xref: /openbmc/linux/mm/filemap.c (revision a1e58bbd)
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/compiler.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include "internal.h"
37 
38 /*
39  * FIXME: remove all knowledge of the buffer layer from the core VM
40  */
41 #include <linux/buffer_head.h> /* for generic_osync_inode */
42 
43 #include <asm/mman.h>
44 
45 static ssize_t
46 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
47 	loff_t offset, unsigned long nr_segs);
48 
49 /*
50  * Shared mappings implemented 30.11.1994. It's not fully working yet,
51  * though.
52  *
53  * Shared mappings now work. 15.8.1995  Bruno.
54  *
55  * finished 'unifying' the page and buffer cache and SMP-threaded the
56  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
57  *
58  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
59  */
60 
61 /*
62  * Lock ordering:
63  *
64  *  ->i_mmap_lock		(vmtruncate)
65  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
66  *      ->swap_lock		(exclusive_swap_page, others)
67  *        ->mapping->tree_lock
68  *
69  *  ->i_mutex
70  *    ->i_mmap_lock		(truncate->unmap_mapping_range)
71  *
72  *  ->mmap_sem
73  *    ->i_mmap_lock
74  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
75  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
76  *
77  *  ->mmap_sem
78  *    ->lock_page		(access_process_vm)
79  *
80  *  ->i_mutex			(generic_file_buffered_write)
81  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
82  *
83  *  ->i_mutex
84  *    ->i_alloc_sem             (various)
85  *
86  *  ->inode_lock
87  *    ->sb_lock			(fs/fs-writeback.c)
88  *    ->mapping->tree_lock	(__sync_single_inode)
89  *
90  *  ->i_mmap_lock
91  *    ->anon_vma.lock		(vma_adjust)
92  *
93  *  ->anon_vma.lock
94  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
95  *
96  *  ->page_table_lock or pte_lock
97  *    ->swap_lock		(try_to_unmap_one)
98  *    ->private_lock		(try_to_unmap_one)
99  *    ->tree_lock		(try_to_unmap_one)
100  *    ->zone.lru_lock		(follow_page->mark_page_accessed)
101  *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
102  *    ->private_lock		(page_remove_rmap->set_page_dirty)
103  *    ->tree_lock		(page_remove_rmap->set_page_dirty)
104  *    ->inode_lock		(page_remove_rmap->set_page_dirty)
105  *    ->inode_lock		(zap_pte_range->set_page_dirty)
106  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
107  *
108  *  ->task->proc_lock
109  *    ->dcache_lock		(proc_pid_lookup)
110  */
111 
112 /*
113  * Remove a page from the page cache and free it. Caller has to make
114  * sure the page is locked and that nobody else uses it - or that usage
115  * is safe.  The caller must hold a write_lock on the mapping's tree_lock.
116  */
117 void __remove_from_page_cache(struct page *page)
118 {
119 	struct address_space *mapping = page->mapping;
120 
121 	mem_cgroup_uncharge_page(page);
122 	radix_tree_delete(&mapping->page_tree, page->index);
123 	page->mapping = NULL;
124 	mapping->nrpages--;
125 	__dec_zone_page_state(page, NR_FILE_PAGES);
126 	BUG_ON(page_mapped(page));
127 
128 	/*
129 	 * Some filesystems seem to re-dirty the page even after
130 	 * the VM has canceled the dirty bit (eg ext3 journaling).
131 	 *
132 	 * Fix it up by doing a final dirty accounting check after
133 	 * having removed the page entirely.
134 	 */
135 	if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
136 		dec_zone_page_state(page, NR_FILE_DIRTY);
137 		dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
138 	}
139 }
140 
141 void remove_from_page_cache(struct page *page)
142 {
143 	struct address_space *mapping = page->mapping;
144 
145 	BUG_ON(!PageLocked(page));
146 
147 	write_lock_irq(&mapping->tree_lock);
148 	__remove_from_page_cache(page);
149 	write_unlock_irq(&mapping->tree_lock);
150 }
151 
152 static int sync_page(void *word)
153 {
154 	struct address_space *mapping;
155 	struct page *page;
156 
157 	page = container_of((unsigned long *)word, struct page, flags);
158 
159 	/*
160 	 * page_mapping() is being called without PG_locked held.
161 	 * Some knowledge of the state and use of the page is used to
162 	 * reduce the requirements down to a memory barrier.
163 	 * The danger here is of a stale page_mapping() return value
164 	 * indicating a struct address_space different from the one it's
165 	 * associated with when it is associated with one.
166 	 * After smp_mb(), it's either the correct page_mapping() for
167 	 * the page, or an old page_mapping() and the page's own
168 	 * page_mapping() has gone NULL.
169 	 * The ->sync_page() address_space operation must tolerate
170 	 * page_mapping() going NULL. By an amazing coincidence,
171 	 * this comes about because none of the users of the page
172 	 * in the ->sync_page() methods make essential use of the
173 	 * page_mapping(), merely passing the page down to the backing
174 	 * device's unplug functions when it's non-NULL, which in turn
175 	 * ignore it for all cases but swap, where only page_private(page) is
176 	 * of interest. When page_mapping() does go NULL, the entire
177 	 * call stack gracefully ignores the page and returns.
178 	 * -- wli
179 	 */
180 	smp_mb();
181 	mapping = page_mapping(page);
182 	if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
183 		mapping->a_ops->sync_page(page);
184 	io_schedule();
185 	return 0;
186 }
187 
188 static int sync_page_killable(void *word)
189 {
190 	sync_page(word);
191 	return fatal_signal_pending(current) ? -EINTR : 0;
192 }
193 
194 /**
195  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
196  * @mapping:	address space structure to write
197  * @start:	offset in bytes where the range starts
198  * @end:	offset in bytes where the range ends (inclusive)
199  * @sync_mode:	enable synchronous operation
200  *
201  * Start writeback against all of a mapping's dirty pages that lie
202  * within the byte offsets <start, end> inclusive.
203  *
204  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
205  * opposed to a regular memory cleansing writeback.  The difference between
206  * these two operations is that if a dirty page/buffer is encountered, it must
207  * be waited upon, and not just skipped over.
208  */
209 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
210 				loff_t end, int sync_mode)
211 {
212 	int ret;
213 	struct writeback_control wbc = {
214 		.sync_mode = sync_mode,
215 		.nr_to_write = mapping->nrpages * 2,
216 		.range_start = start,
217 		.range_end = end,
218 	};
219 
220 	if (!mapping_cap_writeback_dirty(mapping))
221 		return 0;
222 
223 	ret = do_writepages(mapping, &wbc);
224 	return ret;
225 }
226 
227 static inline int __filemap_fdatawrite(struct address_space *mapping,
228 	int sync_mode)
229 {
230 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
231 }
232 
233 int filemap_fdatawrite(struct address_space *mapping)
234 {
235 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
236 }
237 EXPORT_SYMBOL(filemap_fdatawrite);
238 
239 static int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
240 				loff_t end)
241 {
242 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
243 }
244 
245 /**
246  * filemap_flush - mostly a non-blocking flush
247  * @mapping:	target address_space
248  *
249  * This is a mostly non-blocking flush.  Not suitable for data-integrity
250  * purposes - I/O may not be started against all dirty pages.
251  */
252 int filemap_flush(struct address_space *mapping)
253 {
254 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
255 }
256 EXPORT_SYMBOL(filemap_flush);
257 
258 /**
259  * wait_on_page_writeback_range - wait for writeback to complete
260  * @mapping:	target address_space
261  * @start:	beginning page index
262  * @end:	ending page index
263  *
264  * Wait for writeback to complete against pages indexed by start->end
265  * inclusive
266  */
267 int wait_on_page_writeback_range(struct address_space *mapping,
268 				pgoff_t start, pgoff_t end)
269 {
270 	struct pagevec pvec;
271 	int nr_pages;
272 	int ret = 0;
273 	pgoff_t index;
274 
275 	if (end < start)
276 		return 0;
277 
278 	pagevec_init(&pvec, 0);
279 	index = start;
280 	while ((index <= end) &&
281 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
282 			PAGECACHE_TAG_WRITEBACK,
283 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
284 		unsigned i;
285 
286 		for (i = 0; i < nr_pages; i++) {
287 			struct page *page = pvec.pages[i];
288 
289 			/* until radix tree lookup accepts end_index */
290 			if (page->index > end)
291 				continue;
292 
293 			wait_on_page_writeback(page);
294 			if (PageError(page))
295 				ret = -EIO;
296 		}
297 		pagevec_release(&pvec);
298 		cond_resched();
299 	}
300 
301 	/* Check for outstanding write errors */
302 	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
303 		ret = -ENOSPC;
304 	if (test_and_clear_bit(AS_EIO, &mapping->flags))
305 		ret = -EIO;
306 
307 	return ret;
308 }
309 
310 /**
311  * sync_page_range - write and wait on all pages in the passed range
312  * @inode:	target inode
313  * @mapping:	target address_space
314  * @pos:	beginning offset in pages to write
315  * @count:	number of bytes to write
316  *
317  * Write and wait upon all the pages in the passed range.  This is a "data
318  * integrity" operation.  It waits upon in-flight writeout before starting and
319  * waiting upon new writeout.  If there was an IO error, return it.
320  *
321  * We need to re-take i_mutex during the generic_osync_inode list walk because
322  * it is otherwise livelockable.
323  */
324 int sync_page_range(struct inode *inode, struct address_space *mapping,
325 			loff_t pos, loff_t count)
326 {
327 	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
328 	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
329 	int ret;
330 
331 	if (!mapping_cap_writeback_dirty(mapping) || !count)
332 		return 0;
333 	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
334 	if (ret == 0) {
335 		mutex_lock(&inode->i_mutex);
336 		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
337 		mutex_unlock(&inode->i_mutex);
338 	}
339 	if (ret == 0)
340 		ret = wait_on_page_writeback_range(mapping, start, end);
341 	return ret;
342 }
343 EXPORT_SYMBOL(sync_page_range);
344 
345 /**
346  * sync_page_range_nolock - write & wait on all pages in the passed range without locking
347  * @inode:	target inode
348  * @mapping:	target address_space
349  * @pos:	beginning offset in pages to write
350  * @count:	number of bytes to write
351  *
352  * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
353  * as it forces O_SYNC writers to different parts of the same file
354  * to be serialised right until io completion.
355  */
356 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
357 			   loff_t pos, loff_t count)
358 {
359 	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
360 	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
361 	int ret;
362 
363 	if (!mapping_cap_writeback_dirty(mapping) || !count)
364 		return 0;
365 	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
366 	if (ret == 0)
367 		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
368 	if (ret == 0)
369 		ret = wait_on_page_writeback_range(mapping, start, end);
370 	return ret;
371 }
372 EXPORT_SYMBOL(sync_page_range_nolock);
373 
374 /**
375  * filemap_fdatawait - wait for all under-writeback pages to complete
376  * @mapping: address space structure to wait for
377  *
378  * Walk the list of under-writeback pages of the given address space
379  * and wait for all of them.
