xref: /openbmc/linux/mm/filemap.c (revision b5266ea6)
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include "internal.h"
38 
39 /*
40  * FIXME: remove all knowledge of the buffer layer from the core VM
41  */
42 #include <linux/buffer_head.h> /* for try_to_free_buffers */
43 
44 #include <asm/mman.h>
45 
46 /*
47  * Shared mappings implemented 30.11.1994. It's not fully working yet,
48  * though.
49  *
50  * Shared mappings now work. 15.8.1995  Bruno.
51  *
52  * finished 'unifying' the page and buffer cache and SMP-threaded the
53  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
54  *
55  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
56  */
57 
58 /*
59  * Lock ordering:
60  *
61  *  ->i_mmap_mutex		(truncate_pagecache)
62  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
63  *      ->swap_lock		(exclusive_swap_page, others)
64  *        ->mapping->tree_lock
65  *
66  *  ->i_mutex
67  *    ->i_mmap_mutex		(truncate->unmap_mapping_range)
68  *
69  *  ->mmap_sem
70  *    ->i_mmap_mutex
71  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
72  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
73  *
74  *  ->mmap_sem
75  *    ->lock_page		(access_process_vm)
76  *
77  *  ->i_mutex			(generic_file_buffered_write)
78  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
79  *
80  *  bdi->wb.list_lock
81  *    sb_lock			(fs/fs-writeback.c)
82  *    ->mapping->tree_lock	(__sync_single_inode)
83  *
84  *  ->i_mmap_mutex
85  *    ->anon_vma.lock		(vma_adjust)
86  *
87  *  ->anon_vma.lock
88  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
89  *
90  *  ->page_table_lock or pte_lock
91  *    ->swap_lock		(try_to_unmap_one)
92  *    ->private_lock		(try_to_unmap_one)
93  *    ->tree_lock		(try_to_unmap_one)
94  *    ->zone.lru_lock		(follow_page->mark_page_accessed)
95  *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
96  *    ->private_lock		(page_remove_rmap->set_page_dirty)
97  *    ->tree_lock		(page_remove_rmap->set_page_dirty)
98  *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
99  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
100  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
101  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
102  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
103  *
104  *  (code doesn't rely on that order, so you could switch it around)
105  *  ->tasklist_lock             (memory_failure, collect_procs_ao)
106  *    ->i_mmap_mutex
107  */
108 
109 /*
110  * Delete a page from the page cache and free it. Caller has to make
111  * sure the page is locked and that nobody else uses it - or that usage
112  * is safe.  The caller must hold the mapping's tree_lock.
113  */
114 void __delete_from_page_cache(struct page *page)
115 {
116 	struct address_space *mapping = page->mapping;
117 
118 	/*
119 	 * if we're uptodate, flush out into the cleancache, otherwise
120 	 * invalidate any existing cleancache entries.  We can't leave
121 	 * stale data around in the cleancache once our page is gone
122 	 */
123 	if (PageUptodate(page) && PageMappedToDisk(page))
124 		cleancache_put_page(page);
125 	else
126 		cleancache_flush_page(mapping, page);
127 
128 	radix_tree_delete(&mapping->page_tree, page->index);
129 	page->mapping = NULL;
130 	/* Leave page->index set: truncation lookup relies upon it */
131 	mapping->nrpages--;
132 	__dec_zone_page_state(page, NR_FILE_PAGES);
133 	if (PageSwapBacked(page))
134 		__dec_zone_page_state(page, NR_SHMEM);
135 	BUG_ON(page_mapped(page));
136 
137 	/*
138 	 * Some filesystems seem to re-dirty the page even after
139 	 * the VM has canceled the dirty bit (eg ext3 journaling).
140 	 *
141 	 * Fix it up by doing a final dirty accounting check after
142 	 * having removed the page entirely.
143 	 */
144 	if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
145 		dec_zone_page_state(page, NR_FILE_DIRTY);
146 		dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
147 	}
148 }
149 
150 /**
151  * delete_from_page_cache - delete page from page cache
152  * @page: the page which the kernel is trying to remove from page cache
153  *
154  * This must be called only on pages that have been verified to be in the page
155  * cache and locked.  It will never put the page into the free list, the caller
156  * has a reference on the page.
157  */
158 void delete_from_page_cache(struct page *page)
159 {
160 	struct address_space *mapping = page->mapping;
161 	void (*freepage)(struct page *);
162 
163 	BUG_ON(!PageLocked(page));
164 
165 	freepage = mapping->a_ops->freepage;
166 	spin_lock_irq(&mapping->tree_lock);
167 	__delete_from_page_cache(page);
168 	spin_unlock_irq(&mapping->tree_lock);
169 	mem_cgroup_uncharge_cache_page(page);
170 
171 	if (freepage)
172 		freepage(page);
173 	page_cache_release(page);
174 }
175 EXPORT_SYMBOL(delete_from_page_cache);
176 
177 static int sleep_on_page(void *word)
178 {
179 	io_schedule();
180 	return 0;
181 }
182 
183 static int sleep_on_page_killable(void *word)
184 {
185 	sleep_on_page(word);
186 	return fatal_signal_pending(current) ? -EINTR : 0;
187 }
188 
189 /**
190  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
191  * @mapping:	address space structure to write
192  * @start:	offset in bytes where the range starts
193  * @end:	offset in bytes where the range ends (inclusive)
194  * @sync_mode:	enable synchronous operation
195  *
196  * Start writeback against all of a mapping's dirty pages that lie
197  * within the byte offsets <start, end> inclusive.
198  *
199  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
200  * opposed to a regular memory cleansing writeback.  The difference between
201  * these two operations is that if a dirty page/buffer is encountered, it must
202  * be waited upon, and not just skipped over.
203  */
204 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
205 				loff_t end, int sync_mode)
206 {
207 	int ret;
208 	struct writeback_control wbc = {
209 		.sync_mode = sync_mode,
210 		.nr_to_write = LONG_MAX,
211 		.range_start = start,
212 		.range_end = end,
213 	};
214 
215 	if (!mapping_cap_writeback_dirty(mapping))
216 		return 0;
217 
218 	ret = do_writepages(mapping, &wbc);
219 	return ret;
220 }
221 
222 static inline int __filemap_fdatawrite(struct address_space *mapping,
223 	int sync_mode)
224 {
225 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
226 }
227 
228 int filemap_fdatawrite(struct address_space *mapping)
229 {
230 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
231 }
232 EXPORT_SYMBOL(filemap_fdatawrite);
233 
234 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
235 				loff_t end)
236 {
237 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
238 }
239 EXPORT_SYMBOL(filemap_fdatawrite_range);
240 
241 /**
242  * filemap_flush - mostly a non-blocking flush
243  * @mapping:	target address_space
244  *
245  * This is a mostly non-blocking flush.  Not suitable for data-integrity
246  * purposes - I/O may not be started against all dirty pages.
247  */
248 int filemap_flush(struct address_space *mapping)
249 {
250 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
251 }
252 EXPORT_SYMBOL(filemap_flush);
253 
254 /**
255  * filemap_fdatawait_range - wait for writeback to complete
256  * @mapping:		address space structure to wait for
257  * @start_byte:		offset in bytes where the range starts
258  * @end_byte:		offset in bytes where the range ends (inclusive)
259  *
260  * Walk the list of under-writeback pages of the given address space
261  * in the given range and wait for all of them.
262  */
263 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
264 			    loff_t end_byte)
265 {
266 	pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
267 	pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
268 	struct pagevec pvec;
269 	int nr_pages;
270 	int ret = 0;
271 
272 	if (end_byte < start_byte)
273 		return 0;
274 
275 	pagevec_init(&pvec, 0);
276 	while ((index <= end) &&
277 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
278 			PAGECACHE_TAG_WRITEBACK,
279 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
280 		unsigned i;
281 
282 		for (i = 0; i < nr_pages; i++) {
283 			struct page *page = pvec.pages[i];
284 
285 			/* until radix tree lookup accepts end_index */
286 			if (page->index > end)
287 				continue;
288 
289 			wait_on_page_writeback(page);
290 			if (TestClearPageError(page))
291 				ret = -EIO;
292 		}
293 		pagevec_release(&pvec);
294 		cond_resched();
295 	}
296 
297 	/* Check for outstanding write errors */
298 	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
299 		ret = -ENOSPC;
300 	if (test_and_clear_bit(AS_EIO, &mapping->flags))
301 		ret = -EIO;
302 
303 	return ret;
304 }
305 EXPORT_SYMBOL(filemap_fdatawait_range);
306 
307 /**
308  * filemap_fdatawait - wait for all under-writeback pages to complete
309  * @mapping: address space structure to wait for
310  *
311  * Walk the list of under-writeback pages of the given address space
312  * and wait for all of them.
313  */
314 int filemap_fdatawait(struct address_space *mapping)
315 {
316 	loff_t i_size = i_size_read(mapping->host);
317 
318 	if (i_size == 0)
319 		return 0;
320 
321 	return filemap_fdatawait_range(mapping, 0, i_size - 1);
322 }
323 EXPORT_SYMBOL(filemap_fdatawait);
324 
325 int filemap_write_and_wait(struct address_space *mapping)
326 {
327 	int err = 0;
328 
329 	if (mapping->nrpages) {
330 		err = filemap_fdatawrite(mapping);
331 		/*
332 		 * Even if the above returned error, the pages may be
333 		 * written partially (e.g. -ENOSPC), so we wait for it.
334 		 * But the -EIO is special case, it may indicate the worst
335 		 * thing (e.g. bug) happened, so we avoid waiting for it.
336 		 */
337 		if (err != -EIO) {
338 			int err2 = filemap_fdatawait(mapping);
339 			if (!err)
340 				err = err2;
341 		}
342 	}
343 	return err;
344 }
345 EXPORT_SYMBOL(filemap_write_and_wait);
346 
347 /**
348  * filemap_write_and_wait_range - write out & wait on a file range
349  * @mapping:	the address_space for the pages
350  * @lstart:	offset in bytes where the range starts
351  * @lend:	offset in bytes where the range ends (inclusive)
352  *
353  * Write out and wait upon file offsets lstart->lend, inclusive.
354  *
355  * Note that `lend' is inclusive (describes the last byte to be written) so
356  * that this function can be used to write to the very end-of-file (end = -1).
