1 /* 2 * linux/mm/filemap.c 3 * 4 * Copyright (C) 1994-1999 Linus Torvalds 5 */ 6 7 /* 8 * This file handles the generic file mmap semantics used by 9 * most "normal" filesystems (but you don't /have/ to use this: 10 * the NFS filesystem used to do this differently, for example) 11 */ 12 #include <linux/export.h> 13 #include <linux/compiler.h> 14 #include <linux/dax.h> 15 #include <linux/fs.h> 16 #include <linux/sched/signal.h> 17 #include <linux/uaccess.h> 18 #include <linux/capability.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/gfp.h> 21 #include <linux/mm.h> 22 #include <linux/swap.h> 23 #include <linux/mman.h> 24 #include <linux/pagemap.h> 25 #include <linux/file.h> 26 #include <linux/uio.h> 27 #include <linux/hash.h> 28 #include <linux/writeback.h> 29 #include <linux/backing-dev.h> 30 #include <linux/pagevec.h> 31 #include <linux/blkdev.h> 32 #include <linux/security.h> 33 #include <linux/cpuset.h> 34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */ 35 #include <linux/hugetlb.h> 36 #include <linux/memcontrol.h> 37 #include <linux/cleancache.h> 38 #include <linux/rmap.h> 39 #include "internal.h" 40 41 #define CREATE_TRACE_POINTS 42 #include <trace/events/filemap.h> 43 44 /* 45 * FIXME: remove all knowledge of the buffer layer from the core VM 46 */ 47 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 48 49 #include <asm/mman.h> 50 51 /* 52 * Shared mappings implemented 30.11.1994. It's not fully working yet, 53 * though. 54 * 55 * Shared mappings now work. 15.8.1995 Bruno. 56 * 57 * finished 'unifying' the page and buffer cache and SMP-threaded the 58 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 59 * 60 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 61 */ 62 63 /* 64 * Lock ordering: 65 * 66 * ->i_mmap_rwsem (truncate_pagecache) 67 * ->private_lock (__free_pte->__set_page_dirty_buffers) 68 * ->swap_lock (exclusive_swap_page, others) 69 * ->mapping->tree_lock 70 * 71 * ->i_mutex 72 * ->i_mmap_rwsem (truncate->unmap_mapping_range) 73 * 74 * ->mmap_sem 75 * ->i_mmap_rwsem 76 * ->page_table_lock or pte_lock (various, mainly in memory.c) 77 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock) 78 * 79 * ->mmap_sem 80 * ->lock_page (access_process_vm) 81 * 82 * ->i_mutex (generic_perform_write) 83 * ->mmap_sem (fault_in_pages_readable->do_page_fault) 84 * 85 * bdi->wb.list_lock 86 * sb_lock (fs/fs-writeback.c) 87 * ->mapping->tree_lock (__sync_single_inode) 88 * 89 * ->i_mmap_rwsem 90 * ->anon_vma.lock (vma_adjust) 91 * 92 * ->anon_vma.lock 93 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 94 * 95 * ->page_table_lock or pte_lock 96 * ->swap_lock (try_to_unmap_one) 97 * ->private_lock (try_to_unmap_one) 98 * ->tree_lock (try_to_unmap_one) 99 * ->zone_lru_lock(zone) (follow_page->mark_page_accessed) 100 * ->zone_lru_lock(zone) (check_pte_range->isolate_lru_page) 101 * ->private_lock (page_remove_rmap->set_page_dirty) 102 * ->tree_lock (page_remove_rmap->set_page_dirty) 103 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty) 104 * ->inode->i_lock (page_remove_rmap->set_page_dirty) 105 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg) 106 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 107 * ->inode->i_lock (zap_pte_range->set_page_dirty) 108 * ->private_lock (zap_pte_range->__set_page_dirty_buffers) 109 * 110 * ->i_mmap_rwsem 111 * ->tasklist_lock (memory_failure, collect_procs_ao) 112 */ 113 114 static int page_cache_tree_insert(struct address_space *mapping, 115 struct page *page, void **shadowp) 116 { 117 struct radix_tree_node *node; 118 void **slot; 119 int error; 120 121 error = __radix_tree_create(&mapping->page_tree, page->index, 0, 122 &node, &slot); 123 if (error) 124 return error; 125 if (*slot) { 126 void *p; 127 128 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock); 129 if (!radix_tree_exceptional_entry(p)) 130 return -EEXIST; 131 132 mapping->nrexceptional--; 133 if (!dax_mapping(mapping)) { 134 if (shadowp) 135 *shadowp = p; 136 } else { 137 /* DAX can replace empty locked entry with a hole */ 138 WARN_ON_ONCE(p != 139 dax_radix_locked_entry(0, RADIX_DAX_EMPTY)); 140 /* Wakeup waiters for exceptional entry lock */ 141 dax_wake_mapping_entry_waiter(mapping, page->index, p, 142 true); 143 } 144 } 145 __radix_tree_replace(&mapping->page_tree, node, slot, page, 146 workingset_update_node, mapping); 147 mapping->nrpages++; 148 return 0; 149 } 150 151 static void page_cache_tree_delete(struct address_space *mapping, 152 struct page *page, void *shadow) 153 { 154 int i, nr; 155 156 /* hugetlb pages are represented by one entry in the radix tree */ 157 nr = PageHuge(page) ? 1 : hpage_nr_pages(page); 158 159 VM_BUG_ON_PAGE(!PageLocked(page), page); 160 VM_BUG_ON_PAGE(PageTail(page), page); 161 VM_BUG_ON_PAGE(nr != 1 && shadow, page); 162 163 for (i = 0; i < nr; i++) { 164 struct radix_tree_node *node; 165 void **slot; 166 167 __radix_tree_lookup(&mapping->page_tree, page->index + i, 168 &node, &slot); 169 170 VM_BUG_ON_PAGE(!node && nr != 1, page); 171 172 radix_tree_clear_tags(&mapping->page_tree, node, slot); 173 __radix_tree_replace(&mapping->page_tree, node, slot, shadow, 174 workingset_update_node, mapping); 175 } 176 177 if (shadow) { 178 mapping->nrexceptional += nr; 179 /* 180 * Make sure the nrexceptional update is committed before 181 * the nrpages update so that final truncate racing 182 * with reclaim does not see both counters 0 at the 183 * same time and miss a shadow entry. 184 */ 185 smp_wmb(); 186 } 187 mapping->nrpages -= nr; 188 } 189 190 /* 191 * Delete a page from the page cache and free it. Caller has to make 192 * sure the page is locked and that nobody else uses it - or that usage 193 * is safe. The caller must hold the mapping's tree_lock. 194 */ 195 void __delete_from_page_cache(struct page *page, void *shadow) 196 { 197 struct address_space *mapping = page->mapping; 198 int nr = hpage_nr_pages(page); 199 200 trace_mm_filemap_delete_from_page_cache(page); 201 /* 202 * if we're uptodate, flush out into the cleancache, otherwise 203 * invalidate any existing cleancache entries. We can't leave 204 * stale data around in the cleancache once our page is gone 205 */ 206 if (PageUptodate(page) && PageMappedToDisk(page)) 207 cleancache_put_page(page); 208 else 209 cleancache_invalidate_page(mapping, page); 210 211 VM_BUG_ON_PAGE(PageTail(page), page); 212 VM_BUG_ON_PAGE(page_mapped(page), page); 213 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) { 214 int mapcount; 215 216 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n", 217 current->comm, page_to_pfn(page)); 218 dump_page(page, "still mapped when deleted"); 219 dump_stack(); 220 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 221 222 mapcount = page_mapcount(page); 223 if (mapping_exiting(mapping) && 224 page_count(page) >= mapcount + 2) { 225 /* 226 * All vmas have already been torn down, so it's 227 * a good bet that actually the page is unmapped, 228 * and we'd prefer not to leak it: if we're wrong, 229 * some other bad page check should catch it later. 230 */ 231 page_mapcount_reset(page); 232 page_ref_sub(page, mapcount); 233 } 234 } 235 236 page_cache_tree_delete(mapping, page, shadow); 237 238 page->mapping = NULL; 239 /* Leave page->index set: truncation lookup relies upon it */ 240 241 /* hugetlb pages do not participate in page cache accounting. */ 242 if (!PageHuge(page)) 243 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr); 244 if (PageSwapBacked(page)) { 245 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr); 246 if (PageTransHuge(page)) 247 __dec_node_page_state(page, NR_SHMEM_THPS); 248 } else { 249 VM_BUG_ON_PAGE(PageTransHuge(page) && !PageHuge(page), page); 250 } 251 252 /* 253 * At this point page must be either written or cleaned by truncate. 254 * Dirty page here signals a bug and loss of unwritten data. 255 * 256 * This fixes dirty accounting after removing the page entirely but 257 * leaves PageDirty set: it has no effect for truncated page and 258 * anyway will be cleared before returning page into buddy allocator. 259 */ 260 if (WARN_ON_ONCE(PageDirty(page))) 261 account_page_cleaned(page, mapping, inode_to_wb(mapping->host)); 262 } 263 264 /** 265 * delete_from_page_cache - delete page from page cache 266 * @page: the page which the kernel is trying to remove from page cache 267 * 268 * This must be called only on pages that have been verified to be in the page 269 * cache and locked. It will never put the page into the free list, the caller 270 * has a reference on the page. 271 */ 272 void delete_from_page_cache(struct page *page) 273 { 274 struct address_space *mapping = page_mapping(page); 275 unsigned long flags; 276 void (*freepage)(struct page *); 277 278 BUG_ON(!PageLocked(page)); 279 280 freepage = mapping->a_ops->freepage; 281 282 spin_lock_irqsave(&mapping->tree_lock, flags); 283 __delete_from_page_cache(page, NULL); 284 spin_unlock_irqrestore(&mapping->tree_lock, flags); 285 286 if (freepage) 287 freepage(page); 288 289 if (PageTransHuge(page) && !PageHuge(page)) { 290 page_ref_sub(page, HPAGE_PMD_NR); 291 VM_BUG_ON_PAGE(page_count(page) <= 0, page); 292 } else { 293 put_page(page); 294 } 295 } 296 EXPORT_SYMBOL(delete_from_page_cache); 297 298 int filemap_check_errors(struct address_space *mapping) 299 { 300 int ret = 0; 301 /* Check for outstanding write errors */ 302 if (test_bit(AS_ENOSPC, &mapping->flags) && 303 test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 304 ret = -ENOSPC; 305 if (test_bit(AS_EIO, &mapping->flags) && 306 test_and_clear_bit(AS_EIO, &mapping->flags)) 307 ret = -EIO; 308 return ret; 309 } 310 EXPORT_SYMBOL(filemap_check_errors); 311 312 /** 313 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 314 * @mapping: address space structure to write 315 * @start: offset in bytes where the range starts 316 * @end: offset in bytes where the range ends (inclusive) 317 * @sync_mode: enable synchronous operation 318 * 319 * Start writeback against all of a mapping's dirty pages that lie 320 * within the byte offsets <start, end> inclusive. 321 * 322 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 323 * opposed to a regular memory cleansing writeback. The difference between 324 * these two operations is that if a dirty page/buffer is encountered, it must 325 * be waited upon, and not just skipped over. 326 */ 327 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 328 loff_t end, int sync_mode) 329 { 330 int ret; 331 struct writeback_control wbc = { 332 .sync_mode = sync_mode, 333 .nr_to_write = LONG_MAX, 334 .range_start = start, 335 .range_end = end, 336 }; 337 338 if (!mapping_cap_writeback_dirty(mapping)) 339 return 0; 340 341 wbc_attach_fdatawrite_inode(&wbc, mapping->host); 342 ret = do_writepages(mapping, &wbc); 343 wbc_detach_inode(&wbc); 344 return ret; 345 } 346 347 static inline int __filemap_fdatawrite(struct address_space *mapping, 348 int sync_mode) 349 { 350 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 351 } 352 353 int filemap_fdatawrite(struct address_space *mapping) 354 { 355 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 356 } 357 EXPORT_SYMBOL(filemap_fdatawrite); 358 359 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 360 loff_t end) 361 { 362 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 363 } 364 EXPORT_SYMBOL(filemap_fdatawrite_range); 365 366 /** 367 * filemap_flush - mostly a non-blocking flush 368 * @mapping: target address_space 369 * 370 * This is a mostly non-blocking flush. Not suitable for data-integrity 371 * purposes - I/O may not be started against all dirty pages. 