xref: /openbmc/linux/mm/filemap.c (revision 87c2ce3b)
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/config.h>
13 #include <linux/module.h>
14 #include <linux/slab.h>
15 #include <linux/compiler.h>
16 #include <linux/fs.h>
17 #include <linux/aio.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/mman.h>
22 #include <linux/pagemap.h>
23 #include <linux/file.h>
24 #include <linux/uio.h>
25 #include <linux/hash.h>
26 #include <linux/writeback.h>
27 #include <linux/pagevec.h>
28 #include <linux/blkdev.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include "filemap.h"
32 /*
33  * FIXME: remove all knowledge of the buffer layer from the core VM
34  */
35 #include <linux/buffer_head.h> /* for generic_osync_inode */
36 
37 #include <asm/uaccess.h>
38 #include <asm/mman.h>
39 
40 static ssize_t
41 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
42 	loff_t offset, unsigned long nr_segs);
43 
44 /*
45  * Shared mappings implemented 30.11.1994. It's not fully working yet,
46  * though.
47  *
48  * Shared mappings now work. 15.8.1995  Bruno.
49  *
50  * finished 'unifying' the page and buffer cache and SMP-threaded the
51  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
52  *
53  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
54  */
55 
56 /*
57  * Lock ordering:
58  *
59  *  ->i_mmap_lock		(vmtruncate)
60  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
61  *      ->swap_lock		(exclusive_swap_page, others)
62  *        ->mapping->tree_lock
63  *
64  *  ->i_mutex
65  *    ->i_mmap_lock		(truncate->unmap_mapping_range)
66  *
67  *  ->mmap_sem
68  *    ->i_mmap_lock
69  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
70  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
71  *
72  *  ->mmap_sem
73  *    ->lock_page		(access_process_vm)
74  *
75  *  ->mmap_sem
76  *    ->i_mutex			(msync)
77  *
78  *  ->i_mutex
79  *    ->i_alloc_sem             (various)
80  *
81  *  ->inode_lock
82  *    ->sb_lock			(fs/fs-writeback.c)
83  *    ->mapping->tree_lock	(__sync_single_inode)
84  *
85  *  ->i_mmap_lock
86  *    ->anon_vma.lock		(vma_adjust)
87  *
88  *  ->anon_vma.lock
89  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
90  *
91  *  ->page_table_lock or pte_lock
92  *    ->swap_lock		(try_to_unmap_one)
93  *    ->private_lock		(try_to_unmap_one)
94  *    ->tree_lock		(try_to_unmap_one)
95  *    ->zone.lru_lock		(follow_page->mark_page_accessed)
96  *    ->private_lock		(page_remove_rmap->set_page_dirty)
97  *    ->tree_lock		(page_remove_rmap->set_page_dirty)
98  *    ->inode_lock		(page_remove_rmap->set_page_dirty)
99  *    ->inode_lock		(zap_pte_range->set_page_dirty)
100  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
101  *
102  *  ->task->proc_lock
103  *    ->dcache_lock		(proc_pid_lookup)
104  */
105 
106 /*
107  * Remove a page from the page cache and free it. Caller has to make
108  * sure the page is locked and that nobody else uses it - or that usage
109  * is safe.  The caller must hold a write_lock on the mapping's tree_lock.
110  */
111 void __remove_from_page_cache(struct page *page)
112 {
113 	struct address_space *mapping = page->mapping;
114 
115 	radix_tree_delete(&mapping->page_tree, page->index);
116 	page->mapping = NULL;
117 	mapping->nrpages--;
118 	pagecache_acct(-1);
119 }
120 
121 void remove_from_page_cache(struct page *page)
122 {
123 	struct address_space *mapping = page->mapping;
124 
125 	BUG_ON(!PageLocked(page));
126 
127 	write_lock_irq(&mapping->tree_lock);
128 	__remove_from_page_cache(page);
129 	write_unlock_irq(&mapping->tree_lock);
130 }
131 
132 static int sync_page(void *word)
133 {
134 	struct address_space *mapping;
135 	struct page *page;
136 
137 	page = container_of((unsigned long *)word, struct page, flags);
138 
139 	/*
140 	 * page_mapping() is being called without PG_locked held.
141 	 * Some knowledge of the state and use of the page is used to
142 	 * reduce the requirements down to a memory barrier.
143 	 * The danger here is of a stale page_mapping() return value
144 	 * indicating a struct address_space different from the one it's
145 	 * associated with when it is associated with one.
146 	 * After smp_mb(), it's either the correct page_mapping() for
147 	 * the page, or an old page_mapping() and the page's own
148 	 * page_mapping() has gone NULL.
149 	 * The ->sync_page() address_space operation must tolerate
150 	 * page_mapping() going NULL. By an amazing coincidence,
151 	 * this comes about because none of the users of the page
152 	 * in the ->sync_page() methods make essential use of the
153 	 * page_mapping(), merely passing the page down to the backing
154 	 * device's unplug functions when it's non-NULL, which in turn
155 	 * ignore it for all cases but swap, where only page_private(page) is
156 	 * of interest. When page_mapping() does go NULL, the entire
157 	 * call stack gracefully ignores the page and returns.
158 	 * -- wli
159 	 */
160 	smp_mb();
161 	mapping = page_mapping(page);
162 	if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
163 		mapping->a_ops->sync_page(page);
164 	io_schedule();
165 	return 0;
166 }
167 
168 /**
169  * filemap_fdatawrite_range - start writeback against all of a mapping's
170  * dirty pages that lie within the byte offsets <start, end>
171  * @mapping:	address space structure to write
172  * @start:	offset in bytes where the range starts
173  * @end:	offset in bytes where the range ends
174  * @sync_mode:	enable synchronous operation
175  *
176  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
177  * opposed to a regular memory * cleansing writeback.  The difference between
178  * these two operations is that if a dirty page/buffer is encountered, it must
179  * be waited upon, and not just skipped over.
180  */
181 static int __filemap_fdatawrite_range(struct address_space *mapping,
182 	loff_t start, loff_t end, int sync_mode)
183 {
184 	int ret;
185 	struct writeback_control wbc = {
186 		.sync_mode = sync_mode,
187 		.nr_to_write = mapping->nrpages * 2,
188 		.start = start,
189 		.end = end,
190 	};
191 
192 	if (!mapping_cap_writeback_dirty(mapping))
193 		return 0;
194 
195 	ret = do_writepages(mapping, &wbc);
196 	return ret;
197 }
198 
199 static inline int __filemap_fdatawrite(struct address_space *mapping,
200 	int sync_mode)
201 {
202 	return __filemap_fdatawrite_range(mapping, 0, 0, sync_mode);
203 }
204 
205 int filemap_fdatawrite(struct address_space *mapping)
206 {
207 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
208 }
209 EXPORT_SYMBOL(filemap_fdatawrite);
210 
211 static int filemap_fdatawrite_range(struct address_space *mapping,
212 	loff_t start, loff_t end)
213 {
214 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
215 }
216 
217 /*
218  * This is a mostly non-blocking flush.  Not suitable for data-integrity
219  * purposes - I/O may not be started against all dirty pages.