357  */
358 int filemap_write_and_wait_range(struct address_space *mapping,
359 				 loff_t lstart, loff_t lend)
360 {
361 	int err = 0;
362 
363 	if (mapping->nrpages) {
364 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
365 						 WB_SYNC_ALL);
366 		/* See comment of filemap_write_and_wait() */
367 		if (err != -EIO) {
368 			int err2 = filemap_fdatawait_range(mapping,
369 						lstart, lend);
370 			if (!err)
371 				err = err2;
372 		}
373 	}
374 	return err;
375 }
376 EXPORT_SYMBOL(filemap_write_and_wait_range);
377 
378 /**
379  * replace_page_cache_page - replace a pagecache page with a new one
380  * @old:	page to be replaced
381  * @new:	page to replace with
382  * @gfp_mask:	allocation mode
383  *
384  * This function replaces a page in the pagecache with a new one.  On
385  * success it acquires the pagecache reference for the new page and
386  * drops it for the old page.  Both the old and new pages must be
387  * locked.  This function does not add the new page to the LRU, the
388  * caller must do that.
389  *
390  * The remove + add is atomic.  The only way this function can fail is
391  * memory allocation failure.
392  */
393 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
394 {
395 	int error;
396 
397 	VM_BUG_ON(!PageLocked(old));
398 	VM_BUG_ON(!PageLocked(new));
399 	VM_BUG_ON(new->mapping);
400 
401 	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
402 	if (!error) {
403 		struct address_space *mapping = old->mapping;
404 		void (*freepage)(struct page *);
405 
406 		pgoff_t offset = old->index;
407 		freepage = mapping->a_ops->freepage;
408 
409 		page_cache_get(new);
410 		new->mapping = mapping;
411 		new->index = offset;
412 
413 		spin_lock_irq(&mapping->tree_lock);
414 		__delete_from_page_cache(old);
415 		error = radix_tree_insert(&mapping->page_tree, offset, new);
416 		BUG_ON(error);
417 		mapping->nrpages++;
418 		__inc_zone_page_state(new, NR_FILE_PAGES);
419 		if (PageSwapBacked(new))
420 			__inc_zone_page_state(new, NR_SHMEM);
421 		spin_unlock_irq(&mapping->tree_lock);
422 		/* mem_cgroup codes must not be called under tree_lock */
423 		mem_cgroup_replace_page_cache(old, new);
424 		radix_tree_preload_end();
425 		if (freepage)
426 			freepage(old);
427 		page_cache_release(old);
428 	}
429 
430 	return error;
431 }
432 EXPORT_SYMBOL_GPL(replace_page_cache_page);
433 
434 /**
435  * add_to_page_cache_locked - add a locked page to the pagecache
436  * @page:	page to add
437  * @mapping:	the page's address_space
438  * @offset:	page index
439  * @gfp_mask:	page allocation mode
440  *
441  * This function is used to add a page to the pagecache. It must be locked.
442  * This function does not add the page to the LRU.  The caller must do that.
443  */
444 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
445 		pgoff_t offset, gfp_t gfp_mask)
446 {
447 	int error;
448 
449 	VM_BUG_ON(!PageLocked(page));
450 	VM_BUG_ON(PageSwapBacked(page));
451 
452 	error = mem_cgroup_cache_charge(page, current->mm,
453 					gfp_mask & GFP_RECLAIM_MASK);
454 	if (error)
455 		goto out;
456 
457 	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
458 	if (error == 0) {
459 		page_cache_get(page);
460 		page->mapping = mapping;
461 		page->index = offset;
462 
463 		spin_lock_irq(&mapping->tree_lock);
464 		error = radix_tree_insert(&mapping->page_tree, offset, page);
465 		if (likely(!error)) {
466 			mapping->nrpages++;
467 			__inc_zone_page_state(page, NR_FILE_PAGES);
468 			spin_unlock_irq(&mapping->tree_lock);
469 		} else {
470 			page->mapping = NULL;
471 			/* Leave page->index set: truncation relies upon it */
472 			spin_unlock_irq(&mapping->tree_lock);
473 			mem_cgroup_uncharge_cache_page(page);
474 			page_cache_release(page);
475 		}
476 		radix_tree_preload_end();
477 	} else
478 		mem_cgroup_uncharge_cache_page(page);
479 out:
480 	return error;
481 }
482 EXPORT_SYMBOL(add_to_page_cache_locked);
483 
484 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
485 				pgoff_t offset, gfp_t gfp_mask)
486 {
487 	int ret;
488 
489 	ret = add_to_page_cache(page, mapping, offset, gfp_mask);
490 	if (ret == 0)
491 		lru_cache_add_file(page);
492 	return ret;
493 }
494 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
495 
496 #ifdef CONFIG_NUMA
497 struct page *__page_cache_alloc(gfp_t gfp)
498 {
499 	int n;
500 	struct page *page;
501 
502 	if (cpuset_do_page_mem_spread()) {
503 		get_mems_allowed();
504 		n = cpuset_mem_spread_node();
505 		page = alloc_pages_exact_node(n, gfp, 0);
506 		put_mems_allowed();
507 		return page;
508 	}
509 	return alloc_pages(gfp, 0);
510 }
511 EXPORT_SYMBOL(__page_cache_alloc);
512 #endif
513 
514 /*
515  * In order to wait for pages to become available there must be
516  * waitqueues associated with pages. By using a hash table of
517  * waitqueues where the bucket discipline is to maintain all
518  * waiters on the same queue and wake all when any of the pages
519  * become available, and for the woken contexts to check to be
520  * sure the appropriate page became available, this saves space
521  * at a cost of "thundering herd" phenomena during rare hash
522  * collisions.
523  */
524 static wait_queue_head_t *page_waitqueue(struct page *page)
525 {
526 	const struct zone *zone = page_zone(page);
527 
528 	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
529 }
530 
531 static inline void wake_up_page(struct page *page, int bit)
532 {
533 	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
534 }
535 
536 void wait_on_page_bit(struct page *page, int bit_nr)
537 {
538 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
539 
540 	if (test_bit(bit_nr, &page->flags))
541 		__wait_on_bit(page_waitqueue(page), &wait, sleep_on_page,
542 							TASK_UNINTERRUPTIBLE);
543 }
544 EXPORT_SYMBOL(wait_on_page_bit);
545 
546 int wait_on_page_bit_killable(struct page *page, int bit_nr)
547 {
548 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
549 
550 	if (!test_bit(bit_nr, &page->flags))
551 		return 0;
552 
553 	return __wait_on_bit(page_waitqueue(page), &wait,
554 			     sleep_on_page_killable, TASK_KILLABLE);
555 }
556 
557 /**
558  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
559  * @page: Page defining the wait queue of interest
560  * @waiter: Waiter to add to the queue
561  *
562  * Add an arbitrary @waiter to the wait queue for the nominated @page.
563  */
564 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
565 {
566 	wait_queue_head_t *q = page_waitqueue(page);
567 	unsigned long flags;
568 
569 	spin_lock_irqsave(&q->lock, flags);
570 	__add_wait_queue(q, waiter);
571 	spin_unlock_irqrestore(&q->lock, flags);
572 }
573 EXPORT_SYMBOL_GPL(add_page_wait_queue);
574 
575 /**
576  * unlock_page - unlock a locked page
577  * @page: the page
578  *
579  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
580  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
581  * mechananism between PageLocked pages and PageWriteback pages is shared.
582  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
583  *
584  * The mb is necessary to enforce ordering between the clear_bit and the read
585  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
586  */
587 void unlock_page(struct page *page)
588 {
589 	VM_BUG_ON(!PageLocked(page));
590 	clear_bit_unlock(PG_locked, &page->flags);
591 	smp_mb__after_clear_bit();
592 	wake_up_page(page, PG_locked);
593 }
594 EXPORT_SYMBOL(unlock_page);
595 
596 /**
597  * end_page_writeback - end writeback against a page
598  * @page: the page
599  */
600 void end_page_writeback(struct page *page)
601 {
602 	if (TestClearPageReclaim(page))
603 		rotate_reclaimable_page(page);
604 
605 	if (!test_clear_page_writeback(page))
606 		BUG();
607 
608 	smp_mb__after_clear_bit();
609 	wake_up_page(page, PG_writeback);
610 }
611 EXPORT_SYMBOL(end_page_writeback);
612 
613 /**
614  * __lock_page - get a lock on the page, assuming we need to sleep to get it
615  * @page: the page to lock
616  */
617 void __lock_page(struct page *page)
618 {
619 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
620 
621 	__wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page,
622 							TASK_UNINTERRUPTIBLE);
623 }
624 EXPORT_SYMBOL(__lock_page);
625 
626 int __lock_page_killable(struct page *page)
627 {
628 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
629 
630 	return __wait_on_bit_lock(page_waitqueue(page), &wait,
631 					sleep_on_page_killable, TASK_KILLABLE);
632 }
633 EXPORT_SYMBOL_GPL(__lock_page_killable);
634 
635 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
636 			 unsigned int flags)
637 {
638 	if (flags & FAULT_FLAG_ALLOW_RETRY) {
639 		/*
640 		 * CAUTION! In this case, mmap_sem is not released
641 		 * even though return 0.
642 		 */
643 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
644 			return 0;
645 
646 		up_read(&mm->mmap_sem);
647 		if (flags & FAULT_FLAG_KILLABLE)
648 			wait_on_page_locked_killable(page);
649 		else
650 			wait_on_page_locked(page);
651 		return 0;
652 	} else {
653 		if (flags & FAULT_FLAG_KILLABLE) {
654 			int ret;
655 
656 			ret = __lock_page_killable(page);
657 			if (ret) {
658 				up_read(&mm->mmap_sem);
659 				return 0;
660 			}
661 		} else
662 			__lock_page(page);
663 		return 1;
664 	}
665 }
666 
667 /**
668  * find_get_page - find and get a page reference
669  * @mapping: the address_space to search
670  * @offset: the page index
671  *
672  * Is there a pagecache struct page at the given (mapping, offset) tuple?
673  * If yes, increment its refcount and return it; if no, return NULL.
674  */
675 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
676 {
677 	void **pagep;
678 	struct page *page;
679 
680 	rcu_read_lock();
681 repeat:
682 	page = NULL;
683 	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
684 	if (pagep) {
685 		page = radix_tree_deref_slot(pagep);
686 		if (unlikely(!page))
687 			goto out;
688 		if (radix_tree_exception(page)) {
689 			if (radix_tree_deref_retry(page))
690 				goto repeat;
691 			/*
692 			 * Otherwise, shmem/tmpfs must be storing a swap entry
693 			 * here as an exceptional entry: so return it without
694 			 * attempting to raise page count.
695 			 */
696 			goto out;
697 		}
698 		if (!page_cache_get_speculative(page))
699 			goto repeat;
700 
701 		/*
702 		 * Has the page moved?
703 		 * This is part of the lockless pagecache protocol. See
704 		 * include/linux/pagemap.h for details.
