xref: /openbmc/linux/mm/filemap.c (revision 94c7b6fc)
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/memcontrol.h>
35 #include <linux/cleancache.h>
36 #include <linux/rmap.h>
37 #include "internal.h"
38 
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/filemap.h>
41 
42 /*
43  * FIXME: remove all knowledge of the buffer layer from the core VM
44  */
45 #include <linux/buffer_head.h> /* for try_to_free_buffers */
46 
47 #include <asm/mman.h>
48 
49 /*
50  * Shared mappings implemented 30.11.1994. It's not fully working yet,
51  * though.
52  *
53  * Shared mappings now work. 15.8.1995  Bruno.
54  *
55  * finished 'unifying' the page and buffer cache and SMP-threaded the
56  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
57  *
58  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
59  */
60 
61 /*
62  * Lock ordering:
63  *
64  *  ->i_mmap_mutex		(truncate_pagecache)
65  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
66  *      ->swap_lock		(exclusive_swap_page, others)
67  *        ->mapping->tree_lock
68  *
69  *  ->i_mutex
70  *    ->i_mmap_mutex		(truncate->unmap_mapping_range)
71  *
72  *  ->mmap_sem
73  *    ->i_mmap_mutex
74  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
75  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
76  *
77  *  ->mmap_sem
78  *    ->lock_page		(access_process_vm)
79  *
80  *  ->i_mutex			(generic_perform_write)
81  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
82  *
83  *  bdi->wb.list_lock
84  *    sb_lock			(fs/fs-writeback.c)
85  *    ->mapping->tree_lock	(__sync_single_inode)
86  *
87  *  ->i_mmap_mutex
88  *    ->anon_vma.lock		(vma_adjust)
89  *
90  *  ->anon_vma.lock
91  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
92  *
93  *  ->page_table_lock or pte_lock
94  *    ->swap_lock		(try_to_unmap_one)
95  *    ->private_lock		(try_to_unmap_one)
96  *    ->tree_lock		(try_to_unmap_one)
97  *    ->zone.lru_lock		(follow_page->mark_page_accessed)
98  *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
99  *    ->private_lock		(page_remove_rmap->set_page_dirty)
100  *    ->tree_lock		(page_remove_rmap->set_page_dirty)
101  *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
102  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
103  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
104  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
105  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
106  *
107  * ->i_mmap_mutex
108  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
109  */
110 
111 static void page_cache_tree_delete(struct address_space *mapping,
112 				   struct page *page, void *shadow)
113 {
114 	struct radix_tree_node *node;
115 	unsigned long index;
116 	unsigned int offset;
117 	unsigned int tag;
118 	void **slot;
119 
120 	VM_BUG_ON(!PageLocked(page));
121 
122 	__radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
123 
124 	if (shadow) {
125 		mapping->nrshadows++;
126 		/*
127 		 * Make sure the nrshadows update is committed before
128 		 * the nrpages update so that final truncate racing
129 		 * with reclaim does not see both counters 0 at the
130 		 * same time and miss a shadow entry.
131 		 */
132 		smp_wmb();
133 	}
134 	mapping->nrpages--;
135 
136 	if (!node) {
137 		/* Clear direct pointer tags in root node */
138 		mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
139 		radix_tree_replace_slot(slot, shadow);
140 		return;
141 	}
142 
143 	/* Clear tree tags for the removed page */
144 	index = page->index;
145 	offset = index & RADIX_TREE_MAP_MASK;
146 	for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
147 		if (test_bit(offset, node->tags[tag]))
148 			radix_tree_tag_clear(&mapping->page_tree, index, tag);
149 	}
150 
151 	/* Delete page, swap shadow entry */
152 	radix_tree_replace_slot(slot, shadow);
153 	workingset_node_pages_dec(node);
154 	if (shadow)
155 		workingset_node_shadows_inc(node);
156 	else
157 		if (__radix_tree_delete_node(&mapping->page_tree, node))
158 			return;
159 
160 	/*
161 	 * Track node that only contains shadow entries.
162 	 *
163 	 * Avoid acquiring the list_lru lock if already tracked.  The
164 	 * list_empty() test is safe as node->private_list is
165 	 * protected by mapping->tree_lock.
166 	 */
167 	if (!workingset_node_pages(node) &&
168 	    list_empty(&node->private_list)) {
169 		node->private_data = mapping;
170 		list_lru_add(&workingset_shadow_nodes, &node->private_list);
171 	}
172 }
173 
174 /*
175  * Delete a page from the page cache and free it. Caller has to make
176  * sure the page is locked and that nobody else uses it - or that usage
177  * is safe.  The caller must hold the mapping's tree_lock.
178  */
179 void __delete_from_page_cache(struct page *page, void *shadow)
180 {
181 	struct address_space *mapping = page->mapping;
182 
183 	trace_mm_filemap_delete_from_page_cache(page);
184 	/*
185 	 * if we're uptodate, flush out into the cleancache, otherwise
186 	 * invalidate any existing cleancache entries.  We can't leave
187 	 * stale data around in the cleancache once our page is gone
188 	 */
189 	if (PageUptodate(page) && PageMappedToDisk(page))
190 		cleancache_put_page(page);
191 	else
192 		cleancache_invalidate_page(mapping, page);
193 
194 	page_cache_tree_delete(mapping, page, shadow);
195 
196 	page->mapping = NULL;
197 	/* Leave page->index set: truncation lookup relies upon it */
198 
199 	__dec_zone_page_state(page, NR_FILE_PAGES);
200 	if (PageSwapBacked(page))
201 		__dec_zone_page_state(page, NR_SHMEM);
202 	BUG_ON(page_mapped(page));
203 
204 	/*
205 	 * Some filesystems seem to re-dirty the page even after
206 	 * the VM has canceled the dirty bit (eg ext3 journaling).
207 	 *
208 	 * Fix it up by doing a final dirty accounting check after
209 	 * having removed the page entirely.
210 	 */
211 	if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
212 		dec_zone_page_state(page, NR_FILE_DIRTY);
213 		dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
214 	}
215 }
216 
217 /**
218  * delete_from_page_cache - delete page from page cache
219  * @page: the page which the kernel is trying to remove from page cache
220  *
221  * This must be called only on pages that have been verified to be in the page
222  * cache and locked.  It will never put the page into the free list, the caller
223  * has a reference on the page.
224  */
225 void delete_from_page_cache(struct page *page)
226 {
227 	struct address_space *mapping = page->mapping;
228 	void (*freepage)(struct page *);
229 
230 	BUG_ON(!PageLocked(page));
231 
232 	freepage = mapping->a_ops->freepage;
233 	spin_lock_irq(&mapping->tree_lock);
234 	__delete_from_page_cache(page, NULL);
235 	spin_unlock_irq(&mapping->tree_lock);
236 	mem_cgroup_uncharge_cache_page(page);
237 
238 	if (freepage)
239 		freepage(page);
240 	page_cache_release(page);
241 }
242 EXPORT_SYMBOL(delete_from_page_cache);
243 
244 static int sleep_on_page(void *word)
245 {
246 	io_schedule();
247 	return 0;
248 }
249 
250 static int sleep_on_page_killable(void *word)
251 {
252 	sleep_on_page(word);
253 	return fatal_signal_pending(current) ? -EINTR : 0;
254 }
255 
256 static int filemap_check_errors(struct address_space *mapping)
257 {
258 	int ret = 0;
259 	/* Check for outstanding write errors */
260 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
261 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
262 		ret = -ENOSPC;
263 	if (test_bit(AS_EIO, &mapping->flags) &&
264 	    test_and_clear_bit(AS_EIO, &mapping->flags))
265 		ret = -EIO;
266 	return ret;
267 }
268 
269 /**
270  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
271  * @mapping:	address space structure to write
272  * @start:	offset in bytes where the range starts
273  * @end:	offset in bytes where the range ends (inclusive)
274  * @sync_mode:	enable synchronous operation
275  *
276  * Start writeback against all of a mapping's dirty pages that lie
277  * within the byte offsets <start, end> inclusive.
278  *
279  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
280  * opposed to a regular memory cleansing writeback.  The difference between
281  * these two operations is that if a dirty page/buffer is encountered, it must
282  * be waited upon, and not just skipped over.
283  */
284 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
285 				loff_t end, int sync_mode)
286 {
287 	int ret;
288 	struct writeback_control wbc = {
289 		.sync_mode = sync_mode,
290 		.nr_to_write = LONG_MAX,
291 		.range_start = start,
292 		.range_end = end,
293 	};
294 
295 	if (!mapping_cap_writeback_dirty(mapping))
296 		return 0;
297 
298 	ret = do_writepages(mapping, &wbc);
299 	return ret;
300 }
301 
302 static inline int __filemap_fdatawrite(struct address_space *mapping,
303 	int sync_mode)
304 {
305 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
306 }
307 
308 int filemap_fdatawrite(struct address_space *mapping)
309 {
310 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
311 }
312 EXPORT_SYMBOL(filemap_fdatawrite);
313 
314 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
315 				loff_t end)
316 {
317 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
318 }
319 EXPORT_SYMBOL(filemap_fdatawrite_range);
320 
321 /**
322  * filemap_flush - mostly a non-blocking flush
323  * @mapping:	target address_space
324  *
325  * This is a mostly non-blocking flush.  Not suitable for data-integrity
326  * purposes - I/O may not be started against all dirty pages.
327  */
328 int filemap_flush(struct address_space *mapping)
329 {
330 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
331 }
332 EXPORT_SYMBOL(filemap_flush);
333 
334 /**
335  * filemap_fdatawait_range - wait for writeback to complete
336  * @mapping:		address space structure to wait for
337  * @start_byte:		offset in bytes where the range starts
338  * @end_byte:		offset in bytes where the range ends (inclusive)
339  *
340  * Walk the list of under-writeback pages of the given address space
341  * in the given range and wait for all of them.
342  */
343 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
344 			    loff_t end_byte)
345 {
346 	pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
347 	pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
348 	struct pagevec pvec;
349 	int nr_pages;
350 	int ret2, ret = 0;
351 
352 	if (end_byte < start_byte)
353 		goto out;
354 
355 	pagevec_init(&pvec, 0);
356 	while ((index <= end) &&
357 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
358 			PAGECACHE_TAG_WRITEBACK,
359 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
360 		unsigned i;
361 
362 		for (i = 0; i < nr_pages; i++) {
363 			struct page *page = pvec.pages[i];
364 
365 			/* until radix tree lookup accepts end_index */
366 			if (page->index > end)
367 				continue;
368 
369 			wait_on_page_writeback(page);
370 			if (TestClearPageError(page))
371 				ret = -EIO;
372 		}
373 		pagevec_release(&pvec);
374 		cond_resched();
375 	}
376 out:
377 	ret2 = filemap_check_errors(mapping);
378 	if (!ret)
379 		ret = ret2;
380 
381 	return ret;
382 }
383 EXPORT_SYMBOL(filemap_fdatawait_range);
384 
385 /**
386  * filemap_fdatawait - wait for all under-writeback pages to complete
387  * @mapping: address space structure to wait for
388  *
389  * Walk the list of under-writeback pages of the given address space
390  * and wait for all of them.