220  */
221 int filemap_flush(struct address_space *mapping)
222 {
223 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
224 }
225 EXPORT_SYMBOL(filemap_flush);
226 
227 /*
228  * Wait for writeback to complete against pages indexed by start->end
229  * inclusive
230  */
231 static int wait_on_page_writeback_range(struct address_space *mapping,
232 				pgoff_t start, pgoff_t end)
233 {
234 	struct pagevec pvec;
235 	int nr_pages;
236 	int ret = 0;
237 	pgoff_t index;
238 
239 	if (end < start)
240 		return 0;
241 
242 	pagevec_init(&pvec, 0);
243 	index = start;
244 	while ((index <= end) &&
245 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
246 			PAGECACHE_TAG_WRITEBACK,
247 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
248 		unsigned i;
249 
250 		for (i = 0; i < nr_pages; i++) {
251 			struct page *page = pvec.pages[i];
252 
253 			/* until radix tree lookup accepts end_index */
254 			if (page->index > end)
255 				continue;
256 
257 			wait_on_page_writeback(page);
258 			if (PageError(page))
259 				ret = -EIO;
260 		}
261 		pagevec_release(&pvec);
262 		cond_resched();
263 	}
264 
265 	/* Check for outstanding write errors */
266 	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
267 		ret = -ENOSPC;
268 	if (test_and_clear_bit(AS_EIO, &mapping->flags))
269 		ret = -EIO;
270 
271 	return ret;
272 }
273 
274 /*
275  * Write and wait upon all the pages in the passed range.  This is a "data
276  * integrity" operation.  It waits upon in-flight writeout before starting and
277  * waiting upon new writeout.  If there was an IO error, return it.
278  *
279  * We need to re-take i_mutex during the generic_osync_inode list walk because
280  * it is otherwise livelockable.
281  */
282 int sync_page_range(struct inode *inode, struct address_space *mapping,
283 			loff_t pos, loff_t count)
284 {
285 	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
286 	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
287 	int ret;
288 
289 	if (!mapping_cap_writeback_dirty(mapping) || !count)
290 		return 0;
291 	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
292 	if (ret == 0) {
293 		mutex_lock(&inode->i_mutex);
294 		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
295 		mutex_unlock(&inode->i_mutex);
296 	}
297 	if (ret == 0)
298 		ret = wait_on_page_writeback_range(mapping, start, end);
299 	return ret;
300 }
301 EXPORT_SYMBOL(sync_page_range);
302 
303 /*
304  * Note: Holding i_mutex across sync_page_range_nolock is not a good idea
305  * as it forces O_SYNC writers to different parts of the same file
306  * to be serialised right until io completion.
307  */
308 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
309 			   loff_t pos, loff_t count)
310 {
311 	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
312 	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
313 	int ret;
314 
315 	if (!mapping_cap_writeback_dirty(mapping) || !count)
316 		return 0;
317 	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
318 	if (ret == 0)
319 		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
320 	if (ret == 0)
321 		ret = wait_on_page_writeback_range(mapping, start, end);
322 	return ret;
323 }
324 EXPORT_SYMBOL(sync_page_range_nolock);
325 
326 /**
327  * filemap_fdatawait - walk the list of under-writeback pages of the given
328  *     address space and wait for all of them.
329  *
330  * @mapping: address space structure to wait for
331  */
332 int filemap_fdatawait(struct address_space *mapping)
333 {
334 	loff_t i_size = i_size_read(mapping->host);
335 
336 	if (i_size == 0)
337 		return 0;
338 
339 	return wait_on_page_writeback_range(mapping, 0,
340 				(i_size - 1) >> PAGE_CACHE_SHIFT);
341 }
342 EXPORT_SYMBOL(filemap_fdatawait);
343 
344 int filemap_write_and_wait(struct address_space *mapping)
345 {
346 	int err = 0;
347 
348 	if (mapping->nrpages) {
349 		err = filemap_fdatawrite(mapping);
350 		/*
351 		 * Even if the above returned error, the pages may be
352 		 * written partially (e.g. -ENOSPC), so we wait for it.
353 		 * But the -EIO is special case, it may indicate the worst
354 		 * thing (e.g. bug) happened, so we avoid waiting for it.
355 		 */
356 		if (err != -EIO) {
357 			int err2 = filemap_fdatawait(mapping);
358 			if (!err)
359 				err = err2;
360 		}
361 	}
362 	return err;
363 }
364 EXPORT_SYMBOL(filemap_write_and_wait);
365 
366 int filemap_write_and_wait_range(struct address_space *mapping,
367 				 loff_t lstart, loff_t lend)
368 {
369 	int err = 0;
370 
371 	if (mapping->nrpages) {
372 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
373 						 WB_SYNC_ALL);
374 		/* See comment of filemap_write_and_wait() */
375 		if (err != -EIO) {
376 			int err2 = wait_on_page_writeback_range(mapping,
377 						lstart >> PAGE_CACHE_SHIFT,
378 						lend >> PAGE_CACHE_SHIFT);
379 			if (!err)
380 				err = err2;
381 		}
382 	}
383 	return err;
384 }
385 
386 /*
387  * This function is used to add newly allocated pagecache pages:
388  * the page is new, so we can just run SetPageLocked() against it.
389  * The other page state flags were set by rmqueue().
390  *
391  * This function does not add the page to the LRU.  The caller must do that.
392  */
393 int add_to_page_cache(struct page *page, struct address_space *mapping,
394 		pgoff_t offset, gfp_t gfp_mask)
395 {
396 	int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
397 
398 	if (error == 0) {
399 		write_lock_irq(&mapping->tree_lock);
400 		error = radix_tree_insert(&mapping->page_tree, offset, page);
401 		if (!error) {
402 			page_cache_get(page);
403 			SetPageLocked(page);
404 			page->mapping = mapping;
405 			page->index = offset;
406 			mapping->nrpages++;
407 			pagecache_acct(1);
408 		}
409 		write_unlock_irq(&mapping->tree_lock);
410 		radix_tree_preload_end();
411 	}
412 	return error;
413 }
414 
415 EXPORT_SYMBOL(add_to_page_cache);
416 
417 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
418 				pgoff_t offset, gfp_t gfp_mask)
419 {
420 	int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
421 	if (ret == 0)
422 		lru_cache_add(page);
423 	return ret;
424 }
425 
426 /*
427  * In order to wait for pages to become available there must be
428  * waitqueues associated with pages. By using a hash table of
429  * waitqueues where the bucket discipline is to maintain all
430  * waiters on the same queue and wake all when any of the pages
431  * become available, and for the woken contexts to check to be
432  * sure the appropriate page became available, this saves space
433  * at a cost of "thundering herd" phenomena during rare hash
434  * collisions.
435  */
436 static wait_queue_head_t *page_waitqueue(struct page *page)
437 {
438 	const struct zone *zone = page_zone(page);
439 
440 	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
441 }
442 
443 static inline void wake_up_page(struct page *page, int bit)
444 {
445 	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
446 }
447 
448 void fastcall wait_on_page_bit(struct page *page, int bit_nr)
449 {
450 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
451 
452 	if (test_bit(bit_nr, &page->flags))
453 		__wait_on_bit(page_waitqueue(page), &wait, sync_page,
454 							TASK_UNINTERRUPTIBLE);
455 }
456 EXPORT_SYMBOL(wait_on_page_bit);
457 
458 /**
459  * unlock_page() - unlock a locked page
460  *
461  * @page: the page
462  *
463  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
464  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
465  * mechananism between PageLocked pages and PageWriteback pages is shared.
466  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
467  *
468  * The first mb is necessary to safely close the critical section opened by the
469  * TestSetPageLocked(), the second mb is necessary to enforce ordering between
470  * the clear_bit and the read of the waitqueue (to avoid SMP races with a
471  * parallel wait_on_page_locked()).
472  */
473 void fastcall unlock_page(struct page *page)
474 {
475 	smp_mb__before_clear_bit();
476 	if (!TestClearPageLocked(page))
477 		BUG();
478 	smp_mb__after_clear_bit();
479 	wake_up_page(page, PG_locked);
480 }
481 EXPORT_SYMBOL(unlock_page);
482 
483 /*
484  * End writeback against a page.
485  */
486 void end_page_writeback(struct page *page)
487 {
488 	if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) {
489 		if (!test_clear_page_writeback(page))
490 			BUG();
491 	}
492 	smp_mb__after_clear_bit();
493 	wake_up_page(page, PG_writeback);
494 }
495 EXPORT_SYMBOL(end_page_writeback);
496 
497 /*
498  * Get a lock on the page, assuming we need to sleep to get it.
