xref: /openbmc/linux/mm/filemap.c (revision 95e9fd10)
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/memcontrol.h>
35 #include <linux/cleancache.h>
36 #include "internal.h"
37 
38 /*
39  * FIXME: remove all knowledge of the buffer layer from the core VM
40  */
41 #include <linux/buffer_head.h> /* for try_to_free_buffers */
42 
43 #include <asm/mman.h>
44 
45 /*
46  * Shared mappings implemented 30.11.1994. It's not fully working yet,
47  * though.
48  *
49  * Shared mappings now work. 15.8.1995  Bruno.
50  *
51  * finished 'unifying' the page and buffer cache and SMP-threaded the
52  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
53  *
54  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
55  */
56 
57 /*
58  * Lock ordering:
59  *
60  *  ->i_mmap_mutex		(truncate_pagecache)
61  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
62  *      ->swap_lock		(exclusive_swap_page, others)
63  *        ->mapping->tree_lock
64  *
65  *  ->i_mutex
66  *    ->i_mmap_mutex		(truncate->unmap_mapping_range)
67  *
68  *  ->mmap_sem
69  *    ->i_mmap_mutex
70  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
71  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
72  *
73  *  ->mmap_sem
74  *    ->lock_page		(access_process_vm)
75  *
76  *  ->i_mutex			(generic_file_buffered_write)
77  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
78  *
79  *  bdi->wb.list_lock
80  *    sb_lock			(fs/fs-writeback.c)
81  *    ->mapping->tree_lock	(__sync_single_inode)
82  *
83  *  ->i_mmap_mutex
84  *    ->anon_vma.lock		(vma_adjust)
85  *
86  *  ->anon_vma.lock
87  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
88  *
89  *  ->page_table_lock or pte_lock
90  *    ->swap_lock		(try_to_unmap_one)
91  *    ->private_lock		(try_to_unmap_one)
92  *    ->tree_lock		(try_to_unmap_one)
93  *    ->zone.lru_lock		(follow_page->mark_page_accessed)
94  *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
95  *    ->private_lock		(page_remove_rmap->set_page_dirty)
96  *    ->tree_lock		(page_remove_rmap->set_page_dirty)
97  *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
98  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
99  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
100  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
101  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
102  *
103  * ->i_mmap_mutex
104  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
105  */
106 
107 /*
108  * Delete a page from the page cache and free it. Caller has to make
109  * sure the page is locked and that nobody else uses it - or that usage
110  * is safe.  The caller must hold the mapping's tree_lock.
111  */
112 void __delete_from_page_cache(struct page *page)
113 {
114 	struct address_space *mapping = page->mapping;
115 
116 	/*
117 	 * if we're uptodate, flush out into the cleancache, otherwise
118 	 * invalidate any existing cleancache entries.  We can't leave
119 	 * stale data around in the cleancache once our page is gone
120 	 */
121 	if (PageUptodate(page) && PageMappedToDisk(page))
122 		cleancache_put_page(page);
123 	else
124 		cleancache_invalidate_page(mapping, page);
125 
126 	radix_tree_delete(&mapping->page_tree, page->index);
127 	page->mapping = NULL;
128 	/* Leave page->index set: truncation lookup relies upon it */
129 	mapping->nrpages--;
130 	__dec_zone_page_state(page, NR_FILE_PAGES);
131 	if (PageSwapBacked(page))
132 		__dec_zone_page_state(page, NR_SHMEM);
133 	BUG_ON(page_mapped(page));
134 
135 	/*
136 	 * Some filesystems seem to re-dirty the page even after
137 	 * the VM has canceled the dirty bit (eg ext3 journaling).
138 	 *
139 	 * Fix it up by doing a final dirty accounting check after
140 	 * having removed the page entirely.
141 	 */
142 	if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
143 		dec_zone_page_state(page, NR_FILE_DIRTY);
144 		dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
145 	}
146 }
147 
148 /**
149  * delete_from_page_cache - delete page from page cache
150  * @page: the page which the kernel is trying to remove from page cache
151  *
152  * This must be called only on pages that have been verified to be in the page
153  * cache and locked.  It will never put the page into the free list, the caller
154  * has a reference on the page.
155  */
156 void delete_from_page_cache(struct page *page)
157 {
158 	struct address_space *mapping = page->mapping;
159 	void (*freepage)(struct page *);
160 
161 	BUG_ON(!PageLocked(page));
162 
163 	freepage = mapping->a_ops->freepage;
164 	spin_lock_irq(&mapping->tree_lock);
165 	__delete_from_page_cache(page);
166 	spin_unlock_irq(&mapping->tree_lock);
167 	mem_cgroup_uncharge_cache_page(page);
168 
169 	if (freepage)
170 		freepage(page);
171 	page_cache_release(page);
172 }
173 EXPORT_SYMBOL(delete_from_page_cache);
174 
175 static int sleep_on_page(void *word)
176 {
177 	io_schedule();
178 	return 0;
179 }
180 
181 static int sleep_on_page_killable(void *word)
182 {
183 	sleep_on_page(word);
184 	return fatal_signal_pending(current) ? -EINTR : 0;
185 }
186 
187 /**
188  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
189  * @mapping:	address space structure to write
190  * @start:	offset in bytes where the range starts
191  * @end:	offset in bytes where the range ends (inclusive)
192  * @sync_mode:	enable synchronous operation
193  *
194  * Start writeback against all of a mapping's dirty pages that lie
195  * within the byte offsets <start, end> inclusive.
196  *
197  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
198  * opposed to a regular memory cleansing writeback.  The difference between
199  * these two operations is that if a dirty page/buffer is encountered, it must
200  * be waited upon, and not just skipped over.
201  */
202 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
203 				loff_t end, int sync_mode)
204 {
205 	int ret;
206 	struct writeback_control wbc = {
207 		.sync_mode = sync_mode,
208 		.nr_to_write = LONG_MAX,
209 		.range_start = start,
210 		.range_end = end,
211 	};
212 
213 	if (!mapping_cap_writeback_dirty(mapping))
214 		return 0;
215 
216 	ret = do_writepages(mapping, &wbc);
217 	return ret;
218 }
219 
220 static inline int __filemap_fdatawrite(struct address_space *mapping,
221 	int sync_mode)
222 {
223 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
224 }
225 
226 int filemap_fdatawrite(struct address_space *mapping)
227 {
228 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
229 }
230 EXPORT_SYMBOL(filemap_fdatawrite);
231 
232 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
233 				loff_t end)
234 {
235 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
236 }
237 EXPORT_SYMBOL(filemap_fdatawrite_range);
238 
239 /**
240  * filemap_flush - mostly a non-blocking flush
241  * @mapping:	target address_space
242  *
243  * This is a mostly non-blocking flush.  Not suitable for data-integrity
244  * purposes - I/O may not be started against all dirty pages.
245  */
246 int filemap_flush(struct address_space *mapping)
247 {
248 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
249 }
250 EXPORT_SYMBOL(filemap_flush);
251 
252 /**
253  * filemap_fdatawait_range - wait for writeback to complete
254  * @mapping:		address space structure to wait for
255  * @start_byte:		offset in bytes where the range starts
256  * @end_byte:		offset in bytes where the range ends (inclusive)
257  *
258  * Walk the list of under-writeback pages of the given address space
259  * in the given range and wait for all of them.
260  */
261 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
262 			    loff_t end_byte)
263 {
264 	pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
265 	pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
266 	struct pagevec pvec;
267 	int nr_pages;
268 	int ret = 0;
269 
270 	if (end_byte < start_byte)
271 		return 0;
272 
273 	pagevec_init(&pvec, 0);
274 	while ((index <= end) &&
275 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
276 			PAGECACHE_TAG_WRITEBACK,
277 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
278 		unsigned i;
279 
280 		for (i = 0; i < nr_pages; i++) {
281 			struct page *page = pvec.pages[i];
282 
283 			/* until radix tree lookup accepts end_index */
284 			if (page->index > end)
285 				continue;
286 
287 			wait_on_page_writeback(page);
288 			if (TestClearPageError(page))
289 				ret = -EIO;
290 		}
291 		pagevec_release(&pvec);
292 		cond_resched();
293 	}
294 
295 	/* Check for outstanding write errors */
296 	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
297 		ret = -ENOSPC;
298 	if (test_and_clear_bit(AS_EIO, &mapping->flags))
299 		ret = -EIO;
300 
301 	return ret;
302 }
303 EXPORT_SYMBOL(filemap_fdatawait_range);
304 
305 /**
306  * filemap_fdatawait - wait for all under-writeback pages to complete
307  * @mapping: address space structure to wait for
308  *
309  * Walk the list of under-writeback pages of the given address space
310  * and wait for all of them.
311  */
312 int filemap_fdatawait(struct address_space *mapping)
313 {
314 	loff_t i_size = i_size_read(mapping->host);
315 
316 	if (i_size == 0)
317 		return 0;
318 
319 	return filemap_fdatawait_range(mapping, 0, i_size - 1);
320 }
321 EXPORT_SYMBOL(filemap_fdatawait);
322 
323 int filemap_write_and_wait(struct address_space *mapping)
324 {
325 	int err = 0;
326 
327 	if (mapping->nrpages) {
328 		err = filemap_fdatawrite(mapping);
329 		/*
330 		 * Even if the above returned error, the pages may be
331 		 * written partially (e.g. -ENOSPC), so we wait for it.
332 		 * But the -EIO is special case, it may indicate the worst
333 		 * thing (e.g. bug) happened, so we avoid waiting for it.
334 		 */
335 		if (err != -EIO) {
336 			int err2 = filemap_fdatawait(mapping);
337 			if (!err)
338 				err = err2;
339 		}
340 	}
341 	return err;
342 }
343 EXPORT_SYMBOL(filemap_write_and_wait);
344 
345 /**
346  * filemap_write_and_wait_range - write out & wait on a file range
347  * @mapping:	the address_space for the pages
348  * @lstart:	offset in bytes where the range starts
349  * @lend:	offset in bytes where the range ends (inclusive)
350  *
351  * Write out and wait upon file offsets lstart->lend, inclusive.
352  *
353  * Note that `lend' is inclusive (describes the last byte to be written) so
354  * that this function can be used to write to the very end-of-file (end = -1).
