841 * find_get_pages_contig - gang contiguous pagecache lookup 842 * @mapping: The address_space to search 843 * @index: The starting page index 844 * @nr_pages: The maximum number of pages 845 * @pages: Where the resulting pages are placed 846 * 847 * find_get_pages_contig() works exactly like find_get_pages(), except 848 * that the returned number of pages are guaranteed to be contiguous. 849 * 850 * find_get_pages_contig() returns the number of pages which were found. 851 */ 852 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, 853 unsigned int nr_pages, struct page **pages) 854 { 855 unsigned int i; 856 unsigned int ret; 857 unsigned int nr_found; 858 859 rcu_read_lock(); 860 restart: 861 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree, 862 (void ***)pages, index, nr_pages); 863 ret = 0; 864 for (i = 0; i < nr_found; i++) { 865 struct page *page; 866 repeat: 867 page = radix_tree_deref_slot((void **)pages[i]); 868 if (unlikely(!page)) 869 continue; 870 /* 871 * this can only trigger if nr_found == 1, making livelock 872 * a non issue. 873 */ 874 if (unlikely(page == RADIX_TREE_RETRY)) 875 goto restart; 876 877 if (page->mapping == NULL || page->index != index) 878 break; 879 880 if (!page_cache_get_speculative(page)) 881 goto repeat; 882 883 /* Has the page moved? */ 884 if (unlikely(page != *((void **)pages[i]))) { 885 page_cache_release(page); 886 goto repeat; 887 } 888 889 pages[ret] = page; 890 ret++; 891 index++; 892 } 893 rcu_read_unlock(); 894 return ret; 895 } 896 EXPORT_SYMBOL(find_get_pages_contig); 897 898 /** 899 * find_get_pages_tag - find and return pages that match @tag 900 * @mapping: the address_space to search 901 * @index: the starting page index 902 * @tag: the tag index 903 * @nr_pages: the maximum number of pages 904 * @pages: where the resulting pages are placed 905 * 906 * Like find_get_pages, except we only return pages which are tagged with 907 * @tag. We update @index to index the next page for the traversal. 908 */ 909 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, 910 int tag, unsigned int nr_pages, struct page **pages) 911 { 912 unsigned int i; 913 unsigned int ret; 914 unsigned int nr_found; 915 916 rcu_read_lock(); 917 restart: 918 nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree, 919 (void ***)pages, *index, nr_pages, tag); 920 ret = 0; 921 for (i = 0; i < nr_found; i++) { 922 struct page *page; 923 repeat: 924 page = radix_tree_deref_slot((void **)pages[i]); 925 if (unlikely(!page)) 926 continue; 927 /* 928 * this can only trigger if nr_found == 1, making livelock 929 * a non issue. 930 */ 931 if (unlikely(page == RADIX_TREE_RETRY)) 932 goto restart; 933 934 if (!page_cache_get_speculative(page)) 935 goto repeat; 936 937 /* Has the page moved? */ 938 if (unlikely(page != *((void **)pages[i]))) { 939 page_cache_release(page); 940 goto repeat; 941 } 942 943 pages[ret] = page; 944 ret++; 945 } 946 rcu_read_unlock(); 947 948 if (ret) 949 *index = pages[ret - 1]->index + 1; 950 951 return ret; 952 } 953 EXPORT_SYMBOL(find_get_pages_tag); 954 955 /** 956 * grab_cache_page_nowait - returns locked page at given index in given cache 957 * @mapping: target address_space 958 * @index: the page index 959 * 960 * Same as grab_cache_page(), but do not wait if the page is unavailable. 961 * This is intended for speculative data generators, where the data can 962 * be regenerated if the page couldn't be grabbed. This routine should 963 * be safe to call while holding the lock for another page. 964 * 965 * Clear __GFP_FS when allocating the page to avoid recursion into the fs 966 * and deadlock against the caller's locked page. 967 */ 968 struct page * 969 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index) 970 { 971 struct page *page = find_get_page(mapping, index); 972 973 if (page) { 974 if (trylock_page(page)) 975 return page; 976 page_cache_release(page); 977 return NULL; 978 } 979 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS); 980 if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) { 981 page_cache_release(page); 982 page = NULL; 983 } 984 return page; 985 } 986 EXPORT_SYMBOL(grab_cache_page_nowait); 987 988 /* 989 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 990 * a _large_ part of the i/o request. Imagine the worst scenario: 991 * 992 * ---R__________________________________________B__________ 993 * ^ reading here ^ bad block(assume 4k) 994 * 995 * read(R) => miss => readahead(R...B) => media error => frustrating retries 996 * => failing the whole request => read(R) => read(R+1) => 997 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 998 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 999 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 1000 * 1001 * It is going insane. Fix it by quickly scaling down the readahead size. 1002 */ 1003 static void shrink_readahead_size_eio(struct file *filp, 1004 struct file_ra_state *ra) 1005 { 1006 if (!ra->ra_pages) 1007 return; 1008 1009 ra->ra_pages /= 4; 1010 } 1011 1012 /** 1013 * do_generic_file_read - generic file read routine 1014 * @filp: the file to read 1015 * @ppos: current file position 1016 * @desc: read_descriptor 1017 * @actor: read method 1018 * 1019 * This is a generic file read routine, and uses the 1020 * mapping->a_ops->readpage() function for the actual low-level stuff. 