499  *
500  * Ugly: running sync_page() in state TASK_UNINTERRUPTIBLE is scary.  If some
501  * random driver's requestfn sets TASK_RUNNING, we could busywait.  However
502  * chances are that on the second loop, the block layer's plug list is empty,
503  * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
504  */
505 void fastcall __lock_page(struct page *page)
506 {
507 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
508 
509 	__wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
510 							TASK_UNINTERRUPTIBLE);
511 }
512 EXPORT_SYMBOL(__lock_page);
513 
514 /*
515  * a rather lightweight function, finding and getting a reference to a
516  * hashed page atomically.
517  */
518 struct page * find_get_page(struct address_space *mapping, unsigned long offset)
519 {
520 	struct page *page;
521 
522 	read_lock_irq(&mapping->tree_lock);
523 	page = radix_tree_lookup(&mapping->page_tree, offset);
524 	if (page)
525 		page_cache_get(page);
526 	read_unlock_irq(&mapping->tree_lock);
527 	return page;
528 }
529 
530 EXPORT_SYMBOL(find_get_page);
531 
532 /*
533  * Same as above, but trylock it instead of incrementing the count.
534  */
535 struct page *find_trylock_page(struct address_space *mapping, unsigned long offset)
536 {
537 	struct page *page;
538 
539 	read_lock_irq(&mapping->tree_lock);
540 	page = radix_tree_lookup(&mapping->page_tree, offset);
541 	if (page && TestSetPageLocked(page))
542 		page = NULL;
543 	read_unlock_irq(&mapping->tree_lock);
544 	return page;
545 }
546 
547 EXPORT_SYMBOL(find_trylock_page);
548 
549 /**
550  * find_lock_page - locate, pin and lock a pagecache page
551  *
552  * @mapping: the address_space to search
553  * @offset: the page index
554  *
555  * Locates the desired pagecache page, locks it, increments its reference
556  * count and returns its address.
557  *
558  * Returns zero if the page was not present. find_lock_page() may sleep.
559  */
560 struct page *find_lock_page(struct address_space *mapping,
561 				unsigned long offset)
562 {
563 	struct page *page;
564 
565 	read_lock_irq(&mapping->tree_lock);
566 repeat:
567 	page = radix_tree_lookup(&mapping->page_tree, offset);
568 	if (page) {
569 		page_cache_get(page);
570 		if (TestSetPageLocked(page)) {
571 			read_unlock_irq(&mapping->tree_lock);
572 			__lock_page(page);
573 			read_lock_irq(&mapping->tree_lock);
574 
575 			/* Has the page been truncated while we slept? */
576 			if (unlikely(page->mapping != mapping ||
577 				     page->index != offset)) {
578 				unlock_page(page);
579 				page_cache_release(page);
580 				goto repeat;
581 			}
582 		}
583 	}
584 	read_unlock_irq(&mapping->tree_lock);
585 	return page;
586 }
587 
588 EXPORT_SYMBOL(find_lock_page);
589 
590 /**
591  * find_or_create_page - locate or add a pagecache page
592  *
593  * @mapping: the page's address_space
594  * @index: the page's index into the mapping
595  * @gfp_mask: page allocation mode
596  *
597  * Locates a page in the pagecache.  If the page is not present, a new page
598  * is allocated using @gfp_mask and is added to the pagecache and to the VM's
599  * LRU list.  The returned page is locked and has its reference count
600  * incremented.
601  *
602  * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
603  * allocation!
604  *
605  * find_or_create_page() returns the desired page's address, or zero on
606  * memory exhaustion.
607  */
608 struct page *find_or_create_page(struct address_space *mapping,
609 		unsigned long index, gfp_t gfp_mask)
610 {
611 	struct page *page, *cached_page = NULL;
612 	int err;
613 repeat:
614 	page = find_lock_page(mapping, index);
615 	if (!page) {
616 		if (!cached_page) {
617 			cached_page = alloc_page(gfp_mask);
618 			if (!cached_page)
619 				return NULL;
620 		}
621 		err = add_to_page_cache_lru(cached_page, mapping,
622 					index, gfp_mask);
623 		if (!err) {
624 			page = cached_page;
625 			cached_page = NULL;
626 		} else if (err == -EEXIST)
627 			goto repeat;
628 	}
629 	if (cached_page)
630 		page_cache_release(cached_page);
631 	return page;
632 }
633 
634 EXPORT_SYMBOL(find_or_create_page);
635 
636 /**
637  * find_get_pages - gang pagecache lookup
638  * @mapping:	The address_space to search
639  * @start:	The starting page index
640  * @nr_pages:	The maximum number of pages
641  * @pages:	Where the resulting pages are placed
642  *
643  * find_get_pages() will search for and return a group of up to
644  * @nr_pages pages in the mapping.  The pages are placed at @pages.
645  * find_get_pages() takes a reference against the returned pages.
646  *
647  * The search returns a group of mapping-contiguous pages with ascending
648  * indexes.  There may be holes in the indices due to not-present pages.
649  *
650  * find_get_pages() returns the number of pages which were found.
651  */
652 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
653 			    unsigned int nr_pages, struct page **pages)
654 {
655 	unsigned int i;
656 	unsigned int ret;
657 
658 	read_lock_irq(&mapping->tree_lock);
659 	ret = radix_tree_gang_lookup(&mapping->page_tree,
660 				(void **)pages, start, nr_pages);
661 	for (i = 0; i < ret; i++)
662 		page_cache_get(pages[i]);
663 	read_unlock_irq(&mapping->tree_lock);
664 	return ret;
665 }
666 
667 /*
668  * Like find_get_pages, except we only return pages which are tagged with
669  * `tag'.   We update *index to index the next page for the traversal.
670  */
671 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
672 			int tag, unsigned int nr_pages, struct page **pages)
673 {
674 	unsigned int i;
675 	unsigned int ret;
676 
677 	read_lock_irq(&mapping->tree_lock);
678 	ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
679 				(void **)pages, *index, nr_pages, tag);
680 	for (i = 0; i < ret; i++)
681 		page_cache_get(pages[i]);
682 	if (ret)
683 		*index = pages[ret - 1]->index + 1;
684 	read_unlock_irq(&mapping->tree_lock);
685 	return ret;
686 }
687 
688 /*
689  * Same as grab_cache_page, but do not wait if the page is unavailable.
690  * This is intended for speculative data generators, where the data can
691  * be regenerated if the page couldn't be grabbed.  This routine should
692  * be safe to call while holding the lock for another page.
693  *
694  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
695  * and deadlock against the caller's locked page.
696  */
697 struct page *
698 grab_cache_page_nowait(struct address_space *mapping, unsigned long index)
699 {
700 	struct page *page = find_get_page(mapping, index);
701 	gfp_t gfp_mask;
702 
703 	if (page) {
704 		if (!TestSetPageLocked(page))
705 			return page;
706 		page_cache_release(page);
707 		return NULL;
708 	}
709 	gfp_mask = mapping_gfp_mask(mapping) & ~__GFP_FS;
710 	page = alloc_pages(gfp_mask, 0);
711 	if (page && add_to_page_cache_lru(page, mapping, index, gfp_mask)) {
712 		page_cache_release(page);
713 		page = NULL;
714 	}
715 	return page;
716 }
717 
718 EXPORT_SYMBOL(grab_cache_page_nowait);
719 
720 /*
721  * This is a generic file read routine, and uses the
722  * mapping->a_ops->readpage() function for the actual low-level
723  * stuff.
724  *
725  * This is really ugly. But the goto's actually try to clarify some
726  * of the logic when it comes to error handling etc.
727  *
728  * Note the struct file* is only passed for the use of readpage.  It may be
729  * NULL.