391  */
392 int filemap_fdatawait(struct address_space *mapping)
393 {
394 	loff_t i_size = i_size_read(mapping->host);
395 
396 	if (i_size == 0)
397 		return 0;
398 
399 	return filemap_fdatawait_range(mapping, 0, i_size - 1);
400 }
401 EXPORT_SYMBOL(filemap_fdatawait);
402 
403 int filemap_write_and_wait(struct address_space *mapping)
404 {
405 	int err = 0;
406 
407 	if (mapping->nrpages) {
408 		err = filemap_fdatawrite(mapping);
409 		/*
410 		 * Even if the above returned error, the pages may be
411 		 * written partially (e.g. -ENOSPC), so we wait for it.
412 		 * But the -EIO is special case, it may indicate the worst
413 		 * thing (e.g. bug) happened, so we avoid waiting for it.
414 		 */
415 		if (err != -EIO) {
416 			int err2 = filemap_fdatawait(mapping);
417 			if (!err)
418 				err = err2;
419 		}
420 	} else {
421 		err = filemap_check_errors(mapping);
422 	}
423 	return err;
424 }
425 EXPORT_SYMBOL(filemap_write_and_wait);
426 
427 /**
428  * filemap_write_and_wait_range - write out & wait on a file range
429  * @mapping:	the address_space for the pages
430  * @lstart:	offset in bytes where the range starts
431  * @lend:	offset in bytes where the range ends (inclusive)
432  *
433  * Write out and wait upon file offsets lstart->lend, inclusive.
434  *
435  * Note that `lend' is inclusive (describes the last byte to be written) so
436  * that this function can be used to write to the very end-of-file (end = -1).
437  */
438 int filemap_write_and_wait_range(struct address_space *mapping,
439 				 loff_t lstart, loff_t lend)
440 {
441 	int err = 0;
442 
443 	if (mapping->nrpages) {
444 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
445 						 WB_SYNC_ALL);
446 		/* See comment of filemap_write_and_wait() */
447 		if (err != -EIO) {
448 			int err2 = filemap_fdatawait_range(mapping,
449 						lstart, lend);
450 			if (!err)
451 				err = err2;
452 		}
453 	} else {
454 		err = filemap_check_errors(mapping);
455 	}
456 	return err;
457 }
458 EXPORT_SYMBOL(filemap_write_and_wait_range);
459 
460 /**
461  * replace_page_cache_page - replace a pagecache page with a new one
462  * @old:	page to be replaced
463  * @new:	page to replace with
464  * @gfp_mask:	allocation mode
465  *
466  * This function replaces a page in the pagecache with a new one.  On
467  * success it acquires the pagecache reference for the new page and
468  * drops it for the old page.  Both the old and new pages must be
469  * locked.  This function does not add the new page to the LRU, the
470  * caller must do that.
471  *
472  * The remove + add is atomic.  The only way this function can fail is
473  * memory allocation failure.
474  */
475 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
476 {
477 	int error;
478 
479 	VM_BUG_ON_PAGE(!PageLocked(old), old);
480 	VM_BUG_ON_PAGE(!PageLocked(new), new);
481 	VM_BUG_ON_PAGE(new->mapping, new);
482 
483 	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
484 	if (!error) {
485 		struct address_space *mapping = old->mapping;
486 		void (*freepage)(struct page *);
487 
488 		pgoff_t offset = old->index;
489 		freepage = mapping->a_ops->freepage;
490 
491 		page_cache_get(new);
492 		new->mapping = mapping;
493 		new->index = offset;
494 
495 		spin_lock_irq(&mapping->tree_lock);
496 		__delete_from_page_cache(old, NULL);
497 		error = radix_tree_insert(&mapping->page_tree, offset, new);
498 		BUG_ON(error);
499 		mapping->nrpages++;
500 		__inc_zone_page_state(new, NR_FILE_PAGES);
501 		if (PageSwapBacked(new))
502 			__inc_zone_page_state(new, NR_SHMEM);
503 		spin_unlock_irq(&mapping->tree_lock);
504 		/* mem_cgroup codes must not be called under tree_lock */
505 		mem_cgroup_replace_page_cache(old, new);
506 		radix_tree_preload_end();
507 		if (freepage)
508 			freepage(old);
509 		page_cache_release(old);
510 	}
511 
512 	return error;
513 }
514 EXPORT_SYMBOL_GPL(replace_page_cache_page);
515 
516 static int page_cache_tree_insert(struct address_space *mapping,
517 				  struct page *page, void **shadowp)
518 {
519 	struct radix_tree_node *node;
520 	void **slot;
521 	int error;
522 
523 	error = __radix_tree_create(&mapping->page_tree, page->index,
524 				    &node, &slot);
525 	if (error)
526 		return error;
527 	if (*slot) {
528 		void *p;
529 
530 		p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
531 		if (!radix_tree_exceptional_entry(p))
532 			return -EEXIST;
533 		if (shadowp)
534 			*shadowp = p;
535 		mapping->nrshadows--;
536 		if (node)
537 			workingset_node_shadows_dec(node);
538 	}
539 	radix_tree_replace_slot(slot, page);
540 	mapping->nrpages++;
541 	if (node) {
542 		workingset_node_pages_inc(node);
543 		/*
544 		 * Don't track node that contains actual pages.
545 		 *
546 		 * Avoid acquiring the list_lru lock if already
547 		 * untracked.  The list_empty() test is safe as
548 		 * node->private_list is protected by
549 		 * mapping->tree_lock.
550 		 */
551 		if (!list_empty(&node->private_list))
552 			list_lru_del(&workingset_shadow_nodes,
553 				     &node->private_list);
554 	}
555 	return 0;
556 }
557 
558 static int __add_to_page_cache_locked(struct page *page,
559 				      struct address_space *mapping,
560 				      pgoff_t offset, gfp_t gfp_mask,
561 				      void **shadowp)
562 {
563 	int error;
564 
565 	VM_BUG_ON_PAGE(!PageLocked(page), page);
566 	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
567 
568 	error = mem_cgroup_charge_file(page, current->mm,
569 					gfp_mask & GFP_RECLAIM_MASK);
570 	if (error)
571 		return error;
572 
573 	error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
574 	if (error) {
575 		mem_cgroup_uncharge_cache_page(page);
576 		return error;
577 	}
578 
579 	page_cache_get(page);
580 	page->mapping = mapping;
581 	page->index = offset;
582 
583 	spin_lock_irq(&mapping->tree_lock);
584 	error = page_cache_tree_insert(mapping, page, shadowp);
585 	radix_tree_preload_end();
586 	if (unlikely(error))
587 		goto err_insert;
588 	__inc_zone_page_state(page, NR_FILE_PAGES);
589 	spin_unlock_irq(&mapping->tree_lock);
590 	trace_mm_filemap_add_to_page_cache(page);
591 	return 0;
592 err_insert:
593 	page->mapping = NULL;
594 	/* Leave page->index set: truncation relies upon it */
595 	spin_unlock_irq(&mapping->tree_lock);
596 	mem_cgroup_uncharge_cache_page(page);
597 	page_cache_release(page);
598 	return error;
599 }
600 
601 /**
602  * add_to_page_cache_locked - add a locked page to the pagecache
603  * @page:	page to add
604  * @mapping:	the page's address_space
605  * @offset:	page index
606  * @gfp_mask:	page allocation mode
607  *
608  * This function is used to add a page to the pagecache. It must be locked.
609  * This function does not add the page to the LRU.  The caller must do that.
610  */
611 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
612 		pgoff_t offset, gfp_t gfp_mask)
613 {
614 	return __add_to_page_cache_locked(page, mapping, offset,
615 					  gfp_mask, NULL);
616 }
617 EXPORT_SYMBOL(add_to_page_cache_locked);
618 
619 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
620 				pgoff_t offset, gfp_t gfp_mask)
621 {
622 	void *shadow = NULL;
623 	int ret;
624 
625 	__set_page_locked(page);
626 	ret = __add_to_page_cache_locked(page, mapping, offset,
627 					 gfp_mask, &shadow);
628 	if (unlikely(ret))
629 		__clear_page_locked(page);
630 	else {
631 		/*
632 		 * The page might have been evicted from cache only
633 		 * recently, in which case it should be activated like
634 		 * any other repeatedly accessed page.
635 		 */
636 		if (shadow && workingset_refault(shadow)) {
637 			SetPageActive(page);
638 			workingset_activation(page);
639 		} else
640 			ClearPageActive(page);
641 		lru_cache_add(page);
642 	}
643 	return ret;
644 }
645 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
646 
647 #ifdef CONFIG_NUMA
648 struct page *__page_cache_alloc(gfp_t gfp)
649 {
650 	int n;
651 	struct page *page;
652 
653 	if (cpuset_do_page_mem_spread()) {
654 		unsigned int cpuset_mems_cookie;
655 		do {
656 			cpuset_mems_cookie = read_mems_allowed_begin();
657 			n = cpuset_mem_spread_node();
658 			page = alloc_pages_exact_node(n, gfp, 0);
659 		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
660 
661 		return page;
662 	}
663 	return alloc_pages(gfp, 0);
664 }
665 EXPORT_SYMBOL(__page_cache_alloc);
666 #endif
667 
668 /*
669  * In order to wait for pages to become available there must be
670  * waitqueues associated with pages. By using a hash table of
671  * waitqueues where the bucket discipline is to maintain all
672  * waiters on the same queue and wake all when any of the pages
673  * become available, and for the woken contexts to check to be
674  * sure the appropriate page became available, this saves space
675  * at a cost of "thundering herd" phenomena during rare hash
676  * collisions.
677  */
678 static wait_queue_head_t *page_waitqueue(struct page *page)
679 {
680 	const struct zone *zone = page_zone(page);
681 
682 	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
683 }
684 
685 static inline void wake_up_page(struct page *page, int bit)
686 {
687 	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
688 }
689 
690 void wait_on_page_bit(struct page *page, int bit_nr)
691 {
692 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
693 
694 	if (test_bit(bit_nr, &page->flags))
695 		__wait_on_bit(page_waitqueue(page), &wait, sleep_on_page,
696 							TASK_UNINTERRUPTIBLE);
697 }
698 EXPORT_SYMBOL(wait_on_page_bit);
699 
700 int wait_on_page_bit_killable(struct page *page, int bit_nr)
701 {
702 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
703 
704 	if (!test_bit(bit_nr, &page->flags))
705 		return 0;
706 
707 	return __wait_on_bit(page_waitqueue(page), &wait,
708 			     sleep_on_page_killable, TASK_KILLABLE);
709 }
710 
711 /**
712  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
713  * @page: Page defining the wait queue of interest
714  * @waiter: Waiter to add to the queue
715  *
716  * Add an arbitrary @waiter to the wait queue for the nominated @page.