372 */ 373 int filemap_flush(struct address_space *mapping) 374 { 375 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 376 } 377 EXPORT_SYMBOL(filemap_flush); 378 379 static int __filemap_fdatawait_range(struct address_space *mapping, 380 loff_t start_byte, loff_t end_byte) 381 { 382 pgoff_t index = start_byte >> PAGE_SHIFT; 383 pgoff_t end = end_byte >> PAGE_SHIFT; 384 struct pagevec pvec; 385 int nr_pages; 386 int ret = 0; 387 388 if (end_byte < start_byte) 389 goto out; 390 391 pagevec_init(&pvec, 0); 392 while ((index <= end) && 393 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 394 PAGECACHE_TAG_WRITEBACK, 395 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) { 396 unsigned i; 397 398 for (i = 0; i < nr_pages; i++) { 399 struct page *page = pvec.pages[i]; 400 401 /* until radix tree lookup accepts end_index */ 402 if (page->index > end) 403 continue; 404 405 wait_on_page_writeback(page); 406 if (TestClearPageError(page)) 407 ret = -EIO; 408 } 409 pagevec_release(&pvec); 410 cond_resched(); 411 } 412 out: 413 return ret; 414 } 415 416 /** 417 * filemap_fdatawait_range - wait for writeback to complete 418 * @mapping: address space structure to wait for 419 * @start_byte: offset in bytes where the range starts 420 * @end_byte: offset in bytes where the range ends (inclusive) 421 * 422 * Walk the list of under-writeback pages of the given address space 423 * in the given range and wait for all of them. Check error status of 424 * the address space and return it. 425 * 426 * Since the error status of the address space is cleared by this function, 427 * callers are responsible for checking the return value and handling and/or 428 * reporting the error. 429 */ 430 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 431 loff_t end_byte) 432 { 433 int ret, ret2; 434 435 ret = __filemap_fdatawait_range(mapping, start_byte, end_byte); 436 ret2 = filemap_check_errors(mapping); 437 if (!ret) 438 ret = ret2; 439 440 return ret; 441 } 442 EXPORT_SYMBOL(filemap_fdatawait_range); 443 444 /** 445 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors 446 * @mapping: address space structure to wait for 447 * 448 * Walk the list of under-writeback pages of the given address space 449 * and wait for all of them. Unlike filemap_fdatawait(), this function 450 * does not clear error status of the address space. 451 * 452 * Use this function if callers don't handle errors themselves. Expected 453 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 454 * fsfreeze(8) 455 */ 456 void filemap_fdatawait_keep_errors(struct address_space *mapping) 457 { 458 loff_t i_size = i_size_read(mapping->host); 459 460 if (i_size == 0) 461 return; 462 463 __filemap_fdatawait_range(mapping, 0, i_size - 1); 464 } 465 466 /** 467 * filemap_fdatawait - wait for all under-writeback pages to complete 468 * @mapping: address space structure to wait for 469 * 470 * Walk the list of under-writeback pages of the given address space 471 * and wait for all of them. Check error status of the address space 472 * and return it. 473 * 474 * Since the error status of the address space is cleared by this function, 475 * callers are responsible for checking the return value and handling and/or 476 * reporting the error. 477 */ 478 int filemap_fdatawait(struct address_space *mapping) 479 { 480 loff_t i_size = i_size_read(mapping->host); 481 482 if (i_size == 0) 483 return 0; 484 485 return filemap_fdatawait_range(mapping, 0, i_size - 1); 486 } 487 EXPORT_SYMBOL(filemap_fdatawait); 488 489 int filemap_write_and_wait(struct address_space *mapping) 490 { 491 int err = 0; 492 493 if ((!dax_mapping(mapping) && mapping->nrpages) || 494 (dax_mapping(mapping) && mapping->nrexceptional)) { 495 err = filemap_fdatawrite(mapping); 496 /* 497 * Even if the above returned error, the pages may be 498 * written partially (e.g. -ENOSPC), so we wait for it. 499 * But the -EIO is special case, it may indicate the worst 500 * thing (e.g. bug) happened, so we avoid waiting for it. 501 */ 502 if (err != -EIO) { 503 int err2 = filemap_fdatawait(mapping); 504 if (!err) 505 err = err2; 506 } 507 } else { 508 err = filemap_check_errors(mapping); 509 } 510 return err; 511 } 512 EXPORT_SYMBOL(filemap_write_and_wait); 513 514 /** 515 * filemap_write_and_wait_range - write out & wait on a file range 516 * @mapping: the address_space for the pages 517 * @lstart: offset in bytes where the range starts 518 * @lend: offset in bytes where the range ends (inclusive) 519 * 520 * Write out and wait upon file offsets lstart->lend, inclusive. 521 * 522 * Note that `lend' is inclusive (describes the last byte to be written) so 523 * that this function can be used to write to the very end-of-file (end = -1). 524 */ 525 int filemap_write_and_wait_range(struct address_space *mapping, 526 loff_t lstart, loff_t lend) 527 { 528 int err = 0; 529 530 if ((!dax_mapping(mapping) && mapping->nrpages) || 531 (dax_mapping(mapping) && mapping->nrexceptional)) { 532 err = __filemap_fdatawrite_range(mapping, lstart, lend, 533 WB_SYNC_ALL); 534 /* See comment of filemap_write_and_wait() */ 535 if (err != -EIO) { 536 int err2 = filemap_fdatawait_range(mapping, 537 lstart, lend); 538 if (!err) 539 err = err2; 540 } 541 } else { 542 err = filemap_check_errors(mapping); 543 } 544 return err; 545 } 546 EXPORT_SYMBOL(filemap_write_and_wait_range); 547 548 /** 549 * replace_page_cache_page - replace a pagecache page with a new one 550 * @old: page to be replaced 551 * @new: page to replace with 552 * @gfp_mask: allocation mode 553 * 554 * This function replaces a page in the pagecache with a new one. On 555 * success it acquires the pagecache reference for the new page and 556 * drops it for the old page. Both the old and new pages must be 557 * locked. This function does not add the new page to the LRU, the 558 * caller must do that. 559 * 560 * The remove + add is atomic. The only way this function can fail is 561 * memory allocation failure. 562 */ 563 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask) 564 { 565 int error; 566 567 VM_BUG_ON_PAGE(!PageLocked(old), old); 568 VM_BUG_ON_PAGE(!PageLocked(new), new); 569 VM_BUG_ON_PAGE(new->mapping, new); 570 571 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM); 572 if (!error) { 573 struct address_space *mapping = old->mapping; 574 void (*freepage)(struct page *); 575 unsigned long flags; 576 577 pgoff_t offset = old->index; 578 freepage = mapping->a_ops->freepage; 579 580 get_page(new); 581 new->mapping = mapping; 582 new->index = offset; 583 584 spin_lock_irqsave(&mapping->tree_lock, flags); 585 __delete_from_page_cache(old, NULL); 586 error = page_cache_tree_insert(mapping, new, NULL); 587 BUG_ON(error); 588 589 /* 590 * hugetlb pages do not participate in page cache accounting. 591 */ 592 if (!PageHuge(new)) 593 __inc_node_page_state(new, NR_FILE_PAGES); 594 if (PageSwapBacked(new)) 595 __inc_node_page_state(new, NR_SHMEM); 596 spin_unlock_irqrestore(&mapping->tree_lock, flags); 597 mem_cgroup_migrate(old, new); 598 radix_tree_preload_end(); 599 if (freepage) 600 freepage(old); 601 put_page(old); 602 } 603 604 return error; 605 } 606 EXPORT_SYMBOL_GPL(replace_page_cache_page); 607 608 static int __add_to_page_cache_locked(struct page *page, 609 struct address_space *mapping, 610 pgoff_t offset, gfp_t gfp_mask, 611 void **shadowp) 612 { 613 int huge = PageHuge(page); 614 struct mem_cgroup *memcg; 615 int error; 616 617 VM_BUG_ON_PAGE(!PageLocked(page), page); 618 VM_BUG_ON_PAGE(PageSwapBacked(page), page); 619 620 if (!huge) { 621 error = mem_cgroup_try_charge(page, current->mm, 622 gfp_mask, &memcg, false); 623 if (error) 624 return error; 625 } 626 627 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM); 628 if (error) { 629 if (!huge) 630 mem_cgroup_cancel_charge(page, memcg, false); 631 return error; 632 } 633 634 get_page(page); 635 page->mapping = mapping; 636 page->index = offset; 637 638 spin_lock_irq(&mapping->tree_lock); 639 error = page_cache_tree_insert(mapping, page, shadowp); 640 radix_tree_preload_end(); 641 if (unlikely(error)) 642 goto err_insert; 643 644 /* hugetlb pages do not participate in page cache accounting. */ 645 if (!huge) 646 __inc_node_page_state(page, NR_FILE_PAGES); 647 spin_unlock_irq(&mapping->tree_lock); 648 if (!huge) 649 mem_cgroup_commit_charge(page, memcg, false, false); 650 trace_mm_filemap_add_to_page_cache(page); 651 return 0; 652 err_insert: 653 page->mapping = NULL; 654 /* Leave page->index set: truncation relies upon it */ 655 spin_unlock_irq(&mapping->tree_lock); 656 if (!huge) 657 mem_cgroup_cancel_charge(page, memcg, false); 658 put_page(page); 659 return error; 660 } 661 662 /** 663 * add_to_page_cache_locked - add a locked page to the pagecache 664 * @page: page to add 665 * @mapping: the page's address_space 666 * @offset: page index 667 * @gfp_mask: page allocation mode 668 * 669 * This function is used to add a page to the pagecache. It must be locked. 670 * This function does not add the page to the LRU. The caller must do that. 671 */ 672 int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 673 pgoff_t offset, gfp_t gfp_mask) 674 { 675 return __add_to_page_cache_locked(page, mapping, offset, 676 gfp_mask, NULL); 677 } 678 EXPORT_SYMBOL(add_to_page_cache_locked); 679 680 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 681 pgoff_t offset, gfp_t gfp_mask) 682 { 683 void *shadow = NULL; 684 int ret; 685 686 __SetPageLocked(page); 687 ret = __add_to_page_cache_locked(page, mapping, offset, 688 gfp_mask, &shadow); 689 if (unlikely(ret)) 690 __ClearPageLocked(page); 691 else { 692 /* 693 * The page might have been evicted from cache only 694 * recently, in which case it should be activated like 695 * any other repeatedly accessed page. 696 * The exception is pages getting rewritten; evicting other 697 * data from the working set, only to cache data that will 698 * get overwritten with something else, is a waste of memory. 699 */ 700 if (!(gfp_mask & __GFP_WRITE) && 701 shadow && workingset_refault(shadow)) { 702 SetPageActive(page); 703 workingset_activation(page); 704 } else 705 ClearPageActive(page); 706 lru_cache_add(page); 707 } 708 return ret; 709 } 710 EXPORT_SYMBOL_GPL(add_to_page_cache_lru); 711 712 #ifdef CONFIG_NUMA 713 struct page *__page_cache_alloc(gfp_t gfp) 714 { 715 int n; 716 struct page *page; 717 718 if (cpuset_do_page_mem_spread()) { 719 unsigned int cpuset_mems_cookie; 720 do { 721 cpuset_mems_cookie = read_mems_allowed_begin(); 722 n = cpuset_mem_spread_node(); 723 page = __alloc_pages_node(n, gfp, 0); 724 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie)); 725 726 return page; 727 } 728 return alloc_pages(gfp, 0); 729 } 730 EXPORT_SYMBOL(__page_cache_alloc); 731 #endif 732 733 /* 734 * In order to wait for pages to become available there must be 735 * waitqueues associated with pages. By using a hash table of 736 * waitqueues where the bucket discipline is to maintain all 737 * waiters on the same queue and wake all when any of the pages 738 * become available, and for the woken contexts to check to be 739 * sure the appropriate page became available, this saves space 740 * at a cost of "thundering herd" phenomena during rare hash 741 * collisions. 