730  */
731 void do_generic_mapping_read(struct address_space *mapping,
732 			     struct file_ra_state *_ra,
733 			     struct file *filp,
734 			     loff_t *ppos,
735 			     read_descriptor_t *desc,
736 			     read_actor_t actor)
737 {
738 	struct inode *inode = mapping->host;
739 	unsigned long index;
740 	unsigned long end_index;
741 	unsigned long offset;
742 	unsigned long last_index;
743 	unsigned long next_index;
744 	unsigned long prev_index;
745 	loff_t isize;
746 	struct page *cached_page;
747 	int error;
748 	struct file_ra_state ra = *_ra;
749 
750 	cached_page = NULL;
751 	index = *ppos >> PAGE_CACHE_SHIFT;
752 	next_index = index;
753 	prev_index = ra.prev_page;
754 	last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
755 	offset = *ppos & ~PAGE_CACHE_MASK;
756 
757 	isize = i_size_read(inode);
758 	if (!isize)
759 		goto out;
760 
761 	end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
762 	for (;;) {
763 		struct page *page;
764 		unsigned long nr, ret;
765 
766 		/* nr is the maximum number of bytes to copy from this page */
767 		nr = PAGE_CACHE_SIZE;
768 		if (index >= end_index) {
769 			if (index > end_index)
770 				goto out;
771 			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
772 			if (nr <= offset) {
773 				goto out;
774 			}
775 		}
776 		nr = nr - offset;
777 
778 		cond_resched();
779 		if (index == next_index)
780 			next_index = page_cache_readahead(mapping, &ra, filp,
781 					index, last_index - index);
782 
783 find_page:
784 		page = find_get_page(mapping, index);
785 		if (unlikely(page == NULL)) {
786 			handle_ra_miss(mapping, &ra, index);
787 			goto no_cached_page;
788 		}
789 		if (!PageUptodate(page))
790 			goto page_not_up_to_date;
791 page_ok:
792 
793 		/* If users can be writing to this page using arbitrary
794 		 * virtual addresses, take care about potential aliasing
795 		 * before reading the page on the kernel side.
796 		 */
797 		if (mapping_writably_mapped(mapping))
798 			flush_dcache_page(page);
799 
800 		/*
801 		 * When (part of) the same page is read multiple times
802 		 * in succession, only mark it as accessed the first time.
803 		 */
804 		if (prev_index != index)
805 			mark_page_accessed(page);
806 		prev_index = index;
807 
808 		/*
809 		 * Ok, we have the page, and it's up-to-date, so
810 		 * now we can copy it to user space...
811 		 *
812 		 * The actor routine returns how many bytes were actually used..
813 		 * NOTE! This may not be the same as how much of a user buffer
814 		 * we filled up (we may be padding etc), so we can only update
815 		 * "pos" here (the actor routine has to update the user buffer
816 		 * pointers and the remaining count).
817 		 */
818 		ret = actor(desc, page, offset, nr);
819 		offset += ret;
820 		index += offset >> PAGE_CACHE_SHIFT;
821 		offset &= ~PAGE_CACHE_MASK;
822 
823 		page_cache_release(page);
824 		if (ret == nr && desc->count)
825 			continue;
826 		goto out;
827 
828 page_not_up_to_date:
829 		/* Get exclusive access to the page ... */
830 		lock_page(page);
831 
832 		/* Did it get unhashed before we got the lock? */
833 		if (!page->mapping) {
834 			unlock_page(page);
835 			page_cache_release(page);
836 			continue;
837 		}
838 
839 		/* Did somebody else fill it already? */
840 		if (PageUptodate(page)) {
841 			unlock_page(page);
842 			goto page_ok;
843 		}
844 
845 readpage:
846 		/* Start the actual read. The read will unlock the page. */
847 		error = mapping->a_ops->readpage(filp, page);
848 
849 		if (unlikely(error)) {
850 			if (error == AOP_TRUNCATED_PAGE) {
851 				page_cache_release(page);
852 				goto find_page;
853 			}
854 			goto readpage_error;
855 		}
856 
857 		if (!PageUptodate(page)) {
858 			lock_page(page);
859 			if (!PageUptodate(page)) {
860 				if (page->mapping == NULL) {
861 					/*
862 					 * invalidate_inode_pages got it
863 					 */
864 					unlock_page(page);
865 					page_cache_release(page);
866 					goto find_page;
867 				}
868 				unlock_page(page);
869 				error = -EIO;
870 				goto readpage_error;
871 			}
872 			unlock_page(page);
873 		}
874 
875 		/*
876 		 * i_size must be checked after we have done ->readpage.
877 		 *
878 		 * Checking i_size after the readpage allows us to calculate
879 		 * the correct value for "nr", which means the zero-filled
880 		 * part of the page is not copied back to userspace (unless
881 		 * another truncate extends the file - this is desired though).
882 		 */
883 		isize = i_size_read(inode);
884 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
885 		if (unlikely(!isize || index > end_index)) {
886 			page_cache_release(page);
887 			goto out;
888 		}
889 
890 		/* nr is the maximum number of bytes to copy from this page */
891 		nr = PAGE_CACHE_SIZE;
892 		if (index == end_index) {
893 			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
894 			if (nr <= offset) {
895 				page_cache_release(page);
896 				goto out;
897 			}
898 		}
899 		nr = nr - offset;
900 		goto page_ok;
901 
902 readpage_error:
903 		/* UHHUH! A synchronous read error occurred. Report it */
904 		desc->error = error;
905 		page_cache_release(page);
906 		goto out;
907 
908 no_cached_page:
909 		/*
910 		 * Ok, it wasn't cached, so we need to create a new
911 		 * page..
912 		 */
913 		if (!cached_page) {
914 			cached_page = page_cache_alloc_cold(mapping);
915 			if (!cached_page) {
916 				desc->error = -ENOMEM;
917 				goto out;
918 			}
919 		}
920 		error = add_to_page_cache_lru(cached_page, mapping,
921 						index, GFP_KERNEL);
922 		if (error) {
923 			if (error == -EEXIST)
924 				goto find_page;
925 			desc->error = error;
926 			goto out;
927 		}
928 		page = cached_page;
929 		cached_page = NULL;
930 		goto readpage;
931 	}
932 
933 out:
934 	*_ra = ra;
935 
936 	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
937 	if (cached_page)
938 		page_cache_release(cached_page);
939 	if (filp)
940 		file_accessed(filp);
941 }
942 
943 EXPORT_SYMBOL(do_generic_mapping_read);
944 
945 int file_read_actor(read_descriptor_t *desc, struct page *page,
946 			unsigned long offset, unsigned long size)
947 {
948 	char *kaddr;
949 	unsigned long left, count = desc->count;
950 
951 	if (size > count)
952 		size = count;
953 
954 	/*
955 	 * Faults on the destination of a read are common, so do it before
956 	 * taking the kmap.
957 	 */
958 	if (!fault_in_pages_writeable(desc->arg.buf, size)) {
959 		kaddr = kmap_atomic(page, KM_USER0);
960 		left = __copy_to_user_inatomic(desc->arg.buf,
961 						kaddr + offset, size);
962 		kunmap_atomic(kaddr, KM_USER0);
963 		if (left == 0)
964 			goto success;
965 	}
966 
967 	/* Do it the slow way */
968 	kaddr = kmap(page);
969 	left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
970 	kunmap(page);
971 
972 	if (left) {
973 		size -= left;
974 		desc->error = -EFAULT;
975 	}
976 success:
977 	desc->count = count - size;
978 	desc->written += size;
979 	desc->arg.buf += size;
980 	return size;
981 }
982 
983 /*
984  * This is the "read()" routine for all filesystems
985  * that can use the page cache directly.
986  */
987 ssize_t
988 __generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
989 		unsigned long nr_segs, loff_t *ppos)
990 {
991 	struct file *filp = iocb->ki_filp;
992 	ssize_t retval;
993 	unsigned long seg;
994 	size_t count;
995 
996 	count = 0;
997 	for (seg = 0; seg < nr_segs; seg++) {
998 		const struct iovec *iv = &iov[seg];
999 
1000 		/*
1001 		 * If any segment has a negative length, or the cumulative
1002 		 * length ever wraps negative then return -EINVAL.