717  */
718 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
719 {
720 	wait_queue_head_t *q = page_waitqueue(page);
721 	unsigned long flags;
722 
723 	spin_lock_irqsave(&q->lock, flags);
724 	__add_wait_queue(q, waiter);
725 	spin_unlock_irqrestore(&q->lock, flags);
726 }
727 EXPORT_SYMBOL_GPL(add_page_wait_queue);
728 
729 /**
730  * unlock_page - unlock a locked page
731  * @page: the page
732  *
733  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
734  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
735  * mechananism between PageLocked pages and PageWriteback pages is shared.
736  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
737  *
738  * The mb is necessary to enforce ordering between the clear_bit and the read
739  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
740  */
741 void unlock_page(struct page *page)
742 {
743 	VM_BUG_ON_PAGE(!PageLocked(page), page);
744 	clear_bit_unlock(PG_locked, &page->flags);
745 	smp_mb__after_atomic();
746 	wake_up_page(page, PG_locked);
747 }
748 EXPORT_SYMBOL(unlock_page);
749 
750 /**
751  * end_page_writeback - end writeback against a page
752  * @page: the page
753  */
754 void end_page_writeback(struct page *page)
755 {
756 	/*
757 	 * TestClearPageReclaim could be used here but it is an atomic
758 	 * operation and overkill in this particular case. Failing to
759 	 * shuffle a page marked for immediate reclaim is too mild to
760 	 * justify taking an atomic operation penalty at the end of
761 	 * ever page writeback.
762 	 */
763 	if (PageReclaim(page)) {
764 		ClearPageReclaim(page);
765 		rotate_reclaimable_page(page);
766 	}
767 
768 	if (!test_clear_page_writeback(page))
769 		BUG();
770 
771 	smp_mb__after_atomic();
772 	wake_up_page(page, PG_writeback);
773 }
774 EXPORT_SYMBOL(end_page_writeback);
775 
776 /*
777  * After completing I/O on a page, call this routine to update the page
778  * flags appropriately
779  */
780 void page_endio(struct page *page, int rw, int err)
781 {
782 	if (rw == READ) {
783 		if (!err) {
784 			SetPageUptodate(page);
785 		} else {
786 			ClearPageUptodate(page);
787 			SetPageError(page);
788 		}
789 		unlock_page(page);
790 	} else { /* rw == WRITE */
791 		if (err) {
792 			SetPageError(page);
793 			if (page->mapping)
794 				mapping_set_error(page->mapping, err);
795 		}
796 		end_page_writeback(page);
797 	}
798 }
799 EXPORT_SYMBOL_GPL(page_endio);
800 
801 /**
802  * __lock_page - get a lock on the page, assuming we need to sleep to get it
803  * @page: the page to lock
804  */
805 void __lock_page(struct page *page)
806 {
807 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
808 
809 	__wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page,
810 							TASK_UNINTERRUPTIBLE);
811 }
812 EXPORT_SYMBOL(__lock_page);
813 
814 int __lock_page_killable(struct page *page)
815 {
816 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
817 
818 	return __wait_on_bit_lock(page_waitqueue(page), &wait,
819 					sleep_on_page_killable, TASK_KILLABLE);
820 }
821 EXPORT_SYMBOL_GPL(__lock_page_killable);
822 
823 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
824 			 unsigned int flags)
825 {
826 	if (flags & FAULT_FLAG_ALLOW_RETRY) {
827 		/*
828 		 * CAUTION! In this case, mmap_sem is not released
829 		 * even though return 0.
830 		 */
831 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
832 			return 0;
833 
834 		up_read(&mm->mmap_sem);
835 		if (flags & FAULT_FLAG_KILLABLE)
836 			wait_on_page_locked_killable(page);
837 		else
838 			wait_on_page_locked(page);
839 		return 0;
840 	} else {
841 		if (flags & FAULT_FLAG_KILLABLE) {
842 			int ret;
843 
844 			ret = __lock_page_killable(page);
845 			if (ret) {
846 				up_read(&mm->mmap_sem);
847 				return 0;
848 			}
849 		} else
850 			__lock_page(page);
851 		return 1;
852 	}
853 }
854 
855 /**
856  * page_cache_next_hole - find the next hole (not-present entry)
857  * @mapping: mapping
858  * @index: index
859  * @max_scan: maximum range to search
860  *
861  * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
862  * lowest indexed hole.
863  *
864  * Returns: the index of the hole if found, otherwise returns an index
865  * outside of the set specified (in which case 'return - index >=
866  * max_scan' will be true). In rare cases of index wrap-around, 0 will
867  * be returned.
868  *
869  * page_cache_next_hole may be called under rcu_read_lock. However,
870  * like radix_tree_gang_lookup, this will not atomically search a
871  * snapshot of the tree at a single point in time. For example, if a
872  * hole is created at index 5, then subsequently a hole is created at
873  * index 10, page_cache_next_hole covering both indexes may return 10
874  * if called under rcu_read_lock.
875  */
876 pgoff_t page_cache_next_hole(struct address_space *mapping,
877 			     pgoff_t index, unsigned long max_scan)
878 {
879 	unsigned long i;
880 
881 	for (i = 0; i < max_scan; i++) {
882 		struct page *page;
883 
884 		page = radix_tree_lookup(&mapping->page_tree, index);
885 		if (!page || radix_tree_exceptional_entry(page))
886 			break;
887 		index++;
888 		if (index == 0)
889 			break;
890 	}
891 
892 	return index;
893 }
894 EXPORT_SYMBOL(page_cache_next_hole);
895 
896 /**
897  * page_cache_prev_hole - find the prev hole (not-present entry)
898  * @mapping: mapping
899  * @index: index
900  * @max_scan: maximum range to search
901  *
902  * Search backwards in the range [max(index-max_scan+1, 0), index] for
903  * the first hole.
904  *
905  * Returns: the index of the hole if found, otherwise returns an index
906  * outside of the set specified (in which case 'index - return >=
907  * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
908  * will be returned.
909  *
910  * page_cache_prev_hole may be called under rcu_read_lock. However,
911  * like radix_tree_gang_lookup, this will not atomically search a
912  * snapshot of the tree at a single point in time. For example, if a
913  * hole is created at index 10, then subsequently a hole is created at
914  * index 5, page_cache_prev_hole covering both indexes may return 5 if
915  * called under rcu_read_lock.
916  */
917 pgoff_t page_cache_prev_hole(struct address_space *mapping,
918 			     pgoff_t index, unsigned long max_scan)
919 {
920 	unsigned long i;
921 
922 	for (i = 0; i < max_scan; i++) {
923 		struct page *page;
924 
925 		page = radix_tree_lookup(&mapping->page_tree, index);
926 		if (!page || radix_tree_exceptional_entry(page))
927 			break;
928 		index--;
929 		if (index == ULONG_MAX)
930 			break;
931 	}
932 
933 	return index;
934 }
935 EXPORT_SYMBOL(page_cache_prev_hole);
936 
937 /**
938  * find_get_entry - find and get a page cache entry
939  * @mapping: the address_space to search
940  * @offset: the page cache index
941  *
942  * Looks up the page cache slot at @mapping & @offset.  If there is a
943  * page cache page, it is returned with an increased refcount.
944  *
945  * If the slot holds a shadow entry of a previously evicted page, or a
946  * swap entry from shmem/tmpfs, it is returned.
947  *
948  * Otherwise, %NULL is returned.
949  */
950 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
951 {
952 	void **pagep;
953 	struct page *page;
954 
955 	rcu_read_lock();
956 repeat:
957 	page = NULL;
958 	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
959 	if (pagep) {
960 		page = radix_tree_deref_slot(pagep);
961 		if (unlikely(!page))
962 			goto out;
963 		if (radix_tree_exception(page)) {
964 			if (radix_tree_deref_retry(page))
965 				goto repeat;
966 			/*
967 			 * A shadow entry of a recently evicted page,
968 			 * or a swap entry from shmem/tmpfs.  Return
969 			 * it without attempting to raise page count.
970 			 */
971 			goto out;
972 		}
973 		if (!page_cache_get_speculative(page))
974 			goto repeat;
975 
976 		/*
977 		 * Has the page moved?
978 		 * This is part of the lockless pagecache protocol. See
979 		 * include/linux/pagemap.h for details.
980 		 */
981 		if (unlikely(page != *pagep)) {
982 			page_cache_release(page);
983 			goto repeat;
984 		}
985 	}
986 out:
987 	rcu_read_unlock();
988 
989 	return page;
990 }
991 EXPORT_SYMBOL(find_get_entry);
992 
993 /**
994  * find_lock_entry - locate, pin and lock a page cache entry
995  * @mapping: the address_space to search
996  * @offset: the page cache index
997  *
998  * Looks up the page cache slot at @mapping & @offset.  If there is a
999  * page cache page, it is returned locked and with an increased
1000  * refcount.
1001  *
1002  * If the slot holds a shadow entry of a previously evicted page, or a
1003  * swap entry from shmem/tmpfs, it is returned.
1004  *
1005  * Otherwise, %NULL is returned.
1006  *
1007  * find_lock_entry() may sleep.
1008  */
1009 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1010 {
1011 	struct page *page;
1012 
1013 repeat:
1014 	page = find_get_entry(mapping, offset);
1015 	if (page && !radix_tree_exception(page)) {
1016 		lock_page(page);
1017 		/* Has the page been truncated? */
1018 		if (unlikely(page->mapping != mapping)) {
1019 			unlock_page(page);
1020 			page_cache_release(page);
1021 			goto repeat;
1022 		}
1023 		VM_BUG_ON_PAGE(page->index != offset, page);
1024 	}
1025 	return page;
1026 }
1027 EXPORT_SYMBOL(find_lock_entry);
1028 
1029 /**
1030  * pagecache_get_page - find and get a page reference
1031  * @mapping: the address_space to search
1032  * @offset: the page index
1033  * @fgp_flags: PCG flags
1034  * @gfp_mask: gfp mask to use if a page is to be allocated
1035  *
1036  * Looks up the page cache slot at @mapping & @offset.
1037  *
1038  * PCG flags modify how the page is returned
1039  *
1040  * FGP_ACCESSED: the page will be marked accessed
1041  * FGP_LOCK: Page is return locked
1042  * FGP_CREAT: If page is not present then a new page is allocated using
1043  *		@gfp_mask and added to the page cache and the VM's LRU
1044  *		list. The page is returned locked and with an increased
1045  *		refcount. Otherwise, %NULL is returned.
1046  *
1047  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1048  * if the GFP flags specified for FGP_CREAT are atomic.
1049  *
1050  * If there is a page cache page, it is returned with an increased refcount.