380  */
381 int filemap_fdatawait(struct address_space *mapping)
382 {
383 	loff_t i_size = i_size_read(mapping->host);
384 
385 	if (i_size == 0)
386 		return 0;
387 
388 	return wait_on_page_writeback_range(mapping, 0,
389 				(i_size - 1) >> PAGE_CACHE_SHIFT);
390 }
391 EXPORT_SYMBOL(filemap_fdatawait);
392 
393 int filemap_write_and_wait(struct address_space *mapping)
394 {
395 	int err = 0;
396 
397 	if (mapping->nrpages) {
398 		err = filemap_fdatawrite(mapping);
399 		/*
400 		 * Even if the above returned error, the pages may be
401 		 * written partially (e.g. -ENOSPC), so we wait for it.
402 		 * But the -EIO is special case, it may indicate the worst
403 		 * thing (e.g. bug) happened, so we avoid waiting for it.
404 		 */
405 		if (err != -EIO) {
406 			int err2 = filemap_fdatawait(mapping);
407 			if (!err)
408 				err = err2;
409 		}
410 	}
411 	return err;
412 }
413 EXPORT_SYMBOL(filemap_write_and_wait);
414 
415 /**
416  * filemap_write_and_wait_range - write out & wait on a file range
417  * @mapping:	the address_space for the pages
418  * @lstart:	offset in bytes where the range starts
419  * @lend:	offset in bytes where the range ends (inclusive)
420  *
421  * Write out and wait upon file offsets lstart->lend, inclusive.
422  *
423  * Note that `lend' is inclusive (describes the last byte to be written) so
424  * that this function can be used to write to the very end-of-file (end = -1).
425  */
426 int filemap_write_and_wait_range(struct address_space *mapping,
427 				 loff_t lstart, loff_t lend)
428 {
429 	int err = 0;
430 
431 	if (mapping->nrpages) {
432 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
433 						 WB_SYNC_ALL);
434 		/* See comment of filemap_write_and_wait() */
435 		if (err != -EIO) {
436 			int err2 = wait_on_page_writeback_range(mapping,
437 						lstart >> PAGE_CACHE_SHIFT,
438 						lend >> PAGE_CACHE_SHIFT);
439 			if (!err)
440 				err = err2;
441 		}
442 	}
443 	return err;
444 }
445 
446 /**
447  * add_to_page_cache - add newly allocated pagecache pages
448  * @page:	page to add
449  * @mapping:	the page's address_space
450  * @offset:	page index
451  * @gfp_mask:	page allocation mode
452  *
453  * This function is used to add newly allocated pagecache pages;
454  * the page is new, so we can just run SetPageLocked() against it.
455  * The other page state flags were set by rmqueue().
456  *
457  * This function does not add the page to the LRU.  The caller must do that.
458  */
459 int add_to_page_cache(struct page *page, struct address_space *mapping,
460 		pgoff_t offset, gfp_t gfp_mask)
461 {
462 	int error = mem_cgroup_cache_charge(page, current->mm,
463 					gfp_mask & ~__GFP_HIGHMEM);
464 	if (error)
465 		goto out;
466 
467 	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
468 	if (error == 0) {
469 		write_lock_irq(&mapping->tree_lock);
470 		error = radix_tree_insert(&mapping->page_tree, offset, page);
471 		if (!error) {
472 			page_cache_get(page);
473 			SetPageLocked(page);
474 			page->mapping = mapping;
475 			page->index = offset;
476 			mapping->nrpages++;
477 			__inc_zone_page_state(page, NR_FILE_PAGES);
478 		} else
479 			mem_cgroup_uncharge_page(page);
480 
481 		write_unlock_irq(&mapping->tree_lock);
482 		radix_tree_preload_end();
483 	} else
484 		mem_cgroup_uncharge_page(page);
485 out:
486 	return error;
487 }
488 EXPORT_SYMBOL(add_to_page_cache);
489 
490 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
491 				pgoff_t offset, gfp_t gfp_mask)
492 {
493 	int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
494 	if (ret == 0)
495 		lru_cache_add(page);
496 	return ret;
497 }
498 
499 #ifdef CONFIG_NUMA
500 struct page *__page_cache_alloc(gfp_t gfp)
501 {
502 	if (cpuset_do_page_mem_spread()) {
503 		int n = cpuset_mem_spread_node();
504 		return alloc_pages_node(n, gfp, 0);
505 	}
506 	return alloc_pages(gfp, 0);
507 }
508 EXPORT_SYMBOL(__page_cache_alloc);
509 #endif
510 
511 static int __sleep_on_page_lock(void *word)
512 {
513 	io_schedule();
514 	return 0;
515 }
516 
517 /*
518  * In order to wait for pages to become available there must be
519  * waitqueues associated with pages. By using a hash table of
520  * waitqueues where the bucket discipline is to maintain all
521  * waiters on the same queue and wake all when any of the pages
522  * become available, and for the woken contexts to check to be
523  * sure the appropriate page became available, this saves space
524  * at a cost of "thundering herd" phenomena during rare hash
525  * collisions.
526  */
527 static wait_queue_head_t *page_waitqueue(struct page *page)
528 {
529 	const struct zone *zone = page_zone(page);
530 
531 	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
532 }
533 
534 static inline void wake_up_page(struct page *page, int bit)
535 {
536 	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
537 }
538 
539 void wait_on_page_bit(struct page *page, int bit_nr)
540 {
541 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
542 
543 	if (test_bit(bit_nr, &page->flags))
544 		__wait_on_bit(page_waitqueue(page), &wait, sync_page,
545 							TASK_UNINTERRUPTIBLE);
546 }
547 EXPORT_SYMBOL(wait_on_page_bit);
548 
549 /**
550  * unlock_page - unlock a locked page
551  * @page: the page
552  *
553  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
554  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
555  * mechananism between PageLocked pages and PageWriteback pages is shared.
556  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
557  *
558  * The first mb is necessary to safely close the critical section opened by the
559  * TestSetPageLocked(), the second mb is necessary to enforce ordering between
560  * the clear_bit and the read of the waitqueue (to avoid SMP races with a
561  * parallel wait_on_page_locked()).
562  */
563 void unlock_page(struct page *page)
564 {
565 	smp_mb__before_clear_bit();
566 	if (!TestClearPageLocked(page))
567 		BUG();
568 	smp_mb__after_clear_bit();
569 	wake_up_page(page, PG_locked);
570 }
571 EXPORT_SYMBOL(unlock_page);
572 
573 /**
574  * end_page_writeback - end writeback against a page
575  * @page: the page
576  */
577 void end_page_writeback(struct page *page)
578 {
579 	if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) {
580 		if (!test_clear_page_writeback(page))
581 			BUG();
582 	}
583 	smp_mb__after_clear_bit();
584 	wake_up_page(page, PG_writeback);
585 }
586 EXPORT_SYMBOL(end_page_writeback);
587 
588 /**
589  * __lock_page - get a lock on the page, assuming we need to sleep to get it
590  * @page: the page to lock
591  *
592  * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary.  If some
593  * random driver's requestfn sets TASK_RUNNING, we could busywait.  However
594  * chances are that on the second loop, the block layer's plug list is empty,
595  * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
596  */
597 void __lock_page(struct page *page)
598 {
599 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
600 
601 	__wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
602 							TASK_UNINTERRUPTIBLE);
603 }
604 EXPORT_SYMBOL(__lock_page);
605 
606 int __lock_page_killable(struct page *page)
607 {
608 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
609 
610 	return __wait_on_bit_lock(page_waitqueue(page), &wait,
611 					sync_page_killable, TASK_KILLABLE);
612 }
613 
614 /**
615  * __lock_page_nosync - get a lock on the page, without calling sync_page()
616  * @page: the page to lock
617  *
618  * Variant of lock_page that does not require the caller to hold a reference
619  * on the page's mapping.
620  */
621 void __lock_page_nosync(struct page *page)
622 {
623 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
624 	__wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
625 							TASK_UNINTERRUPTIBLE);
626 }
627 
628 /**
629  * find_get_page - find and get a page reference
630  * @mapping: the address_space to search
631  * @offset: the page index
632  *
633  * Is there a pagecache struct page at the given (mapping, offset) tuple?
634  * If yes, increment its refcount and return it; if no, return NULL.
635  */
636 struct page * find_get_page(struct address_space *mapping, pgoff_t offset)
637 {
638 	struct page *page;
639 
640 	read_lock_irq(&mapping->tree_lock);
641 	page = radix_tree_lookup(&mapping->page_tree, offset);
642 	if (page)
643 		page_cache_get(page);
644 	read_unlock_irq(&mapping->tree_lock);
645 	return page;
646 }
647 EXPORT_SYMBOL(find_get_page);
648 
649 /**
650  * find_lock_page - locate, pin and lock a pagecache page
651  * @mapping: the address_space to search
652  * @offset: the page index
653  *
654  * Locates the desired pagecache page, locks it, increments its reference
655  * count and returns its address.
656  *
657  * Returns zero if the page was not present. find_lock_page() may sleep.
658  */
659 struct page *find_lock_page(struct address_space *mapping,
660 				pgoff_t offset)
661 {
662 	struct page *page;
663 
664 repeat:
665 	read_lock_irq(&mapping->tree_lock);
666 	page = radix_tree_lookup(&mapping->page_tree, offset);
667 	if (page) {
668 		page_cache_get(page);
669 		if (TestSetPageLocked(page)) {
670 			read_unlock_irq(&mapping->tree_lock);
671 			__lock_page(page);
672 
673 			/* Has the page been truncated while we slept? */
674 			if (unlikely(page->mapping != mapping)) {
675 				unlock_page(page);
676 				page_cache_release(page);
677 				goto repeat;
678 			}
679 			VM_BUG_ON(page->index != offset);
680 			goto out;
681 		}
682 	}
683 	read_unlock_irq(&mapping->tree_lock);
684 out:
685 	return page;
686 }
687 EXPORT_SYMBOL(find_lock_page);
688 
689 /**
690  * find_or_create_page - locate or add a pagecache page
691  * @mapping: the page's address_space
692  * @index: the page's index into the mapping
693  * @gfp_mask: page allocation mode
694  *
695  * Locates a page in the pagecache.  If the page is not present, a new page
696  * is allocated using @gfp_mask and is added to the pagecache and to the VM's
697  * LRU list.  The returned page is locked and has its reference count
698  * incremented.