1003 		 */
1004 		count += iv->iov_len;
1005 		if (unlikely((ssize_t)(count|iv->iov_len) < 0))
1006 			return -EINVAL;
1007 		if (access_ok(VERIFY_WRITE, iv->iov_base, iv->iov_len))
1008 			continue;
1009 		if (seg == 0)
1010 			return -EFAULT;
1011 		nr_segs = seg;
1012 		count -= iv->iov_len;	/* This segment is no good */
1013 		break;
1014 	}
1015 
1016 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1017 	if (filp->f_flags & O_DIRECT) {
1018 		loff_t pos = *ppos, size;
1019 		struct address_space *mapping;
1020 		struct inode *inode;
1021 
1022 		mapping = filp->f_mapping;
1023 		inode = mapping->host;
1024 		retval = 0;
1025 		if (!count)
1026 			goto out; /* skip atime */
1027 		size = i_size_read(inode);
1028 		if (pos < size) {
1029 			retval = generic_file_direct_IO(READ, iocb,
1030 						iov, pos, nr_segs);
1031 			if (retval > 0 && !is_sync_kiocb(iocb))
1032 				retval = -EIOCBQUEUED;
1033 			if (retval > 0)
1034 				*ppos = pos + retval;
1035 		}
1036 		file_accessed(filp);
1037 		goto out;
1038 	}
1039 
1040 	retval = 0;
1041 	if (count) {
1042 		for (seg = 0; seg < nr_segs; seg++) {
1043 			read_descriptor_t desc;
1044 
1045 			desc.written = 0;
1046 			desc.arg.buf = iov[seg].iov_base;
1047 			desc.count = iov[seg].iov_len;
1048 			if (desc.count == 0)
1049 				continue;
1050 			desc.error = 0;
1051 			do_generic_file_read(filp,ppos,&desc,file_read_actor);
1052 			retval += desc.written;
1053 			if (desc.error) {
1054 				retval = retval ?: desc.error;
1055 				break;
1056 			}
1057 		}
1058 	}
1059 out:
1060 	return retval;
1061 }
1062 
1063 EXPORT_SYMBOL(__generic_file_aio_read);
1064 
1065 ssize_t
1066 generic_file_aio_read(struct kiocb *iocb, char __user *buf, size_t count, loff_t pos)
1067 {
1068 	struct iovec local_iov = { .iov_base = buf, .iov_len = count };
1069 
1070 	BUG_ON(iocb->ki_pos != pos);
1071 	return __generic_file_aio_read(iocb, &local_iov, 1, &iocb->ki_pos);
1072 }
1073 
1074 EXPORT_SYMBOL(generic_file_aio_read);
1075 
1076 ssize_t
1077 generic_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
1078 {
1079 	struct iovec local_iov = { .iov_base = buf, .iov_len = count };
1080 	struct kiocb kiocb;
1081 	ssize_t ret;
1082 
1083 	init_sync_kiocb(&kiocb, filp);
1084 	ret = __generic_file_aio_read(&kiocb, &local_iov, 1, ppos);
1085 	if (-EIOCBQUEUED == ret)
1086 		ret = wait_on_sync_kiocb(&kiocb);
1087 	return ret;
1088 }
1089 
1090 EXPORT_SYMBOL(generic_file_read);
1091 
1092 int file_send_actor(read_descriptor_t * desc, struct page *page, unsigned long offset, unsigned long size)
1093 {
1094 	ssize_t written;
1095 	unsigned long count = desc->count;
1096 	struct file *file = desc->arg.data;
1097 
1098 	if (size > count)
1099 		size = count;
1100 
1101 	written = file->f_op->sendpage(file, page, offset,
1102 				       size, &file->f_pos, size<count);
1103 	if (written < 0) {
1104 		desc->error = written;
1105 		written = 0;
1106 	}
1107 	desc->count = count - written;
1108 	desc->written += written;
1109 	return written;
1110 }
1111 
1112 ssize_t generic_file_sendfile(struct file *in_file, loff_t *ppos,
1113 			 size_t count, read_actor_t actor, void *target)
1114 {
1115 	read_descriptor_t desc;
1116 
1117 	if (!count)
1118 		return 0;
1119 
1120 	desc.written = 0;
1121 	desc.count = count;
1122 	desc.arg.data = target;
1123 	desc.error = 0;
1124 
1125 	do_generic_file_read(in_file, ppos, &desc, actor);
1126 	if (desc.written)
1127 		return desc.written;
1128 	return desc.error;
1129 }
1130 
1131 EXPORT_SYMBOL(generic_file_sendfile);
1132 
1133 static ssize_t
1134 do_readahead(struct address_space *mapping, struct file *filp,
1135 	     unsigned long index, unsigned long nr)
1136 {
1137 	if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1138 		return -EINVAL;
1139 
1140 	force_page_cache_readahead(mapping, filp, index,
1141 					max_sane_readahead(nr));
1142 	return 0;
1143 }
1144 
1145 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1146 {
1147 	ssize_t ret;
1148 	struct file *file;
1149 
1150 	ret = -EBADF;
1151 	file = fget(fd);
1152 	if (file) {
1153 		if (file->f_mode & FMODE_READ) {
1154 			struct address_space *mapping = file->f_mapping;
1155 			unsigned long start = offset >> PAGE_CACHE_SHIFT;
1156 			unsigned long end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1157 			unsigned long len = end - start + 1;
1158 			ret = do_readahead(mapping, file, start, len);
1159 		}
1160 		fput(file);
1161 	}
1162 	return ret;
1163 }
1164 
1165 #ifdef CONFIG_MMU
1166 /*
1167  * This adds the requested page to the page cache if it isn't already there,
1168  * and schedules an I/O to read in its contents from disk.
1169  */
1170 static int FASTCALL(page_cache_read(struct file * file, unsigned long offset));
1171 static int fastcall page_cache_read(struct file * file, unsigned long offset)
1172 {
1173 	struct address_space *mapping = file->f_mapping;
1174 	struct page *page;
1175 	int ret;
1176 
1177 	do {
1178 		page = page_cache_alloc_cold(mapping);
1179 		if (!page)
1180 			return -ENOMEM;
1181 
1182 		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1183 		if (ret == 0)
1184 			ret = mapping->a_ops->readpage(file, page);
1185 		else if (ret == -EEXIST)
1186 			ret = 0; /* losing race to add is OK */
1187 
1188 		page_cache_release(page);
1189 
1190 	} while (ret == AOP_TRUNCATED_PAGE);
1191 
1192 	return ret;
1193 }
1194 
1195 #define MMAP_LOTSAMISS  (100)
1196 
1197 /*
1198  * filemap_nopage() is invoked via the vma operations vector for a
1199  * mapped memory region to read in file data during a page fault.
1200  *
1201  * The goto's are kind of ugly, but this streamlines the normal case of having
1202  * it in the page cache, and handles the special cases reasonably without
1203  * having a lot of duplicated code.
1204  */
1205 struct page *filemap_nopage(struct vm_area_struct *area,
1206 				unsigned long address, int *type)
1207 {
1208 	int error;
1209 	struct file *file = area->vm_file;
1210 	struct address_space *mapping = file->f_mapping;
1211 	struct file_ra_state *ra = &file->f_ra;
1212 	struct inode *inode = mapping->host;
1213 	struct page *page;
1214 	unsigned long size, pgoff;
1215 	int did_readaround = 0, majmin = VM_FAULT_MINOR;
1216 
1217 	pgoff = ((address-area->vm_start) >> PAGE_CACHE_SHIFT) + area->vm_pgoff;
1218 
1219 retry_all:
1220 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1221 	if (pgoff >= size)
1222 		goto outside_data_content;
1223 
1224 	/* If we don't want any read-ahead, don't bother */
1225 	if (VM_RandomReadHint(area))
1226 		goto no_cached_page;
1227 
1228 	/*
1229 	 * The readahead code wants to be told about each and every page
1230 	 * so it can build and shrink its windows appropriately
1231 	 *
1232 	 * For sequential accesses, we use the generic readahead logic.
