1 /* 2 * linux/mm/filemap.c 3 * 4 * Copyright (C) 1994-1999 Linus Torvalds 5 */ 6 7 /* 8 * This file handles the generic file mmap semantics used by 9 * most "normal" filesystems (but you don't /have/ to use this: 10 * the NFS filesystem used to do this differently, for example) 11 */ 12 #include <linux/module.h> 13 #include <linux/slab.h> 14 #include <linux/compiler.h> 15 #include <linux/fs.h> 16 #include <linux/uaccess.h> 17 #include <linux/aio.h> 18 #include <linux/capability.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/mm.h> 21 #include <linux/swap.h> 22 #include <linux/mman.h> 23 #include <linux/pagemap.h> 24 #include <linux/file.h> 25 #include <linux/uio.h> 26 #include <linux/hash.h> 27 #include <linux/writeback.h> 28 #include <linux/backing-dev.h> 29 #include <linux/pagevec.h> 30 #include <linux/blkdev.h> 31 #include <linux/security.h> 32 #include <linux/syscalls.h> 33 #include <linux/cpuset.h> 34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */ 35 #include <linux/memcontrol.h> 36 #include "internal.h" 37 38 /* 39 * FIXME: remove all knowledge of the buffer layer from the core VM 40 */ 41 #include <linux/buffer_head.h> /* for generic_osync_inode */ 42 43 #include <asm/mman.h> 44 45 static ssize_t 46 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, 47 loff_t offset, unsigned long nr_segs); 48 49 /* 50 * Shared mappings implemented 30.11.1994. It's not fully working yet, 51 * though. 52 * 53 * Shared mappings now work. 15.8.1995 Bruno. 54 * 55 * finished 'unifying' the page and buffer cache and SMP-threaded the 56 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 57 * 58 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 59 */ 60 61 /* 62 * Lock ordering: 63 * 64 * ->i_mmap_lock (vmtruncate) 65 * ->private_lock (__free_pte->__set_page_dirty_buffers) 66 * ->swap_lock (exclusive_swap_page, others) 67 * ->mapping->tree_lock 68 * 69 * ->i_mutex 70 * ->i_mmap_lock (truncate->unmap_mapping_range) 71 * 72 * ->mmap_sem 73 * ->i_mmap_lock 74 * ->page_table_lock or pte_lock (various, mainly in memory.c) 75 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock) 76 * 77 * ->mmap_sem 78 * ->lock_page (access_process_vm) 79 * 80 * ->i_mutex (generic_file_buffered_write) 81 * ->mmap_sem (fault_in_pages_readable->do_page_fault) 82 * 83 * ->i_mutex 84 * ->i_alloc_sem (various) 85 * 86 * ->inode_lock 87 * ->sb_lock (fs/fs-writeback.c) 88 * ->mapping->tree_lock (__sync_single_inode) 89 * 90 * ->i_mmap_lock 91 * ->anon_vma.lock (vma_adjust) 92 * 93 * ->anon_vma.lock 94 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 95 * 96 * ->page_table_lock or pte_lock 97 * ->swap_lock (try_to_unmap_one) 98 * ->private_lock (try_to_unmap_one) 99 * ->tree_lock (try_to_unmap_one) 100 * ->zone.lru_lock (follow_page->mark_page_accessed) 101 * ->zone.lru_lock (check_pte_range->isolate_lru_page) 102 * ->private_lock (page_remove_rmap->set_page_dirty) 103 * ->tree_lock (page_remove_rmap->set_page_dirty) 104 * ->inode_lock (page_remove_rmap->set_page_dirty) 105 * ->inode_lock (zap_pte_range->set_page_dirty) 106 * ->private_lock (zap_pte_range->__set_page_dirty_buffers) 107 * 108 * ->task->proc_lock 109 * ->dcache_lock (proc_pid_lookup) 110 */ 111 112 /* 113 * Remove a page from the page cache and free it. Caller has to make 114 * sure the page is locked and that nobody else uses it - or that usage 115 * is safe. The caller must hold a write_lock on the mapping's tree_lock. 116 */ 117 void __remove_from_page_cache(struct page *page) 118 { 119 struct address_space *mapping = page->mapping; 120 121 mem_cgroup_uncharge_page(page); 122 radix_tree_delete(&mapping->page_tree, page->index); 123 page->mapping = NULL; 124 mapping->nrpages--; 125 __dec_zone_page_state(page, NR_FILE_PAGES); 126 BUG_ON(page_mapped(page)); 127 128 /* 129 * Some filesystems seem to re-dirty the page even after 130 * the VM has canceled the dirty bit (eg ext3 journaling). 131 * 132 * Fix it up by doing a final dirty accounting check after 133 * having removed the page entirely. 134 */ 135 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) { 136 dec_zone_page_state(page, NR_FILE_DIRTY); 137 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE); 138 } 139 } 140 141 void remove_from_page_cache(struct page *page) 142 { 143 struct address_space *mapping = page->mapping; 144 145 BUG_ON(!PageLocked(page)); 146 147 write_lock_irq(&mapping->tree_lock); 148 __remove_from_page_cache(page); 149 write_unlock_irq(&mapping->tree_lock); 150 } 151 152 static int sync_page(void *word) 153 { 154 struct address_space *mapping; 155 struct page *page; 156 157 page = container_of((unsigned long *)word, struct page, flags); 158 159 /* 160 * page_mapping() is being called without PG_locked held. 161 * Some knowledge of the state and use of the page is used to 162 * reduce the requirements down to a memory barrier. 163 * The danger here is of a stale page_mapping() return value 164 * indicating a struct address_space different from the one it's 165 * associated with when it is associated with one. 166 * After smp_mb(), it's either the correct page_mapping() for 167 * the page, or an old page_mapping() and the page's own 168 * page_mapping() has gone NULL. 169 * The ->sync_page() address_space operation must tolerate 170 * page_mapping() going NULL. By an amazing coincidence, 171 * this comes about because none of the users of the page 172 * in the ->sync_page() methods make essential use of the 173 * page_mapping(), merely passing the page down to the backing 174 * device's unplug functions when it's non-NULL, which in turn 175 * ignore it for all cases but swap, where only page_private(page) is 176 * of interest. When page_mapping() does go NULL, the entire 177 * call stack gracefully ignores the page and returns. 178 * -- wli 179 */ 180 smp_mb(); 181 mapping = page_mapping(page); 182 if (mapping && mapping->a_ops && mapping->a_ops->sync_page) 183 mapping->a_ops->sync_page(page); 184 io_schedule(); 185 return 0; 186 } 187 188 static int sync_page_killable(void *word) 189 { 190 sync_page(word); 191 return fatal_signal_pending(current) ? -EINTR : 0; 192 } 193 194 /** 195 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 196 * @mapping: address space structure to write 197 * @start: offset in bytes where the range starts 198 * @end: offset in bytes where the range ends (inclusive) 199 * @sync_mode: enable synchronous operation 200 * 201 * Start writeback against all of a mapping's dirty pages that lie 202 * within the byte offsets <start, end> inclusive. 203 * 204 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 205 * opposed to a regular memory cleansing writeback. The difference between 206 * these two operations is that if a dirty page/buffer is encountered, it must 207 * be waited upon, and not just skipped over. 208 */ 209 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 210 loff_t end, int sync_mode) 211 { 212 int ret; 213 struct writeback_control wbc = { 214 .sync_mode = sync_mode, 215 .nr_to_write = mapping->nrpages * 2, 216 .range_start = start, 217 .range_end = end, 218 }; 219 220 if (!mapping_cap_writeback_dirty(mapping)) 221 return 0; 222 223 ret = do_writepages(mapping, &wbc); 224 return ret; 225 } 226 227 static inline int __filemap_fdatawrite(struct address_space *mapping, 228 int sync_mode) 229 { 230 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 231 } 232 233 int filemap_fdatawrite(struct address_space *mapping) 234 { 235 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 236 } 237 EXPORT_SYMBOL(filemap_fdatawrite); 238 239 static int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 240 loff_t end) 241 { 242 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 243 } 244 245 /** 246 * filemap_flush - mostly a non-blocking flush 247 * @mapping: target address_space 248 * 249 * This is a mostly non-blocking flush. Not suitable for data-integrity 250 * purposes - I/O may not be started against all dirty pages. 251 */ 252 int filemap_flush(struct address_space *mapping) 253 { 254 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 255 } 256 EXPORT_SYMBOL(filemap_flush); 257 258 /** 259 * wait_on_page_writeback_range - wait for writeback to complete 260 * @mapping: target address_space 261 * @start: beginning page index 262 * @end: ending page index 263 * 264 * Wait for writeback to complete against pages indexed by start->end 265 * inclusive 266 */ 267 int wait_on_page_writeback_range(struct address_space *mapping, 268 pgoff_t start, pgoff_t end) 269 { 270 struct pagevec pvec; 271 int nr_pages; 272 int ret = 0; 273 pgoff_t index; 274 275 if (end < start) 276 return 0; 277 278 pagevec_init(&pvec, 0); 279 index = start; 280 while ((index <= end) && 281 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 282 PAGECACHE_TAG_WRITEBACK, 283 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) { 284 unsigned i; 285 286 for (i = 0; i < nr_pages; i++) { 287 struct page *page = pvec.pages[i]; 288 289 /* until radix tree lookup accepts end_index */ 290 if (page->index > end) 291 continue; 292 293 wait_on_page_writeback(page); 294 if (PageError(page)) 295 ret = -EIO; 296 } 297 pagevec_release(&pvec); 298 cond_resched(); 299 } 300 301 /* Check for outstanding write errors */ 302 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 303 ret = -ENOSPC; 304 if (test_and_clear_bit(AS_EIO, &mapping->flags)) 305 ret = -EIO; 306 307 return ret; 308 } 309 310 /** 311 * sync_page_range - write and wait on all pages in the passed range 312 * @inode: target inode 313 * @mapping: target address_space 314 * @pos: beginning offset in pages to write 315 * @count: number of bytes to write 316 * 317 * Write and wait upon all the pages in the passed range. This is a "data 318 * integrity" operation. It waits upon in-flight writeout before starting and 319 * waiting upon new writeout. If there was an IO error, return it. 320 * 321 * We need to re-take i_mutex during the generic_osync_inode list walk because 322 * it is otherwise livelockable. 