1021 * 1022 * This is really ugly. But the goto's actually try to clarify some 1023 * of the logic when it comes to error handling etc. 1024 */ 1025 static void do_generic_file_read(struct file *filp, loff_t *ppos, 1026 read_descriptor_t *desc, read_actor_t actor) 1027 { 1028 struct address_space *mapping = filp->f_mapping; 1029 struct inode *inode = mapping->host; 1030 struct file_ra_state *ra = &filp->f_ra; 1031 pgoff_t index; 1032 pgoff_t last_index; 1033 pgoff_t prev_index; 1034 unsigned long offset; /* offset into pagecache page */ 1035 unsigned int prev_offset; 1036 int error; 1037 1038 index = *ppos >> PAGE_CACHE_SHIFT; 1039 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT; 1040 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1); 1041 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT; 1042 offset = *ppos & ~PAGE_CACHE_MASK; 1043 1044 for (;;) { 1045 struct page *page; 1046 pgoff_t end_index; 1047 loff_t isize; 1048 unsigned long nr, ret; 1049 1050 cond_resched(); 1051 find_page: 1052 page = find_get_page(mapping, index); 1053 if (!page) { 1054 page_cache_sync_readahead(mapping, 1055 ra, filp, 1056 index, last_index - index); 1057 page = find_get_page(mapping, index); 1058 if (unlikely(page == NULL)) 1059 goto no_cached_page; 1060 } 1061 if (PageReadahead(page)) { 1062 page_cache_async_readahead(mapping, 1063 ra, filp, page, 1064 index, last_index - index); 1065 } 1066 if (!PageUptodate(page)) { 1067 if (inode->i_blkbits == PAGE_CACHE_SHIFT || 1068 !mapping->a_ops->is_partially_uptodate) 1069 goto page_not_up_to_date; 1070 if (!trylock_page(page)) 1071 goto page_not_up_to_date; 1072 if (!mapping->a_ops->is_partially_uptodate(page, 1073 desc, offset)) 1074 goto page_not_up_to_date_locked; 1075 unlock_page(page); 1076 } 1077 page_ok: 1078 /* 1079 * i_size must be checked after we know the page is Uptodate. 1080 * 1081 * Checking i_size after the check allows us to calculate 1082 * the correct value for "nr", which means the zero-filled 1083 * part of the page is not copied back to userspace (unless 1084 * another truncate extends the file - this is desired though). 1085 */ 1086 1087 isize = i_size_read(inode); 1088 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 1089 if (unlikely(!isize || index > end_index)) { 1090 page_cache_release(page); 1091 goto out; 1092 } 1093 1094 /* nr is the maximum number of bytes to copy from this page */ 1095 nr = PAGE_CACHE_SIZE; 1096 if (index == end_index) { 1097 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 1098 if (nr <= offset) { 1099 page_cache_release(page); 1100 goto out; 1101 } 1102 } 1103 nr = nr - offset; 1104 1105 /* If users can be writing to this page using arbitrary 1106 * virtual addresses, take care about potential aliasing 1107 * before reading the page on the kernel side. 1108 */ 1109 if (mapping_writably_mapped(mapping)) 1110 flush_dcache_page(page); 1111 1112 /* 1113 * When a sequential read accesses a page several times, 1114 * only mark it as accessed the first time. 1115 */ 1116 if (prev_index != index || offset != prev_offset) 1117 mark_page_accessed(page); 1118 prev_index = index; 1119 1120 /* 1121 * Ok, we have the page, and it's up-to-date, so 1122 * now we can copy it to user space... 1123 * 1124 * The actor routine returns how many bytes were actually used.. 1125 * NOTE! This may not be the same as how much of a user buffer 1126 * we filled up (we may be padding etc), so we can only update 1127 * "pos" here (the actor routine has to update the user buffer 1128 * pointers and the remaining count). 1129 */ 1130 ret = actor(desc, page, offset, nr); 1131 offset += ret; 1132 index += offset >> PAGE_CACHE_SHIFT; 1133 offset &= ~PAGE_CACHE_MASK; 1134 prev_offset = offset; 1135 1136 page_cache_release(page); 1137 if (ret == nr && desc->count) 1138 continue; 1139 goto out; 1140 1141 page_not_up_to_date: 1142 /* Get exclusive access to the page ... */ 1143 error = lock_page_killable(page); 1144 if (unlikely(error)) 1145 goto readpage_error; 1146 1147 page_not_up_to_date_locked: 1148 /* Did it get truncated before we got the lock? */ 1149 if (!page->mapping) { 1150 unlock_page(page); 1151 page_cache_release(page); 1152 continue; 1153 } 1154 1155 /* Did somebody else fill it already? */ 1156 if (PageUptodate(page)) { 1157 unlock_page(page); 1158 goto page_ok; 1159 } 1160 1161 readpage: 1162 /* Start the actual read. The read will unlock the page. */ 1163 error = mapping->a_ops->readpage(filp, page); 1164 1165 if (unlikely(error)) { 1166 if (error == AOP_TRUNCATED_PAGE) { 1167 page_cache_release(page); 1168 goto find_page; 1169 } 1170 goto readpage_error; 1171 } 1172 1173 if (!PageUptodate(page)) { 1174 error = lock_page_killable(page); 1175 if (unlikely(error)) 1176 goto readpage_error; 1177 if (!PageUptodate(page)) { 1178 if (page->mapping == NULL) { 1179 /* 1180 * invalidate_inode_pages got it 1181 */ 1182 unlock_page(page); 1183 page_cache_release(page); 1184 goto find_page; 1185 } 1186 unlock_page(page); 1187 shrink_readahead_size_eio(filp, ra); 1188 error = -EIO; 1189 goto readpage_error; 1190 } 1191 unlock_page(page); 1192 } 1193 1194 goto page_ok; 1195 1196 readpage_error: 1197 /* UHHUH! A synchronous read error occurred. Report it */ 1198 desc->error = error; 1199 page_cache_release(page); 1200 goto out; 1201 1202 no_cached_page: 1203 /* 1204 * Ok, it wasn't cached, so we need to create a new 1205 * page.. 1206 */ 1207 page = page_cache_alloc_cold(mapping); 1208 if (!page) { 1209 desc->error = -ENOMEM; 1210 goto out; 1211 } 1212 error = add_to_page_cache_lru(page, mapping, 1213 index, GFP_KERNEL); 1214 if (error) { 1215 page_cache_release(page); 1216 if (error == -EEXIST) 1217 goto find_page; 1218 desc->error = error; 1219 goto out; 1220 } 1221 goto readpage; 1222 } 1223 1224 out: 1225 ra->prev_pos = prev_index; 1226 ra->prev_pos <<= PAGE_CACHE_SHIFT; 1227 ra->prev_pos |= prev_offset; 1228 1229 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset; 1230 file_accessed(filp); 1231 } 1232 1233 int file_read_actor(read_descriptor_t *desc, struct page *page, 1234 unsigned long offset, unsigned long size) 1235 { 1236 char *kaddr; 1237 unsigned long left, count = desc->count; 1238 1239 if (size > count) 1240 size = count; 1241 1242 /* 1243 * Faults on the destination of a read are common, so do it before 1244 * taking the kmap. 1245 */ 1246 if (!fault_in_pages_writeable(desc->arg.buf, size)) { 1247 kaddr = kmap_atomic(page, KM_USER0); 1248 left = __copy_to_user_inatomic(desc->arg.buf, 1249 kaddr + offset, size); 1250 kunmap_atomic(kaddr, KM_USER0); 1251 if (left == 0) 1252 goto success; 1253 } 1254 1255 /* Do it the slow way */ 1256 kaddr = kmap(page); 1257 left = __copy_to_user(desc->arg.buf, kaddr + offset, size); 1258 kunmap(page); 1259 1260 if (left) { 1261 size -= left; 1262 desc->error = -EFAULT; 1263 } 1264 success: 1265 desc->count = count - size; 1266 desc->written += size; 1267 desc->arg.buf += size; 1268 return size; 1269 } 1270 1271 /* 1272 * Performs necessary checks before doing a write 1273 * @iov: io vector request 1274 * @nr_segs: number of segments in the iovec 1275 * @count: number of bytes to write 1276 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE 1277 * 1278 * Adjust number of segments and amount of bytes to write (nr_segs should be 1279 * properly initialized first). Returns appropriate error code that caller 1280 * should return or zero in case that write should be allowed. 