1 /* 2 * linux/mm/filemap.c 3 * 4 * Copyright (C) 1994-1999 Linus Torvalds 5 */ 6 7 /* 8 * This file handles the generic file mmap semantics used by 9 * most "normal" filesystems (but you don't /have/ to use this: 10 * the NFS filesystem used to do this differently, for example) 11 */ 12 #include <linux/export.h> 13 #include <linux/compiler.h> 14 #include <linux/fs.h> 15 #include <linux/uaccess.h> 16 #include <linux/aio.h> 17 #include <linux/capability.h> 18 #include <linux/kernel_stat.h> 19 #include <linux/gfp.h> 20 #include <linux/mm.h> 21 #include <linux/swap.h> 22 #include <linux/mman.h> 23 #include <linux/pagemap.h> 24 #include <linux/file.h> 25 #include <linux/uio.h> 26 #include <linux/hash.h> 27 #include <linux/writeback.h> 28 #include <linux/backing-dev.h> 29 #include <linux/pagevec.h> 30 #include <linux/blkdev.h> 31 #include <linux/security.h> 32 #include <linux/cpuset.h> 33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */ 34 #include <linux/memcontrol.h> 35 #include <linux/cleancache.h> 36 #include <linux/rmap.h> 37 #include "internal.h" 38 39 #define CREATE_TRACE_POINTS 40 #include <trace/events/filemap.h> 41 42 /* 43 * FIXME: remove all knowledge of the buffer layer from the core VM 44 */ 45 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 46 47 #include <asm/mman.h> 48 49 /* 50 * Shared mappings implemented 30.11.1994. It's not fully working yet, 51 * though. 52 * 53 * Shared mappings now work. 15.8.1995 Bruno. 54 * 55 * finished 'unifying' the page and buffer cache and SMP-threaded the 56 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 57 * 58 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 59 */ 60 61 /* 62 * Lock ordering: 63 * 64 * ->i_mmap_mutex (truncate_pagecache) 65 * ->private_lock (__free_pte->__set_page_dirty_buffers) 66 * ->swap_lock (exclusive_swap_page, others) 67 * ->mapping->tree_lock 68 * 69 * ->i_mutex 70 * ->i_mmap_mutex (truncate->unmap_mapping_range) 71 * 72 * ->mmap_sem 73 * ->i_mmap_mutex 74 * ->page_table_lock or pte_lock (various, mainly in memory.c) 75 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock) 76 * 77 * ->mmap_sem 78 * ->lock_page (access_process_vm) 79 * 80 * ->i_mutex (generic_perform_write) 81 * ->mmap_sem (fault_in_pages_readable->do_page_fault) 82 * 83 * bdi->wb.list_lock 84 * sb_lock (fs/fs-writeback.c) 85 * ->mapping->tree_lock (__sync_single_inode) 86 * 87 * ->i_mmap_mutex 88 * ->anon_vma.lock (vma_adjust) 89 * 90 * ->anon_vma.lock 91 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 92 * 93 * ->page_table_lock or pte_lock 94 * ->swap_lock (try_to_unmap_one) 95 * ->private_lock (try_to_unmap_one) 96 * ->tree_lock (try_to_unmap_one) 97 * ->zone.lru_lock (follow_page->mark_page_accessed) 98 * ->zone.lru_lock (check_pte_range->isolate_lru_page) 99 * ->private_lock (page_remove_rmap->set_page_dirty) 100 * ->tree_lock (page_remove_rmap->set_page_dirty) 101 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty) 102 * ->inode->i_lock (page_remove_rmap->set_page_dirty) 103 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 104 * ->inode->i_lock (zap_pte_range->set_page_dirty) 105 * ->private_lock (zap_pte_range->__set_page_dirty_buffers) 106 * 107 * ->i_mmap_mutex 108 * ->tasklist_lock (memory_failure, collect_procs_ao) 109 */ 110 111 static void page_cache_tree_delete(struct address_space *mapping, 112 struct page *page, void *shadow) 113 { 114 struct radix_tree_node *node; 115 unsigned long index; 116 unsigned int offset; 117 unsigned int tag; 118 void **slot; 119 120 VM_BUG_ON(!PageLocked(page)); 121 122 __radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot); 123 124 if (shadow) { 125 mapping->nrshadows++; 126 /* 127 * Make sure the nrshadows update is committed before 128 * the nrpages update so that final truncate racing 129 * with reclaim does not see both counters 0 at the 130 * same time and miss a shadow entry. 131 */ 132 smp_wmb(); 133 } 134 mapping->nrpages--; 135 136 if (!node) { 137 /* Clear direct pointer tags in root node */ 138 mapping->page_tree.gfp_mask &= __GFP_BITS_MASK; 139 radix_tree_replace_slot(slot, shadow); 140 return; 141 } 142 143 /* Clear tree tags for the removed page */ 144 index = page->index; 145 offset = index & RADIX_TREE_MAP_MASK; 146 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) { 147 if (test_bit(offset, node->tags[tag])) 148 radix_tree_tag_clear(&mapping->page_tree, index, tag); 149 } 150 151 /* Delete page, swap shadow entry */ 152 radix_tree_replace_slot(slot, shadow); 153 workingset_node_pages_dec(node); 154 if (shadow) 155 workingset_node_shadows_inc(node); 156 else 157 if (__radix_tree_delete_node(&mapping->page_tree, node)) 158 return; 159 160 /* 161 * Track node that only contains shadow entries. 162 * 163 * Avoid acquiring the list_lru lock if already tracked. The 164 * list_empty() test is safe as node->private_list is 165 * protected by mapping->tree_lock. 166 */ 167 if (!workingset_node_pages(node) && 168 list_empty(&node->private_list)) { 169 node->private_data = mapping; 170 list_lru_add(&workingset_shadow_nodes, &node->private_list); 171 } 172 } 173 174 /* 175 * Delete a page from the page cache and free it. Caller has to make 176 * sure the page is locked and that nobody else uses it - or that usage 177 * is safe. The caller must hold the mapping's tree_lock. 178 */ 179 void __delete_from_page_cache(struct page *page, void *shadow) 180 { 181 struct address_space *mapping = page->mapping; 182 183 trace_mm_filemap_delete_from_page_cache(page); 184 /* 185 * if we're uptodate, flush out into the cleancache, otherwise 186 * invalidate any existing cleancache entries. We can't leave 187 * stale data around in the cleancache once our page is gone 188 */ 189 if (PageUptodate(page) && PageMappedToDisk(page)) 190 cleancache_put_page(page); 191 else 192 cleancache_invalidate_page(mapping, page); 193 194 page_cache_tree_delete(mapping, page, shadow); 195 196 page->mapping = NULL; 197 /* Leave page->index set: truncation lookup relies upon it */ 198 199 __dec_zone_page_state(page, NR_FILE_PAGES); 200 if (PageSwapBacked(page)) 201 __dec_zone_page_state(page, NR_SHMEM); 202 BUG_ON(page_mapped(page)); 203 204 /* 205 * Some filesystems seem to re-dirty the page even after 206 * the VM has canceled the dirty bit (eg ext3 journaling). 207 * 208 * Fix it up by doing a final dirty accounting check after 209 * having removed the page entirely. 210 */ 211 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) { 212 dec_zone_page_state(page, NR_FILE_DIRTY); 213 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE); 214 } 215 } 216 217 /** 218 * delete_from_page_cache - delete page from page cache 219 * @page: the page which the kernel is trying to remove from page cache 220 * 221 * This must be called only on pages that have been verified to be in the page 222 * cache and locked. It will never put the page into the free list, the caller 223 * has a reference on the page. 224 */ 225 void delete_from_page_cache(struct page *page) 226 { 227 struct address_space *mapping = page->mapping; 228 void (*freepage)(struct page *); 229 230 BUG_ON(!PageLocked(page)); 231 232 freepage = mapping->a_ops->freepage; 233 spin_lock_irq(&mapping->tree_lock); 234 __delete_from_page_cache(page, NULL); 235 spin_unlock_irq(&mapping->tree_lock); 236 mem_cgroup_uncharge_cache_page(page); 237 238 if (freepage) 239 freepage(page); 240 page_cache_release(page); 241 } 242 EXPORT_SYMBOL(delete_from_page_cache); 243 244 static int sleep_on_page(void *word) 245 { 246 io_schedule(); 247 return 0; 248 } 249 250 static int sleep_on_page_killable(void *word) 251 { 252 sleep_on_page(word); 253 return fatal_signal_pending(current) ? -EINTR : 0; 254 } 255 256 static int filemap_check_errors(struct address_space *mapping) 257 { 258 int ret = 0; 259 /* Check for outstanding write errors */ 260 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 261 ret = -ENOSPC; 262 if (test_and_clear_bit(AS_EIO, &mapping->flags)) 263 ret = -EIO; 264 return ret; 265 } 266 267 /** 268 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 269 * @mapping: address space structure to write 270 * @start: offset in bytes where the range starts 271 * @end: offset in bytes where the range ends (inclusive) 272 * @sync_mode: enable synchronous operation 273 * 274 * Start writeback against all of a mapping's dirty pages that lie 275 * within the byte offsets <start, end> inclusive. 276 * 277 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 278 * opposed to a regular memory cleansing writeback. The difference between 279 * these two operations is that if a dirty page/buffer is encountered, it must 280 * be waited upon, and not just skipped over. 281 */ 282 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 283 loff_t end, int sync_mode) 284 { 285 int ret; 286 struct writeback_control wbc = { 287 .sync_mode = sync_mode, 288 .nr_to_write = LONG_MAX, 289 .range_start = start, 290 .range_end = end, 291 }; 292 293 if (!mapping_cap_writeback_dirty(mapping)) 294 return 0; 295 296 ret = do_writepages(mapping, &wbc); 297 return ret; 298 } 299 300 static inline int __filemap_fdatawrite(struct address_space *mapping, 301 int sync_mode) 302 { 303 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 304 } 305 306 int filemap_fdatawrite(struct address_space *mapping) 307 { 308 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 309 } 310 EXPORT_SYMBOL(filemap_fdatawrite); 311 312 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 313 loff_t end) 314 { 315 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 316 } 317 EXPORT_SYMBOL(filemap_fdatawrite_range); 318 319 /** 320 * filemap_flush - mostly a non-blocking flush 321 * @mapping: target address_space 322 * 323 * This is a mostly non-blocking flush. Not suitable for data-integrity 324 * purposes - I/O may not be started against all dirty pages. 