699  *
700  * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
701  * allocation!
702  *
703  * find_or_create_page() returns the desired page's address, or zero on
704  * memory exhaustion.
705  */
706 struct page *find_or_create_page(struct address_space *mapping,
707 		pgoff_t index, gfp_t gfp_mask)
708 {
709 	struct page *page;
710 	int err;
711 repeat:
712 	page = find_lock_page(mapping, index);
713 	if (!page) {
714 		page = __page_cache_alloc(gfp_mask);
715 		if (!page)
716 			return NULL;
717 		err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
718 		if (unlikely(err)) {
719 			page_cache_release(page);
720 			page = NULL;
721 			if (err == -EEXIST)
722 				goto repeat;
723 		}
724 	}
725 	return page;
726 }
727 EXPORT_SYMBOL(find_or_create_page);
728 
729 /**
730  * find_get_pages - gang pagecache lookup
731  * @mapping:	The address_space to search
732  * @start:	The starting page index
733  * @nr_pages:	The maximum number of pages
734  * @pages:	Where the resulting pages are placed
735  *
736  * find_get_pages() will search for and return a group of up to
737  * @nr_pages pages in the mapping.  The pages are placed at @pages.
738  * find_get_pages() takes a reference against the returned pages.
739  *
740  * The search returns a group of mapping-contiguous pages with ascending
741  * indexes.  There may be holes in the indices due to not-present pages.
742  *
743  * find_get_pages() returns the number of pages which were found.
744  */
745 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
746 			    unsigned int nr_pages, struct page **pages)
747 {
748 	unsigned int i;
749 	unsigned int ret;
750 
751 	read_lock_irq(&mapping->tree_lock);
752 	ret = radix_tree_gang_lookup(&mapping->page_tree,
753 				(void **)pages, start, nr_pages);
754 	for (i = 0; i < ret; i++)
755 		page_cache_get(pages[i]);
756 	read_unlock_irq(&mapping->tree_lock);
757 	return ret;
758 }
759 
760 /**
761  * find_get_pages_contig - gang contiguous pagecache lookup
762  * @mapping:	The address_space to search
763  * @index:	The starting page index
764  * @nr_pages:	The maximum number of pages
765  * @pages:	Where the resulting pages are placed
766  *
767  * find_get_pages_contig() works exactly like find_get_pages(), except
768  * that the returned number of pages are guaranteed to be contiguous.
769  *
770  * find_get_pages_contig() returns the number of pages which were found.
771  */
772 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
773 			       unsigned int nr_pages, struct page **pages)
774 {
775 	unsigned int i;
776 	unsigned int ret;
777 
778 	read_lock_irq(&mapping->tree_lock);
779 	ret = radix_tree_gang_lookup(&mapping->page_tree,
780 				(void **)pages, index, nr_pages);
781 	for (i = 0; i < ret; i++) {
782 		if (pages[i]->mapping == NULL || pages[i]->index != index)
783 			break;
784 
785 		page_cache_get(pages[i]);
786 		index++;
787 	}
788 	read_unlock_irq(&mapping->tree_lock);
789 	return i;
790 }
791 EXPORT_SYMBOL(find_get_pages_contig);
792 
793 /**
794  * find_get_pages_tag - find and return pages that match @tag
795  * @mapping:	the address_space to search
796  * @index:	the starting page index
797  * @tag:	the tag index
798  * @nr_pages:	the maximum number of pages
799  * @pages:	where the resulting pages are placed
800  *
801  * Like find_get_pages, except we only return pages which are tagged with
802  * @tag.   We update @index to index the next page for the traversal.
803  */
804 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
805 			int tag, unsigned int nr_pages, struct page **pages)
806 {
807 	unsigned int i;
808 	unsigned int ret;
809 
810 	read_lock_irq(&mapping->tree_lock);
811 	ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
812 				(void **)pages, *index, nr_pages, tag);
813 	for (i = 0; i < ret; i++)
814 		page_cache_get(pages[i]);
815 	if (ret)
816 		*index = pages[ret - 1]->index + 1;
817 	read_unlock_irq(&mapping->tree_lock);
818 	return ret;
819 }
820 EXPORT_SYMBOL(find_get_pages_tag);
821 
822 /**
823  * grab_cache_page_nowait - returns locked page at given index in given cache
824  * @mapping: target address_space
825  * @index: the page index
826  *
827  * Same as grab_cache_page(), but do not wait if the page is unavailable.
828  * This is intended for speculative data generators, where the data can
829  * be regenerated if the page couldn't be grabbed.  This routine should
830  * be safe to call while holding the lock for another page.
831  *
832  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
833  * and deadlock against the caller's locked page.
834  */
835 struct page *
836 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
837 {
838 	struct page *page = find_get_page(mapping, index);
839 
840 	if (page) {
841 		if (!TestSetPageLocked(page))
842 			return page;
843 		page_cache_release(page);
844 		return NULL;
845 	}
846 	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
847 	if (page && add_to_page_cache_lru(page, mapping, index, GFP_KERNEL)) {
848 		page_cache_release(page);
849 		page = NULL;
850 	}
851 	return page;
852 }
853 EXPORT_SYMBOL(grab_cache_page_nowait);
854 
855 /*
856  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
857  * a _large_ part of the i/o request. Imagine the worst scenario:
858  *
859  *      ---R__________________________________________B__________
860  *         ^ reading here                             ^ bad block(assume 4k)
861  *
862  * read(R) => miss => readahead(R...B) => media error => frustrating retries
863  * => failing the whole request => read(R) => read(R+1) =>
864  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
865  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
866  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
867  *
868  * It is going insane. Fix it by quickly scaling down the readahead size.
869  */
870 static void shrink_readahead_size_eio(struct file *filp,
871 					struct file_ra_state *ra)
872 {
873 	if (!ra->ra_pages)
874 		return;
875 
876 	ra->ra_pages /= 4;
877 }
878 
879 /**
880  * do_generic_file_read - generic file read routine
881  * @filp:	the file to read
882  * @ppos:	current file position
883  * @desc:	read_descriptor
884  * @actor:	read method
885  *
886  * This is a generic file read routine, and uses the
887  * mapping->a_ops->readpage() function for the actual low-level stuff.
888  *
889  * This is really ugly. But the goto's actually try to clarify some
890  * of the logic when it comes to error handling etc.
891  */
892 static void do_generic_file_read(struct file *filp, loff_t *ppos,
893 		read_descriptor_t *desc, read_actor_t actor)
894 {
895 	struct address_space *mapping = filp->f_mapping;
896 	struct inode *inode = mapping->host;
897 	struct file_ra_state *ra = &filp->f_ra;
898 	pgoff_t index;
899 	pgoff_t last_index;
900 	pgoff_t prev_index;
901 	unsigned long offset;      /* offset into pagecache page */
902 	unsigned int prev_offset;
903 	int error;
904 
905 	index = *ppos >> PAGE_CACHE_SHIFT;
906 	prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
907 	prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
908 	last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
909 	offset = *ppos & ~PAGE_CACHE_MASK;
910 
911 	for (;;) {
912 		struct page *page;
913 		pgoff_t end_index;
914 		loff_t isize;
915 		unsigned long nr, ret;
916 
917 		cond_resched();
918 find_page:
919 		page = find_get_page(mapping, index);
920 		if (!page) {
921 			page_cache_sync_readahead(mapping,
922 					ra, filp,
923 					index, last_index - index);
924 			page = find_get_page(mapping, index);
925 			if (unlikely(page == NULL))
926 				goto no_cached_page;
927 		}
928 		if (PageReadahead(page)) {
929 			page_cache_async_readahead(mapping,
930 					ra, filp, page,
931 					index, last_index - index);
932 		}
933 		if (!PageUptodate(page))
934 			goto page_not_up_to_date;
935 page_ok:
936 		/*
937 		 * i_size must be checked after we know the page is Uptodate.
938 		 *
939 		 * Checking i_size after the check allows us to calculate
940 		 * the correct value for "nr", which means the zero-filled
941 		 * part of the page is not copied back to userspace (unless
942 		 * another truncate extends the file - this is desired though).
943 		 */
944 
945 		isize = i_size_read(inode);
946 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
947 		if (unlikely(!isize || index > end_index)) {
948 			page_cache_release(page);
949 			goto out;
950 		}
951 
952 		/* nr is the maximum number of bytes to copy from this page */
953 		nr = PAGE_CACHE_SIZE;
954 		if (index == end_index) {
955 			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
956 			if (nr <= offset) {
957 				page_cache_release(page);
958 				goto out;
959 			}
960 		}
961 		nr = nr - offset;
962 
963 		/* If users can be writing to this page using arbitrary
964 		 * virtual addresses, take care about potential aliasing
965 		 * before reading the page on the kernel side.
966 		 */
967 		if (mapping_writably_mapped(mapping))
968 			flush_dcache_page(page);
969 
970 		/*
971 		 * When a sequential read accesses a page several times,
972 		 * only mark it as accessed the first time.
973 		 */
974 		if (prev_index != index || offset != prev_offset)
975 			mark_page_accessed(page);
976 		prev_index = index;
977 
978 		/*
979 		 * Ok, we have the page, and it's up-to-date, so
980 		 * now we can copy it to user space...
981 		 *
982 		 * The actor routine returns how many bytes were actually used..
983 		 * NOTE! This may not be the same as how much of a user buffer
984 		 * we filled up (we may be padding etc), so we can only update
985 		 * "pos" here (the actor routine has to update the user buffer
986 		 * pointers and the remaining count).
987 		 */
988 		ret = actor(desc, page, offset, nr);
989 		offset += ret;
990 		index += offset >> PAGE_CACHE_SHIFT;
991 		offset &= ~PAGE_CACHE_MASK;
992 		prev_offset = offset;
993 
994 		page_cache_release(page);
995 		if (ret == nr && desc->count)
996 			continue;
997 		goto out;
998 
999 page_not_up_to_date:
1000 		/* Get exclusive access to the page ... */
1001 		if (lock_page_killable(page))
1002 			goto readpage_eio;
1003 
1004 		/* Did it get truncated before we got the lock? */
1005 		if (!page->mapping) {
1006 			unlock_page(page);
1007 			page_cache_release(page);
1008 			continue;
1009 		}
1010 
1011 		/* Did somebody else fill it already? */
1012 		if (PageUptodate(page)) {
1013 			unlock_page(page);
1014 			goto page_ok;
1015 		}
1016 
1017 readpage:
1018 		/* Start the actual read. The read will unlock the page. */
1019 		error = mapping->a_ops->readpage(filp, page);
1020 
1021 		if (unlikely(error)) {
1022 			if (error == AOP_TRUNCATED_PAGE) {
1023 				page_cache_release(page);
1024 				goto find_page;
1025 			}
1026 			goto readpage_error;
1027 		}
1028 
1029 		if (!PageUptodate(page)) {
1030 			if (lock_page_killable(page))
1031 				goto readpage_eio;
1032 			if (!PageUptodate(page)) {
1033 				if (page->mapping == NULL) {
1034 					/*
1035 					 * invalidate_inode_pages got it
1036 					 */
1037 					unlock_page(page);
1038 					page_cache_release(page);
1039 					goto find_page;
1040 				}
1041 				unlock_page(page);
1042 				shrink_readahead_size_eio(filp, ra);
1043 				goto readpage_eio;
1044 			}
1045 			unlock_page(page);
1046 		}
1047 
1048 		goto page_ok;
1049 
1050 readpage_eio:
1051 		error = -EIO;
1052 readpage_error:
1053 		/* UHHUH! A synchronous read error occurred. Report it */
1054 		desc->error = error;
1055 		page_cache_release(page);
1056 		goto out;
1057 
1058 no_cached_page:
1059 		/*
1060 		 * Ok, it wasn't cached, so we need to create a new
1061 		 * page..
