1 /* 2 * linux/mm/filemap.c 3 * 4 * Copyright (C) 1994-1999 Linus Torvalds 5 */ 6 7 /* 8 * This file handles the generic file mmap semantics used by 9 * most "normal" filesystems (but you don't /have/ to use this: 10 * the NFS filesystem used to do this differently, for example) 11 */ 12 #include <linux/export.h> 13 #include <linux/compiler.h> 14 #include <linux/fs.h> 15 #include <linux/uaccess.h> 16 #include <linux/aio.h> 17 #include <linux/capability.h> 18 #include <linux/kernel_stat.h> 19 #include <linux/gfp.h> 20 #include <linux/mm.h> 21 #include <linux/swap.h> 22 #include <linux/mman.h> 23 #include <linux/pagemap.h> 24 #include <linux/file.h> 25 #include <linux/uio.h> 26 #include <linux/hash.h> 27 #include <linux/writeback.h> 28 #include <linux/backing-dev.h> 29 #include <linux/pagevec.h> 30 #include <linux/blkdev.h> 31 #include <linux/security.h> 32 #include <linux/syscalls.h> 33 #include <linux/cpuset.h> 34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */ 35 #include <linux/memcontrol.h> 36 #include <linux/cleancache.h> 37 #include "internal.h" 38 39 /* 40 * FIXME: remove all knowledge of the buffer layer from the core VM 41 */ 42 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 43 44 #include <asm/mman.h> 45 46 /* 47 * Shared mappings implemented 30.11.1994. It's not fully working yet, 48 * though. 49 * 50 * Shared mappings now work. 15.8.1995 Bruno. 51 * 52 * finished 'unifying' the page and buffer cache and SMP-threaded the 53 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 54 * 55 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 56 */ 57 58 /* 59 * Lock ordering: 60 * 61 * ->i_mmap_mutex (truncate_pagecache) 62 * ->private_lock (__free_pte->__set_page_dirty_buffers) 63 * ->swap_lock (exclusive_swap_page, others) 64 * ->mapping->tree_lock 65 * 66 * ->i_mutex 67 * ->i_mmap_mutex (truncate->unmap_mapping_range) 68 * 69 * ->mmap_sem 70 * ->i_mmap_mutex 71 * ->page_table_lock or pte_lock (various, mainly in memory.c) 72 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock) 73 * 74 * ->mmap_sem 75 * ->lock_page (access_process_vm) 76 * 77 * ->i_mutex (generic_file_buffered_write) 78 * ->mmap_sem (fault_in_pages_readable->do_page_fault) 79 * 80 * bdi->wb.list_lock 81 * sb_lock (fs/fs-writeback.c) 82 * ->mapping->tree_lock (__sync_single_inode) 83 * 84 * ->i_mmap_mutex 85 * ->anon_vma.lock (vma_adjust) 86 * 87 * ->anon_vma.lock 88 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 89 * 90 * ->page_table_lock or pte_lock 91 * ->swap_lock (try_to_unmap_one) 92 * ->private_lock (try_to_unmap_one) 93 * ->tree_lock (try_to_unmap_one) 94 * ->zone.lru_lock (follow_page->mark_page_accessed) 95 * ->zone.lru_lock (check_pte_range->isolate_lru_page) 96 * ->private_lock (page_remove_rmap->set_page_dirty) 97 * ->tree_lock (page_remove_rmap->set_page_dirty) 98 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty) 99 * ->inode->i_lock (page_remove_rmap->set_page_dirty) 100 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 101 * ->inode->i_lock (zap_pte_range->set_page_dirty) 102 * ->private_lock (zap_pte_range->__set_page_dirty_buffers) 103 * 104 * (code doesn't rely on that order, so you could switch it around) 105 * ->tasklist_lock (memory_failure, collect_procs_ao) 106 * ->i_mmap_mutex 107 */ 108 109 /* 110 * Delete a page from the page cache and free it. Caller has to make 111 * sure the page is locked and that nobody else uses it - or that usage 112 * is safe. The caller must hold the mapping's tree_lock. 113 */ 114 void __delete_from_page_cache(struct page *page) 115 { 116 struct address_space *mapping = page->mapping; 117 118 /* 119 * if we're uptodate, flush out into the cleancache, otherwise 120 * invalidate any existing cleancache entries. We can't leave 121 * stale data around in the cleancache once our page is gone 122 */ 123 if (PageUptodate(page) && PageMappedToDisk(page)) 124 cleancache_put_page(page); 125 else 126 cleancache_flush_page(mapping, page); 127 128 radix_tree_delete(&mapping->page_tree, page->index); 129 page->mapping = NULL; 130 /* Leave page->index set: truncation lookup relies upon it */ 131 mapping->nrpages--; 132 __dec_zone_page_state(page, NR_FILE_PAGES); 133 if (PageSwapBacked(page)) 134 __dec_zone_page_state(page, NR_SHMEM); 135 BUG_ON(page_mapped(page)); 136 137 /* 138 * Some filesystems seem to re-dirty the page even after 139 * the VM has canceled the dirty bit (eg ext3 journaling). 140 * 141 * Fix it up by doing a final dirty accounting check after 142 * having removed the page entirely. 143 */ 144 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) { 145 dec_zone_page_state(page, NR_FILE_DIRTY); 146 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE); 147 } 148 } 149 150 /** 151 * delete_from_page_cache - delete page from page cache 152 * @page: the page which the kernel is trying to remove from page cache 153 * 154 * This must be called only on pages that have been verified to be in the page 155 * cache and locked. It will never put the page into the free list, the caller 156 * has a reference on the page. 157 */ 158 void delete_from_page_cache(struct page *page) 159 { 160 struct address_space *mapping = page->mapping; 161 void (*freepage)(struct page *); 162 163 BUG_ON(!PageLocked(page)); 164 165 freepage = mapping->a_ops->freepage; 166 spin_lock_irq(&mapping->tree_lock); 167 __delete_from_page_cache(page); 168 spin_unlock_irq(&mapping->tree_lock); 169 mem_cgroup_uncharge_cache_page(page); 170 171 if (freepage) 172 freepage(page); 173 page_cache_release(page); 174 } 175 EXPORT_SYMBOL(delete_from_page_cache); 176 177 static int sleep_on_page(void *word) 178 { 179 io_schedule(); 180 return 0; 181 } 182 183 static int sleep_on_page_killable(void *word) 184 { 185 sleep_on_page(word); 186 return fatal_signal_pending(current) ? -EINTR : 0; 187 } 188 189 /** 190 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 191 * @mapping: address space structure to write 192 * @start: offset in bytes where the range starts 193 * @end: offset in bytes where the range ends (inclusive) 194 * @sync_mode: enable synchronous operation 195 * 196 * Start writeback against all of a mapping's dirty pages that lie 197 * within the byte offsets <start, end> inclusive. 198 * 199 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 200 * opposed to a regular memory cleansing writeback. The difference between 201 * these two operations is that if a dirty page/buffer is encountered, it must 202 * be waited upon, and not just skipped over. 203 */ 204 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 205 loff_t end, int sync_mode) 206 { 207 int ret; 208 struct writeback_control wbc = { 209 .sync_mode = sync_mode, 210 .nr_to_write = LONG_MAX, 211 .range_start = start, 212 .range_end = end, 213 }; 214 215 if (!mapping_cap_writeback_dirty(mapping)) 216 return 0; 217 218 ret = do_writepages(mapping, &wbc); 219 return ret; 220 } 221 222 static inline int __filemap_fdatawrite(struct address_space *mapping, 223 int sync_mode) 224 { 225 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 226 } 227 228 int filemap_fdatawrite(struct address_space *mapping) 229 { 230 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 231 } 232 EXPORT_SYMBOL(filemap_fdatawrite); 233 234 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 235 loff_t end) 236 { 237 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 238 } 239 EXPORT_SYMBOL(filemap_fdatawrite_range); 240 241 /** 242 * filemap_flush - mostly a non-blocking flush 243 * @mapping: target address_space 244 * 245 * This is a mostly non-blocking flush. Not suitable for data-integrity 246 * purposes - I/O may not be started against all dirty pages. 247 */ 248 int filemap_flush(struct address_space *mapping) 249 { 250 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 251 } 252 EXPORT_SYMBOL(filemap_flush); 253 254 /** 255 * filemap_fdatawait_range - wait for writeback to complete 256 * @mapping: address space structure to wait for 257 * @start_byte: offset in bytes where the range starts 258 * @end_byte: offset in bytes where the range ends (inclusive) 259 * 260 * Walk the list of under-writeback pages of the given address space 261 * in the given range and wait for all of them. 262 */ 263 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 264 loff_t end_byte) 265 { 266 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT; 267 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT; 268 struct pagevec pvec; 269 int nr_pages; 270 int ret = 0; 271 272 if (end_byte < start_byte) 273 return 0; 274 275 pagevec_init(&pvec, 0); 276 while ((index <= end) && 277 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 278 PAGECACHE_TAG_WRITEBACK, 279 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) { 280 unsigned i; 281 282 for (i = 0; i < nr_pages; i++) { 283 struct page *page = pvec.pages[i]; 284 285 /* until radix tree lookup accepts end_index */ 286 if (page->index > end) 287 continue; 288 289 wait_on_page_writeback(page); 290 if (TestClearPageError(page)) 291 ret = -EIO; 292 } 293 pagevec_release(&pvec); 294 cond_resched(); 295 } 296 297 /* Check for outstanding write errors */ 298 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 299 ret = -ENOSPC; 300 if (test_and_clear_bit(AS_EIO, &mapping->flags)) 301 ret = -EIO; 302 303 return ret; 304 } 305 EXPORT_SYMBOL(filemap_fdatawait_range); 306 307 /** 308 * filemap_fdatawait - wait for all under-writeback pages to complete 309 * @mapping: address space structure to wait for 310 * 311 * Walk the list of under-writeback pages of the given address space 312 * and wait for all of them. 313 */ 314 int filemap_fdatawait(struct address_space *mapping) 315 { 316 loff_t i_size = i_size_read(mapping->host); 317 318 if (i_size == 0) 319 return 0; 320 321 return filemap_fdatawait_range(mapping, 0, i_size - 1); 322 } 323 EXPORT_SYMBOL(filemap_fdatawait); 324 325 int filemap_write_and_wait(struct address_space *mapping) 326 { 327 int err = 0; 328 329 if (mapping->nrpages) { 330 err = filemap_fdatawrite(mapping); 331 /* 332 * Even if the above returned error, the pages may be 333 * written partially (e.g. -ENOSPC), so we wait for it. 334 * But the -EIO is special case, it may indicate the worst 335 * thing (e.g. bug) happened, so we avoid waiting for it. 336 */ 337 if (err != -EIO) { 338 int err2 = filemap_fdatawait(mapping); 339 if (!err) 340 err = err2; 341 } 342 } 343 return err; 344 } 345 EXPORT_SYMBOL(filemap_write_and_wait); 346 347 /** 348 * filemap_write_and_wait_range - write out & wait on a file range 349 * @mapping: the address_space for the pages 350 * @lstart: offset in bytes where the range starts 351 * @lend: offset in bytes where the range ends (inclusive) 352 * 353 * Write out and wait upon file offsets lstart->lend, inclusive. 