355  */
356 int filemap_write_and_wait_range(struct address_space *mapping,
357 				 loff_t lstart, loff_t lend)
358 {
359 	int err = 0;
360 
361 	if (mapping->nrpages) {
362 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
363 						 WB_SYNC_ALL);
364 		/* See comment of filemap_write_and_wait() */
365 		if (err != -EIO) {
366 			int err2 = filemap_fdatawait_range(mapping,
367 						lstart, lend);
368 			if (!err)
369 				err = err2;
370 		}
371 	}
372 	return err;
373 }
374 EXPORT_SYMBOL(filemap_write_and_wait_range);
375 
376 /**
377  * replace_page_cache_page - replace a pagecache page with a new one
378  * @old:	page to be replaced
379  * @new:	page to replace with
380  * @gfp_mask:	allocation mode
381  *
382  * This function replaces a page in the pagecache with a new one.  On
383  * success it acquires the pagecache reference for the new page and
384  * drops it for the old page.  Both the old and new pages must be
385  * locked.  This function does not add the new page to the LRU, the
386  * caller must do that.
387  *
388  * The remove + add is atomic.  The only way this function can fail is
389  * memory allocation failure.
390  */
391 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
392 {
393 	int error;
394 
395 	VM_BUG_ON(!PageLocked(old));
396 	VM_BUG_ON(!PageLocked(new));
397 	VM_BUG_ON(new->mapping);
398 
399 	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
400 	if (!error) {
401 		struct address_space *mapping = old->mapping;
402 		void (*freepage)(struct page *);
403 
404 		pgoff_t offset = old->index;
405 		freepage = mapping->a_ops->freepage;
406 
407 		page_cache_get(new);
408 		new->mapping = mapping;
409 		new->index = offset;
410 
411 		spin_lock_irq(&mapping->tree_lock);
412 		__delete_from_page_cache(old);
413 		error = radix_tree_insert(&mapping->page_tree, offset, new);
414 		BUG_ON(error);
415 		mapping->nrpages++;
416 		__inc_zone_page_state(new, NR_FILE_PAGES);
417 		if (PageSwapBacked(new))
418 			__inc_zone_page_state(new, NR_SHMEM);
419 		spin_unlock_irq(&mapping->tree_lock);
420 		/* mem_cgroup codes must not be called under tree_lock */
421 		mem_cgroup_replace_page_cache(old, new);
422 		radix_tree_preload_end();
423 		if (freepage)
424 			freepage(old);
425 		page_cache_release(old);
426 	}
427 
428 	return error;
429 }
430 EXPORT_SYMBOL_GPL(replace_page_cache_page);
431 
432 /**
433  * add_to_page_cache_locked - add a locked page to the pagecache
434  * @page:	page to add
435  * @mapping:	the page's address_space
436  * @offset:	page index
437  * @gfp_mask:	page allocation mode
438  *
439  * This function is used to add a page to the pagecache. It must be locked.
440  * This function does not add the page to the LRU.  The caller must do that.
441  */
442 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
443 		pgoff_t offset, gfp_t gfp_mask)
444 {
445 	int error;
446 
447 	VM_BUG_ON(!PageLocked(page));
448 	VM_BUG_ON(PageSwapBacked(page));
449 
450 	error = mem_cgroup_cache_charge(page, current->mm,
451 					gfp_mask & GFP_RECLAIM_MASK);
452 	if (error)
453 		goto out;
454 
455 	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
456 	if (error == 0) {
457 		page_cache_get(page);
458 		page->mapping = mapping;
459 		page->index = offset;
460 
461 		spin_lock_irq(&mapping->tree_lock);
462 		error = radix_tree_insert(&mapping->page_tree, offset, page);
463 		if (likely(!error)) {
464 			mapping->nrpages++;
465 			__inc_zone_page_state(page, NR_FILE_PAGES);
466 			spin_unlock_irq(&mapping->tree_lock);
467 		} else {
468 			page->mapping = NULL;
469 			/* Leave page->index set: truncation relies upon it */
470 			spin_unlock_irq(&mapping->tree_lock);
471 			mem_cgroup_uncharge_cache_page(page);
472 			page_cache_release(page);
473 		}
474 		radix_tree_preload_end();
475 	} else
476 		mem_cgroup_uncharge_cache_page(page);
477 out:
478 	return error;
479 }
480 EXPORT_SYMBOL(add_to_page_cache_locked);
481 
482 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
483 				pgoff_t offset, gfp_t gfp_mask)
484 {
485 	int ret;
486 
487 	ret = add_to_page_cache(page, mapping, offset, gfp_mask);
488 	if (ret == 0)
489 		lru_cache_add_file(page);
490 	return ret;
491 }
492 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
493 
494 #ifdef CONFIG_NUMA
495 struct page *__page_cache_alloc(gfp_t gfp)
496 {
497 	int n;
498 	struct page *page;
499 
500 	if (cpuset_do_page_mem_spread()) {
501 		unsigned int cpuset_mems_cookie;
502 		do {
503 			cpuset_mems_cookie = get_mems_allowed();
504 			n = cpuset_mem_spread_node();
505 			page = alloc_pages_exact_node(n, gfp, 0);
506 		} while (!put_mems_allowed(cpuset_mems_cookie) && !page);
507 
508 		return page;
509 	}
510 	return alloc_pages(gfp, 0);
511 }
512 EXPORT_SYMBOL(__page_cache_alloc);
513 #endif
514 
515 /*
516  * In order to wait for pages to become available there must be
517  * waitqueues associated with pages. By using a hash table of
518  * waitqueues where the bucket discipline is to maintain all
519  * waiters on the same queue and wake all when any of the pages
520  * become available, and for the woken contexts to check to be
521  * sure the appropriate page became available, this saves space
522  * at a cost of "thundering herd" phenomena during rare hash
523  * collisions.
524  */
525 static wait_queue_head_t *page_waitqueue(struct page *page)
526 {
527 	const struct zone *zone = page_zone(page);
528 
529 	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
530 }
531 
532 static inline void wake_up_page(struct page *page, int bit)
533 {
534 	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
535 }
536 
537 void wait_on_page_bit(struct page *page, int bit_nr)
538 {
539 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
540 
541 	if (test_bit(bit_nr, &page->flags))
542 		__wait_on_bit(page_waitqueue(page), &wait, sleep_on_page,
543 							TASK_UNINTERRUPTIBLE);
544 }
545 EXPORT_SYMBOL(wait_on_page_bit);
546 
547 int wait_on_page_bit_killable(struct page *page, int bit_nr)
548 {
549 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
550 
551 	if (!test_bit(bit_nr, &page->flags))
552 		return 0;
553 
554 	return __wait_on_bit(page_waitqueue(page), &wait,
555 			     sleep_on_page_killable, TASK_KILLABLE);
556 }
557 
558 /**
559  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
560  * @page: Page defining the wait queue of interest
561  * @waiter: Waiter to add to the queue
562  *
563  * Add an arbitrary @waiter to the wait queue for the nominated @page.
564  */
565 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
566 {
567 	wait_queue_head_t *q = page_waitqueue(page);
568 	unsigned long flags;
569 
570 	spin_lock_irqsave(&q->lock, flags);
571 	__add_wait_queue(q, waiter);
572 	spin_unlock_irqrestore(&q->lock, flags);
573 }
574 EXPORT_SYMBOL_GPL(add_page_wait_queue);
575 
576 /**
577  * unlock_page - unlock a locked page
578  * @page: the page
579  *
580  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
581  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
582  * mechananism between PageLocked pages and PageWriteback pages is shared.
583  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
584  *
585  * The mb is necessary to enforce ordering between the clear_bit and the read
586  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
587  */
588 void unlock_page(struct page *page)
589 {
590 	VM_BUG_ON(!PageLocked(page));
591 	clear_bit_unlock(PG_locked, &page->flags);
592 	smp_mb__after_clear_bit();
593 	wake_up_page(page, PG_locked);
594 }
595 EXPORT_SYMBOL(unlock_page);
596 
597 /**
598  * end_page_writeback - end writeback against a page
599  * @page: the page
600  */
601 void end_page_writeback(struct page *page)
602 {
603 	if (TestClearPageReclaim(page))
604 		rotate_reclaimable_page(page);
605 
606 	if (!test_clear_page_writeback(page))
607 		BUG();
608 
609 	smp_mb__after_clear_bit();
610 	wake_up_page(page, PG_writeback);
611 }
612 EXPORT_SYMBOL(end_page_writeback);
613 
614 /**
615  * __lock_page - get a lock on the page, assuming we need to sleep to get it
616  * @page: the page to lock
617  */
618 void __lock_page(struct page *page)
619 {
620 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
621 
622 	__wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page,
623 							TASK_UNINTERRUPTIBLE);
624 }
625 EXPORT_SYMBOL(__lock_page);
626 
627 int __lock_page_killable(struct page *page)
628 {
629 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
630 
631 	return __wait_on_bit_lock(page_waitqueue(page), &wait,
632 					sleep_on_page_killable, TASK_KILLABLE);
633 }
634 EXPORT_SYMBOL_GPL(__lock_page_killable);
635 
636 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
637 			 unsigned int flags)
638 {
639 	if (flags & FAULT_FLAG_ALLOW_RETRY) {
640 		/*
641 		 * CAUTION! In this case, mmap_sem is not released
642 		 * even though return 0.
643 		 */
644 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
645 			return 0;
646 
647 		up_read(&mm->mmap_sem);
648 		if (flags & FAULT_FLAG_KILLABLE)
649 			wait_on_page_locked_killable(page);
650 		else
651 			wait_on_page_locked(page);
652 		return 0;
653 	} else {
654 		if (flags & FAULT_FLAG_KILLABLE) {
655 			int ret;
656 
657 			ret = __lock_page_killable(page);
658 			if (ret) {
659 				up_read(&mm->mmap_sem);
660 				return 0;
661 			}
662 		} else
663 			__lock_page(page);
664 		return 1;
665 	}
666 }
667 
668 /**
669  * find_get_page - find and get a page reference
670  * @mapping: the address_space to search
671  * @offset: the page index
672  *
673  * Is there a pagecache struct page at the given (mapping, offset) tuple?
674  * If yes, increment its refcount and return it; if no, return NULL.
675  */
676 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
677 {
678 	void **pagep;
679 	struct page *page;
680 
681 	rcu_read_lock();
682 repeat:
683 	page = NULL;
684 	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
685 	if (pagep) {
686 		page = radix_tree_deref_slot(pagep);
687 		if (unlikely(!page))
688 			goto out;
689 		if (radix_tree_exception(page)) {
690 			if (radix_tree_deref_retry(page))
691 				goto repeat;
692 			/*
693 			 * Otherwise, shmem/tmpfs must be storing a swap entry
694 			 * here as an exceptional entry: so return it without
695 			 * attempting to raise page count.