1233 	 */
1234 	if (VM_SequentialReadHint(area))
1235 		page_cache_readahead(mapping, ra, file, pgoff, 1);
1236 
1237 	/*
1238 	 * Do we have something in the page cache already?
1239 	 */
1240 retry_find:
1241 	page = find_get_page(mapping, pgoff);
1242 	if (!page) {
1243 		unsigned long ra_pages;
1244 
1245 		if (VM_SequentialReadHint(area)) {
1246 			handle_ra_miss(mapping, ra, pgoff);
1247 			goto no_cached_page;
1248 		}
1249 		ra->mmap_miss++;
1250 
1251 		/*
1252 		 * Do we miss much more than hit in this file? If so,
1253 		 * stop bothering with read-ahead. It will only hurt.
1254 		 */
1255 		if (ra->mmap_miss > ra->mmap_hit + MMAP_LOTSAMISS)
1256 			goto no_cached_page;
1257 
1258 		/*
1259 		 * To keep the pgmajfault counter straight, we need to
1260 		 * check did_readaround, as this is an inner loop.
1261 		 */
1262 		if (!did_readaround) {
1263 			majmin = VM_FAULT_MAJOR;
1264 			inc_page_state(pgmajfault);
1265 		}
1266 		did_readaround = 1;
1267 		ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1268 		if (ra_pages) {
1269 			pgoff_t start = 0;
1270 
1271 			if (pgoff > ra_pages / 2)
1272 				start = pgoff - ra_pages / 2;
1273 			do_page_cache_readahead(mapping, file, start, ra_pages);
1274 		}
1275 		page = find_get_page(mapping, pgoff);
1276 		if (!page)
1277 			goto no_cached_page;
1278 	}
1279 
1280 	if (!did_readaround)
1281 		ra->mmap_hit++;
1282 
1283 	/*
1284 	 * Ok, found a page in the page cache, now we need to check
1285 	 * that it's up-to-date.
1286 	 */
1287 	if (!PageUptodate(page))
1288 		goto page_not_uptodate;
1289 
1290 success:
1291 	/*
1292 	 * Found the page and have a reference on it.
1293 	 */
1294 	mark_page_accessed(page);
1295 	if (type)
1296 		*type = majmin;
1297 	return page;
1298 
1299 outside_data_content:
1300 	/*
1301 	 * An external ptracer can access pages that normally aren't
1302 	 * accessible..
1303 	 */
1304 	if (area->vm_mm == current->mm)
1305 		return NULL;
1306 	/* Fall through to the non-read-ahead case */
1307 no_cached_page:
1308 	/*
1309 	 * We're only likely to ever get here if MADV_RANDOM is in
1310 	 * effect.
1311 	 */
1312 	error = page_cache_read(file, pgoff);
1313 	grab_swap_token();
1314 
1315 	/*
1316 	 * The page we want has now been added to the page cache.
1317 	 * In the unlikely event that someone removed it in the
1318 	 * meantime, we'll just come back here and read it again.
1319 	 */
1320 	if (error >= 0)
1321 		goto retry_find;
1322 
1323 	/*
1324 	 * An error return from page_cache_read can result if the
1325 	 * system is low on memory, or a problem occurs while trying
1326 	 * to schedule I/O.
1327 	 */
1328 	if (error == -ENOMEM)
1329 		return NOPAGE_OOM;
1330 	return NULL;
1331 
1332 page_not_uptodate:
1333 	if (!did_readaround) {
1334 		majmin = VM_FAULT_MAJOR;
1335 		inc_page_state(pgmajfault);
1336 	}
1337 	lock_page(page);
1338 
1339 	/* Did it get unhashed while we waited for it? */
1340 	if (!page->mapping) {
1341 		unlock_page(page);
1342 		page_cache_release(page);
1343 		goto retry_all;
1344 	}
1345 
1346 	/* Did somebody else get it up-to-date? */
1347 	if (PageUptodate(page)) {
1348 		unlock_page(page);
1349 		goto success;
1350 	}
1351 
1352 	error = mapping->a_ops->readpage(file, page);
1353 	if (!error) {
1354 		wait_on_page_locked(page);
1355 		if (PageUptodate(page))
1356 			goto success;
1357 	} else if (error == AOP_TRUNCATED_PAGE) {
1358 		page_cache_release(page);
1359 		goto retry_find;
1360 	}
1361 
1362 	/*
1363 	 * Umm, take care of errors if the page isn't up-to-date.
1364 	 * Try to re-read it _once_. We do this synchronously,
1365 	 * because there really aren't any performance issues here
1366 	 * and we need to check for errors.
1367 	 */
1368 	lock_page(page);
1369 
1370 	/* Somebody truncated the page on us? */
1371 	if (!page->mapping) {
1372 		unlock_page(page);
1373 		page_cache_release(page);
1374 		goto retry_all;
1375 	}
1376 
1377 	/* Somebody else successfully read it in? */
1378 	if (PageUptodate(page)) {
1379 		unlock_page(page);
1380 		goto success;
1381 	}
1382 	ClearPageError(page);
1383 	error = mapping->a_ops->readpage(file, page);
1384 	if (!error) {
1385 		wait_on_page_locked(page);
1386 		if (PageUptodate(page))
1387 			goto success;
1388 	} else if (error == AOP_TRUNCATED_PAGE) {
1389 		page_cache_release(page);
1390 		goto retry_find;
1391 	}
1392 
1393 	/*
1394 	 * Things didn't work out. Return zero to tell the
1395 	 * mm layer so, possibly freeing the page cache page first.
1396 	 */
1397 	page_cache_release(page);
1398 	return NULL;
1399 }
1400 
1401 EXPORT_SYMBOL(filemap_nopage);
1402 
1403 static struct page * filemap_getpage(struct file *file, unsigned long pgoff,
1404 					int nonblock)
1405 {
1406 	struct address_space *mapping = file->f_mapping;
1407 	struct page *page;
1408 	int error;
1409 
1410 	/*
1411 	 * Do we have something in the page cache already?
1412 	 */
1413 retry_find:
1414 	page = find_get_page(mapping, pgoff);
1415 	if (!page) {
1416 		if (nonblock)
1417 			return NULL;
1418 		goto no_cached_page;
1419 	}
1420 
1421 	/*
1422 	 * Ok, found a page in the page cache, now we need to check
1423 	 * that it's up-to-date.
1424 	 */
1425 	if (!PageUptodate(page)) {
1426 		if (nonblock) {
1427 			page_cache_release(page);
1428 			return NULL;
1429 		}
1430 		goto page_not_uptodate;
1431 	}
1432 
1433 success:
1434 	/*
1435 	 * Found the page and have a reference on it.
1436 	 */
1437 	mark_page_accessed(page);
1438 	return page;
1439 
1440 no_cached_page:
1441 	error = page_cache_read(file, pgoff);
1442 
1443 	/*
1444 	 * The page we want has now been added to the page cache.
1445 	 * In the unlikely event that someone removed it in the
1446 	 * meantime, we'll just come back here and read it again.
1447 	 */
1448 	if (error >= 0)
1449 		goto retry_find;
1450 
1451 	/*
1452 	 * An error return from page_cache_read can result if the
1453 	 * system is low on memory, or a problem occurs while trying
1454 	 * to schedule I/O.
1455 	 */
1456 	return NULL;
1457 
1458 page_not_uptodate:
1459 	lock_page(page);
1460 
1461 	/* Did it get unhashed while we waited for it? */
1462 	if (!page->mapping) {
1463 		unlock_page(page);
1464 		goto err;
1465 	}
1466 
1467 	/* Did somebody else get it up-to-date? */
1468 	if (PageUptodate(page)) {
1469 		unlock_page(page);
1470 		goto success;
1471 	}
1472 
1473 	error = mapping->a_ops->readpage(file, page);
1474 	if (!error) {
1475 		wait_on_page_locked(page);
1476 		if (PageUptodate(page))
1477 			goto success;
1478 	} else if (error == AOP_TRUNCATED_PAGE) {
1479 		page_cache_release(page);
1480 		goto retry_find;
1481 	}
1482 
1483 	/*
1484 	 * Umm, take care of errors if the page isn't up-to-date.