1281 */ 1282 int generic_segment_checks(const struct iovec *iov, 1283 unsigned long *nr_segs, size_t *count, int access_flags) 1284 { 1285 unsigned long seg; 1286 size_t cnt = 0; 1287 for (seg = 0; seg < *nr_segs; seg++) { 1288 const struct iovec *iv = &iov[seg]; 1289 1290 /* 1291 * If any segment has a negative length, or the cumulative 1292 * length ever wraps negative then return -EINVAL. 1293 */ 1294 cnt += iv->iov_len; 1295 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0)) 1296 return -EINVAL; 1297 if (access_ok(access_flags, iv->iov_base, iv->iov_len)) 1298 continue; 1299 if (seg == 0) 1300 return -EFAULT; 1301 *nr_segs = seg; 1302 cnt -= iv->iov_len; /* This segment is no good */ 1303 break; 1304 } 1305 *count = cnt; 1306 return 0; 1307 } 1308 EXPORT_SYMBOL(generic_segment_checks); 1309 1310 /** 1311 * generic_file_aio_read - generic filesystem read routine 1312 * @iocb: kernel I/O control block 1313 * @iov: io vector request 1314 * @nr_segs: number of segments in the iovec 1315 * @pos: current file position 1316 * 1317 * This is the "read()" routine for all filesystems 1318 * that can use the page cache directly. 1319 */ 1320 ssize_t 1321 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov, 1322 unsigned long nr_segs, loff_t pos) 1323 { 1324 struct file *filp = iocb->ki_filp; 1325 ssize_t retval; 1326 unsigned long seg; 1327 size_t count; 1328 loff_t *ppos = &iocb->ki_pos; 1329 1330 count = 0; 1331 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE); 1332 if (retval) 1333 return retval; 1334 1335 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ 1336 if (filp->f_flags & O_DIRECT) { 1337 loff_t size; 1338 struct address_space *mapping; 1339 struct inode *inode; 1340 1341 mapping = filp->f_mapping; 1342 inode = mapping->host; 1343 if (!count) 1344 goto out; /* skip atime */ 1345 size = i_size_read(inode); 1346 if (pos < size) { 1347 retval = filemap_write_and_wait_range(mapping, pos, 1348 pos + iov_length(iov, nr_segs) - 1); 1349 if (!retval) { 1350 retval = mapping->a_ops->direct_IO(READ, iocb, 1351 iov, pos, nr_segs); 1352 } 1353 if (retval > 0) 1354 *ppos = pos + retval; 1355 if (retval) { 1356 file_accessed(filp); 1357 goto out; 1358 } 1359 } 1360 } 1361 1362 for (seg = 0; seg < nr_segs; seg++) { 1363 read_descriptor_t desc; 1364 1365 desc.written = 0; 1366 desc.arg.buf = iov[seg].iov_base; 1367 desc.count = iov[seg].iov_len; 1368 if (desc.count == 0) 1369 continue; 1370 desc.error = 0; 1371 do_generic_file_read(filp, ppos, &desc, file_read_actor); 1372 retval += desc.written; 1373 if (desc.error) { 1374 retval = retval ?: desc.error; 1375 break; 1376 } 1377 if (desc.count > 0) 1378 break; 1379 } 1380 out: 1381 return retval; 1382 } 1383 EXPORT_SYMBOL(generic_file_aio_read); 1384 1385 static ssize_t 1386 do_readahead(struct address_space *mapping, struct file *filp, 1387 pgoff_t index, unsigned long nr) 1388 { 1389 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage) 1390 return -EINVAL; 1391 1392 force_page_cache_readahead(mapping, filp, index, 1393 max_sane_readahead(nr)); 1394 return 0; 1395 } 1396 1397 SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count) 1398 { 1399 ssize_t ret; 1400 struct file *file; 1401 1402 ret = -EBADF; 1403 file = fget(fd); 1404 if (file) { 1405 if (file->f_mode & FMODE_READ) { 1406 struct address_space *mapping = file->f_mapping; 1407 pgoff_t start = offset >> PAGE_CACHE_SHIFT; 1408 pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT; 1409 unsigned long len = end - start + 1; 1410 ret = do_readahead(mapping, file, start, len); 1411 } 1412 fput(file); 1413 } 1414 return ret; 1415 } 1416 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS 1417 asmlinkage long SyS_readahead(long fd, loff_t offset, long count) 1418 { 1419 return SYSC_readahead((int) fd, offset, (size_t) count); 1420 } 1421 SYSCALL_ALIAS(sys_readahead, SyS_readahead); 1422 #endif 1423 1424 #ifdef CONFIG_MMU 1425 /** 1426 * page_cache_read - adds requested page to the page cache if not already there 1427 * @file: file to read 1428 * @offset: page index 1429 * 1430 * This adds the requested page to the page cache if it isn't already there, 1431 * and schedules an I/O to read in its contents from disk. 1432 */ 1433 static int page_cache_read(struct file *file, pgoff_t offset) 1434 { 1435 struct address_space *mapping = file->f_mapping; 1436 struct page *page; 1437 int ret; 1438 1439 do { 1440 page = page_cache_alloc_cold(mapping); 1441 if (!page) 1442 return -ENOMEM; 1443 1444 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL); 1445 if (ret == 0) 1446 ret = mapping->a_ops->readpage(file, page); 1447 else if (ret == -EEXIST) 1448 ret = 0; /* losing race to add is OK */ 1449 1450 page_cache_release(page); 1451 1452 } while (ret == AOP_TRUNCATED_PAGE); 1453 1454 return ret; 1455 } 1456 1457 #define MMAP_LOTSAMISS (100) 1458 1459 /** 1460 * filemap_fault - read in file data for page fault handling 1461 * @vma: vma in which the fault was taken 1462 * @vmf: struct vm_fault containing details of the fault 1463 * 1464 * filemap_fault() is invoked via the vma operations vector for a 1465 * mapped memory region to read in file data during a page fault. 