696 			 */
697 			goto out;
698 		}
699 		if (!page_cache_get_speculative(page))
700 			goto repeat;
701 
702 		/*
703 		 * Has the page moved?
704 		 * This is part of the lockless pagecache protocol. See
705 		 * include/linux/pagemap.h for details.
706 		 */
707 		if (unlikely(page != *pagep)) {
708 			page_cache_release(page);
709 			goto repeat;
710 		}
711 	}
712 out:
713 	rcu_read_unlock();
714 
715 	return page;
716 }
717 EXPORT_SYMBOL(find_get_page);
718 
719 /**
720  * find_lock_page - locate, pin and lock a pagecache page
721  * @mapping: the address_space to search
722  * @offset: the page index
723  *
724  * Locates the desired pagecache page, locks it, increments its reference
725  * count and returns its address.
726  *
727  * Returns zero if the page was not present. find_lock_page() may sleep.
728  */
729 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
730 {
731 	struct page *page;
732 
733 repeat:
734 	page = find_get_page(mapping, offset);
735 	if (page && !radix_tree_exception(page)) {
736 		lock_page(page);
737 		/* Has the page been truncated? */
738 		if (unlikely(page->mapping != mapping)) {
739 			unlock_page(page);
740 			page_cache_release(page);
741 			goto repeat;
742 		}
743 		VM_BUG_ON(page->index != offset);
744 	}
745 	return page;
746 }
747 EXPORT_SYMBOL(find_lock_page);
748 
749 /**
750  * find_or_create_page - locate or add a pagecache page
751  * @mapping: the page's address_space
752  * @index: the page's index into the mapping
753  * @gfp_mask: page allocation mode
754  *
755  * Locates a page in the pagecache.  If the page is not present, a new page
756  * is allocated using @gfp_mask and is added to the pagecache and to the VM's
757  * LRU list.  The returned page is locked and has its reference count
758  * incremented.
759  *
760  * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
761  * allocation!
762  *
763  * find_or_create_page() returns the desired page's address, or zero on
764  * memory exhaustion.
765  */
766 struct page *find_or_create_page(struct address_space *mapping,
767 		pgoff_t index, gfp_t gfp_mask)
768 {
769 	struct page *page;
770 	int err;
771 repeat:
772 	page = find_lock_page(mapping, index);
773 	if (!page) {
774 		page = __page_cache_alloc(gfp_mask);
775 		if (!page)
776 			return NULL;
777 		/*
778 		 * We want a regular kernel memory (not highmem or DMA etc)
779 		 * allocation for the radix tree nodes, but we need to honour
780 		 * the context-specific requirements the caller has asked for.
781 		 * GFP_RECLAIM_MASK collects those requirements.
782 		 */
783 		err = add_to_page_cache_lru(page, mapping, index,
784 			(gfp_mask & GFP_RECLAIM_MASK));
785 		if (unlikely(err)) {
786 			page_cache_release(page);
787 			page = NULL;
788 			if (err == -EEXIST)
789 				goto repeat;
790 		}
791 	}
792 	return page;
793 }
794 EXPORT_SYMBOL(find_or_create_page);
795 
796 /**
797  * find_get_pages - gang pagecache lookup
798  * @mapping:	The address_space to search
799  * @start:	The starting page index
800  * @nr_pages:	The maximum number of pages
801  * @pages:	Where the resulting pages are placed
802  *
803  * find_get_pages() will search for and return a group of up to
804  * @nr_pages pages in the mapping.  The pages are placed at @pages.
805  * find_get_pages() takes a reference against the returned pages.
806  *
807  * The search returns a group of mapping-contiguous pages with ascending
808  * indexes.  There may be holes in the indices due to not-present pages.
809  *
810  * find_get_pages() returns the number of pages which were found.
811  */
812 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
813 			    unsigned int nr_pages, struct page **pages)
814 {
815 	struct radix_tree_iter iter;
816 	void **slot;
817 	unsigned ret = 0;
818 
819 	if (unlikely(!nr_pages))
820 		return 0;
821 
822 	rcu_read_lock();
823 restart:
824 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
825 		struct page *page;
826 repeat:
827 		page = radix_tree_deref_slot(slot);
828 		if (unlikely(!page))
829 			continue;
830 
831 		if (radix_tree_exception(page)) {
832 			if (radix_tree_deref_retry(page)) {
833 				/*
834 				 * Transient condition which can only trigger
835 				 * when entry at index 0 moves out of or back
836 				 * to root: none yet gotten, safe to restart.
837 				 */
838 				WARN_ON(iter.index);
839 				goto restart;
840 			}
841 			/*
842 			 * Otherwise, shmem/tmpfs must be storing a swap entry
843 			 * here as an exceptional entry: so skip over it -
844 			 * we only reach this from invalidate_mapping_pages().
845 			 */
846 			continue;
847 		}
848 
849 		if (!page_cache_get_speculative(page))
850 			goto repeat;
851 
852 		/* Has the page moved? */
853 		if (unlikely(page != *slot)) {
854 			page_cache_release(page);
855 			goto repeat;
856 		}
857 
858 		pages[ret] = page;
859 		if (++ret == nr_pages)
860 			break;
861 	}
862 
863 	rcu_read_unlock();
864 	return ret;
865 }
866 
867 /**
868  * find_get_pages_contig - gang contiguous pagecache lookup
869  * @mapping:	The address_space to search
870  * @index:	The starting page index
871  * @nr_pages:	The maximum number of pages
872  * @pages:	Where the resulting pages are placed
873  *
874  * find_get_pages_contig() works exactly like find_get_pages(), except
875  * that the returned number of pages are guaranteed to be contiguous.
876  *
877  * find_get_pages_contig() returns the number of pages which were found.
878  */
879 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
880 			       unsigned int nr_pages, struct page **pages)
881 {
882 	struct radix_tree_iter iter;
883 	void **slot;
884 	unsigned int ret = 0;
885 
886 	if (unlikely(!nr_pages))
887 		return 0;
888 
889 	rcu_read_lock();
890 restart:
891 	radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
892 		struct page *page;
893 repeat:
894 		page = radix_tree_deref_slot(slot);
895 		/* The hole, there no reason to continue */
896 		if (unlikely(!page))
897 			break;
898 
899 		if (radix_tree_exception(page)) {
900 			if (radix_tree_deref_retry(page)) {
901 				/*
902 				 * Transient condition which can only trigger
903 				 * when entry at index 0 moves out of or back
904 				 * to root: none yet gotten, safe to restart.
905 				 */
906 				goto restart;
907 			}
908 			/*
909 			 * Otherwise, shmem/tmpfs must be storing a swap entry
910 			 * here as an exceptional entry: so stop looking for
911 			 * contiguous pages.
912 			 */
913 			break;
914 		}
915 
916 		if (!page_cache_get_speculative(page))
917 			goto repeat;
918 
919 		/* Has the page moved? */
920 		if (unlikely(page != *slot)) {
921 			page_cache_release(page);
922 			goto repeat;
923 		}
924 
925 		/*
926 		 * must check mapping and index after taking the ref.
927 		 * otherwise we can get both false positives and false
928 		 * negatives, which is just confusing to the caller.
929 		 */
930 		if (page->mapping == NULL || page->index != iter.index) {
931 			page_cache_release(page);
932 			break;
933 		}
934 
935 		pages[ret] = page;
936 		if (++ret == nr_pages)
937 			break;
938 	}
939 	rcu_read_unlock();
940 	return ret;
941 }
942 EXPORT_SYMBOL(find_get_pages_contig);
943 
944 /**
945  * find_get_pages_tag - find and return pages that match @tag
946  * @mapping:	the address_space to search
947  * @index:	the starting page index
948  * @tag:	the tag index
949  * @nr_pages:	the maximum number of pages
950  * @pages:	where the resulting pages are placed
951  *
952  * Like find_get_pages, except we only return pages which are tagged with
953  * @tag.   We update @index to index the next page for the traversal.
954  */
955 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
956 			int tag, unsigned int nr_pages, struct page **pages)
957 {
958 	struct radix_tree_iter iter;
959 	void **slot;
960 	unsigned ret = 0;
961 
962 	if (unlikely(!nr_pages))
963 		return 0;
964 
965 	rcu_read_lock();
966 restart:
967 	radix_tree_for_each_tagged(slot, &mapping->page_tree,
968 				   &iter, *index, tag) {
969 		struct page *page;
970 repeat:
971 		page = radix_tree_deref_slot(slot);
972 		if (unlikely(!page))
973 			continue;
974 
975 		if (radix_tree_exception(page)) {
976 			if (radix_tree_deref_retry(page)) {
977 				/*
978 				 * Transient condition which can only trigger
979 				 * when entry at index 0 moves out of or back
980 				 * to root: none yet gotten, safe to restart.
981 				 */
982 				goto restart;
983 			}
984 			/*
985 			 * This function is never used on a shmem/tmpfs
986 			 * mapping, so a swap entry won't be found here.
987 			 */
988 			BUG();
989 		}
990 
991 		if (!page_cache_get_speculative(page))
992 			goto repeat;
993 
994 		/* Has the page moved? */
995 		if (unlikely(page != *slot)) {
996 			page_cache_release(page);
997 			goto repeat;
998 		}
999 
1000 		pages[ret] = page;
1001 		if (++ret == nr_pages)
1002 			break;
1003 	}
1004 
1005 	rcu_read_unlock();
1006 
1007 	if (ret)
1008 		*index = pages[ret - 1]->index + 1;
1009 
1010 	return ret;
1011 }
1012 EXPORT_SYMBOL(find_get_pages_tag);
1013 
1014 /**
1015  * grab_cache_page_nowait - returns locked page at given index in given cache
1016  * @mapping: target address_space
1017  * @index: the page index
1018  *
1019  * Same as grab_cache_page(), but do not wait if the page is unavailable.
1020  * This is intended for speculative data generators, where the data can
1021  * be regenerated if the page couldn't be grabbed.  This routine should
1022  * be safe to call while holding the lock for another page.
1023  *
1024  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
1025  * and deadlock against the caller's locked page.