323 */ 324 int sync_page_range(struct inode *inode, struct address_space *mapping, 325 loff_t pos, loff_t count) 326 { 327 pgoff_t start = pos >> PAGE_CACHE_SHIFT; 328 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT; 329 int ret; 330 331 if (!mapping_cap_writeback_dirty(mapping) || !count) 332 return 0; 333 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1); 334 if (ret == 0) { 335 mutex_lock(&inode->i_mutex); 336 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA); 337 mutex_unlock(&inode->i_mutex); 338 } 339 if (ret == 0) 340 ret = wait_on_page_writeback_range(mapping, start, end); 341 return ret; 342 } 343 EXPORT_SYMBOL(sync_page_range); 344 345 /** 346 * sync_page_range_nolock - write & wait on all pages in the passed range without locking 347 * @inode: target inode 348 * @mapping: target address_space 349 * @pos: beginning offset in pages to write 350 * @count: number of bytes to write 351 * 352 * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea 353 * as it forces O_SYNC writers to different parts of the same file 354 * to be serialised right until io completion. 355 */ 356 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping, 357 loff_t pos, loff_t count) 358 { 359 pgoff_t start = pos >> PAGE_CACHE_SHIFT; 360 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT; 361 int ret; 362 363 if (!mapping_cap_writeback_dirty(mapping) || !count) 364 return 0; 365 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1); 366 if (ret == 0) 367 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA); 368 if (ret == 0) 369 ret = wait_on_page_writeback_range(mapping, start, end); 370 return ret; 371 } 372 EXPORT_SYMBOL(sync_page_range_nolock); 373 374 /** 375 * filemap_fdatawait - wait for all under-writeback pages to complete 376 * @mapping: address space structure to wait for 377 * 378 * Walk the list of under-writeback pages of the given address space 379 * and wait for all of them. 380 */ 381 int filemap_fdatawait(struct address_space *mapping) 382 { 383 loff_t i_size = i_size_read(mapping->host); 384 385 if (i_size == 0) 386 return 0; 387 388 return wait_on_page_writeback_range(mapping, 0, 389 (i_size - 1) >> PAGE_CACHE_SHIFT); 390 } 391 EXPORT_SYMBOL(filemap_fdatawait); 392 393 int filemap_write_and_wait(struct address_space *mapping) 394 { 395 int err = 0; 396 397 if (mapping->nrpages) { 398 err = filemap_fdatawrite(mapping); 399 /* 400 * Even if the above returned error, the pages may be 401 * written partially (e.g. -ENOSPC), so we wait for it. 402 * But the -EIO is special case, it may indicate the worst 403 * thing (e.g. bug) happened, so we avoid waiting for it. 404 */ 405 if (err != -EIO) { 406 int err2 = filemap_fdatawait(mapping); 407 if (!err) 408 err = err2; 409 } 410 } 411 return err; 412 } 413 EXPORT_SYMBOL(filemap_write_and_wait); 414 415 /** 416 * filemap_write_and_wait_range - write out & wait on a file range 417 * @mapping: the address_space for the pages 418 * @lstart: offset in bytes where the range starts 419 * @lend: offset in bytes where the range ends (inclusive) 420 * 421 * Write out and wait upon file offsets lstart->lend, inclusive. 422 * 423 * Note that `lend' is inclusive (describes the last byte to be written) so 424 * that this function can be used to write to the very end-of-file (end = -1). 425 */ 426 int filemap_write_and_wait_range(struct address_space *mapping, 427 loff_t lstart, loff_t lend) 428 { 429 int err = 0; 430 431 if (mapping->nrpages) { 432 err = __filemap_fdatawrite_range(mapping, lstart, lend, 433 WB_SYNC_ALL); 434 /* See comment of filemap_write_and_wait() */ 435 if (err != -EIO) { 436 int err2 = wait_on_page_writeback_range(mapping, 437 lstart >> PAGE_CACHE_SHIFT, 438 lend >> PAGE_CACHE_SHIFT); 439 if (!err) 440 err = err2; 441 } 442 } 443 return err; 444 } 445 446 /** 447 * add_to_page_cache - add newly allocated pagecache pages 448 * @page: page to add 449 * @mapping: the page's address_space 450 * @offset: page index 451 * @gfp_mask: page allocation mode 452 * 453 * This function is used to add newly allocated pagecache pages; 454 * the page is new, so we can just run SetPageLocked() against it. 455 * The other page state flags were set by rmqueue(). 456 * 457 * This function does not add the page to the LRU. The caller must do that. 458 */ 459 int add_to_page_cache(struct page *page, struct address_space *mapping, 460 pgoff_t offset, gfp_t gfp_mask) 461 { 462 int error = mem_cgroup_cache_charge(page, current->mm, 463 gfp_mask & ~__GFP_HIGHMEM); 464 if (error) 465 goto out; 466 467 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM); 468 if (error == 0) { 469 write_lock_irq(&mapping->tree_lock); 470 error = radix_tree_insert(&mapping->page_tree, offset, page); 471 if (!error) { 472 page_cache_get(page); 473 SetPageLocked(page); 474 page->mapping = mapping; 475 page->index = offset; 476 mapping->nrpages++; 477 __inc_zone_page_state(page, NR_FILE_PAGES); 478 } else 479 mem_cgroup_uncharge_page(page); 480 481 write_unlock_irq(&mapping->tree_lock); 482 radix_tree_preload_end(); 483 } else 484 mem_cgroup_uncharge_page(page); 485 out: 486 return error; 487 } 488 EXPORT_SYMBOL(add_to_page_cache); 489 490 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 491 pgoff_t offset, gfp_t gfp_mask) 492 { 493 int ret = add_to_page_cache(page, mapping, offset, gfp_mask); 494 if (ret == 0) 495 lru_cache_add(page); 496 return ret; 497 } 498 499 #ifdef CONFIG_NUMA 500 struct page *__page_cache_alloc(gfp_t gfp) 501 { 502 if (cpuset_do_page_mem_spread()) { 503 int n = cpuset_mem_spread_node(); 504 return alloc_pages_node(n, gfp, 0); 505 } 506 return alloc_pages(gfp, 0); 507 } 508 EXPORT_SYMBOL(__page_cache_alloc); 509 #endif 510 511 static int __sleep_on_page_lock(void *word) 512 { 513 io_schedule(); 514 return 0; 515 } 516 517 /* 518 * In order to wait for pages to become available there must be 519 * waitqueues associated with pages. By using a hash table of 520 * waitqueues where the bucket discipline is to maintain all 521 * waiters on the same queue and wake all when any of the pages 522 * become available, and for the woken contexts to check to be 523 * sure the appropriate page became available, this saves space 524 * at a cost of "thundering herd" phenomena during rare hash 525 * collisions. 526 */ 527 static wait_queue_head_t *page_waitqueue(struct page *page) 528 { 529 const struct zone *zone = page_zone(page); 530 531 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)]; 532 } 533 534 static inline void wake_up_page(struct page *page, int bit) 535 { 536 __wake_up_bit(page_waitqueue(page), &page->flags, bit); 537 } 538 539 void wait_on_page_bit(struct page *page, int bit_nr) 540 { 541 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr); 542 543 if (test_bit(bit_nr, &page->flags)) 544 __wait_on_bit(page_waitqueue(page), &wait, sync_page, 545 TASK_UNINTERRUPTIBLE); 546 } 547 EXPORT_SYMBOL(wait_on_page_bit); 548 549 /** 550 * unlock_page - unlock a locked page 551 * @page: the page 552 * 553 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). 554 * Also wakes sleepers in wait_on_page_writeback() because the wakeup 555 * mechananism between PageLocked pages and PageWriteback pages is shared. 556 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. 557 * 558 * The first mb is necessary to safely close the critical section opened by the 559 * TestSetPageLocked(), the second mb is necessary to enforce ordering between 560 * the clear_bit and the read of the waitqueue (to avoid SMP races with a 561 * parallel wait_on_page_locked()). 562 */ 563 void unlock_page(struct page *page) 564 { 565 smp_mb__before_clear_bit(); 566 if (!TestClearPageLocked(page)) 567 BUG(); 568 smp_mb__after_clear_bit(); 569 wake_up_page(page, PG_locked); 570 } 571 EXPORT_SYMBOL(unlock_page); 572 573 /** 574 * end_page_writeback - end writeback against a page 575 * @page: the page 576 */ 577 void end_page_writeback(struct page *page) 578 { 579 if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) { 580 if (!test_clear_page_writeback(page)) 581 BUG(); 582 } 583 smp_mb__after_clear_bit(); 584 wake_up_page(page, PG_writeback); 585 } 586 EXPORT_SYMBOL(end_page_writeback); 587 588 /** 589 * __lock_page - get a lock on the page, assuming we need to sleep to get it 590 * @page: the page to lock 591 * 592 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some 593 * random driver's requestfn sets TASK_RUNNING, we could busywait. However 594 * chances are that on the second loop, the block layer's plug list is empty, 595 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE. 596 */ 597 void __lock_page(struct page *page) 598 { 599 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 600 601 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page, 602 TASK_UNINTERRUPTIBLE); 603 } 604 EXPORT_SYMBOL(__lock_page); 605 606 int __lock_page_killable(struct page *page) 607 { 608 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 609 610 return __wait_on_bit_lock(page_waitqueue(page), &wait, 611 sync_page_killable, TASK_KILLABLE); 612 } 613 614 /** 615 * __lock_page_nosync - get a lock on the page, without calling sync_page() 616 * @page: the page to lock 617 * 618 * Variant of lock_page that does not require the caller to hold a reference 619 * on the page's mapping. 