xref: /openbmc/linux/mm/filemap.c (revision 943126417891372d56aa3fe46295cbf53db31370)
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/sched/signal.h>
17 #include <linux/uaccess.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/gfp.h>
21 #include <linux/mm.h>
22 #include <linux/swap.h>
23 #include <linux/mman.h>
24 #include <linux/pagemap.h>
25 #include <linux/file.h>
26 #include <linux/uio.h>
27 #include <linux/hash.h>
28 #include <linux/writeback.h>
29 #include <linux/backing-dev.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/security.h>
33 #include <linux/cpuset.h>
34 #include <linux/hugetlb.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include <linux/shmem_fs.h>
38 #include <linux/rmap.h>
39 #include <linux/delayacct.h>
40 #include <linux/psi.h>
41 #include "internal.h"
42 
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/filemap.h>
45 
46 /*
47  * FIXME: remove all knowledge of the buffer layer from the core VM
48  */
49 #include <linux/buffer_head.h> /* for try_to_free_buffers */
50 
51 #include <asm/mman.h>
52 
53 /*
54  * Shared mappings implemented 30.11.1994. It's not fully working yet,
55  * though.
56  *
57  * Shared mappings now work. 15.8.1995  Bruno.
58  *
59  * finished 'unifying' the page and buffer cache and SMP-threaded the
60  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
61  *
62  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
63  */
64 
65 /*
66  * Lock ordering:
67  *
68  *  ->i_mmap_rwsem		(truncate_pagecache)
69  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
70  *      ->swap_lock		(exclusive_swap_page, others)
71  *        ->i_pages lock
72  *
73  *  ->i_mutex
74  *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
75  *
76  *  ->mmap_sem
77  *    ->i_mmap_rwsem
78  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
79  *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
80  *
81  *  ->mmap_sem
82  *    ->lock_page		(access_process_vm)
83  *
84  *  ->i_mutex			(generic_perform_write)
85  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
86  *
87  *  bdi->wb.list_lock
88  *    sb_lock			(fs/fs-writeback.c)
89  *    ->i_pages lock		(__sync_single_inode)
90  *
91  *  ->i_mmap_rwsem
92  *    ->anon_vma.lock		(vma_adjust)
93  *
94  *  ->anon_vma.lock
95  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
96  *
97  *  ->page_table_lock or pte_lock
98  *    ->swap_lock		(try_to_unmap_one)
99  *    ->private_lock		(try_to_unmap_one)
100  *    ->i_pages lock		(try_to_unmap_one)
101  *    ->zone_lru_lock(zone)	(follow_page->mark_page_accessed)
102  *    ->zone_lru_lock(zone)	(check_pte_range->isolate_lru_page)
103  *    ->private_lock		(page_remove_rmap->set_page_dirty)
104  *    ->i_pages lock		(page_remove_rmap->set_page_dirty)
105  *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
106  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
107  *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
108  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
109  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
110  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
111  *
112  * ->i_mmap_rwsem
113  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
114  */
115 
116 static void page_cache_delete(struct address_space *mapping,
117 				   struct page *page, void *shadow)
118 {
119 	XA_STATE(xas, &mapping->i_pages, page->index);
120 	unsigned int nr = 1;
121 
122 	mapping_set_update(&xas, mapping);
123 
124 	/* hugetlb pages are represented by a single entry in the xarray */
125 	if (!PageHuge(page)) {
126 		xas_set_order(&xas, page->index, compound_order(page));
127 		nr = 1U << compound_order(page);
128 	}
129 
130 	VM_BUG_ON_PAGE(!PageLocked(page), page);
131 	VM_BUG_ON_PAGE(PageTail(page), page);
132 	VM_BUG_ON_PAGE(nr != 1 && shadow, page);
133 
134 	xas_store(&xas, shadow);
135 	xas_init_marks(&xas);
136 
137 	page->mapping = NULL;
138 	/* Leave page->index set: truncation lookup relies upon it */
139 
140 	if (shadow) {
141 		mapping->nrexceptional += nr;
142 		/*
143 		 * Make sure the nrexceptional update is committed before
144 		 * the nrpages update so that final truncate racing
145 		 * with reclaim does not see both counters 0 at the
146 		 * same time and miss a shadow entry.
147 		 */
148 		smp_wmb();
149 	}
150 	mapping->nrpages -= nr;
151 }
152 
153 static void unaccount_page_cache_page(struct address_space *mapping,
154 				      struct page *page)
155 {
156 	int nr;
157 
158 	/*
159 	 * if we're uptodate, flush out into the cleancache, otherwise
160 	 * invalidate any existing cleancache entries.  We can't leave
161 	 * stale data around in the cleancache once our page is gone
162 	 */
163 	if (PageUptodate(page) && PageMappedToDisk(page))
164 		cleancache_put_page(page);
165 	else
166 		cleancache_invalidate_page(mapping, page);
167 
168 	VM_BUG_ON_PAGE(PageTail(page), page);
169 	VM_BUG_ON_PAGE(page_mapped(page), page);
170 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
171 		int mapcount;
172 
173 		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
174 			 current->comm, page_to_pfn(page));
175 		dump_page(page, "still mapped when deleted");
176 		dump_stack();
177 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
178 
179 		mapcount = page_mapcount(page);
180 		if (mapping_exiting(mapping) &&
181 		    page_count(page) >= mapcount + 2) {
182 			/*
183 			 * All vmas have already been torn down, so it's
184 			 * a good bet that actually the page is unmapped,
185 			 * and we'd prefer not to leak it: if we're wrong,
186 			 * some other bad page check should catch it later.
187 			 */
188 			page_mapcount_reset(page);
189 			page_ref_sub(page, mapcount);
190 		}
191 	}
192 
193 	/* hugetlb pages do not participate in page cache accounting. */
194 	if (PageHuge(page))
195 		return;
196 
197 	nr = hpage_nr_pages(page);
198 
199 	__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
200 	if (PageSwapBacked(page)) {
201 		__mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
202 		if (PageTransHuge(page))
203 			__dec_node_page_state(page, NR_SHMEM_THPS);
204 	} else {
205 		VM_BUG_ON_PAGE(PageTransHuge(page), page);
206 	}
207 
208 	/*
209 	 * At this point page must be either written or cleaned by
210 	 * truncate.  Dirty page here signals a bug and loss of
211 	 * unwritten data.
212 	 *
213 	 * This fixes dirty accounting after removing the page entirely
214 	 * but leaves PageDirty set: it has no effect for truncated
215 	 * page and anyway will be cleared before returning page into
216 	 * buddy allocator.
217 	 */
218 	if (WARN_ON_ONCE(PageDirty(page)))
219 		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
220 }
221 
222 /*
223  * Delete a page from the page cache and free it. Caller has to make
224  * sure the page is locked and that nobody else uses it - or that usage
225  * is safe.  The caller must hold the i_pages lock.
226  */
227 void __delete_from_page_cache(struct page *page, void *shadow)
228 {
229 	struct address_space *mapping = page->mapping;
230 
231 	trace_mm_filemap_delete_from_page_cache(page);
232 
233 	unaccount_page_cache_page(mapping, page);
234 	page_cache_delete(mapping, page, shadow);
235 }
236 
237 static void page_cache_free_page(struct address_space *mapping,
238 				struct page *page)
239 {
240 	void (*freepage)(struct page *);
241 
242 	freepage = mapping->a_ops->freepage;
243 	if (freepage)
244 		freepage(page);
245 
246 	if (PageTransHuge(page) && !PageHuge(page)) {
247 		page_ref_sub(page, HPAGE_PMD_NR);
248 		VM_BUG_ON_PAGE(page_count(page) <= 0, page);
249 	} else {
250 		put_page(page);
251 	}
252 }
253 
254 /**
255  * delete_from_page_cache - delete page from page cache
256  * @page: the page which the kernel is trying to remove from page cache
257  *
258  * This must be called only on pages that have been verified to be in the page
259  * cache and locked.  It will never put the page into the free list, the caller
260  * has a reference on the page.
261  */
262 void delete_from_page_cache(struct page *page)
263 {
264 	struct address_space *mapping = page_mapping(page);
265 	unsigned long flags;
266 
267 	BUG_ON(!PageLocked(page));
268 	xa_lock_irqsave(&mapping->i_pages, flags);
269 	__delete_from_page_cache(page, NULL);
270 	xa_unlock_irqrestore(&mapping->i_pages, flags);
271 
272 	page_cache_free_page(mapping, page);
273 }
274 EXPORT_SYMBOL(delete_from_page_cache);
275 
276 /*
277  * page_cache_delete_batch - delete several pages from page cache
278  * @mapping: the mapping to which pages belong
279  * @pvec: pagevec with pages to delete
280  *
281  * The function walks over mapping->i_pages and removes pages passed in @pvec
282  * from the mapping. The function expects @pvec to be sorted by page index.
283  * It tolerates holes in @pvec (mapping entries at those indices are not
284  * modified). The function expects only THP head pages to be present in the
285  * @pvec and takes care to delete all corresponding tail pages from the
286  * mapping as well.
287  *
288  * The function expects the i_pages lock to be held.
289  */
290 static void page_cache_delete_batch(struct address_space *mapping,
291 			     struct pagevec *pvec)
292 {
293 	XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
294 	int total_pages = 0;
295 	int i = 0, tail_pages = 0;
296 	struct page *page;
297 
298 	mapping_set_update(&xas, mapping);
299 	xas_for_each(&xas, page, ULONG_MAX) {
300 		if (i >= pagevec_count(pvec) && !tail_pages)
301 			break;
302 		if (xa_is_value(page))
303 			continue;
304 		if (!tail_pages) {
305 			/*
306 			 * Some page got inserted in our range? Skip it. We
307 			 * have our pages locked so they are protected from
308 			 * being removed.
309 			 */
310 			if (page != pvec->pages[i]) {
311 				VM_BUG_ON_PAGE(page->index >
312 						pvec->pages[i]->index, page);
313 				continue;
314 			}
315 			WARN_ON_ONCE(!PageLocked(page));
316 			if (PageTransHuge(page) && !PageHuge(page))
317 				tail_pages = HPAGE_PMD_NR - 1;
318 			page->mapping = NULL;
319 			/*
320 			 * Leave page->index set: truncation lookup relies
321 			 * upon it
322 			 */
323 			i++;
324 		} else {
325 			VM_BUG_ON_PAGE(page->index + HPAGE_PMD_NR - tail_pages
326 					!= pvec->pages[i]->index, page);
327 			tail_pages--;
328 		}
329 		xas_store(&xas, NULL);
330 		total_pages++;
331 	}
332 	mapping->nrpages -= total_pages;
333 }
334 
335 void delete_from_page_cache_batch(struct address_space *mapping,
336 				  struct pagevec *pvec)
337 {
338 	int i;
339 	unsigned long flags;
340 
341 	if (!pagevec_count(pvec))
342 		return;
343 
344 	xa_lock_irqsave(&mapping->i_pages, flags);
345 	for (i = 0; i < pagevec_count(pvec); i++) {
346 		trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
347 
348 		unaccount_page_cache_page(mapping, pvec->pages[i]);
349 	}
350 	page_cache_delete_batch(mapping, pvec);
351 	xa_unlock_irqrestore(&mapping->i_pages, flags);
352 
353 	for (i = 0; i < pagevec_count(pvec); i++)
354 		page_cache_free_page(mapping, pvec->pages[i]);
355 }
356 
357 int filemap_check_errors(struct address_space *mapping)
358 {
359 	int ret = 0;
360 	/* Check for outstanding write errors */
361 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
362 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
363 		ret = -ENOSPC;
364 	if (test_bit(AS_EIO, &mapping->flags) &&
365 	    test_and_clear_bit(AS_EIO, &mapping->flags))
366 		ret = -EIO;
367 	return ret;
368 }
369 EXPORT_SYMBOL(filemap_check_errors);
370 
371 static int filemap_check_and_keep_errors(struct address_space *mapping)
372 {
373 	/* Check for outstanding write errors */
374 	if (test_bit(AS_EIO, &mapping->flags))
375 		return -EIO;
376 	if (test_bit(AS_ENOSPC, &mapping->flags))
377 		return -ENOSPC;
378 	return 0;
379 }
380 
381 /**
382  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
383  * @mapping:	address space structure to write
384  * @start:	offset in bytes where the range starts
385  * @end:	offset in bytes where the range ends (inclusive)
386  * @sync_mode:	enable synchronous operation
387  *
388  * Start writeback against all of a mapping's dirty pages that lie
389  * within the byte offsets <start, end> inclusive.
390  *
391  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
392  * opposed to a regular memory cleansing writeback.  The difference between
393  * these two operations is that if a dirty page/buffer is encountered, it must
394  * be waited upon, and not just skipped over.
395  */
396 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
397 				loff_t end, int sync_mode)
398 {
399 	int ret;
400 	struct writeback_control wbc = {
401 		.sync_mode = sync_mode,
402 		.nr_to_write = LONG_MAX,
403 		.range_start = start,
404 		.range_end = end,
405 	};
406 
407 	if (!mapping_cap_writeback_dirty(mapping))
408 		return 0;
409 
410 	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
411 	ret = do_writepages(mapping, &wbc);
412 	wbc_detach_inode(&wbc);
413 	return ret;
414 }
415 
416 static inline int __filemap_fdatawrite(struct address_space *mapping,
417 	int sync_mode)
418 {
419 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
420 }
421 
422 int filemap_fdatawrite(struct address_space *mapping)
423 {
424 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
425 }
426 EXPORT_SYMBOL(filemap_fdatawrite);
427 
428 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
429 				loff_t end)
430 {
431 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
432 }
433 EXPORT_SYMBOL(filemap_fdatawrite_range);
434 
435 /**
436  * filemap_flush - mostly a non-blocking flush
437  * @mapping:	target address_space
438  *
439  * This is a mostly non-blocking flush.  Not suitable for data-integrity
440  * purposes - I/O may not be started against all dirty pages.
441  */
442 int filemap_flush(struct address_space *mapping)
443 {
444 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
445 }
446 EXPORT_SYMBOL(filemap_flush);
447 
448 /**
449  * filemap_range_has_page - check if a page exists in range.