1062 		 */
1063 		page = page_cache_alloc_cold(mapping);
1064 		if (!page) {
1065 			desc->error = -ENOMEM;
1066 			goto out;
1067 		}
1068 		error = add_to_page_cache_lru(page, mapping,
1069 						index, GFP_KERNEL);
1070 		if (error) {
1071 			page_cache_release(page);
1072 			if (error == -EEXIST)
1073 				goto find_page;
1074 			desc->error = error;
1075 			goto out;
1076 		}
1077 		goto readpage;
1078 	}
1079 
1080 out:
1081 	ra->prev_pos = prev_index;
1082 	ra->prev_pos <<= PAGE_CACHE_SHIFT;
1083 	ra->prev_pos |= prev_offset;
1084 
1085 	*ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1086 	if (filp)
1087 		file_accessed(filp);
1088 }
1089 
1090 int file_read_actor(read_descriptor_t *desc, struct page *page,
1091 			unsigned long offset, unsigned long size)
1092 {
1093 	char *kaddr;
1094 	unsigned long left, count = desc->count;
1095 
1096 	if (size > count)
1097 		size = count;
1098 
1099 	/*
1100 	 * Faults on the destination of a read are common, so do it before
1101 	 * taking the kmap.
1102 	 */
1103 	if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1104 		kaddr = kmap_atomic(page, KM_USER0);
1105 		left = __copy_to_user_inatomic(desc->arg.buf,
1106 						kaddr + offset, size);
1107 		kunmap_atomic(kaddr, KM_USER0);
1108 		if (left == 0)
1109 			goto success;
1110 	}
1111 
1112 	/* Do it the slow way */
1113 	kaddr = kmap(page);
1114 	left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1115 	kunmap(page);
1116 
1117 	if (left) {
1118 		size -= left;
1119 		desc->error = -EFAULT;
1120 	}
1121 success:
1122 	desc->count = count - size;
1123 	desc->written += size;
1124 	desc->arg.buf += size;
1125 	return size;
1126 }
1127 
1128 /*
1129  * Performs necessary checks before doing a write
1130  * @iov:	io vector request
1131  * @nr_segs:	number of segments in the iovec
1132  * @count:	number of bytes to write
1133  * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1134  *
1135  * Adjust number of segments and amount of bytes to write (nr_segs should be
1136  * properly initialized first). Returns appropriate error code that caller
1137  * should return or zero in case that write should be allowed.
1138  */
1139 int generic_segment_checks(const struct iovec *iov,
1140 			unsigned long *nr_segs, size_t *count, int access_flags)
1141 {
1142 	unsigned long   seg;
1143 	size_t cnt = 0;
1144 	for (seg = 0; seg < *nr_segs; seg++) {
1145 		const struct iovec *iv = &iov[seg];
1146 
1147 		/*
1148 		 * If any segment has a negative length, or the cumulative
1149 		 * length ever wraps negative then return -EINVAL.
1150 		 */
1151 		cnt += iv->iov_len;
1152 		if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1153 			return -EINVAL;
1154 		if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1155 			continue;
1156 		if (seg == 0)
1157 			return -EFAULT;
1158 		*nr_segs = seg;
1159 		cnt -= iv->iov_len;	/* This segment is no good */
1160 		break;
1161 	}
1162 	*count = cnt;
1163 	return 0;
1164 }
1165 EXPORT_SYMBOL(generic_segment_checks);
1166 
1167 /**
1168  * generic_file_aio_read - generic filesystem read routine
1169  * @iocb:	kernel I/O control block
1170  * @iov:	io vector request
1171  * @nr_segs:	number of segments in the iovec
1172  * @pos:	current file position
1173  *
1174  * This is the "read()" routine for all filesystems
1175  * that can use the page cache directly.
1176  */
1177 ssize_t
1178 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1179 		unsigned long nr_segs, loff_t pos)
1180 {
1181 	struct file *filp = iocb->ki_filp;
1182 	ssize_t retval;
1183 	unsigned long seg;
1184 	size_t count;
1185 	loff_t *ppos = &iocb->ki_pos;
1186 
1187 	count = 0;
1188 	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1189 	if (retval)
1190 		return retval;
1191 
1192 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1193 	if (filp->f_flags & O_DIRECT) {
1194 		loff_t size;
1195 		struct address_space *mapping;
1196 		struct inode *inode;
1197 
1198 		mapping = filp->f_mapping;
1199 		inode = mapping->host;
1200 		retval = 0;
1201 		if (!count)
1202 			goto out; /* skip atime */
1203 		size = i_size_read(inode);
1204 		if (pos < size) {
1205 			retval = generic_file_direct_IO(READ, iocb,
1206 						iov, pos, nr_segs);
1207 			if (retval > 0)
1208 				*ppos = pos + retval;
1209 		}
1210 		if (likely(retval != 0)) {
1211 			file_accessed(filp);
1212 			goto out;
1213 		}
1214 	}
1215 
1216 	retval = 0;
1217 	if (count) {
1218 		for (seg = 0; seg < nr_segs; seg++) {
1219 			read_descriptor_t desc;
1220 
1221 			desc.written = 0;
1222 			desc.arg.buf = iov[seg].iov_base;
1223 			desc.count = iov[seg].iov_len;
1224 			if (desc.count == 0)
1225 				continue;
1226 			desc.error = 0;
1227 			do_generic_file_read(filp,ppos,&desc,file_read_actor);
1228 			retval += desc.written;
1229 			if (desc.error) {
1230 				retval = retval ?: desc.error;
1231 				break;
1232 			}
1233 			if (desc.count > 0)
1234 				break;
1235 		}
1236 	}
1237 out:
1238 	return retval;
1239 }
1240 EXPORT_SYMBOL(generic_file_aio_read);
1241 
1242 static ssize_t
1243 do_readahead(struct address_space *mapping, struct file *filp,
1244 	     pgoff_t index, unsigned long nr)
1245 {
1246 	if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1247 		return -EINVAL;
1248 
1249 	force_page_cache_readahead(mapping, filp, index,
1250 					max_sane_readahead(nr));
1251 	return 0;
1252 }
1253 
1254 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1255 {
1256 	ssize_t ret;
1257 	struct file *file;
1258 
1259 	ret = -EBADF;
1260 	file = fget(fd);
1261 	if (file) {
1262 		if (file->f_mode & FMODE_READ) {
1263 			struct address_space *mapping = file->f_mapping;
1264 			pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1265 			pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1266 			unsigned long len = end - start + 1;
1267 			ret = do_readahead(mapping, file, start, len);
1268 		}
1269 		fput(file);
1270 	}
1271 	return ret;
1272 }
1273 
1274 #ifdef CONFIG_MMU
1275 /**
1276  * page_cache_read - adds requested page to the page cache if not already there
1277  * @file:	file to read
1278  * @offset:	page index
1279  *
1280  * This adds the requested page to the page cache if it isn't already there,
1281  * and schedules an I/O to read in its contents from disk.
1282  */
1283 static int page_cache_read(struct file *file, pgoff_t offset)
1284 {
1285 	struct address_space *mapping = file->f_mapping;
1286 	struct page *page;
1287 	int ret;
1288 
1289 	do {
1290 		page = page_cache_alloc_cold(mapping);
1291 		if (!page)
1292 			return -ENOMEM;
1293 
1294 		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1295 		if (ret == 0)
1296 			ret = mapping->a_ops->readpage(file, page);
1297 		else if (ret == -EEXIST)
1298 			ret = 0; /* losing race to add is OK */
1299 
1300 		page_cache_release(page);
1301 
1302 	} while (ret == AOP_TRUNCATED_PAGE);
1303 
1304 	return ret;
1305 }
1306 
1307 #define MMAP_LOTSAMISS  (100)
1308 
1309 /**
1310  * filemap_fault - read in file data for page fault handling
1311  * @vma:	vma in which the fault was taken
1312  * @vmf:	struct vm_fault containing details of the fault
1313  *
1314  * filemap_fault() is invoked via the vma operations vector for a
1315  * mapped memory region to read in file data during a page fault.
1316  *
1317  * The goto's are kind of ugly, but this streamlines the normal case of having
1318  * it in the page cache, and handles the special cases reasonably without
1319  * having a lot of duplicated code.
1320  */
1321 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1322 {
1323 	int error;
1324 	struct file *file = vma->vm_file;
1325 	struct address_space *mapping = file->f_mapping;
1326 	struct file_ra_state *ra = &file->f_ra;
1327 	struct inode *inode = mapping->host;
1328 	struct page *page;
1329 	pgoff_t size;
1330 	int did_readaround = 0;
1331 	int ret = 0;
1332 
1333 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1334 	if (vmf->pgoff >= size)
1335 		return VM_FAULT_SIGBUS;
1336 
1337 	/* If we don't want any read-ahead, don't bother */
1338 	if (VM_RandomReadHint(vma))
1339 		goto no_cached_page;
1340 
1341 	/*
1342 	 * Do we have something in the page cache already?
1343 	 */
1344 retry_find:
1345 	page = find_lock_page(mapping, vmf->pgoff);
1346 	/*
1347 	 * For sequential accesses, we use the generic readahead logic.
1348 	 */
1349 	if (VM_SequentialReadHint(vma)) {
1350 		if (!page) {
1351 			page_cache_sync_readahead(mapping, ra, file,
1352 							   vmf->pgoff, 1);
1353 			page = find_lock_page(mapping, vmf->pgoff);
1354 			if (!page)
1355 				goto no_cached_page;
1356 		}
1357 		if (PageReadahead(page)) {
1358 			page_cache_async_readahead(mapping, ra, file, page,
1359 							   vmf->pgoff, 1);
1360 		}
1361 	}
1362 
1363 	if (!page) {
1364 		unsigned long ra_pages;
1365 
1366 		ra->mmap_miss++;
1367 
1368 		/*
1369 		 * Do we miss much more than hit in this file? If so,
1370 		 * stop bothering with read-ahead. It will only hurt.