705 		 */
706 		if (unlikely(page != *pagep)) {
707 			page_cache_release(page);
708 			goto repeat;
709 		}
710 	}
711 out:
712 	rcu_read_unlock();
713 
714 	return page;
715 }
716 EXPORT_SYMBOL(find_get_page);
717 
718 /**
719  * find_lock_page - locate, pin and lock a pagecache page
720  * @mapping: the address_space to search
721  * @offset: the page index
722  *
723  * Locates the desired pagecache page, locks it, increments its reference
724  * count and returns its address.
725  *
726  * Returns zero if the page was not present. find_lock_page() may sleep.
727  */
728 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
729 {
730 	struct page *page;
731 
732 repeat:
733 	page = find_get_page(mapping, offset);
734 	if (page && !radix_tree_exception(page)) {
735 		lock_page(page);
736 		/* Has the page been truncated? */
737 		if (unlikely(page->mapping != mapping)) {
738 			unlock_page(page);
739 			page_cache_release(page);
740 			goto repeat;
741 		}
742 		VM_BUG_ON(page->index != offset);
743 	}
744 	return page;
745 }
746 EXPORT_SYMBOL(find_lock_page);
747 
748 /**
749  * find_or_create_page - locate or add a pagecache page
750  * @mapping: the page's address_space
751  * @index: the page's index into the mapping
752  * @gfp_mask: page allocation mode
753  *
754  * Locates a page in the pagecache.  If the page is not present, a new page
755  * is allocated using @gfp_mask and is added to the pagecache and to the VM's
756  * LRU list.  The returned page is locked and has its reference count
757  * incremented.
758  *
759  * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
760  * allocation!
761  *
762  * find_or_create_page() returns the desired page's address, or zero on
763  * memory exhaustion.
764  */
765 struct page *find_or_create_page(struct address_space *mapping,
766 		pgoff_t index, gfp_t gfp_mask)
767 {
768 	struct page *page;
769 	int err;
770 repeat:
771 	page = find_lock_page(mapping, index);
772 	if (!page) {
773 		page = __page_cache_alloc(gfp_mask);
774 		if (!page)
775 			return NULL;
776 		/*
777 		 * We want a regular kernel memory (not highmem or DMA etc)
778 		 * allocation for the radix tree nodes, but we need to honour
779 		 * the context-specific requirements the caller has asked for.
780 		 * GFP_RECLAIM_MASK collects those requirements.
781 		 */
782 		err = add_to_page_cache_lru(page, mapping, index,
783 			(gfp_mask & GFP_RECLAIM_MASK));
784 		if (unlikely(err)) {
785 			page_cache_release(page);
786 			page = NULL;
787 			if (err == -EEXIST)
788 				goto repeat;
789 		}
790 	}
791 	return page;
792 }
793 EXPORT_SYMBOL(find_or_create_page);
794 
795 /**
796  * find_get_pages - gang pagecache lookup
797  * @mapping:	The address_space to search
798  * @start:	The starting page index
799  * @nr_pages:	The maximum number of pages
800  * @pages:	Where the resulting pages are placed
801  *
802  * find_get_pages() will search for and return a group of up to
803  * @nr_pages pages in the mapping.  The pages are placed at @pages.
804  * find_get_pages() takes a reference against the returned pages.
805  *
806  * The search returns a group of mapping-contiguous pages with ascending
807  * indexes.  There may be holes in the indices due to not-present pages.
808  *
809  * find_get_pages() returns the number of pages which were found.
810  */
811 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
812 			    unsigned int nr_pages, struct page **pages)
813 {
814 	unsigned int i;
815 	unsigned int ret;
816 	unsigned int nr_found, nr_skip;
817 
818 	rcu_read_lock();
819 restart:
820 	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
821 				(void ***)pages, NULL, start, nr_pages);
822 	ret = 0;
823 	nr_skip = 0;
824 	for (i = 0; i < nr_found; i++) {
825 		struct page *page;
826 repeat:
827 		page = radix_tree_deref_slot((void **)pages[i]);
828 		if (unlikely(!page))
829 			continue;
830 
831 		if (radix_tree_exception(page)) {
832 			if (radix_tree_deref_retry(page)) {
833 				/*
834 				 * Transient condition which can only trigger
835 				 * when entry at index 0 moves out of or back
836 				 * to root: none yet gotten, safe to restart.
837 				 */
838 				WARN_ON(start | i);
839 				goto restart;
840 			}
841 			/*
842 			 * Otherwise, shmem/tmpfs must be storing a swap entry
843 			 * here as an exceptional entry: so skip over it -
844 			 * we only reach this from invalidate_mapping_pages().
845 			 */
846 			nr_skip++;
847 			continue;
848 		}
849 
850 		if (!page_cache_get_speculative(page))
851 			goto repeat;
852 
853 		/* Has the page moved? */
854 		if (unlikely(page != *((void **)pages[i]))) {
855 			page_cache_release(page);
856 			goto repeat;
857 		}
858 
859 		pages[ret] = page;
860 		ret++;
861 	}
862 
863 	/*
864 	 * If all entries were removed before we could secure them,
865 	 * try again, because callers stop trying once 0 is returned.
866 	 */
867 	if (unlikely(!ret && nr_found > nr_skip))
868 		goto restart;
869 	rcu_read_unlock();
870 	return ret;
871 }
872 
873 /**
874  * find_get_pages_contig - gang contiguous pagecache lookup
875  * @mapping:	The address_space to search
876  * @index:	The starting page index
877  * @nr_pages:	The maximum number of pages
878  * @pages:	Where the resulting pages are placed
879  *
880  * find_get_pages_contig() works exactly like find_get_pages(), except
881  * that the returned number of pages are guaranteed to be contiguous.
882  *
883  * find_get_pages_contig() returns the number of pages which were found.
884  */
885 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
886 			       unsigned int nr_pages, struct page **pages)
887 {
888 	unsigned int i;
889 	unsigned int ret;
890 	unsigned int nr_found;
891 
892 	rcu_read_lock();
893 restart:
894 	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
895 				(void ***)pages, NULL, index, nr_pages);
896 	ret = 0;
897 	for (i = 0; i < nr_found; i++) {
898 		struct page *page;
899 repeat:
900 		page = radix_tree_deref_slot((void **)pages[i]);
901 		if (unlikely(!page))
902 			continue;
903 
904 		if (radix_tree_exception(page)) {
905 			if (radix_tree_deref_retry(page)) {
906 				/*
907 				 * Transient condition which can only trigger
908 				 * when entry at index 0 moves out of or back
909 				 * to root: none yet gotten, safe to restart.
910 				 */
911 				goto restart;
912 			}
913 			/*
914 			 * Otherwise, shmem/tmpfs must be storing a swap entry
915 			 * here as an exceptional entry: so stop looking for
916 			 * contiguous pages.
917 			 */
918 			break;
919 		}
920 
921 		if (!page_cache_get_speculative(page))
922 			goto repeat;
923 
924 		/* Has the page moved? */
925 		if (unlikely(page != *((void **)pages[i]))) {
926 			page_cache_release(page);
927 			goto repeat;
928 		}
929 
930 		/*
931 		 * must check mapping and index after taking the ref.
932 		 * otherwise we can get both false positives and false
933 		 * negatives, which is just confusing to the caller.
934 		 */
935 		if (page->mapping == NULL || page->index != index) {
936 			page_cache_release(page);
937 			break;
938 		}
939 
940 		pages[ret] = page;
941 		ret++;
942 		index++;
943 	}
944 	rcu_read_unlock();
945 	return ret;
946 }
947 EXPORT_SYMBOL(find_get_pages_contig);
948 
949 /**
950  * find_get_pages_tag - find and return pages that match @tag
951  * @mapping:	the address_space to search
952  * @index:	the starting page index
953  * @tag:	the tag index
954  * @nr_pages:	the maximum number of pages
955  * @pages:	where the resulting pages are placed
956  *
957  * Like find_get_pages, except we only return pages which are tagged with
958  * @tag.   We update @index to index the next page for the traversal.
959  */
960 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
961 			int tag, unsigned int nr_pages, struct page **pages)
962 {
963 	unsigned int i;
964 	unsigned int ret;
965 	unsigned int nr_found;
966 
967 	rcu_read_lock();
968 restart:
969 	nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
970 				(void ***)pages, *index, nr_pages, tag);
971 	ret = 0;
972 	for (i = 0; i < nr_found; i++) {
973 		struct page *page;
974 repeat:
975 		page = radix_tree_deref_slot((void **)pages[i]);
976 		if (unlikely(!page))
977 			continue;
978 
979 		if (radix_tree_exception(page)) {
980 			if (radix_tree_deref_retry(page)) {
981 				/*
982 				 * Transient condition which can only trigger
983 				 * when entry at index 0 moves out of or back
984 				 * to root: none yet gotten, safe to restart.
985 				 */
986 				goto restart;
987 			}
988 			/*
989 			 * This function is never used on a shmem/tmpfs
990 			 * mapping, so a swap entry won't be found here.
991 			 */
992 			BUG();
993 		}
994 
995 		if (!page_cache_get_speculative(page))
996 			goto repeat;
997 
998 		/* Has the page moved? */
999 		if (unlikely(page != *((void **)pages[i]))) {
1000 			page_cache_release(page);
1001 			goto repeat;
1002 		}
1003 
1004 		pages[ret] = page;
1005 		ret++;
1006 	}
1007 
1008 	/*
1009 	 * If all entries were removed before we could secure them,
1010 	 * try again, because callers stop trying once 0 is returned.
1011 	 */
1012 	if (unlikely(!ret && nr_found))
1013 		goto restart;
1014 	rcu_read_unlock();
1015 
1016 	if (ret)
1017 		*index = pages[ret - 1]->index + 1;
1018 
1019 	return ret;
1020 }
1021 EXPORT_SYMBOL(find_get_pages_tag);
1022 
1023 /**
1024  * grab_cache_page_nowait - returns locked page at given index in given cache
1025  * @mapping: target address_space
1026  * @index: the page index
1027  *
1028  * Same as grab_cache_page(), but do not wait if the page is unavailable.
1029  * This is intended for speculative data generators, where the data can
1030  * be regenerated if the page couldn't be grabbed.  This routine should
1031  * be safe to call while holding the lock for another page.
1032  *
1033  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
1034  * and deadlock against the caller's locked page.
1035  */
1036 struct page *
1037 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
1038 {
1039 	struct page *page = find_get_page(mapping, index);
1040 
1041 	if (page) {
1042 		if (trylock_page(page))
1043 			return page;
1044 		page_cache_release(page);
1045 		return NULL;
1046 	}
1047 	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
1048 	if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
1049 		page_cache_release(page);
1050 		page = NULL;
1051 	}
1052 	return page;
1053 }
1054 EXPORT_SYMBOL(grab_cache_page_nowait);
1055 
1056 /*
1057  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1058  * a _large_ part of the i/o request. Imagine the worst scenario:
1059  *
1060  *      ---R__________________________________________B__________
1061  *         ^ reading here                             ^ bad block(assume 4k)
1062  *
1063  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1064  * => failing the whole request => read(R) => read(R+1) =>
1065  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1066  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1067  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1068  *
1069  * It is going insane. Fix it by quickly scaling down the readahead size.