450  * @mapping:           address space within which to check
451  * @start_byte:        offset in bytes where the range starts
452  * @end_byte:          offset in bytes where the range ends (inclusive)
453  *
454  * Find at least one page in the range supplied, usually used to check if
455  * direct writing in this range will trigger a writeback.
456  */
457 bool filemap_range_has_page(struct address_space *mapping,
458 			   loff_t start_byte, loff_t end_byte)
459 {
460 	struct page *page;
461 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
462 	pgoff_t max = end_byte >> PAGE_SHIFT;
463 
464 	if (end_byte < start_byte)
465 		return false;
466 
467 	rcu_read_lock();
468 	for (;;) {
469 		page = xas_find(&xas, max);
470 		if (xas_retry(&xas, page))
471 			continue;
472 		/* Shadow entries don't count */
473 		if (xa_is_value(page))
474 			continue;
475 		/*
476 		 * We don't need to try to pin this page; we're about to
477 		 * release the RCU lock anyway.  It is enough to know that
478 		 * there was a page here recently.
479 		 */
480 		break;
481 	}
482 	rcu_read_unlock();
483 
484 	return page != NULL;
485 }
486 EXPORT_SYMBOL(filemap_range_has_page);
487 
488 static void __filemap_fdatawait_range(struct address_space *mapping,
489 				     loff_t start_byte, loff_t end_byte)
490 {
491 	pgoff_t index = start_byte >> PAGE_SHIFT;
492 	pgoff_t end = end_byte >> PAGE_SHIFT;
493 	struct pagevec pvec;
494 	int nr_pages;
495 
496 	if (end_byte < start_byte)
497 		return;
498 
499 	pagevec_init(&pvec);
500 	while (index <= end) {
501 		unsigned i;
502 
503 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
504 				end, PAGECACHE_TAG_WRITEBACK);
505 		if (!nr_pages)
506 			break;
507 
508 		for (i = 0; i < nr_pages; i++) {
509 			struct page *page = pvec.pages[i];
510 
511 			wait_on_page_writeback(page);
512 			ClearPageError(page);
513 		}
514 		pagevec_release(&pvec);
515 		cond_resched();
516 	}
517 }
518 
519 /**
520  * filemap_fdatawait_range - wait for writeback to complete
521  * @mapping:		address space structure to wait for
522  * @start_byte:		offset in bytes where the range starts
523  * @end_byte:		offset in bytes where the range ends (inclusive)
524  *
525  * Walk the list of under-writeback pages of the given address space
526  * in the given range and wait for all of them.  Check error status of
527  * the address space and return it.
528  *
529  * Since the error status of the address space is cleared by this function,
530  * callers are responsible for checking the return value and handling and/or
531  * reporting the error.
532  */
533 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
534 			    loff_t end_byte)
535 {
536 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
537 	return filemap_check_errors(mapping);
538 }
539 EXPORT_SYMBOL(filemap_fdatawait_range);
540 
541 /**
542  * file_fdatawait_range - wait for writeback to complete
543  * @file:		file pointing to address space structure to wait for
544  * @start_byte:		offset in bytes where the range starts
545  * @end_byte:		offset in bytes where the range ends (inclusive)
546  *
547  * Walk the list of under-writeback pages of the address space that file
548  * refers to, in the given range and wait for all of them.  Check error
549  * status of the address space vs. the file->f_wb_err cursor and return it.
550  *
551  * Since the error status of the file is advanced by this function,
552  * callers are responsible for checking the return value and handling and/or
553  * reporting the error.
554  */
555 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
556 {
557 	struct address_space *mapping = file->f_mapping;
558 
559 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
560 	return file_check_and_advance_wb_err(file);
561 }
562 EXPORT_SYMBOL(file_fdatawait_range);
563 
564 /**
565  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
566  * @mapping: address space structure to wait for
567  *
568  * Walk the list of under-writeback pages of the given address space
569  * and wait for all of them.  Unlike filemap_fdatawait(), this function
570  * does not clear error status of the address space.
571  *
572  * Use this function if callers don't handle errors themselves.  Expected
573  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
574  * fsfreeze(8)
575  */
576 int filemap_fdatawait_keep_errors(struct address_space *mapping)
577 {
578 	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
579 	return filemap_check_and_keep_errors(mapping);
580 }
581 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
582 
583 static bool mapping_needs_writeback(struct address_space *mapping)
584 {
585 	return (!dax_mapping(mapping) && mapping->nrpages) ||
586 	    (dax_mapping(mapping) && mapping->nrexceptional);
587 }
588 
589 int filemap_write_and_wait(struct address_space *mapping)
590 {
591 	int err = 0;
592 
593 	if (mapping_needs_writeback(mapping)) {
594 		err = filemap_fdatawrite(mapping);
595 		/*
596 		 * Even if the above returned error, the pages may be
597 		 * written partially (e.g. -ENOSPC), so we wait for it.
598 		 * But the -EIO is special case, it may indicate the worst
599 		 * thing (e.g. bug) happened, so we avoid waiting for it.
600 		 */
601 		if (err != -EIO) {
602 			int err2 = filemap_fdatawait(mapping);
603 			if (!err)
604 				err = err2;
605 		} else {
606 			/* Clear any previously stored errors */
607 			filemap_check_errors(mapping);
608 		}
609 	} else {
610 		err = filemap_check_errors(mapping);
611 	}
612 	return err;
613 }
614 EXPORT_SYMBOL(filemap_write_and_wait);
615 
616 /**
617  * filemap_write_and_wait_range - write out & wait on a file range
618  * @mapping:	the address_space for the pages
619  * @lstart:	offset in bytes where the range starts
620  * @lend:	offset in bytes where the range ends (inclusive)
621  *
622  * Write out and wait upon file offsets lstart->lend, inclusive.
623  *
624  * Note that @lend is inclusive (describes the last byte to be written) so
625  * that this function can be used to write to the very end-of-file (end = -1).
626  */
627 int filemap_write_and_wait_range(struct address_space *mapping,
628 				 loff_t lstart, loff_t lend)
629 {
630 	int err = 0;
631 
632 	if (mapping_needs_writeback(mapping)) {
633 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
634 						 WB_SYNC_ALL);
635 		/* See comment of filemap_write_and_wait() */
636 		if (err != -EIO) {
637 			int err2 = filemap_fdatawait_range(mapping,
638 						lstart, lend);
639 			if (!err)
640 				err = err2;
641 		} else {
642 			/* Clear any previously stored errors */
643 			filemap_check_errors(mapping);
644 		}
645 	} else {
646 		err = filemap_check_errors(mapping);
647 	}
648 	return err;
649 }
650 EXPORT_SYMBOL(filemap_write_and_wait_range);
651 
652 void __filemap_set_wb_err(struct address_space *mapping, int err)
653 {
654 	errseq_t eseq = errseq_set(&mapping->wb_err, err);
655 
656 	trace_filemap_set_wb_err(mapping, eseq);
657 }
658 EXPORT_SYMBOL(__filemap_set_wb_err);
659 
660 /**
661  * file_check_and_advance_wb_err - report wb error (if any) that was previously
662  * 				   and advance wb_err to current one
663  * @file: struct file on which the error is being reported
664  *
665  * When userland calls fsync (or something like nfsd does the equivalent), we
666  * want to report any writeback errors that occurred since the last fsync (or
667  * since the file was opened if there haven't been any).
668  *
669  * Grab the wb_err from the mapping. If it matches what we have in the file,
670  * then just quickly return 0. The file is all caught up.
671  *
672  * If it doesn't match, then take the mapping value, set the "seen" flag in
673  * it and try to swap it into place. If it works, or another task beat us
674  * to it with the new value, then update the f_wb_err and return the error
675  * portion. The error at this point must be reported via proper channels
676  * (a'la fsync, or NFS COMMIT operation, etc.).
677  *
678  * While we handle mapping->wb_err with atomic operations, the f_wb_err
679  * value is protected by the f_lock since we must ensure that it reflects
680  * the latest value swapped in for this file descriptor.
681  */
682 int file_check_and_advance_wb_err(struct file *file)
683 {
684 	int err = 0;
685 	errseq_t old = READ_ONCE(file->f_wb_err);
686 	struct address_space *mapping = file->f_mapping;
687 
688 	/* Locklessly handle the common case where nothing has changed */
689 	if (errseq_check(&mapping->wb_err, old)) {
690 		/* Something changed, must use slow path */
691 		spin_lock(&file->f_lock);
692 		old = file->f_wb_err;
693 		err = errseq_check_and_advance(&mapping->wb_err,
694 						&file->f_wb_err);
695 		trace_file_check_and_advance_wb_err(file, old);
696 		spin_unlock(&file->f_lock);
697 	}
698 
699 	/*
700 	 * We're mostly using this function as a drop in replacement for
701 	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
702 	 * that the legacy code would have had on these flags.
703 	 */
704 	clear_bit(AS_EIO, &mapping->flags);
705 	clear_bit(AS_ENOSPC, &mapping->flags);
706 	return err;
707 }
708 EXPORT_SYMBOL(file_check_and_advance_wb_err);
709 
710 /**
711  * file_write_and_wait_range - write out & wait on a file range
712  * @file:	file pointing to address_space with pages
713  * @lstart:	offset in bytes where the range starts
714  * @lend:	offset in bytes where the range ends (inclusive)
715  *
716  * Write out and wait upon file offsets lstart->lend, inclusive.
717  *
718  * Note that @lend is inclusive (describes the last byte to be written) so
719  * that this function can be used to write to the very end-of-file (end = -1).
720  *
721  * After writing out and waiting on the data, we check and advance the
722  * f_wb_err cursor to the latest value, and return any errors detected there.
723  */
724 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
725 {
726 	int err = 0, err2;
727 	struct address_space *mapping = file->f_mapping;
728 
729 	if (mapping_needs_writeback(mapping)) {
730 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
731 						 WB_SYNC_ALL);
732 		/* See comment of filemap_write_and_wait() */
733 		if (err != -EIO)
734 			__filemap_fdatawait_range(mapping, lstart, lend);
735 	}
736 	err2 = file_check_and_advance_wb_err(file);
737 	if (!err)
738 		err = err2;
739 	return err;
740 }
741 EXPORT_SYMBOL(file_write_and_wait_range);
742 
743 /**
744  * replace_page_cache_page - replace a pagecache page with a new one
745  * @old:	page to be replaced
746  * @new:	page to replace with
747  * @gfp_mask:	allocation mode
748  *
749  * This function replaces a page in the pagecache with a new one.  On
750  * success it acquires the pagecache reference for the new page and
751  * drops it for the old page.  Both the old and new pages must be
752  * locked.  This function does not add the new page to the LRU, the
753  * caller must do that.
754  *
755  * The remove + add is atomic.  This function cannot fail.
756  */
757 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
758 {
759 	struct address_space *mapping = old->mapping;
760 	void (*freepage)(struct page *) = mapping->a_ops->freepage;
761 	pgoff_t offset = old->index;
762 	XA_STATE(xas, &mapping->i_pages, offset);
763 	unsigned long flags;
764 
765 	VM_BUG_ON_PAGE(!PageLocked(old), old);
766 	VM_BUG_ON_PAGE(!PageLocked(new), new);
767 	VM_BUG_ON_PAGE(new->mapping, new);
768 
769 	get_page(new);
770 	new->mapping = mapping;
771 	new->index = offset;
772 
773 	xas_lock_irqsave(&xas, flags);
774 	xas_store(&xas, new);
775 
776 	old->mapping = NULL;
777 	/* hugetlb pages do not participate in page cache accounting. */
778 	if (!PageHuge(old))
779 		__dec_node_page_state(new, NR_FILE_PAGES);
780 	if (!PageHuge(new))
781 		__inc_node_page_state(new, NR_FILE_PAGES);
782 	if (PageSwapBacked(old))
783 		__dec_node_page_state(new, NR_SHMEM);
784 	if (PageSwapBacked(new))
785 		__inc_node_page_state(new, NR_SHMEM);
786 	xas_unlock_irqrestore(&xas, flags);
787 	mem_cgroup_migrate(old, new);
788 	if (freepage)
789 		freepage(old);
790 	put_page(old);
791 
792 	return 0;
793 }
794 EXPORT_SYMBOL_GPL(replace_page_cache_page);
795 
796 static int __add_to_page_cache_locked(struct page *page,
797 				      struct address_space *mapping,
798 				      pgoff_t offset, gfp_t gfp_mask,
799 				      void **shadowp)
800 {
801 	XA_STATE(xas, &mapping->i_pages, offset);
802 	int huge = PageHuge(page);
803 	struct mem_cgroup *memcg;
804 	int error;
805 	void *old;
806 
807 	VM_BUG_ON_PAGE(!PageLocked(page), page);
808 	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
809 	mapping_set_update(&xas, mapping);
810 
811 	if (!huge) {
812 		error = mem_cgroup_try_charge(page, current->mm,
813 					      gfp_mask, &memcg, false);
814 		if (error)
815 			return error;
816 	}
817 
818 	get_page(page);
819 	page->mapping = mapping;
820 	page->index = offset;
821 
822 	do {
823 		xas_lock_irq(&xas);
824 		old = xas_load(&xas);
825 		if (old && !xa_is_value(old))
826 			xas_set_err(&xas, -EEXIST);
827 		xas_store(&xas, page);
828 		if (xas_error(&xas))
829 			goto unlock;
830 
831 		if (xa_is_value(old)) {
832 			mapping->nrexceptional--;
833 			if (shadowp)
834 				*shadowp = old;
835 		}
836 		mapping->nrpages++;
837 
838 		/* hugetlb pages do not participate in page cache accounting */
839 		if (!huge)
840 			__inc_node_page_state(page, NR_FILE_PAGES);
841 unlock:
842 		xas_unlock_irq(&xas);
843 	} while (xas_nomem(&xas, gfp_mask & GFP_RECLAIM_MASK));
844 
845 	if (xas_error(&xas))
846 		goto error;
847 
848 	if (!huge)
849 		mem_cgroup_commit_charge(page, memcg, false, false);
850 	trace_mm_filemap_add_to_page_cache(page);
851 	return 0;
852 error:
853 	page->mapping = NULL;
854 	/* Leave page->index set: truncation relies upon it */
855 	if (!huge)
856 		mem_cgroup_cancel_charge(page, memcg, false);
857 	put_page(page);
858 	return xas_error(&xas);
859 }
860 
861 /**
862  * add_to_page_cache_locked - add a locked page to the pagecache
863  * @page:	page to add
864  * @mapping:	the page's address_space
865  * @offset:	page index
866  * @gfp_mask:	page allocation mode
867  *
868  * This function is used to add a page to the pagecache. It must be locked.