1026  */
1027 struct page *
1028 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
1029 {
1030 	struct page *page = find_get_page(mapping, index);
1031 
1032 	if (page) {
1033 		if (trylock_page(page))
1034 			return page;
1035 		page_cache_release(page);
1036 		return NULL;
1037 	}
1038 	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
1039 	if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
1040 		page_cache_release(page);
1041 		page = NULL;
1042 	}
1043 	return page;
1044 }
1045 EXPORT_SYMBOL(grab_cache_page_nowait);
1046 
1047 /*
1048  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1049  * a _large_ part of the i/o request. Imagine the worst scenario:
1050  *
1051  *      ---R__________________________________________B__________
1052  *         ^ reading here                             ^ bad block(assume 4k)
1053  *
1054  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1055  * => failing the whole request => read(R) => read(R+1) =>
1056  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1057  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1058  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1059  *
1060  * It is going insane. Fix it by quickly scaling down the readahead size.
1061  */
1062 static void shrink_readahead_size_eio(struct file *filp,
1063 					struct file_ra_state *ra)
1064 {
1065 	ra->ra_pages /= 4;
1066 }
1067 
1068 /**
1069  * do_generic_file_read - generic file read routine
1070  * @filp:	the file to read
1071  * @ppos:	current file position
1072  * @desc:	read_descriptor
1073  * @actor:	read method
1074  *
1075  * This is a generic file read routine, and uses the
1076  * mapping->a_ops->readpage() function for the actual low-level stuff.
1077  *
1078  * This is really ugly. But the goto's actually try to clarify some
1079  * of the logic when it comes to error handling etc.
1080  */
1081 static void do_generic_file_read(struct file *filp, loff_t *ppos,
1082 		read_descriptor_t *desc, read_actor_t actor)
1083 {
1084 	struct address_space *mapping = filp->f_mapping;
1085 	struct inode *inode = mapping->host;
1086 	struct file_ra_state *ra = &filp->f_ra;
1087 	pgoff_t index;
1088 	pgoff_t last_index;
1089 	pgoff_t prev_index;
1090 	unsigned long offset;      /* offset into pagecache page */
1091 	unsigned int prev_offset;
1092 	int error;
1093 
1094 	index = *ppos >> PAGE_CACHE_SHIFT;
1095 	prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1096 	prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1097 	last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1098 	offset = *ppos & ~PAGE_CACHE_MASK;
1099 
1100 	for (;;) {
1101 		struct page *page;
1102 		pgoff_t end_index;
1103 		loff_t isize;
1104 		unsigned long nr, ret;
1105 
1106 		cond_resched();
1107 find_page:
1108 		page = find_get_page(mapping, index);
1109 		if (!page) {
1110 			page_cache_sync_readahead(mapping,
1111 					ra, filp,
1112 					index, last_index - index);
1113 			page = find_get_page(mapping, index);
1114 			if (unlikely(page == NULL))
1115 				goto no_cached_page;
1116 		}
1117 		if (PageReadahead(page)) {
1118 			page_cache_async_readahead(mapping,
1119 					ra, filp, page,
1120 					index, last_index - index);
1121 		}
1122 		if (!PageUptodate(page)) {
1123 			if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1124 					!mapping->a_ops->is_partially_uptodate)
1125 				goto page_not_up_to_date;
1126 			if (!trylock_page(page))
1127 				goto page_not_up_to_date;
1128 			/* Did it get truncated before we got the lock? */
1129 			if (!page->mapping)
1130 				goto page_not_up_to_date_locked;
1131 			if (!mapping->a_ops->is_partially_uptodate(page,
1132 								desc, offset))
1133 				goto page_not_up_to_date_locked;
1134 			unlock_page(page);
1135 		}
1136 page_ok:
1137 		/*
1138 		 * i_size must be checked after we know the page is Uptodate.
1139 		 *
1140 		 * Checking i_size after the check allows us to calculate
1141 		 * the correct value for "nr", which means the zero-filled
1142 		 * part of the page is not copied back to userspace (unless
1143 		 * another truncate extends the file - this is desired though).
1144 		 */
1145 
1146 		isize = i_size_read(inode);
1147 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1148 		if (unlikely(!isize || index > end_index)) {
1149 			page_cache_release(page);
1150 			goto out;
1151 		}
1152 
1153 		/* nr is the maximum number of bytes to copy from this page */
1154 		nr = PAGE_CACHE_SIZE;
1155 		if (index == end_index) {
1156 			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1157 			if (nr <= offset) {
1158 				page_cache_release(page);
1159 				goto out;
1160 			}
1161 		}
1162 		nr = nr - offset;
1163 
1164 		/* If users can be writing to this page using arbitrary
1165 		 * virtual addresses, take care about potential aliasing
1166 		 * before reading the page on the kernel side.
1167 		 */
1168 		if (mapping_writably_mapped(mapping))
1169 			flush_dcache_page(page);
1170 
1171 		/*
1172 		 * When a sequential read accesses a page several times,
1173 		 * only mark it as accessed the first time.
1174 		 */
1175 		if (prev_index != index || offset != prev_offset)
1176 			mark_page_accessed(page);
1177 		prev_index = index;
1178 
1179 		/*
1180 		 * Ok, we have the page, and it's up-to-date, so
1181 		 * now we can copy it to user space...
1182 		 *
1183 		 * The actor routine returns how many bytes were actually used..
1184 		 * NOTE! This may not be the same as how much of a user buffer
1185 		 * we filled up (we may be padding etc), so we can only update
1186 		 * "pos" here (the actor routine has to update the user buffer
1187 		 * pointers and the remaining count).
1188 		 */
1189 		ret = actor(desc, page, offset, nr);
1190 		offset += ret;
1191 		index += offset >> PAGE_CACHE_SHIFT;
1192 		offset &= ~PAGE_CACHE_MASK;
1193 		prev_offset = offset;
1194 
1195 		page_cache_release(page);
1196 		if (ret == nr && desc->count)
1197 			continue;
1198 		goto out;
1199 
1200 page_not_up_to_date:
1201 		/* Get exclusive access to the page ... */
1202 		error = lock_page_killable(page);
1203 		if (unlikely(error))
1204 			goto readpage_error;
1205 
1206 page_not_up_to_date_locked:
1207 		/* Did it get truncated before we got the lock? */
1208 		if (!page->mapping) {
1209 			unlock_page(page);
1210 			page_cache_release(page);
1211 			continue;
1212 		}
1213 
1214 		/* Did somebody else fill it already? */
1215 		if (PageUptodate(page)) {
1216 			unlock_page(page);
1217 			goto page_ok;
1218 		}
1219 
1220 readpage:
1221 		/*
1222 		 * A previous I/O error may have been due to temporary
1223 		 * failures, eg. multipath errors.
1224 		 * PG_error will be set again if readpage fails.
1225 		 */
1226 		ClearPageError(page);
1227 		/* Start the actual read. The read will unlock the page. */
1228 		error = mapping->a_ops->readpage(filp, page);
1229 
1230 		if (unlikely(error)) {
1231 			if (error == AOP_TRUNCATED_PAGE) {
1232 				page_cache_release(page);
1233 				goto find_page;
1234 			}
1235 			goto readpage_error;
1236 		}
1237 
1238 		if (!PageUptodate(page)) {
1239 			error = lock_page_killable(page);
1240 			if (unlikely(error))
1241 				goto readpage_error;
1242 			if (!PageUptodate(page)) {
1243 				if (page->mapping == NULL) {
1244 					/*
1245 					 * invalidate_mapping_pages got it
1246 					 */
1247 					unlock_page(page);
1248 					page_cache_release(page);
1249 					goto find_page;
1250 				}
1251 				unlock_page(page);
1252 				shrink_readahead_size_eio(filp, ra);
1253 				error = -EIO;
1254 				goto readpage_error;
1255 			}
1256 			unlock_page(page);
1257 		}
1258 
1259 		goto page_ok;
1260 
1261 readpage_error:
1262 		/* UHHUH! A synchronous read error occurred. Report it */
1263 		desc->error = error;
1264 		page_cache_release(page);
1265 		goto out;
1266 
1267 no_cached_page:
1268 		/*
1269 		 * Ok, it wasn't cached, so we need to create a new
1270 		 * page..
1271 		 */
1272 		page = page_cache_alloc_cold(mapping);
1273 		if (!page) {
1274 			desc->error = -ENOMEM;
1275 			goto out;
1276 		}
1277 		error = add_to_page_cache_lru(page, mapping,
1278 						index, GFP_KERNEL);
1279 		if (error) {
1280 			page_cache_release(page);
1281 			if (error == -EEXIST)
1282 				goto find_page;
1283 			desc->error = error;
1284 			goto out;
1285 		}
1286 		goto readpage;
1287 	}
1288 
1289 out:
1290 	ra->prev_pos = prev_index;
1291 	ra->prev_pos <<= PAGE_CACHE_SHIFT;
1292 	ra->prev_pos |= prev_offset;
1293 
1294 	*ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1295 	file_accessed(filp);
1296 }
1297 
1298 int file_read_actor(read_descriptor_t *desc, struct page *page,
1299 			unsigned long offset, unsigned long size)
1300 {
1301 	char *kaddr;
1302 	unsigned long left, count = desc->count;
1303 
1304 	if (size > count)
1305 		size = count;
1306 
1307 	/*
1308 	 * Faults on the destination of a read are common, so do it before
1309 	 * taking the kmap.
1310 	 */
1311 	if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1312 		kaddr = kmap_atomic(page);
1313 		left = __copy_to_user_inatomic(desc->arg.buf,
1314 						kaddr + offset, size);
1315 		kunmap_atomic(kaddr);
1316 		if (left == 0)
1317 			goto success;
1318 	}
1319 
1320 	/* Do it the slow way */
1321 	kaddr = kmap(page);
1322 	left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1323 	kunmap(page);
1324 
1325 	if (left) {
1326 		size -= left;
1327 		desc->error = -EFAULT;
1328 	}
1329 success:
1330 	desc->count = count - size;
1331 	desc->written += size;
1332 	desc->arg.buf += size;
1333 	return size;
1334 }
1335 
1336 /*
1337  * Performs necessary checks before doing a write
1338  * @iov:	io vector request
1339  * @nr_segs:	number of segments in the iovec
1340  * @count:	number of bytes to write
1341  * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1342  *
1343  * Adjust number of segments and amount of bytes to write (nr_segs should be
1344  * properly initialized first). Returns appropriate error code that caller
1345  * should return or zero in case that write should be allowed.