1070  */
1071 static void shrink_readahead_size_eio(struct file *filp,
1072 					struct file_ra_state *ra)
1073 {
1074 	ra->ra_pages /= 4;
1075 }
1076 
1077 /**
1078  * do_generic_file_read - generic file read routine
1079  * @filp:	the file to read
1080  * @ppos:	current file position
1081  * @desc:	read_descriptor
1082  * @actor:	read method
1083  *
1084  * This is a generic file read routine, and uses the
1085  * mapping->a_ops->readpage() function for the actual low-level stuff.
1086  *
1087  * This is really ugly. But the goto's actually try to clarify some
1088  * of the logic when it comes to error handling etc.
1089  */
1090 static void do_generic_file_read(struct file *filp, loff_t *ppos,
1091 		read_descriptor_t *desc, read_actor_t actor)
1092 {
1093 	struct address_space *mapping = filp->f_mapping;
1094 	struct inode *inode = mapping->host;
1095 	struct file_ra_state *ra = &filp->f_ra;
1096 	pgoff_t index;
1097 	pgoff_t last_index;
1098 	pgoff_t prev_index;
1099 	unsigned long offset;      /* offset into pagecache page */
1100 	unsigned int prev_offset;
1101 	int error;
1102 
1103 	index = *ppos >> PAGE_CACHE_SHIFT;
1104 	prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1105 	prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1106 	last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1107 	offset = *ppos & ~PAGE_CACHE_MASK;
1108 
1109 	for (;;) {
1110 		struct page *page;
1111 		pgoff_t end_index;
1112 		loff_t isize;
1113 		unsigned long nr, ret;
1114 
1115 		cond_resched();
1116 find_page:
1117 		page = find_get_page(mapping, index);
1118 		if (!page) {
1119 			page_cache_sync_readahead(mapping,
1120 					ra, filp,
1121 					index, last_index - index);
1122 			page = find_get_page(mapping, index);
1123 			if (unlikely(page == NULL))
1124 				goto no_cached_page;
1125 		}
1126 		if (PageReadahead(page)) {
1127 			page_cache_async_readahead(mapping,
1128 					ra, filp, page,
1129 					index, last_index - index);
1130 		}
1131 		if (!PageUptodate(page)) {
1132 			if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1133 					!mapping->a_ops->is_partially_uptodate)
1134 				goto page_not_up_to_date;
1135 			if (!trylock_page(page))
1136 				goto page_not_up_to_date;
1137 			/* Did it get truncated before we got the lock? */
1138 			if (!page->mapping)
1139 				goto page_not_up_to_date_locked;
1140 			if (!mapping->a_ops->is_partially_uptodate(page,
1141 								desc, offset))
1142 				goto page_not_up_to_date_locked;
1143 			unlock_page(page);
1144 		}
1145 page_ok:
1146 		/*
1147 		 * i_size must be checked after we know the page is Uptodate.
1148 		 *
1149 		 * Checking i_size after the check allows us to calculate
1150 		 * the correct value for "nr", which means the zero-filled
1151 		 * part of the page is not copied back to userspace (unless
1152 		 * another truncate extends the file - this is desired though).
1153 		 */
1154 
1155 		isize = i_size_read(inode);
1156 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1157 		if (unlikely(!isize || index > end_index)) {
1158 			page_cache_release(page);
1159 			goto out;
1160 		}
1161 
1162 		/* nr is the maximum number of bytes to copy from this page */
1163 		nr = PAGE_CACHE_SIZE;
1164 		if (index == end_index) {
1165 			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1166 			if (nr <= offset) {
1167 				page_cache_release(page);
1168 				goto out;
1169 			}
1170 		}
1171 		nr = nr - offset;
1172 
1173 		/* If users can be writing to this page using arbitrary
1174 		 * virtual addresses, take care about potential aliasing
1175 		 * before reading the page on the kernel side.
1176 		 */
1177 		if (mapping_writably_mapped(mapping))
1178 			flush_dcache_page(page);
1179 
1180 		/*
1181 		 * When a sequential read accesses a page several times,
1182 		 * only mark it as accessed the first time.
1183 		 */
1184 		if (prev_index != index || offset != prev_offset)
1185 			mark_page_accessed(page);
1186 		prev_index = index;
1187 
1188 		/*
1189 		 * Ok, we have the page, and it's up-to-date, so
1190 		 * now we can copy it to user space...
1191 		 *
1192 		 * The actor routine returns how many bytes were actually used..
1193 		 * NOTE! This may not be the same as how much of a user buffer
1194 		 * we filled up (we may be padding etc), so we can only update
1195 		 * "pos" here (the actor routine has to update the user buffer
1196 		 * pointers and the remaining count).
1197 		 */
1198 		ret = actor(desc, page, offset, nr);
1199 		offset += ret;
1200 		index += offset >> PAGE_CACHE_SHIFT;
1201 		offset &= ~PAGE_CACHE_MASK;
1202 		prev_offset = offset;
1203 
1204 		page_cache_release(page);
1205 		if (ret == nr && desc->count)
1206 			continue;
1207 		goto out;
1208 
1209 page_not_up_to_date:
1210 		/* Get exclusive access to the page ... */
1211 		error = lock_page_killable(page);
1212 		if (unlikely(error))
1213 			goto readpage_error;
1214 
1215 page_not_up_to_date_locked:
1216 		/* Did it get truncated before we got the lock? */
1217 		if (!page->mapping) {
1218 			unlock_page(page);
1219 			page_cache_release(page);
1220 			continue;
1221 		}
1222 
1223 		/* Did somebody else fill it already? */
1224 		if (PageUptodate(page)) {
1225 			unlock_page(page);
1226 			goto page_ok;
1227 		}
1228 
1229 readpage:
1230 		/*
1231 		 * A previous I/O error may have been due to temporary
1232 		 * failures, eg. multipath errors.
1233 		 * PG_error will be set again if readpage fails.
1234 		 */
1235 		ClearPageError(page);
1236 		/* Start the actual read. The read will unlock the page. */
1237 		error = mapping->a_ops->readpage(filp, page);
1238 
1239 		if (unlikely(error)) {
1240 			if (error == AOP_TRUNCATED_PAGE) {
1241 				page_cache_release(page);
1242 				goto find_page;
1243 			}
1244 			goto readpage_error;
1245 		}
1246 
1247 		if (!PageUptodate(page)) {
1248 			error = lock_page_killable(page);
1249 			if (unlikely(error))
1250 				goto readpage_error;
1251 			if (!PageUptodate(page)) {
1252 				if (page->mapping == NULL) {
1253 					/*
1254 					 * invalidate_mapping_pages got it
1255 					 */
1256 					unlock_page(page);
1257 					page_cache_release(page);
1258 					goto find_page;
1259 				}
1260 				unlock_page(page);
1261 				shrink_readahead_size_eio(filp, ra);
1262 				error = -EIO;
1263 				goto readpage_error;
1264 			}
1265 			unlock_page(page);
1266 		}
1267 
1268 		goto page_ok;
1269 
1270 readpage_error:
1271 		/* UHHUH! A synchronous read error occurred. Report it */
1272 		desc->error = error;
1273 		page_cache_release(page);
1274 		goto out;
1275 
1276 no_cached_page:
1277 		/*
1278 		 * Ok, it wasn't cached, so we need to create a new
1279 		 * page..
1280 		 */
1281 		page = page_cache_alloc_cold(mapping);
1282 		if (!page) {
1283 			desc->error = -ENOMEM;
1284 			goto out;
1285 		}
1286 		error = add_to_page_cache_lru(page, mapping,
1287 						index, GFP_KERNEL);
1288 		if (error) {
1289 			page_cache_release(page);
1290 			if (error == -EEXIST)
1291 				goto find_page;
1292 			desc->error = error;
1293 			goto out;
1294 		}
1295 		goto readpage;
1296 	}
1297 
1298 out:
1299 	ra->prev_pos = prev_index;
1300 	ra->prev_pos <<= PAGE_CACHE_SHIFT;
1301 	ra->prev_pos |= prev_offset;
1302 
1303 	*ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1304 	file_accessed(filp);
1305 }
1306 
1307 int file_read_actor(read_descriptor_t *desc, struct page *page,
1308 			unsigned long offset, unsigned long size)
1309 {
1310 	char *kaddr;
1311 	unsigned long left, count = desc->count;
1312 
1313 	if (size > count)
1314 		size = count;
1315 
1316 	/*
1317 	 * Faults on the destination of a read are common, so do it before
1318 	 * taking the kmap.
1319 	 */
1320 	if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1321 		kaddr = kmap_atomic(page, KM_USER0);
1322 		left = __copy_to_user_inatomic(desc->arg.buf,
1323 						kaddr + offset, size);
1324 		kunmap_atomic(kaddr, KM_USER0);
1325 		if (left == 0)
1326 			goto success;
1327 	}
1328 
1329 	/* Do it the slow way */
1330 	kaddr = kmap(page);
1331 	left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1332 	kunmap(page);
1333 
1334 	if (left) {
1335 		size -= left;
1336 		desc->error = -EFAULT;
1337 	}
1338 success:
1339 	desc->count = count - size;
1340 	desc->written += size;
1341 	desc->arg.buf += size;
1342 	return size;
1343 }
1344 
1345 /*
1346  * Performs necessary checks before doing a write
1347  * @iov:	io vector request
1348  * @nr_segs:	number of segments in the iovec
1349  * @count:	number of bytes to write
1350  * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1351  *
1352  * Adjust number of segments and amount of bytes to write (nr_segs should be
1353  * properly initialized first). Returns appropriate error code that caller
1354  * should return or zero in case that write should be allowed.
1355  */
1356 int generic_segment_checks(const struct iovec *iov,
1357 			unsigned long *nr_segs, size_t *count, int access_flags)
1358 {
1359 	unsigned long   seg;
1360 	size_t cnt = 0;
1361 	for (seg = 0; seg < *nr_segs; seg++) {
1362 		const struct iovec *iv = &iov[seg];
1363 
1364 		/*
1365 		 * If any segment has a negative length, or the cumulative
1366 		 * length ever wraps negative then return -EINVAL.