869  * This function does not add the page to the LRU.  The caller must do that.
870  */
871 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
872 		pgoff_t offset, gfp_t gfp_mask)
873 {
874 	return __add_to_page_cache_locked(page, mapping, offset,
875 					  gfp_mask, NULL);
876 }
877 EXPORT_SYMBOL(add_to_page_cache_locked);
878 
879 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
880 				pgoff_t offset, gfp_t gfp_mask)
881 {
882 	void *shadow = NULL;
883 	int ret;
884 
885 	__SetPageLocked(page);
886 	ret = __add_to_page_cache_locked(page, mapping, offset,
887 					 gfp_mask, &shadow);
888 	if (unlikely(ret))
889 		__ClearPageLocked(page);
890 	else {
891 		/*
892 		 * The page might have been evicted from cache only
893 		 * recently, in which case it should be activated like
894 		 * any other repeatedly accessed page.
895 		 * The exception is pages getting rewritten; evicting other
896 		 * data from the working set, only to cache data that will
897 		 * get overwritten with something else, is a waste of memory.
898 		 */
899 		WARN_ON_ONCE(PageActive(page));
900 		if (!(gfp_mask & __GFP_WRITE) && shadow)
901 			workingset_refault(page, shadow);
902 		lru_cache_add(page);
903 	}
904 	return ret;
905 }
906 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
907 
908 #ifdef CONFIG_NUMA
909 struct page *__page_cache_alloc(gfp_t gfp)
910 {
911 	int n;
912 	struct page *page;
913 
914 	if (cpuset_do_page_mem_spread()) {
915 		unsigned int cpuset_mems_cookie;
916 		do {
917 			cpuset_mems_cookie = read_mems_allowed_begin();
918 			n = cpuset_mem_spread_node();
919 			page = __alloc_pages_node(n, gfp, 0);
920 		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
921 
922 		return page;
923 	}
924 	return alloc_pages(gfp, 0);
925 }
926 EXPORT_SYMBOL(__page_cache_alloc);
927 #endif
928 
929 /*
930  * In order to wait for pages to become available there must be
931  * waitqueues associated with pages. By using a hash table of
932  * waitqueues where the bucket discipline is to maintain all
933  * waiters on the same queue and wake all when any of the pages
934  * become available, and for the woken contexts to check to be
935  * sure the appropriate page became available, this saves space
936  * at a cost of "thundering herd" phenomena during rare hash
937  * collisions.
938  */
939 #define PAGE_WAIT_TABLE_BITS 8
940 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
941 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
942 
943 static wait_queue_head_t *page_waitqueue(struct page *page)
944 {
945 	return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
946 }
947 
948 void __init pagecache_init(void)
949 {
950 	int i;
951 
952 	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
953 		init_waitqueue_head(&page_wait_table[i]);
954 
955 	page_writeback_init();
956 }
957 
958 /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
959 struct wait_page_key {
960 	struct page *page;
961 	int bit_nr;
962 	int page_match;
963 };
964 
965 struct wait_page_queue {
966 	struct page *page;
967 	int bit_nr;
968 	wait_queue_entry_t wait;
969 };
970 
971 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
972 {
973 	struct wait_page_key *key = arg;
974 	struct wait_page_queue *wait_page
975 		= container_of(wait, struct wait_page_queue, wait);
976 
977 	if (wait_page->page != key->page)
978 	       return 0;
979 	key->page_match = 1;
980 
981 	if (wait_page->bit_nr != key->bit_nr)
982 		return 0;
983 
984 	/* Stop walking if it's locked */
985 	if (test_bit(key->bit_nr, &key->page->flags))
986 		return -1;
987 
988 	return autoremove_wake_function(wait, mode, sync, key);
989 }
990 
991 static void wake_up_page_bit(struct page *page, int bit_nr)
992 {
993 	wait_queue_head_t *q = page_waitqueue(page);
994 	struct wait_page_key key;
995 	unsigned long flags;
996 	wait_queue_entry_t bookmark;
997 
998 	key.page = page;
999 	key.bit_nr = bit_nr;
1000 	key.page_match = 0;
1001 
1002 	bookmark.flags = 0;
1003 	bookmark.private = NULL;
1004 	bookmark.func = NULL;
1005 	INIT_LIST_HEAD(&bookmark.entry);
1006 
1007 	spin_lock_irqsave(&q->lock, flags);
1008 	__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1009 
1010 	while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1011 		/*
1012 		 * Take a breather from holding the lock,
1013 		 * allow pages that finish wake up asynchronously
1014 		 * to acquire the lock and remove themselves
1015 		 * from wait queue
1016 		 */
1017 		spin_unlock_irqrestore(&q->lock, flags);
1018 		cpu_relax();
1019 		spin_lock_irqsave(&q->lock, flags);
1020 		__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1021 	}
1022 
1023 	/*
1024 	 * It is possible for other pages to have collided on the waitqueue
1025 	 * hash, so in that case check for a page match. That prevents a long-
1026 	 * term waiter
1027 	 *
1028 	 * It is still possible to miss a case here, when we woke page waiters
1029 	 * and removed them from the waitqueue, but there are still other
1030 	 * page waiters.
1031 	 */
1032 	if (!waitqueue_active(q) || !key.page_match) {
1033 		ClearPageWaiters(page);
1034 		/*
1035 		 * It's possible to miss clearing Waiters here, when we woke
1036 		 * our page waiters, but the hashed waitqueue has waiters for
1037 		 * other pages on it.
1038 		 *
1039 		 * That's okay, it's a rare case. The next waker will clear it.
1040 		 */
1041 	}
1042 	spin_unlock_irqrestore(&q->lock, flags);
1043 }
1044 
1045 static void wake_up_page(struct page *page, int bit)
1046 {
1047 	if (!PageWaiters(page))
1048 		return;
1049 	wake_up_page_bit(page, bit);
1050 }
1051 
1052 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1053 		struct page *page, int bit_nr, int state, bool lock)
1054 {
1055 	struct wait_page_queue wait_page;
1056 	wait_queue_entry_t *wait = &wait_page.wait;
1057 	bool thrashing = false;
1058 	unsigned long pflags;
1059 	int ret = 0;
1060 
1061 	if (bit_nr == PG_locked &&
1062 	    !PageUptodate(page) && PageWorkingset(page)) {
1063 		if (!PageSwapBacked(page))
1064 			delayacct_thrashing_start();
1065 		psi_memstall_enter(&pflags);
1066 		thrashing = true;
1067 	}
1068 
1069 	init_wait(wait);
1070 	wait->flags = lock ? WQ_FLAG_EXCLUSIVE : 0;
1071 	wait->func = wake_page_function;
1072 	wait_page.page = page;
1073 	wait_page.bit_nr = bit_nr;
1074 
1075 	for (;;) {
1076 		spin_lock_irq(&q->lock);
1077 
1078 		if (likely(list_empty(&wait->entry))) {
1079 			__add_wait_queue_entry_tail(q, wait);
1080 			SetPageWaiters(page);
1081 		}
1082 
1083 		set_current_state(state);
1084 
1085 		spin_unlock_irq(&q->lock);
1086 
1087 		if (likely(test_bit(bit_nr, &page->flags))) {
1088 			io_schedule();
1089 		}
1090 
1091 		if (lock) {
1092 			if (!test_and_set_bit_lock(bit_nr, &page->flags))
1093 				break;
1094 		} else {
1095 			if (!test_bit(bit_nr, &page->flags))
1096 				break;
1097 		}
1098 
1099 		if (unlikely(signal_pending_state(state, current))) {
1100 			ret = -EINTR;
1101 			break;
1102 		}
1103 	}
1104 
1105 	finish_wait(q, wait);
1106 
1107 	if (thrashing) {
1108 		if (!PageSwapBacked(page))
1109 			delayacct_thrashing_end();
1110 		psi_memstall_leave(&pflags);
1111 	}
1112 
1113 	/*
1114 	 * A signal could leave PageWaiters set. Clearing it here if
1115 	 * !waitqueue_active would be possible (by open-coding finish_wait),
1116 	 * but still fail to catch it in the case of wait hash collision. We
1117 	 * already can fail to clear wait hash collision cases, so don't
1118 	 * bother with signals either.
1119 	 */
1120 
1121 	return ret;
1122 }
1123 
1124 void wait_on_page_bit(struct page *page, int bit_nr)
1125 {
1126 	wait_queue_head_t *q = page_waitqueue(page);
1127 	wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false);
1128 }
1129 EXPORT_SYMBOL(wait_on_page_bit);
1130 
1131 int wait_on_page_bit_killable(struct page *page, int bit_nr)
1132 {
1133 	wait_queue_head_t *q = page_waitqueue(page);
1134 	return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false);
1135 }
1136 EXPORT_SYMBOL(wait_on_page_bit_killable);
1137 
1138 /**
1139  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1140  * @page: Page defining the wait queue of interest
1141  * @waiter: Waiter to add to the queue
1142  *
1143  * Add an arbitrary @waiter to the wait queue for the nominated @page.
1144  */
1145 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1146 {
1147 	wait_queue_head_t *q = page_waitqueue(page);
1148 	unsigned long flags;
1149 
1150 	spin_lock_irqsave(&q->lock, flags);
1151 	__add_wait_queue_entry_tail(q, waiter);
1152 	SetPageWaiters(page);
1153 	spin_unlock_irqrestore(&q->lock, flags);
1154 }
1155 EXPORT_SYMBOL_GPL(add_page_wait_queue);
1156 
1157 #ifndef clear_bit_unlock_is_negative_byte
1158 
1159 /*
1160  * PG_waiters is the high bit in the same byte as PG_lock.
1161  *
1162  * On x86 (and on many other architectures), we can clear PG_lock and
1163  * test the sign bit at the same time. But if the architecture does
1164  * not support that special operation, we just do this all by hand
1165  * instead.
1166  *
1167  * The read of PG_waiters has to be after (or concurrently with) PG_locked
1168  * being cleared, but a memory barrier should be unneccssary since it is
1169  * in the same byte as PG_locked.
1170  */
1171 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1172 {
1173 	clear_bit_unlock(nr, mem);
1174 	/* smp_mb__after_atomic(); */
1175 	return test_bit(PG_waiters, mem);
1176 }
1177 
1178 #endif
1179 
1180 /**
1181  * unlock_page - unlock a locked page
1182  * @page: the page
1183  *
1184  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1185  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1186  * mechanism between PageLocked pages and PageWriteback pages is shared.
1187  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1188  *
1189  * Note that this depends on PG_waiters being the sign bit in the byte
1190  * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1191  * clear the PG_locked bit and test PG_waiters at the same time fairly
1192  * portably (architectures that do LL/SC can test any bit, while x86 can
1193  * test the sign bit).
1194  */
1195 void unlock_page(struct page *page)
1196 {
1197 	BUILD_BUG_ON(PG_waiters != 7);
1198 	page = compound_head(page);
1199 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1200 	if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1201 		wake_up_page_bit(page, PG_locked);
1202 }
1203 EXPORT_SYMBOL(unlock_page);
1204 
1205 /**
1206  * end_page_writeback - end writeback against a page
1207  * @page: the page
1208  */
1209 void end_page_writeback(struct page *page)
1210 {
1211 	/*
1212 	 * TestClearPageReclaim could be used here but it is an atomic
1213 	 * operation and overkill in this particular case. Failing to
1214 	 * shuffle a page marked for immediate reclaim is too mild to
1215 	 * justify taking an atomic operation penalty at the end of
1216 	 * ever page writeback.
1217 	 */
1218 	if (PageReclaim(page)) {
1219 		ClearPageReclaim(page);
1220 		rotate_reclaimable_page(page);
1221 	}
1222 
1223 	if (!test_clear_page_writeback(page))
1224 		BUG();
1225 
1226 	smp_mb__after_atomic();
1227 	wake_up_page(page, PG_writeback);
1228 }
1229 EXPORT_SYMBOL(end_page_writeback);
1230 
1231 /*
1232  * After completing I/O on a page, call this routine to update the page
1233  * flags appropriately
1234  */
1235 void page_endio(struct page *page, bool is_write, int err)
1236 {
1237 	if (!is_write) {
1238 		if (!err) {
1239 			SetPageUptodate(page);
1240 		} else {
1241 			ClearPageUptodate(page);
1242 			SetPageError(page);
1243 		}
1244 		unlock_page(page);
1245 	} else {
1246 		if (err) {
1247 			struct address_space *mapping;
1248 
1249 			SetPageError(page);
1250 			mapping = page_mapping(page);
1251 			if (mapping)
1252 				mapping_set_error(mapping, err);
1253 		}
1254 		end_page_writeback(page);
1255 	}
1256 }
1257 EXPORT_SYMBOL_GPL(page_endio);
1258 
1259 /**
1260  * __lock_page - get a lock on the page, assuming we need to sleep to get it
1261  * @__page: the page to lock
1262  */
1263 void __lock_page(struct page *__page)
1264 {
1265 	struct page *page = compound_head(__page);
1266 	wait_queue_head_t *q = page_waitqueue(page);
1267 	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true);
1268 }
1269 EXPORT_SYMBOL(__lock_page);
1270 
1271 int __lock_page_killable(struct page *__page)
1272 {
1273 	struct page *page = compound_head(__page);
1274 	wait_queue_head_t *q = page_waitqueue(page);
1275 	return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true);
1276 }
1277 EXPORT_SYMBOL_GPL(__lock_page_killable);
1278 
1279 /*
1280  * Return values:
1281  * 1 - page is locked; mmap_sem is still held.
1282  * 0 - page is not locked.
1283  *     mmap_sem has been released (up_read()), unless flags had both
1284  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1285  *     which case mmap_sem is still held.