325 */ 326 int filemap_flush(struct address_space *mapping) 327 { 328 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 329 } 330 EXPORT_SYMBOL(filemap_flush); 331 332 /** 333 * filemap_fdatawait_range - wait for writeback to complete 334 * @mapping: address space structure to wait for 335 * @start_byte: offset in bytes where the range starts 336 * @end_byte: offset in bytes where the range ends (inclusive) 337 * 338 * Walk the list of under-writeback pages of the given address space 339 * in the given range and wait for all of them. 340 */ 341 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 342 loff_t end_byte) 343 { 344 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT; 345 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT; 346 struct pagevec pvec; 347 int nr_pages; 348 int ret2, ret = 0; 349 350 if (end_byte < start_byte) 351 goto out; 352 353 pagevec_init(&pvec, 0); 354 while ((index <= end) && 355 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 356 PAGECACHE_TAG_WRITEBACK, 357 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) { 358 unsigned i; 359 360 for (i = 0; i < nr_pages; i++) { 361 struct page *page = pvec.pages[i]; 362 363 /* until radix tree lookup accepts end_index */ 364 if (page->index > end) 365 continue; 366 367 wait_on_page_writeback(page); 368 if (TestClearPageError(page)) 369 ret = -EIO; 370 } 371 pagevec_release(&pvec); 372 cond_resched(); 373 } 374 out: 375 ret2 = filemap_check_errors(mapping); 376 if (!ret) 377 ret = ret2; 378 379 return ret; 380 } 381 EXPORT_SYMBOL(filemap_fdatawait_range); 382 383 /** 384 * filemap_fdatawait - wait for all under-writeback pages to complete 385 * @mapping: address space structure to wait for 386 * 387 * Walk the list of under-writeback pages of the given address space 388 * and wait for all of them. 389 */ 390 int filemap_fdatawait(struct address_space *mapping) 391 { 392 loff_t i_size = i_size_read(mapping->host); 393 394 if (i_size == 0) 395 return 0; 396 397 return filemap_fdatawait_range(mapping, 0, i_size - 1); 398 } 399 EXPORT_SYMBOL(filemap_fdatawait); 400 401 int filemap_write_and_wait(struct address_space *mapping) 402 { 403 int err = 0; 404 405 if (mapping->nrpages) { 406 err = filemap_fdatawrite(mapping); 407 /* 408 * Even if the above returned error, the pages may be 409 * written partially (e.g. -ENOSPC), so we wait for it. 410 * But the -EIO is special case, it may indicate the worst 411 * thing (e.g. bug) happened, so we avoid waiting for it. 412 */ 413 if (err != -EIO) { 414 int err2 = filemap_fdatawait(mapping); 415 if (!err) 416 err = err2; 417 } 418 } else { 419 err = filemap_check_errors(mapping); 420 } 421 return err; 422 } 423 EXPORT_SYMBOL(filemap_write_and_wait); 424 425 /** 426 * filemap_write_and_wait_range - write out & wait on a file range 427 * @mapping: the address_space for the pages 428 * @lstart: offset in bytes where the range starts 429 * @lend: offset in bytes where the range ends (inclusive) 430 * 431 * Write out and wait upon file offsets lstart->lend, inclusive. 432 * 433 * Note that `lend' is inclusive (describes the last byte to be written) so 434 * that this function can be used to write to the very end-of-file (end = -1). 435 */ 436 int filemap_write_and_wait_range(struct address_space *mapping, 437 loff_t lstart, loff_t lend) 438 { 439 int err = 0; 440 441 if (mapping->nrpages) { 442 err = __filemap_fdatawrite_range(mapping, lstart, lend, 443 WB_SYNC_ALL); 444 /* See comment of filemap_write_and_wait() */ 445 if (err != -EIO) { 446 int err2 = filemap_fdatawait_range(mapping, 447 lstart, lend); 448 if (!err) 449 err = err2; 450 } 451 } else { 452 err = filemap_check_errors(mapping); 453 } 454 return err; 455 } 456 EXPORT_SYMBOL(filemap_write_and_wait_range); 457 458 /** 459 * replace_page_cache_page - replace a pagecache page with a new one 460 * @old: page to be replaced 461 * @new: page to replace with 462 * @gfp_mask: allocation mode 463 * 464 * This function replaces a page in the pagecache with a new one. On 465 * success it acquires the pagecache reference for the new page and 466 * drops it for the old page. Both the old and new pages must be 467 * locked. This function does not add the new page to the LRU, the 468 * caller must do that. 469 * 470 * The remove + add is atomic. The only way this function can fail is 471 * memory allocation failure. 472 */ 473 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask) 474 { 475 int error; 476 477 VM_BUG_ON_PAGE(!PageLocked(old), old); 478 VM_BUG_ON_PAGE(!PageLocked(new), new); 479 VM_BUG_ON_PAGE(new->mapping, new); 480 481 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM); 482 if (!error) { 483 struct address_space *mapping = old->mapping; 484 void (*freepage)(struct page *); 485 486 pgoff_t offset = old->index; 487 freepage = mapping->a_ops->freepage; 488 489 page_cache_get(new); 490 new->mapping = mapping; 491 new->index = offset; 492 493 spin_lock_irq(&mapping->tree_lock); 494 __delete_from_page_cache(old, NULL); 495 error = radix_tree_insert(&mapping->page_tree, offset, new); 496 BUG_ON(error); 497 mapping->nrpages++; 498 __inc_zone_page_state(new, NR_FILE_PAGES); 499 if (PageSwapBacked(new)) 500 __inc_zone_page_state(new, NR_SHMEM); 501 spin_unlock_irq(&mapping->tree_lock); 502 /* mem_cgroup codes must not be called under tree_lock */ 503 mem_cgroup_replace_page_cache(old, new); 504 radix_tree_preload_end(); 505 if (freepage) 506 freepage(old); 507 page_cache_release(old); 508 } 509 510 return error; 511 } 512 EXPORT_SYMBOL_GPL(replace_page_cache_page); 513 514 static int page_cache_tree_insert(struct address_space *mapping, 515 struct page *page, void **shadowp) 516 { 517 struct radix_tree_node *node; 518 void **slot; 519 int error; 520 521 error = __radix_tree_create(&mapping->page_tree, page->index, 522 &node, &slot); 523 if (error) 524 return error; 525 if (*slot) { 526 void *p; 527 528 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock); 529 if (!radix_tree_exceptional_entry(p)) 530 return -EEXIST; 531 if (shadowp) 532 *shadowp = p; 533 mapping->nrshadows--; 534 if (node) 535 workingset_node_shadows_dec(node); 536 } 537 radix_tree_replace_slot(slot, page); 538 mapping->nrpages++; 539 if (node) { 540 workingset_node_pages_inc(node); 541 /* 542 * Don't track node that contains actual pages. 543 * 544 * Avoid acquiring the list_lru lock if already 545 * untracked. The list_empty() test is safe as 546 * node->private_list is protected by 547 * mapping->tree_lock. 548 */ 549 if (!list_empty(&node->private_list)) 550 list_lru_del(&workingset_shadow_nodes, 551 &node->private_list); 552 } 553 return 0; 554 } 555 556 static int __add_to_page_cache_locked(struct page *page, 557 struct address_space *mapping, 558 pgoff_t offset, gfp_t gfp_mask, 559 void **shadowp) 560 { 561 int error; 562 563 VM_BUG_ON_PAGE(!PageLocked(page), page); 564 VM_BUG_ON_PAGE(PageSwapBacked(page), page); 565 566 error = mem_cgroup_charge_file(page, current->mm, 567 gfp_mask & GFP_RECLAIM_MASK); 568 if (error) 569 return error; 570 571 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM); 572 if (error) { 573 mem_cgroup_uncharge_cache_page(page); 574 return error; 575 } 576 577 page_cache_get(page); 578 page->mapping = mapping; 579 page->index = offset; 580 581 spin_lock_irq(&mapping->tree_lock); 582 error = page_cache_tree_insert(mapping, page, shadowp); 583 radix_tree_preload_end(); 584 if (unlikely(error)) 585 goto err_insert; 586 __inc_zone_page_state(page, NR_FILE_PAGES); 587 spin_unlock_irq(&mapping->tree_lock); 588 trace_mm_filemap_add_to_page_cache(page); 589 return 0; 590 err_insert: 591 page->mapping = NULL; 592 /* Leave page->index set: truncation relies upon it */ 593 spin_unlock_irq(&mapping->tree_lock); 594 mem_cgroup_uncharge_cache_page(page); 595 page_cache_release(page); 596 return error; 597 } 598 599 /** 600 * add_to_page_cache_locked - add a locked page to the pagecache 601 * @page: page to add 602 * @mapping: the page's address_space 603 * @offset: page index 604 * @gfp_mask: page allocation mode 605 * 606 * This function is used to add a page to the pagecache. It must be locked. 607 * This function does not add the page to the LRU. The caller must do that. 608 */ 609 int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 610 pgoff_t offset, gfp_t gfp_mask) 611 { 612 return __add_to_page_cache_locked(page, mapping, offset, 613 gfp_mask, NULL); 614 } 615 EXPORT_SYMBOL(add_to_page_cache_locked); 616 617 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 618 pgoff_t offset, gfp_t gfp_mask) 619 { 620 void *shadow = NULL; 621 int ret; 622 623 __set_page_locked(page); 624 ret = __add_to_page_cache_locked(page, mapping, offset, 625 gfp_mask, &shadow); 626 if (unlikely(ret)) 627 __clear_page_locked(page); 628 else { 629 /* 630 * The page might have been evicted from cache only 631 * recently, in which case it should be activated like 632 * any other repeatedly accessed page. 633 */ 634 if (shadow && workingset_refault(shadow)) { 635 SetPageActive(page); 636 workingset_activation(page); 637 } else 638 ClearPageActive(page); 639 lru_cache_add(page); 640 } 641 return ret; 642 } 643 EXPORT_SYMBOL_GPL(add_to_page_cache_lru); 644 645 #ifdef CONFIG_NUMA 646 struct page *__page_cache_alloc(gfp_t gfp) 647 { 648 int n; 649 struct page *page; 650 651 if (cpuset_do_page_mem_spread()) { 652 unsigned int cpuset_mems_cookie; 653 do { 654 cpuset_mems_cookie = read_mems_allowed_begin(); 655 n = cpuset_mem_spread_node(); 656 page = alloc_pages_exact_node(n, gfp, 0); 657 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie)); 658 659 return page; 660 } 661 return alloc_pages(gfp, 0); 662 } 663 EXPORT_SYMBOL(__page_cache_alloc); 664 #endif 665 666 /* 667 * In order to wait for pages to become available there must be 668 * waitqueues associated with pages. By using a hash table of 669 * waitqueues where the bucket discipline is to maintain all 670 * waiters on the same queue and wake all when any of the pages 671 * become available, and for the woken contexts to check to be 672 * sure the appropriate page became available, this saves space 673 * at a cost of "thundering herd" phenomena during rare hash 674 * collisions. 