1367 		 */
1368 		cnt += iv->iov_len;
1369 		if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1370 			return -EINVAL;
1371 		if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1372 			continue;
1373 		if (seg == 0)
1374 			return -EFAULT;
1375 		*nr_segs = seg;
1376 		cnt -= iv->iov_len;	/* This segment is no good */
1377 		break;
1378 	}
1379 	*count = cnt;
1380 	return 0;
1381 }
1382 EXPORT_SYMBOL(generic_segment_checks);
1383 
1384 /**
1385  * generic_file_aio_read - generic filesystem read routine
1386  * @iocb:	kernel I/O control block
1387  * @iov:	io vector request
1388  * @nr_segs:	number of segments in the iovec
1389  * @pos:	current file position
1390  *
1391  * This is the "read()" routine for all filesystems
1392  * that can use the page cache directly.
1393  */
1394 ssize_t
1395 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1396 		unsigned long nr_segs, loff_t pos)
1397 {
1398 	struct file *filp = iocb->ki_filp;
1399 	ssize_t retval;
1400 	unsigned long seg = 0;
1401 	size_t count;
1402 	loff_t *ppos = &iocb->ki_pos;
1403 	struct blk_plug plug;
1404 
1405 	count = 0;
1406 	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1407 	if (retval)
1408 		return retval;
1409 
1410 	blk_start_plug(&plug);
1411 
1412 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1413 	if (filp->f_flags & O_DIRECT) {
1414 		loff_t size;
1415 		struct address_space *mapping;
1416 		struct inode *inode;
1417 
1418 		mapping = filp->f_mapping;
1419 		inode = mapping->host;
1420 		if (!count)
1421 			goto out; /* skip atime */
1422 		size = i_size_read(inode);
1423 		if (pos < size) {
1424 			retval = filemap_write_and_wait_range(mapping, pos,
1425 					pos + iov_length(iov, nr_segs) - 1);
1426 			if (!retval) {
1427 				retval = mapping->a_ops->direct_IO(READ, iocb,
1428 							iov, pos, nr_segs);
1429 			}
1430 			if (retval > 0) {
1431 				*ppos = pos + retval;
1432 				count -= retval;
1433 			}
1434 
1435 			/*
1436 			 * Btrfs can have a short DIO read if we encounter
1437 			 * compressed extents, so if there was an error, or if
1438 			 * we've already read everything we wanted to, or if
1439 			 * there was a short read because we hit EOF, go ahead
1440 			 * and return.  Otherwise fallthrough to buffered io for
1441 			 * the rest of the read.
1442 			 */
1443 			if (retval < 0 || !count || *ppos >= size) {
1444 				file_accessed(filp);
1445 				goto out;
1446 			}
1447 		}
1448 	}
1449 
1450 	count = retval;
1451 	for (seg = 0; seg < nr_segs; seg++) {
1452 		read_descriptor_t desc;
1453 		loff_t offset = 0;
1454 
1455 		/*
1456 		 * If we did a short DIO read we need to skip the section of the
1457 		 * iov that we've already read data into.
1458 		 */
1459 		if (count) {
1460 			if (count > iov[seg].iov_len) {
1461 				count -= iov[seg].iov_len;
1462 				continue;
1463 			}
1464 			offset = count;
1465 			count = 0;
1466 		}
1467 
1468 		desc.written = 0;
1469 		desc.arg.buf = iov[seg].iov_base + offset;
1470 		desc.count = iov[seg].iov_len - offset;
1471 		if (desc.count == 0)
1472 			continue;
1473 		desc.error = 0;
1474 		do_generic_file_read(filp, ppos, &desc, file_read_actor);
1475 		retval += desc.written;
1476 		if (desc.error) {
1477 			retval = retval ?: desc.error;
1478 			break;
1479 		}
1480 		if (desc.count > 0)
1481 			break;
1482 	}
1483 out:
1484 	blk_finish_plug(&plug);
1485 	return retval;
1486 }
1487 EXPORT_SYMBOL(generic_file_aio_read);
1488 
1489 static ssize_t
1490 do_readahead(struct address_space *mapping, struct file *filp,
1491 	     pgoff_t index, unsigned long nr)
1492 {
1493 	if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1494 		return -EINVAL;
1495 
1496 	force_page_cache_readahead(mapping, filp, index, nr);
1497 	return 0;
1498 }
1499 
1500 SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1501 {
1502 	ssize_t ret;
1503 	struct file *file;
1504 
1505 	ret = -EBADF;
1506 	file = fget(fd);
1507 	if (file) {
1508 		if (file->f_mode & FMODE_READ) {
1509 			struct address_space *mapping = file->f_mapping;
1510 			pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1511 			pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1512 			unsigned long len = end - start + 1;
1513 			ret = do_readahead(mapping, file, start, len);
1514 		}
1515 		fput(file);
1516 	}
1517 	return ret;
1518 }
1519 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1520 asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1521 {
1522 	return SYSC_readahead((int) fd, offset, (size_t) count);
1523 }
1524 SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1525 #endif
1526 
1527 #ifdef CONFIG_MMU
1528 /**
1529  * page_cache_read - adds requested page to the page cache if not already there
1530  * @file:	file to read
1531  * @offset:	page index
1532  *
1533  * This adds the requested page to the page cache if it isn't already there,
1534  * and schedules an I/O to read in its contents from disk.
1535  */
1536 static int page_cache_read(struct file *file, pgoff_t offset)
1537 {
1538 	struct address_space *mapping = file->f_mapping;
1539 	struct page *page;
1540 	int ret;
1541 
1542 	do {
1543 		page = page_cache_alloc_cold(mapping);
1544 		if (!page)
1545 			return -ENOMEM;
1546 
1547 		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1548 		if (ret == 0)
1549 			ret = mapping->a_ops->readpage(file, page);
1550 		else if (ret == -EEXIST)
1551 			ret = 0; /* losing race to add is OK */
1552 
1553 		page_cache_release(page);
1554 
1555 	} while (ret == AOP_TRUNCATED_PAGE);
1556 
1557 	return ret;
1558 }
1559 
1560 #define MMAP_LOTSAMISS  (100)
1561 
1562 /*
1563  * Synchronous readahead happens when we don't even find
1564  * a page in the page cache at all.
1565  */
1566 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1567 				   struct file_ra_state *ra,
1568 				   struct file *file,
1569 				   pgoff_t offset)
1570 {
1571 	unsigned long ra_pages;
1572 	struct address_space *mapping = file->f_mapping;
1573 
1574 	/* If we don't want any read-ahead, don't bother */
1575 	if (VM_RandomReadHint(vma))
1576 		return;
1577 	if (!ra->ra_pages)
1578 		return;
1579 
1580 	if (VM_SequentialReadHint(vma)) {
1581 		page_cache_sync_readahead(mapping, ra, file, offset,
1582 					  ra->ra_pages);
1583 		return;
1584 	}
1585 
1586 	/* Avoid banging the cache line if not needed */
1587 	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1588 		ra->mmap_miss++;
1589 
1590 	/*
1591 	 * Do we miss much more than hit in this file? If so,
1592 	 * stop bothering with read-ahead. It will only hurt.
1593 	 */
1594 	if (ra->mmap_miss > MMAP_LOTSAMISS)
1595 		return;
1596 
1597 	/*
1598 	 * mmap read-around
1599 	 */
1600 	ra_pages = max_sane_readahead(ra->ra_pages);
1601 	ra->start = max_t(long, 0, offset - ra_pages / 2);
1602 	ra->size = ra_pages;
1603 	ra->async_size = ra_pages / 4;
1604 	ra_submit(ra, mapping, file);
1605 }
1606 
1607 /*
1608  * Asynchronous readahead happens when we find the page and PG_readahead,
1609  * so we want to possibly extend the readahead further..
1610  */
1611 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1612 				    struct file_ra_state *ra,
1613 				    struct file *file,
1614 				    struct page *page,
1615 				    pgoff_t offset)
1616 {
1617 	struct address_space *mapping = file->f_mapping;
1618 
1619 	/* If we don't want any read-ahead, don't bother */
1620 	if (VM_RandomReadHint(vma))
1621 		return;
1622 	if (ra->mmap_miss > 0)
1623 		ra->mmap_miss--;
1624 	if (PageReadahead(page))
1625 		page_cache_async_readahead(mapping, ra, file,
1626 					   page, offset, ra->ra_pages);
1627 }
1628 
1629 /**
1630  * filemap_fault - read in file data for page fault handling
1631  * @vma:	vma in which the fault was taken
1632  * @vmf:	struct vm_fault containing details of the fault
1633  *
1634  * filemap_fault() is invoked via the vma operations vector for a
1635  * mapped memory region to read in file data during a page fault.
1636  *
1637  * The goto's are kind of ugly, but this streamlines the normal case of having
1638  * it in the page cache, and handles the special cases reasonably without
1639  * having a lot of duplicated code.
1640  */
1641 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1642 {
1643 	int error;
1644 	struct file *file = vma->vm_file;
1645 	struct address_space *mapping = file->f_mapping;
1646 	struct file_ra_state *ra = &file->f_ra;
1647 	struct inode *inode = mapping->host;
1648 	pgoff_t offset = vmf->pgoff;
1649 	struct page *page;
1650 	pgoff_t size;
1651 	int ret = 0;
1652 
1653 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1654 	if (offset >= size)
1655 		return VM_FAULT_SIGBUS;
1656 
1657 	/*
1658 	 * Do we have something in the page cache already?
1659 	 */
1660 	page = find_get_page(mapping, offset);
1661 	if (likely(page)) {
1662 		/*
1663 		 * We found the page, so try async readahead before
1664 		 * waiting for the lock.
1665 		 */
1666 		do_async_mmap_readahead(vma, ra, file, page, offset);
1667 	} else {
1668 		/* No page in the page cache at all */
1669 		do_sync_mmap_readahead(vma, ra, file, offset);
1670 		count_vm_event(PGMAJFAULT);
1671 		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1672 		ret = VM_FAULT_MAJOR;
1673 retry_find:
1674 		page = find_get_page(mapping, offset);
1675 		if (!page)
1676 			goto no_cached_page;
1677 	}
1678 
1679 	if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1680 		page_cache_release(page);
1681 		return ret | VM_FAULT_RETRY;
1682 	}
1683 
1684 	/* Did it get truncated? */
1685 	if (unlikely(page->mapping != mapping)) {
1686 		unlock_page(page);
1687 		put_page(page);
1688 		goto retry_find;
1689 	}
1690 	VM_BUG_ON(page->index != offset);
1691 
1692 	/*
1693 	 * We have a locked page in the page cache, now we need to check
1694 	 * that it's up-to-date. If not, it is going to be due to an error.
1695 	 */
1696 	if (unlikely(!PageUptodate(page)))
1697 		goto page_not_uptodate;
1698 
1699 	/*
1700 	 * Found the page and have a reference on it.
1701 	 * We must recheck i_size under page lock.