1286  *
1287  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1288  * with the page locked and the mmap_sem unperturbed.
1289  */
1290 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1291 			 unsigned int flags)
1292 {
1293 	if (flags & FAULT_FLAG_ALLOW_RETRY) {
1294 		/*
1295 		 * CAUTION! In this case, mmap_sem is not released
1296 		 * even though return 0.
1297 		 */
1298 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1299 			return 0;
1300 
1301 		up_read(&mm->mmap_sem);
1302 		if (flags & FAULT_FLAG_KILLABLE)
1303 			wait_on_page_locked_killable(page);
1304 		else
1305 			wait_on_page_locked(page);
1306 		return 0;
1307 	} else {
1308 		if (flags & FAULT_FLAG_KILLABLE) {
1309 			int ret;
1310 
1311 			ret = __lock_page_killable(page);
1312 			if (ret) {
1313 				up_read(&mm->mmap_sem);
1314 				return 0;
1315 			}
1316 		} else
1317 			__lock_page(page);
1318 		return 1;
1319 	}
1320 }
1321 
1322 /**
1323  * page_cache_next_miss() - Find the next gap in the page cache.
1324  * @mapping: Mapping.
1325  * @index: Index.
1326  * @max_scan: Maximum range to search.
1327  *
1328  * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1329  * gap with the lowest index.
1330  *
1331  * This function may be called under the rcu_read_lock.  However, this will
1332  * not atomically search a snapshot of the cache at a single point in time.
1333  * For example, if a gap is created at index 5, then subsequently a gap is
1334  * created at index 10, page_cache_next_miss covering both indices may
1335  * return 10 if called under the rcu_read_lock.
1336  *
1337  * Return: The index of the gap if found, otherwise an index outside the
1338  * range specified (in which case 'return - index >= max_scan' will be true).
1339  * In the rare case of index wrap-around, 0 will be returned.
1340  */
1341 pgoff_t page_cache_next_miss(struct address_space *mapping,
1342 			     pgoff_t index, unsigned long max_scan)
1343 {
1344 	XA_STATE(xas, &mapping->i_pages, index);
1345 
1346 	while (max_scan--) {
1347 		void *entry = xas_next(&xas);
1348 		if (!entry || xa_is_value(entry))
1349 			break;
1350 		if (xas.xa_index == 0)
1351 			break;
1352 	}
1353 
1354 	return xas.xa_index;
1355 }
1356 EXPORT_SYMBOL(page_cache_next_miss);
1357 
1358 /**
1359  * page_cache_prev_miss() - Find the next gap in the page cache.
1360  * @mapping: Mapping.
1361  * @index: Index.
1362  * @max_scan: Maximum range to search.
1363  *
1364  * Search the range [max(index - max_scan + 1, 0), index] for the
1365  * gap with the highest index.
1366  *
1367  * This function may be called under the rcu_read_lock.  However, this will
1368  * not atomically search a snapshot of the cache at a single point in time.
1369  * For example, if a gap is created at index 10, then subsequently a gap is
1370  * created at index 5, page_cache_prev_miss() covering both indices may
1371  * return 5 if called under the rcu_read_lock.
1372  *
1373  * Return: The index of the gap if found, otherwise an index outside the
1374  * range specified (in which case 'index - return >= max_scan' will be true).
1375  * In the rare case of wrap-around, ULONG_MAX will be returned.
1376  */
1377 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1378 			     pgoff_t index, unsigned long max_scan)
1379 {
1380 	XA_STATE(xas, &mapping->i_pages, index);
1381 
1382 	while (max_scan--) {
1383 		void *entry = xas_prev(&xas);
1384 		if (!entry || xa_is_value(entry))
1385 			break;
1386 		if (xas.xa_index == ULONG_MAX)
1387 			break;
1388 	}
1389 
1390 	return xas.xa_index;
1391 }
1392 EXPORT_SYMBOL(page_cache_prev_miss);
1393 
1394 /**
1395  * find_get_entry - find and get a page cache entry
1396  * @mapping: the address_space to search
1397  * @offset: the page cache index
1398  *
1399  * Looks up the page cache slot at @mapping & @offset.  If there is a
1400  * page cache page, it is returned with an increased refcount.
1401  *
1402  * If the slot holds a shadow entry of a previously evicted page, or a
1403  * swap entry from shmem/tmpfs, it is returned.
1404  *
1405  * Otherwise, %NULL is returned.
1406  */
1407 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1408 {
1409 	XA_STATE(xas, &mapping->i_pages, offset);
1410 	struct page *head, *page;
1411 
1412 	rcu_read_lock();
1413 repeat:
1414 	xas_reset(&xas);
1415 	page = xas_load(&xas);
1416 	if (xas_retry(&xas, page))
1417 		goto repeat;
1418 	/*
1419 	 * A shadow entry of a recently evicted page, or a swap entry from
1420 	 * shmem/tmpfs.  Return it without attempting to raise page count.
1421 	 */
1422 	if (!page || xa_is_value(page))
1423 		goto out;
1424 
1425 	head = compound_head(page);
1426 	if (!page_cache_get_speculative(head))
1427 		goto repeat;
1428 
1429 	/* The page was split under us? */
1430 	if (compound_head(page) != head) {
1431 		put_page(head);
1432 		goto repeat;
1433 	}
1434 
1435 	/*
1436 	 * Has the page moved?
1437 	 * This is part of the lockless pagecache protocol. See
1438 	 * include/linux/pagemap.h for details.
1439 	 */
1440 	if (unlikely(page != xas_reload(&xas))) {
1441 		put_page(head);
1442 		goto repeat;
1443 	}
1444 out:
1445 	rcu_read_unlock();
1446 
1447 	return page;
1448 }
1449 EXPORT_SYMBOL(find_get_entry);
1450 
1451 /**
1452  * find_lock_entry - locate, pin and lock a page cache entry
1453  * @mapping: the address_space to search
1454  * @offset: the page cache index
1455  *
1456  * Looks up the page cache slot at @mapping & @offset.  If there is a
1457  * page cache page, it is returned locked and with an increased
1458  * refcount.
1459  *
1460  * If the slot holds a shadow entry of a previously evicted page, or a
1461  * swap entry from shmem/tmpfs, it is returned.
1462  *
1463  * Otherwise, %NULL is returned.
1464  *
1465  * find_lock_entry() may sleep.
1466  */
1467 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1468 {
1469 	struct page *page;
1470 
1471 repeat:
1472 	page = find_get_entry(mapping, offset);
1473 	if (page && !xa_is_value(page)) {
1474 		lock_page(page);
1475 		/* Has the page been truncated? */
1476 		if (unlikely(page_mapping(page) != mapping)) {
1477 			unlock_page(page);
1478 			put_page(page);
1479 			goto repeat;
1480 		}
1481 		VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1482 	}
1483 	return page;
1484 }
1485 EXPORT_SYMBOL(find_lock_entry);
1486 
1487 /**
1488  * pagecache_get_page - find and get a page reference
1489  * @mapping: the address_space to search
1490  * @offset: the page index
1491  * @fgp_flags: PCG flags
1492  * @gfp_mask: gfp mask to use for the page cache data page allocation
1493  *
1494  * Looks up the page cache slot at @mapping & @offset.
1495  *
1496  * PCG flags modify how the page is returned.
1497  *
1498  * @fgp_flags can be:
1499  *
1500  * - FGP_ACCESSED: the page will be marked accessed
1501  * - FGP_LOCK: Page is return locked
1502  * - FGP_CREAT: If page is not present then a new page is allocated using
1503  *   @gfp_mask and added to the page cache and the VM's LRU
1504  *   list. The page is returned locked and with an increased
1505  *   refcount. Otherwise, NULL is returned.
1506  *
1507  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1508  * if the GFP flags specified for FGP_CREAT are atomic.
1509  *
1510  * If there is a page cache page, it is returned with an increased refcount.
1511  */
1512 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1513 	int fgp_flags, gfp_t gfp_mask)
1514 {
1515 	struct page *page;
1516 
1517 repeat:
1518 	page = find_get_entry(mapping, offset);
1519 	if (xa_is_value(page))
1520 		page = NULL;
1521 	if (!page)
1522 		goto no_page;
1523 
1524 	if (fgp_flags & FGP_LOCK) {
1525 		if (fgp_flags & FGP_NOWAIT) {
1526 			if (!trylock_page(page)) {
1527 				put_page(page);
1528 				return NULL;
1529 			}
1530 		} else {
1531 			lock_page(page);
1532 		}
1533 
1534 		/* Has the page been truncated? */
1535 		if (unlikely(page->mapping != mapping)) {
1536 			unlock_page(page);
1537 			put_page(page);
1538 			goto repeat;
1539 		}
1540 		VM_BUG_ON_PAGE(page->index != offset, page);
1541 	}
1542 
1543 	if (page && (fgp_flags & FGP_ACCESSED))
1544 		mark_page_accessed(page);
1545 
1546 no_page:
1547 	if (!page && (fgp_flags & FGP_CREAT)) {
1548 		int err;
1549 		if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1550 			gfp_mask |= __GFP_WRITE;
1551 		if (fgp_flags & FGP_NOFS)
1552 			gfp_mask &= ~__GFP_FS;
1553 
1554 		page = __page_cache_alloc(gfp_mask);
1555 		if (!page)
1556 			return NULL;
1557 
1558 		if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1559 			fgp_flags |= FGP_LOCK;
1560 
1561 		/* Init accessed so avoid atomic mark_page_accessed later */
1562 		if (fgp_flags & FGP_ACCESSED)
1563 			__SetPageReferenced(page);
1564 
1565 		err = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
1566 		if (unlikely(err)) {
1567 			put_page(page);
1568 			page = NULL;
1569 			if (err == -EEXIST)
1570 				goto repeat;
1571 		}
1572 	}
1573 
1574 	return page;
1575 }
1576 EXPORT_SYMBOL(pagecache_get_page);
1577 
1578 /**
1579  * find_get_entries - gang pagecache lookup
1580  * @mapping:	The address_space to search
1581  * @start:	The starting page cache index
1582  * @nr_entries:	The maximum number of entries
1583  * @entries:	Where the resulting entries are placed
1584  * @indices:	The cache indices corresponding to the entries in @entries
1585  *
1586  * find_get_entries() will search for and return a group of up to
1587  * @nr_entries entries in the mapping.  The entries are placed at
1588  * @entries.  find_get_entries() takes a reference against any actual
1589  * pages it returns.
1590  *
1591  * The search returns a group of mapping-contiguous page cache entries
1592  * with ascending indexes.  There may be holes in the indices due to
1593  * not-present pages.
1594  *
1595  * Any shadow entries of evicted pages, or swap entries from
1596  * shmem/tmpfs, are included in the returned array.
1597  *
1598  * find_get_entries() returns the number of pages and shadow entries
1599  * which were found.
1600  */
1601 unsigned find_get_entries(struct address_space *mapping,
1602 			  pgoff_t start, unsigned int nr_entries,
1603 			  struct page **entries, pgoff_t *indices)
1604 {
1605 	XA_STATE(xas, &mapping->i_pages, start);
1606 	struct page *page;
1607 	unsigned int ret = 0;
1608 
1609 	if (!nr_entries)
1610 		return 0;
1611 
1612 	rcu_read_lock();
1613 	xas_for_each(&xas, page, ULONG_MAX) {
1614 		struct page *head;
1615 		if (xas_retry(&xas, page))
1616 			continue;
1617 		/*
1618 		 * A shadow entry of a recently evicted page, a swap
1619 		 * entry from shmem/tmpfs or a DAX entry.  Return it
1620 		 * without attempting to raise page count.
1621 		 */
1622 		if (xa_is_value(page))
1623 			goto export;
1624 
1625 		head = compound_head(page);
1626 		if (!page_cache_get_speculative(head))
1627 			goto retry;
1628 
1629 		/* The page was split under us? */
1630 		if (compound_head(page) != head)
1631 			goto put_page;
1632 
1633 		/* Has the page moved? */
1634 		if (unlikely(page != xas_reload(&xas)))
1635 			goto put_page;
1636 
1637 export:
1638 		indices[ret] = xas.xa_index;
1639 		entries[ret] = page;
1640 		if (++ret == nr_entries)
1641 			break;
1642 		continue;
1643 put_page:
1644 		put_page(head);
1645 retry:
1646 		xas_reset(&xas);
1647 	}
1648 	rcu_read_unlock();
1649 	return ret;
1650 }
1651 
1652 /**
1653  * find_get_pages_range - gang pagecache lookup
1654  * @mapping:	The address_space to search
1655  * @start:	The starting page index
1656  * @end:	The final page index (inclusive)
1657  * @nr_pages:	The maximum number of pages
1658  * @pages:	Where the resulting pages are placed
1659  *
1660  * find_get_pages_range() will search for and return a group of up to @nr_pages
1661  * pages in the mapping starting at index @start and up to index @end
1662  * (inclusive).  The pages are placed at @pages.  find_get_pages_range() takes
1663  * a reference against the returned pages.
1664  *
1665  * The search returns a group of mapping-contiguous pages with ascending
1666  * indexes.  There may be holes in the indices due to not-present pages.
1667  * We also update @start to index the next page for the traversal.
1668  *
1669  * find_get_pages_range() returns the number of pages which were found. If this
1670  * number is smaller than @nr_pages, the end of specified range has been
1671  * reached.
1672  */
1673 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1674 			      pgoff_t end, unsigned int nr_pages,
1675 			      struct page **pages)
1676 {
1677 	XA_STATE(xas, &mapping->i_pages, *start);
1678 	struct page *page;
1679 	unsigned ret = 0;
1680 
1681 	if (unlikely(!nr_pages))
1682 		return 0;
1683 
1684 	rcu_read_lock();
1685 	xas_for_each(&xas, page, end) {
1686 		struct page *head;
1687 		if (xas_retry(&xas, page))
1688 			continue;
1689 		/* Skip over shadow, swap and DAX entries */
1690 		if (xa_is_value(page))
1691 			continue;
1692 
1693 		head = compound_head(page);
1694 		if (!page_cache_get_speculative(head))
1695 			goto retry;
1696 
1697 		/* The page was split under us? */
1698 		if (compound_head(page) != head)
1699 			goto put_page;
1700 
1701 		/* Has the page moved? */
1702 		if (unlikely(page != xas_reload(&xas)))
1703 			goto put_page;
1704 
1705 		pages[ret] = page;
1706 		if (++ret == nr_pages) {
1707 			*start = page->index + 1;
1708 			goto out;
1709 		}
1710 		continue;
1711 put_page:
1712 		put_page(head);
1713 retry:
1714 		xas_reset(&xas);
1715 	}
1716 
1717 	/*
1718 	 * We come here when there is no page beyond @end. We take care to not
1719 	 * overflow the index @start as it confuses some of the callers. This
1720 	 * breaks the iteration when there is a page at index -1 but that is
1721 	 * already broken anyway.