1371 		 */
1372 		if (ra->mmap_miss > MMAP_LOTSAMISS)
1373 			goto no_cached_page;
1374 
1375 		/*
1376 		 * To keep the pgmajfault counter straight, we need to
1377 		 * check did_readaround, as this is an inner loop.
1378 		 */
1379 		if (!did_readaround) {
1380 			ret = VM_FAULT_MAJOR;
1381 			count_vm_event(PGMAJFAULT);
1382 		}
1383 		did_readaround = 1;
1384 		ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1385 		if (ra_pages) {
1386 			pgoff_t start = 0;
1387 
1388 			if (vmf->pgoff > ra_pages / 2)
1389 				start = vmf->pgoff - ra_pages / 2;
1390 			do_page_cache_readahead(mapping, file, start, ra_pages);
1391 		}
1392 		page = find_lock_page(mapping, vmf->pgoff);
1393 		if (!page)
1394 			goto no_cached_page;
1395 	}
1396 
1397 	if (!did_readaround)
1398 		ra->mmap_miss--;
1399 
1400 	/*
1401 	 * We have a locked page in the page cache, now we need to check
1402 	 * that it's up-to-date. If not, it is going to be due to an error.
1403 	 */
1404 	if (unlikely(!PageUptodate(page)))
1405 		goto page_not_uptodate;
1406 
1407 	/* Must recheck i_size under page lock */
1408 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1409 	if (unlikely(vmf->pgoff >= size)) {
1410 		unlock_page(page);
1411 		page_cache_release(page);
1412 		return VM_FAULT_SIGBUS;
1413 	}
1414 
1415 	/*
1416 	 * Found the page and have a reference on it.
1417 	 */
1418 	mark_page_accessed(page);
1419 	ra->prev_pos = (loff_t)page->index << PAGE_CACHE_SHIFT;
1420 	vmf->page = page;
1421 	return ret | VM_FAULT_LOCKED;
1422 
1423 no_cached_page:
1424 	/*
1425 	 * We're only likely to ever get here if MADV_RANDOM is in
1426 	 * effect.
1427 	 */
1428 	error = page_cache_read(file, vmf->pgoff);
1429 
1430 	/*
1431 	 * The page we want has now been added to the page cache.
1432 	 * In the unlikely event that someone removed it in the
1433 	 * meantime, we'll just come back here and read it again.
1434 	 */
1435 	if (error >= 0)
1436 		goto retry_find;
1437 
1438 	/*
1439 	 * An error return from page_cache_read can result if the
1440 	 * system is low on memory, or a problem occurs while trying
1441 	 * to schedule I/O.
1442 	 */
1443 	if (error == -ENOMEM)
1444 		return VM_FAULT_OOM;
1445 	return VM_FAULT_SIGBUS;
1446 
1447 page_not_uptodate:
1448 	/* IO error path */
1449 	if (!did_readaround) {
1450 		ret = VM_FAULT_MAJOR;
1451 		count_vm_event(PGMAJFAULT);
1452 	}
1453 
1454 	/*
1455 	 * Umm, take care of errors if the page isn't up-to-date.
1456 	 * Try to re-read it _once_. We do this synchronously,
1457 	 * because there really aren't any performance issues here
1458 	 * and we need to check for errors.
1459 	 */
1460 	ClearPageError(page);
1461 	error = mapping->a_ops->readpage(file, page);
1462 	page_cache_release(page);
1463 
1464 	if (!error || error == AOP_TRUNCATED_PAGE)
1465 		goto retry_find;
1466 
1467 	/* Things didn't work out. Return zero to tell the mm layer so. */
1468 	shrink_readahead_size_eio(file, ra);
1469 	return VM_FAULT_SIGBUS;
1470 }
1471 EXPORT_SYMBOL(filemap_fault);
1472 
1473 struct vm_operations_struct generic_file_vm_ops = {
1474 	.fault		= filemap_fault,
1475 };
1476 
1477 /* This is used for a general mmap of a disk file */
1478 
1479 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1480 {
1481 	struct address_space *mapping = file->f_mapping;
1482 
1483 	if (!mapping->a_ops->readpage)
1484 		return -ENOEXEC;
1485 	file_accessed(file);
1486 	vma->vm_ops = &generic_file_vm_ops;
1487 	vma->vm_flags |= VM_CAN_NONLINEAR;
1488 	return 0;
1489 }
1490 
1491 /*
1492  * This is for filesystems which do not implement ->writepage.
1493  */
1494 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1495 {
1496 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1497 		return -EINVAL;
1498 	return generic_file_mmap(file, vma);
1499 }
1500 #else
1501 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1502 {
1503 	return -ENOSYS;
1504 }
1505 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1506 {
1507 	return -ENOSYS;
1508 }
1509 #endif /* CONFIG_MMU */
1510 
1511 EXPORT_SYMBOL(generic_file_mmap);
1512 EXPORT_SYMBOL(generic_file_readonly_mmap);
1513 
1514 static struct page *__read_cache_page(struct address_space *mapping,
1515 				pgoff_t index,
1516 				int (*filler)(void *,struct page*),
1517 				void *data)
1518 {
1519 	struct page *page;
1520 	int err;
1521 repeat:
1522 	page = find_get_page(mapping, index);
1523 	if (!page) {
1524 		page = page_cache_alloc_cold(mapping);
1525 		if (!page)
1526 			return ERR_PTR(-ENOMEM);
1527 		err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1528 		if (unlikely(err)) {
1529 			page_cache_release(page);
1530 			if (err == -EEXIST)
1531 				goto repeat;
1532 			/* Presumably ENOMEM for radix tree node */
1533 			return ERR_PTR(err);
1534 		}
1535 		err = filler(data, page);
1536 		if (err < 0) {
1537 			page_cache_release(page);
1538 			page = ERR_PTR(err);
1539 		}
1540 	}
1541 	return page;
1542 }
1543 
1544 /**
1545  * read_cache_page_async - read into page cache, fill it if needed
1546  * @mapping:	the page's address_space
1547  * @index:	the page index
1548  * @filler:	function to perform the read
1549  * @data:	destination for read data
1550  *
1551  * Same as read_cache_page, but don't wait for page to become unlocked
1552  * after submitting it to the filler.
1553  *
1554  * Read into the page cache. If a page already exists, and PageUptodate() is
1555  * not set, try to fill the page but don't wait for it to become unlocked.
1556  *
1557  * If the page does not get brought uptodate, return -EIO.
1558  */
1559 struct page *read_cache_page_async(struct address_space *mapping,
1560 				pgoff_t index,
1561 				int (*filler)(void *,struct page*),
1562 				void *data)
1563 {
1564 	struct page *page;
1565 	int err;
1566 
1567 retry:
1568 	page = __read_cache_page(mapping, index, filler, data);
1569 	if (IS_ERR(page))
1570 		return page;
1571 	if (PageUptodate(page))
1572 		goto out;
1573 
1574 	lock_page(page);
1575 	if (!page->mapping) {
1576 		unlock_page(page);
1577 		page_cache_release(page);
1578 		goto retry;
1579 	}
1580 	if (PageUptodate(page)) {
1581 		unlock_page(page);
1582 		goto out;
1583 	}
1584 	err = filler(data, page);
1585 	if (err < 0) {
1586 		page_cache_release(page);
1587 		return ERR_PTR(err);
1588 	}
1589 out:
1590 	mark_page_accessed(page);
1591 	return page;
1592 }
1593 EXPORT_SYMBOL(read_cache_page_async);
1594 
1595 /**
1596  * read_cache_page - read into page cache, fill it if needed
1597  * @mapping:	the page's address_space
1598  * @index:	the page index
1599  * @filler:	function to perform the read
1600  * @data:	destination for read data
1601  *
1602  * Read into the page cache. If a page already exists, and PageUptodate() is
1603  * not set, try to fill the page then wait for it to become unlocked.
1604  *
1605  * If the page does not get brought uptodate, return -EIO.
1606  */
1607 struct page *read_cache_page(struct address_space *mapping,
1608 				pgoff_t index,
1609 				int (*filler)(void *,struct page*),
1610 				void *data)
1611 {
1612 	struct page *page;
1613 
1614 	page = read_cache_page_async(mapping, index, filler, data);
1615 	if (IS_ERR(page))
1616 		goto out;
1617 	wait_on_page_locked(page);
1618 	if (!PageUptodate(page)) {
1619 		page_cache_release(page);
1620 		page = ERR_PTR(-EIO);
1621 	}
1622  out:
1623 	return page;
1624 }
1625 EXPORT_SYMBOL(read_cache_page);
1626 
1627 /*
1628  * The logic we want is
1629  *
1630  *	if suid or (sgid and xgrp)
1631  *		remove privs
1632  */
1633 int should_remove_suid(struct dentry *dentry)
1634 {
1635 	mode_t mode = dentry->d_inode->i_mode;
1636 	int kill = 0;
1637 
1638 	/* suid always must be killed */
1639 	if (unlikely(mode & S_ISUID))
1640 		kill = ATTR_KILL_SUID;
1641 
1642 	/*
1643 	 * sgid without any exec bits is just a mandatory locking mark; leave
1644 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1645 	 */
1646 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1647 		kill |= ATTR_KILL_SGID;
1648 
1649 	if (unlikely(kill && !capable(CAP_FSETID)))
1650 		return kill;
1651 
1652 	return 0;
1653 }
1654 EXPORT_SYMBOL(should_remove_suid);
1655 
1656 int __remove_suid(struct dentry *dentry, int kill)
1657 {
1658 	struct iattr newattrs;
1659 
1660 	newattrs.ia_valid = ATTR_FORCE | kill;
1661 	return notify_change(dentry, &newattrs);
1662 }
1663 
1664 int remove_suid(struct dentry *dentry)
1665 {
1666 	int killsuid = should_remove_suid(dentry);
1667 	int killpriv = security_inode_need_killpriv(dentry);
1668 	int error = 0;
1669 
1670 	if (killpriv < 0)
1671 		return killpriv;
1672 	if (killpriv)
1673 		error = security_inode_killpriv(dentry);
1674 	if (!error && killsuid)
1675 		error = __remove_suid(dentry, killsuid);
1676 
1677 	return error;
1678 }
1679 EXPORT_SYMBOL(remove_suid);
1680 
1681 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1682 			const struct iovec *iov, size_t base, size_t bytes)
1683 {
1684 	size_t copied = 0, left = 0;
1685 
1686 	while (bytes) {
1687 		char __user *buf = iov->iov_base + base;
1688 		int copy = min(bytes, iov->iov_len - base);
1689 
1690 		base = 0;
1691 		left = __copy_from_user_inatomic_nocache(vaddr, buf, copy);
1692 		copied += copy;
1693 		bytes -= copy;
1694 		vaddr += copy;
1695 		iov++;
1696 
1697 		if (unlikely(left))
1698 			break;
1699 	}
1700 	return copied - left;
1701 }
1702 
1703 /*
1704  * Copy as much as we can into the page and return the number of bytes which
1705  * were sucessfully copied.  If a fault is encountered then return the number of
1706  * bytes which were copied.