354 * 355 * Note that `lend' is inclusive (describes the last byte to be written) so 356 * that this function can be used to write to the very end-of-file (end = -1). 357 */ 358 int filemap_write_and_wait_range(struct address_space *mapping, 359 loff_t lstart, loff_t lend) 360 { 361 int err = 0; 362 363 if (mapping->nrpages) { 364 err = __filemap_fdatawrite_range(mapping, lstart, lend, 365 WB_SYNC_ALL); 366 /* See comment of filemap_write_and_wait() */ 367 if (err != -EIO) { 368 int err2 = filemap_fdatawait_range(mapping, 369 lstart, lend); 370 if (!err) 371 err = err2; 372 } 373 } 374 return err; 375 } 376 EXPORT_SYMBOL(filemap_write_and_wait_range); 377 378 /** 379 * replace_page_cache_page - replace a pagecache page with a new one 380 * @old: page to be replaced 381 * @new: page to replace with 382 * @gfp_mask: allocation mode 383 * 384 * This function replaces a page in the pagecache with a new one. On 385 * success it acquires the pagecache reference for the new page and 386 * drops it for the old page. Both the old and new pages must be 387 * locked. This function does not add the new page to the LRU, the 388 * caller must do that. 389 * 390 * The remove + add is atomic. The only way this function can fail is 391 * memory allocation failure. 392 */ 393 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask) 394 { 395 int error; 396 397 VM_BUG_ON(!PageLocked(old)); 398 VM_BUG_ON(!PageLocked(new)); 399 VM_BUG_ON(new->mapping); 400 401 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM); 402 if (!error) { 403 struct address_space *mapping = old->mapping; 404 void (*freepage)(struct page *); 405 406 pgoff_t offset = old->index; 407 freepage = mapping->a_ops->freepage; 408 409 page_cache_get(new); 410 new->mapping = mapping; 411 new->index = offset; 412 413 spin_lock_irq(&mapping->tree_lock); 414 __delete_from_page_cache(old); 415 error = radix_tree_insert(&mapping->page_tree, offset, new); 416 BUG_ON(error); 417 mapping->nrpages++; 418 __inc_zone_page_state(new, NR_FILE_PAGES); 419 if (PageSwapBacked(new)) 420 __inc_zone_page_state(new, NR_SHMEM); 421 spin_unlock_irq(&mapping->tree_lock); 422 /* mem_cgroup codes must not be called under tree_lock */ 423 mem_cgroup_replace_page_cache(old, new); 424 radix_tree_preload_end(); 425 if (freepage) 426 freepage(old); 427 page_cache_release(old); 428 } 429 430 return error; 431 } 432 EXPORT_SYMBOL_GPL(replace_page_cache_page); 433 434 /** 435 * add_to_page_cache_locked - add a locked page to the pagecache 436 * @page: page to add 437 * @mapping: the page's address_space 438 * @offset: page index 439 * @gfp_mask: page allocation mode 440 * 441 * This function is used to add a page to the pagecache. It must be locked. 442 * This function does not add the page to the LRU. The caller must do that. 443 */ 444 int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 445 pgoff_t offset, gfp_t gfp_mask) 446 { 447 int error; 448 449 VM_BUG_ON(!PageLocked(page)); 450 VM_BUG_ON(PageSwapBacked(page)); 451 452 error = mem_cgroup_cache_charge(page, current->mm, 453 gfp_mask & GFP_RECLAIM_MASK); 454 if (error) 455 goto out; 456 457 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM); 458 if (error == 0) { 459 page_cache_get(page); 460 page->mapping = mapping; 461 page->index = offset; 462 463 spin_lock_irq(&mapping->tree_lock); 464 error = radix_tree_insert(&mapping->page_tree, offset, page); 465 if (likely(!error)) { 466 mapping->nrpages++; 467 __inc_zone_page_state(page, NR_FILE_PAGES); 468 spin_unlock_irq(&mapping->tree_lock); 469 } else { 470 page->mapping = NULL; 471 /* Leave page->index set: truncation relies upon it */ 472 spin_unlock_irq(&mapping->tree_lock); 473 mem_cgroup_uncharge_cache_page(page); 474 page_cache_release(page); 475 } 476 radix_tree_preload_end(); 477 } else 478 mem_cgroup_uncharge_cache_page(page); 479 out: 480 return error; 481 } 482 EXPORT_SYMBOL(add_to_page_cache_locked); 483 484 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 485 pgoff_t offset, gfp_t gfp_mask) 486 { 487 int ret; 488 489 ret = add_to_page_cache(page, mapping, offset, gfp_mask); 490 if (ret == 0) 491 lru_cache_add_file(page); 492 return ret; 493 } 494 EXPORT_SYMBOL_GPL(add_to_page_cache_lru); 495 496 #ifdef CONFIG_NUMA 497 struct page *__page_cache_alloc(gfp_t gfp) 498 { 499 int n; 500 struct page *page; 501 502 if (cpuset_do_page_mem_spread()) { 503 get_mems_allowed(); 504 n = cpuset_mem_spread_node(); 505 page = alloc_pages_exact_node(n, gfp, 0); 506 put_mems_allowed(); 507 return page; 508 } 509 return alloc_pages(gfp, 0); 510 } 511 EXPORT_SYMBOL(__page_cache_alloc); 512 #endif 513 514 /* 515 * In order to wait for pages to become available there must be 516 * waitqueues associated with pages. By using a hash table of 517 * waitqueues where the bucket discipline is to maintain all 518 * waiters on the same queue and wake all when any of the pages 519 * become available, and for the woken contexts to check to be 520 * sure the appropriate page became available, this saves space 521 * at a cost of "thundering herd" phenomena during rare hash 522 * collisions. 523 */ 524 static wait_queue_head_t *page_waitqueue(struct page *page) 525 { 526 const struct zone *zone = page_zone(page); 527 528 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)]; 529 } 530 531 static inline void wake_up_page(struct page *page, int bit) 532 { 533 __wake_up_bit(page_waitqueue(page), &page->flags, bit); 534 } 535 536 void wait_on_page_bit(struct page *page, int bit_nr) 537 { 538 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr); 539 540 if (test_bit(bit_nr, &page->flags)) 541 __wait_on_bit(page_waitqueue(page), &wait, sleep_on_page, 542 TASK_UNINTERRUPTIBLE); 543 } 544 EXPORT_SYMBOL(wait_on_page_bit); 545 546 int wait_on_page_bit_killable(struct page *page, int bit_nr) 547 { 548 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr); 549 550 if (!test_bit(bit_nr, &page->flags)) 551 return 0; 552 553 return __wait_on_bit(page_waitqueue(page), &wait, 554 sleep_on_page_killable, TASK_KILLABLE); 555 } 556 557 /** 558 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue 559 * @page: Page defining the wait queue of interest 560 * @waiter: Waiter to add to the queue 561 * 562 * Add an arbitrary @waiter to the wait queue for the nominated @page. 563 */ 564 void add_page_wait_queue(struct page *page, wait_queue_t *waiter) 565 { 566 wait_queue_head_t *q = page_waitqueue(page); 567 unsigned long flags; 568 569 spin_lock_irqsave(&q->lock, flags); 570 __add_wait_queue(q, waiter); 571 spin_unlock_irqrestore(&q->lock, flags); 572 } 573 EXPORT_SYMBOL_GPL(add_page_wait_queue); 574 575 /** 576 * unlock_page - unlock a locked page 577 * @page: the page 578 * 579 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). 580 * Also wakes sleepers in wait_on_page_writeback() because the wakeup 581 * mechananism between PageLocked pages and PageWriteback pages is shared. 582 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. 583 * 584 * The mb is necessary to enforce ordering between the clear_bit and the read 585 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()). 586 */ 587 void unlock_page(struct page *page) 588 { 589 VM_BUG_ON(!PageLocked(page)); 590 clear_bit_unlock(PG_locked, &page->flags); 591 smp_mb__after_clear_bit(); 592 wake_up_page(page, PG_locked); 593 } 594 EXPORT_SYMBOL(unlock_page); 595 596 /** 597 * end_page_writeback - end writeback against a page 598 * @page: the page 599 */ 600 void end_page_writeback(struct page *page) 601 { 602 if (TestClearPageReclaim(page)) 603 rotate_reclaimable_page(page); 604 605 if (!test_clear_page_writeback(page)) 606 BUG(); 607 608 smp_mb__after_clear_bit(); 609 wake_up_page(page, PG_writeback); 610 } 611 EXPORT_SYMBOL(end_page_writeback); 612 613 /** 614 * __lock_page - get a lock on the page, assuming we need to sleep to get it 615 * @page: the page to lock 616 */ 617 void __lock_page(struct page *page) 618 { 619 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 620 621 __wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page, 622 TASK_UNINTERRUPTIBLE); 623 } 624 EXPORT_SYMBOL(__lock_page); 625 626 int __lock_page_killable(struct page *page) 627 { 628 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 629 630 return __wait_on_bit_lock(page_waitqueue(page), &wait, 631 sleep_on_page_killable, TASK_KILLABLE); 632 } 633 EXPORT_SYMBOL_GPL(__lock_page_killable); 634 635 int __lock_page_or_retry(struct page *page, struct mm_struct *mm, 636 unsigned int flags) 637 { 638 if (flags & FAULT_FLAG_ALLOW_RETRY) { 639 /* 640 * CAUTION! In this case, mmap_sem is not released 641 * even though return 0. 