620 */ 621 void __lock_page_nosync(struct page *page) 622 { 623 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 624 __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock, 625 TASK_UNINTERRUPTIBLE); 626 } 627 628 /** 629 * find_get_page - find and get a page reference 630 * @mapping: the address_space to search 631 * @offset: the page index 632 * 633 * Is there a pagecache struct page at the given (mapping, offset) tuple? 634 * If yes, increment its refcount and return it; if no, return NULL. 635 */ 636 struct page * find_get_page(struct address_space *mapping, pgoff_t offset) 637 { 638 struct page *page; 639 640 read_lock_irq(&mapping->tree_lock); 641 page = radix_tree_lookup(&mapping->page_tree, offset); 642 if (page) 643 page_cache_get(page); 644 read_unlock_irq(&mapping->tree_lock); 645 return page; 646 } 647 EXPORT_SYMBOL(find_get_page); 648 649 /** 650 * find_lock_page - locate, pin and lock a pagecache page 651 * @mapping: the address_space to search 652 * @offset: the page index 653 * 654 * Locates the desired pagecache page, locks it, increments its reference 655 * count and returns its address. 656 * 657 * Returns zero if the page was not present. find_lock_page() may sleep. 658 */ 659 struct page *find_lock_page(struct address_space *mapping, 660 pgoff_t offset) 661 { 662 struct page *page; 663 664 repeat: 665 read_lock_irq(&mapping->tree_lock); 666 page = radix_tree_lookup(&mapping->page_tree, offset); 667 if (page) { 668 page_cache_get(page); 669 if (TestSetPageLocked(page)) { 670 read_unlock_irq(&mapping->tree_lock); 671 __lock_page(page); 672 673 /* Has the page been truncated while we slept? */ 674 if (unlikely(page->mapping != mapping)) { 675 unlock_page(page); 676 page_cache_release(page); 677 goto repeat; 678 } 679 VM_BUG_ON(page->index != offset); 680 goto out; 681 } 682 } 683 read_unlock_irq(&mapping->tree_lock); 684 out: 685 return page; 686 } 687 EXPORT_SYMBOL(find_lock_page); 688 689 /** 690 * find_or_create_page - locate or add a pagecache page 691 * @mapping: the page's address_space 692 * @index: the page's index into the mapping 693 * @gfp_mask: page allocation mode 694 * 695 * Locates a page in the pagecache. If the page is not present, a new page 696 * is allocated using @gfp_mask and is added to the pagecache and to the VM's 697 * LRU list. The returned page is locked and has its reference count 698 * incremented. 699 * 700 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic 701 * allocation! 702 * 703 * find_or_create_page() returns the desired page's address, or zero on 704 * memory exhaustion. 705 */ 706 struct page *find_or_create_page(struct address_space *mapping, 707 pgoff_t index, gfp_t gfp_mask) 708 { 709 struct page *page; 710 int err; 711 repeat: 712 page = find_lock_page(mapping, index); 713 if (!page) { 714 page = __page_cache_alloc(gfp_mask); 715 if (!page) 716 return NULL; 717 err = add_to_page_cache_lru(page, mapping, index, gfp_mask); 718 if (unlikely(err)) { 719 page_cache_release(page); 720 page = NULL; 721 if (err == -EEXIST) 722 goto repeat; 723 } 724 } 725 return page; 726 } 727 EXPORT_SYMBOL(find_or_create_page); 728 729 /** 730 * find_get_pages - gang pagecache lookup 731 * @mapping: The address_space to search 732 * @start: The starting page index 733 * @nr_pages: The maximum number of pages 734 * @pages: Where the resulting pages are placed 735 * 736 * find_get_pages() will search for and return a group of up to 737 * @nr_pages pages in the mapping. The pages are placed at @pages. 738 * find_get_pages() takes a reference against the returned pages. 739 * 740 * The search returns a group of mapping-contiguous pages with ascending 741 * indexes. There may be holes in the indices due to not-present pages. 742 * 743 * find_get_pages() returns the number of pages which were found. 744 */ 745 unsigned find_get_pages(struct address_space *mapping, pgoff_t start, 746 unsigned int nr_pages, struct page **pages) 747 { 748 unsigned int i; 749 unsigned int ret; 750 751 read_lock_irq(&mapping->tree_lock); 752 ret = radix_tree_gang_lookup(&mapping->page_tree, 753 (void **)pages, start, nr_pages); 754 for (i = 0; i < ret; i++) 755 page_cache_get(pages[i]); 756 read_unlock_irq(&mapping->tree_lock); 757 return ret; 758 } 759 760 /** 761 * find_get_pages_contig - gang contiguous pagecache lookup 762 * @mapping: The address_space to search 763 * @index: The starting page index 764 * @nr_pages: The maximum number of pages 765 * @pages: Where the resulting pages are placed 766 * 767 * find_get_pages_contig() works exactly like find_get_pages(), except 768 * that the returned number of pages are guaranteed to be contiguous. 769 * 770 * find_get_pages_contig() returns the number of pages which were found. 771 */ 772 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, 773 unsigned int nr_pages, struct page **pages) 774 { 775 unsigned int i; 776 unsigned int ret; 777 778 read_lock_irq(&mapping->tree_lock); 779 ret = radix_tree_gang_lookup(&mapping->page_tree, 780 (void **)pages, index, nr_pages); 781 for (i = 0; i < ret; i++) { 782 if (pages[i]->mapping == NULL || pages[i]->index != index) 783 break; 784 785 page_cache_get(pages[i]); 786 index++; 787 } 788 read_unlock_irq(&mapping->tree_lock); 789 return i; 790 } 791 EXPORT_SYMBOL(find_get_pages_contig); 792 793 /** 794 * find_get_pages_tag - find and return pages that match @tag 795 * @mapping: the address_space to search 796 * @index: the starting page index 797 * @tag: the tag index 798 * @nr_pages: the maximum number of pages 799 * @pages: where the resulting pages are placed 800 * 801 * Like find_get_pages, except we only return pages which are tagged with 802 * @tag. We update @index to index the next page for the traversal. 803 */ 804 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, 805 int tag, unsigned int nr_pages, struct page **pages) 806 { 807 unsigned int i; 808 unsigned int ret; 809 810 read_lock_irq(&mapping->tree_lock); 811 ret = radix_tree_gang_lookup_tag(&mapping->page_tree, 812 (void **)pages, *index, nr_pages, tag); 813 for (i = 0; i < ret; i++) 814 page_cache_get(pages[i]); 815 if (ret) 816 *index = pages[ret - 1]->index + 1; 817 read_unlock_irq(&mapping->tree_lock); 818 return ret; 819 } 820 EXPORT_SYMBOL(find_get_pages_tag); 821 822 /** 823 * grab_cache_page_nowait - returns locked page at given index in given cache 824 * @mapping: target address_space 825 * @index: the page index 826 * 827 * Same as grab_cache_page(), but do not wait if the page is unavailable. 828 * This is intended for speculative data generators, where the data can 829 * be regenerated if the page couldn't be grabbed. This routine should 830 * be safe to call while holding the lock for another page. 831 * 832 * Clear __GFP_FS when allocating the page to avoid recursion into the fs 833 * and deadlock against the caller's locked page. 834 */ 835 struct page * 836 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index) 837 { 838 struct page *page = find_get_page(mapping, index); 839 840 if (page) { 841 if (!TestSetPageLocked(page)) 842 return page; 843 page_cache_release(page); 844 return NULL; 845 } 846 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS); 847 if (page && add_to_page_cache_lru(page, mapping, index, GFP_KERNEL)) { 848 page_cache_release(page); 849 page = NULL; 850 } 851 return page; 852 } 853 EXPORT_SYMBOL(grab_cache_page_nowait); 854 855 /* 856 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 857 * a _large_ part of the i/o request. Imagine the worst scenario: 858 * 859 * ---R__________________________________________B__________ 860 * ^ reading here ^ bad block(assume 4k) 861 * 862 * read(R) => miss => readahead(R...B) => media error => frustrating retries 863 * => failing the whole request => read(R) => read(R+1) => 864 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 865 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 866 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 867 * 868 * It is going insane. Fix it by quickly scaling down the readahead size. 869 */ 870 static void shrink_readahead_size_eio(struct file *filp, 871 struct file_ra_state *ra) 872 { 873 if (!ra->ra_pages) 874 return; 875 876 ra->ra_pages /= 4; 877 } 878 879 /** 880 * do_generic_file_read - generic file read routine 881 * @filp: the file to read 882 * @ppos: current file position 883 * @desc: read_descriptor 884 * @actor: read method 885 * 886 * This is a generic file read routine, and uses the 887 * mapping->a_ops->readpage() function for the actual low-level stuff. 888 * 889 * This is really ugly. But the goto's actually try to clarify some 890 * of the logic when it comes to error handling etc. 891 */ 892 static void do_generic_file_read(struct file *filp, loff_t *ppos, 893 read_descriptor_t *desc, read_actor_t actor) 894 { 895 struct address_space *mapping = filp->f_mapping; 896 struct inode *inode = mapping->host; 897 struct file_ra_state *ra = &filp->f_ra; 898 pgoff_t index; 899 pgoff_t last_index; 900 pgoff_t prev_index; 901 unsigned long offset; /* offset into pagecache page */ 902 unsigned int prev_offset; 903 int error; 904 905 index = *ppos >> PAGE_CACHE_SHIFT; 906 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT; 907 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1); 908 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT; 909 offset = *ppos & ~PAGE_CACHE_MASK; 910 911 for (;;) { 912 struct page *page; 913 pgoff_t end_index; 914 loff_t isize; 915 unsigned long nr, ret; 916 917 cond_resched(); 918 find_page: 919 page = find_get_page(mapping, index); 920 if (!page) { 921 page_cache_sync_readahead(mapping, 922 ra, filp, 923 index, last_index - index); 924 page = find_get_page(mapping, index); 925 if (unlikely(page == NULL)) 926 goto no_cached_page; 927 } 928 if (PageReadahead(page)) { 929 page_cache_async_readahead(mapping, 930 ra, filp, page, 931 index, last_index - index); 932 } 933 if (!PageUptodate(page)) 934 goto page_not_up_to_date; 935 page_ok: 936 /* 937 * i_size must be checked after we know the page is Uptodate. 