742 */ 743 #define PAGE_WAIT_TABLE_BITS 8 744 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS) 745 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned; 746 747 static wait_queue_head_t *page_waitqueue(struct page *page) 748 { 749 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)]; 750 } 751 752 void __init pagecache_init(void) 753 { 754 int i; 755 756 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++) 757 init_waitqueue_head(&page_wait_table[i]); 758 759 page_writeback_init(); 760 } 761 762 struct wait_page_key { 763 struct page *page; 764 int bit_nr; 765 int page_match; 766 }; 767 768 struct wait_page_queue { 769 struct page *page; 770 int bit_nr; 771 wait_queue_t wait; 772 }; 773 774 static int wake_page_function(wait_queue_t *wait, unsigned mode, int sync, void *arg) 775 { 776 struct wait_page_key *key = arg; 777 struct wait_page_queue *wait_page 778 = container_of(wait, struct wait_page_queue, wait); 779 780 if (wait_page->page != key->page) 781 return 0; 782 key->page_match = 1; 783 784 if (wait_page->bit_nr != key->bit_nr) 785 return 0; 786 if (test_bit(key->bit_nr, &key->page->flags)) 787 return 0; 788 789 return autoremove_wake_function(wait, mode, sync, key); 790 } 791 792 static void wake_up_page_bit(struct page *page, int bit_nr) 793 { 794 wait_queue_head_t *q = page_waitqueue(page); 795 struct wait_page_key key; 796 unsigned long flags; 797 798 key.page = page; 799 key.bit_nr = bit_nr; 800 key.page_match = 0; 801 802 spin_lock_irqsave(&q->lock, flags); 803 __wake_up_locked_key(q, TASK_NORMAL, &key); 804 /* 805 * It is possible for other pages to have collided on the waitqueue 806 * hash, so in that case check for a page match. That prevents a long- 807 * term waiter 808 * 809 * It is still possible to miss a case here, when we woke page waiters 810 * and removed them from the waitqueue, but there are still other 811 * page waiters. 812 */ 813 if (!waitqueue_active(q) || !key.page_match) { 814 ClearPageWaiters(page); 815 /* 816 * It's possible to miss clearing Waiters here, when we woke 817 * our page waiters, but the hashed waitqueue has waiters for 818 * other pages on it. 819 * 820 * That's okay, it's a rare case. The next waker will clear it. 821 */ 822 } 823 spin_unlock_irqrestore(&q->lock, flags); 824 } 825 826 static void wake_up_page(struct page *page, int bit) 827 { 828 if (!PageWaiters(page)) 829 return; 830 wake_up_page_bit(page, bit); 831 } 832 833 static inline int wait_on_page_bit_common(wait_queue_head_t *q, 834 struct page *page, int bit_nr, int state, bool lock) 835 { 836 struct wait_page_queue wait_page; 837 wait_queue_t *wait = &wait_page.wait; 838 int ret = 0; 839 840 init_wait(wait); 841 wait->func = wake_page_function; 842 wait_page.page = page; 843 wait_page.bit_nr = bit_nr; 844 845 for (;;) { 846 spin_lock_irq(&q->lock); 847 848 if (likely(list_empty(&wait->task_list))) { 849 if (lock) 850 __add_wait_queue_tail_exclusive(q, wait); 851 else 852 __add_wait_queue(q, wait); 853 SetPageWaiters(page); 854 } 855 856 set_current_state(state); 857 858 spin_unlock_irq(&q->lock); 859 860 if (likely(test_bit(bit_nr, &page->flags))) { 861 io_schedule(); 862 if (unlikely(signal_pending_state(state, current))) { 863 ret = -EINTR; 864 break; 865 } 866 } 867 868 if (lock) { 869 if (!test_and_set_bit_lock(bit_nr, &page->flags)) 870 break; 871 } else { 872 if (!test_bit(bit_nr, &page->flags)) 873 break; 874 } 875 } 876 877 finish_wait(q, wait); 878 879 /* 880 * A signal could leave PageWaiters set. Clearing it here if 881 * !waitqueue_active would be possible (by open-coding finish_wait), 882 * but still fail to catch it in the case of wait hash collision. We 883 * already can fail to clear wait hash collision cases, so don't 884 * bother with signals either. 885 */ 886 887 return ret; 888 } 889 890 void wait_on_page_bit(struct page *page, int bit_nr) 891 { 892 wait_queue_head_t *q = page_waitqueue(page); 893 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false); 894 } 895 EXPORT_SYMBOL(wait_on_page_bit); 896 897 int wait_on_page_bit_killable(struct page *page, int bit_nr) 898 { 899 wait_queue_head_t *q = page_waitqueue(page); 900 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false); 901 } 902 903 /** 904 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue 905 * @page: Page defining the wait queue of interest 906 * @waiter: Waiter to add to the queue 907 * 908 * Add an arbitrary @waiter to the wait queue for the nominated @page. 909 */ 910 void add_page_wait_queue(struct page *page, wait_queue_t *waiter) 911 { 912 wait_queue_head_t *q = page_waitqueue(page); 913 unsigned long flags; 914 915 spin_lock_irqsave(&q->lock, flags); 916 __add_wait_queue(q, waiter); 917 SetPageWaiters(page); 918 spin_unlock_irqrestore(&q->lock, flags); 919 } 920 EXPORT_SYMBOL_GPL(add_page_wait_queue); 921 922 #ifndef clear_bit_unlock_is_negative_byte 923 924 /* 925 * PG_waiters is the high bit in the same byte as PG_lock. 926 * 927 * On x86 (and on many other architectures), we can clear PG_lock and 928 * test the sign bit at the same time. But if the architecture does 929 * not support that special operation, we just do this all by hand 930 * instead. 931 * 932 * The read of PG_waiters has to be after (or concurrently with) PG_locked 933 * being cleared, but a memory barrier should be unneccssary since it is 934 * in the same byte as PG_locked. 935 */ 936 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem) 937 { 938 clear_bit_unlock(nr, mem); 939 /* smp_mb__after_atomic(); */ 940 return test_bit(PG_waiters, mem); 941 } 942 943 #endif 944 945 /** 946 * unlock_page - unlock a locked page 947 * @page: the page 948 * 949 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). 950 * Also wakes sleepers in wait_on_page_writeback() because the wakeup 951 * mechanism between PageLocked pages and PageWriteback pages is shared. 952 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. 953 * 954 * Note that this depends on PG_waiters being the sign bit in the byte 955 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to 956 * clear the PG_locked bit and test PG_waiters at the same time fairly 957 * portably (architectures that do LL/SC can test any bit, while x86 can 958 * test the sign bit). 959 */ 960 void unlock_page(struct page *page) 961 { 962 BUILD_BUG_ON(PG_waiters != 7); 963 page = compound_head(page); 964 VM_BUG_ON_PAGE(!PageLocked(page), page); 965 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags)) 966 wake_up_page_bit(page, PG_locked); 967 } 968 EXPORT_SYMBOL(unlock_page); 969 970 /** 971 * end_page_writeback - end writeback against a page 972 * @page: the page 973 */ 974 void end_page_writeback(struct page *page) 975 { 976 /* 977 * TestClearPageReclaim could be used here but it is an atomic 978 * operation and overkill in this particular case. Failing to 979 * shuffle a page marked for immediate reclaim is too mild to 980 * justify taking an atomic operation penalty at the end of 981 * ever page writeback. 982 */ 983 if (PageReclaim(page)) { 984 ClearPageReclaim(page); 985 rotate_reclaimable_page(page); 986 } 987 988 if (!test_clear_page_writeback(page)) 989 BUG(); 990 991 smp_mb__after_atomic(); 992 wake_up_page(page, PG_writeback); 993 } 994 EXPORT_SYMBOL(end_page_writeback); 995 996 /* 997 * After completing I/O on a page, call this routine to update the page 998 * flags appropriately 999 */ 1000 void page_endio(struct page *page, bool is_write, int err) 1001 { 1002 if (!is_write) { 1003 if (!err) { 1004 SetPageUptodate(page); 1005 } else { 1006 ClearPageUptodate(page); 1007 SetPageError(page); 1008 } 1009 unlock_page(page); 1010 } else { 1011 if (err) { 1012 struct address_space *mapping; 1013 1014 SetPageError(page); 1015 mapping = page_mapping(page); 1016 if (mapping) 1017 mapping_set_error(mapping, err); 1018 } 1019 end_page_writeback(page); 1020 } 1021 } 1022 EXPORT_SYMBOL_GPL(page_endio); 1023 1024 /** 1025 * __lock_page - get a lock on the page, assuming we need to sleep to get it 1026 * @__page: the page to lock 1027 */ 1028 void __lock_page(struct page *__page) 1029 { 1030 struct page *page = compound_head(__page); 1031 wait_queue_head_t *q = page_waitqueue(page); 1032 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true); 1033 } 1034 EXPORT_SYMBOL(__lock_page); 1035 1036 int __lock_page_killable(struct page *__page) 1037 { 1038 struct page *page = compound_head(__page); 1039 wait_queue_head_t *q = page_waitqueue(page); 1040 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true); 1041 } 1042 EXPORT_SYMBOL_GPL(__lock_page_killable); 1043 1044 /* 1045 * Return values: 1046 * 1 - page is locked; mmap_sem is still held. 1047 * 0 - page is not locked. 1048 * mmap_sem has been released (up_read()), unless flags had both 1049 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in 1050 * which case mmap_sem is still held. 1051 * 1052 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1 1053 * with the page locked and the mmap_sem unperturbed. 1054 */ 1055 int __lock_page_or_retry(struct page *page, struct mm_struct *mm, 1056 unsigned int flags) 1057 { 1058 if (flags & FAULT_FLAG_ALLOW_RETRY) { 1059 /* 1060 * CAUTION! In this case, mmap_sem is not released 1061 * even though return 0. 1062 */ 1063 if (flags & FAULT_FLAG_RETRY_NOWAIT) 1064 return 0; 1065 1066 up_read(&mm->mmap_sem); 1067 if (flags & FAULT_FLAG_KILLABLE) 1068 wait_on_page_locked_killable(page); 1069 else 1070 wait_on_page_locked(page); 1071 return 0; 1072 } else { 1073 if (flags & FAULT_FLAG_KILLABLE) { 1074 int ret; 1075 1076 ret = __lock_page_killable(page); 1077 if (ret) { 1078 up_read(&mm->mmap_sem); 1079 return 0; 1080 } 1081 } else 1082 __lock_page(page); 1083 return 1; 1084 } 1085 } 1086 1087 /** 1088 * page_cache_next_hole - find the next hole (not-present entry) 1089 * @mapping: mapping 1090 * @index: index 1091 * @max_scan: maximum range to search 1092 * 1093 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the 1094 * lowest indexed hole. 1095 * 1096 * Returns: the index of the hole if found, otherwise returns an index 1097 * outside of the set specified (in which case 'return - index >= 1098 * max_scan' will be true). In rare cases of index wrap-around, 0 will 1099 * be returned. 