1722 	 */
1723 	if (end == (pgoff_t)-1)
1724 		*start = (pgoff_t)-1;
1725 	else
1726 		*start = end + 1;
1727 out:
1728 	rcu_read_unlock();
1729 
1730 	return ret;
1731 }
1732 
1733 /**
1734  * find_get_pages_contig - gang contiguous pagecache lookup
1735  * @mapping:	The address_space to search
1736  * @index:	The starting page index
1737  * @nr_pages:	The maximum number of pages
1738  * @pages:	Where the resulting pages are placed
1739  *
1740  * find_get_pages_contig() works exactly like find_get_pages(), except
1741  * that the returned number of pages are guaranteed to be contiguous.
1742  *
1743  * find_get_pages_contig() returns the number of pages which were found.
1744  */
1745 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1746 			       unsigned int nr_pages, struct page **pages)
1747 {
1748 	XA_STATE(xas, &mapping->i_pages, index);
1749 	struct page *page;
1750 	unsigned int ret = 0;
1751 
1752 	if (unlikely(!nr_pages))
1753 		return 0;
1754 
1755 	rcu_read_lock();
1756 	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1757 		struct page *head;
1758 		if (xas_retry(&xas, page))
1759 			continue;
1760 		/*
1761 		 * If the entry has been swapped out, we can stop looking.
1762 		 * No current caller is looking for DAX entries.
1763 		 */
1764 		if (xa_is_value(page))
1765 			break;
1766 
1767 		head = compound_head(page);
1768 		if (!page_cache_get_speculative(head))
1769 			goto retry;
1770 
1771 		/* The page was split under us? */
1772 		if (compound_head(page) != head)
1773 			goto put_page;
1774 
1775 		/* Has the page moved? */
1776 		if (unlikely(page != xas_reload(&xas)))
1777 			goto put_page;
1778 
1779 		/*
1780 		 * must check mapping and index after taking the ref.
1781 		 * otherwise we can get both false positives and false
1782 		 * negatives, which is just confusing to the caller.
1783 		 */
1784 		if (!page->mapping || page_to_pgoff(page) != xas.xa_index) {
1785 			put_page(page);
1786 			break;
1787 		}
1788 
1789 		pages[ret] = page;
1790 		if (++ret == nr_pages)
1791 			break;
1792 		continue;
1793 put_page:
1794 		put_page(head);
1795 retry:
1796 		xas_reset(&xas);
1797 	}
1798 	rcu_read_unlock();
1799 	return ret;
1800 }
1801 EXPORT_SYMBOL(find_get_pages_contig);
1802 
1803 /**
1804  * find_get_pages_range_tag - find and return pages in given range matching @tag
1805  * @mapping:	the address_space to search
1806  * @index:	the starting page index
1807  * @end:	The final page index (inclusive)
1808  * @tag:	the tag index
1809  * @nr_pages:	the maximum number of pages
1810  * @pages:	where the resulting pages are placed
1811  *
1812  * Like find_get_pages, except we only return pages which are tagged with
1813  * @tag.   We update @index to index the next page for the traversal.
1814  */
1815 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
1816 			pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
1817 			struct page **pages)
1818 {
1819 	XA_STATE(xas, &mapping->i_pages, *index);
1820 	struct page *page;
1821 	unsigned ret = 0;
1822 
1823 	if (unlikely(!nr_pages))
1824 		return 0;
1825 
1826 	rcu_read_lock();
1827 	xas_for_each_marked(&xas, page, end, tag) {
1828 		struct page *head;
1829 		if (xas_retry(&xas, page))
1830 			continue;
1831 		/*
1832 		 * Shadow entries should never be tagged, but this iteration
1833 		 * is lockless so there is a window for page reclaim to evict
1834 		 * a page we saw tagged.  Skip over it.
1835 		 */
1836 		if (xa_is_value(page))
1837 			continue;
1838 
1839 		head = compound_head(page);
1840 		if (!page_cache_get_speculative(head))
1841 			goto retry;
1842 
1843 		/* The page was split under us? */
1844 		if (compound_head(page) != head)
1845 			goto put_page;
1846 
1847 		/* Has the page moved? */
1848 		if (unlikely(page != xas_reload(&xas)))
1849 			goto put_page;
1850 
1851 		pages[ret] = page;
1852 		if (++ret == nr_pages) {
1853 			*index = page->index + 1;
1854 			goto out;
1855 		}
1856 		continue;
1857 put_page:
1858 		put_page(head);
1859 retry:
1860 		xas_reset(&xas);
1861 	}
1862 
1863 	/*
1864 	 * We come here when we got to @end. We take care to not overflow the
1865 	 * index @index as it confuses some of the callers. This breaks the
1866 	 * iteration when there is a page at index -1 but that is already
1867 	 * broken anyway.
1868 	 */
1869 	if (end == (pgoff_t)-1)
1870 		*index = (pgoff_t)-1;
1871 	else
1872 		*index = end + 1;
1873 out:
1874 	rcu_read_unlock();
1875 
1876 	return ret;
1877 }
1878 EXPORT_SYMBOL(find_get_pages_range_tag);
1879 
1880 /**
1881  * find_get_entries_tag - find and return entries that match @tag
1882  * @mapping:	the address_space to search
1883  * @start:	the starting page cache index
1884  * @tag:	the tag index
1885  * @nr_entries:	the maximum number of entries
1886  * @entries:	where the resulting entries are placed
1887  * @indices:	the cache indices corresponding to the entries in @entries
1888  *
1889  * Like find_get_entries, except we only return entries which are tagged with
1890  * @tag.
1891  */
1892 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1893 			xa_mark_t tag, unsigned int nr_entries,
1894 			struct page **entries, pgoff_t *indices)
1895 {
1896 	XA_STATE(xas, &mapping->i_pages, start);
1897 	struct page *page;
1898 	unsigned int ret = 0;
1899 
1900 	if (!nr_entries)
1901 		return 0;
1902 
1903 	rcu_read_lock();
1904 	xas_for_each_marked(&xas, page, ULONG_MAX, tag) {
1905 		struct page *head;
1906 		if (xas_retry(&xas, page))
1907 			continue;
1908 		/*
1909 		 * A shadow entry of a recently evicted page, a swap
1910 		 * entry from shmem/tmpfs or a DAX entry.  Return it
1911 		 * without attempting to raise page count.
1912 		 */
1913 		if (xa_is_value(page))
1914 			goto export;
1915 
1916 		head = compound_head(page);
1917 		if (!page_cache_get_speculative(head))
1918 			goto retry;
1919 
1920 		/* The page was split under us? */
1921 		if (compound_head(page) != head)
1922 			goto put_page;
1923 
1924 		/* Has the page moved? */
1925 		if (unlikely(page != xas_reload(&xas)))
1926 			goto put_page;
1927 
1928 export:
1929 		indices[ret] = xas.xa_index;
1930 		entries[ret] = page;
1931 		if (++ret == nr_entries)
1932 			break;
1933 		continue;
1934 put_page:
1935 		put_page(head);
1936 retry:
1937 		xas_reset(&xas);
1938 	}
1939 	rcu_read_unlock();
1940 	return ret;
1941 }
1942 EXPORT_SYMBOL(find_get_entries_tag);
1943 
1944 /*
1945  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1946  * a _large_ part of the i/o request. Imagine the worst scenario:
1947  *
1948  *      ---R__________________________________________B__________
1949  *         ^ reading here                             ^ bad block(assume 4k)
1950  *
1951  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1952  * => failing the whole request => read(R) => read(R+1) =>
1953  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1954  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1955  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1956  *
1957  * It is going insane. Fix it by quickly scaling down the readahead size.
1958  */
1959 static void shrink_readahead_size_eio(struct file *filp,
1960 					struct file_ra_state *ra)
1961 {
1962 	ra->ra_pages /= 4;
1963 }
1964 
1965 /**
1966  * generic_file_buffered_read - generic file read routine
1967  * @iocb:	the iocb to read
1968  * @iter:	data destination
1969  * @written:	already copied
1970  *
1971  * This is a generic file read routine, and uses the
1972  * mapping->a_ops->readpage() function for the actual low-level stuff.
1973  *
1974  * This is really ugly. But the goto's actually try to clarify some
1975  * of the logic when it comes to error handling etc.
1976  */
1977 static ssize_t generic_file_buffered_read(struct kiocb *iocb,
1978 		struct iov_iter *iter, ssize_t written)
1979 {
1980 	struct file *filp = iocb->ki_filp;
1981 	struct address_space *mapping = filp->f_mapping;
1982 	struct inode *inode = mapping->host;
1983 	struct file_ra_state *ra = &filp->f_ra;
1984 	loff_t *ppos = &iocb->ki_pos;
1985 	pgoff_t index;
1986 	pgoff_t last_index;
1987 	pgoff_t prev_index;
1988 	unsigned long offset;      /* offset into pagecache page */
1989 	unsigned int prev_offset;
1990 	int error = 0;
1991 
1992 	if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
1993 		return 0;
1994 	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
1995 
1996 	index = *ppos >> PAGE_SHIFT;
1997 	prev_index = ra->prev_pos >> PAGE_SHIFT;
1998 	prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1999 	last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
2000 	offset = *ppos & ~PAGE_MASK;
2001 
2002 	for (;;) {
2003 		struct page *page;
2004 		pgoff_t end_index;
2005 		loff_t isize;
2006 		unsigned long nr, ret;
2007 
2008 		cond_resched();
2009 find_page:
2010 		if (fatal_signal_pending(current)) {
2011 			error = -EINTR;
2012 			goto out;
2013 		}
2014 
2015 		page = find_get_page(mapping, index);
2016 		if (!page) {
2017 			if (iocb->ki_flags & IOCB_NOWAIT)
2018 				goto would_block;
2019 			page_cache_sync_readahead(mapping,
2020 					ra, filp,
2021 					index, last_index - index);
2022 			page = find_get_page(mapping, index);
2023 			if (unlikely(page == NULL))
2024 				goto no_cached_page;
2025 		}
2026 		if (PageReadahead(page)) {
2027 			page_cache_async_readahead(mapping,
2028 					ra, filp, page,
2029 					index, last_index - index);
2030 		}
2031 		if (!PageUptodate(page)) {
2032 			if (iocb->ki_flags & IOCB_NOWAIT) {
2033 				put_page(page);
2034 				goto would_block;
2035 			}
2036 
2037 			/*
2038 			 * See comment in do_read_cache_page on why
2039 			 * wait_on_page_locked is used to avoid unnecessarily
2040 			 * serialisations and why it's safe.
2041 			 */
2042 			error = wait_on_page_locked_killable(page);
2043 			if (unlikely(error))
2044 				goto readpage_error;
2045 			if (PageUptodate(page))
2046 				goto page_ok;
2047 
2048 			if (inode->i_blkbits == PAGE_SHIFT ||
2049 					!mapping->a_ops->is_partially_uptodate)
2050 				goto page_not_up_to_date;
2051 			/* pipes can't handle partially uptodate pages */
2052 			if (unlikely(iov_iter_is_pipe(iter)))
2053 				goto page_not_up_to_date;
2054 			if (!trylock_page(page))
2055 				goto page_not_up_to_date;
2056 			/* Did it get truncated before we got the lock? */
2057 			if (!page->mapping)
2058 				goto page_not_up_to_date_locked;
2059 			if (!mapping->a_ops->is_partially_uptodate(page,
2060 							offset, iter->count))
2061 				goto page_not_up_to_date_locked;
2062 			unlock_page(page);
2063 		}
2064 page_ok:
2065 		/*
2066 		 * i_size must be checked after we know the page is Uptodate.
2067 		 *
2068 		 * Checking i_size after the check allows us to calculate
2069 		 * the correct value for "nr", which means the zero-filled
2070 		 * part of the page is not copied back to userspace (unless
2071 		 * another truncate extends the file - this is desired though).
2072 		 */
2073 
2074 		isize = i_size_read(inode);
2075 		end_index = (isize - 1) >> PAGE_SHIFT;
2076 		if (unlikely(!isize || index > end_index)) {
2077 			put_page(page);
2078 			goto out;
2079 		}
2080 
2081 		/* nr is the maximum number of bytes to copy from this page */
2082 		nr = PAGE_SIZE;
2083 		if (index == end_index) {
2084 			nr = ((isize - 1) & ~PAGE_MASK) + 1;
2085 			if (nr <= offset) {
2086 				put_page(page);
2087 				goto out;
2088 			}
2089 		}
2090 		nr = nr - offset;
2091 
2092 		/* If users can be writing to this page using arbitrary
2093 		 * virtual addresses, take care about potential aliasing
2094 		 * before reading the page on the kernel side.
2095 		 */
2096 		if (mapping_writably_mapped(mapping))
2097 			flush_dcache_page(page);
2098 
2099 		/*
2100 		 * When a sequential read accesses a page several times,
2101 		 * only mark it as accessed the first time.
2102 		 */
2103 		if (prev_index != index || offset != prev_offset)
2104 			mark_page_accessed(page);
2105 		prev_index = index;
2106 
2107 		/*
2108 		 * Ok, we have the page, and it's up-to-date, so
2109 		 * now we can copy it to user space...