938 * 939 * Checking i_size after the check allows us to calculate 940 * the correct value for "nr", which means the zero-filled 941 * part of the page is not copied back to userspace (unless 942 * another truncate extends the file - this is desired though). 943 */ 944 945 isize = i_size_read(inode); 946 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 947 if (unlikely(!isize || index > end_index)) { 948 page_cache_release(page); 949 goto out; 950 } 951 952 /* nr is the maximum number of bytes to copy from this page */ 953 nr = PAGE_CACHE_SIZE; 954 if (index == end_index) { 955 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 956 if (nr <= offset) { 957 page_cache_release(page); 958 goto out; 959 } 960 } 961 nr = nr - offset; 962 963 /* If users can be writing to this page using arbitrary 964 * virtual addresses, take care about potential aliasing 965 * before reading the page on the kernel side. 966 */ 967 if (mapping_writably_mapped(mapping)) 968 flush_dcache_page(page); 969 970 /* 971 * When a sequential read accesses a page several times, 972 * only mark it as accessed the first time. 973 */ 974 if (prev_index != index || offset != prev_offset) 975 mark_page_accessed(page); 976 prev_index = index; 977 978 /* 979 * Ok, we have the page, and it's up-to-date, so 980 * now we can copy it to user space... 981 * 982 * The actor routine returns how many bytes were actually used.. 983 * NOTE! This may not be the same as how much of a user buffer 984 * we filled up (we may be padding etc), so we can only update 985 * "pos" here (the actor routine has to update the user buffer 986 * pointers and the remaining count). 987 */ 988 ret = actor(desc, page, offset, nr); 989 offset += ret; 990 index += offset >> PAGE_CACHE_SHIFT; 991 offset &= ~PAGE_CACHE_MASK; 992 prev_offset = offset; 993 994 page_cache_release(page); 995 if (ret == nr && desc->count) 996 continue; 997 goto out; 998 999 page_not_up_to_date: 1000 /* Get exclusive access to the page ... */ 1001 if (lock_page_killable(page)) 1002 goto readpage_eio; 1003 1004 /* Did it get truncated before we got the lock? */ 1005 if (!page->mapping) { 1006 unlock_page(page); 1007 page_cache_release(page); 1008 continue; 1009 } 1010 1011 /* Did somebody else fill it already? */ 1012 if (PageUptodate(page)) { 1013 unlock_page(page); 1014 goto page_ok; 1015 } 1016 1017 readpage: 1018 /* Start the actual read. The read will unlock the page. */ 1019 error = mapping->a_ops->readpage(filp, page); 1020 1021 if (unlikely(error)) { 1022 if (error == AOP_TRUNCATED_PAGE) { 1023 page_cache_release(page); 1024 goto find_page; 1025 } 1026 goto readpage_error; 1027 } 1028 1029 if (!PageUptodate(page)) { 1030 if (lock_page_killable(page)) 1031 goto readpage_eio; 1032 if (!PageUptodate(page)) { 1033 if (page->mapping == NULL) { 1034 /* 1035 * invalidate_inode_pages got it 1036 */ 1037 unlock_page(page); 1038 page_cache_release(page); 1039 goto find_page; 1040 } 1041 unlock_page(page); 1042 shrink_readahead_size_eio(filp, ra); 1043 goto readpage_eio; 1044 } 1045 unlock_page(page); 1046 } 1047 1048 goto page_ok; 1049 1050 readpage_eio: 1051 error = -EIO; 1052 readpage_error: 1053 /* UHHUH! A synchronous read error occurred. Report it */ 1054 desc->error = error; 1055 page_cache_release(page); 1056 goto out; 1057 1058 no_cached_page: 1059 /* 1060 * Ok, it wasn't cached, so we need to create a new 1061 * page.. 1062 */ 1063 page = page_cache_alloc_cold(mapping); 1064 if (!page) { 1065 desc->error = -ENOMEM; 1066 goto out; 1067 } 1068 error = add_to_page_cache_lru(page, mapping, 1069 index, GFP_KERNEL); 1070 if (error) { 1071 page_cache_release(page); 1072 if (error == -EEXIST) 1073 goto find_page; 1074 desc->error = error; 1075 goto out; 1076 } 1077 goto readpage; 1078 } 1079 1080 out: 1081 ra->prev_pos = prev_index; 1082 ra->prev_pos <<= PAGE_CACHE_SHIFT; 1083 ra->prev_pos |= prev_offset; 1084 1085 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset; 1086 if (filp) 1087 file_accessed(filp); 1088 } 1089 1090 int file_read_actor(read_descriptor_t *desc, struct page *page, 1091 unsigned long offset, unsigned long size) 1092 { 1093 char *kaddr; 1094 unsigned long left, count = desc->count; 1095 1096 if (size > count) 1097 size = count; 1098 1099 /* 1100 * Faults on the destination of a read are common, so do it before 1101 * taking the kmap. 1102 */ 1103 if (!fault_in_pages_writeable(desc->arg.buf, size)) { 1104 kaddr = kmap_atomic(page, KM_USER0); 1105 left = __copy_to_user_inatomic(desc->arg.buf, 1106 kaddr + offset, size); 1107 kunmap_atomic(kaddr, KM_USER0); 1108 if (left == 0) 1109 goto success; 1110 } 1111 1112 /* Do it the slow way */ 1113 kaddr = kmap(page); 1114 left = __copy_to_user(desc->arg.buf, kaddr + offset, size); 1115 kunmap(page); 1116 1117 if (left) { 1118 size -= left; 1119 desc->error = -EFAULT; 1120 } 1121 success: 1122 desc->count = count - size; 1123 desc->written += size; 1124 desc->arg.buf += size; 1125 return size; 1126 } 1127 1128 /* 1129 * Performs necessary checks before doing a write 1130 * @iov: io vector request 1131 * @nr_segs: number of segments in the iovec 1132 * @count: number of bytes to write 1133 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE 1134 * 1135 * Adjust number of segments and amount of bytes to write (nr_segs should be 1136 * properly initialized first). Returns appropriate error code that caller 1137 * should return or zero in case that write should be allowed. 1138 */ 1139 int generic_segment_checks(const struct iovec *iov, 1140 unsigned long *nr_segs, size_t *count, int access_flags) 1141 { 1142 unsigned long seg; 1143 size_t cnt = 0; 1144 for (seg = 0; seg < *nr_segs; seg++) { 1145 const struct iovec *iv = &iov[seg]; 1146 1147 /* 1148 * If any segment has a negative length, or the cumulative 1149 * length ever wraps negative then return -EINVAL. 1150 */ 1151 cnt += iv->iov_len; 1152 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0)) 1153 return -EINVAL; 1154 if (access_ok(access_flags, iv->iov_base, iv->iov_len)) 1155 continue; 1156 if (seg == 0) 1157 return -EFAULT; 1158 *nr_segs = seg; 1159 cnt -= iv->iov_len; /* This segment is no good */ 1160 break; 1161 } 1162 *count = cnt; 1163 return 0; 1164 } 1165 EXPORT_SYMBOL(generic_segment_checks); 1166 1167 /** 1168 * generic_file_aio_read - generic filesystem read routine 1169 * @iocb: kernel I/O control block 1170 * @iov: io vector request 1171 * @nr_segs: number of segments in the iovec 1172 * @pos: current file position 1173 * 1174 * This is the "read()" routine for all filesystems 1175 * that can use the page cache directly. 1176 */ 1177 ssize_t 1178 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov, 1179 unsigned long nr_segs, loff_t pos) 1180 { 1181 struct file *filp = iocb->ki_filp; 1182 ssize_t retval; 1183 unsigned long seg; 1184 size_t count; 1185 loff_t *ppos = &iocb->ki_pos; 1186 1187 count = 0; 1188 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE); 1189 if (retval) 1190 return retval; 1191 1192 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ 1193 if (filp->f_flags & O_DIRECT) { 1194 loff_t size; 1195 struct address_space *mapping; 1196 struct inode *inode; 1197 1198 mapping = filp->f_mapping; 1199 inode = mapping->host; 1200 retval = 0; 1201 if (!count) 1202 goto out; /* skip atime */ 1203 size = i_size_read(inode); 1204 if (pos < size) { 1205 retval = generic_file_direct_IO(READ, iocb, 1206 iov, pos, nr_segs); 1207 if (retval > 0) 1208 *ppos = pos + retval; 1209 } 1210 if (likely(retval != 0)) { 1211 file_accessed(filp); 1212 goto out; 1213 } 1214 } 1215 1216 retval = 0; 1217 if (count) { 1218 for (seg = 0; seg < nr_segs; seg++) { 1219 read_descriptor_t desc; 1220 1221 desc.written = 0; 1222 desc.arg.buf = iov[seg].iov_base; 1223 desc.count = iov[seg].iov_len; 1224 if (desc.count == 0) 1225 continue; 1226 desc.error = 0; 1227 do_generic_file_read(filp,ppos,&desc,file_read_actor); 1228 retval += desc.written; 1229 if (desc.error) { 1230 retval = retval ?: desc.error; 1231 break; 1232 } 1233 if (desc.count > 0) 1234 break; 1235 } 1236 } 1237 out: 1238 return retval; 1239 } 1240 EXPORT_SYMBOL(generic_file_aio_read); 1241 1242 static ssize_t 1243 do_readahead(struct address_space *mapping, struct file *filp, 1244 pgoff_t index, unsigned long nr) 1245 { 1246 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage) 1247 return -EINVAL; 1248 1249 force_page_cache_readahead(mapping, filp, index, 1250 max_sane_readahead(nr)); 1251 return 0; 1252 } 1253 1254 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count) 1255 { 1256 ssize_t ret; 1257 struct file *file; 1258 1259 ret = -EBADF; 1260 file = fget(fd); 1261 if (file) { 1262 if (file->f_mode & FMODE_READ) { 1263 struct address_space *mapping = file->f_mapping; 1264 pgoff_t start = offset >> PAGE_CACHE_SHIFT; 1265 pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT; 1266 unsigned long len = end - start + 1; 1267 ret = do_readahead(mapping, file, start, len); 1268 } 1269 fput(file); 1270 } 1271 return ret; 1272 } 1273 1274 #ifdef CONFIG_MMU 1275 /** 1276 * page_cache_read - adds requested page to the page cache if not already there 1277 * @file: file to read 1278 * @offset: page index 1279 * 1280 * This adds the requested page to the page cache if it isn't already there, 1281 * and schedules an I/O to read in its contents from disk. 1282 */ 1283 static int page_cache_read(struct file *file, pgoff_t offset) 1284 { 1285 struct address_space *mapping = file->f_mapping; 1286 struct page *page; 1287 int ret; 1288 1289 do { 1290 page = page_cache_alloc_cold(mapping); 1291 if (!page) 1292 return -ENOMEM; 1293 1294 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL); 1295 if (ret == 0) 1296 ret = mapping->a_ops->readpage(file, page); 1297 else if (ret == -EEXIST) 1298 ret = 0; /* losing race to add is OK */ 1299 1300 page_cache_release(page); 1301 1302 } while (ret == AOP_TRUNCATED_PAGE); 1303 1304 return ret; 1305 } 1306 1307 #define MMAP_LOTSAMISS (100) 1308 1309 /** 1310 * filemap_fault - read in file data for page fault handling 1311 * @vma: vma in which the fault was taken 1312 * @vmf: struct vm_fault containing details of the fault 1313 * 1314 * filemap_fault() is invoked via the vma operations vector for a 1315 * mapped memory region to read in file data during a page fault. 