1707  */
1708 size_t iov_iter_copy_from_user_atomic(struct page *page,
1709 		struct iov_iter *i, unsigned long offset, size_t bytes)
1710 {
1711 	char *kaddr;
1712 	size_t copied;
1713 
1714 	BUG_ON(!in_atomic());
1715 	kaddr = kmap_atomic(page, KM_USER0);
1716 	if (likely(i->nr_segs == 1)) {
1717 		int left;
1718 		char __user *buf = i->iov->iov_base + i->iov_offset;
1719 		left = __copy_from_user_inatomic_nocache(kaddr + offset,
1720 							buf, bytes);
1721 		copied = bytes - left;
1722 	} else {
1723 		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1724 						i->iov, i->iov_offset, bytes);
1725 	}
1726 	kunmap_atomic(kaddr, KM_USER0);
1727 
1728 	return copied;
1729 }
1730 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1731 
1732 /*
1733  * This has the same sideeffects and return value as
1734  * iov_iter_copy_from_user_atomic().
1735  * The difference is that it attempts to resolve faults.
1736  * Page must not be locked.
1737  */
1738 size_t iov_iter_copy_from_user(struct page *page,
1739 		struct iov_iter *i, unsigned long offset, size_t bytes)
1740 {
1741 	char *kaddr;
1742 	size_t copied;
1743 
1744 	kaddr = kmap(page);
1745 	if (likely(i->nr_segs == 1)) {
1746 		int left;
1747 		char __user *buf = i->iov->iov_base + i->iov_offset;
1748 		left = __copy_from_user_nocache(kaddr + offset, buf, bytes);
1749 		copied = bytes - left;
1750 	} else {
1751 		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1752 						i->iov, i->iov_offset, bytes);
1753 	}
1754 	kunmap(page);
1755 	return copied;
1756 }
1757 EXPORT_SYMBOL(iov_iter_copy_from_user);
1758 
1759 void iov_iter_advance(struct iov_iter *i, size_t bytes)
1760 {
1761 	BUG_ON(i->count < bytes);
1762 
1763 	if (likely(i->nr_segs == 1)) {
1764 		i->iov_offset += bytes;
1765 		i->count -= bytes;
1766 	} else {
1767 		const struct iovec *iov = i->iov;
1768 		size_t base = i->iov_offset;
1769 
1770 		/*
1771 		 * The !iov->iov_len check ensures we skip over unlikely
1772 		 * zero-length segments (without overruning the iovec).
1773 		 */
1774 		while (bytes || unlikely(!iov->iov_len && i->count)) {
1775 			int copy;
1776 
1777 			copy = min(bytes, iov->iov_len - base);
1778 			BUG_ON(!i->count || i->count < copy);
1779 			i->count -= copy;
1780 			bytes -= copy;
1781 			base += copy;
1782 			if (iov->iov_len == base) {
1783 				iov++;
1784 				base = 0;
1785 			}
1786 		}
1787 		i->iov = iov;
1788 		i->iov_offset = base;
1789 	}
1790 }
1791 EXPORT_SYMBOL(iov_iter_advance);
1792 
1793 /*
1794  * Fault in the first iovec of the given iov_iter, to a maximum length
1795  * of bytes. Returns 0 on success, or non-zero if the memory could not be
1796  * accessed (ie. because it is an invalid address).
1797  *
1798  * writev-intensive code may want this to prefault several iovecs -- that
1799  * would be possible (callers must not rely on the fact that _only_ the
1800  * first iovec will be faulted with the current implementation).
1801  */
1802 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
1803 {
1804 	char __user *buf = i->iov->iov_base + i->iov_offset;
1805 	bytes = min(bytes, i->iov->iov_len - i->iov_offset);
1806 	return fault_in_pages_readable(buf, bytes);
1807 }
1808 EXPORT_SYMBOL(iov_iter_fault_in_readable);
1809 
1810 /*
1811  * Return the count of just the current iov_iter segment.
1812  */
1813 size_t iov_iter_single_seg_count(struct iov_iter *i)
1814 {
1815 	const struct iovec *iov = i->iov;
1816 	if (i->nr_segs == 1)
1817 		return i->count;
1818 	else
1819 		return min(i->count, iov->iov_len - i->iov_offset);
1820 }
1821 EXPORT_SYMBOL(iov_iter_single_seg_count);
1822 
1823 /*
1824  * Performs necessary checks before doing a write
1825  *
1826  * Can adjust writing position or amount of bytes to write.
1827  * Returns appropriate error code that caller should return or
1828  * zero in case that write should be allowed.
1829  */
1830 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1831 {
1832 	struct inode *inode = file->f_mapping->host;
1833 	unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1834 
1835         if (unlikely(*pos < 0))
1836                 return -EINVAL;
1837 
1838 	if (!isblk) {
1839 		/* FIXME: this is for backwards compatibility with 2.4 */
1840 		if (file->f_flags & O_APPEND)
1841                         *pos = i_size_read(inode);
1842 
1843 		if (limit != RLIM_INFINITY) {
1844 			if (*pos >= limit) {
1845 				send_sig(SIGXFSZ, current, 0);
1846 				return -EFBIG;
1847 			}
1848 			if (*count > limit - (typeof(limit))*pos) {
1849 				*count = limit - (typeof(limit))*pos;
1850 			}
1851 		}
1852 	}
1853 
1854 	/*
1855 	 * LFS rule
1856 	 */
1857 	if (unlikely(*pos + *count > MAX_NON_LFS &&
1858 				!(file->f_flags & O_LARGEFILE))) {
1859 		if (*pos >= MAX_NON_LFS) {
1860 			return -EFBIG;
1861 		}
1862 		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1863 			*count = MAX_NON_LFS - (unsigned long)*pos;
1864 		}
1865 	}
1866 
1867 	/*
1868 	 * Are we about to exceed the fs block limit ?
1869 	 *
1870 	 * If we have written data it becomes a short write.  If we have
1871 	 * exceeded without writing data we send a signal and return EFBIG.
1872 	 * Linus frestrict idea will clean these up nicely..
1873 	 */
1874 	if (likely(!isblk)) {
1875 		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
1876 			if (*count || *pos > inode->i_sb->s_maxbytes) {
1877 				return -EFBIG;
1878 			}
1879 			/* zero-length writes at ->s_maxbytes are OK */
1880 		}
1881 
1882 		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
1883 			*count = inode->i_sb->s_maxbytes - *pos;
1884 	} else {
1885 #ifdef CONFIG_BLOCK
1886 		loff_t isize;
1887 		if (bdev_read_only(I_BDEV(inode)))
1888 			return -EPERM;
1889 		isize = i_size_read(inode);
1890 		if (*pos >= isize) {
1891 			if (*count || *pos > isize)
1892 				return -ENOSPC;
1893 		}
1894 
1895 		if (*pos + *count > isize)
1896 			*count = isize - *pos;
1897 #else
1898 		return -EPERM;
1899 #endif
1900 	}
1901 	return 0;
1902 }
1903 EXPORT_SYMBOL(generic_write_checks);
1904 
1905 int pagecache_write_begin(struct file *file, struct address_space *mapping,
1906 				loff_t pos, unsigned len, unsigned flags,
1907 				struct page **pagep, void **fsdata)
1908 {
1909 	const struct address_space_operations *aops = mapping->a_ops;
1910 
1911 	if (aops->write_begin) {
1912 		return aops->write_begin(file, mapping, pos, len, flags,
1913 							pagep, fsdata);
1914 	} else {
1915 		int ret;
1916 		pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1917 		unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
1918 		struct inode *inode = mapping->host;
1919 		struct page *page;
1920 again:
1921 		page = __grab_cache_page(mapping, index);
1922 		*pagep = page;
1923 		if (!page)
1924 			return -ENOMEM;
1925 
1926 		if (flags & AOP_FLAG_UNINTERRUPTIBLE && !PageUptodate(page)) {
1927 			/*
1928 			 * There is no way to resolve a short write situation
1929 			 * for a !Uptodate page (except by double copying in
1930 			 * the caller done by generic_perform_write_2copy).
1931 			 *
1932 			 * Instead, we have to bring it uptodate here.
1933 			 */
1934 			ret = aops->readpage(file, page);
1935 			page_cache_release(page);
1936 			if (ret) {
1937 				if (ret == AOP_TRUNCATED_PAGE)
1938 					goto again;
1939 				return ret;
1940 			}
1941 			goto again;
1942 		}
1943 
1944 		ret = aops->prepare_write(file, page, offset, offset+len);
1945 		if (ret) {
1946 			unlock_page(page);
1947 			page_cache_release(page);
1948 			if (pos + len > inode->i_size)
1949 				vmtruncate(inode, inode->i_size);
1950 		}
1951 		return ret;
1952 	}
1953 }
1954 EXPORT_SYMBOL(pagecache_write_begin);
1955 
1956 int pagecache_write_end(struct file *file, struct address_space *mapping,
1957 				loff_t pos, unsigned len, unsigned copied,
1958 				struct page *page, void *fsdata)
1959 {
1960 	const struct address_space_operations *aops = mapping->a_ops;
1961 	int ret;
1962 
1963 	if (aops->write_end) {
1964 		mark_page_accessed(page);
1965 		ret = aops->write_end(file, mapping, pos, len, copied,
1966 							page, fsdata);
1967 	} else {
1968 		unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
1969 		struct inode *inode = mapping->host;
1970 
1971 		flush_dcache_page(page);
1972 		ret = aops->commit_write(file, page, offset, offset+len);
1973 		unlock_page(page);
1974 		mark_page_accessed(page);
1975 		page_cache_release(page);
1976 
1977 		if (ret < 0) {
1978 			if (pos + len > inode->i_size)
1979 				vmtruncate(inode, inode->i_size);
1980 		} else if (ret > 0)
1981 			ret = min_t(size_t, copied, ret);
1982 		else
1983 			ret = copied;
1984 	}
1985 
1986 	return ret;
1987 }
1988 EXPORT_SYMBOL(pagecache_write_end);
1989 
1990 ssize_t
1991 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
1992 		unsigned long *nr_segs, loff_t pos, loff_t *ppos,
1993 		size_t count, size_t ocount)
1994 {
1995 	struct file	*file = iocb->ki_filp;
1996 	struct address_space *mapping = file->f_mapping;
1997 	struct inode	*inode = mapping->host;
1998 	ssize_t		written;
1999 
2000 	if (count != ocount)
2001 		*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2002 
2003 	written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2004 	if (written > 0) {
2005 		loff_t end = pos + written;
2006 		if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2007 			i_size_write(inode,  end);
2008 			mark_inode_dirty(inode);
2009 		}
2010 		*ppos = end;
2011 	}
2012 
2013 	/*
2014 	 * Sync the fs metadata but not the minor inode changes and
2015 	 * of course not the data as we did direct DMA for the IO.