1051  */
1052 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1053 	int fgp_flags, gfp_t cache_gfp_mask, gfp_t radix_gfp_mask)
1054 {
1055 	struct page *page;
1056 
1057 repeat:
1058 	page = find_get_entry(mapping, offset);
1059 	if (radix_tree_exceptional_entry(page))
1060 		page = NULL;
1061 	if (!page)
1062 		goto no_page;
1063 
1064 	if (fgp_flags & FGP_LOCK) {
1065 		if (fgp_flags & FGP_NOWAIT) {
1066 			if (!trylock_page(page)) {
1067 				page_cache_release(page);
1068 				return NULL;
1069 			}
1070 		} else {
1071 			lock_page(page);
1072 		}
1073 
1074 		/* Has the page been truncated? */
1075 		if (unlikely(page->mapping != mapping)) {
1076 			unlock_page(page);
1077 			page_cache_release(page);
1078 			goto repeat;
1079 		}
1080 		VM_BUG_ON_PAGE(page->index != offset, page);
1081 	}
1082 
1083 	if (page && (fgp_flags & FGP_ACCESSED))
1084 		mark_page_accessed(page);
1085 
1086 no_page:
1087 	if (!page && (fgp_flags & FGP_CREAT)) {
1088 		int err;
1089 		if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1090 			cache_gfp_mask |= __GFP_WRITE;
1091 		if (fgp_flags & FGP_NOFS) {
1092 			cache_gfp_mask &= ~__GFP_FS;
1093 			radix_gfp_mask &= ~__GFP_FS;
1094 		}
1095 
1096 		page = __page_cache_alloc(cache_gfp_mask);
1097 		if (!page)
1098 			return NULL;
1099 
1100 		if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1101 			fgp_flags |= FGP_LOCK;
1102 
1103 		/* Init accessed so avoit atomic mark_page_accessed later */
1104 		if (fgp_flags & FGP_ACCESSED)
1105 			init_page_accessed(page);
1106 
1107 		err = add_to_page_cache_lru(page, mapping, offset, radix_gfp_mask);
1108 		if (unlikely(err)) {
1109 			page_cache_release(page);
1110 			page = NULL;
1111 			if (err == -EEXIST)
1112 				goto repeat;
1113 		}
1114 	}
1115 
1116 	return page;
1117 }
1118 EXPORT_SYMBOL(pagecache_get_page);
1119 
1120 /**
1121  * find_get_entries - gang pagecache lookup
1122  * @mapping:	The address_space to search
1123  * @start:	The starting page cache index
1124  * @nr_entries:	The maximum number of entries
1125  * @entries:	Where the resulting entries are placed
1126  * @indices:	The cache indices corresponding to the entries in @entries
1127  *
1128  * find_get_entries() will search for and return a group of up to
1129  * @nr_entries entries in the mapping.  The entries are placed at
1130  * @entries.  find_get_entries() takes a reference against any actual
1131  * pages it returns.
1132  *
1133  * The search returns a group of mapping-contiguous page cache entries
1134  * with ascending indexes.  There may be holes in the indices due to
1135  * not-present pages.
1136  *
1137  * Any shadow entries of evicted pages, or swap entries from
1138  * shmem/tmpfs, are included in the returned array.
1139  *
1140  * find_get_entries() returns the number of pages and shadow entries
1141  * which were found.
1142  */
1143 unsigned find_get_entries(struct address_space *mapping,
1144 			  pgoff_t start, unsigned int nr_entries,
1145 			  struct page **entries, pgoff_t *indices)
1146 {
1147 	void **slot;
1148 	unsigned int ret = 0;
1149 	struct radix_tree_iter iter;
1150 
1151 	if (!nr_entries)
1152 		return 0;
1153 
1154 	rcu_read_lock();
1155 restart:
1156 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1157 		struct page *page;
1158 repeat:
1159 		page = radix_tree_deref_slot(slot);
1160 		if (unlikely(!page))
1161 			continue;
1162 		if (radix_tree_exception(page)) {
1163 			if (radix_tree_deref_retry(page))
1164 				goto restart;
1165 			/*
1166 			 * A shadow entry of a recently evicted page,
1167 			 * or a swap entry from shmem/tmpfs.  Return
1168 			 * it without attempting to raise page count.
1169 			 */
1170 			goto export;
1171 		}
1172 		if (!page_cache_get_speculative(page))
1173 			goto repeat;
1174 
1175 		/* Has the page moved? */
1176 		if (unlikely(page != *slot)) {
1177 			page_cache_release(page);
1178 			goto repeat;
1179 		}
1180 export:
1181 		indices[ret] = iter.index;
1182 		entries[ret] = page;
1183 		if (++ret == nr_entries)
1184 			break;
1185 	}
1186 	rcu_read_unlock();
1187 	return ret;
1188 }
1189 
1190 /**
1191  * find_get_pages - gang pagecache lookup
1192  * @mapping:	The address_space to search
1193  * @start:	The starting page index
1194  * @nr_pages:	The maximum number of pages
1195  * @pages:	Where the resulting pages are placed
1196  *
1197  * find_get_pages() will search for and return a group of up to
1198  * @nr_pages pages in the mapping.  The pages are placed at @pages.
1199  * find_get_pages() takes a reference against the returned pages.
1200  *
1201  * The search returns a group of mapping-contiguous pages with ascending
1202  * indexes.  There may be holes in the indices due to not-present pages.
1203  *
1204  * find_get_pages() returns the number of pages which were found.
1205  */
1206 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1207 			    unsigned int nr_pages, struct page **pages)
1208 {
1209 	struct radix_tree_iter iter;
1210 	void **slot;
1211 	unsigned ret = 0;
1212 
1213 	if (unlikely(!nr_pages))
1214 		return 0;
1215 
1216 	rcu_read_lock();
1217 restart:
1218 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1219 		struct page *page;
1220 repeat:
1221 		page = radix_tree_deref_slot(slot);
1222 		if (unlikely(!page))
1223 			continue;
1224 
1225 		if (radix_tree_exception(page)) {
1226 			if (radix_tree_deref_retry(page)) {
1227 				/*
1228 				 * Transient condition which can only trigger
1229 				 * when entry at index 0 moves out of or back
1230 				 * to root: none yet gotten, safe to restart.
1231 				 */
1232 				WARN_ON(iter.index);
1233 				goto restart;
1234 			}
1235 			/*
1236 			 * A shadow entry of a recently evicted page,
1237 			 * or a swap entry from shmem/tmpfs.  Skip
1238 			 * over it.
1239 			 */
1240 			continue;
1241 		}
1242 
1243 		if (!page_cache_get_speculative(page))
1244 			goto repeat;
1245 
1246 		/* Has the page moved? */
1247 		if (unlikely(page != *slot)) {
1248 			page_cache_release(page);
1249 			goto repeat;
1250 		}
1251 
1252 		pages[ret] = page;
1253 		if (++ret == nr_pages)
1254 			break;
1255 	}
1256 
1257 	rcu_read_unlock();
1258 	return ret;
1259 }
1260 
1261 /**
1262  * find_get_pages_contig - gang contiguous pagecache lookup
1263  * @mapping:	The address_space to search
1264  * @index:	The starting page index
1265  * @nr_pages:	The maximum number of pages
1266  * @pages:	Where the resulting pages are placed
1267  *
1268  * find_get_pages_contig() works exactly like find_get_pages(), except
1269  * that the returned number of pages are guaranteed to be contiguous.
1270  *
1271  * find_get_pages_contig() returns the number of pages which were found.
1272  */
1273 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1274 			       unsigned int nr_pages, struct page **pages)
1275 {
1276 	struct radix_tree_iter iter;
1277 	void **slot;
1278 	unsigned int ret = 0;
1279 
1280 	if (unlikely(!nr_pages))
1281 		return 0;
1282 
1283 	rcu_read_lock();
1284 restart:
1285 	radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1286 		struct page *page;
1287 repeat:
1288 		page = radix_tree_deref_slot(slot);
1289 		/* The hole, there no reason to continue */
1290 		if (unlikely(!page))
1291 			break;
1292 
1293 		if (radix_tree_exception(page)) {
1294 			if (radix_tree_deref_retry(page)) {
1295 				/*
1296 				 * Transient condition which can only trigger
1297 				 * when entry at index 0 moves out of or back
1298 				 * to root: none yet gotten, safe to restart.
1299 				 */
1300 				goto restart;
1301 			}
1302 			/*
1303 			 * A shadow entry of a recently evicted page,
1304 			 * or a swap entry from shmem/tmpfs.  Stop
1305 			 * looking for contiguous pages.
1306 			 */
1307 			break;
1308 		}
1309 
1310 		if (!page_cache_get_speculative(page))
1311 			goto repeat;
1312 
1313 		/* Has the page moved? */
1314 		if (unlikely(page != *slot)) {
1315 			page_cache_release(page);
1316 			goto repeat;
1317 		}
1318 
1319 		/*
1320 		 * must check mapping and index after taking the ref.
1321 		 * otherwise we can get both false positives and false
1322 		 * negatives, which is just confusing to the caller.
1323 		 */
1324 		if (page->mapping == NULL || page->index != iter.index) {
1325 			page_cache_release(page);
1326 			break;
1327 		}
1328 
1329 		pages[ret] = page;
1330 		if (++ret == nr_pages)
1331 			break;
1332 	}
1333 	rcu_read_unlock();
1334 	return ret;
1335 }
1336 EXPORT_SYMBOL(find_get_pages_contig);
1337 
1338 /**
1339  * find_get_pages_tag - find and return pages that match @tag
1340  * @mapping:	the address_space to search
1341  * @index:	the starting page index
1342  * @tag:	the tag index
1343  * @nr_pages:	the maximum number of pages
1344  * @pages:	where the resulting pages are placed
1345  *
1346  * Like find_get_pages, except we only return pages which are tagged with
1347  * @tag.   We update @index to index the next page for the traversal.
1348  */
1349 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1350 			int tag, unsigned int nr_pages, struct page **pages)
1351 {
1352 	struct radix_tree_iter iter;
1353 	void **slot;
1354 	unsigned ret = 0;
1355 
1356 	if (unlikely(!nr_pages))
1357 		return 0;
1358 
1359 	rcu_read_lock();
1360 restart:
1361 	radix_tree_for_each_tagged(slot, &mapping->page_tree,
1362 				   &iter, *index, tag) {
1363 		struct page *page;
1364 repeat:
1365 		page = radix_tree_deref_slot(slot);
1366 		if (unlikely(!page))
1367 			continue;
1368 
1369 		if (radix_tree_exception(page)) {
1370 			if (radix_tree_deref_retry(page)) {
1371 				/*
1372 				 * Transient condition which can only trigger
1373 				 * when entry at index 0 moves out of or back
1374 				 * to root: none yet gotten, safe to restart.
1375 				 */
1376 				goto restart;
1377 			}
1378 			/*
1379 			 * A shadow entry of a recently evicted page.