1316 * 1317 * The goto's are kind of ugly, but this streamlines the normal case of having 1318 * it in the page cache, and handles the special cases reasonably without 1319 * having a lot of duplicated code. 1320 */ 1321 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1322 { 1323 int error; 1324 struct file *file = vma->vm_file; 1325 struct address_space *mapping = file->f_mapping; 1326 struct file_ra_state *ra = &file->f_ra; 1327 struct inode *inode = mapping->host; 1328 struct page *page; 1329 pgoff_t size; 1330 int did_readaround = 0; 1331 int ret = 0; 1332 1333 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1334 if (vmf->pgoff >= size) 1335 return VM_FAULT_SIGBUS; 1336 1337 /* If we don't want any read-ahead, don't bother */ 1338 if (VM_RandomReadHint(vma)) 1339 goto no_cached_page; 1340 1341 /* 1342 * Do we have something in the page cache already? 1343 */ 1344 retry_find: 1345 page = find_lock_page(mapping, vmf->pgoff); 1346 /* 1347 * For sequential accesses, we use the generic readahead logic. 1348 */ 1349 if (VM_SequentialReadHint(vma)) { 1350 if (!page) { 1351 page_cache_sync_readahead(mapping, ra, file, 1352 vmf->pgoff, 1); 1353 page = find_lock_page(mapping, vmf->pgoff); 1354 if (!page) 1355 goto no_cached_page; 1356 } 1357 if (PageReadahead(page)) { 1358 page_cache_async_readahead(mapping, ra, file, page, 1359 vmf->pgoff, 1); 1360 } 1361 } 1362 1363 if (!page) { 1364 unsigned long ra_pages; 1365 1366 ra->mmap_miss++; 1367 1368 /* 1369 * Do we miss much more than hit in this file? If so, 1370 * stop bothering with read-ahead. It will only hurt. 1371 */ 1372 if (ra->mmap_miss > MMAP_LOTSAMISS) 1373 goto no_cached_page; 1374 1375 /* 1376 * To keep the pgmajfault counter straight, we need to 1377 * check did_readaround, as this is an inner loop. 1378 */ 1379 if (!did_readaround) { 1380 ret = VM_FAULT_MAJOR; 1381 count_vm_event(PGMAJFAULT); 1382 } 1383 did_readaround = 1; 1384 ra_pages = max_sane_readahead(file->f_ra.ra_pages); 1385 if (ra_pages) { 1386 pgoff_t start = 0; 1387 1388 if (vmf->pgoff > ra_pages / 2) 1389 start = vmf->pgoff - ra_pages / 2; 1390 do_page_cache_readahead(mapping, file, start, ra_pages); 1391 } 1392 page = find_lock_page(mapping, vmf->pgoff); 1393 if (!page) 1394 goto no_cached_page; 1395 } 1396 1397 if (!did_readaround) 1398 ra->mmap_miss--; 1399 1400 /* 1401 * We have a locked page in the page cache, now we need to check 1402 * that it's up-to-date. If not, it is going to be due to an error. 1403 */ 1404 if (unlikely(!PageUptodate(page))) 1405 goto page_not_uptodate; 1406 1407 /* Must recheck i_size under page lock */ 1408 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1409 if (unlikely(vmf->pgoff >= size)) { 1410 unlock_page(page); 1411 page_cache_release(page); 1412 return VM_FAULT_SIGBUS; 1413 } 1414 1415 /* 1416 * Found the page and have a reference on it. 1417 */ 1418 mark_page_accessed(page); 1419 ra->prev_pos = (loff_t)page->index << PAGE_CACHE_SHIFT; 1420 vmf->page = page; 1421 return ret | VM_FAULT_LOCKED; 1422 1423 no_cached_page: 1424 /* 1425 * We're only likely to ever get here if MADV_RANDOM is in 1426 * effect. 1427 */ 1428 error = page_cache_read(file, vmf->pgoff); 1429 1430 /* 1431 * The page we want has now been added to the page cache. 1432 * In the unlikely event that someone removed it in the 1433 * meantime, we'll just come back here and read it again. 1434 */ 1435 if (error >= 0) 1436 goto retry_find; 1437 1438 /* 1439 * An error return from page_cache_read can result if the 1440 * system is low on memory, or a problem occurs while trying 1441 * to schedule I/O. 1442 */ 1443 if (error == -ENOMEM) 1444 return VM_FAULT_OOM; 1445 return VM_FAULT_SIGBUS; 1446 1447 page_not_uptodate: 1448 /* IO error path */ 1449 if (!did_readaround) { 1450 ret = VM_FAULT_MAJOR; 1451 count_vm_event(PGMAJFAULT); 1452 } 1453 1454 /* 1455 * Umm, take care of errors if the page isn't up-to-date. 1456 * Try to re-read it _once_. We do this synchronously, 1457 * because there really aren't any performance issues here 1458 * and we need to check for errors. 1459 */ 1460 ClearPageError(page); 1461 error = mapping->a_ops->readpage(file, page); 1462 page_cache_release(page); 1463 1464 if (!error || error == AOP_TRUNCATED_PAGE) 1465 goto retry_find; 1466 1467 /* Things didn't work out. Return zero to tell the mm layer so. */ 1468 shrink_readahead_size_eio(file, ra); 1469 return VM_FAULT_SIGBUS; 1470 } 1471 EXPORT_SYMBOL(filemap_fault); 1472 1473 struct vm_operations_struct generic_file_vm_ops = { 1474 .fault = filemap_fault, 1475 }; 1476 1477 /* This is used for a general mmap of a disk file */ 1478 1479 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 1480 { 1481 struct address_space *mapping = file->f_mapping; 1482 1483 if (!mapping->a_ops->readpage) 1484 return -ENOEXEC; 1485 file_accessed(file); 1486 vma->vm_ops = &generic_file_vm_ops; 1487 vma->vm_flags |= VM_CAN_NONLINEAR; 1488 return 0; 1489 } 1490 1491 /* 1492 * This is for filesystems which do not implement ->writepage. 1493 */ 1494 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 1495 { 1496 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 1497 return -EINVAL; 1498 return generic_file_mmap(file, vma); 1499 } 1500 #else 1501 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 1502 { 1503 return -ENOSYS; 1504 } 1505 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) 1506 { 1507 return -ENOSYS; 1508 } 1509 #endif /* CONFIG_MMU */ 1510 1511 EXPORT_SYMBOL(generic_file_mmap); 1512 EXPORT_SYMBOL(generic_file_readonly_mmap); 1513 1514 static struct page *__read_cache_page(struct address_space *mapping, 1515 pgoff_t index, 1516 int (*filler)(void *,struct page*), 1517 void *data) 1518 { 1519 struct page *page; 1520 int err; 1521 repeat: 1522 page = find_get_page(mapping, index); 1523 if (!page) { 1524 page = page_cache_alloc_cold(mapping); 1525 if (!page) 1526 return ERR_PTR(-ENOMEM); 1527 err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL); 1528 if (unlikely(err)) { 1529 page_cache_release(page); 1530 if (err == -EEXIST) 1531 goto repeat; 1532 /* Presumably ENOMEM for radix tree node */ 1533 return ERR_PTR(err); 1534 } 1535 err = filler(data, page); 1536 if (err < 0) { 1537 page_cache_release(page); 1538 page = ERR_PTR(err); 1539 } 1540 } 1541 return page; 1542 } 1543 1544 /** 1545 * read_cache_page_async - read into page cache, fill it if needed 1546 * @mapping: the page's address_space 1547 * @index: the page index 1548 * @filler: function to perform the read 1549 * @data: destination for read data 1550 * 1551 * Same as read_cache_page, but don't wait for page to become unlocked 1552 * after submitting it to the filler. 1553 * 1554 * Read into the page cache. If a page already exists, and PageUptodate() is 1555 * not set, try to fill the page but don't wait for it to become unlocked. 1556 * 1557 * If the page does not get brought uptodate, return -EIO. 1558 */ 1559 struct page *read_cache_page_async(struct address_space *mapping, 1560 pgoff_t index, 1561 int (*filler)(void *,struct page*), 1562 void *data) 1563 { 1564 struct page *page; 1565 int err; 1566 1567 retry: 1568 page = __read_cache_page(mapping, index, filler, data); 1569 if (IS_ERR(page)) 1570 return page; 1571 if (PageUptodate(page)) 1572 goto out; 1573 1574 lock_page(page); 1575 if (!page->mapping) { 1576 unlock_page(page); 1577 page_cache_release(page); 1578 goto retry; 1579 } 1580 if (PageUptodate(page)) { 1581 unlock_page(page); 1582 goto out; 1583 } 1584 err = filler(data, page); 1585 if (err < 0) { 1586 page_cache_release(page); 1587 return ERR_PTR(err); 1588 } 1589 out: 1590 mark_page_accessed(page); 1591 return page; 1592 } 1593 EXPORT_SYMBOL(read_cache_page_async); 1594 1595 /** 1596 * read_cache_page - read into page cache, fill it if needed 1597 * @mapping: the page's address_space 1598 * @index: the page index 1599 * @filler: function to perform the read 1600 * @data: destination for read data 1601 * 1602 * Read into the page cache. If a page already exists, and PageUptodate() is 1603 * not set, try to fill the page then wait for it to become unlocked. 