2110 		 */
2111 
2112 		ret = copy_page_to_iter(page, offset, nr, iter);
2113 		offset += ret;
2114 		index += offset >> PAGE_SHIFT;
2115 		offset &= ~PAGE_MASK;
2116 		prev_offset = offset;
2117 
2118 		put_page(page);
2119 		written += ret;
2120 		if (!iov_iter_count(iter))
2121 			goto out;
2122 		if (ret < nr) {
2123 			error = -EFAULT;
2124 			goto out;
2125 		}
2126 		continue;
2127 
2128 page_not_up_to_date:
2129 		/* Get exclusive access to the page ... */
2130 		error = lock_page_killable(page);
2131 		if (unlikely(error))
2132 			goto readpage_error;
2133 
2134 page_not_up_to_date_locked:
2135 		/* Did it get truncated before we got the lock? */
2136 		if (!page->mapping) {
2137 			unlock_page(page);
2138 			put_page(page);
2139 			continue;
2140 		}
2141 
2142 		/* Did somebody else fill it already? */
2143 		if (PageUptodate(page)) {
2144 			unlock_page(page);
2145 			goto page_ok;
2146 		}
2147 
2148 readpage:
2149 		/*
2150 		 * A previous I/O error may have been due to temporary
2151 		 * failures, eg. multipath errors.
2152 		 * PG_error will be set again if readpage fails.
2153 		 */
2154 		ClearPageError(page);
2155 		/* Start the actual read. The read will unlock the page. */
2156 		error = mapping->a_ops->readpage(filp, page);
2157 
2158 		if (unlikely(error)) {
2159 			if (error == AOP_TRUNCATED_PAGE) {
2160 				put_page(page);
2161 				error = 0;
2162 				goto find_page;
2163 			}
2164 			goto readpage_error;
2165 		}
2166 
2167 		if (!PageUptodate(page)) {
2168 			error = lock_page_killable(page);
2169 			if (unlikely(error))
2170 				goto readpage_error;
2171 			if (!PageUptodate(page)) {
2172 				if (page->mapping == NULL) {
2173 					/*
2174 					 * invalidate_mapping_pages got it
2175 					 */
2176 					unlock_page(page);
2177 					put_page(page);
2178 					goto find_page;
2179 				}
2180 				unlock_page(page);
2181 				shrink_readahead_size_eio(filp, ra);
2182 				error = -EIO;
2183 				goto readpage_error;
2184 			}
2185 			unlock_page(page);
2186 		}
2187 
2188 		goto page_ok;
2189 
2190 readpage_error:
2191 		/* UHHUH! A synchronous read error occurred. Report it */
2192 		put_page(page);
2193 		goto out;
2194 
2195 no_cached_page:
2196 		/*
2197 		 * Ok, it wasn't cached, so we need to create a new
2198 		 * page..
2199 		 */
2200 		page = page_cache_alloc(mapping);
2201 		if (!page) {
2202 			error = -ENOMEM;
2203 			goto out;
2204 		}
2205 		error = add_to_page_cache_lru(page, mapping, index,
2206 				mapping_gfp_constraint(mapping, GFP_KERNEL));
2207 		if (error) {
2208 			put_page(page);
2209 			if (error == -EEXIST) {
2210 				error = 0;
2211 				goto find_page;
2212 			}
2213 			goto out;
2214 		}
2215 		goto readpage;
2216 	}
2217 
2218 would_block:
2219 	error = -EAGAIN;
2220 out:
2221 	ra->prev_pos = prev_index;
2222 	ra->prev_pos <<= PAGE_SHIFT;
2223 	ra->prev_pos |= prev_offset;
2224 
2225 	*ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2226 	file_accessed(filp);
2227 	return written ? written : error;
2228 }
2229 
2230 /**
2231  * generic_file_read_iter - generic filesystem read routine
2232  * @iocb:	kernel I/O control block
2233  * @iter:	destination for the data read
2234  *
2235  * This is the "read_iter()" routine for all filesystems
2236  * that can use the page cache directly.
2237  */
2238 ssize_t
2239 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2240 {
2241 	size_t count = iov_iter_count(iter);
2242 	ssize_t retval = 0;
2243 
2244 	if (!count)
2245 		goto out; /* skip atime */
2246 
2247 	if (iocb->ki_flags & IOCB_DIRECT) {
2248 		struct file *file = iocb->ki_filp;
2249 		struct address_space *mapping = file->f_mapping;
2250 		struct inode *inode = mapping->host;
2251 		loff_t size;
2252 
2253 		size = i_size_read(inode);
2254 		if (iocb->ki_flags & IOCB_NOWAIT) {
2255 			if (filemap_range_has_page(mapping, iocb->ki_pos,
2256 						   iocb->ki_pos + count - 1))
2257 				return -EAGAIN;
2258 		} else {
2259 			retval = filemap_write_and_wait_range(mapping,
2260 						iocb->ki_pos,
2261 					        iocb->ki_pos + count - 1);
2262 			if (retval < 0)
2263 				goto out;
2264 		}
2265 
2266 		file_accessed(file);
2267 
2268 		retval = mapping->a_ops->direct_IO(iocb, iter);
2269 		if (retval >= 0) {
2270 			iocb->ki_pos += retval;
2271 			count -= retval;
2272 		}
2273 		iov_iter_revert(iter, count - iov_iter_count(iter));
2274 
2275 		/*
2276 		 * Btrfs can have a short DIO read if we encounter
2277 		 * compressed extents, so if there was an error, or if
2278 		 * we've already read everything we wanted to, or if
2279 		 * there was a short read because we hit EOF, go ahead
2280 		 * and return.  Otherwise fallthrough to buffered io for
2281 		 * the rest of the read.  Buffered reads will not work for
2282 		 * DAX files, so don't bother trying.
2283 		 */
2284 		if (retval < 0 || !count || iocb->ki_pos >= size ||
2285 		    IS_DAX(inode))
2286 			goto out;
2287 	}
2288 
2289 	retval = generic_file_buffered_read(iocb, iter, retval);
2290 out:
2291 	return retval;
2292 }
2293 EXPORT_SYMBOL(generic_file_read_iter);
2294 
2295 #ifdef CONFIG_MMU
2296 /**
2297  * page_cache_read - adds requested page to the page cache if not already there
2298  * @file:	file to read
2299  * @offset:	page index
2300  * @gfp_mask:	memory allocation flags
2301  *
2302  * This adds the requested page to the page cache if it isn't already there,
2303  * and schedules an I/O to read in its contents from disk.
2304  */
2305 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
2306 {
2307 	struct address_space *mapping = file->f_mapping;
2308 	struct page *page;
2309 	int ret;
2310 
2311 	do {
2312 		page = __page_cache_alloc(gfp_mask);
2313 		if (!page)
2314 			return -ENOMEM;
2315 
2316 		ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
2317 		if (ret == 0)
2318 			ret = mapping->a_ops->readpage(file, page);
2319 		else if (ret == -EEXIST)
2320 			ret = 0; /* losing race to add is OK */
2321 
2322 		put_page(page);
2323 
2324 	} while (ret == AOP_TRUNCATED_PAGE);
2325 
2326 	return ret;
2327 }
2328 
2329 #define MMAP_LOTSAMISS  (100)
2330 
2331 /*
2332  * Synchronous readahead happens when we don't even find
2333  * a page in the page cache at all.
2334  */
2335 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2336 				   struct file_ra_state *ra,
2337 				   struct file *file,
2338 				   pgoff_t offset)
2339 {
2340 	struct address_space *mapping = file->f_mapping;
2341 
2342 	/* If we don't want any read-ahead, don't bother */
2343 	if (vma->vm_flags & VM_RAND_READ)
2344 		return;
2345 	if (!ra->ra_pages)
2346 		return;
2347 
2348 	if (vma->vm_flags & VM_SEQ_READ) {
2349 		page_cache_sync_readahead(mapping, ra, file, offset,
2350 					  ra->ra_pages);
2351 		return;
2352 	}
2353 
2354 	/* Avoid banging the cache line if not needed */
2355 	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2356 		ra->mmap_miss++;
2357 
2358 	/*
2359 	 * Do we miss much more than hit in this file? If so,
2360 	 * stop bothering with read-ahead. It will only hurt.
2361 	 */
2362 	if (ra->mmap_miss > MMAP_LOTSAMISS)
2363 		return;
2364 
2365 	/*
2366 	 * mmap read-around
2367 	 */
2368 	ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2369 	ra->size = ra->ra_pages;
2370 	ra->async_size = ra->ra_pages / 4;
2371 	ra_submit(ra, mapping, file);
2372 }
2373 
2374 /*
2375  * Asynchronous readahead happens when we find the page and PG_readahead,
2376  * so we want to possibly extend the readahead further..
2377  */
2378 static void do_async_mmap_readahead(struct vm_area_struct *vma,
2379 				    struct file_ra_state *ra,
2380 				    struct file *file,
2381 				    struct page *page,
2382 				    pgoff_t offset)
2383 {
2384 	struct address_space *mapping = file->f_mapping;
2385 
2386 	/* If we don't want any read-ahead, don't bother */
2387 	if (vma->vm_flags & VM_RAND_READ)
2388 		return;
2389 	if (ra->mmap_miss > 0)
2390 		ra->mmap_miss--;
2391 	if (PageReadahead(page))
2392 		page_cache_async_readahead(mapping, ra, file,
2393 					   page, offset, ra->ra_pages);
2394 }
2395 
2396 /**
2397  * filemap_fault - read in file data for page fault handling
2398  * @vmf:	struct vm_fault containing details of the fault
2399  *
2400  * filemap_fault() is invoked via the vma operations vector for a
2401  * mapped memory region to read in file data during a page fault.
2402  *
2403  * The goto's are kind of ugly, but this streamlines the normal case of having
2404  * it in the page cache, and handles the special cases reasonably without
2405  * having a lot of duplicated code.
2406  *
2407  * vma->vm_mm->mmap_sem must be held on entry.
2408  *
2409  * If our return value has VM_FAULT_RETRY set, it's because
2410  * lock_page_or_retry() returned 0.
2411  * The mmap_sem has usually been released in this case.
2412  * See __lock_page_or_retry() for the exception.
2413  *
2414  * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2415  * has not been released.
2416  *
2417  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2418  */
2419 vm_fault_t filemap_fault(struct vm_fault *vmf)
2420 {
2421 	int error;
2422 	struct file *file = vmf->vma->vm_file;
2423 	struct address_space *mapping = file->f_mapping;
2424 	struct file_ra_state *ra = &file->f_ra;
2425 	struct inode *inode = mapping->host;
2426 	pgoff_t offset = vmf->pgoff;
2427 	pgoff_t max_off;
2428 	struct page *page;
2429 	vm_fault_t ret = 0;
2430 
2431 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2432 	if (unlikely(offset >= max_off))
2433 		return VM_FAULT_SIGBUS;
2434 
2435 	/*
2436 	 * Do we have something in the page cache already?
2437 	 */
2438 	page = find_get_page(mapping, offset);
2439 	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2440 		/*
2441 		 * We found the page, so try async readahead before
2442 		 * waiting for the lock.
2443 		 */
2444 		do_async_mmap_readahead(vmf->vma, ra, file, page, offset);
2445 	} else if (!page) {
2446 		/* No page in the page cache at all */
2447 		do_sync_mmap_readahead(vmf->vma, ra, file, offset);
2448 		count_vm_event(PGMAJFAULT);
2449 		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2450 		ret = VM_FAULT_MAJOR;
2451 retry_find:
2452 		page = find_get_page(mapping, offset);
2453 		if (!page)
2454 			goto no_cached_page;
2455 	}
2456 
2457 	if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) {
2458 		put_page(page);
2459 		return ret | VM_FAULT_RETRY;
2460 	}
2461 
2462 	/* Did it get truncated? */
2463 	if (unlikely(page->mapping != mapping)) {
2464 		unlock_page(page);
2465 		put_page(page);
2466 		goto retry_find;
2467 	}
2468 	VM_BUG_ON_PAGE(page->index != offset, page);
2469 
2470 	/*
2471 	 * We have a locked page in the page cache, now we need to check
2472 	 * that it's up-to-date. If not, it is going to be due to an error.
2473 	 */
2474 	if (unlikely(!PageUptodate(page)))
2475 		goto page_not_uptodate;
2476 
2477 	/*
2478 	 * Found the page and have a reference on it.
2479 	 * We must recheck i_size under page lock.
2480 	 */
2481 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2482 	if (unlikely(offset >= max_off)) {
2483 		unlock_page(page);
2484 		put_page(page);
2485 		return VM_FAULT_SIGBUS;
2486 	}
2487 
2488 	vmf->page = page;
2489 	return ret | VM_FAULT_LOCKED;
2490 
2491 no_cached_page:
2492 	/*
2493 	 * We're only likely to ever get here if MADV_RANDOM is in
2494 	 * effect.
2495 	 */
2496 	error = page_cache_read(file, offset, vmf->gfp_mask);
2497 
2498 	/*
2499 	 * The page we want has now been added to the page cache.
2500 	 * In the unlikely event that someone removed it in the
2501 	 * meantime, we'll just come back here and read it again.
2502 	 */
2503 	if (error >= 0)
2504 		goto retry_find;
2505 
2506 	/*
2507 	 * An error return from page_cache_read can result if the
2508 	 * system is low on memory, or a problem occurs while trying
2509 	 * to schedule I/O.
2510 	 */
2511 	return vmf_error(error);
2512 
2513 page_not_uptodate:
2514 	/*
2515 	 * Umm, take care of errors if the page isn't up-to-date.
2516 	 * Try to re-read it _once_. We do this synchronously,
2517 	 * because there really aren't any performance issues here
2518 	 * and we need to check for errors.