1466 * 1467 * The goto's are kind of ugly, but this streamlines the normal case of having 1468 * it in the page cache, and handles the special cases reasonably without 1469 * having a lot of duplicated code. 1470 */ 1471 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1472 { 1473 int error; 1474 struct file *file = vma->vm_file; 1475 struct address_space *mapping = file->f_mapping; 1476 struct file_ra_state *ra = &file->f_ra; 1477 struct inode *inode = mapping->host; 1478 struct page *page; 1479 pgoff_t size; 1480 int did_readaround = 0; 1481 int ret = 0; 1482 1483 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1484 if (vmf->pgoff >= size) 1485 return VM_FAULT_SIGBUS; 1486 1487 /* If we don't want any read-ahead, don't bother */ 1488 if (VM_RandomReadHint(vma)) 1489 goto no_cached_page; 1490 1491 /* 1492 * Do we have something in the page cache already? 1493 */ 1494 retry_find: 1495 page = find_lock_page(mapping, vmf->pgoff); 1496 /* 1497 * For sequential accesses, we use the generic readahead logic. 1498 */ 1499 if (VM_SequentialReadHint(vma)) { 1500 if (!page) { 1501 page_cache_sync_readahead(mapping, ra, file, 1502 vmf->pgoff, 1); 1503 page = find_lock_page(mapping, vmf->pgoff); 1504 if (!page) 1505 goto no_cached_page; 1506 } 1507 if (PageReadahead(page)) { 1508 page_cache_async_readahead(mapping, ra, file, page, 1509 vmf->pgoff, 1); 1510 } 1511 } 1512 1513 if (!page) { 1514 unsigned long ra_pages; 1515 1516 ra->mmap_miss++; 1517 1518 /* 1519 * Do we miss much more than hit in this file? If so, 1520 * stop bothering with read-ahead. It will only hurt. 1521 */ 1522 if (ra->mmap_miss > MMAP_LOTSAMISS) 1523 goto no_cached_page; 1524 1525 /* 1526 * To keep the pgmajfault counter straight, we need to 1527 * check did_readaround, as this is an inner loop. 1528 */ 1529 if (!did_readaround) { 1530 ret = VM_FAULT_MAJOR; 1531 count_vm_event(PGMAJFAULT); 1532 } 1533 did_readaround = 1; 1534 ra_pages = max_sane_readahead(file->f_ra.ra_pages); 1535 if (ra_pages) { 1536 pgoff_t start = 0; 1537 1538 if (vmf->pgoff > ra_pages / 2) 1539 start = vmf->pgoff - ra_pages / 2; 1540 do_page_cache_readahead(mapping, file, start, ra_pages); 1541 } 1542 page = find_lock_page(mapping, vmf->pgoff); 1543 if (!page) 1544 goto no_cached_page; 1545 } 1546 1547 if (!did_readaround) 1548 ra->mmap_miss--; 1549 1550 /* 1551 * We have a locked page in the page cache, now we need to check 1552 * that it's up-to-date. If not, it is going to be due to an error. 1553 */ 1554 if (unlikely(!PageUptodate(page))) 1555 goto page_not_uptodate; 1556 1557 /* Must recheck i_size under page lock */ 1558 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1559 if (unlikely(vmf->pgoff >= size)) { 1560 unlock_page(page); 1561 page_cache_release(page); 1562 return VM_FAULT_SIGBUS; 1563 } 1564 1565 /* 1566 * Found the page and have a reference on it. 1567 */ 1568 ra->prev_pos = (loff_t)page->index << PAGE_CACHE_SHIFT; 1569 vmf->page = page; 1570 return ret | VM_FAULT_LOCKED; 1571 1572 no_cached_page: 1573 /* 1574 * We're only likely to ever get here if MADV_RANDOM is in 1575 * effect. 1576 */ 1577 error = page_cache_read(file, vmf->pgoff); 1578 1579 /* 1580 * The page we want has now been added to the page cache. 1581 * In the unlikely event that someone removed it in the 1582 * meantime, we'll just come back here and read it again. 1583 */ 1584 if (error >= 0) 1585 goto retry_find; 1586 1587 /* 1588 * An error return from page_cache_read can result if the 1589 * system is low on memory, or a problem occurs while trying 1590 * to schedule I/O. 1591 */ 1592 if (error == -ENOMEM) 1593 return VM_FAULT_OOM; 1594 return VM_FAULT_SIGBUS; 1595 1596 page_not_uptodate: 1597 /* IO error path */ 1598 if (!did_readaround) { 1599 ret = VM_FAULT_MAJOR; 1600 count_vm_event(PGMAJFAULT); 1601 } 1602 1603 /* 1604 * Umm, take care of errors if the page isn't up-to-date. 1605 * Try to re-read it _once_. We do this synchronously, 1606 * because there really aren't any performance issues here 1607 * and we need to check for errors. 1608 */ 1609 ClearPageError(page); 1610 error = mapping->a_ops->readpage(file, page); 1611 if (!error) { 1612 wait_on_page_locked(page); 1613 if (!PageUptodate(page)) 1614 error = -EIO; 1615 } 1616 page_cache_release(page); 1617 1618 if (!error || error == AOP_TRUNCATED_PAGE) 1619 goto retry_find; 1620 1621 /* Things didn't work out. Return zero to tell the mm layer so. */ 1622 shrink_readahead_size_eio(file, ra); 1623 return VM_FAULT_SIGBUS; 1624 } 1625 EXPORT_SYMBOL(filemap_fault); 1626 1627 struct vm_operations_struct generic_file_vm_ops = { 1628 .fault = filemap_fault, 1629 }; 1630 1631 /* This is used for a general mmap of a disk file */ 1632 1633 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 1634 { 1635 struct address_space *mapping = file->f_mapping; 1636 1637 if (!mapping->a_ops->readpage) 1638 return -ENOEXEC; 1639 file_accessed(file); 1640 vma->vm_ops = &generic_file_vm_ops; 1641 vma->vm_flags |= VM_CAN_NONLINEAR; 1642 return 0; 1643 } 1644 1645 /* 1646 * This is for filesystems which do not implement ->writepage. 1647 */ 1648 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 1649 { 1650 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 1651 return -EINVAL; 1652 return generic_file_mmap(file, vma); 1653 } 1654 #else 1655 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 1656 { 1657 return -ENOSYS; 1658 } 1659 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) 1660 { 1661 return -ENOSYS; 1662 } 1663 #endif /* CONFIG_MMU */ 1664 1665 EXPORT_SYMBOL(generic_file_mmap); 1666 EXPORT_SYMBOL(generic_file_readonly_mmap); 1667 1668 static struct page *__read_cache_page(struct address_space *mapping, 1669 pgoff_t index, 1670 int (*filler)(void *,struct page*), 1671 void *data) 1672 { 1673 struct page *page; 1674 int err; 1675 repeat: 1676 page = find_get_page(mapping, index); 1677 if (!page) { 1678 page = page_cache_alloc_cold(mapping); 1679 if (!page) 1680 return ERR_PTR(-ENOMEM); 1681 err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL); 1682 if (unlikely(err)) { 1683 page_cache_release(page); 1684 if (err == -EEXIST) 1685 goto repeat; 1686 /* Presumably ENOMEM for radix tree node */ 1687 return ERR_PTR(err); 1688 } 1689 err = filler(data, page); 1690 if (err < 0) { 1691 page_cache_release(page); 1692 page = ERR_PTR(err); 1693 } 1694 } 1695 return page; 1696 } 1697 1698 /** 1699 * read_cache_page_async - read into page cache, fill it if needed 1700 * @mapping: the page's address_space 1701 * @index: the page index 1702 * @filler: function to perform the read 1703 * @data: destination for read data 1704 * 1705 * Same as read_cache_page, but don't wait for page to become unlocked 1706 * after submitting it to the filler. 