1346  */
1347 int generic_segment_checks(const struct iovec *iov,
1348 			unsigned long *nr_segs, size_t *count, int access_flags)
1349 {
1350 	unsigned long   seg;
1351 	size_t cnt = 0;
1352 	for (seg = 0; seg < *nr_segs; seg++) {
1353 		const struct iovec *iv = &iov[seg];
1354 
1355 		/*
1356 		 * If any segment has a negative length, or the cumulative
1357 		 * length ever wraps negative then return -EINVAL.
1358 		 */
1359 		cnt += iv->iov_len;
1360 		if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1361 			return -EINVAL;
1362 		if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1363 			continue;
1364 		if (seg == 0)
1365 			return -EFAULT;
1366 		*nr_segs = seg;
1367 		cnt -= iv->iov_len;	/* This segment is no good */
1368 		break;
1369 	}
1370 	*count = cnt;
1371 	return 0;
1372 }
1373 EXPORT_SYMBOL(generic_segment_checks);
1374 
1375 /**
1376  * generic_file_aio_read - generic filesystem read routine
1377  * @iocb:	kernel I/O control block
1378  * @iov:	io vector request
1379  * @nr_segs:	number of segments in the iovec
1380  * @pos:	current file position
1381  *
1382  * This is the "read()" routine for all filesystems
1383  * that can use the page cache directly.
1384  */
1385 ssize_t
1386 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1387 		unsigned long nr_segs, loff_t pos)
1388 {
1389 	struct file *filp = iocb->ki_filp;
1390 	ssize_t retval;
1391 	unsigned long seg = 0;
1392 	size_t count;
1393 	loff_t *ppos = &iocb->ki_pos;
1394 
1395 	count = 0;
1396 	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1397 	if (retval)
1398 		return retval;
1399 
1400 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1401 	if (filp->f_flags & O_DIRECT) {
1402 		loff_t size;
1403 		struct address_space *mapping;
1404 		struct inode *inode;
1405 
1406 		mapping = filp->f_mapping;
1407 		inode = mapping->host;
1408 		if (!count)
1409 			goto out; /* skip atime */
1410 		size = i_size_read(inode);
1411 		if (pos < size) {
1412 			retval = filemap_write_and_wait_range(mapping, pos,
1413 					pos + iov_length(iov, nr_segs) - 1);
1414 			if (!retval) {
1415 				retval = mapping->a_ops->direct_IO(READ, iocb,
1416 							iov, pos, nr_segs);
1417 			}
1418 			if (retval > 0) {
1419 				*ppos = pos + retval;
1420 				count -= retval;
1421 			}
1422 
1423 			/*
1424 			 * Btrfs can have a short DIO read if we encounter
1425 			 * compressed extents, so if there was an error, or if
1426 			 * we've already read everything we wanted to, or if
1427 			 * there was a short read because we hit EOF, go ahead
1428 			 * and return.  Otherwise fallthrough to buffered io for
1429 			 * the rest of the read.
1430 			 */
1431 			if (retval < 0 || !count || *ppos >= size) {
1432 				file_accessed(filp);
1433 				goto out;
1434 			}
1435 		}
1436 	}
1437 
1438 	count = retval;
1439 	for (seg = 0; seg < nr_segs; seg++) {
1440 		read_descriptor_t desc;
1441 		loff_t offset = 0;
1442 
1443 		/*
1444 		 * If we did a short DIO read we need to skip the section of the
1445 		 * iov that we've already read data into.
1446 		 */
1447 		if (count) {
1448 			if (count > iov[seg].iov_len) {
1449 				count -= iov[seg].iov_len;
1450 				continue;
1451 			}
1452 			offset = count;
1453 			count = 0;
1454 		}
1455 
1456 		desc.written = 0;
1457 		desc.arg.buf = iov[seg].iov_base + offset;
1458 		desc.count = iov[seg].iov_len - offset;
1459 		if (desc.count == 0)
1460 			continue;
1461 		desc.error = 0;
1462 		do_generic_file_read(filp, ppos, &desc, file_read_actor);
1463 		retval += desc.written;
1464 		if (desc.error) {
1465 			retval = retval ?: desc.error;
1466 			break;
1467 		}
1468 		if (desc.count > 0)
1469 			break;
1470 	}
1471 out:
1472 	return retval;
1473 }
1474 EXPORT_SYMBOL(generic_file_aio_read);
1475 
1476 #ifdef CONFIG_MMU
1477 /**
1478  * page_cache_read - adds requested page to the page cache if not already there
1479  * @file:	file to read
1480  * @offset:	page index
1481  *
1482  * This adds the requested page to the page cache if it isn't already there,
1483  * and schedules an I/O to read in its contents from disk.
1484  */
1485 static int page_cache_read(struct file *file, pgoff_t offset)
1486 {
1487 	struct address_space *mapping = file->f_mapping;
1488 	struct page *page;
1489 	int ret;
1490 
1491 	do {
1492 		page = page_cache_alloc_cold(mapping);
1493 		if (!page)
1494 			return -ENOMEM;
1495 
1496 		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1497 		if (ret == 0)
1498 			ret = mapping->a_ops->readpage(file, page);
1499 		else if (ret == -EEXIST)
1500 			ret = 0; /* losing race to add is OK */
1501 
1502 		page_cache_release(page);
1503 
1504 	} while (ret == AOP_TRUNCATED_PAGE);
1505 
1506 	return ret;
1507 }
1508 
1509 #define MMAP_LOTSAMISS  (100)
1510 
1511 /*
1512  * Synchronous readahead happens when we don't even find
1513  * a page in the page cache at all.
1514  */
1515 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1516 				   struct file_ra_state *ra,
1517 				   struct file *file,
1518 				   pgoff_t offset)
1519 {
1520 	unsigned long ra_pages;
1521 	struct address_space *mapping = file->f_mapping;
1522 
1523 	/* If we don't want any read-ahead, don't bother */
1524 	if (VM_RandomReadHint(vma))
1525 		return;
1526 	if (!ra->ra_pages)
1527 		return;
1528 
1529 	if (VM_SequentialReadHint(vma)) {
1530 		page_cache_sync_readahead(mapping, ra, file, offset,
1531 					  ra->ra_pages);
1532 		return;
1533 	}
1534 
1535 	/* Avoid banging the cache line if not needed */
1536 	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1537 		ra->mmap_miss++;
1538 
1539 	/*
1540 	 * Do we miss much more than hit in this file? If so,
1541 	 * stop bothering with read-ahead. It will only hurt.
1542 	 */
1543 	if (ra->mmap_miss > MMAP_LOTSAMISS)
1544 		return;
1545 
1546 	/*
1547 	 * mmap read-around
1548 	 */
1549 	ra_pages = max_sane_readahead(ra->ra_pages);
1550 	ra->start = max_t(long, 0, offset - ra_pages / 2);
1551 	ra->size = ra_pages;
1552 	ra->async_size = ra_pages / 4;
1553 	ra_submit(ra, mapping, file);
1554 }
1555 
1556 /*
1557  * Asynchronous readahead happens when we find the page and PG_readahead,
1558  * so we want to possibly extend the readahead further..
1559  */
1560 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1561 				    struct file_ra_state *ra,
1562 				    struct file *file,
1563 				    struct page *page,
1564 				    pgoff_t offset)
1565 {
1566 	struct address_space *mapping = file->f_mapping;
1567 
1568 	/* If we don't want any read-ahead, don't bother */
1569 	if (VM_RandomReadHint(vma))
1570 		return;
1571 	if (ra->mmap_miss > 0)
1572 		ra->mmap_miss--;
1573 	if (PageReadahead(page))
1574 		page_cache_async_readahead(mapping, ra, file,
1575 					   page, offset, ra->ra_pages);
1576 }
1577 
1578 /**
1579  * filemap_fault - read in file data for page fault handling
1580  * @vma:	vma in which the fault was taken
1581  * @vmf:	struct vm_fault containing details of the fault
1582  *
1583  * filemap_fault() is invoked via the vma operations vector for a
1584  * mapped memory region to read in file data during a page fault.
1585  *
1586  * The goto's are kind of ugly, but this streamlines the normal case of having
1587  * it in the page cache, and handles the special cases reasonably without
1588  * having a lot of duplicated code.
1589  */
1590 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1591 {
1592 	int error;
1593 	struct file *file = vma->vm_file;
1594 	struct address_space *mapping = file->f_mapping;
1595 	struct file_ra_state *ra = &file->f_ra;
1596 	struct inode *inode = mapping->host;
1597 	pgoff_t offset = vmf->pgoff;
1598 	struct page *page;
1599 	pgoff_t size;
1600 	int ret = 0;
1601 
1602 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1603 	if (offset >= size)
1604 		return VM_FAULT_SIGBUS;
1605 
1606 	/*
1607 	 * Do we have something in the page cache already?
1608 	 */
1609 	page = find_get_page(mapping, offset);
1610 	if (likely(page)) {
1611 		/*
1612 		 * We found the page, so try async readahead before
1613 		 * waiting for the lock.
1614 		 */
1615 		do_async_mmap_readahead(vma, ra, file, page, offset);
1616 	} else {
1617 		/* No page in the page cache at all */
1618 		do_sync_mmap_readahead(vma, ra, file, offset);
1619 		count_vm_event(PGMAJFAULT);
1620 		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1621 		ret = VM_FAULT_MAJOR;
1622 retry_find:
1623 		page = find_get_page(mapping, offset);
1624 		if (!page)
1625 			goto no_cached_page;
1626 	}
1627 
1628 	if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1629 		page_cache_release(page);
1630 		return ret | VM_FAULT_RETRY;
1631 	}
1632 
1633 	/* Did it get truncated? */
1634 	if (unlikely(page->mapping != mapping)) {
1635 		unlock_page(page);
1636 		put_page(page);
1637 		goto retry_find;
1638 	}
1639 	VM_BUG_ON(page->index != offset);
1640 
1641 	/*
1642 	 * We have a locked page in the page cache, now we need to check
1643 	 * that it's up-to-date. If not, it is going to be due to an error.
1644 	 */
1645 	if (unlikely(!PageUptodate(page)))
1646 		goto page_not_uptodate;
1647 
1648 	/*
1649 	 * Found the page and have a reference on it.
1650 	 * We must recheck i_size under page lock.