1604 * 1605 * If the page does not get brought uptodate, return -EIO. 1606 */ 1607 struct page *read_cache_page(struct address_space *mapping, 1608 pgoff_t index, 1609 int (*filler)(void *,struct page*), 1610 void *data) 1611 { 1612 struct page *page; 1613 1614 page = read_cache_page_async(mapping, index, filler, data); 1615 if (IS_ERR(page)) 1616 goto out; 1617 wait_on_page_locked(page); 1618 if (!PageUptodate(page)) { 1619 page_cache_release(page); 1620 page = ERR_PTR(-EIO); 1621 } 1622 out: 1623 return page; 1624 } 1625 EXPORT_SYMBOL(read_cache_page); 1626 1627 /* 1628 * The logic we want is 1629 * 1630 * if suid or (sgid and xgrp) 1631 * remove privs 1632 */ 1633 int should_remove_suid(struct dentry *dentry) 1634 { 1635 mode_t mode = dentry->d_inode->i_mode; 1636 int kill = 0; 1637 1638 /* suid always must be killed */ 1639 if (unlikely(mode & S_ISUID)) 1640 kill = ATTR_KILL_SUID; 1641 1642 /* 1643 * sgid without any exec bits is just a mandatory locking mark; leave 1644 * it alone. If some exec bits are set, it's a real sgid; kill it. 1645 */ 1646 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP))) 1647 kill |= ATTR_KILL_SGID; 1648 1649 if (unlikely(kill && !capable(CAP_FSETID))) 1650 return kill; 1651 1652 return 0; 1653 } 1654 EXPORT_SYMBOL(should_remove_suid); 1655 1656 int __remove_suid(struct dentry *dentry, int kill) 1657 { 1658 struct iattr newattrs; 1659 1660 newattrs.ia_valid = ATTR_FORCE | kill; 1661 return notify_change(dentry, &newattrs); 1662 } 1663 1664 int remove_suid(struct dentry *dentry) 1665 { 1666 int killsuid = should_remove_suid(dentry); 1667 int killpriv = security_inode_need_killpriv(dentry); 1668 int error = 0; 1669 1670 if (killpriv < 0) 1671 return killpriv; 1672 if (killpriv) 1673 error = security_inode_killpriv(dentry); 1674 if (!error && killsuid) 1675 error = __remove_suid(dentry, killsuid); 1676 1677 return error; 1678 } 1679 EXPORT_SYMBOL(remove_suid); 1680 1681 static size_t __iovec_copy_from_user_inatomic(char *vaddr, 1682 const struct iovec *iov, size_t base, size_t bytes) 1683 { 1684 size_t copied = 0, left = 0; 1685 1686 while (bytes) { 1687 char __user *buf = iov->iov_base + base; 1688 int copy = min(bytes, iov->iov_len - base); 1689 1690 base = 0; 1691 left = __copy_from_user_inatomic_nocache(vaddr, buf, copy); 1692 copied += copy; 1693 bytes -= copy; 1694 vaddr += copy; 1695 iov++; 1696 1697 if (unlikely(left)) 1698 break; 1699 } 1700 return copied - left; 1701 } 1702 1703 /* 1704 * Copy as much as we can into the page and return the number of bytes which 1705 * were sucessfully copied. If a fault is encountered then return the number of 1706 * bytes which were copied. 1707 */ 1708 size_t iov_iter_copy_from_user_atomic(struct page *page, 1709 struct iov_iter *i, unsigned long offset, size_t bytes) 1710 { 1711 char *kaddr; 1712 size_t copied; 1713 1714 BUG_ON(!in_atomic()); 1715 kaddr = kmap_atomic(page, KM_USER0); 1716 if (likely(i->nr_segs == 1)) { 1717 int left; 1718 char __user *buf = i->iov->iov_base + i->iov_offset; 1719 left = __copy_from_user_inatomic_nocache(kaddr + offset, 1720 buf, bytes); 1721 copied = bytes - left; 1722 } else { 1723 copied = __iovec_copy_from_user_inatomic(kaddr + offset, 1724 i->iov, i->iov_offset, bytes); 1725 } 1726 kunmap_atomic(kaddr, KM_USER0); 1727 1728 return copied; 1729 } 1730 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic); 1731 1732 /* 1733 * This has the same sideeffects and return value as 1734 * iov_iter_copy_from_user_atomic(). 1735 * The difference is that it attempts to resolve faults. 1736 * Page must not be locked. 1737 */ 1738 size_t iov_iter_copy_from_user(struct page *page, 1739 struct iov_iter *i, unsigned long offset, size_t bytes) 1740 { 1741 char *kaddr; 1742 size_t copied; 1743 1744 kaddr = kmap(page); 1745 if (likely(i->nr_segs == 1)) { 1746 int left; 1747 char __user *buf = i->iov->iov_base + i->iov_offset; 1748 left = __copy_from_user_nocache(kaddr + offset, buf, bytes); 1749 copied = bytes - left; 1750 } else { 1751 copied = __iovec_copy_from_user_inatomic(kaddr + offset, 1752 i->iov, i->iov_offset, bytes); 1753 } 1754 kunmap(page); 1755 return copied; 1756 } 1757 EXPORT_SYMBOL(iov_iter_copy_from_user); 1758 1759 void iov_iter_advance(struct iov_iter *i, size_t bytes) 1760 { 1761 BUG_ON(i->count < bytes); 1762 1763 if (likely(i->nr_segs == 1)) { 1764 i->iov_offset += bytes; 1765 i->count -= bytes; 1766 } else { 1767 const struct iovec *iov = i->iov; 1768 size_t base = i->iov_offset; 1769 1770 /* 1771 * The !iov->iov_len check ensures we skip over unlikely 1772 * zero-length segments (without overruning the iovec). 1773 */ 1774 while (bytes || unlikely(!iov->iov_len && i->count)) { 1775 int copy; 1776 1777 copy = min(bytes, iov->iov_len - base); 1778 BUG_ON(!i->count || i->count < copy); 1779 i->count -= copy; 1780 bytes -= copy; 1781 base += copy; 1782 if (iov->iov_len == base) { 1783 iov++; 1784 base = 0; 1785 } 1786 } 1787 i->iov = iov; 1788 i->iov_offset = base; 1789 } 1790 } 1791 EXPORT_SYMBOL(iov_iter_advance); 1792 1793 /* 1794 * Fault in the first iovec of the given iov_iter, to a maximum length 1795 * of bytes. Returns 0 on success, or non-zero if the memory could not be 1796 * accessed (ie. because it is an invalid address). 1797 * 1798 * writev-intensive code may want this to prefault several iovecs -- that 1799 * would be possible (callers must not rely on the fact that _only_ the 1800 * first iovec will be faulted with the current implementation). 1801 */ 1802 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes) 1803 { 1804 char __user *buf = i->iov->iov_base + i->iov_offset; 1805 bytes = min(bytes, i->iov->iov_len - i->iov_offset); 1806 return fault_in_pages_readable(buf, bytes); 1807 } 1808 EXPORT_SYMBOL(iov_iter_fault_in_readable); 1809 1810 /* 1811 * Return the count of just the current iov_iter segment. 1812 */ 1813 size_t iov_iter_single_seg_count(struct iov_iter *i) 1814 { 1815 const struct iovec *iov = i->iov; 1816 if (i->nr_segs == 1) 1817 return i->count; 1818 else 1819 return min(i->count, iov->iov_len - i->iov_offset); 1820 } 1821 EXPORT_SYMBOL(iov_iter_single_seg_count); 1822 1823 /* 1824 * Performs necessary checks before doing a write 1825 * 1826 * Can adjust writing position or amount of bytes to write. 1827 * Returns appropriate error code that caller should return or 1828 * zero in case that write should be allowed. 1829 */ 1830 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk) 1831 { 1832 struct inode *inode = file->f_mapping->host; 1833 unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; 1834 1835 if (unlikely(*pos < 0)) 1836 return -EINVAL; 1837 1838 if (!isblk) { 1839 /* FIXME: this is for backwards compatibility with 2.4 */ 1840 if (file->f_flags & O_APPEND) 1841 *pos = i_size_read(inode); 1842 1843 if (limit != RLIM_INFINITY) { 1844 if (*pos >= limit) { 1845 send_sig(SIGXFSZ, current, 0); 1846 return -EFBIG; 1847 } 1848 if (*count > limit - (typeof(limit))*pos) { 1849 *count = limit - (typeof(limit))*pos; 1850 } 1851 } 1852 } 1853 1854 /* 1855 * LFS rule 1856 */ 1857 if (unlikely(*pos + *count > MAX_NON_LFS && 1858 !(file->f_flags & O_LARGEFILE))) { 1859 if (*pos >= MAX_NON_LFS) { 1860 return -EFBIG; 1861 } 1862 if (*count > MAX_NON_LFS - (unsigned long)*pos) { 1863 *count = MAX_NON_LFS - (unsigned long)*pos; 1864 } 1865 } 1866 1867 /* 1868 * Are we about to exceed the fs block limit ? 1869 * 1870 * If we have written data it becomes a short write. If we have 1871 * exceeded without writing data we send a signal and return EFBIG. 1872 * Linus frestrict idea will clean these up nicely.. 1873 */ 1874 if (likely(!isblk)) { 1875 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) { 1876 if (*count || *pos > inode->i_sb->s_maxbytes) { 1877 return -EFBIG; 1878 } 1879 /* zero-length writes at ->s_maxbytes are OK */ 1880 } 1881 1882 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes)) 1883 *count = inode->i_sb->s_maxbytes - *pos; 1884 } else { 1885 #ifdef CONFIG_BLOCK 1886 loff_t isize; 1887 if (bdev_read_only(I_BDEV(inode))) 1888 return -EPERM; 1889 isize = i_size_read(inode); 1890 if (*pos >= isize) { 1891 if (*count || *pos > isize) 1892 return -ENOSPC; 1893 } 1894 1895 if (*pos + *count > isize) 1896 *count = isize - *pos; 1897 #else 1898 return -EPERM; 1899 #endif 1900 } 1901 return 0; 1902 } 1903 EXPORT_SYMBOL(generic_write_checks); 1904 1905 int pagecache_write_begin(struct file *file, struct address_space *mapping, 1906 loff_t pos, unsigned len, unsigned flags, 1907 struct page **pagep, void **fsdata) 1908 { 1909 const struct address_space_operations *aops = mapping->a_ops; 1910 1911 if (aops->write_begin) { 1912 return aops->write_begin(file, mapping, pos, len, flags, 1913 pagep, fsdata); 1914 } else { 1915 int ret; 1916 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 1917 unsigned offset = pos & (PAGE_CACHE_SIZE - 1); 1918 struct inode *inode = mapping->host; 1919 struct page *page; 1920 again: 1921 page = __grab_cache_page(mapping, index); 1922 *pagep = page; 1923 if (!page) 1924 return -ENOMEM; 1925 1926 if (flags & AOP_FLAG_UNINTERRUPTIBLE && !PageUptodate(page)) { 1927 /* 1928 * There is no way to resolve a short write situation 1929 * for a !Uptodate page (except by double copying in 1930 * the caller done by generic_perform_write_2copy). 