1100 * 1101 * page_cache_next_hole may be called under rcu_read_lock. However, 1102 * like radix_tree_gang_lookup, this will not atomically search a 1103 * snapshot of the tree at a single point in time. For example, if a 1104 * hole is created at index 5, then subsequently a hole is created at 1105 * index 10, page_cache_next_hole covering both indexes may return 10 1106 * if called under rcu_read_lock. 1107 */ 1108 pgoff_t page_cache_next_hole(struct address_space *mapping, 1109 pgoff_t index, unsigned long max_scan) 1110 { 1111 unsigned long i; 1112 1113 for (i = 0; i < max_scan; i++) { 1114 struct page *page; 1115 1116 page = radix_tree_lookup(&mapping->page_tree, index); 1117 if (!page || radix_tree_exceptional_entry(page)) 1118 break; 1119 index++; 1120 if (index == 0) 1121 break; 1122 } 1123 1124 return index; 1125 } 1126 EXPORT_SYMBOL(page_cache_next_hole); 1127 1128 /** 1129 * page_cache_prev_hole - find the prev hole (not-present entry) 1130 * @mapping: mapping 1131 * @index: index 1132 * @max_scan: maximum range to search 1133 * 1134 * Search backwards in the range [max(index-max_scan+1, 0), index] for 1135 * the first hole. 1136 * 1137 * Returns: the index of the hole if found, otherwise returns an index 1138 * outside of the set specified (in which case 'index - return >= 1139 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX 1140 * will be returned. 1141 * 1142 * page_cache_prev_hole may be called under rcu_read_lock. However, 1143 * like radix_tree_gang_lookup, this will not atomically search a 1144 * snapshot of the tree at a single point in time. For example, if a 1145 * hole is created at index 10, then subsequently a hole is created at 1146 * index 5, page_cache_prev_hole covering both indexes may return 5 if 1147 * called under rcu_read_lock. 1148 */ 1149 pgoff_t page_cache_prev_hole(struct address_space *mapping, 1150 pgoff_t index, unsigned long max_scan) 1151 { 1152 unsigned long i; 1153 1154 for (i = 0; i < max_scan; i++) { 1155 struct page *page; 1156 1157 page = radix_tree_lookup(&mapping->page_tree, index); 1158 if (!page || radix_tree_exceptional_entry(page)) 1159 break; 1160 index--; 1161 if (index == ULONG_MAX) 1162 break; 1163 } 1164 1165 return index; 1166 } 1167 EXPORT_SYMBOL(page_cache_prev_hole); 1168 1169 /** 1170 * find_get_entry - find and get a page cache entry 1171 * @mapping: the address_space to search 1172 * @offset: the page cache index 1173 * 1174 * Looks up the page cache slot at @mapping & @offset. If there is a 1175 * page cache page, it is returned with an increased refcount. 1176 * 1177 * If the slot holds a shadow entry of a previously evicted page, or a 1178 * swap entry from shmem/tmpfs, it is returned. 1179 * 1180 * Otherwise, %NULL is returned. 1181 */ 1182 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset) 1183 { 1184 void **pagep; 1185 struct page *head, *page; 1186 1187 rcu_read_lock(); 1188 repeat: 1189 page = NULL; 1190 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset); 1191 if (pagep) { 1192 page = radix_tree_deref_slot(pagep); 1193 if (unlikely(!page)) 1194 goto out; 1195 if (radix_tree_exception(page)) { 1196 if (radix_tree_deref_retry(page)) 1197 goto repeat; 1198 /* 1199 * A shadow entry of a recently evicted page, 1200 * or a swap entry from shmem/tmpfs. Return 1201 * it without attempting to raise page count. 1202 */ 1203 goto out; 1204 } 1205 1206 head = compound_head(page); 1207 if (!page_cache_get_speculative(head)) 1208 goto repeat; 1209 1210 /* The page was split under us? */ 1211 if (compound_head(page) != head) { 1212 put_page(head); 1213 goto repeat; 1214 } 1215 1216 /* 1217 * Has the page moved? 1218 * This is part of the lockless pagecache protocol. See 1219 * include/linux/pagemap.h for details. 1220 */ 1221 if (unlikely(page != *pagep)) { 1222 put_page(head); 1223 goto repeat; 1224 } 1225 } 1226 out: 1227 rcu_read_unlock(); 1228 1229 return page; 1230 } 1231 EXPORT_SYMBOL(find_get_entry); 1232 1233 /** 1234 * find_lock_entry - locate, pin and lock a page cache entry 1235 * @mapping: the address_space to search 1236 * @offset: the page cache index 1237 * 1238 * Looks up the page cache slot at @mapping & @offset. If there is a 1239 * page cache page, it is returned locked and with an increased 1240 * refcount. 1241 * 1242 * If the slot holds a shadow entry of a previously evicted page, or a 1243 * swap entry from shmem/tmpfs, it is returned. 1244 * 1245 * Otherwise, %NULL is returned. 1246 * 1247 * find_lock_entry() may sleep. 1248 */ 1249 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset) 1250 { 1251 struct page *page; 1252 1253 repeat: 1254 page = find_get_entry(mapping, offset); 1255 if (page && !radix_tree_exception(page)) { 1256 lock_page(page); 1257 /* Has the page been truncated? */ 1258 if (unlikely(page_mapping(page) != mapping)) { 1259 unlock_page(page); 1260 put_page(page); 1261 goto repeat; 1262 } 1263 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page); 1264 } 1265 return page; 1266 } 1267 EXPORT_SYMBOL(find_lock_entry); 1268 1269 /** 1270 * pagecache_get_page - find and get a page reference 1271 * @mapping: the address_space to search 1272 * @offset: the page index 1273 * @fgp_flags: PCG flags 1274 * @gfp_mask: gfp mask to use for the page cache data page allocation 1275 * 1276 * Looks up the page cache slot at @mapping & @offset. 1277 * 1278 * PCG flags modify how the page is returned. 1279 * 1280 * FGP_ACCESSED: the page will be marked accessed 1281 * FGP_LOCK: Page is return locked 1282 * FGP_CREAT: If page is not present then a new page is allocated using 1283 * @gfp_mask and added to the page cache and the VM's LRU 1284 * list. The page is returned locked and with an increased 1285 * refcount. Otherwise, %NULL is returned. 1286 * 1287 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even 1288 * if the GFP flags specified for FGP_CREAT are atomic. 1289 * 1290 * If there is a page cache page, it is returned with an increased refcount. 1291 */ 1292 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset, 1293 int fgp_flags, gfp_t gfp_mask) 1294 { 1295 struct page *page; 1296 1297 repeat: 1298 page = find_get_entry(mapping, offset); 1299 if (radix_tree_exceptional_entry(page)) 1300 page = NULL; 1301 if (!page) 1302 goto no_page; 1303 1304 if (fgp_flags & FGP_LOCK) { 1305 if (fgp_flags & FGP_NOWAIT) { 1306 if (!trylock_page(page)) { 1307 put_page(page); 1308 return NULL; 1309 } 1310 } else { 1311 lock_page(page); 1312 } 1313 1314 /* Has the page been truncated? */ 1315 if (unlikely(page->mapping != mapping)) { 1316 unlock_page(page); 1317 put_page(page); 1318 goto repeat; 1319 } 1320 VM_BUG_ON_PAGE(page->index != offset, page); 1321 } 1322 1323 if (page && (fgp_flags & FGP_ACCESSED)) 1324 mark_page_accessed(page); 1325 1326 no_page: 1327 if (!page && (fgp_flags & FGP_CREAT)) { 1328 int err; 1329 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping)) 1330 gfp_mask |= __GFP_WRITE; 1331 if (fgp_flags & FGP_NOFS) 1332 gfp_mask &= ~__GFP_FS; 1333 1334 page = __page_cache_alloc(gfp_mask); 1335 if (!page) 1336 return NULL; 1337 1338 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK))) 1339 fgp_flags |= FGP_LOCK; 1340 1341 /* Init accessed so avoid atomic mark_page_accessed later */ 1342 if (fgp_flags & FGP_ACCESSED) 1343 __SetPageReferenced(page); 1344 1345 err = add_to_page_cache_lru(page, mapping, offset, 1346 gfp_mask & GFP_RECLAIM_MASK); 1347 if (unlikely(err)) { 1348 put_page(page); 1349 page = NULL; 1350 if (err == -EEXIST) 1351 goto repeat; 1352 } 1353 } 1354 1355 return page; 1356 } 1357 EXPORT_SYMBOL(pagecache_get_page); 1358 1359 /** 1360 * find_get_entries - gang pagecache lookup 1361 * @mapping: The address_space to search 1362 * @start: The starting page cache index 1363 * @nr_entries: The maximum number of entries 1364 * @entries: Where the resulting entries are placed 1365 * @indices: The cache indices corresponding to the entries in @entries 1366 * 1367 * find_get_entries() will search for and return a group of up to 1368 * @nr_entries entries in the mapping. The entries are placed at 1369 * @entries. find_get_entries() takes a reference against any actual 1370 * pages it returns. 1371 * 1372 * The search returns a group of mapping-contiguous page cache entries 1373 * with ascending indexes. There may be holes in the indices due to 1374 * not-present pages. 1375 * 1376 * Any shadow entries of evicted pages, or swap entries from 1377 * shmem/tmpfs, are included in the returned array. 1378 * 1379 * find_get_entries() returns the number of pages and shadow entries 1380 * which were found. 1381 */ 1382 unsigned find_get_entries(struct address_space *mapping, 1383 pgoff_t start, unsigned int nr_entries, 1384 struct page **entries, pgoff_t *indices) 1385 { 1386 void **slot; 1387 unsigned int ret = 0; 1388 struct radix_tree_iter iter; 1389 1390 if (!nr_entries) 1391 return 0; 1392 1393 rcu_read_lock(); 1394 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { 1395 struct page *head, *page; 1396 repeat: 1397 page = radix_tree_deref_slot(slot); 1398 if (unlikely(!page)) 1399 continue; 1400 if (radix_tree_exception(page)) { 1401 if (radix_tree_deref_retry(page)) { 1402 slot = radix_tree_iter_retry(&iter); 1403 continue; 1404 } 1405 /* 1406 * A shadow entry of a recently evicted page, a swap 1407 * entry from shmem/tmpfs or a DAX entry. Return it 1408 * without attempting to raise page count. 1409 */ 1410 goto export; 1411 } 1412 1413 head = compound_head(page); 1414 if (!page_cache_get_speculative(head)) 1415 goto repeat; 1416 1417 /* The page was split under us? */ 1418 if (compound_head(page) != head) { 1419 put_page(head); 1420 goto repeat; 1421 } 1422 1423 /* Has the page moved? */ 1424 if (unlikely(page != *slot)) { 1425 put_page(head); 1426 goto repeat; 1427 } 1428 export: 1429 indices[ret] = iter.index; 1430 entries[ret] = page; 1431 if (++ret == nr_entries) 1432 break; 1433 } 1434 rcu_read_unlock(); 1435 return ret; 1436 } 1437 1438 /** 1439 * find_get_pages - gang pagecache lookup 1440 * @mapping: The address_space to search 1441 * @start: The starting page index 1442 * @nr_pages: The maximum number of pages 1443 * @pages: Where the resulting pages are placed 1444 * 1445 * find_get_pages() will search for and return a group of up to 1446 * @nr_pages pages in the mapping. The pages are placed at @pages. 1447 * find_get_pages() takes a reference against the returned pages. 1448 * 1449 * The search returns a group of mapping-contiguous pages with ascending 1450 * indexes. There may be holes in the indices due to not-present pages. 1451 * 1452 * find_get_pages() returns the number of pages which were found. 1453 */ 1454 unsigned find_get_pages(struct address_space *mapping, pgoff_t start, 1455 unsigned int nr_pages, struct page **pages) 1456 { 1457 struct radix_tree_iter iter; 1458 void **slot; 1459 unsigned ret = 0; 1460 1461 if (unlikely(!nr_pages)) 1462 return 0; 1463 1464 rcu_read_lock(); 1465 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { 1466 struct page *head, *page; 1467 repeat: 1468 page = radix_tree_deref_slot(slot); 1469 if (unlikely(!page)) 1470 continue; 1471 1472 if (radix_tree_exception(page)) { 1473 if (radix_tree_deref_retry(page)) { 1474 slot = radix_tree_iter_retry(&iter); 1475 continue; 1476 } 1477 /* 1478 * A shadow entry of a recently evicted page, 1479 * or a swap entry from shmem/tmpfs. Skip 1480 * over it. 1481 */ 1482 continue; 1483 } 1484 1485 head = compound_head(page); 1486 if (!page_cache_get_speculative(head)) 1487 goto repeat; 1488 1489 /* The page was split under us? */ 1490 if (compound_head(page) != head) { 1491 put_page(head); 1492 goto repeat; 1493 } 1494 1495 /* Has the page moved? */ 1496 if (unlikely(page != *slot)) { 1497 put_page(head); 1498 goto repeat; 1499 } 1500 1501 pages[ret] = page; 1502 if (++ret == nr_pages) 1503 break; 1504 } 1505 1506 rcu_read_unlock(); 1507 return ret; 1508 } 1509 1510 /** 1511 * find_get_pages_contig - gang contiguous pagecache lookup 1512 * @mapping: The address_space to search 1513 * @index: The starting page index 1514 * @nr_pages: The maximum number of pages 1515 * @pages: Where the resulting pages are placed 1516 * 1517 * find_get_pages_contig() works exactly like find_get_pages(), except 1518 * that the returned number of pages are guaranteed to be contiguous. 