2519 	 */
2520 	ClearPageError(page);
2521 	error = mapping->a_ops->readpage(file, page);
2522 	if (!error) {
2523 		wait_on_page_locked(page);
2524 		if (!PageUptodate(page))
2525 			error = -EIO;
2526 	}
2527 	put_page(page);
2528 
2529 	if (!error || error == AOP_TRUNCATED_PAGE)
2530 		goto retry_find;
2531 
2532 	/* Things didn't work out. Return zero to tell the mm layer so. */
2533 	shrink_readahead_size_eio(file, ra);
2534 	return VM_FAULT_SIGBUS;
2535 }
2536 EXPORT_SYMBOL(filemap_fault);
2537 
2538 void filemap_map_pages(struct vm_fault *vmf,
2539 		pgoff_t start_pgoff, pgoff_t end_pgoff)
2540 {
2541 	struct file *file = vmf->vma->vm_file;
2542 	struct address_space *mapping = file->f_mapping;
2543 	pgoff_t last_pgoff = start_pgoff;
2544 	unsigned long max_idx;
2545 	XA_STATE(xas, &mapping->i_pages, start_pgoff);
2546 	struct page *head, *page;
2547 
2548 	rcu_read_lock();
2549 	xas_for_each(&xas, page, end_pgoff) {
2550 		if (xas_retry(&xas, page))
2551 			continue;
2552 		if (xa_is_value(page))
2553 			goto next;
2554 
2555 		head = compound_head(page);
2556 		if (!page_cache_get_speculative(head))
2557 			goto next;
2558 
2559 		/* The page was split under us? */
2560 		if (compound_head(page) != head)
2561 			goto skip;
2562 
2563 		/* Has the page moved? */
2564 		if (unlikely(page != xas_reload(&xas)))
2565 			goto skip;
2566 
2567 		if (!PageUptodate(page) ||
2568 				PageReadahead(page) ||
2569 				PageHWPoison(page))
2570 			goto skip;
2571 		if (!trylock_page(page))
2572 			goto skip;
2573 
2574 		if (page->mapping != mapping || !PageUptodate(page))
2575 			goto unlock;
2576 
2577 		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2578 		if (page->index >= max_idx)
2579 			goto unlock;
2580 
2581 		if (file->f_ra.mmap_miss > 0)
2582 			file->f_ra.mmap_miss--;
2583 
2584 		vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
2585 		if (vmf->pte)
2586 			vmf->pte += xas.xa_index - last_pgoff;
2587 		last_pgoff = xas.xa_index;
2588 		if (alloc_set_pte(vmf, NULL, page))
2589 			goto unlock;
2590 		unlock_page(page);
2591 		goto next;
2592 unlock:
2593 		unlock_page(page);
2594 skip:
2595 		put_page(page);
2596 next:
2597 		/* Huge page is mapped? No need to proceed. */
2598 		if (pmd_trans_huge(*vmf->pmd))
2599 			break;
2600 	}
2601 	rcu_read_unlock();
2602 }
2603 EXPORT_SYMBOL(filemap_map_pages);
2604 
2605 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2606 {
2607 	struct page *page = vmf->page;
2608 	struct inode *inode = file_inode(vmf->vma->vm_file);
2609 	vm_fault_t ret = VM_FAULT_LOCKED;
2610 
2611 	sb_start_pagefault(inode->i_sb);
2612 	file_update_time(vmf->vma->vm_file);
2613 	lock_page(page);
2614 	if (page->mapping != inode->i_mapping) {
2615 		unlock_page(page);
2616 		ret = VM_FAULT_NOPAGE;
2617 		goto out;
2618 	}
2619 	/*
2620 	 * We mark the page dirty already here so that when freeze is in
2621 	 * progress, we are guaranteed that writeback during freezing will
2622 	 * see the dirty page and writeprotect it again.
2623 	 */
2624 	set_page_dirty(page);
2625 	wait_for_stable_page(page);
2626 out:
2627 	sb_end_pagefault(inode->i_sb);
2628 	return ret;
2629 }
2630 
2631 const struct vm_operations_struct generic_file_vm_ops = {
2632 	.fault		= filemap_fault,
2633 	.map_pages	= filemap_map_pages,
2634 	.page_mkwrite	= filemap_page_mkwrite,
2635 };
2636 
2637 /* This is used for a general mmap of a disk file */
2638 
2639 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2640 {
2641 	struct address_space *mapping = file->f_mapping;
2642 
2643 	if (!mapping->a_ops->readpage)
2644 		return -ENOEXEC;
2645 	file_accessed(file);
2646 	vma->vm_ops = &generic_file_vm_ops;
2647 	return 0;
2648 }
2649 
2650 /*
2651  * This is for filesystems which do not implement ->writepage.
2652  */
2653 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2654 {
2655 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2656 		return -EINVAL;
2657 	return generic_file_mmap(file, vma);
2658 }
2659 #else
2660 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2661 {
2662 	return VM_FAULT_SIGBUS;
2663 }
2664 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2665 {
2666 	return -ENOSYS;
2667 }
2668 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2669 {
2670 	return -ENOSYS;
2671 }
2672 #endif /* CONFIG_MMU */
2673 
2674 EXPORT_SYMBOL(filemap_page_mkwrite);
2675 EXPORT_SYMBOL(generic_file_mmap);
2676 EXPORT_SYMBOL(generic_file_readonly_mmap);
2677 
2678 static struct page *wait_on_page_read(struct page *page)
2679 {
2680 	if (!IS_ERR(page)) {
2681 		wait_on_page_locked(page);
2682 		if (!PageUptodate(page)) {
2683 			put_page(page);
2684 			page = ERR_PTR(-EIO);
2685 		}
2686 	}
2687 	return page;
2688 }
2689 
2690 static struct page *do_read_cache_page(struct address_space *mapping,
2691 				pgoff_t index,
2692 				int (*filler)(void *, struct page *),
2693 				void *data,
2694 				gfp_t gfp)
2695 {
2696 	struct page *page;
2697 	int err;
2698 repeat:
2699 	page = find_get_page(mapping, index);
2700 	if (!page) {
2701 		page = __page_cache_alloc(gfp);
2702 		if (!page)
2703 			return ERR_PTR(-ENOMEM);
2704 		err = add_to_page_cache_lru(page, mapping, index, gfp);
2705 		if (unlikely(err)) {
2706 			put_page(page);
2707 			if (err == -EEXIST)
2708 				goto repeat;
2709 			/* Presumably ENOMEM for xarray node */
2710 			return ERR_PTR(err);
2711 		}
2712 
2713 filler:
2714 		err = filler(data, page);
2715 		if (err < 0) {
2716 			put_page(page);
2717 			return ERR_PTR(err);
2718 		}
2719 
2720 		page = wait_on_page_read(page);
2721 		if (IS_ERR(page))
2722 			return page;
2723 		goto out;
2724 	}
2725 	if (PageUptodate(page))
2726 		goto out;
2727 
2728 	/*
2729 	 * Page is not up to date and may be locked due one of the following
2730 	 * case a: Page is being filled and the page lock is held
2731 	 * case b: Read/write error clearing the page uptodate status
2732 	 * case c: Truncation in progress (page locked)
2733 	 * case d: Reclaim in progress
2734 	 *
2735 	 * Case a, the page will be up to date when the page is unlocked.
2736 	 *    There is no need to serialise on the page lock here as the page
2737 	 *    is pinned so the lock gives no additional protection. Even if the
2738 	 *    the page is truncated, the data is still valid if PageUptodate as
2739 	 *    it's a race vs truncate race.
2740 	 * Case b, the page will not be up to date
2741 	 * Case c, the page may be truncated but in itself, the data may still
2742 	 *    be valid after IO completes as it's a read vs truncate race. The
2743 	 *    operation must restart if the page is not uptodate on unlock but
2744 	 *    otherwise serialising on page lock to stabilise the mapping gives
2745 	 *    no additional guarantees to the caller as the page lock is
2746 	 *    released before return.
2747 	 * Case d, similar to truncation. If reclaim holds the page lock, it
2748 	 *    will be a race with remove_mapping that determines if the mapping
2749 	 *    is valid on unlock but otherwise the data is valid and there is
2750 	 *    no need to serialise with page lock.
2751 	 *
2752 	 * As the page lock gives no additional guarantee, we optimistically
2753 	 * wait on the page to be unlocked and check if it's up to date and
2754 	 * use the page if it is. Otherwise, the page lock is required to
2755 	 * distinguish between the different cases. The motivation is that we
2756 	 * avoid spurious serialisations and wakeups when multiple processes
2757 	 * wait on the same page for IO to complete.
2758 	 */
2759 	wait_on_page_locked(page);
2760 	if (PageUptodate(page))
2761 		goto out;
2762 
2763 	/* Distinguish between all the cases under the safety of the lock */
2764 	lock_page(page);
2765 
2766 	/* Case c or d, restart the operation */
2767 	if (!page->mapping) {
2768 		unlock_page(page);
2769 		put_page(page);
2770 		goto repeat;
2771 	}
2772 
2773 	/* Someone else locked and filled the page in a very small window */
2774 	if (PageUptodate(page)) {
2775 		unlock_page(page);
2776 		goto out;
2777 	}
2778 	goto filler;
2779 
2780 out:
2781 	mark_page_accessed(page);
2782 	return page;
2783 }
2784 
2785 /**
2786  * read_cache_page - read into page cache, fill it if needed
2787  * @mapping:	the page's address_space
2788  * @index:	the page index
2789  * @filler:	function to perform the read
2790  * @data:	first arg to filler(data, page) function, often left as NULL
2791  *
2792  * Read into the page cache. If a page already exists, and PageUptodate() is
2793  * not set, try to fill the page and wait for it to become unlocked.
2794  *
2795  * If the page does not get brought uptodate, return -EIO.
2796  */
2797 struct page *read_cache_page(struct address_space *mapping,
2798 				pgoff_t index,
2799 				int (*filler)(void *, struct page *),
2800 				void *data)
2801 {
2802 	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2803 }
2804 EXPORT_SYMBOL(read_cache_page);
2805 
2806 /**
2807  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2808  * @mapping:	the page's address_space
2809  * @index:	the page index
2810  * @gfp:	the page allocator flags to use if allocating
2811  *
2812  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2813  * any new page allocations done using the specified allocation flags.
2814  *
2815  * If the page does not get brought uptodate, return -EIO.
2816  */
2817 struct page *read_cache_page_gfp(struct address_space *mapping,
2818 				pgoff_t index,
2819 				gfp_t gfp)
2820 {
2821 	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2822 
2823 	return do_read_cache_page(mapping, index, filler, NULL, gfp);
2824 }
2825 EXPORT_SYMBOL(read_cache_page_gfp);
2826 
2827 /*
2828  * Don't operate on ranges the page cache doesn't support, and don't exceed the
2829  * LFS limits.  If pos is under the limit it becomes a short access.  If it
2830  * exceeds the limit we return -EFBIG.
2831  */
2832 static int generic_access_check_limits(struct file *file, loff_t pos,
2833 				       loff_t *count)
2834 {
2835 	struct inode *inode = file->f_mapping->host;
2836 	loff_t max_size = inode->i_sb->s_maxbytes;
2837 
2838 	if (!(file->f_flags & O_LARGEFILE))
2839 		max_size = MAX_NON_LFS;
2840 
2841 	if (unlikely(pos >= max_size))
2842 		return -EFBIG;
2843 	*count = min(*count, max_size - pos);
2844 	return 0;
2845 }
2846 
2847 static int generic_write_check_limits(struct file *file, loff_t pos,
2848 				      loff_t *count)
2849 {
2850 	loff_t limit = rlimit(RLIMIT_FSIZE);
2851 
2852 	if (limit != RLIM_INFINITY) {
2853 		if (pos >= limit) {
2854 			send_sig(SIGXFSZ, current, 0);
2855 			return -EFBIG;
2856 		}
2857 		*count = min(*count, limit - pos);
2858 	}
2859 
2860 	return generic_access_check_limits(file, pos, count);
2861 }
2862 
2863 /*
2864  * Performs necessary checks before doing a write
2865  *
2866  * Can adjust writing position or amount of bytes to write.
2867  * Returns appropriate error code that caller should return or
2868  * zero in case that write should be allowed.
2869  */
2870 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2871 {
2872 	struct file *file = iocb->ki_filp;
2873 	struct inode *inode = file->f_mapping->host;
2874 	loff_t count;
2875 	int ret;
2876 
2877 	if (!iov_iter_count(from))
2878 		return 0;
2879 
2880 	/* FIXME: this is for backwards compatibility with 2.4 */
2881 	if (iocb->ki_flags & IOCB_APPEND)
2882 		iocb->ki_pos = i_size_read(inode);
2883 
2884 	if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2885 		return -EINVAL;
2886 
2887 	count = iov_iter_count(from);
2888 	ret = generic_write_check_limits(file, iocb->ki_pos, &count);
2889 	if (ret)
2890 		return ret;
2891 
2892 	iov_iter_truncate(from, count);
2893 	return iov_iter_count(from);
2894 }
2895 EXPORT_SYMBOL(generic_write_checks);
2896 
2897 /*
2898  * Performs necessary checks before doing a clone.
2899  *
2900  * Can adjust amount of bytes to clone.
2901  * Returns appropriate error code that caller should return or
2902  * zero in case the clone should be allowed.
2903  */
2904 int generic_remap_checks(struct file *file_in, loff_t pos_in,
2905 			 struct file *file_out, loff_t pos_out,
2906 			 loff_t *req_count, unsigned int remap_flags)
2907 {
2908 	struct inode *inode_in = file_in->f_mapping->host;
2909 	struct inode *inode_out = file_out->f_mapping->host;
2910 	uint64_t count = *req_count;
2911 	uint64_t bcount;
2912 	loff_t size_in, size_out;
2913 	loff_t bs = inode_out->i_sb->s_blocksize;
2914 	int ret;
2915 
2916 	/* The start of both ranges must be aligned to an fs block. */
2917 	if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_out, bs))
2918 		return -EINVAL;
2919 
2920 	/* Ensure offsets don't wrap. */
2921 	if (pos_in + count < pos_in || pos_out + count < pos_out)
2922 		return -EINVAL;
2923 
2924 	size_in = i_size_read(inode_in);
2925 	size_out = i_size_read(inode_out);
2926 
2927 	/* Dedupe requires both ranges to be within EOF. */
2928 	if ((remap_flags & REMAP_FILE_DEDUP) &&
2929 	    (pos_in >= size_in || pos_in + count > size_in ||
2930 	     pos_out >= size_out || pos_out + count > size_out))
2931 		return -EINVAL;
2932 
2933 	/* Ensure the infile range is within the infile. */
2934 	if (pos_in >= size_in)
2935 		return -EINVAL;
2936 	count = min(count, size_in - (uint64_t)pos_in);
2937 
2938 	ret = generic_access_check_limits(file_in, pos_in, &count);
2939 	if (ret)
2940 		return ret;
2941 
2942 	ret = generic_write_check_limits(file_out, pos_out, &count);
2943 	if (ret)
2944 		return ret;
2945 
2946 	/*
2947 	 * If the user wanted us to link to the infile's EOF, round up to the
2948 	 * next block boundary for this check.