642 */ 643 if (flags & FAULT_FLAG_RETRY_NOWAIT) 644 return 0; 645 646 up_read(&mm->mmap_sem); 647 if (flags & FAULT_FLAG_KILLABLE) 648 wait_on_page_locked_killable(page); 649 else 650 wait_on_page_locked(page); 651 return 0; 652 } else { 653 if (flags & FAULT_FLAG_KILLABLE) { 654 int ret; 655 656 ret = __lock_page_killable(page); 657 if (ret) { 658 up_read(&mm->mmap_sem); 659 return 0; 660 } 661 } else 662 __lock_page(page); 663 return 1; 664 } 665 } 666 667 /** 668 * find_get_page - find and get a page reference 669 * @mapping: the address_space to search 670 * @offset: the page index 671 * 672 * Is there a pagecache struct page at the given (mapping, offset) tuple? 673 * If yes, increment its refcount and return it; if no, return NULL. 674 */ 675 struct page *find_get_page(struct address_space *mapping, pgoff_t offset) 676 { 677 void **pagep; 678 struct page *page; 679 680 rcu_read_lock(); 681 repeat: 682 page = NULL; 683 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset); 684 if (pagep) { 685 page = radix_tree_deref_slot(pagep); 686 if (unlikely(!page)) 687 goto out; 688 if (radix_tree_exception(page)) { 689 if (radix_tree_deref_retry(page)) 690 goto repeat; 691 /* 692 * Otherwise, shmem/tmpfs must be storing a swap entry 693 * here as an exceptional entry: so return it without 694 * attempting to raise page count. 695 */ 696 goto out; 697 } 698 if (!page_cache_get_speculative(page)) 699 goto repeat; 700 701 /* 702 * Has the page moved? 703 * This is part of the lockless pagecache protocol. See 704 * include/linux/pagemap.h for details. 705 */ 706 if (unlikely(page != *pagep)) { 707 page_cache_release(page); 708 goto repeat; 709 } 710 } 711 out: 712 rcu_read_unlock(); 713 714 return page; 715 } 716 EXPORT_SYMBOL(find_get_page); 717 718 /** 719 * find_lock_page - locate, pin and lock a pagecache page 720 * @mapping: the address_space to search 721 * @offset: the page index 722 * 723 * Locates the desired pagecache page, locks it, increments its reference 724 * count and returns its address. 725 * 726 * Returns zero if the page was not present. find_lock_page() may sleep. 727 */ 728 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset) 729 { 730 struct page *page; 731 732 repeat: 733 page = find_get_page(mapping, offset); 734 if (page && !radix_tree_exception(page)) { 735 lock_page(page); 736 /* Has the page been truncated? */ 737 if (unlikely(page->mapping != mapping)) { 738 unlock_page(page); 739 page_cache_release(page); 740 goto repeat; 741 } 742 VM_BUG_ON(page->index != offset); 743 } 744 return page; 745 } 746 EXPORT_SYMBOL(find_lock_page); 747 748 /** 749 * find_or_create_page - locate or add a pagecache page 750 * @mapping: the page's address_space 751 * @index: the page's index into the mapping 752 * @gfp_mask: page allocation mode 753 * 754 * Locates a page in the pagecache. If the page is not present, a new page 755 * is allocated using @gfp_mask and is added to the pagecache and to the VM's 756 * LRU list. The returned page is locked and has its reference count 757 * incremented. 758 * 759 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic 760 * allocation! 761 * 762 * find_or_create_page() returns the desired page's address, or zero on 763 * memory exhaustion. 764 */ 765 struct page *find_or_create_page(struct address_space *mapping, 766 pgoff_t index, gfp_t gfp_mask) 767 { 768 struct page *page; 769 int err; 770 repeat: 771 page = find_lock_page(mapping, index); 772 if (!page) { 773 page = __page_cache_alloc(gfp_mask); 774 if (!page) 775 return NULL; 776 /* 777 * We want a regular kernel memory (not highmem or DMA etc) 778 * allocation for the radix tree nodes, but we need to honour 779 * the context-specific requirements the caller has asked for. 780 * GFP_RECLAIM_MASK collects those requirements. 781 */ 782 err = add_to_page_cache_lru(page, mapping, index, 783 (gfp_mask & GFP_RECLAIM_MASK)); 784 if (unlikely(err)) { 785 page_cache_release(page); 786 page = NULL; 787 if (err == -EEXIST) 788 goto repeat; 789 } 790 } 791 return page; 792 } 793 EXPORT_SYMBOL(find_or_create_page); 794 795 /** 796 * find_get_pages - gang pagecache lookup 797 * @mapping: The address_space to search 798 * @start: The starting page index 799 * @nr_pages: The maximum number of pages 800 * @pages: Where the resulting pages are placed 801 * 802 * find_get_pages() will search for and return a group of up to 803 * @nr_pages pages in the mapping. The pages are placed at @pages. 804 * find_get_pages() takes a reference against the returned pages. 805 * 806 * The search returns a group of mapping-contiguous pages with ascending 807 * indexes. There may be holes in the indices due to not-present pages. 808 * 809 * find_get_pages() returns the number of pages which were found. 810 */ 811 unsigned find_get_pages(struct address_space *mapping, pgoff_t start, 812 unsigned int nr_pages, struct page **pages) 813 { 814 unsigned int i; 815 unsigned int ret; 816 unsigned int nr_found, nr_skip; 817 818 rcu_read_lock(); 819 restart: 820 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree, 821 (void ***)pages, NULL, start, nr_pages); 822 ret = 0; 823 nr_skip = 0; 824 for (i = 0; i < nr_found; i++) { 825 struct page *page; 826 repeat: 827 page = radix_tree_deref_slot((void **)pages[i]); 828 if (unlikely(!page)) 829 continue; 830 831 if (radix_tree_exception(page)) { 832 if (radix_tree_deref_retry(page)) { 833 /* 834 * Transient condition which can only trigger 835 * when entry at index 0 moves out of or back 836 * to root: none yet gotten, safe to restart. 837 */ 838 WARN_ON(start | i); 839 goto restart; 840 } 841 /* 842 * Otherwise, shmem/tmpfs must be storing a swap entry 843 * here as an exceptional entry: so skip over it - 844 * we only reach this from invalidate_mapping_pages(). 845 */ 846 nr_skip++; 847 continue; 848 } 849 850 if (!page_cache_get_speculative(page)) 851 goto repeat; 852 853 /* Has the page moved? */ 854 if (unlikely(page != *((void **)pages[i]))) { 855 page_cache_release(page); 856 goto repeat; 857 } 858 859 pages[ret] = page; 860 ret++; 861 } 862 863 /* 864 * If all entries were removed before we could secure them, 865 * try again, because callers stop trying once 0 is returned. 866 */ 867 if (unlikely(!ret && nr_found > nr_skip)) 868 goto restart; 869 rcu_read_unlock(); 870 return ret; 871 } 872 873 /** 874 * find_get_pages_contig - gang contiguous pagecache lookup 875 * @mapping: The address_space to search 876 * @index: The starting page index 877 * @nr_pages: The maximum number of pages 878 * @pages: Where the resulting pages are placed 879 * 880 * find_get_pages_contig() works exactly like find_get_pages(), except 881 * that the returned number of pages are guaranteed to be contiguous. 882 * 883 * find_get_pages_contig() returns the number of pages which were found. 884 */ 885 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, 886 unsigned int nr_pages, struct page **pages) 887 { 888 unsigned int i; 889 unsigned int ret; 890 unsigned int nr_found; 891 892 rcu_read_lock(); 893 restart: 894 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree, 895 (void ***)pages, NULL, index, nr_pages); 896 ret = 0; 897 for (i = 0; i < nr_found; i++) { 898 struct page *page; 899 repeat: 900 page = radix_tree_deref_slot((void **)pages[i]); 901 if (unlikely(!page)) 902 continue; 903 904 if (radix_tree_exception(page)) { 905 if (radix_tree_deref_retry(page)) { 906 /* 907 * Transient condition which can only trigger 908 * when entry at index 0 moves out of or back 909 * to root: none yet gotten, safe to restart. 910 */ 911 goto restart; 912 } 913 /* 914 * Otherwise, shmem/tmpfs must be storing a swap entry 915 * here as an exceptional entry: so stop looking for 916 * contiguous pages. 917 */ 918 break; 919 } 920 921 if (!page_cache_get_speculative(page)) 922 goto repeat; 923 924 /* Has the page moved? */ 925 if (unlikely(page != *((void **)pages[i]))) { 926 page_cache_release(page); 927 goto repeat; 928 } 929 930 /* 931 * must check mapping and index after taking the ref. 932 * otherwise we can get both false positives and false 933 * negatives, which is just confusing to the caller. 934 */ 935 if (page->mapping == NULL || page->index != index) { 936 page_cache_release(page); 937 break; 938 } 939 940 pages[ret] = page; 941 ret++; 942 index++; 943 } 944 rcu_read_unlock(); 945 return ret; 946 } 947 EXPORT_SYMBOL(find_get_pages_contig); 948 949 /** 950 * find_get_pages_tag - find and return pages that match @tag 951 * @mapping: the address_space to search 952 * @index: the starting page index 953 * @tag: the tag index 954 * @nr_pages: the maximum number of pages 955 * @pages: where the resulting pages are placed 956 * 957 * Like find_get_pages, except we only return pages which are tagged with 958 * @tag. We update @index to index the next page for the traversal. 959 */ 960 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, 961 int tag, unsigned int nr_pages, struct page **pages) 962 { 963 unsigned int i; 964 unsigned int ret; 965 unsigned int nr_found; 966 967 rcu_read_lock(); 968 restart: 969 nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree, 970 (void ***)pages, *index, nr_pages, tag); 971 ret = 0; 972 for (i = 0; i < nr_found; i++) { 973 struct page *page; 974 repeat: 975 page = radix_tree_deref_slot((void **)pages[i]); 976 if (unlikely(!page)) 977 continue; 978 979 if (radix_tree_exception(page)) { 980 if (radix_tree_deref_retry(page)) { 981 /* 982 * Transient condition which can only trigger 983 * when entry at index 0 moves out of or back 984 * to root: none yet gotten, safe to restart. 985 */ 986 goto restart; 987 } 988 /* 989 * This function is never used on a shmem/tmpfs 990 * mapping, so a swap entry won't be found here. 991 */ 992 BUG(); 993 } 994 995 if (!page_cache_get_speculative(page)) 996 goto repeat; 997 998 /* Has the page moved? */ 999 if (unlikely(page != *((void **)pages[i]))) { 1000 page_cache_release(page); 1001 goto repeat; 1002 } 1003 1004 pages[ret] = page; 1005 ret++; 1006 } 1007 1008 /* 1009 * If all entries were removed before we could secure them, 1010 * try again, because callers stop trying once 0 is returned. 