1519 * 1520 * find_get_pages_contig() returns the number of pages which were found. 1521 */ 1522 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, 1523 unsigned int nr_pages, struct page **pages) 1524 { 1525 struct radix_tree_iter iter; 1526 void **slot; 1527 unsigned int ret = 0; 1528 1529 if (unlikely(!nr_pages)) 1530 return 0; 1531 1532 rcu_read_lock(); 1533 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) { 1534 struct page *head, *page; 1535 repeat: 1536 page = radix_tree_deref_slot(slot); 1537 /* The hole, there no reason to continue */ 1538 if (unlikely(!page)) 1539 break; 1540 1541 if (radix_tree_exception(page)) { 1542 if (radix_tree_deref_retry(page)) { 1543 slot = radix_tree_iter_retry(&iter); 1544 continue; 1545 } 1546 /* 1547 * A shadow entry of a recently evicted page, 1548 * or a swap entry from shmem/tmpfs. Stop 1549 * looking for contiguous pages. 1550 */ 1551 break; 1552 } 1553 1554 head = compound_head(page); 1555 if (!page_cache_get_speculative(head)) 1556 goto repeat; 1557 1558 /* The page was split under us? */ 1559 if (compound_head(page) != head) { 1560 put_page(head); 1561 goto repeat; 1562 } 1563 1564 /* Has the page moved? */ 1565 if (unlikely(page != *slot)) { 1566 put_page(head); 1567 goto repeat; 1568 } 1569 1570 /* 1571 * must check mapping and index after taking the ref. 1572 * otherwise we can get both false positives and false 1573 * negatives, which is just confusing to the caller. 1574 */ 1575 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) { 1576 put_page(page); 1577 break; 1578 } 1579 1580 pages[ret] = page; 1581 if (++ret == nr_pages) 1582 break; 1583 } 1584 rcu_read_unlock(); 1585 return ret; 1586 } 1587 EXPORT_SYMBOL(find_get_pages_contig); 1588 1589 /** 1590 * find_get_pages_tag - find and return pages that match @tag 1591 * @mapping: the address_space to search 1592 * @index: the starting page index 1593 * @tag: the tag index 1594 * @nr_pages: the maximum number of pages 1595 * @pages: where the resulting pages are placed 1596 * 1597 * Like find_get_pages, except we only return pages which are tagged with 1598 * @tag. We update @index to index the next page for the traversal. 1599 */ 1600 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, 1601 int tag, unsigned int nr_pages, struct page **pages) 1602 { 1603 struct radix_tree_iter iter; 1604 void **slot; 1605 unsigned ret = 0; 1606 1607 if (unlikely(!nr_pages)) 1608 return 0; 1609 1610 rcu_read_lock(); 1611 radix_tree_for_each_tagged(slot, &mapping->page_tree, 1612 &iter, *index, tag) { 1613 struct page *head, *page; 1614 repeat: 1615 page = radix_tree_deref_slot(slot); 1616 if (unlikely(!page)) 1617 continue; 1618 1619 if (radix_tree_exception(page)) { 1620 if (radix_tree_deref_retry(page)) { 1621 slot = radix_tree_iter_retry(&iter); 1622 continue; 1623 } 1624 /* 1625 * A shadow entry of a recently evicted page. 1626 * 1627 * Those entries should never be tagged, but 1628 * this tree walk is lockless and the tags are 1629 * looked up in bulk, one radix tree node at a 1630 * time, so there is a sizable window for page 1631 * reclaim to evict a page we saw tagged. 1632 * 1633 * Skip over it. 1634 */ 1635 continue; 1636 } 1637 1638 head = compound_head(page); 1639 if (!page_cache_get_speculative(head)) 1640 goto repeat; 1641 1642 /* The page was split under us? */ 1643 if (compound_head(page) != head) { 1644 put_page(head); 1645 goto repeat; 1646 } 1647 1648 /* Has the page moved? */ 1649 if (unlikely(page != *slot)) { 1650 put_page(head); 1651 goto repeat; 1652 } 1653 1654 pages[ret] = page; 1655 if (++ret == nr_pages) 1656 break; 1657 } 1658 1659 rcu_read_unlock(); 1660 1661 if (ret) 1662 *index = pages[ret - 1]->index + 1; 1663 1664 return ret; 1665 } 1666 EXPORT_SYMBOL(find_get_pages_tag); 1667 1668 /** 1669 * find_get_entries_tag - find and return entries that match @tag 1670 * @mapping: the address_space to search 1671 * @start: the starting page cache index 1672 * @tag: the tag index 1673 * @nr_entries: the maximum number of entries 1674 * @entries: where the resulting entries are placed 1675 * @indices: the cache indices corresponding to the entries in @entries 1676 * 1677 * Like find_get_entries, except we only return entries which are tagged with 1678 * @tag. 1679 */ 1680 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start, 1681 int tag, unsigned int nr_entries, 1682 struct page **entries, pgoff_t *indices) 1683 { 1684 void **slot; 1685 unsigned int ret = 0; 1686 struct radix_tree_iter iter; 1687 1688 if (!nr_entries) 1689 return 0; 1690 1691 rcu_read_lock(); 1692 radix_tree_for_each_tagged(slot, &mapping->page_tree, 1693 &iter, start, tag) { 1694 struct page *head, *page; 1695 repeat: 1696 page = radix_tree_deref_slot(slot); 1697 if (unlikely(!page)) 1698 continue; 1699 if (radix_tree_exception(page)) { 1700 if (radix_tree_deref_retry(page)) { 1701 slot = radix_tree_iter_retry(&iter); 1702 continue; 1703 } 1704 1705 /* 1706 * A shadow entry of a recently evicted page, a swap 1707 * entry from shmem/tmpfs or a DAX entry. Return it 1708 * without attempting to raise page count. 1709 */ 1710 goto export; 1711 } 1712 1713 head = compound_head(page); 1714 if (!page_cache_get_speculative(head)) 1715 goto repeat; 1716 1717 /* The page was split under us? */ 1718 if (compound_head(page) != head) { 1719 put_page(head); 1720 goto repeat; 1721 } 1722 1723 /* Has the page moved? */ 1724 if (unlikely(page != *slot)) { 1725 put_page(head); 1726 goto repeat; 1727 } 1728 export: 1729 indices[ret] = iter.index; 1730 entries[ret] = page; 1731 if (++ret == nr_entries) 1732 break; 1733 } 1734 rcu_read_unlock(); 1735 return ret; 1736 } 1737 EXPORT_SYMBOL(find_get_entries_tag); 1738 1739 /* 1740 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 1741 * a _large_ part of the i/o request. Imagine the worst scenario: 1742 * 1743 * ---R__________________________________________B__________ 1744 * ^ reading here ^ bad block(assume 4k) 1745 * 1746 * read(R) => miss => readahead(R...B) => media error => frustrating retries 1747 * => failing the whole request => read(R) => read(R+1) => 1748 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 1749 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 1750 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 1751 * 1752 * It is going insane. Fix it by quickly scaling down the readahead size. 1753 */ 1754 static void shrink_readahead_size_eio(struct file *filp, 1755 struct file_ra_state *ra) 1756 { 1757 ra->ra_pages /= 4; 1758 } 1759 1760 /** 1761 * do_generic_file_read - generic file read routine 1762 * @filp: the file to read 1763 * @ppos: current file position 1764 * @iter: data destination 1765 * @written: already copied 1766 * 1767 * This is a generic file read routine, and uses the 1768 * mapping->a_ops->readpage() function for the actual low-level stuff. 1769 * 1770 * This is really ugly. But the goto's actually try to clarify some 1771 * of the logic when it comes to error handling etc. 1772 */ 1773 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos, 1774 struct iov_iter *iter, ssize_t written) 1775 { 1776 struct address_space *mapping = filp->f_mapping; 1777 struct inode *inode = mapping->host; 1778 struct file_ra_state *ra = &filp->f_ra; 1779 pgoff_t index; 1780 pgoff_t last_index; 1781 pgoff_t prev_index; 1782 unsigned long offset; /* offset into pagecache page */ 1783 unsigned int prev_offset; 1784 int error = 0; 1785 1786 if (unlikely(*ppos >= inode->i_sb->s_maxbytes)) 1787 return 0; 1788 iov_iter_truncate(iter, inode->i_sb->s_maxbytes); 1789 1790 index = *ppos >> PAGE_SHIFT; 1791 prev_index = ra->prev_pos >> PAGE_SHIFT; 1792 prev_offset = ra->prev_pos & (PAGE_SIZE-1); 1793 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT; 1794 offset = *ppos & ~PAGE_MASK; 1795 1796 for (;;) { 1797 struct page *page; 1798 pgoff_t end_index; 1799 loff_t isize; 1800 unsigned long nr, ret; 1801 1802 cond_resched(); 1803 find_page: 1804 if (fatal_signal_pending(current)) { 1805 error = -EINTR; 1806 goto out; 1807 } 1808 1809 page = find_get_page(mapping, index); 1810 if (!page) { 1811 page_cache_sync_readahead(mapping, 1812 ra, filp, 1813 index, last_index - index); 1814 page = find_get_page(mapping, index); 1815 if (unlikely(page == NULL)) 1816 goto no_cached_page; 1817 } 1818 if (PageReadahead(page)) { 1819 page_cache_async_readahead(mapping, 1820 ra, filp, page, 1821 index, last_index - index); 1822 } 1823 if (!PageUptodate(page)) { 1824 /* 1825 * See comment in do_read_cache_page on why 1826 * wait_on_page_locked is used to avoid unnecessarily 1827 * serialisations and why it's safe. 1828 */ 1829 error = wait_on_page_locked_killable(page); 1830 if (unlikely(error)) 1831 goto readpage_error; 1832 if (PageUptodate(page)) 1833 goto page_ok; 1834 1835 if (inode->i_blkbits == PAGE_SHIFT || 1836 !mapping->a_ops->is_partially_uptodate) 1837 goto page_not_up_to_date; 1838 /* pipes can't handle partially uptodate pages */ 1839 if (unlikely(iter->type & ITER_PIPE)) 1840 goto page_not_up_to_date; 1841 if (!trylock_page(page)) 1842 goto page_not_up_to_date; 1843 /* Did it get truncated before we got the lock? */ 1844 if (!page->mapping) 1845 goto page_not_up_to_date_locked; 1846 if (!mapping->a_ops->is_partially_uptodate(page, 1847 offset, iter->count)) 1848 goto page_not_up_to_date_locked; 1849 unlock_page(page); 1850 } 1851 page_ok: 1852 /* 1853 * i_size must be checked after we know the page is Uptodate. 1854 * 1855 * Checking i_size after the check allows us to calculate 1856 * the correct value for "nr", which means the zero-filled 1857 * part of the page is not copied back to userspace (unless 1858 * another truncate extends the file - this is desired though). 1859 */ 1860 1861 isize = i_size_read(inode); 1862 end_index = (isize - 1) >> PAGE_SHIFT; 1863 if (unlikely(!isize || index > end_index)) { 1864 put_page(page); 1865 goto out; 1866 } 1867 1868 /* nr is the maximum number of bytes to copy from this page */ 1869 nr = PAGE_SIZE; 1870 if (index == end_index) { 1871 nr = ((isize - 1) & ~PAGE_MASK) + 1; 1872 if (nr <= offset) { 1873 put_page(page); 1874 goto out; 1875 } 1876 } 1877 nr = nr - offset; 1878 1879 /* If users can be writing to this page using arbitrary 1880 * virtual addresses, take care about potential aliasing 1881 * before reading the page on the kernel side. 1882 */ 1883 if (mapping_writably_mapped(mapping)) 1884 flush_dcache_page(page); 1885 1886 /* 1887 * When a sequential read accesses a page several times, 1888 * only mark it as accessed the first time. 1889 */ 1890 if (prev_index != index || offset != prev_offset) 1891 mark_page_accessed(page); 1892 prev_index = index; 1893 1894 /* 1895 * Ok, we have the page, and it's up-to-date, so 1896 * now we can copy it to user space... 