675 */ 676 static wait_queue_head_t *page_waitqueue(struct page *page) 677 { 678 const struct zone *zone = page_zone(page); 679 680 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)]; 681 } 682 683 static inline void wake_up_page(struct page *page, int bit) 684 { 685 __wake_up_bit(page_waitqueue(page), &page->flags, bit); 686 } 687 688 void wait_on_page_bit(struct page *page, int bit_nr) 689 { 690 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr); 691 692 if (test_bit(bit_nr, &page->flags)) 693 __wait_on_bit(page_waitqueue(page), &wait, sleep_on_page, 694 TASK_UNINTERRUPTIBLE); 695 } 696 EXPORT_SYMBOL(wait_on_page_bit); 697 698 int wait_on_page_bit_killable(struct page *page, int bit_nr) 699 { 700 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr); 701 702 if (!test_bit(bit_nr, &page->flags)) 703 return 0; 704 705 return __wait_on_bit(page_waitqueue(page), &wait, 706 sleep_on_page_killable, TASK_KILLABLE); 707 } 708 709 /** 710 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue 711 * @page: Page defining the wait queue of interest 712 * @waiter: Waiter to add to the queue 713 * 714 * Add an arbitrary @waiter to the wait queue for the nominated @page. 715 */ 716 void add_page_wait_queue(struct page *page, wait_queue_t *waiter) 717 { 718 wait_queue_head_t *q = page_waitqueue(page); 719 unsigned long flags; 720 721 spin_lock_irqsave(&q->lock, flags); 722 __add_wait_queue(q, waiter); 723 spin_unlock_irqrestore(&q->lock, flags); 724 } 725 EXPORT_SYMBOL_GPL(add_page_wait_queue); 726 727 /** 728 * unlock_page - unlock a locked page 729 * @page: the page 730 * 731 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). 732 * Also wakes sleepers in wait_on_page_writeback() because the wakeup 733 * mechananism between PageLocked pages and PageWriteback pages is shared. 734 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. 735 * 736 * The mb is necessary to enforce ordering between the clear_bit and the read 737 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()). 738 */ 739 void unlock_page(struct page *page) 740 { 741 VM_BUG_ON_PAGE(!PageLocked(page), page); 742 clear_bit_unlock(PG_locked, &page->flags); 743 smp_mb__after_clear_bit(); 744 wake_up_page(page, PG_locked); 745 } 746 EXPORT_SYMBOL(unlock_page); 747 748 /** 749 * end_page_writeback - end writeback against a page 750 * @page: the page 751 */ 752 void end_page_writeback(struct page *page) 753 { 754 if (TestClearPageReclaim(page)) 755 rotate_reclaimable_page(page); 756 757 if (!test_clear_page_writeback(page)) 758 BUG(); 759 760 smp_mb__after_clear_bit(); 761 wake_up_page(page, PG_writeback); 762 } 763 EXPORT_SYMBOL(end_page_writeback); 764 765 /** 766 * __lock_page - get a lock on the page, assuming we need to sleep to get it 767 * @page: the page to lock 768 */ 769 void __lock_page(struct page *page) 770 { 771 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 772 773 __wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page, 774 TASK_UNINTERRUPTIBLE); 775 } 776 EXPORT_SYMBOL(__lock_page); 777 778 int __lock_page_killable(struct page *page) 779 { 780 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 781 782 return __wait_on_bit_lock(page_waitqueue(page), &wait, 783 sleep_on_page_killable, TASK_KILLABLE); 784 } 785 EXPORT_SYMBOL_GPL(__lock_page_killable); 786 787 int __lock_page_or_retry(struct page *page, struct mm_struct *mm, 788 unsigned int flags) 789 { 790 if (flags & FAULT_FLAG_ALLOW_RETRY) { 791 /* 792 * CAUTION! In this case, mmap_sem is not released 793 * even though return 0. 794 */ 795 if (flags & FAULT_FLAG_RETRY_NOWAIT) 796 return 0; 797 798 up_read(&mm->mmap_sem); 799 if (flags & FAULT_FLAG_KILLABLE) 800 wait_on_page_locked_killable(page); 801 else 802 wait_on_page_locked(page); 803 return 0; 804 } else { 805 if (flags & FAULT_FLAG_KILLABLE) { 806 int ret; 807 808 ret = __lock_page_killable(page); 809 if (ret) { 810 up_read(&mm->mmap_sem); 811 return 0; 812 } 813 } else 814 __lock_page(page); 815 return 1; 816 } 817 } 818 819 /** 820 * page_cache_next_hole - find the next hole (not-present entry) 821 * @mapping: mapping 822 * @index: index 823 * @max_scan: maximum range to search 824 * 825 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the 826 * lowest indexed hole. 827 * 828 * Returns: the index of the hole if found, otherwise returns an index 829 * outside of the set specified (in which case 'return - index >= 830 * max_scan' will be true). In rare cases of index wrap-around, 0 will 831 * be returned. 832 * 833 * page_cache_next_hole may be called under rcu_read_lock. However, 834 * like radix_tree_gang_lookup, this will not atomically search a 835 * snapshot of the tree at a single point in time. For example, if a 836 * hole is created at index 5, then subsequently a hole is created at 837 * index 10, page_cache_next_hole covering both indexes may return 10 838 * if called under rcu_read_lock. 839 */ 840 pgoff_t page_cache_next_hole(struct address_space *mapping, 841 pgoff_t index, unsigned long max_scan) 842 { 843 unsigned long i; 844 845 for (i = 0; i < max_scan; i++) { 846 struct page *page; 847 848 page = radix_tree_lookup(&mapping->page_tree, index); 849 if (!page || radix_tree_exceptional_entry(page)) 850 break; 851 index++; 852 if (index == 0) 853 break; 854 } 855 856 return index; 857 } 858 EXPORT_SYMBOL(page_cache_next_hole); 859 860 /** 861 * page_cache_prev_hole - find the prev hole (not-present entry) 862 * @mapping: mapping 863 * @index: index 864 * @max_scan: maximum range to search 865 * 866 * Search backwards in the range [max(index-max_scan+1, 0), index] for 867 * the first hole. 868 * 869 * Returns: the index of the hole if found, otherwise returns an index 870 * outside of the set specified (in which case 'index - return >= 871 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX 872 * will be returned. 873 * 874 * page_cache_prev_hole may be called under rcu_read_lock. However, 875 * like radix_tree_gang_lookup, this will not atomically search a 876 * snapshot of the tree at a single point in time. For example, if a 877 * hole is created at index 10, then subsequently a hole is created at 878 * index 5, page_cache_prev_hole covering both indexes may return 5 if 879 * called under rcu_read_lock. 880 */ 881 pgoff_t page_cache_prev_hole(struct address_space *mapping, 882 pgoff_t index, unsigned long max_scan) 883 { 884 unsigned long i; 885 886 for (i = 0; i < max_scan; i++) { 887 struct page *page; 888 889 page = radix_tree_lookup(&mapping->page_tree, index); 890 if (!page || radix_tree_exceptional_entry(page)) 891 break; 892 index--; 893 if (index == ULONG_MAX) 894 break; 895 } 896 897 return index; 898 } 899 EXPORT_SYMBOL(page_cache_prev_hole); 900 901 /** 902 * find_get_entry - find and get a page cache entry 903 * @mapping: the address_space to search 904 * @offset: the page cache index 905 * 906 * Looks up the page cache slot at @mapping & @offset. If there is a 907 * page cache page, it is returned with an increased refcount. 908 * 909 * If the slot holds a shadow entry of a previously evicted page, it 910 * is returned. 911 * 912 * Otherwise, %NULL is returned. 913 */ 914 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset) 915 { 916 void **pagep; 917 struct page *page; 918 919 rcu_read_lock(); 920 repeat: 921 page = NULL; 922 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset); 923 if (pagep) { 924 page = radix_tree_deref_slot(pagep); 925 if (unlikely(!page)) 926 goto out; 927 if (radix_tree_exception(page)) { 928 if (radix_tree_deref_retry(page)) 929 goto repeat; 930 /* 931 * Otherwise, shmem/tmpfs must be storing a swap entry 932 * here as an exceptional entry: so return it without 933 * attempting to raise page count. 934 */ 935 goto out; 936 } 937 if (!page_cache_get_speculative(page)) 938 goto repeat; 939 940 /* 941 * Has the page moved? 942 * This is part of the lockless pagecache protocol. See 943 * include/linux/pagemap.h for details. 944 */ 945 if (unlikely(page != *pagep)) { 946 page_cache_release(page); 947 goto repeat; 948 } 949 } 950 out: 951 rcu_read_unlock(); 952 953 return page; 954 } 955 EXPORT_SYMBOL(find_get_entry); 956 957 /** 958 * find_get_page - find and get a page reference 959 * @mapping: the address_space to search 960 * @offset: the page index 961 * 962 * Looks up the page cache slot at @mapping & @offset. If there is a 963 * page cache page, it is returned with an increased refcount. 964 * 965 * Otherwise, %NULL is returned. 966 */ 967 struct page *find_get_page(struct address_space *mapping, pgoff_t offset) 968 { 969 struct page *page = find_get_entry(mapping, offset); 970 971 if (radix_tree_exceptional_entry(page)) 972 page = NULL; 973 return page; 974 } 975 EXPORT_SYMBOL(find_get_page); 976 977 /** 978 * find_lock_entry - locate, pin and lock a page cache entry 979 * @mapping: the address_space to search 980 * @offset: the page cache index 981 * 982 * Looks up the page cache slot at @mapping & @offset. If there is a 983 * page cache page, it is returned locked and with an increased 984 * refcount. 985 * 986 * If the slot holds a shadow entry of a previously evicted page, it 987 * is returned. 988 * 989 * Otherwise, %NULL is returned. 990 * 991 * find_lock_entry() may sleep. 992 */ 993 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset) 994 { 995 struct page *page; 996 997 repeat: 998 page = find_get_entry(mapping, offset); 999 if (page && !radix_tree_exception(page)) { 1000 lock_page(page); 1001 /* Has the page been truncated? */ 1002 if (unlikely(page->mapping != mapping)) { 1003 unlock_page(page); 1004 page_cache_release(page); 1005 goto repeat; 1006 } 1007 VM_BUG_ON_PAGE(page->index != offset, page); 1008 } 1009 return page; 1010 } 1011 EXPORT_SYMBOL(find_lock_entry); 1012 1013 /** 1014 * find_lock_page - locate, pin and lock a pagecache page 1015 * @mapping: the address_space to search 1016 * @offset: the page index 1017 * 1018 * Looks up the page cache slot at @mapping & @offset. If there is a 1019 * page cache page, it is returned locked and with an increased 1020 * refcount. 1021 * 1022 * Otherwise, %NULL is returned. 1023 * 1024 * find_lock_page() may sleep. 