1011 */ 1012 if (unlikely(!ret && nr_found)) 1013 goto restart; 1014 rcu_read_unlock(); 1015 1016 if (ret) 1017 *index = pages[ret - 1]->index + 1; 1018 1019 return ret; 1020 } 1021 EXPORT_SYMBOL(find_get_pages_tag); 1022 1023 /** 1024 * grab_cache_page_nowait - returns locked page at given index in given cache 1025 * @mapping: target address_space 1026 * @index: the page index 1027 * 1028 * Same as grab_cache_page(), but do not wait if the page is unavailable. 1029 * This is intended for speculative data generators, where the data can 1030 * be regenerated if the page couldn't be grabbed. This routine should 1031 * be safe to call while holding the lock for another page. 1032 * 1033 * Clear __GFP_FS when allocating the page to avoid recursion into the fs 1034 * and deadlock against the caller's locked page. 1035 */ 1036 struct page * 1037 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index) 1038 { 1039 struct page *page = find_get_page(mapping, index); 1040 1041 if (page) { 1042 if (trylock_page(page)) 1043 return page; 1044 page_cache_release(page); 1045 return NULL; 1046 } 1047 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS); 1048 if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) { 1049 page_cache_release(page); 1050 page = NULL; 1051 } 1052 return page; 1053 } 1054 EXPORT_SYMBOL(grab_cache_page_nowait); 1055 1056 /* 1057 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 1058 * a _large_ part of the i/o request. Imagine the worst scenario: 1059 * 1060 * ---R__________________________________________B__________ 1061 * ^ reading here ^ bad block(assume 4k) 1062 * 1063 * read(R) => miss => readahead(R...B) => media error => frustrating retries 1064 * => failing the whole request => read(R) => read(R+1) => 1065 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 1066 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 1067 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 1068 * 1069 * It is going insane. Fix it by quickly scaling down the readahead size. 1070 */ 1071 static void shrink_readahead_size_eio(struct file *filp, 1072 struct file_ra_state *ra) 1073 { 1074 ra->ra_pages /= 4; 1075 } 1076 1077 /** 1078 * do_generic_file_read - generic file read routine 1079 * @filp: the file to read 1080 * @ppos: current file position 1081 * @desc: read_descriptor 1082 * @actor: read method 1083 * 1084 * This is a generic file read routine, and uses the 1085 * mapping->a_ops->readpage() function for the actual low-level stuff. 1086 * 1087 * This is really ugly. But the goto's actually try to clarify some 1088 * of the logic when it comes to error handling etc. 1089 */ 1090 static void do_generic_file_read(struct file *filp, loff_t *ppos, 1091 read_descriptor_t *desc, read_actor_t actor) 1092 { 1093 struct address_space *mapping = filp->f_mapping; 1094 struct inode *inode = mapping->host; 1095 struct file_ra_state *ra = &filp->f_ra; 1096 pgoff_t index; 1097 pgoff_t last_index; 1098 pgoff_t prev_index; 1099 unsigned long offset; /* offset into pagecache page */ 1100 unsigned int prev_offset; 1101 int error; 1102 1103 index = *ppos >> PAGE_CACHE_SHIFT; 1104 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT; 1105 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1); 1106 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT; 1107 offset = *ppos & ~PAGE_CACHE_MASK; 1108 1109 for (;;) { 1110 struct page *page; 1111 pgoff_t end_index; 1112 loff_t isize; 1113 unsigned long nr, ret; 1114 1115 cond_resched(); 1116 find_page: 1117 page = find_get_page(mapping, index); 1118 if (!page) { 1119 page_cache_sync_readahead(mapping, 1120 ra, filp, 1121 index, last_index - index); 1122 page = find_get_page(mapping, index); 1123 if (unlikely(page == NULL)) 1124 goto no_cached_page; 1125 } 1126 if (PageReadahead(page)) { 1127 page_cache_async_readahead(mapping, 1128 ra, filp, page, 1129 index, last_index - index); 1130 } 1131 if (!PageUptodate(page)) { 1132 if (inode->i_blkbits == PAGE_CACHE_SHIFT || 1133 !mapping->a_ops->is_partially_uptodate) 1134 goto page_not_up_to_date; 1135 if (!trylock_page(page)) 1136 goto page_not_up_to_date; 1137 /* Did it get truncated before we got the lock? */ 1138 if (!page->mapping) 1139 goto page_not_up_to_date_locked; 1140 if (!mapping->a_ops->is_partially_uptodate(page, 1141 desc, offset)) 1142 goto page_not_up_to_date_locked; 1143 unlock_page(page); 1144 } 1145 page_ok: 1146 /* 1147 * i_size must be checked after we know the page is Uptodate. 1148 * 1149 * Checking i_size after the check allows us to calculate 1150 * the correct value for "nr", which means the zero-filled 1151 * part of the page is not copied back to userspace (unless 1152 * another truncate extends the file - this is desired though). 1153 */ 1154 1155 isize = i_size_read(inode); 1156 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 1157 if (unlikely(!isize || index > end_index)) { 1158 page_cache_release(page); 1159 goto out; 1160 } 1161 1162 /* nr is the maximum number of bytes to copy from this page */ 1163 nr = PAGE_CACHE_SIZE; 1164 if (index == end_index) { 1165 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 1166 if (nr <= offset) { 1167 page_cache_release(page); 1168 goto out; 1169 } 1170 } 1171 nr = nr - offset; 1172 1173 /* If users can be writing to this page using arbitrary 1174 * virtual addresses, take care about potential aliasing 1175 * before reading the page on the kernel side. 1176 */ 1177 if (mapping_writably_mapped(mapping)) 1178 flush_dcache_page(page); 1179 1180 /* 1181 * When a sequential read accesses a page several times, 1182 * only mark it as accessed the first time. 1183 */ 1184 if (prev_index != index || offset != prev_offset) 1185 mark_page_accessed(page); 1186 prev_index = index; 1187 1188 /* 1189 * Ok, we have the page, and it's up-to-date, so 1190 * now we can copy it to user space... 1191 * 1192 * The actor routine returns how many bytes were actually used.. 1193 * NOTE! This may not be the same as how much of a user buffer 1194 * we filled up (we may be padding etc), so we can only update 1195 * "pos" here (the actor routine has to update the user buffer 1196 * pointers and the remaining count). 1197 */ 1198 ret = actor(desc, page, offset, nr); 1199 offset += ret; 1200 index += offset >> PAGE_CACHE_SHIFT; 1201 offset &= ~PAGE_CACHE_MASK; 1202 prev_offset = offset; 1203 1204 page_cache_release(page); 1205 if (ret == nr && desc->count) 1206 continue; 1207 goto out; 1208 1209 page_not_up_to_date: 1210 /* Get exclusive access to the page ... */ 1211 error = lock_page_killable(page); 1212 if (unlikely(error)) 1213 goto readpage_error; 1214 1215 page_not_up_to_date_locked: 1216 /* Did it get truncated before we got the lock? */ 1217 if (!page->mapping) { 1218 unlock_page(page); 1219 page_cache_release(page); 1220 continue; 1221 } 1222 1223 /* Did somebody else fill it already? */ 1224 if (PageUptodate(page)) { 1225 unlock_page(page); 1226 goto page_ok; 1227 } 1228 1229 readpage: 1230 /* 1231 * A previous I/O error may have been due to temporary 1232 * failures, eg. multipath errors. 1233 * PG_error will be set again if readpage fails. 1234 */ 1235 ClearPageError(page); 1236 /* Start the actual read. The read will unlock the page. */ 1237 error = mapping->a_ops->readpage(filp, page); 1238 1239 if (unlikely(error)) { 1240 if (error == AOP_TRUNCATED_PAGE) { 1241 page_cache_release(page); 1242 goto find_page; 1243 } 1244 goto readpage_error; 1245 } 1246 1247 if (!PageUptodate(page)) { 1248 error = lock_page_killable(page); 1249 if (unlikely(error)) 1250 goto readpage_error; 1251 if (!PageUptodate(page)) { 1252 if (page->mapping == NULL) { 1253 /* 1254 * invalidate_mapping_pages got it 1255 */ 1256 unlock_page(page); 1257 page_cache_release(page); 1258 goto find_page; 1259 } 1260 unlock_page(page); 1261 shrink_readahead_size_eio(filp, ra); 1262 error = -EIO; 1263 goto readpage_error; 1264 } 1265 unlock_page(page); 1266 } 1267 1268 goto page_ok; 1269 1270 readpage_error: 1271 /* UHHUH! A synchronous read error occurred. Report it */ 1272 desc->error = error; 1273 page_cache_release(page); 1274 goto out; 1275 1276 no_cached_page: 1277 /* 1278 * Ok, it wasn't cached, so we need to create a new 1279 * page.. 1280 */ 1281 page = page_cache_alloc_cold(mapping); 1282 if (!page) { 1283 desc->error = -ENOMEM; 1284 goto out; 1285 } 1286 error = add_to_page_cache_lru(page, mapping, 1287 index, GFP_KERNEL); 1288 if (error) { 1289 page_cache_release(page); 1290 if (error == -EEXIST) 1291 goto find_page; 1292 desc->error = error; 1293 goto out; 1294 } 1295 goto readpage; 1296 } 1297 1298 out: 1299 ra->prev_pos = prev_index; 1300 ra->prev_pos <<= PAGE_CACHE_SHIFT; 1301 ra->prev_pos |= prev_offset; 1302 1303 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset; 1304 file_accessed(filp); 1305 } 1306 1307 int file_read_actor(read_descriptor_t *desc, struct page *page, 1308 unsigned long offset, unsigned long size) 1309 { 1310 char *kaddr; 1311 unsigned long left, count = desc->count; 1312 1313 if (size > count) 1314 size = count; 1315 1316 /* 1317 * Faults on the destination of a read are common, so do it before 1318 * taking the kmap. 1319 */ 1320 if (!fault_in_pages_writeable(desc->arg.buf, size)) { 1321 kaddr = kmap_atomic(page, KM_USER0); 1322 left = __copy_to_user_inatomic(desc->arg.buf, 1323 kaddr + offset, size); 1324 kunmap_atomic(kaddr, KM_USER0); 1325 if (left == 0) 1326 goto success; 1327 } 1328 1329 /* Do it the slow way */ 1330 kaddr = kmap(page); 1331 left = __copy_to_user(desc->arg.buf, kaddr + offset, size); 1332 kunmap(page); 1333 1334 if (left) { 1335 size -= left; 1336 desc->error = -EFAULT; 1337 } 1338 success: 1339 desc->count = count - size; 1340 desc->written += size; 1341 desc->arg.buf += size; 1342 return size; 1343 } 1344 1345 /* 1346 * Performs necessary checks before doing a write 1347 * @iov: io vector request 1348 * @nr_segs: number of segments in the iovec 1349 * @count: number of bytes to write 1350 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE 1351 * 1352 * Adjust number of segments and amount of bytes to write (nr_segs should be 1353 * properly initialized first). Returns appropriate error code that caller 1354 * should return or zero in case that write should be allowed. 