1931 * 1932 * Instead, we have to bring it uptodate here. 1933 */ 1934 ret = aops->readpage(file, page); 1935 page_cache_release(page); 1936 if (ret) { 1937 if (ret == AOP_TRUNCATED_PAGE) 1938 goto again; 1939 return ret; 1940 } 1941 goto again; 1942 } 1943 1944 ret = aops->prepare_write(file, page, offset, offset+len); 1945 if (ret) { 1946 unlock_page(page); 1947 page_cache_release(page); 1948 if (pos + len > inode->i_size) 1949 vmtruncate(inode, inode->i_size); 1950 } 1951 return ret; 1952 } 1953 } 1954 EXPORT_SYMBOL(pagecache_write_begin); 1955 1956 int pagecache_write_end(struct file *file, struct address_space *mapping, 1957 loff_t pos, unsigned len, unsigned copied, 1958 struct page *page, void *fsdata) 1959 { 1960 const struct address_space_operations *aops = mapping->a_ops; 1961 int ret; 1962 1963 if (aops->write_end) { 1964 mark_page_accessed(page); 1965 ret = aops->write_end(file, mapping, pos, len, copied, 1966 page, fsdata); 1967 } else { 1968 unsigned offset = pos & (PAGE_CACHE_SIZE - 1); 1969 struct inode *inode = mapping->host; 1970 1971 flush_dcache_page(page); 1972 ret = aops->commit_write(file, page, offset, offset+len); 1973 unlock_page(page); 1974 mark_page_accessed(page); 1975 page_cache_release(page); 1976 1977 if (ret < 0) { 1978 if (pos + len > inode->i_size) 1979 vmtruncate(inode, inode->i_size); 1980 } else if (ret > 0) 1981 ret = min_t(size_t, copied, ret); 1982 else 1983 ret = copied; 1984 } 1985 1986 return ret; 1987 } 1988 EXPORT_SYMBOL(pagecache_write_end); 1989 1990 ssize_t 1991 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov, 1992 unsigned long *nr_segs, loff_t pos, loff_t *ppos, 1993 size_t count, size_t ocount) 1994 { 1995 struct file *file = iocb->ki_filp; 1996 struct address_space *mapping = file->f_mapping; 1997 struct inode *inode = mapping->host; 1998 ssize_t written; 1999 2000 if (count != ocount) 2001 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count); 2002 2003 written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs); 2004 if (written > 0) { 2005 loff_t end = pos + written; 2006 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 2007 i_size_write(inode, end); 2008 mark_inode_dirty(inode); 2009 } 2010 *ppos = end; 2011 } 2012 2013 /* 2014 * Sync the fs metadata but not the minor inode changes and 2015 * of course not the data as we did direct DMA for the IO. 2016 * i_mutex is held, which protects generic_osync_inode() from 2017 * livelocking. AIO O_DIRECT ops attempt to sync metadata here. 2018 */ 2019 if ((written >= 0 || written == -EIOCBQUEUED) && 2020 ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 2021 int err = generic_osync_inode(inode, mapping, OSYNC_METADATA); 2022 if (err < 0) 2023 written = err; 2024 } 2025 return written; 2026 } 2027 EXPORT_SYMBOL(generic_file_direct_write); 2028 2029 /* 2030 * Find or create a page at the given pagecache position. Return the locked 2031 * page. This function is specifically for buffered writes. 2032 */ 2033 struct page *__grab_cache_page(struct address_space *mapping, pgoff_t index) 2034 { 2035 int status; 2036 struct page *page; 2037 repeat: 2038 page = find_lock_page(mapping, index); 2039 if (likely(page)) 2040 return page; 2041 2042 page = page_cache_alloc(mapping); 2043 if (!page) 2044 return NULL; 2045 status = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL); 2046 if (unlikely(status)) { 2047 page_cache_release(page); 2048 if (status == -EEXIST) 2049 goto repeat; 2050 return NULL; 2051 } 2052 return page; 2053 } 2054 EXPORT_SYMBOL(__grab_cache_page); 2055 2056 static ssize_t generic_perform_write_2copy(struct file *file, 2057 struct iov_iter *i, loff_t pos) 2058 { 2059 struct address_space *mapping = file->f_mapping; 2060 const struct address_space_operations *a_ops = mapping->a_ops; 2061 struct inode *inode = mapping->host; 2062 long status = 0; 2063 ssize_t written = 0; 2064 2065 do { 2066 struct page *src_page; 2067 struct page *page; 2068 pgoff_t index; /* Pagecache index for current page */ 2069 unsigned long offset; /* Offset into pagecache page */ 2070 unsigned long bytes; /* Bytes to write to page */ 2071 size_t copied; /* Bytes copied from user */ 2072 2073 offset = (pos & (PAGE_CACHE_SIZE - 1)); 2074 index = pos >> PAGE_CACHE_SHIFT; 2075 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset, 2076 iov_iter_count(i)); 2077 2078 /* 2079 * a non-NULL src_page indicates that we're doing the 2080 * copy via get_user_pages and kmap. 2081 */ 2082 src_page = NULL; 2083 2084 /* 2085 * Bring in the user page that we will copy from _first_. 2086 * Otherwise there's a nasty deadlock on copying from the 2087 * same page as we're writing to, without it being marked 2088 * up-to-date. 2089 * 2090 * Not only is this an optimisation, but it is also required 2091 * to check that the address is actually valid, when atomic 2092 * usercopies are used, below. 2093 */ 2094 if (unlikely(iov_iter_fault_in_readable(i, bytes))) { 2095 status = -EFAULT; 2096 break; 2097 } 2098 2099 page = __grab_cache_page(mapping, index); 2100 if (!page) { 2101 status = -ENOMEM; 2102 break; 2103 } 2104 2105 /* 2106 * non-uptodate pages cannot cope with short copies, and we 2107 * cannot take a pagefault with the destination page locked. 2108 * So pin the source page to copy it. 2109 */ 2110 if (!PageUptodate(page) && !segment_eq(get_fs(), KERNEL_DS)) { 2111 unlock_page(page); 2112 2113 src_page = alloc_page(GFP_KERNEL); 2114 if (!src_page) { 2115 page_cache_release(page); 2116 status = -ENOMEM; 2117 break; 2118 } 2119 2120 /* 2121 * Cannot get_user_pages with a page locked for the 2122 * same reason as we can't take a page fault with a 2123 * page locked (as explained below). 2124 */ 2125 copied = iov_iter_copy_from_user(src_page, i, 2126 offset, bytes); 2127 if (unlikely(copied == 0)) { 2128 status = -EFAULT; 2129 page_cache_release(page); 2130 page_cache_release(src_page); 2131 break; 2132 } 2133 bytes = copied; 2134 2135 lock_page(page); 2136 /* 2137 * Can't handle the page going uptodate here, because 2138 * that means we would use non-atomic usercopies, which 2139 * zero out the tail of the page, which can cause 2140 * zeroes to become transiently visible. We could just 2141 * use a non-zeroing copy, but the APIs aren't too 2142 * consistent. 2143 */ 2144 if (unlikely(!page->mapping || PageUptodate(page))) { 2145 unlock_page(page); 2146 page_cache_release(page); 2147 page_cache_release(src_page); 2148 continue; 2149 } 2150 } 2151 2152 status = a_ops->prepare_write(file, page, offset, offset+bytes); 2153 if (unlikely(status)) 2154 goto fs_write_aop_error; 2155 2156 if (!src_page) { 2157 /* 2158 * Must not enter the pagefault handler here, because 2159 * we hold the page lock, so we might recursively 2160 * deadlock on the same lock, or get an ABBA deadlock 2161 * against a different lock, or against the mmap_sem 2162 * (which nests outside the page lock). So increment 2163 * preempt count, and use _atomic usercopies. 2164 * 2165 * The page is uptodate so we are OK to encounter a 2166 * short copy: if unmodified parts of the page are 2167 * marked dirty and written out to disk, it doesn't 2168 * really matter. 2169 */ 2170 pagefault_disable(); 2171 copied = iov_iter_copy_from_user_atomic(page, i, 2172 offset, bytes); 2173 pagefault_enable(); 2174 } else { 2175 void *src, *dst; 2176 src = kmap_atomic(src_page, KM_USER0); 2177 dst = kmap_atomic(page, KM_USER1); 2178 memcpy(dst + offset, src + offset, bytes); 2179 kunmap_atomic(dst, KM_USER1); 2180 kunmap_atomic(src, KM_USER0); 2181 copied = bytes; 2182 } 2183 flush_dcache_page(page); 2184 2185 status = a_ops->commit_write(file, page, offset, offset+bytes); 2186 if (unlikely(status < 0)) 2187 goto fs_write_aop_error; 2188 if (unlikely(status > 0)) /* filesystem did partial write */ 2189 copied = min_t(size_t, copied, status); 2190 2191 unlock_page(page); 2192 mark_page_accessed(page); 2193 page_cache_release(page); 2194 if (src_page) 2195 page_cache_release(src_page); 2196 2197 iov_iter_advance(i, copied); 2198 pos += copied; 2199 written += copied; 2200 2201 balance_dirty_pages_ratelimited(mapping); 2202 cond_resched(); 2203 continue; 2204 2205 fs_write_aop_error: 2206 unlock_page(page); 2207 page_cache_release(page); 2208 if (src_page) 2209 page_cache_release(src_page); 2210 2211 /* 2212 * prepare_write() may have instantiated a few blocks 2213 * outside i_size. Trim these off again. Don't need 2214 * i_size_read because we hold i_mutex. 2215 */ 2216 if (pos + bytes > inode->i_size) 2217 vmtruncate(inode, inode->i_size); 2218 break; 2219 } while (iov_iter_count(i)); 2220 2221 return written ? written : status; 2222 } 2223 2224 static ssize_t generic_perform_write(struct file *file, 2225 struct iov_iter *i, loff_t pos) 2226 { 2227 struct address_space *mapping = file->f_mapping; 2228 const struct address_space_operations *a_ops = mapping->a_ops; 2229 long status = 0; 2230 ssize_t written = 0; 2231 unsigned int flags = 0; 2232 2233 /* 2234 * Copies from kernel address space cannot fail (NFSD is a big user). 2235 */ 2236 if (segment_eq(get_fs(), KERNEL_DS)) 2237 flags |= AOP_FLAG_UNINTERRUPTIBLE; 2238 2239 do { 2240 struct page *page; 2241 pgoff_t index; /* Pagecache index for current page */ 2242 unsigned long offset; /* Offset into pagecache page */ 2243 unsigned long bytes; /* Bytes to write to page */ 2244 size_t copied; /* Bytes copied from user */ 2245 void *fsdata; 2246 2247 offset = (pos & (PAGE_CACHE_SIZE - 1)); 2248 index = pos >> PAGE_CACHE_SHIFT; 2249 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset, 2250 iov_iter_count(i)); 2251 2252 again: 2253 2254 /* 2255 * Bring in the user page that we will copy from _first_. 2256 * Otherwise there's a nasty deadlock on copying from the 2257 * same page as we're writing to, without it being marked 2258 * up-to-date. 2259 * 2260 * Not only is this an optimisation, but it is also required 2261 * to check that the address is actually valid, when atomic 2262 * usercopies are used, below. 2263 */ 2264 if (unlikely(iov_iter_fault_in_readable(i, bytes))) { 2265 status = -EFAULT; 2266 break; 2267 } 2268 2269 status = a_ops->write_begin(file, mapping, pos, bytes, flags, 2270 &page, &fsdata); 2271 if (unlikely(status)) 2272 break; 2273 2274 pagefault_disable(); 2275 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); 2276 pagefault_enable(); 2277 flush_dcache_page(page); 2278 2279 status = a_ops->write_end(file, mapping, pos, bytes, copied, 2280 page, fsdata); 2281 if (unlikely(status < 0)) 2282 break; 2283 copied = status; 2284 2285 cond_resched(); 2286 2287 iov_iter_advance(i, copied); 2288 if (unlikely(copied == 0)) { 2289 /* 2290 * If we were unable to copy any data at all, we must 2291 * fall back to a single segment length write. 