1025 */ 1026 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset) 1027 { 1028 struct page *page = find_lock_entry(mapping, offset); 1029 1030 if (radix_tree_exceptional_entry(page)) 1031 page = NULL; 1032 return page; 1033 } 1034 EXPORT_SYMBOL(find_lock_page); 1035 1036 /** 1037 * find_or_create_page - locate or add a pagecache page 1038 * @mapping: the page's address_space 1039 * @index: the page's index into the mapping 1040 * @gfp_mask: page allocation mode 1041 * 1042 * Looks up the page cache slot at @mapping & @offset. If there is a 1043 * page cache page, it is returned locked and with an increased 1044 * refcount. 1045 * 1046 * If the page is not present, a new page is allocated using @gfp_mask 1047 * and added to the page cache and the VM's LRU list. The page is 1048 * returned locked and with an increased refcount. 1049 * 1050 * On memory exhaustion, %NULL is returned. 1051 * 1052 * find_or_create_page() may sleep, even if @gfp_flags specifies an 1053 * atomic allocation! 1054 */ 1055 struct page *find_or_create_page(struct address_space *mapping, 1056 pgoff_t index, gfp_t gfp_mask) 1057 { 1058 struct page *page; 1059 int err; 1060 repeat: 1061 page = find_lock_page(mapping, index); 1062 if (!page) { 1063 page = __page_cache_alloc(gfp_mask); 1064 if (!page) 1065 return NULL; 1066 /* 1067 * We want a regular kernel memory (not highmem or DMA etc) 1068 * allocation for the radix tree nodes, but we need to honour 1069 * the context-specific requirements the caller has asked for. 1070 * GFP_RECLAIM_MASK collects those requirements. 1071 */ 1072 err = add_to_page_cache_lru(page, mapping, index, 1073 (gfp_mask & GFP_RECLAIM_MASK)); 1074 if (unlikely(err)) { 1075 page_cache_release(page); 1076 page = NULL; 1077 if (err == -EEXIST) 1078 goto repeat; 1079 } 1080 } 1081 return page; 1082 } 1083 EXPORT_SYMBOL(find_or_create_page); 1084 1085 /** 1086 * find_get_entries - gang pagecache lookup 1087 * @mapping: The address_space to search 1088 * @start: The starting page cache index 1089 * @nr_entries: The maximum number of entries 1090 * @entries: Where the resulting entries are placed 1091 * @indices: The cache indices corresponding to the entries in @entries 1092 * 1093 * find_get_entries() will search for and return a group of up to 1094 * @nr_entries entries in the mapping. The entries are placed at 1095 * @entries. find_get_entries() takes a reference against any actual 1096 * pages it returns. 1097 * 1098 * The search returns a group of mapping-contiguous page cache entries 1099 * with ascending indexes. There may be holes in the indices due to 1100 * not-present pages. 1101 * 1102 * Any shadow entries of evicted pages are included in the returned 1103 * array. 1104 * 1105 * find_get_entries() returns the number of pages and shadow entries 1106 * which were found. 1107 */ 1108 unsigned find_get_entries(struct address_space *mapping, 1109 pgoff_t start, unsigned int nr_entries, 1110 struct page **entries, pgoff_t *indices) 1111 { 1112 void **slot; 1113 unsigned int ret = 0; 1114 struct radix_tree_iter iter; 1115 1116 if (!nr_entries) 1117 return 0; 1118 1119 rcu_read_lock(); 1120 restart: 1121 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { 1122 struct page *page; 1123 repeat: 1124 page = radix_tree_deref_slot(slot); 1125 if (unlikely(!page)) 1126 continue; 1127 if (radix_tree_exception(page)) { 1128 if (radix_tree_deref_retry(page)) 1129 goto restart; 1130 /* 1131 * Otherwise, we must be storing a swap entry 1132 * here as an exceptional entry: so return it 1133 * without attempting to raise page count. 1134 */ 1135 goto export; 1136 } 1137 if (!page_cache_get_speculative(page)) 1138 goto repeat; 1139 1140 /* Has the page moved? */ 1141 if (unlikely(page != *slot)) { 1142 page_cache_release(page); 1143 goto repeat; 1144 } 1145 export: 1146 indices[ret] = iter.index; 1147 entries[ret] = page; 1148 if (++ret == nr_entries) 1149 break; 1150 } 1151 rcu_read_unlock(); 1152 return ret; 1153 } 1154 1155 /** 1156 * find_get_pages - gang pagecache lookup 1157 * @mapping: The address_space to search 1158 * @start: The starting page index 1159 * @nr_pages: The maximum number of pages 1160 * @pages: Where the resulting pages are placed 1161 * 1162 * find_get_pages() will search for and return a group of up to 1163 * @nr_pages pages in the mapping. The pages are placed at @pages. 1164 * find_get_pages() takes a reference against the returned pages. 1165 * 1166 * The search returns a group of mapping-contiguous pages with ascending 1167 * indexes. There may be holes in the indices due to not-present pages. 1168 * 1169 * find_get_pages() returns the number of pages which were found. 1170 */ 1171 unsigned find_get_pages(struct address_space *mapping, pgoff_t start, 1172 unsigned int nr_pages, struct page **pages) 1173 { 1174 struct radix_tree_iter iter; 1175 void **slot; 1176 unsigned ret = 0; 1177 1178 if (unlikely(!nr_pages)) 1179 return 0; 1180 1181 rcu_read_lock(); 1182 restart: 1183 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { 1184 struct page *page; 1185 repeat: 1186 page = radix_tree_deref_slot(slot); 1187 if (unlikely(!page)) 1188 continue; 1189 1190 if (radix_tree_exception(page)) { 1191 if (radix_tree_deref_retry(page)) { 1192 /* 1193 * Transient condition which can only trigger 1194 * when entry at index 0 moves out of or back 1195 * to root: none yet gotten, safe to restart. 1196 */ 1197 WARN_ON(iter.index); 1198 goto restart; 1199 } 1200 /* 1201 * Otherwise, shmem/tmpfs must be storing a swap entry 1202 * here as an exceptional entry: so skip over it - 1203 * we only reach this from invalidate_mapping_pages(). 1204 */ 1205 continue; 1206 } 1207 1208 if (!page_cache_get_speculative(page)) 1209 goto repeat; 1210 1211 /* Has the page moved? */ 1212 if (unlikely(page != *slot)) { 1213 page_cache_release(page); 1214 goto repeat; 1215 } 1216 1217 pages[ret] = page; 1218 if (++ret == nr_pages) 1219 break; 1220 } 1221 1222 rcu_read_unlock(); 1223 return ret; 1224 } 1225 1226 /** 1227 * find_get_pages_contig - gang contiguous pagecache lookup 1228 * @mapping: The address_space to search 1229 * @index: The starting page index 1230 * @nr_pages: The maximum number of pages 1231 * @pages: Where the resulting pages are placed 1232 * 1233 * find_get_pages_contig() works exactly like find_get_pages(), except 1234 * that the returned number of pages are guaranteed to be contiguous. 1235 * 1236 * find_get_pages_contig() returns the number of pages which were found. 1237 */ 1238 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, 1239 unsigned int nr_pages, struct page **pages) 1240 { 1241 struct radix_tree_iter iter; 1242 void **slot; 1243 unsigned int ret = 0; 1244 1245 if (unlikely(!nr_pages)) 1246 return 0; 1247 1248 rcu_read_lock(); 1249 restart: 1250 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) { 1251 struct page *page; 1252 repeat: 1253 page = radix_tree_deref_slot(slot); 1254 /* The hole, there no reason to continue */ 1255 if (unlikely(!page)) 1256 break; 1257 1258 if (radix_tree_exception(page)) { 1259 if (radix_tree_deref_retry(page)) { 1260 /* 1261 * Transient condition which can only trigger 1262 * when entry at index 0 moves out of or back 1263 * to root: none yet gotten, safe to restart. 1264 */ 1265 goto restart; 1266 } 1267 /* 1268 * Otherwise, shmem/tmpfs must be storing a swap entry 1269 * here as an exceptional entry: so stop looking for 1270 * contiguous pages. 1271 */ 1272 break; 1273 } 1274 1275 if (!page_cache_get_speculative(page)) 1276 goto repeat; 1277 1278 /* Has the page moved? */ 1279 if (unlikely(page != *slot)) { 1280 page_cache_release(page); 1281 goto repeat; 1282 } 1283 1284 /* 1285 * must check mapping and index after taking the ref. 1286 * otherwise we can get both false positives and false 1287 * negatives, which is just confusing to the caller. 1288 */ 1289 if (page->mapping == NULL || page->index != iter.index) { 1290 page_cache_release(page); 1291 break; 1292 } 1293 1294 pages[ret] = page; 1295 if (++ret == nr_pages) 1296 break; 1297 } 1298 rcu_read_unlock(); 1299 return ret; 1300 } 1301 EXPORT_SYMBOL(find_get_pages_contig); 1302 1303 /** 1304 * find_get_pages_tag - find and return pages that match @tag 1305 * @mapping: the address_space to search 1306 * @index: the starting page index 1307 * @tag: the tag index 1308 * @nr_pages: the maximum number of pages 1309 * @pages: where the resulting pages are placed 1310 * 1311 * Like find_get_pages, except we only return pages which are tagged with 1312 * @tag. We update @index to index the next page for the traversal. 1313 */ 1314 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, 1315 int tag, unsigned int nr_pages, struct page **pages) 1316 { 1317 struct radix_tree_iter iter; 1318 void **slot; 1319 unsigned ret = 0; 1320 1321 if (unlikely(!nr_pages)) 1322 return 0; 1323 1324 rcu_read_lock(); 1325 restart: 1326 radix_tree_for_each_tagged(slot, &mapping->page_tree, 1327 &iter, *index, tag) { 1328 struct page *page; 1329 repeat: 1330 page = radix_tree_deref_slot(slot); 1331 if (unlikely(!page)) 1332 continue; 1333 1334 if (radix_tree_exception(page)) { 1335 if (radix_tree_deref_retry(page)) { 1336 /* 1337 * Transient condition which can only trigger 1338 * when entry at index 0 moves out of or back 1339 * to root: none yet gotten, safe to restart. 1340 */ 1341 goto restart; 1342 } 1343 /* 1344 * This function is never used on a shmem/tmpfs 1345 * mapping, so a swap entry won't be found here. 1346 */ 1347 BUG(); 1348 } 1349 1350 if (!page_cache_get_speculative(page)) 1351 goto repeat; 1352 1353 /* Has the page moved? */ 1354 if (unlikely(page != *slot)) { 1355 page_cache_release(page); 1356 goto repeat; 1357 } 1358 1359 pages[ret] = page; 1360 if (++ret == nr_pages) 1361 break; 1362 } 1363 1364 rcu_read_unlock(); 1365 1366 if (ret) 1367 *index = pages[ret - 1]->index + 1; 1368 1369 return ret; 1370 } 1371 EXPORT_SYMBOL(find_get_pages_tag); 1372 1373 /** 1374 * grab_cache_page_nowait - returns locked page at given index in given cache 1375 * @mapping: target address_space 1376 * @index: the page index 1377 * 1378 * Same as grab_cache_page(), but do not wait if the page is unavailable. 