1897 */ 1898 1899 ret = copy_page_to_iter(page, offset, nr, iter); 1900 offset += ret; 1901 index += offset >> PAGE_SHIFT; 1902 offset &= ~PAGE_MASK; 1903 prev_offset = offset; 1904 1905 put_page(page); 1906 written += ret; 1907 if (!iov_iter_count(iter)) 1908 goto out; 1909 if (ret < nr) { 1910 error = -EFAULT; 1911 goto out; 1912 } 1913 continue; 1914 1915 page_not_up_to_date: 1916 /* Get exclusive access to the page ... */ 1917 error = lock_page_killable(page); 1918 if (unlikely(error)) 1919 goto readpage_error; 1920 1921 page_not_up_to_date_locked: 1922 /* Did it get truncated before we got the lock? */ 1923 if (!page->mapping) { 1924 unlock_page(page); 1925 put_page(page); 1926 continue; 1927 } 1928 1929 /* Did somebody else fill it already? */ 1930 if (PageUptodate(page)) { 1931 unlock_page(page); 1932 goto page_ok; 1933 } 1934 1935 readpage: 1936 /* 1937 * A previous I/O error may have been due to temporary 1938 * failures, eg. multipath errors. 1939 * PG_error will be set again if readpage fails. 1940 */ 1941 ClearPageError(page); 1942 /* Start the actual read. The read will unlock the page. */ 1943 error = mapping->a_ops->readpage(filp, page); 1944 1945 if (unlikely(error)) { 1946 if (error == AOP_TRUNCATED_PAGE) { 1947 put_page(page); 1948 error = 0; 1949 goto find_page; 1950 } 1951 goto readpage_error; 1952 } 1953 1954 if (!PageUptodate(page)) { 1955 error = lock_page_killable(page); 1956 if (unlikely(error)) 1957 goto readpage_error; 1958 if (!PageUptodate(page)) { 1959 if (page->mapping == NULL) { 1960 /* 1961 * invalidate_mapping_pages got it 1962 */ 1963 unlock_page(page); 1964 put_page(page); 1965 goto find_page; 1966 } 1967 unlock_page(page); 1968 shrink_readahead_size_eio(filp, ra); 1969 error = -EIO; 1970 goto readpage_error; 1971 } 1972 unlock_page(page); 1973 } 1974 1975 goto page_ok; 1976 1977 readpage_error: 1978 /* UHHUH! A synchronous read error occurred. Report it */ 1979 put_page(page); 1980 goto out; 1981 1982 no_cached_page: 1983 /* 1984 * Ok, it wasn't cached, so we need to create a new 1985 * page.. 1986 */ 1987 page = page_cache_alloc_cold(mapping); 1988 if (!page) { 1989 error = -ENOMEM; 1990 goto out; 1991 } 1992 error = add_to_page_cache_lru(page, mapping, index, 1993 mapping_gfp_constraint(mapping, GFP_KERNEL)); 1994 if (error) { 1995 put_page(page); 1996 if (error == -EEXIST) { 1997 error = 0; 1998 goto find_page; 1999 } 2000 goto out; 2001 } 2002 goto readpage; 2003 } 2004 2005 out: 2006 ra->prev_pos = prev_index; 2007 ra->prev_pos <<= PAGE_SHIFT; 2008 ra->prev_pos |= prev_offset; 2009 2010 *ppos = ((loff_t)index << PAGE_SHIFT) + offset; 2011 file_accessed(filp); 2012 return written ? written : error; 2013 } 2014 2015 /** 2016 * generic_file_read_iter - generic filesystem read routine 2017 * @iocb: kernel I/O control block 2018 * @iter: destination for the data read 2019 * 2020 * This is the "read_iter()" routine for all filesystems 2021 * that can use the page cache directly. 2022 */ 2023 ssize_t 2024 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 2025 { 2026 struct file *file = iocb->ki_filp; 2027 ssize_t retval = 0; 2028 size_t count = iov_iter_count(iter); 2029 2030 if (!count) 2031 goto out; /* skip atime */ 2032 2033 if (iocb->ki_flags & IOCB_DIRECT) { 2034 struct address_space *mapping = file->f_mapping; 2035 struct inode *inode = mapping->host; 2036 struct iov_iter data = *iter; 2037 loff_t size; 2038 2039 size = i_size_read(inode); 2040 retval = filemap_write_and_wait_range(mapping, iocb->ki_pos, 2041 iocb->ki_pos + count - 1); 2042 if (retval < 0) 2043 goto out; 2044 2045 file_accessed(file); 2046 2047 retval = mapping->a_ops->direct_IO(iocb, &data); 2048 if (retval >= 0) { 2049 iocb->ki_pos += retval; 2050 iov_iter_advance(iter, retval); 2051 } 2052 2053 /* 2054 * Btrfs can have a short DIO read if we encounter 2055 * compressed extents, so if there was an error, or if 2056 * we've already read everything we wanted to, or if 2057 * there was a short read because we hit EOF, go ahead 2058 * and return. Otherwise fallthrough to buffered io for 2059 * the rest of the read. Buffered reads will not work for 2060 * DAX files, so don't bother trying. 2061 */ 2062 if (retval < 0 || !iov_iter_count(iter) || iocb->ki_pos >= size || 2063 IS_DAX(inode)) 2064 goto out; 2065 } 2066 2067 retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval); 2068 out: 2069 return retval; 2070 } 2071 EXPORT_SYMBOL(generic_file_read_iter); 2072 2073 #ifdef CONFIG_MMU 2074 /** 2075 * page_cache_read - adds requested page to the page cache if not already there 2076 * @file: file to read 2077 * @offset: page index 2078 * @gfp_mask: memory allocation flags 2079 * 2080 * This adds the requested page to the page cache if it isn't already there, 2081 * and schedules an I/O to read in its contents from disk. 2082 */ 2083 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask) 2084 { 2085 struct address_space *mapping = file->f_mapping; 2086 struct page *page; 2087 int ret; 2088 2089 do { 2090 page = __page_cache_alloc(gfp_mask|__GFP_COLD); 2091 if (!page) 2092 return -ENOMEM; 2093 2094 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL); 2095 if (ret == 0) 2096 ret = mapping->a_ops->readpage(file, page); 2097 else if (ret == -EEXIST) 2098 ret = 0; /* losing race to add is OK */ 2099 2100 put_page(page); 2101 2102 } while (ret == AOP_TRUNCATED_PAGE); 2103 2104 return ret; 2105 } 2106 2107 #define MMAP_LOTSAMISS (100) 2108 2109 /* 2110 * Synchronous readahead happens when we don't even find 2111 * a page in the page cache at all. 2112 */ 2113 static void do_sync_mmap_readahead(struct vm_area_struct *vma, 2114 struct file_ra_state *ra, 2115 struct file *file, 2116 pgoff_t offset) 2117 { 2118 struct address_space *mapping = file->f_mapping; 2119 2120 /* If we don't want any read-ahead, don't bother */ 2121 if (vma->vm_flags & VM_RAND_READ) 2122 return; 2123 if (!ra->ra_pages) 2124 return; 2125 2126 if (vma->vm_flags & VM_SEQ_READ) { 2127 page_cache_sync_readahead(mapping, ra, file, offset, 2128 ra->ra_pages); 2129 return; 2130 } 2131 2132 /* Avoid banging the cache line if not needed */ 2133 if (ra->mmap_miss < MMAP_LOTSAMISS * 10) 2134 ra->mmap_miss++; 2135 2136 /* 2137 * Do we miss much more than hit in this file? If so, 2138 * stop bothering with read-ahead. It will only hurt. 2139 */ 2140 if (ra->mmap_miss > MMAP_LOTSAMISS) 2141 return; 2142 2143 /* 2144 * mmap read-around 2145 */ 2146 ra->start = max_t(long, 0, offset - ra->ra_pages / 2); 2147 ra->size = ra->ra_pages; 2148 ra->async_size = ra->ra_pages / 4; 2149 ra_submit(ra, mapping, file); 2150 } 2151 2152 /* 2153 * Asynchronous readahead happens when we find the page and PG_readahead, 2154 * so we want to possibly extend the readahead further.. 2155 */ 2156 static void do_async_mmap_readahead(struct vm_area_struct *vma, 2157 struct file_ra_state *ra, 2158 struct file *file, 2159 struct page *page, 2160 pgoff_t offset) 2161 { 2162 struct address_space *mapping = file->f_mapping; 2163 2164 /* If we don't want any read-ahead, don't bother */ 2165 if (vma->vm_flags & VM_RAND_READ) 2166 return; 2167 if (ra->mmap_miss > 0) 2168 ra->mmap_miss--; 2169 if (PageReadahead(page)) 2170 page_cache_async_readahead(mapping, ra, file, 2171 page, offset, ra->ra_pages); 2172 } 2173 2174 /** 2175 * filemap_fault - read in file data for page fault handling 2176 * @vmf: struct vm_fault containing details of the fault 2177 * 2178 * filemap_fault() is invoked via the vma operations vector for a 2179 * mapped memory region to read in file data during a page fault. 2180 * 2181 * The goto's are kind of ugly, but this streamlines the normal case of having 2182 * it in the page cache, and handles the special cases reasonably without 2183 * having a lot of duplicated code. 2184 * 2185 * vma->vm_mm->mmap_sem must be held on entry. 2186 * 2187 * If our return value has VM_FAULT_RETRY set, it's because 2188 * lock_page_or_retry() returned 0. 2189 * The mmap_sem has usually been released in this case. 2190 * See __lock_page_or_retry() for the exception. 2191 * 2192 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem 2193 * has not been released. 2194 * 2195 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. 2196 */ 2197 int filemap_fault(struct vm_fault *vmf) 2198 { 2199 int error; 2200 struct file *file = vmf->vma->vm_file; 2201 struct address_space *mapping = file->f_mapping; 2202 struct file_ra_state *ra = &file->f_ra; 2203 struct inode *inode = mapping->host; 2204 pgoff_t offset = vmf->pgoff; 2205 struct page *page; 2206 loff_t size; 2207 int ret = 0; 2208 2209 size = round_up(i_size_read(inode), PAGE_SIZE); 2210 if (offset >= size >> PAGE_SHIFT) 2211 return VM_FAULT_SIGBUS; 2212 2213 /* 2214 * Do we have something in the page cache already? 2215 */ 2216 page = find_get_page(mapping, offset); 2217 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) { 2218 /* 2219 * We found the page, so try async readahead before 2220 * waiting for the lock. 2221 */ 2222 do_async_mmap_readahead(vmf->vma, ra, file, page, offset); 2223 } else if (!page) { 2224 /* No page in the page cache at all */ 2225 do_sync_mmap_readahead(vmf->vma, ra, file, offset); 2226 count_vm_event(PGMAJFAULT); 2227 mem_cgroup_count_vm_event(vmf->vma->vm_mm, PGMAJFAULT); 2228 ret = VM_FAULT_MAJOR; 2229 retry_find: 2230 page = find_get_page(mapping, offset); 2231 if (!page) 2232 goto no_cached_page; 2233 } 2234 2235 if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) { 2236 put_page(page); 2237 return ret | VM_FAULT_RETRY; 2238 } 2239 2240 /* Did it get truncated? */ 2241 if (unlikely(page->mapping != mapping)) { 2242 unlock_page(page); 2243 put_page(page); 2244 goto retry_find; 2245 } 2246 VM_BUG_ON_PAGE(page->index != offset, page); 2247 2248 /* 2249 * We have a locked page in the page cache, now we need to check 2250 * that it's up-to-date. If not, it is going to be due to an error. 2251 */ 2252 if (unlikely(!PageUptodate(page))) 2253 goto page_not_uptodate; 2254 2255 /* 2256 * Found the page and have a reference on it. 2257 * We must recheck i_size under page lock. 2258 */ 2259 size = round_up(i_size_read(inode), PAGE_SIZE); 2260 if (unlikely(offset >= size >> PAGE_SHIFT)) { 2261 unlock_page(page); 2262 put_page(page); 2263 return VM_FAULT_SIGBUS; 2264 } 2265 2266 vmf->page = page; 2267 return ret | VM_FAULT_LOCKED; 2268 2269 no_cached_page: 2270 /* 2271 * We're only likely to ever get here if MADV_RANDOM is in 2272 * effect. 2273 */ 2274 error = page_cache_read(file, offset, vmf->gfp_mask); 2275 2276 /* 2277 * The page we want has now been added to the page cache. 2278 * In the unlikely event that someone removed it in the 2279 * meantime, we'll just come back here and read it again. 2280 */ 2281 if (error >= 0) 2282 goto retry_find; 2283 2284 /* 2285 * An error return from page_cache_read can result if the 2286 * system is low on memory, or a problem occurs while trying 2287 * to schedule I/O. 2288 */ 2289 if (error == -ENOMEM) 2290 return VM_FAULT_OOM; 2291 return VM_FAULT_SIGBUS; 2292 2293 page_not_uptodate: 2294 /* 2295 * Umm, take care of errors if the page isn't up-to-date. 2296 * Try to re-read it _once_. We do this synchronously, 2297 * because there really aren't any performance issues here 2298 * and we need to check for errors. 