1702 	 */
1703 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1704 	if (unlikely(offset >= size)) {
1705 		unlock_page(page);
1706 		page_cache_release(page);
1707 		return VM_FAULT_SIGBUS;
1708 	}
1709 
1710 	vmf->page = page;
1711 	return ret | VM_FAULT_LOCKED;
1712 
1713 no_cached_page:
1714 	/*
1715 	 * We're only likely to ever get here if MADV_RANDOM is in
1716 	 * effect.
1717 	 */
1718 	error = page_cache_read(file, offset);
1719 
1720 	/*
1721 	 * The page we want has now been added to the page cache.
1722 	 * In the unlikely event that someone removed it in the
1723 	 * meantime, we'll just come back here and read it again.
1724 	 */
1725 	if (error >= 0)
1726 		goto retry_find;
1727 
1728 	/*
1729 	 * An error return from page_cache_read can result if the
1730 	 * system is low on memory, or a problem occurs while trying
1731 	 * to schedule I/O.
1732 	 */
1733 	if (error == -ENOMEM)
1734 		return VM_FAULT_OOM;
1735 	return VM_FAULT_SIGBUS;
1736 
1737 page_not_uptodate:
1738 	/*
1739 	 * Umm, take care of errors if the page isn't up-to-date.
1740 	 * Try to re-read it _once_. We do this synchronously,
1741 	 * because there really aren't any performance issues here
1742 	 * and we need to check for errors.
1743 	 */
1744 	ClearPageError(page);
1745 	error = mapping->a_ops->readpage(file, page);
1746 	if (!error) {
1747 		wait_on_page_locked(page);
1748 		if (!PageUptodate(page))
1749 			error = -EIO;
1750 	}
1751 	page_cache_release(page);
1752 
1753 	if (!error || error == AOP_TRUNCATED_PAGE)
1754 		goto retry_find;
1755 
1756 	/* Things didn't work out. Return zero to tell the mm layer so. */
1757 	shrink_readahead_size_eio(file, ra);
1758 	return VM_FAULT_SIGBUS;
1759 }
1760 EXPORT_SYMBOL(filemap_fault);
1761 
1762 const struct vm_operations_struct generic_file_vm_ops = {
1763 	.fault		= filemap_fault,
1764 };
1765 
1766 /* This is used for a general mmap of a disk file */
1767 
1768 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1769 {
1770 	struct address_space *mapping = file->f_mapping;
1771 
1772 	if (!mapping->a_ops->readpage)
1773 		return -ENOEXEC;
1774 	file_accessed(file);
1775 	vma->vm_ops = &generic_file_vm_ops;
1776 	vma->vm_flags |= VM_CAN_NONLINEAR;
1777 	return 0;
1778 }
1779 
1780 /*
1781  * This is for filesystems which do not implement ->writepage.
1782  */
1783 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1784 {
1785 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1786 		return -EINVAL;
1787 	return generic_file_mmap(file, vma);
1788 }
1789 #else
1790 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1791 {
1792 	return -ENOSYS;
1793 }
1794 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1795 {
1796 	return -ENOSYS;
1797 }
1798 #endif /* CONFIG_MMU */
1799 
1800 EXPORT_SYMBOL(generic_file_mmap);
1801 EXPORT_SYMBOL(generic_file_readonly_mmap);
1802 
1803 static struct page *__read_cache_page(struct address_space *mapping,
1804 				pgoff_t index,
1805 				int (*filler)(void *, struct page *),
1806 				void *data,
1807 				gfp_t gfp)
1808 {
1809 	struct page *page;
1810 	int err;
1811 repeat:
1812 	page = find_get_page(mapping, index);
1813 	if (!page) {
1814 		page = __page_cache_alloc(gfp | __GFP_COLD);
1815 		if (!page)
1816 			return ERR_PTR(-ENOMEM);
1817 		err = add_to_page_cache_lru(page, mapping, index, gfp);
1818 		if (unlikely(err)) {
1819 			page_cache_release(page);
1820 			if (err == -EEXIST)
1821 				goto repeat;
1822 			/* Presumably ENOMEM for radix tree node */
1823 			return ERR_PTR(err);
1824 		}
1825 		err = filler(data, page);
1826 		if (err < 0) {
1827 			page_cache_release(page);
1828 			page = ERR_PTR(err);
1829 		}
1830 	}
1831 	return page;
1832 }
1833 
1834 static struct page *do_read_cache_page(struct address_space *mapping,
1835 				pgoff_t index,
1836 				int (*filler)(void *, struct page *),
1837 				void *data,
1838 				gfp_t gfp)
1839 
1840 {
1841 	struct page *page;
1842 	int err;
1843 
1844 retry:
1845 	page = __read_cache_page(mapping, index, filler, data, gfp);
1846 	if (IS_ERR(page))
1847 		return page;
1848 	if (PageUptodate(page))
1849 		goto out;
1850 
1851 	lock_page(page);
1852 	if (!page->mapping) {
1853 		unlock_page(page);
1854 		page_cache_release(page);
1855 		goto retry;
1856 	}
1857 	if (PageUptodate(page)) {
1858 		unlock_page(page);
1859 		goto out;
1860 	}
1861 	err = filler(data, page);
1862 	if (err < 0) {
1863 		page_cache_release(page);
1864 		return ERR_PTR(err);
1865 	}
1866 out:
1867 	mark_page_accessed(page);
1868 	return page;
1869 }
1870 
1871 /**
1872  * read_cache_page_async - read into page cache, fill it if needed
1873  * @mapping:	the page's address_space
1874  * @index:	the page index
1875  * @filler:	function to perform the read
1876  * @data:	first arg to filler(data, page) function, often left as NULL
1877  *
1878  * Same as read_cache_page, but don't wait for page to become unlocked
1879  * after submitting it to the filler.
1880  *
1881  * Read into the page cache. If a page already exists, and PageUptodate() is
1882  * not set, try to fill the page but don't wait for it to become unlocked.
1883  *
1884  * If the page does not get brought uptodate, return -EIO.
1885  */
1886 struct page *read_cache_page_async(struct address_space *mapping,
1887 				pgoff_t index,
1888 				int (*filler)(void *, struct page *),
1889 				void *data)
1890 {
1891 	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
1892 }
1893 EXPORT_SYMBOL(read_cache_page_async);
1894 
1895 static struct page *wait_on_page_read(struct page *page)
1896 {
1897 	if (!IS_ERR(page)) {
1898 		wait_on_page_locked(page);
1899 		if (!PageUptodate(page)) {
1900 			page_cache_release(page);
1901 			page = ERR_PTR(-EIO);
1902 		}
1903 	}
1904 	return page;
1905 }
1906 
1907 /**
1908  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1909  * @mapping:	the page's address_space
1910  * @index:	the page index
1911  * @gfp:	the page allocator flags to use if allocating
1912  *
1913  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1914  * any new page allocations done using the specified allocation flags.
1915  *
1916  * If the page does not get brought uptodate, return -EIO.
1917  */
1918 struct page *read_cache_page_gfp(struct address_space *mapping,
1919 				pgoff_t index,
1920 				gfp_t gfp)
1921 {
1922 	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
1923 
1924 	return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
1925 }
1926 EXPORT_SYMBOL(read_cache_page_gfp);
1927 
1928 /**
1929  * read_cache_page - read into page cache, fill it if needed
1930  * @mapping:	the page's address_space
1931  * @index:	the page index
1932  * @filler:	function to perform the read
1933  * @data:	first arg to filler(data, page) function, often left as NULL
1934  *
1935  * Read into the page cache. If a page already exists, and PageUptodate() is
1936  * not set, try to fill the page then wait for it to become unlocked.
1937  *
1938  * If the page does not get brought uptodate, return -EIO.
1939  */
1940 struct page *read_cache_page(struct address_space *mapping,
1941 				pgoff_t index,
1942 				int (*filler)(void *, struct page *),
1943 				void *data)
1944 {
1945 	return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1946 }
1947 EXPORT_SYMBOL(read_cache_page);
1948 
1949 /*
1950  * The logic we want is
1951  *
1952  *	if suid or (sgid and xgrp)
1953  *		remove privs
1954  */
1955 int should_remove_suid(struct dentry *dentry)
1956 {
1957 	umode_t mode = dentry->d_inode->i_mode;
1958 	int kill = 0;
1959 
1960 	/* suid always must be killed */
1961 	if (unlikely(mode & S_ISUID))
1962 		kill = ATTR_KILL_SUID;
1963 
1964 	/*
1965 	 * sgid without any exec bits is just a mandatory locking mark; leave
1966 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1967 	 */
1968 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1969 		kill |= ATTR_KILL_SGID;
1970 
1971 	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1972 		return kill;
1973 
1974 	return 0;
1975 }
1976 EXPORT_SYMBOL(should_remove_suid);
1977 
1978 static int __remove_suid(struct dentry *dentry, int kill)
1979 {
1980 	struct iattr newattrs;
1981 
1982 	newattrs.ia_valid = ATTR_FORCE | kill;
1983 	return notify_change(dentry, &newattrs);
1984 }
1985 
1986 int file_remove_suid(struct file *file)
1987 {
1988 	struct dentry *dentry = file->f_path.dentry;
1989 	struct inode *inode = dentry->d_inode;
1990 	int killsuid;
1991 	int killpriv;
1992 	int error = 0;
1993 
1994 	/* Fast path for nothing security related */
1995 	if (IS_NOSEC(inode))
1996 		return 0;
1997 
1998 	killsuid = should_remove_suid(dentry);
1999 	killpriv = security_inode_need_killpriv(dentry);
2000 
2001 	if (killpriv < 0)
2002 		return killpriv;
2003 	if (killpriv)
2004 		error = security_inode_killpriv(dentry);
2005 	if (!error && killsuid)
2006 		error = __remove_suid(dentry, killsuid);
2007 	if (!error && (inode->i_sb->s_flags & MS_NOSEC))
2008 		inode->i_flags |= S_NOSEC;
2009 
2010 	return error;
2011 }
2012 EXPORT_SYMBOL(file_remove_suid);
2013 
2014 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
2015 			const struct iovec *iov, size_t base, size_t bytes)
2016 {
2017 	size_t copied = 0, left = 0;
2018 
2019 	while (bytes) {
2020 		char __user *buf = iov->iov_base + base;
2021 		int copy = min(bytes, iov->iov_len - base);
2022 
2023 		base = 0;
2024 		left = __copy_from_user_inatomic(vaddr, buf, copy);
2025 		copied += copy;
2026 		bytes -= copy;
2027 		vaddr += copy;
2028 		iov++;
2029 
2030 		if (unlikely(left))
2031 			break;
2032 	}
2033 	return copied - left;
2034 }
2035 
2036 /*
2037  * Copy as much as we can into the page and return the number of bytes which
2038  * were successfully copied.  If a fault is encountered then return the number of
2039  * bytes which were copied.