1485 	 * Try to re-read it _once_. We do this synchronously,
1486 	 * because there really aren't any performance issues here
1487 	 * and we need to check for errors.
1488 	 */
1489 	lock_page(page);
1490 
1491 	/* Somebody truncated the page on us? */
1492 	if (!page->mapping) {
1493 		unlock_page(page);
1494 		goto err;
1495 	}
1496 	/* Somebody else successfully read it in? */
1497 	if (PageUptodate(page)) {
1498 		unlock_page(page);
1499 		goto success;
1500 	}
1501 
1502 	ClearPageError(page);
1503 	error = mapping->a_ops->readpage(file, page);
1504 	if (!error) {
1505 		wait_on_page_locked(page);
1506 		if (PageUptodate(page))
1507 			goto success;
1508 	} else if (error == AOP_TRUNCATED_PAGE) {
1509 		page_cache_release(page);
1510 		goto retry_find;
1511 	}
1512 
1513 	/*
1514 	 * Things didn't work out. Return zero to tell the
1515 	 * mm layer so, possibly freeing the page cache page first.
1516 	 */
1517 err:
1518 	page_cache_release(page);
1519 
1520 	return NULL;
1521 }
1522 
1523 int filemap_populate(struct vm_area_struct *vma, unsigned long addr,
1524 		unsigned long len, pgprot_t prot, unsigned long pgoff,
1525 		int nonblock)
1526 {
1527 	struct file *file = vma->vm_file;
1528 	struct address_space *mapping = file->f_mapping;
1529 	struct inode *inode = mapping->host;
1530 	unsigned long size;
1531 	struct mm_struct *mm = vma->vm_mm;
1532 	struct page *page;
1533 	int err;
1534 
1535 	if (!nonblock)
1536 		force_page_cache_readahead(mapping, vma->vm_file,
1537 					pgoff, len >> PAGE_CACHE_SHIFT);
1538 
1539 repeat:
1540 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1541 	if (pgoff + (len >> PAGE_CACHE_SHIFT) > size)
1542 		return -EINVAL;
1543 
1544 	page = filemap_getpage(file, pgoff, nonblock);
1545 
1546 	/* XXX: This is wrong, a filesystem I/O error may have happened. Fix that as
1547 	 * done in shmem_populate calling shmem_getpage */
1548 	if (!page && !nonblock)
1549 		return -ENOMEM;
1550 
1551 	if (page) {
1552 		err = install_page(mm, vma, addr, page, prot);
1553 		if (err) {
1554 			page_cache_release(page);
1555 			return err;
1556 		}
1557 	} else if (vma->vm_flags & VM_NONLINEAR) {
1558 		/* No page was found just because we can't read it in now (being
1559 		 * here implies nonblock != 0), but the page may exist, so set
1560 		 * the PTE to fault it in later. */
1561 		err = install_file_pte(mm, vma, addr, pgoff, prot);
1562 		if (err)
1563 			return err;
1564 	}
1565 
1566 	len -= PAGE_SIZE;
1567 	addr += PAGE_SIZE;
1568 	pgoff++;
1569 	if (len)
1570 		goto repeat;
1571 
1572 	return 0;
1573 }
1574 EXPORT_SYMBOL(filemap_populate);
1575 
1576 struct vm_operations_struct generic_file_vm_ops = {
1577 	.nopage		= filemap_nopage,
1578 	.populate	= filemap_populate,
1579 };
1580 
1581 /* This is used for a general mmap of a disk file */
1582 
1583 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1584 {
1585 	struct address_space *mapping = file->f_mapping;
1586 
1587 	if (!mapping->a_ops->readpage)
1588 		return -ENOEXEC;
1589 	file_accessed(file);
1590 	vma->vm_ops = &generic_file_vm_ops;
1591 	return 0;
1592 }
1593 
1594 /*
1595  * This is for filesystems which do not implement ->writepage.
1596  */
1597 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1598 {
1599 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1600 		return -EINVAL;
1601 	return generic_file_mmap(file, vma);
1602 }
1603 #else
1604 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1605 {
1606 	return -ENOSYS;
1607 }
1608 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1609 {
1610 	return -ENOSYS;
1611 }
1612 #endif /* CONFIG_MMU */
1613 
1614 EXPORT_SYMBOL(generic_file_mmap);
1615 EXPORT_SYMBOL(generic_file_readonly_mmap);
1616 
1617 static inline struct page *__read_cache_page(struct address_space *mapping,
1618 				unsigned long index,
1619 				int (*filler)(void *,struct page*),
1620 				void *data)
1621 {
1622 	struct page *page, *cached_page = NULL;
1623 	int err;
1624 repeat:
1625 	page = find_get_page(mapping, index);
1626 	if (!page) {
1627 		if (!cached_page) {
1628 			cached_page = page_cache_alloc_cold(mapping);
1629 			if (!cached_page)
1630 				return ERR_PTR(-ENOMEM);
1631 		}
1632 		err = add_to_page_cache_lru(cached_page, mapping,
1633 					index, GFP_KERNEL);
1634 		if (err == -EEXIST)
1635 			goto repeat;
1636 		if (err < 0) {
1637 			/* Presumably ENOMEM for radix tree node */
1638 			page_cache_release(cached_page);
1639 			return ERR_PTR(err);
1640 		}
1641 		page = cached_page;
1642 		cached_page = NULL;
1643 		err = filler(data, page);
1644 		if (err < 0) {
1645 			page_cache_release(page);
1646 			page = ERR_PTR(err);
1647 		}
1648 	}
1649 	if (cached_page)
1650 		page_cache_release(cached_page);
1651 	return page;
1652 }
1653 
1654 /*
1655  * Read into the page cache. If a page already exists,
1656  * and PageUptodate() is not set, try to fill the page.
1657  */
1658 struct page *read_cache_page(struct address_space *mapping,
1659 				unsigned long index,
1660 				int (*filler)(void *,struct page*),
1661 				void *data)
1662 {
1663 	struct page *page;
1664 	int err;
1665 
1666 retry:
1667 	page = __read_cache_page(mapping, index, filler, data);
1668 	if (IS_ERR(page))
1669 		goto out;
1670 	mark_page_accessed(page);
1671 	if (PageUptodate(page))
1672 		goto out;
1673 
1674 	lock_page(page);
1675 	if (!page->mapping) {
1676 		unlock_page(page);
1677 		page_cache_release(page);
1678 		goto retry;
1679 	}
1680 	if (PageUptodate(page)) {
1681 		unlock_page(page);
1682 		goto out;
1683 	}
1684 	err = filler(data, page);
1685 	if (err < 0) {
1686 		page_cache_release(page);
1687 		page = ERR_PTR(err);
1688 	}
1689  out:
1690 	return page;
1691 }
1692 
1693 EXPORT_SYMBOL(read_cache_page);
1694 
1695 /*
1696  * If the page was newly created, increment its refcount and add it to the
1697  * caller's lru-buffering pagevec.  This function is specifically for
1698  * generic_file_write().