1379 * This is intended for speculative data generators, where the data can 1380 * be regenerated if the page couldn't be grabbed. This routine should 1381 * be safe to call while holding the lock for another page. 1382 * 1383 * Clear __GFP_FS when allocating the page to avoid recursion into the fs 1384 * and deadlock against the caller's locked page. 1385 */ 1386 struct page * 1387 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index) 1388 { 1389 struct page *page = find_get_page(mapping, index); 1390 1391 if (page) { 1392 if (trylock_page(page)) 1393 return page; 1394 page_cache_release(page); 1395 return NULL; 1396 } 1397 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS); 1398 if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) { 1399 page_cache_release(page); 1400 page = NULL; 1401 } 1402 return page; 1403 } 1404 EXPORT_SYMBOL(grab_cache_page_nowait); 1405 1406 /* 1407 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 1408 * a _large_ part of the i/o request. Imagine the worst scenario: 1409 * 1410 * ---R__________________________________________B__________ 1411 * ^ reading here ^ bad block(assume 4k) 1412 * 1413 * read(R) => miss => readahead(R...B) => media error => frustrating retries 1414 * => failing the whole request => read(R) => read(R+1) => 1415 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 1416 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 1417 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 1418 * 1419 * It is going insane. Fix it by quickly scaling down the readahead size. 1420 */ 1421 static void shrink_readahead_size_eio(struct file *filp, 1422 struct file_ra_state *ra) 1423 { 1424 ra->ra_pages /= 4; 1425 } 1426 1427 /** 1428 * do_generic_file_read - generic file read routine 1429 * @filp: the file to read 1430 * @ppos: current file position 1431 * @iter: data destination 1432 * @written: already copied 1433 * 1434 * This is a generic file read routine, and uses the 1435 * mapping->a_ops->readpage() function for the actual low-level stuff. 1436 * 1437 * This is really ugly. But the goto's actually try to clarify some 1438 * of the logic when it comes to error handling etc. 1439 */ 1440 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos, 1441 struct iov_iter *iter, ssize_t written) 1442 { 1443 struct address_space *mapping = filp->f_mapping; 1444 struct inode *inode = mapping->host; 1445 struct file_ra_state *ra = &filp->f_ra; 1446 pgoff_t index; 1447 pgoff_t last_index; 1448 pgoff_t prev_index; 1449 unsigned long offset; /* offset into pagecache page */ 1450 unsigned int prev_offset; 1451 int error = 0; 1452 1453 index = *ppos >> PAGE_CACHE_SHIFT; 1454 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT; 1455 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1); 1456 last_index = (*ppos + iter->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT; 1457 offset = *ppos & ~PAGE_CACHE_MASK; 1458 1459 for (;;) { 1460 struct page *page; 1461 pgoff_t end_index; 1462 loff_t isize; 1463 unsigned long nr, ret; 1464 1465 cond_resched(); 1466 find_page: 1467 page = find_get_page(mapping, index); 1468 if (!page) { 1469 page_cache_sync_readahead(mapping, 1470 ra, filp, 1471 index, last_index - index); 1472 page = find_get_page(mapping, index); 1473 if (unlikely(page == NULL)) 1474 goto no_cached_page; 1475 } 1476 if (PageReadahead(page)) { 1477 page_cache_async_readahead(mapping, 1478 ra, filp, page, 1479 index, last_index - index); 1480 } 1481 if (!PageUptodate(page)) { 1482 if (inode->i_blkbits == PAGE_CACHE_SHIFT || 1483 !mapping->a_ops->is_partially_uptodate) 1484 goto page_not_up_to_date; 1485 if (!trylock_page(page)) 1486 goto page_not_up_to_date; 1487 /* Did it get truncated before we got the lock? */ 1488 if (!page->mapping) 1489 goto page_not_up_to_date_locked; 1490 if (!mapping->a_ops->is_partially_uptodate(page, 1491 offset, iter->count)) 1492 goto page_not_up_to_date_locked; 1493 unlock_page(page); 1494 } 1495 page_ok: 1496 /* 1497 * i_size must be checked after we know the page is Uptodate. 1498 * 1499 * Checking i_size after the check allows us to calculate 1500 * the correct value for "nr", which means the zero-filled 1501 * part of the page is not copied back to userspace (unless 1502 * another truncate extends the file - this is desired though). 1503 */ 1504 1505 isize = i_size_read(inode); 1506 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 1507 if (unlikely(!isize || index > end_index)) { 1508 page_cache_release(page); 1509 goto out; 1510 } 1511 1512 /* nr is the maximum number of bytes to copy from this page */ 1513 nr = PAGE_CACHE_SIZE; 1514 if (index == end_index) { 1515 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 1516 if (nr <= offset) { 1517 page_cache_release(page); 1518 goto out; 1519 } 1520 } 1521 nr = nr - offset; 1522 1523 /* If users can be writing to this page using arbitrary 1524 * virtual addresses, take care about potential aliasing 1525 * before reading the page on the kernel side. 1526 */ 1527 if (mapping_writably_mapped(mapping)) 1528 flush_dcache_page(page); 1529 1530 /* 1531 * When a sequential read accesses a page several times, 1532 * only mark it as accessed the first time. 1533 */ 1534 if (prev_index != index || offset != prev_offset) 1535 mark_page_accessed(page); 1536 prev_index = index; 1537 1538 /* 1539 * Ok, we have the page, and it's up-to-date, so 1540 * now we can copy it to user space... 1541 */ 1542 1543 ret = copy_page_to_iter(page, offset, nr, iter); 1544 offset += ret; 1545 index += offset >> PAGE_CACHE_SHIFT; 1546 offset &= ~PAGE_CACHE_MASK; 1547 prev_offset = offset; 1548 1549 page_cache_release(page); 1550 written += ret; 1551 if (!iov_iter_count(iter)) 1552 goto out; 1553 if (ret < nr) { 1554 error = -EFAULT; 1555 goto out; 1556 } 1557 continue; 1558 1559 page_not_up_to_date: 1560 /* Get exclusive access to the page ... */ 1561 error = lock_page_killable(page); 1562 if (unlikely(error)) 1563 goto readpage_error; 1564 1565 page_not_up_to_date_locked: 1566 /* Did it get truncated before we got the lock? */ 1567 if (!page->mapping) { 1568 unlock_page(page); 1569 page_cache_release(page); 1570 continue; 1571 } 1572 1573 /* Did somebody else fill it already? */ 1574 if (PageUptodate(page)) { 1575 unlock_page(page); 1576 goto page_ok; 1577 } 1578 1579 readpage: 1580 /* 1581 * A previous I/O error may have been due to temporary 1582 * failures, eg. multipath errors. 1583 * PG_error will be set again if readpage fails. 1584 */ 1585 ClearPageError(page); 1586 /* Start the actual read. The read will unlock the page. */ 1587 error = mapping->a_ops->readpage(filp, page); 1588 1589 if (unlikely(error)) { 1590 if (error == AOP_TRUNCATED_PAGE) { 1591 page_cache_release(page); 1592 error = 0; 1593 goto find_page; 1594 } 1595 goto readpage_error; 1596 } 1597 1598 if (!PageUptodate(page)) { 1599 error = lock_page_killable(page); 1600 if (unlikely(error)) 1601 goto readpage_error; 1602 if (!PageUptodate(page)) { 1603 if (page->mapping == NULL) { 1604 /* 1605 * invalidate_mapping_pages got it 1606 */ 1607 unlock_page(page); 1608 page_cache_release(page); 1609 goto find_page; 1610 } 1611 unlock_page(page); 1612 shrink_readahead_size_eio(filp, ra); 1613 error = -EIO; 1614 goto readpage_error; 1615 } 1616 unlock_page(page); 1617 } 1618 1619 goto page_ok; 1620 1621 readpage_error: 1622 /* UHHUH! A synchronous read error occurred. Report it */ 1623 page_cache_release(page); 1624 goto out; 1625 1626 no_cached_page: 1627 /* 1628 * Ok, it wasn't cached, so we need to create a new 1629 * page.. 1630 */ 1631 page = page_cache_alloc_cold(mapping); 1632 if (!page) { 1633 error = -ENOMEM; 1634 goto out; 1635 } 1636 error = add_to_page_cache_lru(page, mapping, 1637 index, GFP_KERNEL); 1638 if (error) { 1639 page_cache_release(page); 1640 if (error == -EEXIST) { 1641 error = 0; 1642 goto find_page; 1643 } 1644 goto out; 1645 } 1646 goto readpage; 1647 } 1648 1649 out: 1650 ra->prev_pos = prev_index; 1651 ra->prev_pos <<= PAGE_CACHE_SHIFT; 1652 ra->prev_pos |= prev_offset; 1653 1654 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset; 1655 file_accessed(filp); 1656 return written ? written : error; 1657 } 1658 1659 /* 1660 * Performs necessary checks before doing a write 1661 * @iov: io vector request 1662 * @nr_segs: number of segments in the iovec 1663 * @count: number of bytes to write 1664 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE 1665 * 1666 * Adjust number of segments and amount of bytes to write (nr_segs should be 1667 * properly initialized first). Returns appropriate error code that caller 1668 * should return or zero in case that write should be allowed. 1669 */ 1670 int generic_segment_checks(const struct iovec *iov, 1671 unsigned long *nr_segs, size_t *count, int access_flags) 1672 { 1673 unsigned long seg; 1674 size_t cnt = 0; 1675 for (seg = 0; seg < *nr_segs; seg++) { 1676 const struct iovec *iv = &iov[seg]; 1677 1678 /* 1679 * If any segment has a negative length, or the cumulative 1680 * length ever wraps negative then return -EINVAL. 1681 */ 1682 cnt += iv->iov_len; 1683 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0)) 1684 return -EINVAL; 1685 if (access_ok(access_flags, iv->iov_base, iv->iov_len)) 1686 continue; 1687 if (seg == 0) 1688 return -EFAULT; 1689 *nr_segs = seg; 1690 cnt -= iv->iov_len; /* This segment is no good */ 1691 break; 1692 } 1693 *count = cnt; 1694 return 0; 1695 } 1696 EXPORT_SYMBOL(generic_segment_checks); 1697 1698 /** 1699 * generic_file_aio_read - generic filesystem read routine 1700 * @iocb: kernel I/O control block 1701 * @iov: io vector request 1702 * @nr_segs: number of segments in the iovec 1703 * @pos: current file position 1704 * 1705 * This is the "read()" routine for all filesystems 1706 * that can use the page cache directly. 