1707 * 1708 * Read into the page cache. If a page already exists, and PageUptodate() is 1709 * not set, try to fill the page but don't wait for it to become unlocked. 1710 * 1711 * If the page does not get brought uptodate, return -EIO. 1712 */ 1713 struct page *read_cache_page_async(struct address_space *mapping, 1714 pgoff_t index, 1715 int (*filler)(void *,struct page*), 1716 void *data) 1717 { 1718 struct page *page; 1719 int err; 1720 1721 retry: 1722 page = __read_cache_page(mapping, index, filler, data); 1723 if (IS_ERR(page)) 1724 return page; 1725 if (PageUptodate(page)) 1726 goto out; 1727 1728 lock_page(page); 1729 if (!page->mapping) { 1730 unlock_page(page); 1731 page_cache_release(page); 1732 goto retry; 1733 } 1734 if (PageUptodate(page)) { 1735 unlock_page(page); 1736 goto out; 1737 } 1738 err = filler(data, page); 1739 if (err < 0) { 1740 page_cache_release(page); 1741 return ERR_PTR(err); 1742 } 1743 out: 1744 mark_page_accessed(page); 1745 return page; 1746 } 1747 EXPORT_SYMBOL(read_cache_page_async); 1748 1749 /** 1750 * read_cache_page - read into page cache, fill it if needed 1751 * @mapping: the page's address_space 1752 * @index: the page index 1753 * @filler: function to perform the read 1754 * @data: destination for read data 1755 * 1756 * Read into the page cache. If a page already exists, and PageUptodate() is 1757 * not set, try to fill the page then wait for it to become unlocked. 1758 * 1759 * If the page does not get brought uptodate, return -EIO. 1760 */ 1761 struct page *read_cache_page(struct address_space *mapping, 1762 pgoff_t index, 1763 int (*filler)(void *,struct page*), 1764 void *data) 1765 { 1766 struct page *page; 1767 1768 page = read_cache_page_async(mapping, index, filler, data); 1769 if (IS_ERR(page)) 1770 goto out; 1771 wait_on_page_locked(page); 1772 if (!PageUptodate(page)) { 1773 page_cache_release(page); 1774 page = ERR_PTR(-EIO); 1775 } 1776 out: 1777 return page; 1778 } 1779 EXPORT_SYMBOL(read_cache_page); 1780 1781 /* 1782 * The logic we want is 1783 * 1784 * if suid or (sgid and xgrp) 1785 * remove privs 1786 */ 1787 int should_remove_suid(struct dentry *dentry) 1788 { 1789 mode_t mode = dentry->d_inode->i_mode; 1790 int kill = 0; 1791 1792 /* suid always must be killed */ 1793 if (unlikely(mode & S_ISUID)) 1794 kill = ATTR_KILL_SUID; 1795 1796 /* 1797 * sgid without any exec bits is just a mandatory locking mark; leave 1798 * it alone. If some exec bits are set, it's a real sgid; kill it. 1799 */ 1800 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP))) 1801 kill |= ATTR_KILL_SGID; 1802 1803 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode))) 1804 return kill; 1805 1806 return 0; 1807 } 1808 EXPORT_SYMBOL(should_remove_suid); 1809 1810 static int __remove_suid(struct dentry *dentry, int kill) 1811 { 1812 struct iattr newattrs; 1813 1814 newattrs.ia_valid = ATTR_FORCE | kill; 1815 return notify_change(dentry, &newattrs); 1816 } 1817 1818 int file_remove_suid(struct file *file) 1819 { 1820 struct dentry *dentry = file->f_path.dentry; 1821 int killsuid = should_remove_suid(dentry); 1822 int killpriv = security_inode_need_killpriv(dentry); 1823 int error = 0; 1824 1825 if (killpriv < 0) 1826 return killpriv; 1827 if (killpriv) 1828 error = security_inode_killpriv(dentry); 1829 if (!error && killsuid) 1830 error = __remove_suid(dentry, killsuid); 1831 1832 return error; 1833 } 1834 EXPORT_SYMBOL(file_remove_suid); 1835 1836 static size_t __iovec_copy_from_user_inatomic(char *vaddr, 1837 const struct iovec *iov, size_t base, size_t bytes) 1838 { 1839 size_t copied = 0, left = 0; 1840 1841 while (bytes) { 1842 char __user *buf = iov->iov_base + base; 1843 int copy = min(bytes, iov->iov_len - base); 1844 1845 base = 0; 1846 left = __copy_from_user_inatomic(vaddr, buf, copy); 1847 copied += copy; 1848 bytes -= copy; 1849 vaddr += copy; 1850 iov++; 1851 1852 if (unlikely(left)) 1853 break; 1854 } 1855 return copied - left; 1856 } 1857 1858 /* 1859 * Copy as much as we can into the page and return the number of bytes which 1860 * were sucessfully copied. If a fault is encountered then return the number of 1861 * bytes which were copied. 1862 */ 1863 size_t iov_iter_copy_from_user_atomic(struct page *page, 1864 struct iov_iter *i, unsigned long offset, size_t bytes) 1865 { 1866 char *kaddr; 1867 size_t copied; 1868 1869 BUG_ON(!in_atomic()); 1870 kaddr = kmap_atomic(page, KM_USER0); 1871 if (likely(i->nr_segs == 1)) { 1872 int left; 1873 char __user *buf = i->iov->iov_base + i->iov_offset; 1874 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes); 1875 copied = bytes - left; 1876 } else { 1877 copied = __iovec_copy_from_user_inatomic(kaddr + offset, 1878 i->iov, i->iov_offset, bytes); 1879 } 1880 kunmap_atomic(kaddr, KM_USER0); 1881 1882 return copied; 1883 } 1884 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic); 1885 1886 /* 1887 * This has the same sideeffects and return value as 1888 * iov_iter_copy_from_user_atomic(). 1889 * The difference is that it attempts to resolve faults. 1890 * Page must not be locked. 