1380 			 *
1381 			 * Those entries should never be tagged, but
1382 			 * this tree walk is lockless and the tags are
1383 			 * looked up in bulk, one radix tree node at a
1384 			 * time, so there is a sizable window for page
1385 			 * reclaim to evict a page we saw tagged.
1386 			 *
1387 			 * Skip over it.
1388 			 */
1389 			continue;
1390 		}
1391 
1392 		if (!page_cache_get_speculative(page))
1393 			goto repeat;
1394 
1395 		/* Has the page moved? */
1396 		if (unlikely(page != *slot)) {
1397 			page_cache_release(page);
1398 			goto repeat;
1399 		}
1400 
1401 		pages[ret] = page;
1402 		if (++ret == nr_pages)
1403 			break;
1404 	}
1405 
1406 	rcu_read_unlock();
1407 
1408 	if (ret)
1409 		*index = pages[ret - 1]->index + 1;
1410 
1411 	return ret;
1412 }
1413 EXPORT_SYMBOL(find_get_pages_tag);
1414 
1415 /*
1416  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1417  * a _large_ part of the i/o request. Imagine the worst scenario:
1418  *
1419  *      ---R__________________________________________B__________
1420  *         ^ reading here                             ^ bad block(assume 4k)
1421  *
1422  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1423  * => failing the whole request => read(R) => read(R+1) =>
1424  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1425  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1426  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1427  *
1428  * It is going insane. Fix it by quickly scaling down the readahead size.
1429  */
1430 static void shrink_readahead_size_eio(struct file *filp,
1431 					struct file_ra_state *ra)
1432 {
1433 	ra->ra_pages /= 4;
1434 }
1435 
1436 /**
1437  * do_generic_file_read - generic file read routine
1438  * @filp:	the file to read
1439  * @ppos:	current file position
1440  * @iter:	data destination
1441  * @written:	already copied
1442  *
1443  * This is a generic file read routine, and uses the
1444  * mapping->a_ops->readpage() function for the actual low-level stuff.
1445  *
1446  * This is really ugly. But the goto's actually try to clarify some
1447  * of the logic when it comes to error handling etc.
1448  */
1449 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1450 		struct iov_iter *iter, ssize_t written)
1451 {
1452 	struct address_space *mapping = filp->f_mapping;
1453 	struct inode *inode = mapping->host;
1454 	struct file_ra_state *ra = &filp->f_ra;
1455 	pgoff_t index;
1456 	pgoff_t last_index;
1457 	pgoff_t prev_index;
1458 	unsigned long offset;      /* offset into pagecache page */
1459 	unsigned int prev_offset;
1460 	int error = 0;
1461 
1462 	index = *ppos >> PAGE_CACHE_SHIFT;
1463 	prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1464 	prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1465 	last_index = (*ppos + iter->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1466 	offset = *ppos & ~PAGE_CACHE_MASK;
1467 
1468 	for (;;) {
1469 		struct page *page;
1470 		pgoff_t end_index;
1471 		loff_t isize;
1472 		unsigned long nr, ret;
1473 
1474 		cond_resched();
1475 find_page:
1476 		page = find_get_page(mapping, index);
1477 		if (!page) {
1478 			page_cache_sync_readahead(mapping,
1479 					ra, filp,
1480 					index, last_index - index);
1481 			page = find_get_page(mapping, index);
1482 			if (unlikely(page == NULL))
1483 				goto no_cached_page;
1484 		}
1485 		if (PageReadahead(page)) {
1486 			page_cache_async_readahead(mapping,
1487 					ra, filp, page,
1488 					index, last_index - index);
1489 		}
1490 		if (!PageUptodate(page)) {
1491 			if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1492 					!mapping->a_ops->is_partially_uptodate)
1493 				goto page_not_up_to_date;
1494 			if (!trylock_page(page))
1495 				goto page_not_up_to_date;
1496 			/* Did it get truncated before we got the lock? */
1497 			if (!page->mapping)
1498 				goto page_not_up_to_date_locked;
1499 			if (!mapping->a_ops->is_partially_uptodate(page,
1500 							offset, iter->count))
1501 				goto page_not_up_to_date_locked;
1502 			unlock_page(page);
1503 		}
1504 page_ok:
1505 		/*
1506 		 * i_size must be checked after we know the page is Uptodate.
1507 		 *
1508 		 * Checking i_size after the check allows us to calculate
1509 		 * the correct value for "nr", which means the zero-filled
1510 		 * part of the page is not copied back to userspace (unless
1511 		 * another truncate extends the file - this is desired though).
1512 		 */
1513 
1514 		isize = i_size_read(inode);
1515 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1516 		if (unlikely(!isize || index > end_index)) {
1517 			page_cache_release(page);
1518 			goto out;
1519 		}
1520 
1521 		/* nr is the maximum number of bytes to copy from this page */
1522 		nr = PAGE_CACHE_SIZE;
1523 		if (index == end_index) {
1524 			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1525 			if (nr <= offset) {
1526 				page_cache_release(page);
1527 				goto out;
1528 			}
1529 		}
1530 		nr = nr - offset;
1531 
1532 		/* If users can be writing to this page using arbitrary
1533 		 * virtual addresses, take care about potential aliasing
1534 		 * before reading the page on the kernel side.
1535 		 */
1536 		if (mapping_writably_mapped(mapping))
1537 			flush_dcache_page(page);
1538 
1539 		/*
1540 		 * When a sequential read accesses a page several times,
1541 		 * only mark it as accessed the first time.
1542 		 */
1543 		if (prev_index != index || offset != prev_offset)
1544 			mark_page_accessed(page);
1545 		prev_index = index;
1546 
1547 		/*
1548 		 * Ok, we have the page, and it's up-to-date, so
1549 		 * now we can copy it to user space...
1550 		 */
1551 
1552 		ret = copy_page_to_iter(page, offset, nr, iter);
1553 		offset += ret;
1554 		index += offset >> PAGE_CACHE_SHIFT;
1555 		offset &= ~PAGE_CACHE_MASK;
1556 		prev_offset = offset;
1557 
1558 		page_cache_release(page);
1559 		written += ret;
1560 		if (!iov_iter_count(iter))
1561 			goto out;
1562 		if (ret < nr) {
1563 			error = -EFAULT;
1564 			goto out;
1565 		}
1566 		continue;
1567 
1568 page_not_up_to_date:
1569 		/* Get exclusive access to the page ... */
1570 		error = lock_page_killable(page);
1571 		if (unlikely(error))
1572 			goto readpage_error;
1573 
1574 page_not_up_to_date_locked:
1575 		/* Did it get truncated before we got the lock? */
1576 		if (!page->mapping) {
1577 			unlock_page(page);
1578 			page_cache_release(page);
1579 			continue;
1580 		}
1581 
1582 		/* Did somebody else fill it already? */
1583 		if (PageUptodate(page)) {
1584 			unlock_page(page);
1585 			goto page_ok;
1586 		}
1587 
1588 readpage:
1589 		/*
1590 		 * A previous I/O error may have been due to temporary
1591 		 * failures, eg. multipath errors.
1592 		 * PG_error will be set again if readpage fails.
1593 		 */
1594 		ClearPageError(page);
1595 		/* Start the actual read. The read will unlock the page. */
1596 		error = mapping->a_ops->readpage(filp, page);
1597 
1598 		if (unlikely(error)) {
1599 			if (error == AOP_TRUNCATED_PAGE) {
1600 				page_cache_release(page);
1601 				error = 0;
1602 				goto find_page;
1603 			}
1604 			goto readpage_error;
1605 		}
1606 
1607 		if (!PageUptodate(page)) {
1608 			error = lock_page_killable(page);
1609 			if (unlikely(error))
1610 				goto readpage_error;
1611 			if (!PageUptodate(page)) {
1612 				if (page->mapping == NULL) {
1613 					/*
1614 					 * invalidate_mapping_pages got it
1615 					 */
1616 					unlock_page(page);
1617 					page_cache_release(page);
1618 					goto find_page;
1619 				}
1620 				unlock_page(page);
1621 				shrink_readahead_size_eio(filp, ra);
1622 				error = -EIO;
1623 				goto readpage_error;
1624 			}
1625 			unlock_page(page);
1626 		}
1627 
1628 		goto page_ok;
1629 
1630 readpage_error:
1631 		/* UHHUH! A synchronous read error occurred. Report it */
1632 		page_cache_release(page);
1633 		goto out;
1634 
1635 no_cached_page:
1636 		/*
1637 		 * Ok, it wasn't cached, so we need to create a new
1638 		 * page..
1639 		 */
1640 		page = page_cache_alloc_cold(mapping);
1641 		if (!page) {
1642 			error = -ENOMEM;
1643 			goto out;
1644 		}
1645 		error = add_to_page_cache_lru(page, mapping,
1646 						index, GFP_KERNEL);
1647 		if (error) {
1648 			page_cache_release(page);
1649 			if (error == -EEXIST) {
1650 				error = 0;
1651 				goto find_page;
1652 			}
1653 			goto out;
1654 		}
1655 		goto readpage;
1656 	}
1657 
1658 out:
1659 	ra->prev_pos = prev_index;
1660 	ra->prev_pos <<= PAGE_CACHE_SHIFT;
1661 	ra->prev_pos |= prev_offset;
1662 
1663 	*ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1664 	file_accessed(filp);
1665 	return written ? written : error;
1666 }
1667 
1668 /**
1669  * generic_file_read_iter - generic filesystem read routine
1670  * @iocb:	kernel I/O control block
1671  * @iter:	destination for the data read
1672  *
1673  * This is the "read_iter()" routine for all filesystems
1674  * that can use the page cache directly.
1675  */
1676 ssize_t
1677 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1678 {
1679 	struct file *file = iocb->ki_filp;
1680 	ssize_t retval = 0;
1681 	loff_t *ppos = &iocb->ki_pos;
1682 	loff_t pos = *ppos;
1683 
1684 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1685 	if (file->f_flags & O_DIRECT) {
1686 		struct address_space *mapping = file->f_mapping;
1687 		struct inode *inode = mapping->host;
1688 		size_t count = iov_iter_count(iter);
1689 		loff_t size;
1690 
1691 		if (!count)
1692 			goto out; /* skip atime */
1693 		size = i_size_read(inode);
1694 		retval = filemap_write_and_wait_range(mapping, pos,
1695 					pos + count - 1);
1696 		if (!retval) {
1697 			struct iov_iter data = *iter;
1698 			retval = mapping->a_ops->direct_IO(READ, iocb, &data, pos);
1699 		}
1700 
1701 		if (retval > 0) {
1702 			*ppos = pos + retval;
1703 			iov_iter_advance(iter, retval);
1704 		}
1705 
1706 		/*
1707 		 * Btrfs can have a short DIO read if we encounter
1708 		 * compressed extents, so if there was an error, or if
1709 		 * we've already read everything we wanted to, or if
1710 		 * there was a short read because we hit EOF, go ahead
1711 		 * and return.  Otherwise fallthrough to buffered io for
1712 		 * the rest of the read.