2949 	 *
2950 	 * Otherwise, make sure the count is also block-aligned, having
2951 	 * already confirmed the starting offsets' block alignment.
2952 	 */
2953 	if (pos_in + count == size_in) {
2954 		bcount = ALIGN(size_in, bs) - pos_in;
2955 	} else {
2956 		if (!IS_ALIGNED(count, bs))
2957 			count = ALIGN_DOWN(count, bs);
2958 		bcount = count;
2959 	}
2960 
2961 	/* Don't allow overlapped cloning within the same file. */
2962 	if (inode_in == inode_out &&
2963 	    pos_out + bcount > pos_in &&
2964 	    pos_out < pos_in + bcount)
2965 		return -EINVAL;
2966 
2967 	/*
2968 	 * We shortened the request but the caller can't deal with that, so
2969 	 * bounce the request back to userspace.
2970 	 */
2971 	if (*req_count != count && !(remap_flags & REMAP_FILE_CAN_SHORTEN))
2972 		return -EINVAL;
2973 
2974 	*req_count = count;
2975 	return 0;
2976 }
2977 
2978 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2979 				loff_t pos, unsigned len, unsigned flags,
2980 				struct page **pagep, void **fsdata)
2981 {
2982 	const struct address_space_operations *aops = mapping->a_ops;
2983 
2984 	return aops->write_begin(file, mapping, pos, len, flags,
2985 							pagep, fsdata);
2986 }
2987 EXPORT_SYMBOL(pagecache_write_begin);
2988 
2989 int pagecache_write_end(struct file *file, struct address_space *mapping,
2990 				loff_t pos, unsigned len, unsigned copied,
2991 				struct page *page, void *fsdata)
2992 {
2993 	const struct address_space_operations *aops = mapping->a_ops;
2994 
2995 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2996 }
2997 EXPORT_SYMBOL(pagecache_write_end);
2998 
2999 ssize_t
3000 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3001 {
3002 	struct file	*file = iocb->ki_filp;
3003 	struct address_space *mapping = file->f_mapping;
3004 	struct inode	*inode = mapping->host;
3005 	loff_t		pos = iocb->ki_pos;
3006 	ssize_t		written;
3007 	size_t		write_len;
3008 	pgoff_t		end;
3009 
3010 	write_len = iov_iter_count(from);
3011 	end = (pos + write_len - 1) >> PAGE_SHIFT;
3012 
3013 	if (iocb->ki_flags & IOCB_NOWAIT) {
3014 		/* If there are pages to writeback, return */
3015 		if (filemap_range_has_page(inode->i_mapping, pos,
3016 					   pos + write_len))
3017 			return -EAGAIN;
3018 	} else {
3019 		written = filemap_write_and_wait_range(mapping, pos,
3020 							pos + write_len - 1);
3021 		if (written)
3022 			goto out;
3023 	}
3024 
3025 	/*
3026 	 * After a write we want buffered reads to be sure to go to disk to get
3027 	 * the new data.  We invalidate clean cached page from the region we're
3028 	 * about to write.  We do this *before* the write so that we can return
3029 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
3030 	 */
3031 	written = invalidate_inode_pages2_range(mapping,
3032 					pos >> PAGE_SHIFT, end);
3033 	/*
3034 	 * If a page can not be invalidated, return 0 to fall back
3035 	 * to buffered write.
3036 	 */
3037 	if (written) {
3038 		if (written == -EBUSY)
3039 			return 0;
3040 		goto out;
3041 	}
3042 
3043 	written = mapping->a_ops->direct_IO(iocb, from);
3044 
3045 	/*
3046 	 * Finally, try again to invalidate clean pages which might have been
3047 	 * cached by non-direct readahead, or faulted in by get_user_pages()
3048 	 * if the source of the write was an mmap'ed region of the file
3049 	 * we're writing.  Either one is a pretty crazy thing to do,
3050 	 * so we don't support it 100%.  If this invalidation
3051 	 * fails, tough, the write still worked...
3052 	 *
3053 	 * Most of the time we do not need this since dio_complete() will do
3054 	 * the invalidation for us. However there are some file systems that
3055 	 * do not end up with dio_complete() being called, so let's not break
3056 	 * them by removing it completely
3057 	 */
3058 	if (mapping->nrpages)
3059 		invalidate_inode_pages2_range(mapping,
3060 					pos >> PAGE_SHIFT, end);
3061 
3062 	if (written > 0) {
3063 		pos += written;
3064 		write_len -= written;
3065 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3066 			i_size_write(inode, pos);
3067 			mark_inode_dirty(inode);
3068 		}
3069 		iocb->ki_pos = pos;
3070 	}
3071 	iov_iter_revert(from, write_len - iov_iter_count(from));
3072 out:
3073 	return written;
3074 }
3075 EXPORT_SYMBOL(generic_file_direct_write);
3076 
3077 /*
3078  * Find or create a page at the given pagecache position. Return the locked
3079  * page. This function is specifically for buffered writes.
3080  */
3081 struct page *grab_cache_page_write_begin(struct address_space *mapping,
3082 					pgoff_t index, unsigned flags)
3083 {
3084 	struct page *page;
3085 	int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3086 
3087 	if (flags & AOP_FLAG_NOFS)
3088 		fgp_flags |= FGP_NOFS;
3089 
3090 	page = pagecache_get_page(mapping, index, fgp_flags,
3091 			mapping_gfp_mask(mapping));
3092 	if (page)
3093 		wait_for_stable_page(page);
3094 
3095 	return page;
3096 }
3097 EXPORT_SYMBOL(grab_cache_page_write_begin);
3098 
3099 ssize_t generic_perform_write(struct file *file,
3100 				struct iov_iter *i, loff_t pos)
3101 {
3102 	struct address_space *mapping = file->f_mapping;
3103 	const struct address_space_operations *a_ops = mapping->a_ops;
3104 	long status = 0;
3105 	ssize_t written = 0;
3106 	unsigned int flags = 0;
3107 
3108 	do {
3109 		struct page *page;
3110 		unsigned long offset;	/* Offset into pagecache page */
3111 		unsigned long bytes;	/* Bytes to write to page */
3112 		size_t copied;		/* Bytes copied from user */
3113 		void *fsdata;
3114 
3115 		offset = (pos & (PAGE_SIZE - 1));
3116 		bytes = min_t(unsigned long, PAGE_SIZE - offset,
3117 						iov_iter_count(i));
3118 
3119 again:
3120 		/*
3121 		 * Bring in the user page that we will copy from _first_.
3122 		 * Otherwise there's a nasty deadlock on copying from the
3123 		 * same page as we're writing to, without it being marked
3124 		 * up-to-date.
3125 		 *
3126 		 * Not only is this an optimisation, but it is also required
3127 		 * to check that the address is actually valid, when atomic
3128 		 * usercopies are used, below.
3129 		 */
3130 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3131 			status = -EFAULT;
3132 			break;
3133 		}
3134 
3135 		if (fatal_signal_pending(current)) {
3136 			status = -EINTR;
3137 			break;
3138 		}
3139 
3140 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3141 						&page, &fsdata);
3142 		if (unlikely(status < 0))
3143 			break;
3144 
3145 		if (mapping_writably_mapped(mapping))
3146 			flush_dcache_page(page);
3147 
3148 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
3149 		flush_dcache_page(page);
3150 
3151 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
3152 						page, fsdata);
3153 		if (unlikely(status < 0))
3154 			break;
3155 		copied = status;
3156 
3157 		cond_resched();
3158 
3159 		iov_iter_advance(i, copied);
3160 		if (unlikely(copied == 0)) {
3161 			/*
3162 			 * If we were unable to copy any data at all, we must
3163 			 * fall back to a single segment length write.
3164 			 *
3165 			 * If we didn't fallback here, we could livelock
3166 			 * because not all segments in the iov can be copied at
3167 			 * once without a pagefault.
3168 			 */
3169 			bytes = min_t(unsigned long, PAGE_SIZE - offset,
3170 						iov_iter_single_seg_count(i));
3171 			goto again;
3172 		}
3173 		pos += copied;
3174 		written += copied;
3175 
3176 		balance_dirty_pages_ratelimited(mapping);
3177 	} while (iov_iter_count(i));
3178 
3179 	return written ? written : status;
3180 }
3181 EXPORT_SYMBOL(generic_perform_write);
3182 
3183 /**
3184  * __generic_file_write_iter - write data to a file
3185  * @iocb:	IO state structure (file, offset, etc.)
3186  * @from:	iov_iter with data to write
3187  *
3188  * This function does all the work needed for actually writing data to a
3189  * file. It does all basic checks, removes SUID from the file, updates
3190  * modification times and calls proper subroutines depending on whether we
3191  * do direct IO or a standard buffered write.
3192  *
3193  * It expects i_mutex to be grabbed unless we work on a block device or similar
3194  * object which does not need locking at all.
3195  *
3196  * This function does *not* take care of syncing data in case of O_SYNC write.
3197  * A caller has to handle it. This is mainly due to the fact that we want to
3198  * avoid syncing under i_mutex.
3199  */
3200 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3201 {
3202 	struct file *file = iocb->ki_filp;
3203 	struct address_space * mapping = file->f_mapping;
3204 	struct inode 	*inode = mapping->host;
3205 	ssize_t		written = 0;
3206 	ssize_t		err;
3207 	ssize_t		status;
3208 
3209 	/* We can write back this queue in page reclaim */
3210 	current->backing_dev_info = inode_to_bdi(inode);
3211 	err = file_remove_privs(file);
3212 	if (err)
3213 		goto out;
3214 
3215 	err = file_update_time(file);
3216 	if (err)
3217 		goto out;
3218 
3219 	if (iocb->ki_flags & IOCB_DIRECT) {
3220 		loff_t pos, endbyte;
3221 
3222 		written = generic_file_direct_write(iocb, from);
3223 		/*
3224 		 * If the write stopped short of completing, fall back to
3225 		 * buffered writes.  Some filesystems do this for writes to
3226 		 * holes, for example.  For DAX files, a buffered write will
3227 		 * not succeed (even if it did, DAX does not handle dirty
3228 		 * page-cache pages correctly).
3229 		 */
3230 		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3231 			goto out;
3232 
3233 		status = generic_perform_write(file, from, pos = iocb->ki_pos);
3234 		/*
3235 		 * If generic_perform_write() returned a synchronous error
3236 		 * then we want to return the number of bytes which were
3237 		 * direct-written, or the error code if that was zero.  Note
3238 		 * that this differs from normal direct-io semantics, which
3239 		 * will return -EFOO even if some bytes were written.
3240 		 */
3241 		if (unlikely(status < 0)) {
3242 			err = status;
3243 			goto out;
3244 		}
3245 		/*
3246 		 * We need to ensure that the page cache pages are written to
3247 		 * disk and invalidated to preserve the expected O_DIRECT
3248 		 * semantics.
3249 		 */
3250 		endbyte = pos + status - 1;
3251 		err = filemap_write_and_wait_range(mapping, pos, endbyte);
3252 		if (err == 0) {
3253 			iocb->ki_pos = endbyte + 1;
3254 			written += status;
3255 			invalidate_mapping_pages(mapping,
3256 						 pos >> PAGE_SHIFT,
3257 						 endbyte >> PAGE_SHIFT);
3258 		} else {
3259 			/*
3260 			 * We don't know how much we wrote, so just return
3261 			 * the number of bytes which were direct-written
3262 			 */
3263 		}
3264 	} else {
3265 		written = generic_perform_write(file, from, iocb->ki_pos);
3266 		if (likely(written > 0))
3267 			iocb->ki_pos += written;
3268 	}
3269 out:
3270 	current->backing_dev_info = NULL;
3271 	return written ? written : err;
3272 }
3273 EXPORT_SYMBOL(__generic_file_write_iter);
3274 
3275 /**
3276  * generic_file_write_iter - write data to a file
3277  * @iocb:	IO state structure
3278  * @from:	iov_iter with data to write
3279  *
3280  * This is a wrapper around __generic_file_write_iter() to be used by most
3281  * filesystems. It takes care of syncing the file in case of O_SYNC file
3282  * and acquires i_mutex as needed.
3283  */
3284 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3285 {
3286 	struct file *file = iocb->ki_filp;
3287 	struct inode *inode = file->f_mapping->host;
3288 	ssize_t ret;
3289 
3290 	inode_lock(inode);
3291 	ret = generic_write_checks(iocb, from);
3292 	if (ret > 0)
3293 		ret = __generic_file_write_iter(iocb, from);
3294 	inode_unlock(inode);
3295 
3296 	if (ret > 0)
3297 		ret = generic_write_sync(iocb, ret);
3298 	return ret;
3299 }
3300 EXPORT_SYMBOL(generic_file_write_iter);
3301 
3302 /**
3303  * try_to_release_page() - release old fs-specific metadata on a page
3304  *
3305  * @page: the page which the kernel is trying to free
3306  * @gfp_mask: memory allocation flags (and I/O mode)
3307  *
3308  * The address_space is to try to release any data against the page
3309  * (presumably at page->private).  If the release was successful, return '1'.
3310  * Otherwise return zero.
3311  *
3312  * This may also be called if PG_fscache is set on a page, indicating that the
3313  * page is known to the local caching routines.
3314  *
3315  * The @gfp_mask argument specifies whether I/O may be performed to release
3316  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3317  *
3318  */
3319 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3320 {
3321 	struct address_space * const mapping = page->mapping;
3322 
3323 	BUG_ON(!PageLocked(page));
3324 	if (PageWriteback(page))
3325 		return 0;
3326 
3327 	if (mapping && mapping->a_ops->releasepage)
3328 		return mapping->a_ops->releasepage(page, gfp_mask);
3329 	return try_to_free_buffers(page);
3330 }
3331 
3332 EXPORT_SYMBOL(try_to_release_page);
3333