1707 */ 1708 ssize_t 1709 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov, 1710 unsigned long nr_segs, loff_t pos) 1711 { 1712 struct file *filp = iocb->ki_filp; 1713 ssize_t retval; 1714 size_t count; 1715 loff_t *ppos = &iocb->ki_pos; 1716 struct iov_iter i; 1717 1718 count = 0; 1719 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE); 1720 if (retval) 1721 return retval; 1722 iov_iter_init(&i, iov, nr_segs, count, 0); 1723 1724 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ 1725 if (filp->f_flags & O_DIRECT) { 1726 loff_t size; 1727 struct address_space *mapping; 1728 struct inode *inode; 1729 1730 mapping = filp->f_mapping; 1731 inode = mapping->host; 1732 if (!count) 1733 goto out; /* skip atime */ 1734 size = i_size_read(inode); 1735 retval = filemap_write_and_wait_range(mapping, pos, 1736 pos + iov_length(iov, nr_segs) - 1); 1737 if (!retval) { 1738 retval = mapping->a_ops->direct_IO(READ, iocb, 1739 iov, pos, nr_segs); 1740 } 1741 if (retval > 0) { 1742 *ppos = pos + retval; 1743 count -= retval; 1744 /* 1745 * If we did a short DIO read we need to skip the 1746 * section of the iov that we've already read data into. 1747 */ 1748 iov_iter_advance(&i, retval); 1749 } 1750 1751 /* 1752 * Btrfs can have a short DIO read if we encounter 1753 * compressed extents, so if there was an error, or if 1754 * we've already read everything we wanted to, or if 1755 * there was a short read because we hit EOF, go ahead 1756 * and return. Otherwise fallthrough to buffered io for 1757 * the rest of the read. 1758 */ 1759 if (retval < 0 || !count || *ppos >= size) { 1760 file_accessed(filp); 1761 goto out; 1762 } 1763 } 1764 1765 retval = do_generic_file_read(filp, ppos, &i, retval); 1766 out: 1767 return retval; 1768 } 1769 EXPORT_SYMBOL(generic_file_aio_read); 1770 1771 #ifdef CONFIG_MMU 1772 /** 1773 * page_cache_read - adds requested page to the page cache if not already there 1774 * @file: file to read 1775 * @offset: page index 1776 * 1777 * This adds the requested page to the page cache if it isn't already there, 1778 * and schedules an I/O to read in its contents from disk. 1779 */ 1780 static int page_cache_read(struct file *file, pgoff_t offset) 1781 { 1782 struct address_space *mapping = file->f_mapping; 1783 struct page *page; 1784 int ret; 1785 1786 do { 1787 page = page_cache_alloc_cold(mapping); 1788 if (!page) 1789 return -ENOMEM; 1790 1791 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL); 1792 if (ret == 0) 1793 ret = mapping->a_ops->readpage(file, page); 1794 else if (ret == -EEXIST) 1795 ret = 0; /* losing race to add is OK */ 1796 1797 page_cache_release(page); 1798 1799 } while (ret == AOP_TRUNCATED_PAGE); 1800 1801 return ret; 1802 } 1803 1804 #define MMAP_LOTSAMISS (100) 1805 1806 /* 1807 * Synchronous readahead happens when we don't even find 1808 * a page in the page cache at all. 1809 */ 1810 static void do_sync_mmap_readahead(struct vm_area_struct *vma, 1811 struct file_ra_state *ra, 1812 struct file *file, 1813 pgoff_t offset) 1814 { 1815 unsigned long ra_pages; 1816 struct address_space *mapping = file->f_mapping; 1817 1818 /* If we don't want any read-ahead, don't bother */ 1819 if (vma->vm_flags & VM_RAND_READ) 1820 return; 1821 if (!ra->ra_pages) 1822 return; 1823 1824 if (vma->vm_flags & VM_SEQ_READ) { 1825 page_cache_sync_readahead(mapping, ra, file, offset, 1826 ra->ra_pages); 1827 return; 1828 } 1829 1830 /* Avoid banging the cache line if not needed */ 1831 if (ra->mmap_miss < MMAP_LOTSAMISS * 10) 1832 ra->mmap_miss++; 1833 1834 /* 1835 * Do we miss much more than hit in this file? If so, 1836 * stop bothering with read-ahead. It will only hurt. 1837 */ 1838 if (ra->mmap_miss > MMAP_LOTSAMISS) 1839 return; 1840 1841 /* 1842 * mmap read-around 1843 */ 1844 ra_pages = max_sane_readahead(ra->ra_pages); 1845 ra->start = max_t(long, 0, offset - ra_pages / 2); 1846 ra->size = ra_pages; 1847 ra->async_size = ra_pages / 4; 1848 ra_submit(ra, mapping, file); 1849 } 1850 1851 /* 1852 * Asynchronous readahead happens when we find the page and PG_readahead, 1853 * so we want to possibly extend the readahead further.. 1854 */ 1855 static void do_async_mmap_readahead(struct vm_area_struct *vma, 1856 struct file_ra_state *ra, 1857 struct file *file, 1858 struct page *page, 1859 pgoff_t offset) 1860 { 1861 struct address_space *mapping = file->f_mapping; 1862 1863 /* If we don't want any read-ahead, don't bother */ 1864 if (vma->vm_flags & VM_RAND_READ) 1865 return; 1866 if (ra->mmap_miss > 0) 1867 ra->mmap_miss--; 1868 if (PageReadahead(page)) 1869 page_cache_async_readahead(mapping, ra, file, 1870 page, offset, ra->ra_pages); 1871 } 1872 1873 /** 1874 * filemap_fault - read in file data for page fault handling 1875 * @vma: vma in which the fault was taken 1876 * @vmf: struct vm_fault containing details of the fault 1877 * 1878 * filemap_fault() is invoked via the vma operations vector for a 1879 * mapped memory region to read in file data during a page fault. 1880 * 1881 * The goto's are kind of ugly, but this streamlines the normal case of having 1882 * it in the page cache, and handles the special cases reasonably without 1883 * having a lot of duplicated code. 1884 */ 1885 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1886 { 1887 int error; 1888 struct file *file = vma->vm_file; 1889 struct address_space *mapping = file->f_mapping; 1890 struct file_ra_state *ra = &file->f_ra; 1891 struct inode *inode = mapping->host; 1892 pgoff_t offset = vmf->pgoff; 1893 struct page *page; 1894 loff_t size; 1895 int ret = 0; 1896 1897 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE); 1898 if (offset >= size >> PAGE_CACHE_SHIFT) 1899 return VM_FAULT_SIGBUS; 1900 1901 /* 1902 * Do we have something in the page cache already? 1903 */ 1904 page = find_get_page(mapping, offset); 1905 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) { 1906 /* 1907 * We found the page, so try async readahead before 1908 * waiting for the lock. 1909 */ 1910 do_async_mmap_readahead(vma, ra, file, page, offset); 1911 } else if (!page) { 1912 /* No page in the page cache at all */ 1913 do_sync_mmap_readahead(vma, ra, file, offset); 1914 count_vm_event(PGMAJFAULT); 1915 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT); 1916 ret = VM_FAULT_MAJOR; 1917 retry_find: 1918 page = find_get_page(mapping, offset); 1919 if (!page) 1920 goto no_cached_page; 1921 } 1922 1923 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) { 1924 page_cache_release(page); 1925 return ret | VM_FAULT_RETRY; 1926 } 1927 1928 /* Did it get truncated? */ 1929 if (unlikely(page->mapping != mapping)) { 1930 unlock_page(page); 1931 put_page(page); 1932 goto retry_find; 1933 } 1934 VM_BUG_ON_PAGE(page->index != offset, page); 1935 1936 /* 1937 * We have a locked page in the page cache, now we need to check 1938 * that it's up-to-date. If not, it is going to be due to an error. 1939 */ 1940 if (unlikely(!PageUptodate(page))) 1941 goto page_not_uptodate; 1942 1943 /* 1944 * Found the page and have a reference on it. 1945 * We must recheck i_size under page lock. 1946 */ 1947 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE); 1948 if (unlikely(offset >= size >> PAGE_CACHE_SHIFT)) { 1949 unlock_page(page); 1950 page_cache_release(page); 1951 return VM_FAULT_SIGBUS; 1952 } 1953 1954 vmf->page = page; 1955 return ret | VM_FAULT_LOCKED; 1956 1957 no_cached_page: 1958 /* 1959 * We're only likely to ever get here if MADV_RANDOM is in 1960 * effect. 1961 */ 1962 error = page_cache_read(file, offset); 1963 1964 /* 1965 * The page we want has now been added to the page cache. 1966 * In the unlikely event that someone removed it in the 1967 * meantime, we'll just come back here and read it again. 1968 */ 1969 if (error >= 0) 1970 goto retry_find; 1971 1972 /* 1973 * An error return from page_cache_read can result if the 1974 * system is low on memory, or a problem occurs while trying 1975 * to schedule I/O. 1976 */ 1977 if (error == -ENOMEM) 1978 return VM_FAULT_OOM; 1979 return VM_FAULT_SIGBUS; 1980 1981 page_not_uptodate: 1982 /* 1983 * Umm, take care of errors if the page isn't up-to-date. 1984 * Try to re-read it _once_. We do this synchronously, 1985 * because there really aren't any performance issues here 1986 * and we need to check for errors. 1987 */ 1988 ClearPageError(page); 1989 error = mapping->a_ops->readpage(file, page); 1990 if (!error) { 1991 wait_on_page_locked(page); 1992 if (!PageUptodate(page)) 1993 error = -EIO; 1994 } 1995 page_cache_release(page); 1996 1997 if (!error || error == AOP_TRUNCATED_PAGE) 1998 goto retry_find; 1999 2000 /* Things didn't work out. Return zero to tell the mm layer so. */ 2001 shrink_readahead_size_eio(file, ra); 2002 return VM_FAULT_SIGBUS; 2003 } 2004 EXPORT_SYMBOL(filemap_fault); 2005 2006 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf) 2007 { 2008 struct radix_tree_iter iter; 2009 void **slot; 2010 struct file *file = vma->vm_file; 2011 struct address_space *mapping = file->f_mapping; 2012 loff_t size; 2013 struct page *page; 2014 unsigned long address = (unsigned long) vmf->virtual_address; 2015 unsigned long addr; 2016 pte_t *pte; 2017 2018 rcu_read_lock(); 2019 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) { 2020 if (iter.index > vmf->max_pgoff) 2021 break; 2022 repeat: 2023 page = radix_tree_deref_slot(slot); 2024 if (unlikely(!page)) 2025 goto next; 2026 if (radix_tree_exception(page)) { 2027 if (radix_tree_deref_retry(page)) 2028 break; 2029 else 2030 goto next; 2031 } 2032 2033 if (!page_cache_get_speculative(page)) 2034 goto repeat; 2035 2036 /* Has the page moved? */ 2037 if (unlikely(page != *slot)) { 2038 page_cache_release(page); 2039 goto repeat; 2040 } 2041 2042 if (!PageUptodate(page) || 2043 PageReadahead(page) || 2044 PageHWPoison(page)) 2045 goto skip; 2046 if (!trylock_page(page)) 2047 goto skip; 2048 2049 if (page->mapping != mapping || !PageUptodate(page)) 2050 goto unlock; 2051 2052 size = round_up(i_size_read(mapping->host), PAGE_CACHE_SIZE); 2053 if (page->index >= size >> PAGE_CACHE_SHIFT) 2054 goto unlock; 2055 2056 pte = vmf->pte + page->index - vmf->pgoff; 2057 if (!pte_none(*pte)) 2058 goto unlock; 2059 2060 if (file->f_ra.mmap_miss > 0) 2061 file->f_ra.mmap_miss--; 2062 addr = address + (page->index - vmf->pgoff) * PAGE_SIZE; 2063 do_set_pte(vma, addr, page, pte, false, false); 2064 unlock_page(page); 2065 goto next; 2066 unlock: 2067 unlock_page(page); 2068 skip: 2069 page_cache_release(page); 2070 next: 2071 if (iter.index == vmf->max_pgoff) 2072 break; 2073 } 2074 rcu_read_unlock(); 2075 } 2076 EXPORT_SYMBOL(filemap_map_pages); 2077 2078 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 2079 { 2080 struct page *page = vmf->page; 2081 struct inode *inode = file_inode(vma->vm_file); 2082 int ret = VM_FAULT_LOCKED; 2083 2084 sb_start_pagefault(inode->i_sb); 2085 file_update_time(vma->vm_file); 2086 lock_page(page); 2087 if (page->mapping != inode->i_mapping) { 2088 unlock_page(page); 2089 ret = VM_FAULT_NOPAGE; 2090 goto out; 2091 } 2092 /* 2093 * We mark the page dirty already here so that when freeze is in 2094 * progress, we are guaranteed that writeback during freezing will 2095 * see the dirty page and writeprotect it again. 