1355 */ 1356 int generic_segment_checks(const struct iovec *iov, 1357 unsigned long *nr_segs, size_t *count, int access_flags) 1358 { 1359 unsigned long seg; 1360 size_t cnt = 0; 1361 for (seg = 0; seg < *nr_segs; seg++) { 1362 const struct iovec *iv = &iov[seg]; 1363 1364 /* 1365 * If any segment has a negative length, or the cumulative 1366 * length ever wraps negative then return -EINVAL. 1367 */ 1368 cnt += iv->iov_len; 1369 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0)) 1370 return -EINVAL; 1371 if (access_ok(access_flags, iv->iov_base, iv->iov_len)) 1372 continue; 1373 if (seg == 0) 1374 return -EFAULT; 1375 *nr_segs = seg; 1376 cnt -= iv->iov_len; /* This segment is no good */ 1377 break; 1378 } 1379 *count = cnt; 1380 return 0; 1381 } 1382 EXPORT_SYMBOL(generic_segment_checks); 1383 1384 /** 1385 * generic_file_aio_read - generic filesystem read routine 1386 * @iocb: kernel I/O control block 1387 * @iov: io vector request 1388 * @nr_segs: number of segments in the iovec 1389 * @pos: current file position 1390 * 1391 * This is the "read()" routine for all filesystems 1392 * that can use the page cache directly. 1393 */ 1394 ssize_t 1395 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov, 1396 unsigned long nr_segs, loff_t pos) 1397 { 1398 struct file *filp = iocb->ki_filp; 1399 ssize_t retval; 1400 unsigned long seg = 0; 1401 size_t count; 1402 loff_t *ppos = &iocb->ki_pos; 1403 struct blk_plug plug; 1404 1405 count = 0; 1406 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE); 1407 if (retval) 1408 return retval; 1409 1410 blk_start_plug(&plug); 1411 1412 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ 1413 if (filp->f_flags & O_DIRECT) { 1414 loff_t size; 1415 struct address_space *mapping; 1416 struct inode *inode; 1417 1418 mapping = filp->f_mapping; 1419 inode = mapping->host; 1420 if (!count) 1421 goto out; /* skip atime */ 1422 size = i_size_read(inode); 1423 if (pos < size) { 1424 retval = filemap_write_and_wait_range(mapping, pos, 1425 pos + iov_length(iov, nr_segs) - 1); 1426 if (!retval) { 1427 retval = mapping->a_ops->direct_IO(READ, iocb, 1428 iov, pos, nr_segs); 1429 } 1430 if (retval > 0) { 1431 *ppos = pos + retval; 1432 count -= retval; 1433 } 1434 1435 /* 1436 * Btrfs can have a short DIO read if we encounter 1437 * compressed extents, so if there was an error, or if 1438 * we've already read everything we wanted to, or if 1439 * there was a short read because we hit EOF, go ahead 1440 * and return. Otherwise fallthrough to buffered io for 1441 * the rest of the read. 1442 */ 1443 if (retval < 0 || !count || *ppos >= size) { 1444 file_accessed(filp); 1445 goto out; 1446 } 1447 } 1448 } 1449 1450 count = retval; 1451 for (seg = 0; seg < nr_segs; seg++) { 1452 read_descriptor_t desc; 1453 loff_t offset = 0; 1454 1455 /* 1456 * If we did a short DIO read we need to skip the section of the 1457 * iov that we've already read data into. 1458 */ 1459 if (count) { 1460 if (count > iov[seg].iov_len) { 1461 count -= iov[seg].iov_len; 1462 continue; 1463 } 1464 offset = count; 1465 count = 0; 1466 } 1467 1468 desc.written = 0; 1469 desc.arg.buf = iov[seg].iov_base + offset; 1470 desc.count = iov[seg].iov_len - offset; 1471 if (desc.count == 0) 1472 continue; 1473 desc.error = 0; 1474 do_generic_file_read(filp, ppos, &desc, file_read_actor); 1475 retval += desc.written; 1476 if (desc.error) { 1477 retval = retval ?: desc.error; 1478 break; 1479 } 1480 if (desc.count > 0) 1481 break; 1482 } 1483 out: 1484 blk_finish_plug(&plug); 1485 return retval; 1486 } 1487 EXPORT_SYMBOL(generic_file_aio_read); 1488 1489 static ssize_t 1490 do_readahead(struct address_space *mapping, struct file *filp, 1491 pgoff_t index, unsigned long nr) 1492 { 1493 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage) 1494 return -EINVAL; 1495 1496 force_page_cache_readahead(mapping, filp, index, nr); 1497 return 0; 1498 } 1499 1500 SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count) 1501 { 1502 ssize_t ret; 1503 struct file *file; 1504 1505 ret = -EBADF; 1506 file = fget(fd); 1507 if (file) { 1508 if (file->f_mode & FMODE_READ) { 1509 struct address_space *mapping = file->f_mapping; 1510 pgoff_t start = offset >> PAGE_CACHE_SHIFT; 1511 pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT; 1512 unsigned long len = end - start + 1; 1513 ret = do_readahead(mapping, file, start, len); 1514 } 1515 fput(file); 1516 } 1517 return ret; 1518 } 1519 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS 1520 asmlinkage long SyS_readahead(long fd, loff_t offset, long count) 1521 { 1522 return SYSC_readahead((int) fd, offset, (size_t) count); 1523 } 1524 SYSCALL_ALIAS(sys_readahead, SyS_readahead); 1525 #endif 1526 1527 #ifdef CONFIG_MMU 1528 /** 1529 * page_cache_read - adds requested page to the page cache if not already there 1530 * @file: file to read 1531 * @offset: page index 1532 * 1533 * This adds the requested page to the page cache if it isn't already there, 1534 * and schedules an I/O to read in its contents from disk. 1535 */ 1536 static int page_cache_read(struct file *file, pgoff_t offset) 1537 { 1538 struct address_space *mapping = file->f_mapping; 1539 struct page *page; 1540 int ret; 1541 1542 do { 1543 page = page_cache_alloc_cold(mapping); 1544 if (!page) 1545 return -ENOMEM; 1546 1547 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL); 1548 if (ret == 0) 1549 ret = mapping->a_ops->readpage(file, page); 1550 else if (ret == -EEXIST) 1551 ret = 0; /* losing race to add is OK */ 1552 1553 page_cache_release(page); 1554 1555 } while (ret == AOP_TRUNCATED_PAGE); 1556 1557 return ret; 1558 } 1559 1560 #define MMAP_LOTSAMISS (100) 1561 1562 /* 1563 * Synchronous readahead happens when we don't even find 1564 * a page in the page cache at all. 1565 */ 1566 static void do_sync_mmap_readahead(struct vm_area_struct *vma, 1567 struct file_ra_state *ra, 1568 struct file *file, 1569 pgoff_t offset) 1570 { 1571 unsigned long ra_pages; 1572 struct address_space *mapping = file->f_mapping; 1573 1574 /* If we don't want any read-ahead, don't bother */ 1575 if (VM_RandomReadHint(vma)) 1576 return; 1577 if (!ra->ra_pages) 1578 return; 1579 1580 if (VM_SequentialReadHint(vma)) { 1581 page_cache_sync_readahead(mapping, ra, file, offset, 1582 ra->ra_pages); 1583 return; 1584 } 1585 1586 /* Avoid banging the cache line if not needed */ 1587 if (ra->mmap_miss < MMAP_LOTSAMISS * 10) 1588 ra->mmap_miss++; 1589 1590 /* 1591 * Do we miss much more than hit in this file? If so, 1592 * stop bothering with read-ahead. It will only hurt. 1593 */ 1594 if (ra->mmap_miss > MMAP_LOTSAMISS) 1595 return; 1596 1597 /* 1598 * mmap read-around 1599 */ 1600 ra_pages = max_sane_readahead(ra->ra_pages); 1601 ra->start = max_t(long, 0, offset - ra_pages / 2); 1602 ra->size = ra_pages; 1603 ra->async_size = ra_pages / 4; 1604 ra_submit(ra, mapping, file); 1605 } 1606 1607 /* 1608 * Asynchronous readahead happens when we find the page and PG_readahead, 1609 * so we want to possibly extend the readahead further.. 1610 */ 1611 static void do_async_mmap_readahead(struct vm_area_struct *vma, 1612 struct file_ra_state *ra, 1613 struct file *file, 1614 struct page *page, 1615 pgoff_t offset) 1616 { 1617 struct address_space *mapping = file->f_mapping; 1618 1619 /* If we don't want any read-ahead, don't bother */ 1620 if (VM_RandomReadHint(vma)) 1621 return; 1622 if (ra->mmap_miss > 0) 1623 ra->mmap_miss--; 1624 if (PageReadahead(page)) 1625 page_cache_async_readahead(mapping, ra, file, 1626 page, offset, ra->ra_pages); 1627 } 1628 1629 /** 1630 * filemap_fault - read in file data for page fault handling 1631 * @vma: vma in which the fault was taken 1632 * @vmf: struct vm_fault containing details of the fault 1633 * 1634 * filemap_fault() is invoked via the vma operations vector for a 1635 * mapped memory region to read in file data during a page fault. 1636 * 1637 * The goto's are kind of ugly, but this streamlines the normal case of having 1638 * it in the page cache, and handles the special cases reasonably without 1639 * having a lot of duplicated code. 1640 */ 1641 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1642 { 1643 int error; 1644 struct file *file = vma->vm_file; 1645 struct address_space *mapping = file->f_mapping; 1646 struct file_ra_state *ra = &file->f_ra; 1647 struct inode *inode = mapping->host; 1648 pgoff_t offset = vmf->pgoff; 1649 struct page *page; 1650 pgoff_t size; 1651 int ret = 0; 1652 1653 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1654 if (offset >= size) 1655 return VM_FAULT_SIGBUS; 1656 1657 /* 1658 * Do we have something in the page cache already? 