2299 */ 2300 ClearPageError(page); 2301 error = mapping->a_ops->readpage(file, page); 2302 if (!error) { 2303 wait_on_page_locked(page); 2304 if (!PageUptodate(page)) 2305 error = -EIO; 2306 } 2307 put_page(page); 2308 2309 if (!error || error == AOP_TRUNCATED_PAGE) 2310 goto retry_find; 2311 2312 /* Things didn't work out. Return zero to tell the mm layer so. */ 2313 shrink_readahead_size_eio(file, ra); 2314 return VM_FAULT_SIGBUS; 2315 } 2316 EXPORT_SYMBOL(filemap_fault); 2317 2318 void filemap_map_pages(struct vm_fault *vmf, 2319 pgoff_t start_pgoff, pgoff_t end_pgoff) 2320 { 2321 struct radix_tree_iter iter; 2322 void **slot; 2323 struct file *file = vmf->vma->vm_file; 2324 struct address_space *mapping = file->f_mapping; 2325 pgoff_t last_pgoff = start_pgoff; 2326 loff_t size; 2327 struct page *head, *page; 2328 2329 rcu_read_lock(); 2330 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, 2331 start_pgoff) { 2332 if (iter.index > end_pgoff) 2333 break; 2334 repeat: 2335 page = radix_tree_deref_slot(slot); 2336 if (unlikely(!page)) 2337 goto next; 2338 if (radix_tree_exception(page)) { 2339 if (radix_tree_deref_retry(page)) { 2340 slot = radix_tree_iter_retry(&iter); 2341 continue; 2342 } 2343 goto next; 2344 } 2345 2346 head = compound_head(page); 2347 if (!page_cache_get_speculative(head)) 2348 goto repeat; 2349 2350 /* The page was split under us? */ 2351 if (compound_head(page) != head) { 2352 put_page(head); 2353 goto repeat; 2354 } 2355 2356 /* Has the page moved? */ 2357 if (unlikely(page != *slot)) { 2358 put_page(head); 2359 goto repeat; 2360 } 2361 2362 if (!PageUptodate(page) || 2363 PageReadahead(page) || 2364 PageHWPoison(page)) 2365 goto skip; 2366 if (!trylock_page(page)) 2367 goto skip; 2368 2369 if (page->mapping != mapping || !PageUptodate(page)) 2370 goto unlock; 2371 2372 size = round_up(i_size_read(mapping->host), PAGE_SIZE); 2373 if (page->index >= size >> PAGE_SHIFT) 2374 goto unlock; 2375 2376 if (file->f_ra.mmap_miss > 0) 2377 file->f_ra.mmap_miss--; 2378 2379 vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT; 2380 if (vmf->pte) 2381 vmf->pte += iter.index - last_pgoff; 2382 last_pgoff = iter.index; 2383 if (alloc_set_pte(vmf, NULL, page)) 2384 goto unlock; 2385 unlock_page(page); 2386 goto next; 2387 unlock: 2388 unlock_page(page); 2389 skip: 2390 put_page(page); 2391 next: 2392 /* Huge page is mapped? No need to proceed. */ 2393 if (pmd_trans_huge(*vmf->pmd)) 2394 break; 2395 if (iter.index == end_pgoff) 2396 break; 2397 } 2398 rcu_read_unlock(); 2399 } 2400 EXPORT_SYMBOL(filemap_map_pages); 2401 2402 int filemap_page_mkwrite(struct vm_fault *vmf) 2403 { 2404 struct page *page = vmf->page; 2405 struct inode *inode = file_inode(vmf->vma->vm_file); 2406 int ret = VM_FAULT_LOCKED; 2407 2408 sb_start_pagefault(inode->i_sb); 2409 file_update_time(vmf->vma->vm_file); 2410 lock_page(page); 2411 if (page->mapping != inode->i_mapping) { 2412 unlock_page(page); 2413 ret = VM_FAULT_NOPAGE; 2414 goto out; 2415 } 2416 /* 2417 * We mark the page dirty already here so that when freeze is in 2418 * progress, we are guaranteed that writeback during freezing will 2419 * see the dirty page and writeprotect it again. 2420 */ 2421 set_page_dirty(page); 2422 wait_for_stable_page(page); 2423 out: 2424 sb_end_pagefault(inode->i_sb); 2425 return ret; 2426 } 2427 EXPORT_SYMBOL(filemap_page_mkwrite); 2428 2429 const struct vm_operations_struct generic_file_vm_ops = { 2430 .fault = filemap_fault, 2431 .map_pages = filemap_map_pages, 2432 .page_mkwrite = filemap_page_mkwrite, 2433 }; 2434 2435 /* This is used for a general mmap of a disk file */ 2436 2437 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 2438 { 2439 struct address_space *mapping = file->f_mapping; 2440 2441 if (!mapping->a_ops->readpage) 2442 return -ENOEXEC; 2443 file_accessed(file); 2444 vma->vm_ops = &generic_file_vm_ops; 2445 return 0; 2446 } 2447 2448 /* 2449 * This is for filesystems which do not implement ->writepage. 2450 */ 2451 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 2452 { 2453 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 2454 return -EINVAL; 2455 return generic_file_mmap(file, vma); 2456 } 2457 #else 2458 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 2459 { 2460 return -ENOSYS; 2461 } 2462 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) 2463 { 2464 return -ENOSYS; 2465 } 2466 #endif /* CONFIG_MMU */ 2467 2468 EXPORT_SYMBOL(generic_file_mmap); 2469 EXPORT_SYMBOL(generic_file_readonly_mmap); 2470 2471 static struct page *wait_on_page_read(struct page *page) 2472 { 2473 if (!IS_ERR(page)) { 2474 wait_on_page_locked(page); 2475 if (!PageUptodate(page)) { 2476 put_page(page); 2477 page = ERR_PTR(-EIO); 2478 } 2479 } 2480 return page; 2481 } 2482 2483 static struct page *do_read_cache_page(struct address_space *mapping, 2484 pgoff_t index, 2485 int (*filler)(void *, struct page *), 2486 void *data, 2487 gfp_t gfp) 2488 { 2489 struct page *page; 2490 int err; 2491 repeat: 2492 page = find_get_page(mapping, index); 2493 if (!page) { 2494 page = __page_cache_alloc(gfp | __GFP_COLD); 2495 if (!page) 2496 return ERR_PTR(-ENOMEM); 2497 err = add_to_page_cache_lru(page, mapping, index, gfp); 2498 if (unlikely(err)) { 2499 put_page(page); 2500 if (err == -EEXIST) 2501 goto repeat; 2502 /* Presumably ENOMEM for radix tree node */ 2503 return ERR_PTR(err); 2504 } 2505 2506 filler: 2507 err = filler(data, page); 2508 if (err < 0) { 2509 put_page(page); 2510 return ERR_PTR(err); 2511 } 2512 2513 page = wait_on_page_read(page); 2514 if (IS_ERR(page)) 2515 return page; 2516 goto out; 2517 } 2518 if (PageUptodate(page)) 2519 goto out; 2520 2521 /* 2522 * Page is not up to date and may be locked due one of the following 2523 * case a: Page is being filled and the page lock is held 2524 * case b: Read/write error clearing the page uptodate status 2525 * case c: Truncation in progress (page locked) 2526 * case d: Reclaim in progress 2527 * 2528 * Case a, the page will be up to date when the page is unlocked. 2529 * There is no need to serialise on the page lock here as the page 2530 * is pinned so the lock gives no additional protection. Even if the 2531 * the page is truncated, the data is still valid if PageUptodate as 2532 * it's a race vs truncate race. 2533 * Case b, the page will not be up to date 2534 * Case c, the page may be truncated but in itself, the data may still 2535 * be valid after IO completes as it's a read vs truncate race. The 2536 * operation must restart if the page is not uptodate on unlock but 2537 * otherwise serialising on page lock to stabilise the mapping gives 2538 * no additional guarantees to the caller as the page lock is 2539 * released before return. 2540 * Case d, similar to truncation. If reclaim holds the page lock, it 2541 * will be a race with remove_mapping that determines if the mapping 2542 * is valid on unlock but otherwise the data is valid and there is 2543 * no need to serialise with page lock. 2544 * 2545 * As the page lock gives no additional guarantee, we optimistically 2546 * wait on the page to be unlocked and check if it's up to date and 2547 * use the page if it is. Otherwise, the page lock is required to 2548 * distinguish between the different cases. The motivation is that we 2549 * avoid spurious serialisations and wakeups when multiple processes 2550 * wait on the same page for IO to complete. 2551 */ 2552 wait_on_page_locked(page); 2553 if (PageUptodate(page)) 2554 goto out; 2555 2556 /* Distinguish between all the cases under the safety of the lock */ 2557 lock_page(page); 2558 2559 /* Case c or d, restart the operation */ 2560 if (!page->mapping) { 2561 unlock_page(page); 2562 put_page(page); 2563 goto repeat; 2564 } 2565 2566 /* Someone else locked and filled the page in a very small window */ 2567 if (PageUptodate(page)) { 2568 unlock_page(page); 2569 goto out; 2570 } 2571 goto filler; 2572 2573 out: 2574 mark_page_accessed(page); 2575 return page; 2576 } 2577 2578 /** 2579 * read_cache_page - read into page cache, fill it if needed 2580 * @mapping: the page's address_space 2581 * @index: the page index 2582 * @filler: function to perform the read 2583 * @data: first arg to filler(data, page) function, often left as NULL 2584 * 2585 * Read into the page cache. If a page already exists, and PageUptodate() is 2586 * not set, try to fill the page and wait for it to become unlocked. 2587 * 2588 * If the page does not get brought uptodate, return -EIO. 2589 */ 2590 struct page *read_cache_page(struct address_space *mapping, 2591 pgoff_t index, 2592 int (*filler)(void *, struct page *), 2593 void *data) 2594 { 2595 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping)); 2596 } 2597 EXPORT_SYMBOL(read_cache_page); 2598 2599 /** 2600 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 2601 * @mapping: the page's address_space 2602 * @index: the page index 2603 * @gfp: the page allocator flags to use if allocating 2604 * 2605 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 2606 * any new page allocations done using the specified allocation flags. 2607 * 2608 * If the page does not get brought uptodate, return -EIO. 2609 */ 2610 struct page *read_cache_page_gfp(struct address_space *mapping, 2611 pgoff_t index, 2612 gfp_t gfp) 2613 { 2614 filler_t *filler = (filler_t *)mapping->a_ops->readpage; 2615 2616 return do_read_cache_page(mapping, index, filler, NULL, gfp); 2617 } 2618 EXPORT_SYMBOL(read_cache_page_gfp); 2619 2620 /* 2621 * Performs necessary checks before doing a write 2622 * 2623 * Can adjust writing position or amount of bytes to write. 2624 * Returns appropriate error code that caller should return or 2625 * zero in case that write should be allowed. 2626 */ 2627 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from) 2628 { 2629 struct file *file = iocb->ki_filp; 2630 struct inode *inode = file->f_mapping->host; 2631 unsigned long limit = rlimit(RLIMIT_FSIZE); 2632 loff_t pos; 2633 2634 if (!iov_iter_count(from)) 2635 return 0; 2636 2637 /* FIXME: this is for backwards compatibility with 2.4 */ 2638 if (iocb->ki_flags & IOCB_APPEND) 2639 iocb->ki_pos = i_size_read(inode); 2640 2641 pos = iocb->ki_pos; 2642 2643 if (limit != RLIM_INFINITY) { 2644 if (iocb->ki_pos >= limit) { 2645 send_sig(SIGXFSZ, current, 0); 2646 return -EFBIG; 2647 } 2648 iov_iter_truncate(from, limit - (unsigned long)pos); 2649 } 2650 2651 /* 2652 * LFS rule 2653 */ 2654 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS && 2655 !(file->f_flags & O_LARGEFILE))) { 2656 if (pos >= MAX_NON_LFS) 2657 return -EFBIG; 2658 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos); 2659 } 2660 2661 /* 2662 * Are we about to exceed the fs block limit ? 2663 * 2664 * If we have written data it becomes a short write. If we have 2665 * exceeded without writing data we send a signal and return EFBIG. 2666 * Linus frestrict idea will clean these up nicely.. 