2292 * 2293 * If we didn't fallback here, we could livelock 2294 * because not all segments in the iov can be copied at 2295 * once without a pagefault. 2296 */ 2297 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset, 2298 iov_iter_single_seg_count(i)); 2299 goto again; 2300 } 2301 pos += copied; 2302 written += copied; 2303 2304 balance_dirty_pages_ratelimited(mapping); 2305 2306 } while (iov_iter_count(i)); 2307 2308 return written ? written : status; 2309 } 2310 2311 ssize_t 2312 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov, 2313 unsigned long nr_segs, loff_t pos, loff_t *ppos, 2314 size_t count, ssize_t written) 2315 { 2316 struct file *file = iocb->ki_filp; 2317 struct address_space *mapping = file->f_mapping; 2318 const struct address_space_operations *a_ops = mapping->a_ops; 2319 struct inode *inode = mapping->host; 2320 ssize_t status; 2321 struct iov_iter i; 2322 2323 iov_iter_init(&i, iov, nr_segs, count, written); 2324 if (a_ops->write_begin) 2325 status = generic_perform_write(file, &i, pos); 2326 else 2327 status = generic_perform_write_2copy(file, &i, pos); 2328 2329 if (likely(status >= 0)) { 2330 written += status; 2331 *ppos = pos + status; 2332 2333 /* 2334 * For now, when the user asks for O_SYNC, we'll actually give 2335 * O_DSYNC 2336 */ 2337 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 2338 if (!a_ops->writepage || !is_sync_kiocb(iocb)) 2339 status = generic_osync_inode(inode, mapping, 2340 OSYNC_METADATA|OSYNC_DATA); 2341 } 2342 } 2343 2344 /* 2345 * If we get here for O_DIRECT writes then we must have fallen through 2346 * to buffered writes (block instantiation inside i_size). So we sync 2347 * the file data here, to try to honour O_DIRECT expectations. 2348 */ 2349 if (unlikely(file->f_flags & O_DIRECT) && written) 2350 status = filemap_write_and_wait(mapping); 2351 2352 return written ? written : status; 2353 } 2354 EXPORT_SYMBOL(generic_file_buffered_write); 2355 2356 static ssize_t 2357 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov, 2358 unsigned long nr_segs, loff_t *ppos) 2359 { 2360 struct file *file = iocb->ki_filp; 2361 struct address_space * mapping = file->f_mapping; 2362 size_t ocount; /* original count */ 2363 size_t count; /* after file limit checks */ 2364 struct inode *inode = mapping->host; 2365 loff_t pos; 2366 ssize_t written; 2367 ssize_t err; 2368 2369 ocount = 0; 2370 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ); 2371 if (err) 2372 return err; 2373 2374 count = ocount; 2375 pos = *ppos; 2376 2377 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE); 2378 2379 /* We can write back this queue in page reclaim */ 2380 current->backing_dev_info = mapping->backing_dev_info; 2381 written = 0; 2382 2383 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode)); 2384 if (err) 2385 goto out; 2386 2387 if (count == 0) 2388 goto out; 2389 2390 err = remove_suid(file->f_path.dentry); 2391 if (err) 2392 goto out; 2393 2394 file_update_time(file); 2395 2396 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ 2397 if (unlikely(file->f_flags & O_DIRECT)) { 2398 loff_t endbyte; 2399 ssize_t written_buffered; 2400 2401 written = generic_file_direct_write(iocb, iov, &nr_segs, pos, 2402 ppos, count, ocount); 2403 if (written < 0 || written == count) 2404 goto out; 2405 /* 2406 * direct-io write to a hole: fall through to buffered I/O 2407 * for completing the rest of the request. 2408 */ 2409 pos += written; 2410 count -= written; 2411 written_buffered = generic_file_buffered_write(iocb, iov, 2412 nr_segs, pos, ppos, count, 2413 written); 2414 /* 2415 * If generic_file_buffered_write() retuned a synchronous error 2416 * then we want to return the number of bytes which were 2417 * direct-written, or the error code if that was zero. Note 2418 * that this differs from normal direct-io semantics, which 2419 * will return -EFOO even if some bytes were written. 2420 */ 2421 if (written_buffered < 0) { 2422 err = written_buffered; 2423 goto out; 2424 } 2425 2426 /* 2427 * We need to ensure that the page cache pages are written to 2428 * disk and invalidated to preserve the expected O_DIRECT 2429 * semantics. 2430 */ 2431 endbyte = pos + written_buffered - written - 1; 2432 err = do_sync_mapping_range(file->f_mapping, pos, endbyte, 2433 SYNC_FILE_RANGE_WAIT_BEFORE| 2434 SYNC_FILE_RANGE_WRITE| 2435 SYNC_FILE_RANGE_WAIT_AFTER); 2436 if (err == 0) { 2437 written = written_buffered; 2438 invalidate_mapping_pages(mapping, 2439 pos >> PAGE_CACHE_SHIFT, 2440 endbyte >> PAGE_CACHE_SHIFT); 2441 } else { 2442 /* 2443 * We don't know how much we wrote, so just return 2444 * the number of bytes which were direct-written 2445 */ 2446 } 2447 } else { 2448 written = generic_file_buffered_write(iocb, iov, nr_segs, 2449 pos, ppos, count, written); 2450 } 2451 out: 2452 current->backing_dev_info = NULL; 2453 return written ? written : err; 2454 } 2455 2456 ssize_t generic_file_aio_write_nolock(struct kiocb *iocb, 2457 const struct iovec *iov, unsigned long nr_segs, loff_t pos) 2458 { 2459 struct file *file = iocb->ki_filp; 2460 struct address_space *mapping = file->f_mapping; 2461 struct inode *inode = mapping->host; 2462 ssize_t ret; 2463 2464 BUG_ON(iocb->ki_pos != pos); 2465 2466 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs, 2467 &iocb->ki_pos); 2468 2469 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 2470 ssize_t err; 2471 2472 err = sync_page_range_nolock(inode, mapping, pos, ret); 2473 if (err < 0) 2474 ret = err; 2475 } 2476 return ret; 2477 } 2478 EXPORT_SYMBOL(generic_file_aio_write_nolock); 2479 2480 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov, 2481 unsigned long nr_segs, loff_t pos) 2482 { 2483 struct file *file = iocb->ki_filp; 2484 struct address_space *mapping = file->f_mapping; 2485 struct inode *inode = mapping->host; 2486 ssize_t ret; 2487 2488 BUG_ON(iocb->ki_pos != pos); 2489 2490 mutex_lock(&inode->i_mutex); 2491 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs, 2492 &iocb->ki_pos); 2493 mutex_unlock(&inode->i_mutex); 2494 2495 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 2496 ssize_t err; 2497 2498 err = sync_page_range(inode, mapping, pos, ret); 2499 if (err < 0) 2500 ret = err; 2501 } 2502 return ret; 2503 } 2504 EXPORT_SYMBOL(generic_file_aio_write); 2505 2506 /* 2507 * Called under i_mutex for writes to S_ISREG files. Returns -EIO if something 2508 * went wrong during pagecache shootdown. 2509 */ 2510 static ssize_t 2511 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, 2512 loff_t offset, unsigned long nr_segs) 2513 { 2514 struct file *file = iocb->ki_filp; 2515 struct address_space *mapping = file->f_mapping; 2516 ssize_t retval; 2517 size_t write_len; 2518 pgoff_t end = 0; /* silence gcc */ 2519 2520 /* 2521 * If it's a write, unmap all mmappings of the file up-front. This 2522 * will cause any pte dirty bits to be propagated into the pageframes 2523 * for the subsequent filemap_write_and_wait(). 2524 */ 2525 if (rw == WRITE) { 2526 write_len = iov_length(iov, nr_segs); 2527 end = (offset + write_len - 1) >> PAGE_CACHE_SHIFT; 2528 if (mapping_mapped(mapping)) 2529 unmap_mapping_range(mapping, offset, write_len, 0); 2530 } 2531 2532 retval = filemap_write_and_wait(mapping); 2533 if (retval) 2534 goto out; 2535 2536 /* 2537 * After a write we want buffered reads to be sure to go to disk to get 2538 * the new data. We invalidate clean cached page from the region we're 2539 * about to write. We do this *before* the write so that we can return 2540 * -EIO without clobbering -EIOCBQUEUED from ->direct_IO(). 2541 */ 2542 if (rw == WRITE && mapping->nrpages) { 2543 retval = invalidate_inode_pages2_range(mapping, 2544 offset >> PAGE_CACHE_SHIFT, end); 2545 if (retval) 2546 goto out; 2547 } 2548 2549 retval = mapping->a_ops->direct_IO(rw, iocb, iov, offset, nr_segs); 2550 2551 /* 2552 * Finally, try again to invalidate clean pages which might have been 2553 * cached by non-direct readahead, or faulted in by get_user_pages() 2554 * if the source of the write was an mmap'ed region of the file 2555 * we're writing. Either one is a pretty crazy thing to do, 2556 * so we don't support it 100%. If this invalidation 2557 * fails, tough, the write still worked... 2558 */ 2559 if (rw == WRITE && mapping->nrpages) { 2560 invalidate_inode_pages2_range(mapping, offset >> PAGE_CACHE_SHIFT, end); 2561 } 2562 out: 2563 return retval; 2564 } 2565 2566 /** 2567 * try_to_release_page() - release old fs-specific metadata on a page 2568 * 2569 * @page: the page which the kernel is trying to free 2570 * @gfp_mask: memory allocation flags (and I/O mode) 2571 * 2572 * The address_space is to try to release any data against the page 2573 * (presumably at page->private). If the release was successful, return `1'. 2574 * Otherwise return zero. 2575 * 2576 * The @gfp_mask argument specifies whether I/O may be performed to release 2577 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT). 2578 * 2579 * NOTE: @gfp_mask may go away, and this function may become non-blocking. 2580 */ 2581 int try_to_release_page(struct page *page, gfp_t gfp_mask) 2582 { 2583 struct address_space * const mapping = page->mapping; 2584 2585 BUG_ON(!PageLocked(page)); 2586 if (PageWriteback(page)) 2587 return 0; 2588 2589 if (mapping && mapping->a_ops->releasepage) 2590 return mapping->a_ops->releasepage(page, gfp_mask); 2591 return try_to_free_buffers(page); 2592 } 2593 2594 EXPORT_SYMBOL(try_to_release_page); 2595