1713 		 */
1714 		if (retval < 0 || !iov_iter_count(iter) || *ppos >= size) {
1715 			file_accessed(file);
1716 			goto out;
1717 		}
1718 	}
1719 
1720 	retval = do_generic_file_read(file, ppos, iter, retval);
1721 out:
1722 	return retval;
1723 }
1724 EXPORT_SYMBOL(generic_file_read_iter);
1725 
1726 #ifdef CONFIG_MMU
1727 /**
1728  * page_cache_read - adds requested page to the page cache if not already there
1729  * @file:	file to read
1730  * @offset:	page index
1731  *
1732  * This adds the requested page to the page cache if it isn't already there,
1733  * and schedules an I/O to read in its contents from disk.
1734  */
1735 static int page_cache_read(struct file *file, pgoff_t offset)
1736 {
1737 	struct address_space *mapping = file->f_mapping;
1738 	struct page *page;
1739 	int ret;
1740 
1741 	do {
1742 		page = page_cache_alloc_cold(mapping);
1743 		if (!page)
1744 			return -ENOMEM;
1745 
1746 		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1747 		if (ret == 0)
1748 			ret = mapping->a_ops->readpage(file, page);
1749 		else if (ret == -EEXIST)
1750 			ret = 0; /* losing race to add is OK */
1751 
1752 		page_cache_release(page);
1753 
1754 	} while (ret == AOP_TRUNCATED_PAGE);
1755 
1756 	return ret;
1757 }
1758 
1759 #define MMAP_LOTSAMISS  (100)
1760 
1761 /*
1762  * Synchronous readahead happens when we don't even find
1763  * a page in the page cache at all.
1764  */
1765 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1766 				   struct file_ra_state *ra,
1767 				   struct file *file,
1768 				   pgoff_t offset)
1769 {
1770 	unsigned long ra_pages;
1771 	struct address_space *mapping = file->f_mapping;
1772 
1773 	/* If we don't want any read-ahead, don't bother */
1774 	if (vma->vm_flags & VM_RAND_READ)
1775 		return;
1776 	if (!ra->ra_pages)
1777 		return;
1778 
1779 	if (vma->vm_flags & VM_SEQ_READ) {
1780 		page_cache_sync_readahead(mapping, ra, file, offset,
1781 					  ra->ra_pages);
1782 		return;
1783 	}
1784 
1785 	/* Avoid banging the cache line if not needed */
1786 	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1787 		ra->mmap_miss++;
1788 
1789 	/*
1790 	 * Do we miss much more than hit in this file? If so,
1791 	 * stop bothering with read-ahead. It will only hurt.
1792 	 */
1793 	if (ra->mmap_miss > MMAP_LOTSAMISS)
1794 		return;
1795 
1796 	/*
1797 	 * mmap read-around
1798 	 */
1799 	ra_pages = max_sane_readahead(ra->ra_pages);
1800 	ra->start = max_t(long, 0, offset - ra_pages / 2);
1801 	ra->size = ra_pages;
1802 	ra->async_size = ra_pages / 4;
1803 	ra_submit(ra, mapping, file);
1804 }
1805 
1806 /*
1807  * Asynchronous readahead happens when we find the page and PG_readahead,
1808  * so we want to possibly extend the readahead further..
1809  */
1810 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1811 				    struct file_ra_state *ra,
1812 				    struct file *file,
1813 				    struct page *page,
1814 				    pgoff_t offset)
1815 {
1816 	struct address_space *mapping = file->f_mapping;
1817 
1818 	/* If we don't want any read-ahead, don't bother */
1819 	if (vma->vm_flags & VM_RAND_READ)
1820 		return;
1821 	if (ra->mmap_miss > 0)
1822 		ra->mmap_miss--;
1823 	if (PageReadahead(page))
1824 		page_cache_async_readahead(mapping, ra, file,
1825 					   page, offset, ra->ra_pages);
1826 }
1827 
1828 /**
1829  * filemap_fault - read in file data for page fault handling
1830  * @vma:	vma in which the fault was taken
1831  * @vmf:	struct vm_fault containing details of the fault
1832  *
1833  * filemap_fault() is invoked via the vma operations vector for a
1834  * mapped memory region to read in file data during a page fault.
1835  *
1836  * The goto's are kind of ugly, but this streamlines the normal case of having
1837  * it in the page cache, and handles the special cases reasonably without
1838  * having a lot of duplicated code.
1839  */
1840 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1841 {
1842 	int error;
1843 	struct file *file = vma->vm_file;
1844 	struct address_space *mapping = file->f_mapping;
1845 	struct file_ra_state *ra = &file->f_ra;
1846 	struct inode *inode = mapping->host;
1847 	pgoff_t offset = vmf->pgoff;
1848 	struct page *page;
1849 	loff_t size;
1850 	int ret = 0;
1851 
1852 	size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1853 	if (offset >= size >> PAGE_CACHE_SHIFT)
1854 		return VM_FAULT_SIGBUS;
1855 
1856 	/*
1857 	 * Do we have something in the page cache already?
1858 	 */
1859 	page = find_get_page(mapping, offset);
1860 	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1861 		/*
1862 		 * We found the page, so try async readahead before
1863 		 * waiting for the lock.
1864 		 */
1865 		do_async_mmap_readahead(vma, ra, file, page, offset);
1866 	} else if (!page) {
1867 		/* No page in the page cache at all */
1868 		do_sync_mmap_readahead(vma, ra, file, offset);
1869 		count_vm_event(PGMAJFAULT);
1870 		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1871 		ret = VM_FAULT_MAJOR;
1872 retry_find:
1873 		page = find_get_page(mapping, offset);
1874 		if (!page)
1875 			goto no_cached_page;
1876 	}
1877 
1878 	if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1879 		page_cache_release(page);
1880 		return ret | VM_FAULT_RETRY;
1881 	}
1882 
1883 	/* Did it get truncated? */
1884 	if (unlikely(page->mapping != mapping)) {
1885 		unlock_page(page);
1886 		put_page(page);
1887 		goto retry_find;
1888 	}
1889 	VM_BUG_ON_PAGE(page->index != offset, page);
1890 
1891 	/*
1892 	 * We have a locked page in the page cache, now we need to check
1893 	 * that it's up-to-date. If not, it is going to be due to an error.
1894 	 */
1895 	if (unlikely(!PageUptodate(page)))
1896 		goto page_not_uptodate;
1897 
1898 	/*
1899 	 * Found the page and have a reference on it.
1900 	 * We must recheck i_size under page lock.
1901 	 */
1902 	size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1903 	if (unlikely(offset >= size >> PAGE_CACHE_SHIFT)) {
1904 		unlock_page(page);
1905 		page_cache_release(page);
1906 		return VM_FAULT_SIGBUS;
1907 	}
1908 
1909 	vmf->page = page;
1910 	return ret | VM_FAULT_LOCKED;
1911 
1912 no_cached_page:
1913 	/*
1914 	 * We're only likely to ever get here if MADV_RANDOM is in
1915 	 * effect.
1916 	 */
1917 	error = page_cache_read(file, offset);
1918 
1919 	/*
1920 	 * The page we want has now been added to the page cache.
1921 	 * In the unlikely event that someone removed it in the
1922 	 * meantime, we'll just come back here and read it again.
1923 	 */
1924 	if (error >= 0)
1925 		goto retry_find;
1926 
1927 	/*
1928 	 * An error return from page_cache_read can result if the
1929 	 * system is low on memory, or a problem occurs while trying
1930 	 * to schedule I/O.
1931 	 */
1932 	if (error == -ENOMEM)
1933 		return VM_FAULT_OOM;
1934 	return VM_FAULT_SIGBUS;
1935 
1936 page_not_uptodate:
1937 	/*
1938 	 * Umm, take care of errors if the page isn't up-to-date.
1939 	 * Try to re-read it _once_. We do this synchronously,
1940 	 * because there really aren't any performance issues here
1941 	 * and we need to check for errors.
1942 	 */
1943 	ClearPageError(page);
1944 	error = mapping->a_ops->readpage(file, page);
1945 	if (!error) {
1946 		wait_on_page_locked(page);
1947 		if (!PageUptodate(page))
1948 			error = -EIO;
1949 	}
1950 	page_cache_release(page);
1951 
1952 	if (!error || error == AOP_TRUNCATED_PAGE)
1953 		goto retry_find;
1954 
1955 	/* Things didn't work out. Return zero to tell the mm layer so. */
1956 	shrink_readahead_size_eio(file, ra);
1957 	return VM_FAULT_SIGBUS;
1958 }
1959 EXPORT_SYMBOL(filemap_fault);
1960 
1961 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
1962 {
1963 	struct radix_tree_iter iter;
1964 	void **slot;
1965 	struct file *file = vma->vm_file;
1966 	struct address_space *mapping = file->f_mapping;
1967 	loff_t size;
1968 	struct page *page;
1969 	unsigned long address = (unsigned long) vmf->virtual_address;
1970 	unsigned long addr;
1971 	pte_t *pte;
1972 
1973 	rcu_read_lock();
1974 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
1975 		if (iter.index > vmf->max_pgoff)
1976 			break;
1977 repeat:
1978 		page = radix_tree_deref_slot(slot);
1979 		if (unlikely(!page))
1980 			goto next;
1981 		if (radix_tree_exception(page)) {
1982 			if (radix_tree_deref_retry(page))
1983 				break;
1984 			else
1985 				goto next;
1986 		}
1987 
1988 		if (!page_cache_get_speculative(page))
1989 			goto repeat;
1990 
1991 		/* Has the page moved? */
1992 		if (unlikely(page != *slot)) {
1993 			page_cache_release(page);
1994 			goto repeat;
1995 		}
1996 
1997 		if (!PageUptodate(page) ||
1998 				PageReadahead(page) ||
1999 				PageHWPoison(page))
2000 			goto skip;
2001 		if (!trylock_page(page))
2002 			goto skip;
2003 
2004 		if (page->mapping != mapping || !PageUptodate(page))
2005 			goto unlock;
2006 
2007 		size = round_up(i_size_read(mapping->host), PAGE_CACHE_SIZE);
2008 		if (page->index >= size >> PAGE_CACHE_SHIFT)
2009 			goto unlock;
2010 
2011 		pte = vmf->pte + page->index - vmf->pgoff;
2012 		if (!pte_none(*pte))
2013 			goto unlock;
2014 
2015 		if (file->f_ra.mmap_miss > 0)
2016 			file->f_ra.mmap_miss--;
2017 		addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2018 		do_set_pte(vma, addr, page, pte, false, false);
2019 		unlock_page(page);
2020 		goto next;
2021 unlock:
2022 		unlock_page(page);
2023 skip:
2024 		page_cache_release(page);
2025 next:
2026 		if (iter.index == vmf->max_pgoff)
2027 			break;
2028 	}
2029 	rcu_read_unlock();
2030 }
2031 EXPORT_SYMBOL(filemap_map_pages);
2032 
2033 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2034 {
2035 	struct page *page = vmf->page;
2036 	struct inode *inode = file_inode(vma->vm_file);
2037 	int ret = VM_FAULT_LOCKED;
2038 
2039 	sb_start_pagefault(inode->i_sb);
2040 	file_update_time(vma->vm_file);
2041 	lock_page(page);
2042 	if (page->mapping != inode->i_mapping) {
2043 		unlock_page(page);
2044 		ret = VM_FAULT_NOPAGE;
2045 		goto out;
2046 	}
2047 	/*
2048 	 * We mark the page dirty already here so that when freeze is in
2049 	 * progress, we are guaranteed that writeback during freezing will
2050 	 * see the dirty page and writeprotect it again.