1659 */ 1660 page = find_get_page(mapping, offset); 1661 if (likely(page)) { 1662 /* 1663 * We found the page, so try async readahead before 1664 * waiting for the lock. 1665 */ 1666 do_async_mmap_readahead(vma, ra, file, page, offset); 1667 } else { 1668 /* No page in the page cache at all */ 1669 do_sync_mmap_readahead(vma, ra, file, offset); 1670 count_vm_event(PGMAJFAULT); 1671 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT); 1672 ret = VM_FAULT_MAJOR; 1673 retry_find: 1674 page = find_get_page(mapping, offset); 1675 if (!page) 1676 goto no_cached_page; 1677 } 1678 1679 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) { 1680 page_cache_release(page); 1681 return ret | VM_FAULT_RETRY; 1682 } 1683 1684 /* Did it get truncated? */ 1685 if (unlikely(page->mapping != mapping)) { 1686 unlock_page(page); 1687 put_page(page); 1688 goto retry_find; 1689 } 1690 VM_BUG_ON(page->index != offset); 1691 1692 /* 1693 * We have a locked page in the page cache, now we need to check 1694 * that it's up-to-date. If not, it is going to be due to an error. 1695 */ 1696 if (unlikely(!PageUptodate(page))) 1697 goto page_not_uptodate; 1698 1699 /* 1700 * Found the page and have a reference on it. 1701 * We must recheck i_size under page lock. 1702 */ 1703 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1704 if (unlikely(offset >= size)) { 1705 unlock_page(page); 1706 page_cache_release(page); 1707 return VM_FAULT_SIGBUS; 1708 } 1709 1710 vmf->page = page; 1711 return ret | VM_FAULT_LOCKED; 1712 1713 no_cached_page: 1714 /* 1715 * We're only likely to ever get here if MADV_RANDOM is in 1716 * effect. 1717 */ 1718 error = page_cache_read(file, offset); 1719 1720 /* 1721 * The page we want has now been added to the page cache. 1722 * In the unlikely event that someone removed it in the 1723 * meantime, we'll just come back here and read it again. 1724 */ 1725 if (error >= 0) 1726 goto retry_find; 1727 1728 /* 1729 * An error return from page_cache_read can result if the 1730 * system is low on memory, or a problem occurs while trying 1731 * to schedule I/O. 1732 */ 1733 if (error == -ENOMEM) 1734 return VM_FAULT_OOM; 1735 return VM_FAULT_SIGBUS; 1736 1737 page_not_uptodate: 1738 /* 1739 * Umm, take care of errors if the page isn't up-to-date. 1740 * Try to re-read it _once_. We do this synchronously, 1741 * because there really aren't any performance issues here 1742 * and we need to check for errors. 1743 */ 1744 ClearPageError(page); 1745 error = mapping->a_ops->readpage(file, page); 1746 if (!error) { 1747 wait_on_page_locked(page); 1748 if (!PageUptodate(page)) 1749 error = -EIO; 1750 } 1751 page_cache_release(page); 1752 1753 if (!error || error == AOP_TRUNCATED_PAGE) 1754 goto retry_find; 1755 1756 /* Things didn't work out. Return zero to tell the mm layer so. */ 1757 shrink_readahead_size_eio(file, ra); 1758 return VM_FAULT_SIGBUS; 1759 } 1760 EXPORT_SYMBOL(filemap_fault); 1761 1762 const struct vm_operations_struct generic_file_vm_ops = { 1763 .fault = filemap_fault, 1764 }; 1765 1766 /* This is used for a general mmap of a disk file */ 1767 1768 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 1769 { 1770 struct address_space *mapping = file->f_mapping; 1771 1772 if (!mapping->a_ops->readpage) 1773 return -ENOEXEC; 1774 file_accessed(file); 1775 vma->vm_ops = &generic_file_vm_ops; 1776 vma->vm_flags |= VM_CAN_NONLINEAR; 1777 return 0; 1778 } 1779 1780 /* 1781 * This is for filesystems which do not implement ->writepage. 1782 */ 1783 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 1784 { 1785 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 1786 return -EINVAL; 1787 return generic_file_mmap(file, vma); 1788 } 1789 #else 1790 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 1791 { 1792 return -ENOSYS; 1793 } 1794 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) 1795 { 1796 return -ENOSYS; 1797 } 1798 #endif /* CONFIG_MMU */ 1799 1800 EXPORT_SYMBOL(generic_file_mmap); 1801 EXPORT_SYMBOL(generic_file_readonly_mmap); 1802 1803 static struct page *__read_cache_page(struct address_space *mapping, 1804 pgoff_t index, 1805 int (*filler)(void *, struct page *), 1806 void *data, 1807 gfp_t gfp) 1808 { 1809 struct page *page; 1810 int err; 1811 repeat: 1812 page = find_get_page(mapping, index); 1813 if (!page) { 1814 page = __page_cache_alloc(gfp | __GFP_COLD); 1815 if (!page) 1816 return ERR_PTR(-ENOMEM); 1817 err = add_to_page_cache_lru(page, mapping, index, gfp); 1818 if (unlikely(err)) { 1819 page_cache_release(page); 1820 if (err == -EEXIST) 1821 goto repeat; 1822 /* Presumably ENOMEM for radix tree node */ 1823 return ERR_PTR(err); 1824 } 1825 err = filler(data, page); 1826 if (err < 0) { 1827 page_cache_release(page); 1828 page = ERR_PTR(err); 1829 } 1830 } 1831 return page; 1832 } 1833 1834 static struct page *do_read_cache_page(struct address_space *mapping, 1835 pgoff_t index, 1836 int (*filler)(void *, struct page *), 1837 void *data, 1838 gfp_t gfp) 1839 1840 { 1841 struct page *page; 1842 int err; 1843 1844 retry: 1845 page = __read_cache_page(mapping, index, filler, data, gfp); 1846 if (IS_ERR(page)) 1847 return page; 1848 if (PageUptodate(page)) 1849 goto out; 1850 1851 lock_page(page); 1852 if (!page->mapping) { 1853 unlock_page(page); 1854 page_cache_release(page); 1855 goto retry; 1856 } 1857 if (PageUptodate(page)) { 1858 unlock_page(page); 1859 goto out; 1860 } 1861 err = filler(data, page); 1862 if (err < 0) { 1863 page_cache_release(page); 1864 return ERR_PTR(err); 1865 } 1866 out: 1867 mark_page_accessed(page); 1868 return page; 1869 } 1870 1871 /** 1872 * read_cache_page_async - read into page cache, fill it if needed 1873 * @mapping: the page's address_space 1874 * @index: the page index 1875 * @filler: function to perform the read 1876 * @data: first arg to filler(data, page) function, often left as NULL 1877 * 1878 * Same as read_cache_page, but don't wait for page to become unlocked 1879 * after submitting it to the filler. 1880 * 1881 * Read into the page cache. If a page already exists, and PageUptodate() is 1882 * not set, try to fill the page but don't wait for it to become unlocked. 1883 * 1884 * If the page does not get brought uptodate, return -EIO. 1885 */ 1886 struct page *read_cache_page_async(struct address_space *mapping, 1887 pgoff_t index, 1888 int (*filler)(void *, struct page *), 1889 void *data) 1890 { 1891 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping)); 1892 } 1893 EXPORT_SYMBOL(read_cache_page_async); 1894 1895 static struct page *wait_on_page_read(struct page *page) 1896 { 1897 if (!IS_ERR(page)) { 1898 wait_on_page_locked(page); 1899 if (!PageUptodate(page)) { 1900 page_cache_release(page); 1901 page = ERR_PTR(-EIO); 1902 } 1903 } 1904 return page; 1905 } 1906 1907 /** 1908 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 1909 * @mapping: the page's address_space 1910 * @index: the page index 1911 * @gfp: the page allocator flags to use if allocating 1912 * 1913 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 1914 * any new page allocations done using the specified allocation flags. 1915 * 1916 * If the page does not get brought uptodate, return -EIO. 1917 */ 1918 struct page *read_cache_page_gfp(struct address_space *mapping, 1919 pgoff_t index, 1920 gfp_t gfp) 1921 { 1922 filler_t *filler = (filler_t *)mapping->a_ops->readpage; 1923 1924 return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp)); 1925 } 1926 EXPORT_SYMBOL(read_cache_page_gfp); 1927 1928 /** 1929 * read_cache_page - read into page cache, fill it if needed 1930 * @mapping: the page's address_space 1931 * @index: the page index 1932 * @filler: function to perform the read 1933 * @data: first arg to filler(data, page) function, often left as NULL 1934 * 1935 * Read into the page cache. If a page already exists, and PageUptodate() is 1936 * not set, try to fill the page then wait for it to become unlocked. 1937 * 1938 * If the page does not get brought uptodate, return -EIO. 1939 */ 1940 struct page *read_cache_page(struct address_space *mapping, 1941 pgoff_t index, 1942 int (*filler)(void *, struct page *), 1943 void *data) 1944 { 1945 return wait_on_page_read(read_cache_page_async(mapping, index, filler, data)); 1946 } 1947 EXPORT_SYMBOL(read_cache_page); 1948 1949 /* 1950 * The logic we want is 1951 * 1952 * if suid or (sgid and xgrp) 1953 * remove privs 1954 */ 1955 int should_remove_suid(struct dentry *dentry) 1956 { 1957 umode_t mode = dentry->d_inode->i_mode; 1958 int kill = 0; 1959 1960 /* suid always must be killed */ 1961 if (unlikely(mode & S_ISUID)) 1962 kill = ATTR_KILL_SUID; 1963 1964 /* 1965 * sgid without any exec bits is just a mandatory locking mark; leave 1966 * it alone. If some exec bits are set, it's a real sgid; kill it. 1967 */ 1968 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP))) 1969 kill |= ATTR_KILL_SGID; 1970 1971 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode))) 1972 return kill; 1973 1974 return 0; 1975 } 1976 EXPORT_SYMBOL(should_remove_suid); 1977 1978 static int __remove_suid(struct dentry *dentry, int kill) 1979 { 1980 struct iattr newattrs; 1981 1982 newattrs.ia_valid = ATTR_FORCE | kill; 1983 return notify_change(dentry, &newattrs); 1984 } 1985 1986 int file_remove_suid(struct file *file) 1987 { 1988 struct dentry *dentry = file->f_path.dentry; 1989 struct inode *inode = dentry->d_inode; 1990 int killsuid; 1991 int killpriv; 1992 int error = 0; 1993 1994 /* Fast path for nothing security related */ 1995 if (IS_NOSEC(inode)) 1996 return 0; 1997 1998 killsuid = should_remove_suid(dentry); 1999 killpriv = security_inode_need_killpriv(dentry); 2000 2001 if (killpriv < 0) 2002 return killpriv; 2003 if (killpriv) 2004 error = security_inode_killpriv(dentry); 2005 if (!error && killsuid) 2006 error = __remove_suid(dentry, killsuid); 2007 if (!error && (inode->i_sb->s_flags & MS_NOSEC)) 2008 inode->i_flags |= S_NOSEC; 2009 2010 return error; 2011 } 2012 EXPORT_SYMBOL(file_remove_suid); 2013 2014 static size_t __iovec_copy_from_user_inatomic(char *vaddr, 2015 const struct iovec *iov, size_t base, size_t bytes) 2016 { 2017 size_t copied = 0, left = 0; 2018 2019 while (bytes) { 2020 char __user *buf = iov->iov_base + base; 2021 int copy = min(bytes, iov->iov_len - base); 2022 2023 base = 0; 2024 left = __copy_from_user_inatomic(vaddr, buf, copy); 2025 copied += copy; 2026 bytes -= copy; 2027 vaddr += copy; 2028 iov++; 2029 2030 if (unlikely(left)) 2031 break; 2032 } 2033 return copied - left; 2034 } 2035 2036 /* 2037 * Copy as much as we can into the page and return the number of bytes which 2038 * were successfully copied. If a fault is encountered then return the number of 2039 * bytes which were copied. 