2096 */ 2097 set_page_dirty(page); 2098 wait_for_stable_page(page); 2099 out: 2100 sb_end_pagefault(inode->i_sb); 2101 return ret; 2102 } 2103 EXPORT_SYMBOL(filemap_page_mkwrite); 2104 2105 const struct vm_operations_struct generic_file_vm_ops = { 2106 .fault = filemap_fault, 2107 .map_pages = filemap_map_pages, 2108 .page_mkwrite = filemap_page_mkwrite, 2109 .remap_pages = generic_file_remap_pages, 2110 }; 2111 2112 /* This is used for a general mmap of a disk file */ 2113 2114 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 2115 { 2116 struct address_space *mapping = file->f_mapping; 2117 2118 if (!mapping->a_ops->readpage) 2119 return -ENOEXEC; 2120 file_accessed(file); 2121 vma->vm_ops = &generic_file_vm_ops; 2122 return 0; 2123 } 2124 2125 /* 2126 * This is for filesystems which do not implement ->writepage. 2127 */ 2128 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 2129 { 2130 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 2131 return -EINVAL; 2132 return generic_file_mmap(file, vma); 2133 } 2134 #else 2135 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 2136 { 2137 return -ENOSYS; 2138 } 2139 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) 2140 { 2141 return -ENOSYS; 2142 } 2143 #endif /* CONFIG_MMU */ 2144 2145 EXPORT_SYMBOL(generic_file_mmap); 2146 EXPORT_SYMBOL(generic_file_readonly_mmap); 2147 2148 static struct page *wait_on_page_read(struct page *page) 2149 { 2150 if (!IS_ERR(page)) { 2151 wait_on_page_locked(page); 2152 if (!PageUptodate(page)) { 2153 page_cache_release(page); 2154 page = ERR_PTR(-EIO); 2155 } 2156 } 2157 return page; 2158 } 2159 2160 static struct page *__read_cache_page(struct address_space *mapping, 2161 pgoff_t index, 2162 int (*filler)(void *, struct page *), 2163 void *data, 2164 gfp_t gfp) 2165 { 2166 struct page *page; 2167 int err; 2168 repeat: 2169 page = find_get_page(mapping, index); 2170 if (!page) { 2171 page = __page_cache_alloc(gfp | __GFP_COLD); 2172 if (!page) 2173 return ERR_PTR(-ENOMEM); 2174 err = add_to_page_cache_lru(page, mapping, index, gfp); 2175 if (unlikely(err)) { 2176 page_cache_release(page); 2177 if (err == -EEXIST) 2178 goto repeat; 2179 /* Presumably ENOMEM for radix tree node */ 2180 return ERR_PTR(err); 2181 } 2182 err = filler(data, page); 2183 if (err < 0) { 2184 page_cache_release(page); 2185 page = ERR_PTR(err); 2186 } else { 2187 page = wait_on_page_read(page); 2188 } 2189 } 2190 return page; 2191 } 2192 2193 static struct page *do_read_cache_page(struct address_space *mapping, 2194 pgoff_t index, 2195 int (*filler)(void *, struct page *), 2196 void *data, 2197 gfp_t gfp) 2198 2199 { 2200 struct page *page; 2201 int err; 2202 2203 retry: 2204 page = __read_cache_page(mapping, index, filler, data, gfp); 2205 if (IS_ERR(page)) 2206 return page; 2207 if (PageUptodate(page)) 2208 goto out; 2209 2210 lock_page(page); 2211 if (!page->mapping) { 2212 unlock_page(page); 2213 page_cache_release(page); 2214 goto retry; 2215 } 2216 if (PageUptodate(page)) { 2217 unlock_page(page); 2218 goto out; 2219 } 2220 err = filler(data, page); 2221 if (err < 0) { 2222 page_cache_release(page); 2223 return ERR_PTR(err); 2224 } else { 2225 page = wait_on_page_read(page); 2226 if (IS_ERR(page)) 2227 return page; 2228 } 2229 out: 2230 mark_page_accessed(page); 2231 return page; 2232 } 2233 2234 /** 2235 * read_cache_page - read into page cache, fill it if needed 2236 * @mapping: the page's address_space 2237 * @index: the page index 2238 * @filler: function to perform the read 2239 * @data: first arg to filler(data, page) function, often left as NULL 2240 * 2241 * Read into the page cache. If a page already exists, and PageUptodate() is 2242 * not set, try to fill the page and wait for it to become unlocked. 2243 * 2244 * If the page does not get brought uptodate, return -EIO. 2245 */ 2246 struct page *read_cache_page(struct address_space *mapping, 2247 pgoff_t index, 2248 int (*filler)(void *, struct page *), 2249 void *data) 2250 { 2251 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping)); 2252 } 2253 EXPORT_SYMBOL(read_cache_page); 2254 2255 /** 2256 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 2257 * @mapping: the page's address_space 2258 * @index: the page index 2259 * @gfp: the page allocator flags to use if allocating 2260 * 2261 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 2262 * any new page allocations done using the specified allocation flags. 2263 * 2264 * If the page does not get brought uptodate, return -EIO. 2265 */ 2266 struct page *read_cache_page_gfp(struct address_space *mapping, 2267 pgoff_t index, 2268 gfp_t gfp) 2269 { 2270 filler_t *filler = (filler_t *)mapping->a_ops->readpage; 2271 2272 return do_read_cache_page(mapping, index, filler, NULL, gfp); 2273 } 2274 EXPORT_SYMBOL(read_cache_page_gfp); 2275 2276 /* 2277 * Performs necessary checks before doing a write 2278 * 2279 * Can adjust writing position or amount of bytes to write. 2280 * Returns appropriate error code that caller should return or 2281 * zero in case that write should be allowed. 2282 */ 2283 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk) 2284 { 2285 struct inode *inode = file->f_mapping->host; 2286 unsigned long limit = rlimit(RLIMIT_FSIZE); 2287 2288 if (unlikely(*pos < 0)) 2289 return -EINVAL; 2290 2291 if (!isblk) { 2292 /* FIXME: this is for backwards compatibility with 2.4 */ 2293 if (file->f_flags & O_APPEND) 2294 *pos = i_size_read(inode); 2295 2296 if (limit != RLIM_INFINITY) { 2297 if (*pos >= limit) { 2298 send_sig(SIGXFSZ, current, 0); 2299 return -EFBIG; 2300 } 2301 if (*count > limit - (typeof(limit))*pos) { 2302 *count = limit - (typeof(limit))*pos; 2303 } 2304 } 2305 } 2306 2307 /* 2308 * LFS rule 2309 */ 2310 if (unlikely(*pos + *count > MAX_NON_LFS && 2311 !(file->f_flags & O_LARGEFILE))) { 2312 if (*pos >= MAX_NON_LFS) { 2313 return -EFBIG; 2314 } 2315 if (*count > MAX_NON_LFS - (unsigned long)*pos) { 2316 *count = MAX_NON_LFS - (unsigned long)*pos; 2317 } 2318 } 2319 2320 /* 2321 * Are we about to exceed the fs block limit ? 2322 * 2323 * If we have written data it becomes a short write. If we have 2324 * exceeded without writing data we send a signal and return EFBIG. 2325 * Linus frestrict idea will clean these up nicely.. 2326 */ 2327 if (likely(!isblk)) { 2328 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) { 2329 if (*count || *pos > inode->i_sb->s_maxbytes) { 2330 return -EFBIG; 2331 } 2332 /* zero-length writes at ->s_maxbytes are OK */ 2333 } 2334 2335 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes)) 2336 *count = inode->i_sb->s_maxbytes - *pos; 2337 } else { 2338 #ifdef CONFIG_BLOCK 2339 loff_t isize; 2340 if (bdev_read_only(I_BDEV(inode))) 2341 return -EPERM; 2342 isize = i_size_read(inode); 2343 if (*pos >= isize) { 2344 if (*count || *pos > isize) 2345 return -ENOSPC; 2346 } 2347 2348 if (*pos + *count > isize) 2349 *count = isize - *pos; 2350 #else 2351 return -EPERM; 2352 #endif 2353 } 2354 return 0; 2355 } 2356 EXPORT_SYMBOL(generic_write_checks); 2357 2358 int pagecache_write_begin(struct file *file, struct address_space *mapping, 2359 loff_t pos, unsigned len, unsigned flags, 2360 struct page **pagep, void **fsdata) 2361 { 2362 const struct address_space_operations *aops = mapping->a_ops; 2363 2364 return aops->write_begin(file, mapping, pos, len, flags, 2365 pagep, fsdata); 2366 } 2367 EXPORT_SYMBOL(pagecache_write_begin); 2368 2369 int pagecache_write_end(struct file *file, struct address_space *mapping, 2370 loff_t pos, unsigned len, unsigned copied, 2371 struct page *page, void *fsdata) 2372 { 2373 const struct address_space_operations *aops = mapping->a_ops; 2374 2375 mark_page_accessed(page); 2376 return aops->write_end(file, mapping, pos, len, copied, page, fsdata); 2377 } 2378 EXPORT_SYMBOL(pagecache_write_end); 2379 2380 ssize_t 2381 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov, 2382 unsigned long *nr_segs, loff_t pos, 2383 size_t count, size_t ocount) 2384 { 2385 struct file *file = iocb->ki_filp; 2386 struct address_space *mapping = file->f_mapping; 2387 struct inode *inode = mapping->host; 2388 ssize_t written; 2389 size_t write_len; 2390 pgoff_t end; 2391 2392 if (count != ocount) 2393 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count); 2394 2395 write_len = iov_length(iov, *nr_segs); 2396 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT; 2397 2398 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1); 2399 if (written) 2400 goto out; 2401 2402 /* 2403 * After a write we want buffered reads to be sure to go to disk to get 2404 * the new data. We invalidate clean cached page from the region we're 2405 * about to write. We do this *before* the write so that we can return 2406 * without clobbering -EIOCBQUEUED from ->direct_IO(). 2407 */ 2408 if (mapping->nrpages) { 2409 written = invalidate_inode_pages2_range(mapping, 2410 pos >> PAGE_CACHE_SHIFT, end); 2411 /* 2412 * If a page can not be invalidated, return 0 to fall back 2413 * to buffered write. 2414 */ 2415 if (written) { 2416 if (written == -EBUSY) 2417 return 0; 2418 goto out; 2419 } 2420 } 2421 2422 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs); 2423 2424 /* 2425 * Finally, try again to invalidate clean pages which might have been 2426 * cached by non-direct readahead, or faulted in by get_user_pages() 2427 * if the source of the write was an mmap'ed region of the file 2428 * we're writing. Either one is a pretty crazy thing to do, 2429 * so we don't support it 100%. If this invalidation 2430 * fails, tough, the write still worked... 