2016 	 * i_mutex is held, which protects generic_osync_inode() from
2017 	 * livelocking.  AIO O_DIRECT ops attempt to sync metadata here.
2018 	 */
2019 	if ((written >= 0 || written == -EIOCBQUEUED) &&
2020 	    ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2021 		int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
2022 		if (err < 0)
2023 			written = err;
2024 	}
2025 	return written;
2026 }
2027 EXPORT_SYMBOL(generic_file_direct_write);
2028 
2029 /*
2030  * Find or create a page at the given pagecache position. Return the locked
2031  * page. This function is specifically for buffered writes.
2032  */
2033 struct page *__grab_cache_page(struct address_space *mapping, pgoff_t index)
2034 {
2035 	int status;
2036 	struct page *page;
2037 repeat:
2038 	page = find_lock_page(mapping, index);
2039 	if (likely(page))
2040 		return page;
2041 
2042 	page = page_cache_alloc(mapping);
2043 	if (!page)
2044 		return NULL;
2045 	status = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
2046 	if (unlikely(status)) {
2047 		page_cache_release(page);
2048 		if (status == -EEXIST)
2049 			goto repeat;
2050 		return NULL;
2051 	}
2052 	return page;
2053 }
2054 EXPORT_SYMBOL(__grab_cache_page);
2055 
2056 static ssize_t generic_perform_write_2copy(struct file *file,
2057 				struct iov_iter *i, loff_t pos)
2058 {
2059 	struct address_space *mapping = file->f_mapping;
2060 	const struct address_space_operations *a_ops = mapping->a_ops;
2061 	struct inode *inode = mapping->host;
2062 	long status = 0;
2063 	ssize_t written = 0;
2064 
2065 	do {
2066 		struct page *src_page;
2067 		struct page *page;
2068 		pgoff_t index;		/* Pagecache index for current page */
2069 		unsigned long offset;	/* Offset into pagecache page */
2070 		unsigned long bytes;	/* Bytes to write to page */
2071 		size_t copied;		/* Bytes copied from user */
2072 
2073 		offset = (pos & (PAGE_CACHE_SIZE - 1));
2074 		index = pos >> PAGE_CACHE_SHIFT;
2075 		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2076 						iov_iter_count(i));
2077 
2078 		/*
2079 		 * a non-NULL src_page indicates that we're doing the
2080 		 * copy via get_user_pages and kmap.
2081 		 */
2082 		src_page = NULL;
2083 
2084 		/*
2085 		 * Bring in the user page that we will copy from _first_.
2086 		 * Otherwise there's a nasty deadlock on copying from the
2087 		 * same page as we're writing to, without it being marked
2088 		 * up-to-date.
2089 		 *
2090 		 * Not only is this an optimisation, but it is also required
2091 		 * to check that the address is actually valid, when atomic
2092 		 * usercopies are used, below.
2093 		 */
2094 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2095 			status = -EFAULT;
2096 			break;
2097 		}
2098 
2099 		page = __grab_cache_page(mapping, index);
2100 		if (!page) {
2101 			status = -ENOMEM;
2102 			break;
2103 		}
2104 
2105 		/*
2106 		 * non-uptodate pages cannot cope with short copies, and we
2107 		 * cannot take a pagefault with the destination page locked.
2108 		 * So pin the source page to copy it.
2109 		 */
2110 		if (!PageUptodate(page) && !segment_eq(get_fs(), KERNEL_DS)) {
2111 			unlock_page(page);
2112 
2113 			src_page = alloc_page(GFP_KERNEL);
2114 			if (!src_page) {
2115 				page_cache_release(page);
2116 				status = -ENOMEM;
2117 				break;
2118 			}
2119 
2120 			/*
2121 			 * Cannot get_user_pages with a page locked for the
2122 			 * same reason as we can't take a page fault with a
2123 			 * page locked (as explained below).
2124 			 */
2125 			copied = iov_iter_copy_from_user(src_page, i,
2126 								offset, bytes);
2127 			if (unlikely(copied == 0)) {
2128 				status = -EFAULT;
2129 				page_cache_release(page);
2130 				page_cache_release(src_page);
2131 				break;
2132 			}
2133 			bytes = copied;
2134 
2135 			lock_page(page);
2136 			/*
2137 			 * Can't handle the page going uptodate here, because
2138 			 * that means we would use non-atomic usercopies, which
2139 			 * zero out the tail of the page, which can cause
2140 			 * zeroes to become transiently visible. We could just
2141 			 * use a non-zeroing copy, but the APIs aren't too
2142 			 * consistent.
2143 			 */
2144 			if (unlikely(!page->mapping || PageUptodate(page))) {
2145 				unlock_page(page);
2146 				page_cache_release(page);
2147 				page_cache_release(src_page);
2148 				continue;
2149 			}
2150 		}
2151 
2152 		status = a_ops->prepare_write(file, page, offset, offset+bytes);
2153 		if (unlikely(status))
2154 			goto fs_write_aop_error;
2155 
2156 		if (!src_page) {
2157 			/*
2158 			 * Must not enter the pagefault handler here, because
2159 			 * we hold the page lock, so we might recursively
2160 			 * deadlock on the same lock, or get an ABBA deadlock
2161 			 * against a different lock, or against the mmap_sem
2162 			 * (which nests outside the page lock).  So increment
2163 			 * preempt count, and use _atomic usercopies.
2164 			 *
2165 			 * The page is uptodate so we are OK to encounter a
2166 			 * short copy: if unmodified parts of the page are
2167 			 * marked dirty and written out to disk, it doesn't
2168 			 * really matter.
2169 			 */
2170 			pagefault_disable();
2171 			copied = iov_iter_copy_from_user_atomic(page, i,
2172 								offset, bytes);
2173 			pagefault_enable();
2174 		} else {
2175 			void *src, *dst;
2176 			src = kmap_atomic(src_page, KM_USER0);
2177 			dst = kmap_atomic(page, KM_USER1);
2178 			memcpy(dst + offset, src + offset, bytes);
2179 			kunmap_atomic(dst, KM_USER1);
2180 			kunmap_atomic(src, KM_USER0);
2181 			copied = bytes;
2182 		}
2183 		flush_dcache_page(page);
2184 
2185 		status = a_ops->commit_write(file, page, offset, offset+bytes);
2186 		if (unlikely(status < 0))
2187 			goto fs_write_aop_error;
2188 		if (unlikely(status > 0)) /* filesystem did partial write */
2189 			copied = min_t(size_t, copied, status);
2190 
2191 		unlock_page(page);
2192 		mark_page_accessed(page);
2193 		page_cache_release(page);
2194 		if (src_page)
2195 			page_cache_release(src_page);
2196 
2197 		iov_iter_advance(i, copied);
2198 		pos += copied;
2199 		written += copied;
2200 
2201 		balance_dirty_pages_ratelimited(mapping);
2202 		cond_resched();
2203 		continue;
2204 
2205 fs_write_aop_error:
2206 		unlock_page(page);
2207 		page_cache_release(page);
2208 		if (src_page)
2209 			page_cache_release(src_page);
2210 
2211 		/*
2212 		 * prepare_write() may have instantiated a few blocks
2213 		 * outside i_size.  Trim these off again. Don't need
2214 		 * i_size_read because we hold i_mutex.
2215 		 */
2216 		if (pos + bytes > inode->i_size)
2217 			vmtruncate(inode, inode->i_size);
2218 		break;
2219 	} while (iov_iter_count(i));
2220 
2221 	return written ? written : status;
2222 }
2223 
2224 static ssize_t generic_perform_write(struct file *file,
2225 				struct iov_iter *i, loff_t pos)
2226 {
2227 	struct address_space *mapping = file->f_mapping;
2228 	const struct address_space_operations *a_ops = mapping->a_ops;
2229 	long status = 0;
2230 	ssize_t written = 0;
2231 	unsigned int flags = 0;
2232 
2233 	/*
2234 	 * Copies from kernel address space cannot fail (NFSD is a big user).
2235 	 */
2236 	if (segment_eq(get_fs(), KERNEL_DS))
2237 		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2238 
2239 	do {
2240 		struct page *page;
2241 		pgoff_t index;		/* Pagecache index for current page */
2242 		unsigned long offset;	/* Offset into pagecache page */
2243 		unsigned long bytes;	/* Bytes to write to page */
2244 		size_t copied;		/* Bytes copied from user */
2245 		void *fsdata;
2246 
2247 		offset = (pos & (PAGE_CACHE_SIZE - 1));
2248 		index = pos >> PAGE_CACHE_SHIFT;
2249 		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2250 						iov_iter_count(i));
2251 
2252 again:
2253 
2254 		/*
2255 		 * Bring in the user page that we will copy from _first_.
2256 		 * Otherwise there's a nasty deadlock on copying from the
2257 		 * same page as we're writing to, without it being marked
2258 		 * up-to-date.
2259 		 *
2260 		 * Not only is this an optimisation, but it is also required
2261 		 * to check that the address is actually valid, when atomic
2262 		 * usercopies are used, below.
2263 		 */
2264 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2265 			status = -EFAULT;
2266 			break;
2267 		}
2268 
2269 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2270 						&page, &fsdata);
2271 		if (unlikely(status))
2272 			break;
2273 
2274 		pagefault_disable();
2275 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2276 		pagefault_enable();
2277 		flush_dcache_page(page);
2278 
2279 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2280 						page, fsdata);
2281 		if (unlikely(status < 0))
2282 			break;
2283 		copied = status;
2284 
2285 		cond_resched();
2286 
2287 		iov_iter_advance(i, copied);
2288 		if (unlikely(copied == 0)) {
2289 			/*
2290 			 * If we were unable to copy any data at all, we must
2291 			 * fall back to a single segment length write.