2040 */ 2041 size_t iov_iter_copy_from_user_atomic(struct page *page, 2042 struct iov_iter *i, unsigned long offset, size_t bytes) 2043 { 2044 char *kaddr; 2045 size_t copied; 2046 2047 BUG_ON(!in_atomic()); 2048 kaddr = kmap_atomic(page, KM_USER0); 2049 if (likely(i->nr_segs == 1)) { 2050 int left; 2051 char __user *buf = i->iov->iov_base + i->iov_offset; 2052 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes); 2053 copied = bytes - left; 2054 } else { 2055 copied = __iovec_copy_from_user_inatomic(kaddr + offset, 2056 i->iov, i->iov_offset, bytes); 2057 } 2058 kunmap_atomic(kaddr, KM_USER0); 2059 2060 return copied; 2061 } 2062 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic); 2063 2064 /* 2065 * This has the same sideeffects and return value as 2066 * iov_iter_copy_from_user_atomic(). 2067 * The difference is that it attempts to resolve faults. 2068 * Page must not be locked. 2069 */ 2070 size_t iov_iter_copy_from_user(struct page *page, 2071 struct iov_iter *i, unsigned long offset, size_t bytes) 2072 { 2073 char *kaddr; 2074 size_t copied; 2075 2076 kaddr = kmap(page); 2077 if (likely(i->nr_segs == 1)) { 2078 int left; 2079 char __user *buf = i->iov->iov_base + i->iov_offset; 2080 left = __copy_from_user(kaddr + offset, buf, bytes); 2081 copied = bytes - left; 2082 } else { 2083 copied = __iovec_copy_from_user_inatomic(kaddr + offset, 2084 i->iov, i->iov_offset, bytes); 2085 } 2086 kunmap(page); 2087 return copied; 2088 } 2089 EXPORT_SYMBOL(iov_iter_copy_from_user); 2090 2091 void iov_iter_advance(struct iov_iter *i, size_t bytes) 2092 { 2093 BUG_ON(i->count < bytes); 2094 2095 if (likely(i->nr_segs == 1)) { 2096 i->iov_offset += bytes; 2097 i->count -= bytes; 2098 } else { 2099 const struct iovec *iov = i->iov; 2100 size_t base = i->iov_offset; 2101 unsigned long nr_segs = i->nr_segs; 2102 2103 /* 2104 * The !iov->iov_len check ensures we skip over unlikely 2105 * zero-length segments (without overruning the iovec). 2106 */ 2107 while (bytes || unlikely(i->count && !iov->iov_len)) { 2108 int copy; 2109 2110 copy = min(bytes, iov->iov_len - base); 2111 BUG_ON(!i->count || i->count < copy); 2112 i->count -= copy; 2113 bytes -= copy; 2114 base += copy; 2115 if (iov->iov_len == base) { 2116 iov++; 2117 nr_segs--; 2118 base = 0; 2119 } 2120 } 2121 i->iov = iov; 2122 i->iov_offset = base; 2123 i->nr_segs = nr_segs; 2124 } 2125 } 2126 EXPORT_SYMBOL(iov_iter_advance); 2127 2128 /* 2129 * Fault in the first iovec of the given iov_iter, to a maximum length 2130 * of bytes. Returns 0 on success, or non-zero if the memory could not be 2131 * accessed (ie. because it is an invalid address). 2132 * 2133 * writev-intensive code may want this to prefault several iovecs -- that 2134 * would be possible (callers must not rely on the fact that _only_ the 2135 * first iovec will be faulted with the current implementation). 2136 */ 2137 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes) 2138 { 2139 char __user *buf = i->iov->iov_base + i->iov_offset; 2140 bytes = min(bytes, i->iov->iov_len - i->iov_offset); 2141 return fault_in_pages_readable(buf, bytes); 2142 } 2143 EXPORT_SYMBOL(iov_iter_fault_in_readable); 2144 2145 /* 2146 * Return the count of just the current iov_iter segment. 2147 */ 2148 size_t iov_iter_single_seg_count(struct iov_iter *i) 2149 { 2150 const struct iovec *iov = i->iov; 2151 if (i->nr_segs == 1) 2152 return i->count; 2153 else 2154 return min(i->count, iov->iov_len - i->iov_offset); 2155 } 2156 EXPORT_SYMBOL(iov_iter_single_seg_count); 2157 2158 /* 2159 * Performs necessary checks before doing a write 2160 * 2161 * Can adjust writing position or amount of bytes to write. 2162 * Returns appropriate error code that caller should return or 2163 * zero in case that write should be allowed. 2164 */ 2165 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk) 2166 { 2167 struct inode *inode = file->f_mapping->host; 2168 unsigned long limit = rlimit(RLIMIT_FSIZE); 2169 2170 if (unlikely(*pos < 0)) 2171 return -EINVAL; 2172 2173 if (!isblk) { 2174 /* FIXME: this is for backwards compatibility with 2.4 */ 2175 if (file->f_flags & O_APPEND) 2176 *pos = i_size_read(inode); 2177 2178 if (limit != RLIM_INFINITY) { 2179 if (*pos >= limit) { 2180 send_sig(SIGXFSZ, current, 0); 2181 return -EFBIG; 2182 } 2183 if (*count > limit - (typeof(limit))*pos) { 2184 *count = limit - (typeof(limit))*pos; 2185 } 2186 } 2187 } 2188 2189 /* 2190 * LFS rule 2191 */ 2192 if (unlikely(*pos + *count > MAX_NON_LFS && 2193 !(file->f_flags & O_LARGEFILE))) { 2194 if (*pos >= MAX_NON_LFS) { 2195 return -EFBIG; 2196 } 2197 if (*count > MAX_NON_LFS - (unsigned long)*pos) { 2198 *count = MAX_NON_LFS - (unsigned long)*pos; 2199 } 2200 } 2201 2202 /* 2203 * Are we about to exceed the fs block limit ? 2204 * 2205 * If we have written data it becomes a short write. If we have 2206 * exceeded without writing data we send a signal and return EFBIG. 2207 * Linus frestrict idea will clean these up nicely.. 2208 */ 2209 if (likely(!isblk)) { 2210 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) { 2211 if (*count || *pos > inode->i_sb->s_maxbytes) { 2212 return -EFBIG; 2213 } 2214 /* zero-length writes at ->s_maxbytes are OK */ 2215 } 2216 2217 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes)) 2218 *count = inode->i_sb->s_maxbytes - *pos; 2219 } else { 2220 #ifdef CONFIG_BLOCK 2221 loff_t isize; 2222 if (bdev_read_only(I_BDEV(inode))) 2223 return -EPERM; 2224 isize = i_size_read(inode); 2225 if (*pos >= isize) { 2226 if (*count || *pos > isize) 2227 return -ENOSPC; 2228 } 2229 2230 if (*pos + *count > isize) 2231 *count = isize - *pos; 2232 #else 2233 return -EPERM; 2234 #endif 2235 } 2236 return 0; 2237 } 2238 EXPORT_SYMBOL(generic_write_checks); 2239 2240 int pagecache_write_begin(struct file *file, struct address_space *mapping, 2241 loff_t pos, unsigned len, unsigned flags, 2242 struct page **pagep, void **fsdata) 2243 { 2244 const struct address_space_operations *aops = mapping->a_ops; 2245 2246 return aops->write_begin(file, mapping, pos, len, flags, 2247 pagep, fsdata); 2248 } 2249 EXPORT_SYMBOL(pagecache_write_begin); 2250 2251 int pagecache_write_end(struct file *file, struct address_space *mapping, 2252 loff_t pos, unsigned len, unsigned copied, 2253 struct page *page, void *fsdata) 2254 { 2255 const struct address_space_operations *aops = mapping->a_ops; 2256 2257 mark_page_accessed(page); 2258 return aops->write_end(file, mapping, pos, len, copied, page, fsdata); 2259 } 2260 EXPORT_SYMBOL(pagecache_write_end); 2261 2262 ssize_t 2263 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov, 2264 unsigned long *nr_segs, loff_t pos, loff_t *ppos, 2265 size_t count, size_t ocount) 2266 { 2267 struct file *file = iocb->ki_filp; 2268 struct address_space *mapping = file->f_mapping; 2269 struct inode *inode = mapping->host; 2270 ssize_t written; 2271 size_t write_len; 2272 pgoff_t end; 2273 2274 if (count != ocount) 2275 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count); 2276 2277 write_len = iov_length(iov, *nr_segs); 2278 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT; 2279 2280 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1); 2281 if (written) 2282 goto out; 2283 2284 /* 2285 * After a write we want buffered reads to be sure to go to disk to get 2286 * the new data. We invalidate clean cached page from the region we're 2287 * about to write. We do this *before* the write so that we can return 2288 * without clobbering -EIOCBQUEUED from ->direct_IO(). 2289 */ 2290 if (mapping->nrpages) { 2291 written = invalidate_inode_pages2_range(mapping, 2292 pos >> PAGE_CACHE_SHIFT, end); 2293 /* 2294 * If a page can not be invalidated, return 0 to fall back 2295 * to buffered write. 2296 */ 2297 if (written) { 2298 if (written == -EBUSY) 2299 return 0; 2300 goto out; 2301 } 2302 } 2303 2304 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs); 2305 2306 /* 2307 * Finally, try again to invalidate clean pages which might have been 2308 * cached by non-direct readahead, or faulted in by get_user_pages() 2309 * if the source of the write was an mmap'ed region of the file 2310 * we're writing. Either one is a pretty crazy thing to do, 2311 * so we don't support it 100%. If this invalidation 2312 * fails, tough, the write still worked... 2313 */ 2314 if (mapping->nrpages) { 2315 invalidate_inode_pages2_range(mapping, 2316 pos >> PAGE_CACHE_SHIFT, end); 2317 } 2318 2319 if (written > 0) { 2320 pos += written; 2321 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 2322 i_size_write(inode, pos); 2323 mark_inode_dirty(inode); 2324 } 2325 *ppos = pos; 2326 } 2327 out: 2328 return written; 2329 } 2330 EXPORT_SYMBOL(generic_file_direct_write); 2331 2332 /* 2333 * Find or create a page at the given pagecache position. Return the locked 2334 * page. This function is specifically for buffered writes. 