1891 */ 1892 size_t iov_iter_copy_from_user(struct page *page, 1893 struct iov_iter *i, unsigned long offset, size_t bytes) 1894 { 1895 char *kaddr; 1896 size_t copied; 1897 1898 kaddr = kmap(page); 1899 if (likely(i->nr_segs == 1)) { 1900 int left; 1901 char __user *buf = i->iov->iov_base + i->iov_offset; 1902 left = __copy_from_user(kaddr + offset, buf, bytes); 1903 copied = bytes - left; 1904 } else { 1905 copied = __iovec_copy_from_user_inatomic(kaddr + offset, 1906 i->iov, i->iov_offset, bytes); 1907 } 1908 kunmap(page); 1909 return copied; 1910 } 1911 EXPORT_SYMBOL(iov_iter_copy_from_user); 1912 1913 void iov_iter_advance(struct iov_iter *i, size_t bytes) 1914 { 1915 BUG_ON(i->count < bytes); 1916 1917 if (likely(i->nr_segs == 1)) { 1918 i->iov_offset += bytes; 1919 i->count -= bytes; 1920 } else { 1921 const struct iovec *iov = i->iov; 1922 size_t base = i->iov_offset; 1923 1924 /* 1925 * The !iov->iov_len check ensures we skip over unlikely 1926 * zero-length segments (without overruning the iovec). 1927 */ 1928 while (bytes || unlikely(i->count && !iov->iov_len)) { 1929 int copy; 1930 1931 copy = min(bytes, iov->iov_len - base); 1932 BUG_ON(!i->count || i->count < copy); 1933 i->count -= copy; 1934 bytes -= copy; 1935 base += copy; 1936 if (iov->iov_len == base) { 1937 iov++; 1938 base = 0; 1939 } 1940 } 1941 i->iov = iov; 1942 i->iov_offset = base; 1943 } 1944 } 1945 EXPORT_SYMBOL(iov_iter_advance); 1946 1947 /* 1948 * Fault in the first iovec of the given iov_iter, to a maximum length 1949 * of bytes. Returns 0 on success, or non-zero if the memory could not be 1950 * accessed (ie. because it is an invalid address). 1951 * 1952 * writev-intensive code may want this to prefault several iovecs -- that 1953 * would be possible (callers must not rely on the fact that _only_ the 1954 * first iovec will be faulted with the current implementation). 1955 */ 1956 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes) 1957 { 1958 char __user *buf = i->iov->iov_base + i->iov_offset; 1959 bytes = min(bytes, i->iov->iov_len - i->iov_offset); 1960 return fault_in_pages_readable(buf, bytes); 1961 } 1962 EXPORT_SYMBOL(iov_iter_fault_in_readable); 1963 1964 /* 1965 * Return the count of just the current iov_iter segment. 1966 */ 1967 size_t iov_iter_single_seg_count(struct iov_iter *i) 1968 { 1969 const struct iovec *iov = i->iov; 1970 if (i->nr_segs == 1) 1971 return i->count; 1972 else 1973 return min(i->count, iov->iov_len - i->iov_offset); 1974 } 1975 EXPORT_SYMBOL(iov_iter_single_seg_count); 1976 1977 /* 1978 * Performs necessary checks before doing a write 1979 * 1980 * Can adjust writing position or amount of bytes to write. 1981 * Returns appropriate error code that caller should return or 1982 * zero in case that write should be allowed. 1983 */ 1984 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk) 1985 { 1986 struct inode *inode = file->f_mapping->host; 1987 unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; 1988 1989 if (unlikely(*pos < 0)) 1990 return -EINVAL; 1991 1992 if (!isblk) { 1993 /* FIXME: this is for backwards compatibility with 2.4 */ 1994 if (file->f_flags & O_APPEND) 1995 *pos = i_size_read(inode); 1996 1997 if (limit != RLIM_INFINITY) { 1998 if (*pos >= limit) { 1999 send_sig(SIGXFSZ, current, 0); 2000 return -EFBIG; 2001 } 2002 if (*count > limit - (typeof(limit))*pos) { 2003 *count = limit - (typeof(limit))*pos; 2004 } 2005 } 2006 } 2007 2008 /* 2009 * LFS rule 2010 */ 2011 if (unlikely(*pos + *count > MAX_NON_LFS && 2012 !(file->f_flags & O_LARGEFILE))) { 2013 if (*pos >= MAX_NON_LFS) { 2014 return -EFBIG; 2015 } 2016 if (*count > MAX_NON_LFS - (unsigned long)*pos) { 2017 *count = MAX_NON_LFS - (unsigned long)*pos; 2018 } 2019 } 2020 2021 /* 2022 * Are we about to exceed the fs block limit ? 2023 * 2024 * If we have written data it becomes a short write. If we have 2025 * exceeded without writing data we send a signal and return EFBIG. 2026 * Linus frestrict idea will clean these up nicely.. 2027 */ 2028 if (likely(!isblk)) { 2029 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) { 2030 if (*count || *pos > inode->i_sb->s_maxbytes) { 2031 return -EFBIG; 2032 } 2033 /* zero-length writes at ->s_maxbytes are OK */ 2034 } 2035 2036 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes)) 2037 *count = inode->i_sb->s_maxbytes - *pos; 2038 } else { 2039 #ifdef CONFIG_BLOCK 2040 loff_t isize; 2041 if (bdev_read_only(I_BDEV(inode))) 2042 return -EPERM; 2043 isize = i_size_read(inode); 2044 if (*pos >= isize) { 2045 if (*count || *pos > isize) 2046 return -ENOSPC; 2047 } 2048 2049 if (*pos + *count > isize) 2050 *count = isize - *pos; 2051 #else 2052 return -EPERM; 2053 #endif 2054 } 2055 return 0; 2056 } 2057 EXPORT_SYMBOL(generic_write_checks); 2058 2059 int pagecache_write_begin(struct file *file, struct address_space *mapping, 2060 loff_t pos, unsigned len, unsigned flags, 2061 struct page **pagep, void **fsdata) 2062 { 2063 const struct address_space_operations *aops = mapping->a_ops; 2064 2065 return aops->write_begin(file, mapping, pos, len, flags, 2066 pagep, fsdata); 2067 } 2068 EXPORT_SYMBOL(pagecache_write_begin); 2069 2070 int pagecache_write_end(struct file *file, struct address_space *mapping, 2071 loff_t pos, unsigned len, unsigned copied, 2072 struct page *page, void *fsdata) 2073 { 2074 const struct address_space_operations *aops = mapping->a_ops; 2075 2076 mark_page_accessed(page); 2077 return aops->write_end(file, mapping, pos, len, copied, page, fsdata); 2078 } 2079 EXPORT_SYMBOL(pagecache_write_end); 2080 2081 ssize_t 2082 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov, 2083 unsigned long *nr_segs, loff_t pos, loff_t *ppos, 2084 size_t count, size_t ocount) 2085 { 2086 struct file *file = iocb->ki_filp; 2087 struct address_space *mapping = file->f_mapping; 2088 struct inode *inode = mapping->host; 2089 ssize_t written; 2090 size_t write_len; 2091 pgoff_t end; 2092 2093 if (count != ocount) 2094 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count); 2095 2096 write_len = iov_length(iov, *nr_segs); 2097 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT; 2098 2099 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1); 2100 if (written) 2101 goto out; 2102 2103 /* 2104 * After a write we want buffered reads to be sure to go to disk to get 2105 * the new data. We invalidate clean cached page from the region we're 2106 * about to write. We do this *before* the write so that we can return 2107 * without clobbering -EIOCBQUEUED from ->direct_IO(). 