2431 */ 2432 if (mapping->nrpages) { 2433 invalidate_inode_pages2_range(mapping, 2434 pos >> PAGE_CACHE_SHIFT, end); 2435 } 2436 2437 if (written > 0) { 2438 pos += written; 2439 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 2440 i_size_write(inode, pos); 2441 mark_inode_dirty(inode); 2442 } 2443 iocb->ki_pos = pos; 2444 } 2445 out: 2446 return written; 2447 } 2448 EXPORT_SYMBOL(generic_file_direct_write); 2449 2450 /* 2451 * Find or create a page at the given pagecache position. Return the locked 2452 * page. This function is specifically for buffered writes. 2453 */ 2454 struct page *grab_cache_page_write_begin(struct address_space *mapping, 2455 pgoff_t index, unsigned flags) 2456 { 2457 int status; 2458 gfp_t gfp_mask; 2459 struct page *page; 2460 gfp_t gfp_notmask = 0; 2461 2462 gfp_mask = mapping_gfp_mask(mapping); 2463 if (mapping_cap_account_dirty(mapping)) 2464 gfp_mask |= __GFP_WRITE; 2465 if (flags & AOP_FLAG_NOFS) 2466 gfp_notmask = __GFP_FS; 2467 repeat: 2468 page = find_lock_page(mapping, index); 2469 if (page) 2470 goto found; 2471 2472 page = __page_cache_alloc(gfp_mask & ~gfp_notmask); 2473 if (!page) 2474 return NULL; 2475 status = add_to_page_cache_lru(page, mapping, index, 2476 GFP_KERNEL & ~gfp_notmask); 2477 if (unlikely(status)) { 2478 page_cache_release(page); 2479 if (status == -EEXIST) 2480 goto repeat; 2481 return NULL; 2482 } 2483 found: 2484 wait_for_stable_page(page); 2485 return page; 2486 } 2487 EXPORT_SYMBOL(grab_cache_page_write_begin); 2488 2489 ssize_t generic_perform_write(struct file *file, 2490 struct iov_iter *i, loff_t pos) 2491 { 2492 struct address_space *mapping = file->f_mapping; 2493 const struct address_space_operations *a_ops = mapping->a_ops; 2494 long status = 0; 2495 ssize_t written = 0; 2496 unsigned int flags = 0; 2497 2498 /* 2499 * Copies from kernel address space cannot fail (NFSD is a big user). 2500 */ 2501 if (segment_eq(get_fs(), KERNEL_DS)) 2502 flags |= AOP_FLAG_UNINTERRUPTIBLE; 2503 2504 do { 2505 struct page *page; 2506 unsigned long offset; /* Offset into pagecache page */ 2507 unsigned long bytes; /* Bytes to write to page */ 2508 size_t copied; /* Bytes copied from user */ 2509 void *fsdata; 2510 2511 offset = (pos & (PAGE_CACHE_SIZE - 1)); 2512 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset, 2513 iov_iter_count(i)); 2514 2515 again: 2516 /* 2517 * Bring in the user page that we will copy from _first_. 2518 * Otherwise there's a nasty deadlock on copying from the 2519 * same page as we're writing to, without it being marked 2520 * up-to-date. 2521 * 2522 * Not only is this an optimisation, but it is also required 2523 * to check that the address is actually valid, when atomic 2524 * usercopies are used, below. 2525 */ 2526 if (unlikely(iov_iter_fault_in_readable(i, bytes))) { 2527 status = -EFAULT; 2528 break; 2529 } 2530 2531 status = a_ops->write_begin(file, mapping, pos, bytes, flags, 2532 &page, &fsdata); 2533 if (unlikely(status)) 2534 break; 2535 2536 if (mapping_writably_mapped(mapping)) 2537 flush_dcache_page(page); 2538 2539 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); 2540 flush_dcache_page(page); 2541 2542 mark_page_accessed(page); 2543 status = a_ops->write_end(file, mapping, pos, bytes, copied, 2544 page, fsdata); 2545 if (unlikely(status < 0)) 2546 break; 2547 copied = status; 2548 2549 cond_resched(); 2550 2551 iov_iter_advance(i, copied); 2552 if (unlikely(copied == 0)) { 2553 /* 2554 * If we were unable to copy any data at all, we must 2555 * fall back to a single segment length write. 2556 * 2557 * If we didn't fallback here, we could livelock 2558 * because not all segments in the iov can be copied at 2559 * once without a pagefault. 2560 */ 2561 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset, 2562 iov_iter_single_seg_count(i)); 2563 goto again; 2564 } 2565 pos += copied; 2566 written += copied; 2567 2568 balance_dirty_pages_ratelimited(mapping); 2569 if (fatal_signal_pending(current)) { 2570 status = -EINTR; 2571 break; 2572 } 2573 } while (iov_iter_count(i)); 2574 2575 return written ? written : status; 2576 } 2577 EXPORT_SYMBOL(generic_perform_write); 2578 2579 /** 2580 * __generic_file_aio_write - write data to a file 2581 * @iocb: IO state structure (file, offset, etc.) 2582 * @iov: vector with data to write 2583 * @nr_segs: number of segments in the vector 2584 * @ppos: position where to write 2585 * 2586 * This function does all the work needed for actually writing data to a 2587 * file. It does all basic checks, removes SUID from the file, updates 2588 * modification times and calls proper subroutines depending on whether we 2589 * do direct IO or a standard buffered write. 2590 * 2591 * It expects i_mutex to be grabbed unless we work on a block device or similar 2592 * object which does not need locking at all. 2593 * 2594 * This function does *not* take care of syncing data in case of O_SYNC write. 2595 * A caller has to handle it. This is mainly due to the fact that we want to 2596 * avoid syncing under i_mutex. 2597 */ 2598 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov, 2599 unsigned long nr_segs) 2600 { 2601 struct file *file = iocb->ki_filp; 2602 struct address_space * mapping = file->f_mapping; 2603 size_t ocount; /* original count */ 2604 size_t count; /* after file limit checks */ 2605 struct inode *inode = mapping->host; 2606 loff_t pos = iocb->ki_pos; 2607 ssize_t written = 0; 2608 ssize_t err; 2609 ssize_t status; 2610 struct iov_iter from; 2611 2612 ocount = 0; 2613 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ); 2614 if (err) 2615 return err; 2616 2617 count = ocount; 2618 2619 /* We can write back this queue in page reclaim */ 2620 current->backing_dev_info = mapping->backing_dev_info; 2621 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode)); 2622 if (err) 2623 goto out; 2624 2625 if (count == 0) 2626 goto out; 2627 2628 err = file_remove_suid(file); 2629 if (err) 2630 goto out; 2631 2632 err = file_update_time(file); 2633 if (err) 2634 goto out; 2635 2636 iov_iter_init(&from, iov, nr_segs, count, 0); 2637 2638 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ 2639 if (unlikely(file->f_flags & O_DIRECT)) { 2640 loff_t endbyte; 2641 2642 written = generic_file_direct_write(iocb, iov, &from.nr_segs, pos, 2643 count, ocount); 2644 if (written < 0 || written == count) 2645 goto out; 2646 iov_iter_advance(&from, written); 2647 2648 /* 2649 * direct-io write to a hole: fall through to buffered I/O 2650 * for completing the rest of the request. 2651 */ 2652 pos += written; 2653 count -= written; 2654 2655 status = generic_perform_write(file, &from, pos); 2656 /* 2657 * If generic_perform_write() returned a synchronous error 2658 * then we want to return the number of bytes which were 2659 * direct-written, or the error code if that was zero. Note 2660 * that this differs from normal direct-io semantics, which 2661 * will return -EFOO even if some bytes were written. 2662 */ 2663 if (unlikely(status < 0) && !written) { 2664 err = status; 2665 goto out; 2666 } 2667 iocb->ki_pos = pos + status; 2668 /* 2669 * We need to ensure that the page cache pages are written to 2670 * disk and invalidated to preserve the expected O_DIRECT 2671 * semantics. 2672 */ 2673 endbyte = pos + status - 1; 2674 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte); 2675 if (err == 0) { 2676 written += status; 2677 invalidate_mapping_pages(mapping, 2678 pos >> PAGE_CACHE_SHIFT, 2679 endbyte >> PAGE_CACHE_SHIFT); 2680 } else { 2681 /* 2682 * We don't know how much we wrote, so just return 2683 * the number of bytes which were direct-written 2684 */ 2685 } 2686 } else { 2687 written = generic_perform_write(file, &from, pos); 2688 if (likely(written >= 0)) 2689 iocb->ki_pos = pos + written; 2690 } 2691 out: 2692 current->backing_dev_info = NULL; 2693 return written ? written : err; 2694 } 2695 EXPORT_SYMBOL(__generic_file_aio_write); 2696 2697 /** 2698 * generic_file_aio_write - write data to a file 2699 * @iocb: IO state structure 2700 * @iov: vector with data to write 2701 * @nr_segs: number of segments in the vector 2702 * @pos: position in file where to write 2703 * 2704 * This is a wrapper around __generic_file_aio_write() to be used by most 2705 * filesystems. It takes care of syncing the file in case of O_SYNC file 2706 * and acquires i_mutex as needed. 2707 */ 2708 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov, 2709 unsigned long nr_segs, loff_t pos) 2710 { 2711 struct file *file = iocb->ki_filp; 2712 struct inode *inode = file->f_mapping->host; 2713 ssize_t ret; 2714 2715 BUG_ON(iocb->ki_pos != pos); 2716 2717 mutex_lock(&inode->i_mutex); 2718 ret = __generic_file_aio_write(iocb, iov, nr_segs); 2719 mutex_unlock(&inode->i_mutex); 2720 2721 if (ret > 0) { 2722 ssize_t err; 2723 2724 err = generic_write_sync(file, iocb->ki_pos - ret, ret); 2725 if (err < 0) 2726 ret = err; 2727 } 2728 return ret; 2729 } 2730 EXPORT_SYMBOL(generic_file_aio_write); 2731 2732 /** 2733 * try_to_release_page() - release old fs-specific metadata on a page 2734 * 2735 * @page: the page which the kernel is trying to free 2736 * @gfp_mask: memory allocation flags (and I/O mode) 2737 * 2738 * The address_space is to try to release any data against the page 2739 * (presumably at page->private). If the release was successful, return `1'. 2740 * Otherwise return zero. 2741 * 2742 * This may also be called if PG_fscache is set on a page, indicating that the 2743 * page is known to the local caching routines. 2744 * 2745 * The @gfp_mask argument specifies whether I/O may be performed to release 2746 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS). 2747 * 2748 */ 2749 int try_to_release_page(struct page *page, gfp_t gfp_mask) 2750 { 2751 struct address_space * const mapping = page->mapping; 2752 2753 BUG_ON(!PageLocked(page)); 2754 if (PageWriteback(page)) 2755 return 0; 2756 2757 if (mapping && mapping->a_ops->releasepage) 2758 return mapping->a_ops->releasepage(page, gfp_mask); 2759 return try_to_free_buffers(page); 2760 } 2761 2762 EXPORT_SYMBOL(try_to_release_page); 2763