2040  */
2041 size_t iov_iter_copy_from_user_atomic(struct page *page,
2042 		struct iov_iter *i, unsigned long offset, size_t bytes)
2043 {
2044 	char *kaddr;
2045 	size_t copied;
2046 
2047 	BUG_ON(!in_atomic());
2048 	kaddr = kmap_atomic(page, KM_USER0);
2049 	if (likely(i->nr_segs == 1)) {
2050 		int left;
2051 		char __user *buf = i->iov->iov_base + i->iov_offset;
2052 		left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
2053 		copied = bytes - left;
2054 	} else {
2055 		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2056 						i->iov, i->iov_offset, bytes);
2057 	}
2058 	kunmap_atomic(kaddr, KM_USER0);
2059 
2060 	return copied;
2061 }
2062 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
2063 
2064 /*
2065  * This has the same sideeffects and return value as
2066  * iov_iter_copy_from_user_atomic().
2067  * The difference is that it attempts to resolve faults.
2068  * Page must not be locked.
2069  */
2070 size_t iov_iter_copy_from_user(struct page *page,
2071 		struct iov_iter *i, unsigned long offset, size_t bytes)
2072 {
2073 	char *kaddr;
2074 	size_t copied;
2075 
2076 	kaddr = kmap(page);
2077 	if (likely(i->nr_segs == 1)) {
2078 		int left;
2079 		char __user *buf = i->iov->iov_base + i->iov_offset;
2080 		left = __copy_from_user(kaddr + offset, buf, bytes);
2081 		copied = bytes - left;
2082 	} else {
2083 		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2084 						i->iov, i->iov_offset, bytes);
2085 	}
2086 	kunmap(page);
2087 	return copied;
2088 }
2089 EXPORT_SYMBOL(iov_iter_copy_from_user);
2090 
2091 void iov_iter_advance(struct iov_iter *i, size_t bytes)
2092 {
2093 	BUG_ON(i->count < bytes);
2094 
2095 	if (likely(i->nr_segs == 1)) {
2096 		i->iov_offset += bytes;
2097 		i->count -= bytes;
2098 	} else {
2099 		const struct iovec *iov = i->iov;
2100 		size_t base = i->iov_offset;
2101 		unsigned long nr_segs = i->nr_segs;
2102 
2103 		/*
2104 		 * The !iov->iov_len check ensures we skip over unlikely
2105 		 * zero-length segments (without overruning the iovec).
2106 		 */
2107 		while (bytes || unlikely(i->count && !iov->iov_len)) {
2108 			int copy;
2109 
2110 			copy = min(bytes, iov->iov_len - base);
2111 			BUG_ON(!i->count || i->count < copy);
2112 			i->count -= copy;
2113 			bytes -= copy;
2114 			base += copy;
2115 			if (iov->iov_len == base) {
2116 				iov++;
2117 				nr_segs--;
2118 				base = 0;
2119 			}
2120 		}
2121 		i->iov = iov;
2122 		i->iov_offset = base;
2123 		i->nr_segs = nr_segs;
2124 	}
2125 }
2126 EXPORT_SYMBOL(iov_iter_advance);
2127 
2128 /*
2129  * Fault in the first iovec of the given iov_iter, to a maximum length
2130  * of bytes. Returns 0 on success, or non-zero if the memory could not be
2131  * accessed (ie. because it is an invalid address).
2132  *
2133  * writev-intensive code may want this to prefault several iovecs -- that
2134  * would be possible (callers must not rely on the fact that _only_ the
2135  * first iovec will be faulted with the current implementation).
2136  */
2137 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2138 {
2139 	char __user *buf = i->iov->iov_base + i->iov_offset;
2140 	bytes = min(bytes, i->iov->iov_len - i->iov_offset);
2141 	return fault_in_pages_readable(buf, bytes);
2142 }
2143 EXPORT_SYMBOL(iov_iter_fault_in_readable);
2144 
2145 /*
2146  * Return the count of just the current iov_iter segment.
2147  */
2148 size_t iov_iter_single_seg_count(struct iov_iter *i)
2149 {
2150 	const struct iovec *iov = i->iov;
2151 	if (i->nr_segs == 1)
2152 		return i->count;
2153 	else
2154 		return min(i->count, iov->iov_len - i->iov_offset);
2155 }
2156 EXPORT_SYMBOL(iov_iter_single_seg_count);
2157 
2158 /*
2159  * Performs necessary checks before doing a write
2160  *
2161  * Can adjust writing position or amount of bytes to write.
2162  * Returns appropriate error code that caller should return or
2163  * zero in case that write should be allowed.
2164  */
2165 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2166 {
2167 	struct inode *inode = file->f_mapping->host;
2168 	unsigned long limit = rlimit(RLIMIT_FSIZE);
2169 
2170         if (unlikely(*pos < 0))
2171                 return -EINVAL;
2172 
2173 	if (!isblk) {
2174 		/* FIXME: this is for backwards compatibility with 2.4 */
2175 		if (file->f_flags & O_APPEND)
2176                         *pos = i_size_read(inode);
2177 
2178 		if (limit != RLIM_INFINITY) {
2179 			if (*pos >= limit) {
2180 				send_sig(SIGXFSZ, current, 0);
2181 				return -EFBIG;
2182 			}
2183 			if (*count > limit - (typeof(limit))*pos) {
2184 				*count = limit - (typeof(limit))*pos;
2185 			}
2186 		}
2187 	}
2188 
2189 	/*
2190 	 * LFS rule
2191 	 */
2192 	if (unlikely(*pos + *count > MAX_NON_LFS &&
2193 				!(file->f_flags & O_LARGEFILE))) {
2194 		if (*pos >= MAX_NON_LFS) {
2195 			return -EFBIG;
2196 		}
2197 		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2198 			*count = MAX_NON_LFS - (unsigned long)*pos;
2199 		}
2200 	}
2201 
2202 	/*
2203 	 * Are we about to exceed the fs block limit ?
2204 	 *
2205 	 * If we have written data it becomes a short write.  If we have
2206 	 * exceeded without writing data we send a signal and return EFBIG.
2207 	 * Linus frestrict idea will clean these up nicely..
2208 	 */
2209 	if (likely(!isblk)) {
2210 		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2211 			if (*count || *pos > inode->i_sb->s_maxbytes) {
2212 				return -EFBIG;
2213 			}
2214 			/* zero-length writes at ->s_maxbytes are OK */
2215 		}
2216 
2217 		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2218 			*count = inode->i_sb->s_maxbytes - *pos;
2219 	} else {
2220 #ifdef CONFIG_BLOCK
2221 		loff_t isize;
2222 		if (bdev_read_only(I_BDEV(inode)))
2223 			return -EPERM;
2224 		isize = i_size_read(inode);
2225 		if (*pos >= isize) {
2226 			if (*count || *pos > isize)
2227 				return -ENOSPC;
2228 		}
2229 
2230 		if (*pos + *count > isize)
2231 			*count = isize - *pos;
2232 #else
2233 		return -EPERM;
2234 #endif
2235 	}
2236 	return 0;
2237 }
2238 EXPORT_SYMBOL(generic_write_checks);
2239 
2240 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2241 				loff_t pos, unsigned len, unsigned flags,
2242 				struct page **pagep, void **fsdata)
2243 {
2244 	const struct address_space_operations *aops = mapping->a_ops;
2245 
2246 	return aops->write_begin(file, mapping, pos, len, flags,
2247 							pagep, fsdata);
2248 }
2249 EXPORT_SYMBOL(pagecache_write_begin);
2250 
2251 int pagecache_write_end(struct file *file, struct address_space *mapping,
2252 				loff_t pos, unsigned len, unsigned copied,
2253 				struct page *page, void *fsdata)
2254 {
2255 	const struct address_space_operations *aops = mapping->a_ops;
2256 
2257 	mark_page_accessed(page);
2258 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2259 }
2260 EXPORT_SYMBOL(pagecache_write_end);
2261 
2262 ssize_t
2263 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2264 		unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2265 		size_t count, size_t ocount)
2266 {
2267 	struct file	*file = iocb->ki_filp;
2268 	struct address_space *mapping = file->f_mapping;
2269 	struct inode	*inode = mapping->host;
2270 	ssize_t		written;
2271 	size_t		write_len;
2272 	pgoff_t		end;
2273 
2274 	if (count != ocount)
2275 		*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2276 
2277 	write_len = iov_length(iov, *nr_segs);
2278 	end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2279 
2280 	written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2281 	if (written)
2282 		goto out;
2283 
2284 	/*
2285 	 * After a write we want buffered reads to be sure to go to disk to get
2286 	 * the new data.  We invalidate clean cached page from the region we're
2287 	 * about to write.  We do this *before* the write so that we can return
2288 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2289 	 */
2290 	if (mapping->nrpages) {
2291 		written = invalidate_inode_pages2_range(mapping,
2292 					pos >> PAGE_CACHE_SHIFT, end);
2293 		/*
2294 		 * If a page can not be invalidated, return 0 to fall back
2295 		 * to buffered write.
2296 		 */
2297 		if (written) {
2298 			if (written == -EBUSY)
2299 				return 0;
2300 			goto out;
2301 		}
2302 	}
2303 
2304 	written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2305 
2306 	/*
2307 	 * Finally, try again to invalidate clean pages which might have been
2308 	 * cached by non-direct readahead, or faulted in by get_user_pages()
2309 	 * if the source of the write was an mmap'ed region of the file
2310 	 * we're writing.  Either one is a pretty crazy thing to do,
2311 	 * so we don't support it 100%.  If this invalidation
2312 	 * fails, tough, the write still worked...
2313 	 */
2314 	if (mapping->nrpages) {
2315 		invalidate_inode_pages2_range(mapping,
2316 					      pos >> PAGE_CACHE_SHIFT, end);
2317 	}
2318 
2319 	if (written > 0) {
2320 		pos += written;
2321 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2322 			i_size_write(inode, pos);
2323 			mark_inode_dirty(inode);
2324 		}
2325 		*ppos = pos;
2326 	}
2327 out:
2328 	return written;
2329 }
2330 EXPORT_SYMBOL(generic_file_direct_write);
2331 
2332 /*
2333  * Find or create a page at the given pagecache position. Return the locked
2334  * page. This function is specifically for buffered writes.