2292 			 *
2293 			 * If we didn't fallback here, we could livelock
2294 			 * because not all segments in the iov can be copied at
2295 			 * once without a pagefault.
2296 			 */
2297 			bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2298 						iov_iter_single_seg_count(i));
2299 			goto again;
2300 		}
2301 		pos += copied;
2302 		written += copied;
2303 
2304 		balance_dirty_pages_ratelimited(mapping);
2305 
2306 	} while (iov_iter_count(i));
2307 
2308 	return written ? written : status;
2309 }
2310 
2311 ssize_t
2312 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2313 		unsigned long nr_segs, loff_t pos, loff_t *ppos,
2314 		size_t count, ssize_t written)
2315 {
2316 	struct file *file = iocb->ki_filp;
2317 	struct address_space *mapping = file->f_mapping;
2318 	const struct address_space_operations *a_ops = mapping->a_ops;
2319 	struct inode *inode = mapping->host;
2320 	ssize_t status;
2321 	struct iov_iter i;
2322 
2323 	iov_iter_init(&i, iov, nr_segs, count, written);
2324 	if (a_ops->write_begin)
2325 		status = generic_perform_write(file, &i, pos);
2326 	else
2327 		status = generic_perform_write_2copy(file, &i, pos);
2328 
2329 	if (likely(status >= 0)) {
2330 		written += status;
2331 		*ppos = pos + status;
2332 
2333 		/*
2334 		 * For now, when the user asks for O_SYNC, we'll actually give
2335 		 * O_DSYNC
2336 		 */
2337 		if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2338 			if (!a_ops->writepage || !is_sync_kiocb(iocb))
2339 				status = generic_osync_inode(inode, mapping,
2340 						OSYNC_METADATA|OSYNC_DATA);
2341 		}
2342   	}
2343 
2344 	/*
2345 	 * If we get here for O_DIRECT writes then we must have fallen through
2346 	 * to buffered writes (block instantiation inside i_size).  So we sync
2347 	 * the file data here, to try to honour O_DIRECT expectations.
2348 	 */
2349 	if (unlikely(file->f_flags & O_DIRECT) && written)
2350 		status = filemap_write_and_wait(mapping);
2351 
2352 	return written ? written : status;
2353 }
2354 EXPORT_SYMBOL(generic_file_buffered_write);
2355 
2356 static ssize_t
2357 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2358 				unsigned long nr_segs, loff_t *ppos)
2359 {
2360 	struct file *file = iocb->ki_filp;
2361 	struct address_space * mapping = file->f_mapping;
2362 	size_t ocount;		/* original count */
2363 	size_t count;		/* after file limit checks */
2364 	struct inode 	*inode = mapping->host;
2365 	loff_t		pos;
2366 	ssize_t		written;
2367 	ssize_t		err;
2368 
2369 	ocount = 0;
2370 	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2371 	if (err)
2372 		return err;
2373 
2374 	count = ocount;
2375 	pos = *ppos;
2376 
2377 	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2378 
2379 	/* We can write back this queue in page reclaim */
2380 	current->backing_dev_info = mapping->backing_dev_info;
2381 	written = 0;
2382 
2383 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2384 	if (err)
2385 		goto out;
2386 
2387 	if (count == 0)
2388 		goto out;
2389 
2390 	err = remove_suid(file->f_path.dentry);
2391 	if (err)
2392 		goto out;
2393 
2394 	file_update_time(file);
2395 
2396 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2397 	if (unlikely(file->f_flags & O_DIRECT)) {
2398 		loff_t endbyte;
2399 		ssize_t written_buffered;
2400 
2401 		written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2402 							ppos, count, ocount);
2403 		if (written < 0 || written == count)
2404 			goto out;
2405 		/*
2406 		 * direct-io write to a hole: fall through to buffered I/O
2407 		 * for completing the rest of the request.
2408 		 */
2409 		pos += written;
2410 		count -= written;
2411 		written_buffered = generic_file_buffered_write(iocb, iov,
2412 						nr_segs, pos, ppos, count,
2413 						written);
2414 		/*
2415 		 * If generic_file_buffered_write() retuned a synchronous error
2416 		 * then we want to return the number of bytes which were
2417 		 * direct-written, or the error code if that was zero.  Note
2418 		 * that this differs from normal direct-io semantics, which
2419 		 * will return -EFOO even if some bytes were written.
2420 		 */
2421 		if (written_buffered < 0) {
2422 			err = written_buffered;
2423 			goto out;
2424 		}
2425 
2426 		/*
2427 		 * We need to ensure that the page cache pages are written to
2428 		 * disk and invalidated to preserve the expected O_DIRECT
2429 		 * semantics.
2430 		 */
2431 		endbyte = pos + written_buffered - written - 1;
2432 		err = do_sync_mapping_range(file->f_mapping, pos, endbyte,
2433 					    SYNC_FILE_RANGE_WAIT_BEFORE|
2434 					    SYNC_FILE_RANGE_WRITE|
2435 					    SYNC_FILE_RANGE_WAIT_AFTER);
2436 		if (err == 0) {
2437 			written = written_buffered;
2438 			invalidate_mapping_pages(mapping,
2439 						 pos >> PAGE_CACHE_SHIFT,
2440 						 endbyte >> PAGE_CACHE_SHIFT);
2441 		} else {
2442 			/*
2443 			 * We don't know how much we wrote, so just return
2444 			 * the number of bytes which were direct-written
2445 			 */
2446 		}
2447 	} else {
2448 		written = generic_file_buffered_write(iocb, iov, nr_segs,
2449 				pos, ppos, count, written);
2450 	}
2451 out:
2452 	current->backing_dev_info = NULL;
2453 	return written ? written : err;
2454 }
2455 
2456 ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
2457 		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
2458 {
2459 	struct file *file = iocb->ki_filp;
2460 	struct address_space *mapping = file->f_mapping;
2461 	struct inode *inode = mapping->host;
2462 	ssize_t ret;
2463 
2464 	BUG_ON(iocb->ki_pos != pos);
2465 
2466 	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2467 			&iocb->ki_pos);
2468 
2469 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2470 		ssize_t err;
2471 
2472 		err = sync_page_range_nolock(inode, mapping, pos, ret);
2473 		if (err < 0)
2474 			ret = err;
2475 	}
2476 	return ret;
2477 }
2478 EXPORT_SYMBOL(generic_file_aio_write_nolock);
2479 
2480 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2481 		unsigned long nr_segs, loff_t pos)
2482 {
2483 	struct file *file = iocb->ki_filp;
2484 	struct address_space *mapping = file->f_mapping;
2485 	struct inode *inode = mapping->host;
2486 	ssize_t ret;
2487 
2488 	BUG_ON(iocb->ki_pos != pos);
2489 
2490 	mutex_lock(&inode->i_mutex);
2491 	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2492 			&iocb->ki_pos);
2493 	mutex_unlock(&inode->i_mutex);
2494 
2495 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2496 		ssize_t err;
2497 
2498 		err = sync_page_range(inode, mapping, pos, ret);
2499 		if (err < 0)
2500 			ret = err;
2501 	}
2502 	return ret;
2503 }
2504 EXPORT_SYMBOL(generic_file_aio_write);
2505 
2506 /*
2507  * Called under i_mutex for writes to S_ISREG files.   Returns -EIO if something
2508  * went wrong during pagecache shootdown.
2509  */
2510 static ssize_t
2511 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
2512 	loff_t offset, unsigned long nr_segs)
2513 {
2514 	struct file *file = iocb->ki_filp;
2515 	struct address_space *mapping = file->f_mapping;
2516 	ssize_t retval;
2517 	size_t write_len;
2518 	pgoff_t end = 0; /* silence gcc */
2519 
2520 	/*
2521 	 * If it's a write, unmap all mmappings of the file up-front.  This
2522 	 * will cause any pte dirty bits to be propagated into the pageframes
2523 	 * for the subsequent filemap_write_and_wait().
2524 	 */
2525 	if (rw == WRITE) {
2526 		write_len = iov_length(iov, nr_segs);
2527 		end = (offset + write_len - 1) >> PAGE_CACHE_SHIFT;
2528 	       	if (mapping_mapped(mapping))
2529 			unmap_mapping_range(mapping, offset, write_len, 0);
2530 	}
2531 
2532 	retval = filemap_write_and_wait(mapping);
2533 	if (retval)
2534 		goto out;
2535 
2536 	/*
2537 	 * After a write we want buffered reads to be sure to go to disk to get
2538 	 * the new data.  We invalidate clean cached page from the region we're
2539 	 * about to write.  We do this *before* the write so that we can return
2540 	 * -EIO without clobbering -EIOCBQUEUED from ->direct_IO().
2541 	 */
2542 	if (rw == WRITE && mapping->nrpages) {
2543 		retval = invalidate_inode_pages2_range(mapping,
2544 					offset >> PAGE_CACHE_SHIFT, end);
2545 		if (retval)
2546 			goto out;
2547 	}
2548 
2549 	retval = mapping->a_ops->direct_IO(rw, iocb, iov, offset, nr_segs);
2550 
2551 	/*
2552 	 * Finally, try again to invalidate clean pages which might have been
2553 	 * cached by non-direct readahead, or faulted in by get_user_pages()
2554 	 * if the source of the write was an mmap'ed region of the file
2555 	 * we're writing.  Either one is a pretty crazy thing to do,
2556 	 * so we don't support it 100%.  If this invalidation
2557 	 * fails, tough, the write still worked...
2558 	 */
2559 	if (rw == WRITE && mapping->nrpages) {
2560 		invalidate_inode_pages2_range(mapping, offset >> PAGE_CACHE_SHIFT, end);
2561 	}
2562 out:
2563 	return retval;
2564 }
2565 
2566 /**
2567  * try_to_release_page() - release old fs-specific metadata on a page
2568  *
2569  * @page: the page which the kernel is trying to free
2570  * @gfp_mask: memory allocation flags (and I/O mode)
2571  *
2572  * The address_space is to try to release any data against the page
2573  * (presumably at page->private).  If the release was successful, return `1'.
2574  * Otherwise return zero.
2575  *
2576  * The @gfp_mask argument specifies whether I/O may be performed to release
2577  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
2578  *
2579  * NOTE: @gfp_mask may go away, and this function may become non-blocking.
2580  */
2581 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2582 {
2583 	struct address_space * const mapping = page->mapping;
2584 
2585 	BUG_ON(!PageLocked(page));
2586 	if (PageWriteback(page))
2587 		return 0;
2588 
2589 	if (mapping && mapping->a_ops->releasepage)
2590 		return mapping->a_ops->releasepage(page, gfp_mask);
2591 	return try_to_free_buffers(page);
2592 }
2593 
2594 EXPORT_SYMBOL(try_to_release_page);
2595