2108 */ 2109 if (mapping->nrpages) { 2110 written = invalidate_inode_pages2_range(mapping, 2111 pos >> PAGE_CACHE_SHIFT, end); 2112 /* 2113 * If a page can not be invalidated, return 0 to fall back 2114 * to buffered write. 2115 */ 2116 if (written) { 2117 if (written == -EBUSY) 2118 return 0; 2119 goto out; 2120 } 2121 } 2122 2123 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs); 2124 2125 /* 2126 * Finally, try again to invalidate clean pages which might have been 2127 * cached by non-direct readahead, or faulted in by get_user_pages() 2128 * if the source of the write was an mmap'ed region of the file 2129 * we're writing. Either one is a pretty crazy thing to do, 2130 * so we don't support it 100%. If this invalidation 2131 * fails, tough, the write still worked... 2132 */ 2133 if (mapping->nrpages) { 2134 invalidate_inode_pages2_range(mapping, 2135 pos >> PAGE_CACHE_SHIFT, end); 2136 } 2137 2138 if (written > 0) { 2139 loff_t end = pos + written; 2140 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 2141 i_size_write(inode, end); 2142 mark_inode_dirty(inode); 2143 } 2144 *ppos = end; 2145 } 2146 2147 /* 2148 * Sync the fs metadata but not the minor inode changes and 2149 * of course not the data as we did direct DMA for the IO. 2150 * i_mutex is held, which protects generic_osync_inode() from 2151 * livelocking. AIO O_DIRECT ops attempt to sync metadata here. 2152 */ 2153 out: 2154 if ((written >= 0 || written == -EIOCBQUEUED) && 2155 ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 2156 int err = generic_osync_inode(inode, mapping, OSYNC_METADATA); 2157 if (err < 0) 2158 written = err; 2159 } 2160 return written; 2161 } 2162 EXPORT_SYMBOL(generic_file_direct_write); 2163 2164 /* 2165 * Find or create a page at the given pagecache position. Return the locked 2166 * page. This function is specifically for buffered writes. 2167 */ 2168 struct page *grab_cache_page_write_begin(struct address_space *mapping, 2169 pgoff_t index, unsigned flags) 2170 { 2171 int status; 2172 struct page *page; 2173 gfp_t gfp_notmask = 0; 2174 if (flags & AOP_FLAG_NOFS) 2175 gfp_notmask = __GFP_FS; 2176 repeat: 2177 page = find_lock_page(mapping, index); 2178 if (likely(page)) 2179 return page; 2180 2181 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask); 2182 if (!page) 2183 return NULL; 2184 status = add_to_page_cache_lru(page, mapping, index, 2185 GFP_KERNEL & ~gfp_notmask); 2186 if (unlikely(status)) { 2187 page_cache_release(page); 2188 if (status == -EEXIST) 2189 goto repeat; 2190 return NULL; 2191 } 2192 return page; 2193 } 2194 EXPORT_SYMBOL(grab_cache_page_write_begin); 2195 2196 static ssize_t generic_perform_write(struct file *file, 2197 struct iov_iter *i, loff_t pos) 2198 { 2199 struct address_space *mapping = file->f_mapping; 2200 const struct address_space_operations *a_ops = mapping->a_ops; 2201 long status = 0; 2202 ssize_t written = 0; 2203 unsigned int flags = 0; 2204 2205 /* 2206 * Copies from kernel address space cannot fail (NFSD is a big user). 2207 */ 2208 if (segment_eq(get_fs(), KERNEL_DS)) 2209 flags |= AOP_FLAG_UNINTERRUPTIBLE; 2210 2211 do { 2212 struct page *page; 2213 pgoff_t index; /* Pagecache index for current page */ 2214 unsigned long offset; /* Offset into pagecache page */ 2215 unsigned long bytes; /* Bytes to write to page */ 2216 size_t copied; /* Bytes copied from user */ 2217 void *fsdata; 2218 2219 offset = (pos & (PAGE_CACHE_SIZE - 1)); 2220 index = pos >> PAGE_CACHE_SHIFT; 2221 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset, 2222 iov_iter_count(i)); 2223 2224 again: 2225 2226 /* 2227 * Bring in the user page that we will copy from _first_. 2228 * Otherwise there's a nasty deadlock on copying from the 2229 * same page as we're writing to, without it being marked 2230 * up-to-date. 2231 * 2232 * Not only is this an optimisation, but it is also required 2233 * to check that the address is actually valid, when atomic 2234 * usercopies are used, below. 2235 */ 2236 if (unlikely(iov_iter_fault_in_readable(i, bytes))) { 2237 status = -EFAULT; 2238 break; 2239 } 2240 2241 status = a_ops->write_begin(file, mapping, pos, bytes, flags, 2242 &page, &fsdata); 2243 if (unlikely(status)) 2244 break; 2245 2246 pagefault_disable(); 2247 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); 2248 pagefault_enable(); 2249 flush_dcache_page(page); 2250 2251 status = a_ops->write_end(file, mapping, pos, bytes, copied, 2252 page, fsdata); 2253 if (unlikely(status < 0)) 2254 break; 2255 copied = status; 2256 2257 cond_resched(); 2258 2259 iov_iter_advance(i, copied); 2260 if (unlikely(copied == 0)) { 2261 /* 2262 * If we were unable to copy any data at all, we must 2263 * fall back to a single segment length write. 2264 * 2265 * If we didn't fallback here, we could livelock 2266 * because not all segments in the iov can be copied at 2267 * once without a pagefault. 2268 */ 2269 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset, 2270 iov_iter_single_seg_count(i)); 2271 goto again; 2272 } 2273 pos += copied; 2274 written += copied; 2275 2276 balance_dirty_pages_ratelimited(mapping); 2277 2278 } while (iov_iter_count(i)); 2279 2280 return written ? written : status; 2281 } 2282 2283 ssize_t 2284 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov, 2285 unsigned long nr_segs, loff_t pos, loff_t *ppos, 2286 size_t count, ssize_t written) 2287 { 2288 struct file *file = iocb->ki_filp; 2289 struct address_space *mapping = file->f_mapping; 2290 const struct address_space_operations *a_ops = mapping->a_ops; 2291 struct inode *inode = mapping->host; 2292 ssize_t status; 2293 struct iov_iter i; 2294 2295 iov_iter_init(&i, iov, nr_segs, count, written); 2296 status = generic_perform_write(file, &i, pos); 2297 2298 if (likely(status >= 0)) { 2299 written += status; 2300 *ppos = pos + status; 2301 2302 /* 2303 * For now, when the user asks for O_SYNC, we'll actually give 2304 * O_DSYNC 2305 */ 2306 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 2307 if (!a_ops->writepage || !is_sync_kiocb(iocb)) 2308 status = generic_osync_inode(inode, mapping, 2309 OSYNC_METADATA|OSYNC_DATA); 2310 } 2311 } 2312 2313 /* 2314 * If we get here for O_DIRECT writes then we must have fallen through 2315 * to buffered writes (block instantiation inside i_size). So we sync 2316 * the file data here, to try to honour O_DIRECT expectations. 