1651 	 */
1652 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1653 	if (unlikely(offset >= size)) {
1654 		unlock_page(page);
1655 		page_cache_release(page);
1656 		return VM_FAULT_SIGBUS;
1657 	}
1658 
1659 	vmf->page = page;
1660 	return ret | VM_FAULT_LOCKED;
1661 
1662 no_cached_page:
1663 	/*
1664 	 * We're only likely to ever get here if MADV_RANDOM is in
1665 	 * effect.
1666 	 */
1667 	error = page_cache_read(file, offset);
1668 
1669 	/*
1670 	 * The page we want has now been added to the page cache.
1671 	 * In the unlikely event that someone removed it in the
1672 	 * meantime, we'll just come back here and read it again.
1673 	 */
1674 	if (error >= 0)
1675 		goto retry_find;
1676 
1677 	/*
1678 	 * An error return from page_cache_read can result if the
1679 	 * system is low on memory, or a problem occurs while trying
1680 	 * to schedule I/O.
1681 	 */
1682 	if (error == -ENOMEM)
1683 		return VM_FAULT_OOM;
1684 	return VM_FAULT_SIGBUS;
1685 
1686 page_not_uptodate:
1687 	/*
1688 	 * Umm, take care of errors if the page isn't up-to-date.
1689 	 * Try to re-read it _once_. We do this synchronously,
1690 	 * because there really aren't any performance issues here
1691 	 * and we need to check for errors.
1692 	 */
1693 	ClearPageError(page);
1694 	error = mapping->a_ops->readpage(file, page);
1695 	if (!error) {
1696 		wait_on_page_locked(page);
1697 		if (!PageUptodate(page))
1698 			error = -EIO;
1699 	}
1700 	page_cache_release(page);
1701 
1702 	if (!error || error == AOP_TRUNCATED_PAGE)
1703 		goto retry_find;
1704 
1705 	/* Things didn't work out. Return zero to tell the mm layer so. */
1706 	shrink_readahead_size_eio(file, ra);
1707 	return VM_FAULT_SIGBUS;
1708 }
1709 EXPORT_SYMBOL(filemap_fault);
1710 
1711 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
1712 {
1713 	struct page *page = vmf->page;
1714 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1715 	int ret = VM_FAULT_LOCKED;
1716 
1717 	sb_start_pagefault(inode->i_sb);
1718 	file_update_time(vma->vm_file);
1719 	lock_page(page);
1720 	if (page->mapping != inode->i_mapping) {
1721 		unlock_page(page);
1722 		ret = VM_FAULT_NOPAGE;
1723 		goto out;
1724 	}
1725 	/*
1726 	 * We mark the page dirty already here so that when freeze is in
1727 	 * progress, we are guaranteed that writeback during freezing will
1728 	 * see the dirty page and writeprotect it again.
1729 	 */
1730 	set_page_dirty(page);
1731 out:
1732 	sb_end_pagefault(inode->i_sb);
1733 	return ret;
1734 }
1735 EXPORT_SYMBOL(filemap_page_mkwrite);
1736 
1737 const struct vm_operations_struct generic_file_vm_ops = {
1738 	.fault		= filemap_fault,
1739 	.page_mkwrite	= filemap_page_mkwrite,
1740 };
1741 
1742 /* This is used for a general mmap of a disk file */
1743 
1744 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1745 {
1746 	struct address_space *mapping = file->f_mapping;
1747 
1748 	if (!mapping->a_ops->readpage)
1749 		return -ENOEXEC;
1750 	file_accessed(file);
1751 	vma->vm_ops = &generic_file_vm_ops;
1752 	vma->vm_flags |= VM_CAN_NONLINEAR;
1753 	return 0;
1754 }
1755 
1756 /*
1757  * This is for filesystems which do not implement ->writepage.
1758  */
1759 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1760 {
1761 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1762 		return -EINVAL;
1763 	return generic_file_mmap(file, vma);
1764 }
1765 #else
1766 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1767 {
1768 	return -ENOSYS;
1769 }
1770 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1771 {
1772 	return -ENOSYS;
1773 }
1774 #endif /* CONFIG_MMU */
1775 
1776 EXPORT_SYMBOL(generic_file_mmap);
1777 EXPORT_SYMBOL(generic_file_readonly_mmap);
1778 
1779 static struct page *__read_cache_page(struct address_space *mapping,
1780 				pgoff_t index,
1781 				int (*filler)(void *, struct page *),
1782 				void *data,
1783 				gfp_t gfp)
1784 {
1785 	struct page *page;
1786 	int err;
1787 repeat:
1788 	page = find_get_page(mapping, index);
1789 	if (!page) {
1790 		page = __page_cache_alloc(gfp | __GFP_COLD);
1791 		if (!page)
1792 			return ERR_PTR(-ENOMEM);
1793 		err = add_to_page_cache_lru(page, mapping, index, gfp);
1794 		if (unlikely(err)) {
1795 			page_cache_release(page);
1796 			if (err == -EEXIST)
1797 				goto repeat;
1798 			/* Presumably ENOMEM for radix tree node */
1799 			return ERR_PTR(err);
1800 		}
1801 		err = filler(data, page);
1802 		if (err < 0) {
1803 			page_cache_release(page);
1804 			page = ERR_PTR(err);
1805 		}
1806 	}
1807 	return page;
1808 }
1809 
1810 static struct page *do_read_cache_page(struct address_space *mapping,
1811 				pgoff_t index,
1812 				int (*filler)(void *, struct page *),
1813 				void *data,
1814 				gfp_t gfp)
1815 
1816 {
1817 	struct page *page;
1818 	int err;
1819 
1820 retry:
1821 	page = __read_cache_page(mapping, index, filler, data, gfp);
1822 	if (IS_ERR(page))
1823 		return page;
1824 	if (PageUptodate(page))
1825 		goto out;
1826 
1827 	lock_page(page);
1828 	if (!page->mapping) {
1829 		unlock_page(page);
1830 		page_cache_release(page);
1831 		goto retry;
1832 	}
1833 	if (PageUptodate(page)) {
1834 		unlock_page(page);
1835 		goto out;
1836 	}
1837 	err = filler(data, page);
1838 	if (err < 0) {
1839 		page_cache_release(page);
1840 		return ERR_PTR(err);
1841 	}
1842 out:
1843 	mark_page_accessed(page);
1844 	return page;
1845 }
1846 
1847 /**
1848  * read_cache_page_async - read into page cache, fill it if needed
1849  * @mapping:	the page's address_space
1850  * @index:	the page index
1851  * @filler:	function to perform the read
1852  * @data:	first arg to filler(data, page) function, often left as NULL
1853  *
1854  * Same as read_cache_page, but don't wait for page to become unlocked
1855  * after submitting it to the filler.
1856  *
1857  * Read into the page cache. If a page already exists, and PageUptodate() is
1858  * not set, try to fill the page but don't wait for it to become unlocked.
1859  *
1860  * If the page does not get brought uptodate, return -EIO.
1861  */
1862 struct page *read_cache_page_async(struct address_space *mapping,
1863 				pgoff_t index,
1864 				int (*filler)(void *, struct page *),
1865 				void *data)
1866 {
1867 	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
1868 }
1869 EXPORT_SYMBOL(read_cache_page_async);
1870 
1871 static struct page *wait_on_page_read(struct page *page)
1872 {
1873 	if (!IS_ERR(page)) {
1874 		wait_on_page_locked(page);
1875 		if (!PageUptodate(page)) {
1876 			page_cache_release(page);
1877 			page = ERR_PTR(-EIO);
1878 		}
1879 	}
1880 	return page;
1881 }
1882 
1883 /**
1884  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1885  * @mapping:	the page's address_space
1886  * @index:	the page index
1887  * @gfp:	the page allocator flags to use if allocating
1888  *
1889  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1890  * any new page allocations done using the specified allocation flags.
1891  *
1892  * If the page does not get brought uptodate, return -EIO.
1893  */
1894 struct page *read_cache_page_gfp(struct address_space *mapping,
1895 				pgoff_t index,
1896 				gfp_t gfp)
1897 {
1898 	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
1899 
1900 	return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
1901 }
1902 EXPORT_SYMBOL(read_cache_page_gfp);
1903 
1904 /**
1905  * read_cache_page - read into page cache, fill it if needed
1906  * @mapping:	the page's address_space
1907  * @index:	the page index
1908  * @filler:	function to perform the read
1909  * @data:	first arg to filler(data, page) function, often left as NULL
1910  *
1911  * Read into the page cache. If a page already exists, and PageUptodate() is
1912  * not set, try to fill the page then wait for it to become unlocked.
1913  *
1914  * If the page does not get brought uptodate, return -EIO.
1915  */
1916 struct page *read_cache_page(struct address_space *mapping,
1917 				pgoff_t index,
1918 				int (*filler)(void *, struct page *),
1919 				void *data)
1920 {
1921 	return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1922 }
1923 EXPORT_SYMBOL(read_cache_page);
1924 
1925 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1926 			const struct iovec *iov, size_t base, size_t bytes)
1927 {
1928 	size_t copied = 0, left = 0;
1929 
1930 	while (bytes) {
1931 		char __user *buf = iov->iov_base + base;
1932 		int copy = min(bytes, iov->iov_len - base);
1933 
1934 		base = 0;
1935 		left = __copy_from_user_inatomic(vaddr, buf, copy);
1936 		copied += copy;
1937 		bytes -= copy;
1938 		vaddr += copy;
1939 		iov++;
1940 
1941 		if (unlikely(left))
1942 			break;
1943 	}
1944 	return copied - left;
1945 }
1946 
1947 /*
1948  * Copy as much as we can into the page and return the number of bytes which
1949  * were successfully copied.  If a fault is encountered then return the number of
1950  * bytes which were copied.
1951  */
1952 size_t iov_iter_copy_from_user_atomic(struct page *page,
1953 		struct iov_iter *i, unsigned long offset, size_t bytes)
1954 {
1955 	char *kaddr;
1956 	size_t copied;
1957 
1958 	BUG_ON(!in_atomic());
1959 	kaddr = kmap_atomic(page);
1960 	if (likely(i->nr_segs == 1)) {
1961 		int left;
1962 		char __user *buf = i->iov->iov_base + i->iov_offset;
1963 		left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
1964 		copied = bytes - left;
1965 	} else {
1966 		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1967 						i->iov, i->iov_offset, bytes);
1968 	}
1969 	kunmap_atomic(kaddr);
1970 
1971 	return copied;
1972 }
1973 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1974 
1975 /*
1976  * This has the same sideeffects and return value as
1977  * iov_iter_copy_from_user_atomic().