2051 	 */
2052 	set_page_dirty(page);
2053 	wait_for_stable_page(page);
2054 out:
2055 	sb_end_pagefault(inode->i_sb);
2056 	return ret;
2057 }
2058 EXPORT_SYMBOL(filemap_page_mkwrite);
2059 
2060 const struct vm_operations_struct generic_file_vm_ops = {
2061 	.fault		= filemap_fault,
2062 	.map_pages	= filemap_map_pages,
2063 	.page_mkwrite	= filemap_page_mkwrite,
2064 	.remap_pages	= generic_file_remap_pages,
2065 };
2066 
2067 /* This is used for a general mmap of a disk file */
2068 
2069 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2070 {
2071 	struct address_space *mapping = file->f_mapping;
2072 
2073 	if (!mapping->a_ops->readpage)
2074 		return -ENOEXEC;
2075 	file_accessed(file);
2076 	vma->vm_ops = &generic_file_vm_ops;
2077 	return 0;
2078 }
2079 
2080 /*
2081  * This is for filesystems which do not implement ->writepage.
2082  */
2083 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2084 {
2085 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2086 		return -EINVAL;
2087 	return generic_file_mmap(file, vma);
2088 }
2089 #else
2090 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2091 {
2092 	return -ENOSYS;
2093 }
2094 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2095 {
2096 	return -ENOSYS;
2097 }
2098 #endif /* CONFIG_MMU */
2099 
2100 EXPORT_SYMBOL(generic_file_mmap);
2101 EXPORT_SYMBOL(generic_file_readonly_mmap);
2102 
2103 static struct page *wait_on_page_read(struct page *page)
2104 {
2105 	if (!IS_ERR(page)) {
2106 		wait_on_page_locked(page);
2107 		if (!PageUptodate(page)) {
2108 			page_cache_release(page);
2109 			page = ERR_PTR(-EIO);
2110 		}
2111 	}
2112 	return page;
2113 }
2114 
2115 static struct page *__read_cache_page(struct address_space *mapping,
2116 				pgoff_t index,
2117 				int (*filler)(void *, struct page *),
2118 				void *data,
2119 				gfp_t gfp)
2120 {
2121 	struct page *page;
2122 	int err;
2123 repeat:
2124 	page = find_get_page(mapping, index);
2125 	if (!page) {
2126 		page = __page_cache_alloc(gfp | __GFP_COLD);
2127 		if (!page)
2128 			return ERR_PTR(-ENOMEM);
2129 		err = add_to_page_cache_lru(page, mapping, index, gfp);
2130 		if (unlikely(err)) {
2131 			page_cache_release(page);
2132 			if (err == -EEXIST)
2133 				goto repeat;
2134 			/* Presumably ENOMEM for radix tree node */
2135 			return ERR_PTR(err);
2136 		}
2137 		err = filler(data, page);
2138 		if (err < 0) {
2139 			page_cache_release(page);
2140 			page = ERR_PTR(err);
2141 		} else {
2142 			page = wait_on_page_read(page);
2143 		}
2144 	}
2145 	return page;
2146 }
2147 
2148 static struct page *do_read_cache_page(struct address_space *mapping,
2149 				pgoff_t index,
2150 				int (*filler)(void *, struct page *),
2151 				void *data,
2152 				gfp_t gfp)
2153 
2154 {
2155 	struct page *page;
2156 	int err;
2157 
2158 retry:
2159 	page = __read_cache_page(mapping, index, filler, data, gfp);
2160 	if (IS_ERR(page))
2161 		return page;
2162 	if (PageUptodate(page))
2163 		goto out;
2164 
2165 	lock_page(page);
2166 	if (!page->mapping) {
2167 		unlock_page(page);
2168 		page_cache_release(page);
2169 		goto retry;
2170 	}
2171 	if (PageUptodate(page)) {
2172 		unlock_page(page);
2173 		goto out;
2174 	}
2175 	err = filler(data, page);
2176 	if (err < 0) {
2177 		page_cache_release(page);
2178 		return ERR_PTR(err);
2179 	} else {
2180 		page = wait_on_page_read(page);
2181 		if (IS_ERR(page))
2182 			return page;
2183 	}
2184 out:
2185 	mark_page_accessed(page);
2186 	return page;
2187 }
2188 
2189 /**
2190  * read_cache_page - read into page cache, fill it if needed
2191  * @mapping:	the page's address_space
2192  * @index:	the page index
2193  * @filler:	function to perform the read
2194  * @data:	first arg to filler(data, page) function, often left as NULL
2195  *
2196  * Read into the page cache. If a page already exists, and PageUptodate() is
2197  * not set, try to fill the page and wait for it to become unlocked.
2198  *
2199  * If the page does not get brought uptodate, return -EIO.
2200  */
2201 struct page *read_cache_page(struct address_space *mapping,
2202 				pgoff_t index,
2203 				int (*filler)(void *, struct page *),
2204 				void *data)
2205 {
2206 	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2207 }
2208 EXPORT_SYMBOL(read_cache_page);
2209 
2210 /**
2211  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2212  * @mapping:	the page's address_space
2213  * @index:	the page index
2214  * @gfp:	the page allocator flags to use if allocating
2215  *
2216  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2217  * any new page allocations done using the specified allocation flags.
2218  *
2219  * If the page does not get brought uptodate, return -EIO.
2220  */
2221 struct page *read_cache_page_gfp(struct address_space *mapping,
2222 				pgoff_t index,
2223 				gfp_t gfp)
2224 {
2225 	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2226 
2227 	return do_read_cache_page(mapping, index, filler, NULL, gfp);
2228 }
2229 EXPORT_SYMBOL(read_cache_page_gfp);
2230 
2231 /*
2232  * Performs necessary checks before doing a write
2233  *
2234  * Can adjust writing position or amount of bytes to write.
2235  * Returns appropriate error code that caller should return or
2236  * zero in case that write should be allowed.
2237  */
2238 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2239 {
2240 	struct inode *inode = file->f_mapping->host;
2241 	unsigned long limit = rlimit(RLIMIT_FSIZE);
2242 
2243         if (unlikely(*pos < 0))
2244                 return -EINVAL;
2245 
2246 	if (!isblk) {
2247 		/* FIXME: this is for backwards compatibility with 2.4 */
2248 		if (file->f_flags & O_APPEND)
2249                         *pos = i_size_read(inode);
2250 
2251 		if (limit != RLIM_INFINITY) {
2252 			if (*pos >= limit) {
2253 				send_sig(SIGXFSZ, current, 0);
2254 				return -EFBIG;
2255 			}
2256 			if (*count > limit - (typeof(limit))*pos) {
2257 				*count = limit - (typeof(limit))*pos;
2258 			}
2259 		}
2260 	}
2261 
2262 	/*
2263 	 * LFS rule
2264 	 */
2265 	if (unlikely(*pos + *count > MAX_NON_LFS &&
2266 				!(file->f_flags & O_LARGEFILE))) {
2267 		if (*pos >= MAX_NON_LFS) {
2268 			return -EFBIG;
2269 		}
2270 		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2271 			*count = MAX_NON_LFS - (unsigned long)*pos;
2272 		}
2273 	}
2274 
2275 	/*
2276 	 * Are we about to exceed the fs block limit ?
2277 	 *
2278 	 * If we have written data it becomes a short write.  If we have
2279 	 * exceeded without writing data we send a signal and return EFBIG.
2280 	 * Linus frestrict idea will clean these up nicely..
2281 	 */
2282 	if (likely(!isblk)) {
2283 		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2284 			if (*count || *pos > inode->i_sb->s_maxbytes) {
2285 				return -EFBIG;
2286 			}
2287 			/* zero-length writes at ->s_maxbytes are OK */
2288 		}
2289 
2290 		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2291 			*count = inode->i_sb->s_maxbytes - *pos;
2292 	} else {
2293 #ifdef CONFIG_BLOCK
2294 		loff_t isize;
2295 		if (bdev_read_only(I_BDEV(inode)))
2296 			return -EPERM;
2297 		isize = i_size_read(inode);
2298 		if (*pos >= isize) {
2299 			if (*count || *pos > isize)
2300 				return -ENOSPC;
2301 		}
2302 
2303 		if (*pos + *count > isize)
2304 			*count = isize - *pos;
2305 #else
2306 		return -EPERM;
2307 #endif
2308 	}
2309 	return 0;
2310 }
2311 EXPORT_SYMBOL(generic_write_checks);
2312 
2313 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2314 				loff_t pos, unsigned len, unsigned flags,
2315 				struct page **pagep, void **fsdata)
2316 {
2317 	const struct address_space_operations *aops = mapping->a_ops;
2318 
2319 	return aops->write_begin(file, mapping, pos, len, flags,
2320 							pagep, fsdata);
2321 }
2322 EXPORT_SYMBOL(pagecache_write_begin);
2323 
2324 int pagecache_write_end(struct file *file, struct address_space *mapping,
2325 				loff_t pos, unsigned len, unsigned copied,
2326 				struct page *page, void *fsdata)
2327 {
2328 	const struct address_space_operations *aops = mapping->a_ops;
2329 
2330 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2331 }
2332 EXPORT_SYMBOL(pagecache_write_end);
2333 
2334 ssize_t
2335 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from, loff_t pos)
2336 {
2337 	struct file	*file = iocb->ki_filp;
2338 	struct address_space *mapping = file->f_mapping;
2339 	struct inode	*inode = mapping->host;
2340 	ssize_t		written;
2341 	size_t		write_len;
2342 	pgoff_t		end;
2343 	struct iov_iter data;
2344 
2345 	write_len = iov_iter_count(from);
2346 	end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2347 
2348 	written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2349 	if (written)
2350 		goto out;
2351 
2352 	/*
2353 	 * After a write we want buffered reads to be sure to go to disk to get
2354 	 * the new data.  We invalidate clean cached page from the region we're
2355 	 * about to write.  We do this *before* the write so that we can return
2356 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2357 	 */
2358 	if (mapping->nrpages) {
2359 		written = invalidate_inode_pages2_range(mapping,
2360 					pos >> PAGE_CACHE_SHIFT, end);
2361 		/*
2362 		 * If a page can not be invalidated, return 0 to fall back
2363 		 * to buffered write.