2667 */ 2668 if (unlikely(pos >= inode->i_sb->s_maxbytes)) 2669 return -EFBIG; 2670 2671 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos); 2672 return iov_iter_count(from); 2673 } 2674 EXPORT_SYMBOL(generic_write_checks); 2675 2676 int pagecache_write_begin(struct file *file, struct address_space *mapping, 2677 loff_t pos, unsigned len, unsigned flags, 2678 struct page **pagep, void **fsdata) 2679 { 2680 const struct address_space_operations *aops = mapping->a_ops; 2681 2682 return aops->write_begin(file, mapping, pos, len, flags, 2683 pagep, fsdata); 2684 } 2685 EXPORT_SYMBOL(pagecache_write_begin); 2686 2687 int pagecache_write_end(struct file *file, struct address_space *mapping, 2688 loff_t pos, unsigned len, unsigned copied, 2689 struct page *page, void *fsdata) 2690 { 2691 const struct address_space_operations *aops = mapping->a_ops; 2692 2693 return aops->write_end(file, mapping, pos, len, copied, page, fsdata); 2694 } 2695 EXPORT_SYMBOL(pagecache_write_end); 2696 2697 ssize_t 2698 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) 2699 { 2700 struct file *file = iocb->ki_filp; 2701 struct address_space *mapping = file->f_mapping; 2702 struct inode *inode = mapping->host; 2703 loff_t pos = iocb->ki_pos; 2704 ssize_t written; 2705 size_t write_len; 2706 pgoff_t end; 2707 struct iov_iter data; 2708 2709 write_len = iov_iter_count(from); 2710 end = (pos + write_len - 1) >> PAGE_SHIFT; 2711 2712 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1); 2713 if (written) 2714 goto out; 2715 2716 /* 2717 * After a write we want buffered reads to be sure to go to disk to get 2718 * the new data. We invalidate clean cached page from the region we're 2719 * about to write. We do this *before* the write so that we can return 2720 * without clobbering -EIOCBQUEUED from ->direct_IO(). 2721 */ 2722 if (mapping->nrpages) { 2723 written = invalidate_inode_pages2_range(mapping, 2724 pos >> PAGE_SHIFT, end); 2725 /* 2726 * If a page can not be invalidated, return 0 to fall back 2727 * to buffered write. 2728 */ 2729 if (written) { 2730 if (written == -EBUSY) 2731 return 0; 2732 goto out; 2733 } 2734 } 2735 2736 data = *from; 2737 written = mapping->a_ops->direct_IO(iocb, &data); 2738 2739 /* 2740 * Finally, try again to invalidate clean pages which might have been 2741 * cached by non-direct readahead, or faulted in by get_user_pages() 2742 * if the source of the write was an mmap'ed region of the file 2743 * we're writing. Either one is a pretty crazy thing to do, 2744 * so we don't support it 100%. If this invalidation 2745 * fails, tough, the write still worked... 2746 */ 2747 if (mapping->nrpages) { 2748 invalidate_inode_pages2_range(mapping, 2749 pos >> PAGE_SHIFT, end); 2750 } 2751 2752 if (written > 0) { 2753 pos += written; 2754 iov_iter_advance(from, written); 2755 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 2756 i_size_write(inode, pos); 2757 mark_inode_dirty(inode); 2758 } 2759 iocb->ki_pos = pos; 2760 } 2761 out: 2762 return written; 2763 } 2764 EXPORT_SYMBOL(generic_file_direct_write); 2765 2766 /* 2767 * Find or create a page at the given pagecache position. Return the locked 2768 * page. This function is specifically for buffered writes. 2769 */ 2770 struct page *grab_cache_page_write_begin(struct address_space *mapping, 2771 pgoff_t index, unsigned flags) 2772 { 2773 struct page *page; 2774 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT; 2775 2776 if (flags & AOP_FLAG_NOFS) 2777 fgp_flags |= FGP_NOFS; 2778 2779 page = pagecache_get_page(mapping, index, fgp_flags, 2780 mapping_gfp_mask(mapping)); 2781 if (page) 2782 wait_for_stable_page(page); 2783 2784 return page; 2785 } 2786 EXPORT_SYMBOL(grab_cache_page_write_begin); 2787 2788 ssize_t generic_perform_write(struct file *file, 2789 struct iov_iter *i, loff_t pos) 2790 { 2791 struct address_space *mapping = file->f_mapping; 2792 const struct address_space_operations *a_ops = mapping->a_ops; 2793 long status = 0; 2794 ssize_t written = 0; 2795 unsigned int flags = 0; 2796 2797 /* 2798 * Copies from kernel address space cannot fail (NFSD is a big user). 2799 */ 2800 if (!iter_is_iovec(i)) 2801 flags |= AOP_FLAG_UNINTERRUPTIBLE; 2802 2803 do { 2804 struct page *page; 2805 unsigned long offset; /* Offset into pagecache page */ 2806 unsigned long bytes; /* Bytes to write to page */ 2807 size_t copied; /* Bytes copied from user */ 2808 void *fsdata; 2809 2810 offset = (pos & (PAGE_SIZE - 1)); 2811 bytes = min_t(unsigned long, PAGE_SIZE - offset, 2812 iov_iter_count(i)); 2813 2814 again: 2815 /* 2816 * Bring in the user page that we will copy from _first_. 2817 * Otherwise there's a nasty deadlock on copying from the 2818 * same page as we're writing to, without it being marked 2819 * up-to-date. 2820 * 2821 * Not only is this an optimisation, but it is also required 2822 * to check that the address is actually valid, when atomic 2823 * usercopies are used, below. 2824 */ 2825 if (unlikely(iov_iter_fault_in_readable(i, bytes))) { 2826 status = -EFAULT; 2827 break; 2828 } 2829 2830 if (fatal_signal_pending(current)) { 2831 status = -EINTR; 2832 break; 2833 } 2834 2835 status = a_ops->write_begin(file, mapping, pos, bytes, flags, 2836 &page, &fsdata); 2837 if (unlikely(status < 0)) 2838 break; 2839 2840 if (mapping_writably_mapped(mapping)) 2841 flush_dcache_page(page); 2842 2843 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); 2844 flush_dcache_page(page); 2845 2846 status = a_ops->write_end(file, mapping, pos, bytes, copied, 2847 page, fsdata); 2848 if (unlikely(status < 0)) 2849 break; 2850 copied = status; 2851 2852 cond_resched(); 2853 2854 iov_iter_advance(i, copied); 2855 if (unlikely(copied == 0)) { 2856 /* 2857 * If we were unable to copy any data at all, we must 2858 * fall back to a single segment length write. 2859 * 2860 * If we didn't fallback here, we could livelock 2861 * because not all segments in the iov can be copied at 2862 * once without a pagefault. 2863 */ 2864 bytes = min_t(unsigned long, PAGE_SIZE - offset, 2865 iov_iter_single_seg_count(i)); 2866 goto again; 2867 } 2868 pos += copied; 2869 written += copied; 2870 2871 balance_dirty_pages_ratelimited(mapping); 2872 } while (iov_iter_count(i)); 2873 2874 return written ? written : status; 2875 } 2876 EXPORT_SYMBOL(generic_perform_write); 2877 2878 /** 2879 * __generic_file_write_iter - write data to a file 2880 * @iocb: IO state structure (file, offset, etc.) 2881 * @from: iov_iter with data to write 2882 * 2883 * This function does all the work needed for actually writing data to a 2884 * file. It does all basic checks, removes SUID from the file, updates 2885 * modification times and calls proper subroutines depending on whether we 2886 * do direct IO or a standard buffered write. 2887 * 2888 * It expects i_mutex to be grabbed unless we work on a block device or similar 2889 * object which does not need locking at all. 2890 * 2891 * This function does *not* take care of syncing data in case of O_SYNC write. 2892 * A caller has to handle it. This is mainly due to the fact that we want to 2893 * avoid syncing under i_mutex. 2894 */ 2895 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 2896 { 2897 struct file *file = iocb->ki_filp; 2898 struct address_space * mapping = file->f_mapping; 2899 struct inode *inode = mapping->host; 2900 ssize_t written = 0; 2901 ssize_t err; 2902 ssize_t status; 2903 2904 /* We can write back this queue in page reclaim */ 2905 current->backing_dev_info = inode_to_bdi(inode); 2906 err = file_remove_privs(file); 2907 if (err) 2908 goto out; 2909 2910 err = file_update_time(file); 2911 if (err) 2912 goto out; 2913 2914 if (iocb->ki_flags & IOCB_DIRECT) { 2915 loff_t pos, endbyte; 2916 2917 written = generic_file_direct_write(iocb, from); 2918 /* 2919 * If the write stopped short of completing, fall back to 2920 * buffered writes. Some filesystems do this for writes to 2921 * holes, for example. For DAX files, a buffered write will 2922 * not succeed (even if it did, DAX does not handle dirty 2923 * page-cache pages correctly). 2924 */ 2925 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode)) 2926 goto out; 2927 2928 status = generic_perform_write(file, from, pos = iocb->ki_pos); 2929 /* 2930 * If generic_perform_write() returned a synchronous error 2931 * then we want to return the number of bytes which were 2932 * direct-written, or the error code if that was zero. Note 2933 * that this differs from normal direct-io semantics, which 2934 * will return -EFOO even if some bytes were written. 2935 */ 2936 if (unlikely(status < 0)) { 2937 err = status; 2938 goto out; 2939 } 2940 /* 2941 * We need to ensure that the page cache pages are written to 2942 * disk and invalidated to preserve the expected O_DIRECT 2943 * semantics. 2944 */ 2945 endbyte = pos + status - 1; 2946 err = filemap_write_and_wait_range(mapping, pos, endbyte); 2947 if (err == 0) { 2948 iocb->ki_pos = endbyte + 1; 2949 written += status; 2950 invalidate_mapping_pages(mapping, 2951 pos >> PAGE_SHIFT, 2952 endbyte >> PAGE_SHIFT); 2953 } else { 2954 /* 2955 * We don't know how much we wrote, so just return 2956 * the number of bytes which were direct-written 2957 */ 2958 } 2959 } else { 2960 written = generic_perform_write(file, from, iocb->ki_pos); 2961 if (likely(written > 0)) 2962 iocb->ki_pos += written; 2963 } 2964 out: 2965 current->backing_dev_info = NULL; 2966 return written ? written : err; 2967 } 2968 EXPORT_SYMBOL(__generic_file_write_iter); 2969 2970 /** 2971 * generic_file_write_iter - write data to a file 2972 * @iocb: IO state structure 2973 * @from: iov_iter with data to write 2974 * 2975 * This is a wrapper around __generic_file_write_iter() to be used by most 2976 * filesystems. It takes care of syncing the file in case of O_SYNC file 2977 * and acquires i_mutex as needed. 2978 */ 2979 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 2980 { 2981 struct file *file = iocb->ki_filp; 2982 struct inode *inode = file->f_mapping->host; 2983 ssize_t ret; 2984 2985 inode_lock(inode); 2986 ret = generic_write_checks(iocb, from); 2987 if (ret > 0) 2988 ret = __generic_file_write_iter(iocb, from); 2989 inode_unlock(inode); 2990 2991 if (ret > 0) 2992 ret = generic_write_sync(iocb, ret); 2993 return ret; 2994 } 2995 EXPORT_SYMBOL(generic_file_write_iter); 2996 2997 /** 2998 * try_to_release_page() - release old fs-specific metadata on a page 2999 * 3000 * @page: the page which the kernel is trying to free 3001 * @gfp_mask: memory allocation flags (and I/O mode) 3002 * 3003 * The address_space is to try to release any data against the page 3004 * (presumably at page->private). If the release was successful, return `1'. 3005 * Otherwise return zero. 3006 * 3007 * This may also be called if PG_fscache is set on a page, indicating that the 3008 * page is known to the local caching routines. 3009 * 3010 * The @gfp_mask argument specifies whether I/O may be performed to release 3011 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS). 3012 * 3013 */ 3014 int try_to_release_page(struct page *page, gfp_t gfp_mask) 3015 { 3016 struct address_space * const mapping = page->mapping; 3017 3018 BUG_ON(!PageLocked(page)); 3019 if (PageWriteback(page)) 3020 return 0; 3021 3022 if (mapping && mapping->a_ops->releasepage) 3023 return mapping->a_ops->releasepage(page, gfp_mask); 3024 return try_to_free_buffers(page); 3025 } 3026 3027 EXPORT_SYMBOL(try_to_release_page); 3028