1978  * The difference is that it attempts to resolve faults.
1979  * Page must not be locked.
1980  */
1981 size_t iov_iter_copy_from_user(struct page *page,
1982 		struct iov_iter *i, unsigned long offset, size_t bytes)
1983 {
1984 	char *kaddr;
1985 	size_t copied;
1986 
1987 	kaddr = kmap(page);
1988 	if (likely(i->nr_segs == 1)) {
1989 		int left;
1990 		char __user *buf = i->iov->iov_base + i->iov_offset;
1991 		left = __copy_from_user(kaddr + offset, buf, bytes);
1992 		copied = bytes - left;
1993 	} else {
1994 		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1995 						i->iov, i->iov_offset, bytes);
1996 	}
1997 	kunmap(page);
1998 	return copied;
1999 }
2000 EXPORT_SYMBOL(iov_iter_copy_from_user);
2001 
2002 void iov_iter_advance(struct iov_iter *i, size_t bytes)
2003 {
2004 	BUG_ON(i->count < bytes);
2005 
2006 	if (likely(i->nr_segs == 1)) {
2007 		i->iov_offset += bytes;
2008 		i->count -= bytes;
2009 	} else {
2010 		const struct iovec *iov = i->iov;
2011 		size_t base = i->iov_offset;
2012 		unsigned long nr_segs = i->nr_segs;
2013 
2014 		/*
2015 		 * The !iov->iov_len check ensures we skip over unlikely
2016 		 * zero-length segments (without overruning the iovec).
2017 		 */
2018 		while (bytes || unlikely(i->count && !iov->iov_len)) {
2019 			int copy;
2020 
2021 			copy = min(bytes, iov->iov_len - base);
2022 			BUG_ON(!i->count || i->count < copy);
2023 			i->count -= copy;
2024 			bytes -= copy;
2025 			base += copy;
2026 			if (iov->iov_len == base) {
2027 				iov++;
2028 				nr_segs--;
2029 				base = 0;
2030 			}
2031 		}
2032 		i->iov = iov;
2033 		i->iov_offset = base;
2034 		i->nr_segs = nr_segs;
2035 	}
2036 }
2037 EXPORT_SYMBOL(iov_iter_advance);
2038 
2039 /*
2040  * Fault in the first iovec of the given iov_iter, to a maximum length
2041  * of bytes. Returns 0 on success, or non-zero if the memory could not be
2042  * accessed (ie. because it is an invalid address).
2043  *
2044  * writev-intensive code may want this to prefault several iovecs -- that
2045  * would be possible (callers must not rely on the fact that _only_ the
2046  * first iovec will be faulted with the current implementation).
2047  */
2048 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2049 {
2050 	char __user *buf = i->iov->iov_base + i->iov_offset;
2051 	bytes = min(bytes, i->iov->iov_len - i->iov_offset);
2052 	return fault_in_pages_readable(buf, bytes);
2053 }
2054 EXPORT_SYMBOL(iov_iter_fault_in_readable);
2055 
2056 /*
2057  * Return the count of just the current iov_iter segment.
2058  */
2059 size_t iov_iter_single_seg_count(struct iov_iter *i)
2060 {
2061 	const struct iovec *iov = i->iov;
2062 	if (i->nr_segs == 1)
2063 		return i->count;
2064 	else
2065 		return min(i->count, iov->iov_len - i->iov_offset);
2066 }
2067 EXPORT_SYMBOL(iov_iter_single_seg_count);
2068 
2069 /*
2070  * Performs necessary checks before doing a write
2071  *
2072  * Can adjust writing position or amount of bytes to write.
2073  * Returns appropriate error code that caller should return or
2074  * zero in case that write should be allowed.
2075  */
2076 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2077 {
2078 	struct inode *inode = file->f_mapping->host;
2079 	unsigned long limit = rlimit(RLIMIT_FSIZE);
2080 
2081         if (unlikely(*pos < 0))
2082                 return -EINVAL;
2083 
2084 	if (!isblk) {
2085 		/* FIXME: this is for backwards compatibility with 2.4 */
2086 		if (file->f_flags & O_APPEND)
2087                         *pos = i_size_read(inode);
2088 
2089 		if (limit != RLIM_INFINITY) {
2090 			if (*pos >= limit) {
2091 				send_sig(SIGXFSZ, current, 0);
2092 				return -EFBIG;
2093 			}
2094 			if (*count > limit - (typeof(limit))*pos) {
2095 				*count = limit - (typeof(limit))*pos;
2096 			}
2097 		}
2098 	}
2099 
2100 	/*
2101 	 * LFS rule
2102 	 */
2103 	if (unlikely(*pos + *count > MAX_NON_LFS &&
2104 				!(file->f_flags & O_LARGEFILE))) {
2105 		if (*pos >= MAX_NON_LFS) {
2106 			return -EFBIG;
2107 		}
2108 		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2109 			*count = MAX_NON_LFS - (unsigned long)*pos;
2110 		}
2111 	}
2112 
2113 	/*
2114 	 * Are we about to exceed the fs block limit ?
2115 	 *
2116 	 * If we have written data it becomes a short write.  If we have
2117 	 * exceeded without writing data we send a signal and return EFBIG.
2118 	 * Linus frestrict idea will clean these up nicely..
2119 	 */
2120 	if (likely(!isblk)) {
2121 		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2122 			if (*count || *pos > inode->i_sb->s_maxbytes) {
2123 				return -EFBIG;
2124 			}
2125 			/* zero-length writes at ->s_maxbytes are OK */
2126 		}
2127 
2128 		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2129 			*count = inode->i_sb->s_maxbytes - *pos;
2130 	} else {
2131 #ifdef CONFIG_BLOCK
2132 		loff_t isize;
2133 		if (bdev_read_only(I_BDEV(inode)))
2134 			return -EPERM;
2135 		isize = i_size_read(inode);
2136 		if (*pos >= isize) {
2137 			if (*count || *pos > isize)
2138 				return -ENOSPC;
2139 		}
2140 
2141 		if (*pos + *count > isize)
2142 			*count = isize - *pos;
2143 #else
2144 		return -EPERM;
2145 #endif
2146 	}
2147 	return 0;
2148 }
2149 EXPORT_SYMBOL(generic_write_checks);
2150 
2151 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2152 				loff_t pos, unsigned len, unsigned flags,
2153 				struct page **pagep, void **fsdata)
2154 {
2155 	const struct address_space_operations *aops = mapping->a_ops;
2156 
2157 	return aops->write_begin(file, mapping, pos, len, flags,
2158 							pagep, fsdata);
2159 }
2160 EXPORT_SYMBOL(pagecache_write_begin);
2161 
2162 int pagecache_write_end(struct file *file, struct address_space *mapping,
2163 				loff_t pos, unsigned len, unsigned copied,
2164 				struct page *page, void *fsdata)
2165 {
2166 	const struct address_space_operations *aops = mapping->a_ops;
2167 
2168 	mark_page_accessed(page);
2169 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2170 }
2171 EXPORT_SYMBOL(pagecache_write_end);
2172 
2173 ssize_t
2174 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2175 		unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2176 		size_t count, size_t ocount)
2177 {
2178 	struct file	*file = iocb->ki_filp;
2179 	struct address_space *mapping = file->f_mapping;
2180 	struct inode	*inode = mapping->host;
2181 	ssize_t		written;
2182 	size_t		write_len;
2183 	pgoff_t		end;
2184 
2185 	if (count != ocount)
2186 		*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2187 
2188 	write_len = iov_length(iov, *nr_segs);
2189 	end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2190 
2191 	written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2192 	if (written)
2193 		goto out;
2194 
2195 	/*
2196 	 * After a write we want buffered reads to be sure to go to disk to get
2197 	 * the new data.  We invalidate clean cached page from the region we're
2198 	 * about to write.  We do this *before* the write so that we can return
2199 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2200 	 */
2201 	if (mapping->nrpages) {
2202 		written = invalidate_inode_pages2_range(mapping,
2203 					pos >> PAGE_CACHE_SHIFT, end);
2204 		/*
2205 		 * If a page can not be invalidated, return 0 to fall back
2206 		 * to buffered write.
2207 		 */
2208 		if (written) {
2209 			if (written == -EBUSY)
2210 				return 0;
2211 			goto out;
2212 		}
2213 	}
2214 
2215 	written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2216 
2217 	/*
2218 	 * Finally, try again to invalidate clean pages which might have been
2219 	 * cached by non-direct readahead, or faulted in by get_user_pages()
2220 	 * if the source of the write was an mmap'ed region of the file
2221 	 * we're writing.  Either one is a pretty crazy thing to do,
2222 	 * so we don't support it 100%.  If this invalidation
2223 	 * fails, tough, the write still worked...
2224 	 */
2225 	if (mapping->nrpages) {
2226 		invalidate_inode_pages2_range(mapping,
2227 					      pos >> PAGE_CACHE_SHIFT, end);
2228 	}
2229 
2230 	if (written > 0) {
2231 		pos += written;
2232 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2233 			i_size_write(inode, pos);
2234 			mark_inode_dirty(inode);
2235 		}
2236 		*ppos = pos;
2237 	}
2238 out:
2239 	return written;
2240 }
2241 EXPORT_SYMBOL(generic_file_direct_write);
2242 
2243 /*
2244  * Find or create a page at the given pagecache position. Return the locked
2245  * page. This function is specifically for buffered writes.