2317 */ 2318 if (unlikely(file->f_flags & O_DIRECT) && written) 2319 status = filemap_write_and_wait_range(mapping, 2320 pos, pos + written - 1); 2321 2322 return written ? written : status; 2323 } 2324 EXPORT_SYMBOL(generic_file_buffered_write); 2325 2326 static ssize_t 2327 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov, 2328 unsigned long nr_segs, loff_t *ppos) 2329 { 2330 struct file *file = iocb->ki_filp; 2331 struct address_space * mapping = file->f_mapping; 2332 size_t ocount; /* original count */ 2333 size_t count; /* after file limit checks */ 2334 struct inode *inode = mapping->host; 2335 loff_t pos; 2336 ssize_t written; 2337 ssize_t err; 2338 2339 ocount = 0; 2340 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ); 2341 if (err) 2342 return err; 2343 2344 count = ocount; 2345 pos = *ppos; 2346 2347 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE); 2348 2349 /* We can write back this queue in page reclaim */ 2350 current->backing_dev_info = mapping->backing_dev_info; 2351 written = 0; 2352 2353 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode)); 2354 if (err) 2355 goto out; 2356 2357 if (count == 0) 2358 goto out; 2359 2360 err = file_remove_suid(file); 2361 if (err) 2362 goto out; 2363 2364 file_update_time(file); 2365 2366 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ 2367 if (unlikely(file->f_flags & O_DIRECT)) { 2368 loff_t endbyte; 2369 ssize_t written_buffered; 2370 2371 written = generic_file_direct_write(iocb, iov, &nr_segs, pos, 2372 ppos, count, ocount); 2373 if (written < 0 || written == count) 2374 goto out; 2375 /* 2376 * direct-io write to a hole: fall through to buffered I/O 2377 * for completing the rest of the request. 2378 */ 2379 pos += written; 2380 count -= written; 2381 written_buffered = generic_file_buffered_write(iocb, iov, 2382 nr_segs, pos, ppos, count, 2383 written); 2384 /* 2385 * If generic_file_buffered_write() retuned a synchronous error 2386 * then we want to return the number of bytes which were 2387 * direct-written, or the error code if that was zero. Note 2388 * that this differs from normal direct-io semantics, which 2389 * will return -EFOO even if some bytes were written. 2390 */ 2391 if (written_buffered < 0) { 2392 err = written_buffered; 2393 goto out; 2394 } 2395 2396 /* 2397 * We need to ensure that the page cache pages are written to 2398 * disk and invalidated to preserve the expected O_DIRECT 2399 * semantics. 2400 */ 2401 endbyte = pos + written_buffered - written - 1; 2402 err = do_sync_mapping_range(file->f_mapping, pos, endbyte, 2403 SYNC_FILE_RANGE_WAIT_BEFORE| 2404 SYNC_FILE_RANGE_WRITE| 2405 SYNC_FILE_RANGE_WAIT_AFTER); 2406 if (err == 0) { 2407 written = written_buffered; 2408 invalidate_mapping_pages(mapping, 2409 pos >> PAGE_CACHE_SHIFT, 2410 endbyte >> PAGE_CACHE_SHIFT); 2411 } else { 2412 /* 2413 * We don't know how much we wrote, so just return 2414 * the number of bytes which were direct-written 2415 */ 2416 } 2417 } else { 2418 written = generic_file_buffered_write(iocb, iov, nr_segs, 2419 pos, ppos, count, written); 2420 } 2421 out: 2422 current->backing_dev_info = NULL; 2423 return written ? written : err; 2424 } 2425 2426 ssize_t generic_file_aio_write_nolock(struct kiocb *iocb, 2427 const struct iovec *iov, unsigned long nr_segs, loff_t pos) 2428 { 2429 struct file *file = iocb->ki_filp; 2430 struct address_space *mapping = file->f_mapping; 2431 struct inode *inode = mapping->host; 2432 ssize_t ret; 2433 2434 BUG_ON(iocb->ki_pos != pos); 2435 2436 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs, 2437 &iocb->ki_pos); 2438 2439 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 2440 ssize_t err; 2441 2442 err = sync_page_range_nolock(inode, mapping, pos, ret); 2443 if (err < 0) 2444 ret = err; 2445 } 2446 return ret; 2447 } 2448 EXPORT_SYMBOL(generic_file_aio_write_nolock); 2449 2450 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov, 2451 unsigned long nr_segs, loff_t pos) 2452 { 2453 struct file *file = iocb->ki_filp; 2454 struct address_space *mapping = file->f_mapping; 2455 struct inode *inode = mapping->host; 2456 ssize_t ret; 2457 2458 BUG_ON(iocb->ki_pos != pos); 2459 2460 mutex_lock(&inode->i_mutex); 2461 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs, 2462 &iocb->ki_pos); 2463 mutex_unlock(&inode->i_mutex); 2464 2465 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 2466 ssize_t err; 2467 2468 err = sync_page_range(inode, mapping, pos, ret); 2469 if (err < 0) 2470 ret = err; 2471 } 2472 return ret; 2473 } 2474 EXPORT_SYMBOL(generic_file_aio_write); 2475 2476 /** 2477 * try_to_release_page() - release old fs-specific metadata on a page 2478 * 2479 * @page: the page which the kernel is trying to free 2480 * @gfp_mask: memory allocation flags (and I/O mode) 2481 * 2482 * The address_space is to try to release any data against the page 2483 * (presumably at page->private). If the release was successful, return `1'. 2484 * Otherwise return zero. 2485 * 2486 * This may also be called if PG_fscache is set on a page, indicating that the 2487 * page is known to the local caching routines. 2488 * 2489 * The @gfp_mask argument specifies whether I/O may be performed to release 2490 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS). 2491 * 2492 */ 2493 int try_to_release_page(struct page *page, gfp_t gfp_mask) 2494 { 2495 struct address_space * const mapping = page->mapping; 2496 2497 BUG_ON(!PageLocked(page)); 2498 if (PageWriteback(page)) 2499 return 0; 2500 2501 if (mapping && mapping->a_ops->releasepage) 2502 return mapping->a_ops->releasepage(page, gfp_mask); 2503 return try_to_free_buffers(page); 2504 } 2505 2506 EXPORT_SYMBOL(try_to_release_page); 2507