2364 		 */
2365 		if (written) {
2366 			if (written == -EBUSY)
2367 				return 0;
2368 			goto out;
2369 		}
2370 	}
2371 
2372 	data = *from;
2373 	written = mapping->a_ops->direct_IO(WRITE, iocb, &data, pos);
2374 
2375 	/*
2376 	 * Finally, try again to invalidate clean pages which might have been
2377 	 * cached by non-direct readahead, or faulted in by get_user_pages()
2378 	 * if the source of the write was an mmap'ed region of the file
2379 	 * we're writing.  Either one is a pretty crazy thing to do,
2380 	 * so we don't support it 100%.  If this invalidation
2381 	 * fails, tough, the write still worked...
2382 	 */
2383 	if (mapping->nrpages) {
2384 		invalidate_inode_pages2_range(mapping,
2385 					      pos >> PAGE_CACHE_SHIFT, end);
2386 	}
2387 
2388 	if (written > 0) {
2389 		pos += written;
2390 		iov_iter_advance(from, written);
2391 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2392 			i_size_write(inode, pos);
2393 			mark_inode_dirty(inode);
2394 		}
2395 		iocb->ki_pos = pos;
2396 	}
2397 out:
2398 	return written;
2399 }
2400 EXPORT_SYMBOL(generic_file_direct_write);
2401 
2402 /*
2403  * Find or create a page at the given pagecache position. Return the locked
2404  * page. This function is specifically for buffered writes.
2405  */
2406 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2407 					pgoff_t index, unsigned flags)
2408 {
2409 	struct page *page;
2410 	int fgp_flags = FGP_LOCK|FGP_ACCESSED|FGP_WRITE|FGP_CREAT;
2411 
2412 	if (flags & AOP_FLAG_NOFS)
2413 		fgp_flags |= FGP_NOFS;
2414 
2415 	page = pagecache_get_page(mapping, index, fgp_flags,
2416 			mapping_gfp_mask(mapping),
2417 			GFP_KERNEL);
2418 	if (page)
2419 		wait_for_stable_page(page);
2420 
2421 	return page;
2422 }
2423 EXPORT_SYMBOL(grab_cache_page_write_begin);
2424 
2425 ssize_t generic_perform_write(struct file *file,
2426 				struct iov_iter *i, loff_t pos)
2427 {
2428 	struct address_space *mapping = file->f_mapping;
2429 	const struct address_space_operations *a_ops = mapping->a_ops;
2430 	long status = 0;
2431 	ssize_t written = 0;
2432 	unsigned int flags = 0;
2433 
2434 	/*
2435 	 * Copies from kernel address space cannot fail (NFSD is a big user).
2436 	 */
2437 	if (segment_eq(get_fs(), KERNEL_DS))
2438 		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2439 
2440 	do {
2441 		struct page *page;
2442 		unsigned long offset;	/* Offset into pagecache page */
2443 		unsigned long bytes;	/* Bytes to write to page */
2444 		size_t copied;		/* Bytes copied from user */
2445 		void *fsdata;
2446 
2447 		offset = (pos & (PAGE_CACHE_SIZE - 1));
2448 		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2449 						iov_iter_count(i));
2450 
2451 again:
2452 		/*
2453 		 * Bring in the user page that we will copy from _first_.
2454 		 * Otherwise there's a nasty deadlock on copying from the
2455 		 * same page as we're writing to, without it being marked
2456 		 * up-to-date.
2457 		 *
2458 		 * Not only is this an optimisation, but it is also required
2459 		 * to check that the address is actually valid, when atomic
2460 		 * usercopies are used, below.
2461 		 */
2462 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2463 			status = -EFAULT;
2464 			break;
2465 		}
2466 
2467 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2468 						&page, &fsdata);
2469 		if (unlikely(status < 0))
2470 			break;
2471 
2472 		if (mapping_writably_mapped(mapping))
2473 			flush_dcache_page(page);
2474 
2475 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2476 		flush_dcache_page(page);
2477 
2478 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2479 						page, fsdata);
2480 		if (unlikely(status < 0))
2481 			break;
2482 		copied = status;
2483 
2484 		cond_resched();
2485 
2486 		iov_iter_advance(i, copied);
2487 		if (unlikely(copied == 0)) {
2488 			/*
2489 			 * If we were unable to copy any data at all, we must
2490 			 * fall back to a single segment length write.
2491 			 *
2492 			 * If we didn't fallback here, we could livelock
2493 			 * because not all segments in the iov can be copied at
2494 			 * once without a pagefault.
2495 			 */
2496 			bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2497 						iov_iter_single_seg_count(i));
2498 			goto again;
2499 		}
2500 		pos += copied;
2501 		written += copied;
2502 
2503 		balance_dirty_pages_ratelimited(mapping);
2504 		if (fatal_signal_pending(current)) {
2505 			status = -EINTR;
2506 			break;
2507 		}
2508 	} while (iov_iter_count(i));
2509 
2510 	return written ? written : status;
2511 }
2512 EXPORT_SYMBOL(generic_perform_write);
2513 
2514 /**
2515  * __generic_file_write_iter - write data to a file
2516  * @iocb:	IO state structure (file, offset, etc.)
2517  * @from:	iov_iter with data to write
2518  *
2519  * This function does all the work needed for actually writing data to a
2520  * file. It does all basic checks, removes SUID from the file, updates
2521  * modification times and calls proper subroutines depending on whether we
2522  * do direct IO or a standard buffered write.
2523  *
2524  * It expects i_mutex to be grabbed unless we work on a block device or similar
2525  * object which does not need locking at all.
2526  *
2527  * This function does *not* take care of syncing data in case of O_SYNC write.
2528  * A caller has to handle it. This is mainly due to the fact that we want to
2529  * avoid syncing under i_mutex.
2530  */
2531 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2532 {
2533 	struct file *file = iocb->ki_filp;
2534 	struct address_space * mapping = file->f_mapping;
2535 	struct inode 	*inode = mapping->host;
2536 	loff_t		pos = iocb->ki_pos;
2537 	ssize_t		written = 0;
2538 	ssize_t		err;
2539 	ssize_t		status;
2540 	size_t		count = iov_iter_count(from);
2541 
2542 	/* We can write back this queue in page reclaim */
2543 	current->backing_dev_info = mapping->backing_dev_info;
2544 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2545 	if (err)
2546 		goto out;
2547 
2548 	if (count == 0)
2549 		goto out;
2550 
2551 	iov_iter_truncate(from, count);
2552 
2553 	err = file_remove_suid(file);
2554 	if (err)
2555 		goto out;
2556 
2557 	err = file_update_time(file);
2558 	if (err)
2559 		goto out;
2560 
2561 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2562 	if (unlikely(file->f_flags & O_DIRECT)) {
2563 		loff_t endbyte;
2564 
2565 		written = generic_file_direct_write(iocb, from, pos);
2566 		if (written < 0 || written == count)
2567 			goto out;
2568 
2569 		/*
2570 		 * direct-io write to a hole: fall through to buffered I/O
2571 		 * for completing the rest of the request.
2572 		 */
2573 		pos += written;
2574 		count -= written;
2575 
2576 		status = generic_perform_write(file, from, pos);
2577 		/*
2578 		 * If generic_perform_write() returned a synchronous error
2579 		 * then we want to return the number of bytes which were
2580 		 * direct-written, or the error code if that was zero.  Note
2581 		 * that this differs from normal direct-io semantics, which
2582 		 * will return -EFOO even if some bytes were written.
2583 		 */
2584 		if (unlikely(status < 0) && !written) {
2585 			err = status;
2586 			goto out;
2587 		}
2588 		iocb->ki_pos = pos + status;
2589 		/*
2590 		 * We need to ensure that the page cache pages are written to
2591 		 * disk and invalidated to preserve the expected O_DIRECT
2592 		 * semantics.
2593 		 */
2594 		endbyte = pos + status - 1;
2595 		err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2596 		if (err == 0) {
2597 			written += status;
2598 			invalidate_mapping_pages(mapping,
2599 						 pos >> PAGE_CACHE_SHIFT,
2600 						 endbyte >> PAGE_CACHE_SHIFT);
2601 		} else {
2602 			/*
2603 			 * We don't know how much we wrote, so just return
2604 			 * the number of bytes which were direct-written
2605 			 */
2606 		}
2607 	} else {
2608 		written = generic_perform_write(file, from, pos);
2609 		if (likely(written >= 0))
2610 			iocb->ki_pos = pos + written;
2611 	}
2612 out:
2613 	current->backing_dev_info = NULL;
2614 	return written ? written : err;
2615 }
2616 EXPORT_SYMBOL(__generic_file_write_iter);
2617 
2618 /**
2619  * generic_file_write_iter - write data to a file
2620  * @iocb:	IO state structure
2621  * @from:	iov_iter with data to write
2622  *
2623  * This is a wrapper around __generic_file_write_iter() to be used by most
2624  * filesystems. It takes care of syncing the file in case of O_SYNC file
2625  * and acquires i_mutex as needed.
2626  */
2627 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2628 {
2629 	struct file *file = iocb->ki_filp;
2630 	struct inode *inode = file->f_mapping->host;
2631 	ssize_t ret;
2632 
2633 	mutex_lock(&inode->i_mutex);
2634 	ret = __generic_file_write_iter(iocb, from);
2635 	mutex_unlock(&inode->i_mutex);
2636 
2637 	if (ret > 0) {
2638 		ssize_t err;
2639 
2640 		err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2641 		if (err < 0)
2642 			ret = err;
2643 	}
2644 	return ret;
2645 }
2646 EXPORT_SYMBOL(generic_file_write_iter);
2647 
2648 /**
2649  * try_to_release_page() - release old fs-specific metadata on a page
2650  *
2651  * @page: the page which the kernel is trying to free
2652  * @gfp_mask: memory allocation flags (and I/O mode)
2653  *
2654  * The address_space is to try to release any data against the page
2655  * (presumably at page->private).  If the release was successful, return `1'.
2656  * Otherwise return zero.
2657  *
2658  * This may also be called if PG_fscache is set on a page, indicating that the
2659  * page is known to the local caching routines.
2660  *
2661  * The @gfp_mask argument specifies whether I/O may be performed to release
2662  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2663  *
2664  */
2665 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2666 {
2667 	struct address_space * const mapping = page->mapping;
2668 
2669 	BUG_ON(!PageLocked(page));
2670 	if (PageWriteback(page))
2671 		return 0;
2672 
2673 	if (mapping && mapping->a_ops->releasepage)
2674 		return mapping->a_ops->releasepage(page, gfp_mask);
2675 	return try_to_free_buffers(page);
2676 }
2677 
2678 EXPORT_SYMBOL(try_to_release_page);
2679