2246  */
2247 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2248 					pgoff_t index, unsigned flags)
2249 {
2250 	int status;
2251 	gfp_t gfp_mask;
2252 	struct page *page;
2253 	gfp_t gfp_notmask = 0;
2254 
2255 	gfp_mask = mapping_gfp_mask(mapping);
2256 	if (mapping_cap_account_dirty(mapping))
2257 		gfp_mask |= __GFP_WRITE;
2258 	if (flags & AOP_FLAG_NOFS)
2259 		gfp_notmask = __GFP_FS;
2260 repeat:
2261 	page = find_lock_page(mapping, index);
2262 	if (page)
2263 		goto found;
2264 
2265 	page = __page_cache_alloc(gfp_mask & ~gfp_notmask);
2266 	if (!page)
2267 		return NULL;
2268 	status = add_to_page_cache_lru(page, mapping, index,
2269 						GFP_KERNEL & ~gfp_notmask);
2270 	if (unlikely(status)) {
2271 		page_cache_release(page);
2272 		if (status == -EEXIST)
2273 			goto repeat;
2274 		return NULL;
2275 	}
2276 found:
2277 	wait_on_page_writeback(page);
2278 	return page;
2279 }
2280 EXPORT_SYMBOL(grab_cache_page_write_begin);
2281 
2282 static ssize_t generic_perform_write(struct file *file,
2283 				struct iov_iter *i, loff_t pos)
2284 {
2285 	struct address_space *mapping = file->f_mapping;
2286 	const struct address_space_operations *a_ops = mapping->a_ops;
2287 	long status = 0;
2288 	ssize_t written = 0;
2289 	unsigned int flags = 0;
2290 
2291 	/*
2292 	 * Copies from kernel address space cannot fail (NFSD is a big user).
2293 	 */
2294 	if (segment_eq(get_fs(), KERNEL_DS))
2295 		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2296 
2297 	do {
2298 		struct page *page;
2299 		unsigned long offset;	/* Offset into pagecache page */
2300 		unsigned long bytes;	/* Bytes to write to page */
2301 		size_t copied;		/* Bytes copied from user */
2302 		void *fsdata;
2303 
2304 		offset = (pos & (PAGE_CACHE_SIZE - 1));
2305 		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2306 						iov_iter_count(i));
2307 
2308 again:
2309 		/*
2310 		 * Bring in the user page that we will copy from _first_.
2311 		 * Otherwise there's a nasty deadlock on copying from the
2312 		 * same page as we're writing to, without it being marked
2313 		 * up-to-date.
2314 		 *
2315 		 * Not only is this an optimisation, but it is also required
2316 		 * to check that the address is actually valid, when atomic
2317 		 * usercopies are used, below.
2318 		 */
2319 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2320 			status = -EFAULT;
2321 			break;
2322 		}
2323 
2324 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2325 						&page, &fsdata);
2326 		if (unlikely(status))
2327 			break;
2328 
2329 		if (mapping_writably_mapped(mapping))
2330 			flush_dcache_page(page);
2331 
2332 		pagefault_disable();
2333 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2334 		pagefault_enable();
2335 		flush_dcache_page(page);
2336 
2337 		mark_page_accessed(page);
2338 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2339 						page, fsdata);
2340 		if (unlikely(status < 0))
2341 			break;
2342 		copied = status;
2343 
2344 		cond_resched();
2345 
2346 		iov_iter_advance(i, copied);
2347 		if (unlikely(copied == 0)) {
2348 			/*
2349 			 * If we were unable to copy any data at all, we must
2350 			 * fall back to a single segment length write.
2351 			 *
2352 			 * If we didn't fallback here, we could livelock
2353 			 * because not all segments in the iov can be copied at
2354 			 * once without a pagefault.
2355 			 */
2356 			bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2357 						iov_iter_single_seg_count(i));
2358 			goto again;
2359 		}
2360 		pos += copied;
2361 		written += copied;
2362 
2363 		balance_dirty_pages_ratelimited(mapping);
2364 		if (fatal_signal_pending(current)) {
2365 			status = -EINTR;
2366 			break;
2367 		}
2368 	} while (iov_iter_count(i));
2369 
2370 	return written ? written : status;
2371 }
2372 
2373 ssize_t
2374 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2375 		unsigned long nr_segs, loff_t pos, loff_t *ppos,
2376 		size_t count, ssize_t written)
2377 {
2378 	struct file *file = iocb->ki_filp;
2379 	ssize_t status;
2380 	struct iov_iter i;
2381 
2382 	iov_iter_init(&i, iov, nr_segs, count, written);
2383 	status = generic_perform_write(file, &i, pos);
2384 
2385 	if (likely(status >= 0)) {
2386 		written += status;
2387 		*ppos = pos + status;
2388   	}
2389 
2390 	return written ? written : status;
2391 }
2392 EXPORT_SYMBOL(generic_file_buffered_write);
2393 
2394 /**
2395  * __generic_file_aio_write - write data to a file
2396  * @iocb:	IO state structure (file, offset, etc.)
2397  * @iov:	vector with data to write
2398  * @nr_segs:	number of segments in the vector
2399  * @ppos:	position where to write
2400  *
2401  * This function does all the work needed for actually writing data to a
2402  * file. It does all basic checks, removes SUID from the file, updates
2403  * modification times and calls proper subroutines depending on whether we
2404  * do direct IO or a standard buffered write.
2405  *
2406  * It expects i_mutex to be grabbed unless we work on a block device or similar
2407  * object which does not need locking at all.
2408  *
2409  * This function does *not* take care of syncing data in case of O_SYNC write.
2410  * A caller has to handle it. This is mainly due to the fact that we want to
2411  * avoid syncing under i_mutex.
2412  */
2413 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2414 				 unsigned long nr_segs, loff_t *ppos)
2415 {
2416 	struct file *file = iocb->ki_filp;
2417 	struct address_space * mapping = file->f_mapping;
2418 	size_t ocount;		/* original count */
2419 	size_t count;		/* after file limit checks */
2420 	struct inode 	*inode = mapping->host;
2421 	loff_t		pos;
2422 	ssize_t		written;
2423 	ssize_t		err;
2424 
2425 	ocount = 0;
2426 	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2427 	if (err)
2428 		return err;
2429 
2430 	count = ocount;
2431 	pos = *ppos;
2432 
2433 	/* We can write back this queue in page reclaim */
2434 	current->backing_dev_info = mapping->backing_dev_info;
2435 	written = 0;
2436 
2437 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2438 	if (err)
2439 		goto out;
2440 
2441 	if (count == 0)
2442 		goto out;
2443 
2444 	err = file_remove_suid(file);
2445 	if (err)
2446 		goto out;
2447 
2448 	err = file_update_time(file);
2449 	if (err)
2450 		goto out;
2451 
2452 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2453 	if (unlikely(file->f_flags & O_DIRECT)) {
2454 		loff_t endbyte;
2455 		ssize_t written_buffered;
2456 
2457 		written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2458 							ppos, count, ocount);
2459 		if (written < 0 || written == count)
2460 			goto out;
2461 		/*
2462 		 * direct-io write to a hole: fall through to buffered I/O
2463 		 * for completing the rest of the request.
2464 		 */
2465 		pos += written;
2466 		count -= written;
2467 		written_buffered = generic_file_buffered_write(iocb, iov,
2468 						nr_segs, pos, ppos, count,
2469 						written);
2470 		/*
2471 		 * If generic_file_buffered_write() retuned a synchronous error
2472 		 * then we want to return the number of bytes which were
2473 		 * direct-written, or the error code if that was zero.  Note
2474 		 * that this differs from normal direct-io semantics, which
2475 		 * will return -EFOO even if some bytes were written.
2476 		 */
2477 		if (written_buffered < 0) {
2478 			err = written_buffered;
2479 			goto out;
2480 		}
2481 
2482 		/*
2483 		 * We need to ensure that the page cache pages are written to
2484 		 * disk and invalidated to preserve the expected O_DIRECT
2485 		 * semantics.
2486 		 */
2487 		endbyte = pos + written_buffered - written - 1;
2488 		err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2489 		if (err == 0) {
2490 			written = written_buffered;
2491 			invalidate_mapping_pages(mapping,
2492 						 pos >> PAGE_CACHE_SHIFT,
2493 						 endbyte >> PAGE_CACHE_SHIFT);
2494 		} else {
2495 			/*
2496 			 * We don't know how much we wrote, so just return
2497 			 * the number of bytes which were direct-written
2498 			 */
2499 		}
2500 	} else {
2501 		written = generic_file_buffered_write(iocb, iov, nr_segs,
2502 				pos, ppos, count, written);
2503 	}
2504 out:
2505 	current->backing_dev_info = NULL;
2506 	return written ? written : err;
2507 }
2508 EXPORT_SYMBOL(__generic_file_aio_write);
2509 
2510 /**
2511  * generic_file_aio_write - write data to a file
2512  * @iocb:	IO state structure
2513  * @iov:	vector with data to write
2514  * @nr_segs:	number of segments in the vector
2515  * @pos:	position in file where to write
2516  *
2517  * This is a wrapper around __generic_file_aio_write() to be used by most
2518  * filesystems. It takes care of syncing the file in case of O_SYNC file
2519  * and acquires i_mutex as needed.
2520  */
2521 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2522 		unsigned long nr_segs, loff_t pos)
2523 {
2524 	struct file *file = iocb->ki_filp;
2525 	struct inode *inode = file->f_mapping->host;
2526 	ssize_t ret;
2527 
2528 	BUG_ON(iocb->ki_pos != pos);
2529 
2530 	sb_start_write(inode->i_sb);
2531 	mutex_lock(&inode->i_mutex);
2532 	ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
2533 	mutex_unlock(&inode->i_mutex);
2534 
2535 	if (ret > 0 || ret == -EIOCBQUEUED) {
2536 		ssize_t err;
2537 
2538 		err = generic_write_sync(file, pos, ret);
2539 		if (err < 0 && ret > 0)
2540 			ret = err;
2541 	}
2542 	sb_end_write(inode->i_sb);
2543 	return ret;
2544 }
2545 EXPORT_SYMBOL(generic_file_aio_write);
2546 
2547 /**
2548  * try_to_release_page() - release old fs-specific metadata on a page
2549  *
2550  * @page: the page which the kernel is trying to free
2551  * @gfp_mask: memory allocation flags (and I/O mode)
2552  *
2553  * The address_space is to try to release any data against the page
2554  * (presumably at page->private).  If the release was successful, return `1'.
2555  * Otherwise return zero.
2556  *
2557  * This may also be called if PG_fscache is set on a page, indicating that the
2558  * page is known to the local caching routines.
2559  *
2560  * The @gfp_mask argument specifies whether I/O may be performed to release
2561  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2562  *
2563  */
2564 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2565 {
2566 	struct address_space * const mapping = page->mapping;
2567 
2568 	BUG_ON(!PageLocked(page));
2569 	if (PageWriteback(page))
2570 		return 0;
2571 
2572 	if (mapping && mapping->a_ops->releasepage)
2573 		return mapping->a_ops->releasepage(page, gfp_mask);
2574 	return try_to_free_buffers(page);
2575 }
2576 
2577 EXPORT_SYMBOL(try_to_release_page);
2578