2335 */ 2336 struct page *grab_cache_page_write_begin(struct address_space *mapping, 2337 pgoff_t index, unsigned flags) 2338 { 2339 int status; 2340 gfp_t gfp_mask; 2341 struct page *page; 2342 gfp_t gfp_notmask = 0; 2343 2344 gfp_mask = mapping_gfp_mask(mapping) | __GFP_WRITE; 2345 if (flags & AOP_FLAG_NOFS) 2346 gfp_notmask = __GFP_FS; 2347 repeat: 2348 page = find_lock_page(mapping, index); 2349 if (page) 2350 goto found; 2351 2352 page = __page_cache_alloc(gfp_mask & ~gfp_notmask); 2353 if (!page) 2354 return NULL; 2355 status = add_to_page_cache_lru(page, mapping, index, 2356 GFP_KERNEL & ~gfp_notmask); 2357 if (unlikely(status)) { 2358 page_cache_release(page); 2359 if (status == -EEXIST) 2360 goto repeat; 2361 return NULL; 2362 } 2363 found: 2364 wait_on_page_writeback(page); 2365 return page; 2366 } 2367 EXPORT_SYMBOL(grab_cache_page_write_begin); 2368 2369 static ssize_t generic_perform_write(struct file *file, 2370 struct iov_iter *i, loff_t pos) 2371 { 2372 struct address_space *mapping = file->f_mapping; 2373 const struct address_space_operations *a_ops = mapping->a_ops; 2374 long status = 0; 2375 ssize_t written = 0; 2376 unsigned int flags = 0; 2377 2378 /* 2379 * Copies from kernel address space cannot fail (NFSD is a big user). 2380 */ 2381 if (segment_eq(get_fs(), KERNEL_DS)) 2382 flags |= AOP_FLAG_UNINTERRUPTIBLE; 2383 2384 do { 2385 struct page *page; 2386 unsigned long offset; /* Offset into pagecache page */ 2387 unsigned long bytes; /* Bytes to write to page */ 2388 size_t copied; /* Bytes copied from user */ 2389 void *fsdata; 2390 2391 offset = (pos & (PAGE_CACHE_SIZE - 1)); 2392 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset, 2393 iov_iter_count(i)); 2394 2395 again: 2396 /* 2397 * Bring in the user page that we will copy from _first_. 2398 * Otherwise there's a nasty deadlock on copying from the 2399 * same page as we're writing to, without it being marked 2400 * up-to-date. 2401 * 2402 * Not only is this an optimisation, but it is also required 2403 * to check that the address is actually valid, when atomic 2404 * usercopies are used, below. 2405 */ 2406 if (unlikely(iov_iter_fault_in_readable(i, bytes))) { 2407 status = -EFAULT; 2408 break; 2409 } 2410 2411 status = a_ops->write_begin(file, mapping, pos, bytes, flags, 2412 &page, &fsdata); 2413 if (unlikely(status)) 2414 break; 2415 2416 if (mapping_writably_mapped(mapping)) 2417 flush_dcache_page(page); 2418 2419 pagefault_disable(); 2420 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); 2421 pagefault_enable(); 2422 flush_dcache_page(page); 2423 2424 mark_page_accessed(page); 2425 status = a_ops->write_end(file, mapping, pos, bytes, copied, 2426 page, fsdata); 2427 if (unlikely(status < 0)) 2428 break; 2429 copied = status; 2430 2431 cond_resched(); 2432 2433 iov_iter_advance(i, copied); 2434 if (unlikely(copied == 0)) { 2435 /* 2436 * If we were unable to copy any data at all, we must 2437 * fall back to a single segment length write. 2438 * 2439 * If we didn't fallback here, we could livelock 2440 * because not all segments in the iov can be copied at 2441 * once without a pagefault. 2442 */ 2443 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset, 2444 iov_iter_single_seg_count(i)); 2445 goto again; 2446 } 2447 pos += copied; 2448 written += copied; 2449 2450 balance_dirty_pages_ratelimited(mapping); 2451 if (fatal_signal_pending(current)) { 2452 status = -EINTR; 2453 break; 2454 } 2455 } while (iov_iter_count(i)); 2456 2457 return written ? written : status; 2458 } 2459 2460 ssize_t 2461 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov, 2462 unsigned long nr_segs, loff_t pos, loff_t *ppos, 2463 size_t count, ssize_t written) 2464 { 2465 struct file *file = iocb->ki_filp; 2466 ssize_t status; 2467 struct iov_iter i; 2468 2469 iov_iter_init(&i, iov, nr_segs, count, written); 2470 status = generic_perform_write(file, &i, pos); 2471 2472 if (likely(status >= 0)) { 2473 written += status; 2474 *ppos = pos + status; 2475 } 2476 2477 return written ? written : status; 2478 } 2479 EXPORT_SYMBOL(generic_file_buffered_write); 2480 2481 /** 2482 * __generic_file_aio_write - write data to a file 2483 * @iocb: IO state structure (file, offset, etc.) 2484 * @iov: vector with data to write 2485 * @nr_segs: number of segments in the vector 2486 * @ppos: position where to write 2487 * 2488 * This function does all the work needed for actually writing data to a 2489 * file. It does all basic checks, removes SUID from the file, updates 2490 * modification times and calls proper subroutines depending on whether we 2491 * do direct IO or a standard buffered write. 2492 * 2493 * It expects i_mutex to be grabbed unless we work on a block device or similar 2494 * object which does not need locking at all. 2495 * 2496 * This function does *not* take care of syncing data in case of O_SYNC write. 2497 * A caller has to handle it. This is mainly due to the fact that we want to 2498 * avoid syncing under i_mutex. 2499 */ 2500 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov, 2501 unsigned long nr_segs, loff_t *ppos) 2502 { 2503 struct file *file = iocb->ki_filp; 2504 struct address_space * mapping = file->f_mapping; 2505 size_t ocount; /* original count */ 2506 size_t count; /* after file limit checks */ 2507 struct inode *inode = mapping->host; 2508 loff_t pos; 2509 ssize_t written; 2510 ssize_t err; 2511 2512 ocount = 0; 2513 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ); 2514 if (err) 2515 return err; 2516 2517 count = ocount; 2518 pos = *ppos; 2519 2520 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE); 2521 2522 /* We can write back this queue in page reclaim */ 2523 current->backing_dev_info = mapping->backing_dev_info; 2524 written = 0; 2525 2526 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode)); 2527 if (err) 2528 goto out; 2529 2530 if (count == 0) 2531 goto out; 2532 2533 err = file_remove_suid(file); 2534 if (err) 2535 goto out; 2536 2537 file_update_time(file); 2538 2539 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ 2540 if (unlikely(file->f_flags & O_DIRECT)) { 2541 loff_t endbyte; 2542 ssize_t written_buffered; 2543 2544 written = generic_file_direct_write(iocb, iov, &nr_segs, pos, 2545 ppos, count, ocount); 2546 if (written < 0 || written == count) 2547 goto out; 2548 /* 2549 * direct-io write to a hole: fall through to buffered I/O 2550 * for completing the rest of the request. 2551 */ 2552 pos += written; 2553 count -= written; 2554 written_buffered = generic_file_buffered_write(iocb, iov, 2555 nr_segs, pos, ppos, count, 2556 written); 2557 /* 2558 * If generic_file_buffered_write() retuned a synchronous error 2559 * then we want to return the number of bytes which were 2560 * direct-written, or the error code if that was zero. Note 2561 * that this differs from normal direct-io semantics, which 2562 * will return -EFOO even if some bytes were written. 2563 */ 2564 if (written_buffered < 0) { 2565 err = written_buffered; 2566 goto out; 2567 } 2568 2569 /* 2570 * We need to ensure that the page cache pages are written to 2571 * disk and invalidated to preserve the expected O_DIRECT 2572 * semantics. 2573 */ 2574 endbyte = pos + written_buffered - written - 1; 2575 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte); 2576 if (err == 0) { 2577 written = written_buffered; 2578 invalidate_mapping_pages(mapping, 2579 pos >> PAGE_CACHE_SHIFT, 2580 endbyte >> PAGE_CACHE_SHIFT); 2581 } else { 2582 /* 2583 * We don't know how much we wrote, so just return 2584 * the number of bytes which were direct-written 2585 */ 2586 } 2587 } else { 2588 written = generic_file_buffered_write(iocb, iov, nr_segs, 2589 pos, ppos, count, written); 2590 } 2591 out: 2592 current->backing_dev_info = NULL; 2593 return written ? written : err; 2594 } 2595 EXPORT_SYMBOL(__generic_file_aio_write); 2596 2597 /** 2598 * generic_file_aio_write - write data to a file 2599 * @iocb: IO state structure 2600 * @iov: vector with data to write 2601 * @nr_segs: number of segments in the vector 2602 * @pos: position in file where to write 2603 * 2604 * This is a wrapper around __generic_file_aio_write() to be used by most 2605 * filesystems. It takes care of syncing the file in case of O_SYNC file 2606 * and acquires i_mutex as needed. 2607 */ 2608 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov, 2609 unsigned long nr_segs, loff_t pos) 2610 { 2611 struct file *file = iocb->ki_filp; 2612 struct inode *inode = file->f_mapping->host; 2613 struct blk_plug plug; 2614 ssize_t ret; 2615 2616 BUG_ON(iocb->ki_pos != pos); 2617 2618 mutex_lock(&inode->i_mutex); 2619 blk_start_plug(&plug); 2620 ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos); 2621 mutex_unlock(&inode->i_mutex); 2622 2623 if (ret > 0 || ret == -EIOCBQUEUED) { 2624 ssize_t err; 2625 2626 err = generic_write_sync(file, pos, ret); 2627 if (err < 0 && ret > 0) 2628 ret = err; 2629 } 2630 blk_finish_plug(&plug); 2631 return ret; 2632 } 2633 EXPORT_SYMBOL(generic_file_aio_write); 2634 2635 /** 2636 * try_to_release_page() - release old fs-specific metadata on a page 2637 * 2638 * @page: the page which the kernel is trying to free 2639 * @gfp_mask: memory allocation flags (and I/O mode) 2640 * 2641 * The address_space is to try to release any data against the page 2642 * (presumably at page->private). If the release was successful, return `1'. 2643 * Otherwise return zero. 2644 * 2645 * This may also be called if PG_fscache is set on a page, indicating that the 2646 * page is known to the local caching routines. 2647 * 2648 * The @gfp_mask argument specifies whether I/O may be performed to release 2649 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS). 2650 * 2651 */ 2652 int try_to_release_page(struct page *page, gfp_t gfp_mask) 2653 { 2654 struct address_space * const mapping = page->mapping; 2655 2656 BUG_ON(!PageLocked(page)); 2657 if (PageWriteback(page)) 2658 return 0; 2659 2660 if (mapping && mapping->a_ops->releasepage) 2661 return mapping->a_ops->releasepage(page, gfp_mask); 2662 return try_to_free_buffers(page); 2663 } 2664 2665 EXPORT_SYMBOL(try_to_release_page); 2666