2335  */
2336 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2337 					pgoff_t index, unsigned flags)
2338 {
2339 	int status;
2340 	gfp_t gfp_mask;
2341 	struct page *page;
2342 	gfp_t gfp_notmask = 0;
2343 
2344 	gfp_mask = mapping_gfp_mask(mapping) | __GFP_WRITE;
2345 	if (flags & AOP_FLAG_NOFS)
2346 		gfp_notmask = __GFP_FS;
2347 repeat:
2348 	page = find_lock_page(mapping, index);
2349 	if (page)
2350 		goto found;
2351 
2352 	page = __page_cache_alloc(gfp_mask & ~gfp_notmask);
2353 	if (!page)
2354 		return NULL;
2355 	status = add_to_page_cache_lru(page, mapping, index,
2356 						GFP_KERNEL & ~gfp_notmask);
2357 	if (unlikely(status)) {
2358 		page_cache_release(page);
2359 		if (status == -EEXIST)
2360 			goto repeat;
2361 		return NULL;
2362 	}
2363 found:
2364 	wait_on_page_writeback(page);
2365 	return page;
2366 }
2367 EXPORT_SYMBOL(grab_cache_page_write_begin);
2368 
2369 static ssize_t generic_perform_write(struct file *file,
2370 				struct iov_iter *i, loff_t pos)
2371 {
2372 	struct address_space *mapping = file->f_mapping;
2373 	const struct address_space_operations *a_ops = mapping->a_ops;
2374 	long status = 0;
2375 	ssize_t written = 0;
2376 	unsigned int flags = 0;
2377 
2378 	/*
2379 	 * Copies from kernel address space cannot fail (NFSD is a big user).
2380 	 */
2381 	if (segment_eq(get_fs(), KERNEL_DS))
2382 		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2383 
2384 	do {
2385 		struct page *page;
2386 		unsigned long offset;	/* Offset into pagecache page */
2387 		unsigned long bytes;	/* Bytes to write to page */
2388 		size_t copied;		/* Bytes copied from user */
2389 		void *fsdata;
2390 
2391 		offset = (pos & (PAGE_CACHE_SIZE - 1));
2392 		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2393 						iov_iter_count(i));
2394 
2395 again:
2396 		/*
2397 		 * Bring in the user page that we will copy from _first_.
2398 		 * Otherwise there's a nasty deadlock on copying from the
2399 		 * same page as we're writing to, without it being marked
2400 		 * up-to-date.
2401 		 *
2402 		 * Not only is this an optimisation, but it is also required
2403 		 * to check that the address is actually valid, when atomic
2404 		 * usercopies are used, below.
2405 		 */
2406 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2407 			status = -EFAULT;
2408 			break;
2409 		}
2410 
2411 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2412 						&page, &fsdata);
2413 		if (unlikely(status))
2414 			break;
2415 
2416 		if (mapping_writably_mapped(mapping))
2417 			flush_dcache_page(page);
2418 
2419 		pagefault_disable();
2420 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2421 		pagefault_enable();
2422 		flush_dcache_page(page);
2423 
2424 		mark_page_accessed(page);
2425 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2426 						page, fsdata);
2427 		if (unlikely(status < 0))
2428 			break;
2429 		copied = status;
2430 
2431 		cond_resched();
2432 
2433 		iov_iter_advance(i, copied);
2434 		if (unlikely(copied == 0)) {
2435 			/*
2436 			 * If we were unable to copy any data at all, we must
2437 			 * fall back to a single segment length write.
2438 			 *
2439 			 * If we didn't fallback here, we could livelock
2440 			 * because not all segments in the iov can be copied at
2441 			 * once without a pagefault.
2442 			 */
2443 			bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2444 						iov_iter_single_seg_count(i));
2445 			goto again;
2446 		}
2447 		pos += copied;
2448 		written += copied;
2449 
2450 		balance_dirty_pages_ratelimited(mapping);
2451 		if (fatal_signal_pending(current)) {
2452 			status = -EINTR;
2453 			break;
2454 		}
2455 	} while (iov_iter_count(i));
2456 
2457 	return written ? written : status;
2458 }
2459 
2460 ssize_t
2461 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2462 		unsigned long nr_segs, loff_t pos, loff_t *ppos,
2463 		size_t count, ssize_t written)
2464 {
2465 	struct file *file = iocb->ki_filp;
2466 	ssize_t status;
2467 	struct iov_iter i;
2468 
2469 	iov_iter_init(&i, iov, nr_segs, count, written);
2470 	status = generic_perform_write(file, &i, pos);
2471 
2472 	if (likely(status >= 0)) {
2473 		written += status;
2474 		*ppos = pos + status;
2475   	}
2476 
2477 	return written ? written : status;
2478 }
2479 EXPORT_SYMBOL(generic_file_buffered_write);
2480 
2481 /**
2482  * __generic_file_aio_write - write data to a file
2483  * @iocb:	IO state structure (file, offset, etc.)
2484  * @iov:	vector with data to write
2485  * @nr_segs:	number of segments in the vector
2486  * @ppos:	position where to write
2487  *
2488  * This function does all the work needed for actually writing data to a
2489  * file. It does all basic checks, removes SUID from the file, updates
2490  * modification times and calls proper subroutines depending on whether we
2491  * do direct IO or a standard buffered write.
2492  *
2493  * It expects i_mutex to be grabbed unless we work on a block device or similar
2494  * object which does not need locking at all.
2495  *
2496  * This function does *not* take care of syncing data in case of O_SYNC write.
2497  * A caller has to handle it. This is mainly due to the fact that we want to
2498  * avoid syncing under i_mutex.
2499  */
2500 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2501 				 unsigned long nr_segs, loff_t *ppos)
2502 {
2503 	struct file *file = iocb->ki_filp;
2504 	struct address_space * mapping = file->f_mapping;
2505 	size_t ocount;		/* original count */
2506 	size_t count;		/* after file limit checks */
2507 	struct inode 	*inode = mapping->host;
2508 	loff_t		pos;
2509 	ssize_t		written;
2510 	ssize_t		err;
2511 
2512 	ocount = 0;
2513 	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2514 	if (err)
2515 		return err;
2516 
2517 	count = ocount;
2518 	pos = *ppos;
2519 
2520 	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2521 
2522 	/* We can write back this queue in page reclaim */
2523 	current->backing_dev_info = mapping->backing_dev_info;
2524 	written = 0;
2525 
2526 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2527 	if (err)
2528 		goto out;
2529 
2530 	if (count == 0)
2531 		goto out;
2532 
2533 	err = file_remove_suid(file);
2534 	if (err)
2535 		goto out;
2536 
2537 	file_update_time(file);
2538 
2539 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2540 	if (unlikely(file->f_flags & O_DIRECT)) {
2541 		loff_t endbyte;
2542 		ssize_t written_buffered;
2543 
2544 		written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2545 							ppos, count, ocount);
2546 		if (written < 0 || written == count)
2547 			goto out;
2548 		/*
2549 		 * direct-io write to a hole: fall through to buffered I/O
2550 		 * for completing the rest of the request.
2551 		 */
2552 		pos += written;
2553 		count -= written;
2554 		written_buffered = generic_file_buffered_write(iocb, iov,
2555 						nr_segs, pos, ppos, count,
2556 						written);
2557 		/*
2558 		 * If generic_file_buffered_write() retuned a synchronous error
2559 		 * then we want to return the number of bytes which were
2560 		 * direct-written, or the error code if that was zero.  Note
2561 		 * that this differs from normal direct-io semantics, which
2562 		 * will return -EFOO even if some bytes were written.
2563 		 */
2564 		if (written_buffered < 0) {
2565 			err = written_buffered;
2566 			goto out;
2567 		}
2568 
2569 		/*
2570 		 * We need to ensure that the page cache pages are written to
2571 		 * disk and invalidated to preserve the expected O_DIRECT
2572 		 * semantics.
2573 		 */
2574 		endbyte = pos + written_buffered - written - 1;
2575 		err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2576 		if (err == 0) {
2577 			written = written_buffered;
2578 			invalidate_mapping_pages(mapping,
2579 						 pos >> PAGE_CACHE_SHIFT,
2580 						 endbyte >> PAGE_CACHE_SHIFT);
2581 		} else {
2582 			/*
2583 			 * We don't know how much we wrote, so just return
2584 			 * the number of bytes which were direct-written
2585 			 */
2586 		}
2587 	} else {
2588 		written = generic_file_buffered_write(iocb, iov, nr_segs,
2589 				pos, ppos, count, written);
2590 	}
2591 out:
2592 	current->backing_dev_info = NULL;
2593 	return written ? written : err;
2594 }
2595 EXPORT_SYMBOL(__generic_file_aio_write);
2596 
2597 /**
2598  * generic_file_aio_write - write data to a file
2599  * @iocb:	IO state structure
2600  * @iov:	vector with data to write
2601  * @nr_segs:	number of segments in the vector
2602  * @pos:	position in file where to write
2603  *
2604  * This is a wrapper around __generic_file_aio_write() to be used by most
2605  * filesystems. It takes care of syncing the file in case of O_SYNC file
2606  * and acquires i_mutex as needed.
2607  */
2608 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2609 		unsigned long nr_segs, loff_t pos)
2610 {
2611 	struct file *file = iocb->ki_filp;
2612 	struct inode *inode = file->f_mapping->host;
2613 	struct blk_plug plug;
2614 	ssize_t ret;
2615 
2616 	BUG_ON(iocb->ki_pos != pos);
2617 
2618 	mutex_lock(&inode->i_mutex);
2619 	blk_start_plug(&plug);
2620 	ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
2621 	mutex_unlock(&inode->i_mutex);
2622 
2623 	if (ret > 0 || ret == -EIOCBQUEUED) {
2624 		ssize_t err;
2625 
2626 		err = generic_write_sync(file, pos, ret);
2627 		if (err < 0 && ret > 0)
2628 			ret = err;
2629 	}
2630 	blk_finish_plug(&plug);
2631 	return ret;
2632 }
2633 EXPORT_SYMBOL(generic_file_aio_write);
2634 
2635 /**
2636  * try_to_release_page() - release old fs-specific metadata on a page
2637  *
2638  * @page: the page which the kernel is trying to free
2639  * @gfp_mask: memory allocation flags (and I/O mode)
2640  *
2641  * The address_space is to try to release any data against the page
2642  * (presumably at page->private).  If the release was successful, return `1'.
2643  * Otherwise return zero.
2644  *
2645  * This may also be called if PG_fscache is set on a page, indicating that the
2646  * page is known to the local caching routines.
2647  *
2648  * The @gfp_mask argument specifies whether I/O may be performed to release
2649  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2650  *
2651  */
2652 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2653 {
2654 	struct address_space * const mapping = page->mapping;
2655 
2656 	BUG_ON(!PageLocked(page));
2657 	if (PageWriteback(page))
2658 		return 0;
2659 
2660 	if (mapping && mapping->a_ops->releasepage)
2661 		return mapping->a_ops->releasepage(page, gfp_mask);
2662 	return try_to_free_buffers(page);
2663 }
2664 
2665 EXPORT_SYMBOL(try_to_release_page);
2666