1699  */
1700 static inline struct page *
1701 __grab_cache_page(struct address_space *mapping, unsigned long index,
1702 			struct page **cached_page, struct pagevec *lru_pvec)
1703 {
1704 	int err;
1705 	struct page *page;
1706 repeat:
1707 	page = find_lock_page(mapping, index);
1708 	if (!page) {
1709 		if (!*cached_page) {
1710 			*cached_page = page_cache_alloc(mapping);
1711 			if (!*cached_page)
1712 				return NULL;
1713 		}
1714 		err = add_to_page_cache(*cached_page, mapping,
1715 					index, GFP_KERNEL);
1716 		if (err == -EEXIST)
1717 			goto repeat;
1718 		if (err == 0) {
1719 			page = *cached_page;
1720 			page_cache_get(page);
1721 			if (!pagevec_add(lru_pvec, page))
1722 				__pagevec_lru_add(lru_pvec);
1723 			*cached_page = NULL;
1724 		}
1725 	}
1726 	return page;
1727 }
1728 
1729 /*
1730  * The logic we want is
1731  *
1732  *	if suid or (sgid and xgrp)
1733  *		remove privs
1734  */
1735 int remove_suid(struct dentry *dentry)
1736 {
1737 	mode_t mode = dentry->d_inode->i_mode;
1738 	int kill = 0;
1739 	int result = 0;
1740 
1741 	/* suid always must be killed */
1742 	if (unlikely(mode & S_ISUID))
1743 		kill = ATTR_KILL_SUID;
1744 
1745 	/*
1746 	 * sgid without any exec bits is just a mandatory locking mark; leave
1747 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1748 	 */
1749 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1750 		kill |= ATTR_KILL_SGID;
1751 
1752 	if (unlikely(kill && !capable(CAP_FSETID))) {
1753 		struct iattr newattrs;
1754 
1755 		newattrs.ia_valid = ATTR_FORCE | kill;
1756 		result = notify_change(dentry, &newattrs);
1757 	}
1758 	return result;
1759 }
1760 EXPORT_SYMBOL(remove_suid);
1761 
1762 size_t
1763 __filemap_copy_from_user_iovec(char *vaddr,
1764 			const struct iovec *iov, size_t base, size_t bytes)
1765 {
1766 	size_t copied = 0, left = 0;
1767 
1768 	while (bytes) {
1769 		char __user *buf = iov->iov_base + base;
1770 		int copy = min(bytes, iov->iov_len - base);
1771 
1772 		base = 0;
1773 		left = __copy_from_user_inatomic(vaddr, buf, copy);
1774 		copied += copy;
1775 		bytes -= copy;
1776 		vaddr += copy;
1777 		iov++;
1778 
1779 		if (unlikely(left)) {
1780 			/* zero the rest of the target like __copy_from_user */
1781 			if (bytes)
1782 				memset(vaddr, 0, bytes);
1783 			break;
1784 		}
1785 	}
1786 	return copied - left;
1787 }
1788 
1789 /*
1790  * Performs necessary checks before doing a write
1791  *
1792  * Can adjust writing position aor amount of bytes to write.
1793  * Returns appropriate error code that caller should return or
1794  * zero in case that write should be allowed.
1795  */
1796 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1797 {
1798 	struct inode *inode = file->f_mapping->host;
1799 	unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1800 
1801         if (unlikely(*pos < 0))
1802                 return -EINVAL;
1803 
1804 	if (!isblk) {
1805 		/* FIXME: this is for backwards compatibility with 2.4 */
1806 		if (file->f_flags & O_APPEND)
1807                         *pos = i_size_read(inode);
1808 
1809 		if (limit != RLIM_INFINITY) {
1810 			if (*pos >= limit) {
1811 				send_sig(SIGXFSZ, current, 0);
1812 				return -EFBIG;
1813 			}
1814 			if (*count > limit - (typeof(limit))*pos) {
1815 				*count = limit - (typeof(limit))*pos;
1816 			}
1817 		}
1818 	}
1819 
1820 	/*
1821 	 * LFS rule
1822 	 */
1823 	if (unlikely(*pos + *count > MAX_NON_LFS &&
1824 				!(file->f_flags & O_LARGEFILE))) {
1825 		if (*pos >= MAX_NON_LFS) {
1826 			send_sig(SIGXFSZ, current, 0);
1827 			return -EFBIG;
1828 		}
1829 		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1830 			*count = MAX_NON_LFS - (unsigned long)*pos;
1831 		}
1832 	}
1833 
1834 	/*
1835 	 * Are we about to exceed the fs block limit ?
1836 	 *
1837 	 * If we have written data it becomes a short write.  If we have
1838 	 * exceeded without writing data we send a signal and return EFBIG.
1839 	 * Linus frestrict idea will clean these up nicely..
1840 	 */
1841 	if (likely(!isblk)) {
1842 		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
1843 			if (*count || *pos > inode->i_sb->s_maxbytes) {
1844 				send_sig(SIGXFSZ, current, 0);
1845 				return -EFBIG;
1846 			}
1847 			/* zero-length writes at ->s_maxbytes are OK */
1848 		}
1849 
1850 		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
1851 			*count = inode->i_sb->s_maxbytes - *pos;
1852 	} else {
1853 		loff_t isize;
1854 		if (bdev_read_only(I_BDEV(inode)))
1855 			return -EPERM;
1856 		isize = i_size_read(inode);
1857 		if (*pos >= isize) {
1858 			if (*count || *pos > isize)
1859 				return -ENOSPC;
1860 		}
1861 
1862 		if (*pos + *count > isize)
1863 			*count = isize - *pos;
1864 	}
1865 	return 0;
1866 }
1867 EXPORT_SYMBOL(generic_write_checks);
1868 
1869 ssize_t
1870 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
1871 		unsigned long *nr_segs, loff_t pos, loff_t *ppos,
1872 		size_t count, size_t ocount)
1873 {
1874 	struct file	*file = iocb->ki_filp;
1875 	struct address_space *mapping = file->f_mapping;
1876 	struct inode	*inode = mapping->host;
1877 	ssize_t		written;
1878 
1879 	if (count != ocount)
1880 		*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
1881 
1882 	written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
1883 	if (written > 0) {
1884 		loff_t end = pos + written;
1885 		if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
1886 			i_size_write(inode,  end);
1887 			mark_inode_dirty(inode);
1888 		}
1889 		*ppos = end;
1890 	}
1891 
1892 	/*
1893 	 * Sync the fs metadata but not the minor inode changes and
1894 	 * of course not the data as we did direct DMA for the IO.
1895 	 * i_mutex is held, which protects generic_osync_inode() from
1896 	 * livelocking.
1897 	 */
1898 	if (written >= 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
1899 		int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
1900 		if (err < 0)
1901 			written = err;
1902 	}
1903 	if (written == count && !is_sync_kiocb(iocb))
1904 		written = -EIOCBQUEUED;
1905 	return written;
1906 }
1907 EXPORT_SYMBOL(generic_file_direct_write);
1908 
1909 ssize_t
1910 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
1911 		unsigned long nr_segs, loff_t pos, loff_t *ppos,
1912 		size_t count, ssize_t written)
1913 {
1914 	struct file *file = iocb->ki_filp;
1915 	struct address_space * mapping = file->f_mapping;
1916 	struct address_space_operations *a_ops = mapping->a_ops;
1917 	struct inode 	*inode = mapping->host;
1918 	long		status = 0;
1919 	struct page	*page;
1920 	struct page	*cached_page = NULL;
1921 	size_t		bytes;
1922 	struct pagevec	lru_pvec;
1923 	const struct iovec *cur_iov = iov; /* current iovec */
1924 	size_t		iov_base = 0;	   /* offset in the current iovec */
1925 	char __user	*buf;
1926 
1927 	pagevec_init(&lru_pvec, 0);
1928 
1929 	/*
1930 	 * handle partial DIO write.  Adjust cur_iov if needed.
1931 	 */
1932 	if (likely(nr_segs == 1))
1933 		buf = iov->iov_base + written;
1934 	else {
1935 		filemap_set_next_iovec(&cur_iov, &iov_base, written);
1936 		buf = cur_iov->iov_base + iov_base;
1937 	}
1938 
1939 	do {
1940 		unsigned long index;
1941 		unsigned long offset;
1942 		unsigned long maxlen;
1943 		size_t copied;
1944 
1945 		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
1946 		index = pos >> PAGE_CACHE_SHIFT;
1947 		bytes = PAGE_CACHE_SIZE - offset;
1948 		if (bytes > count)
1949 			bytes = count;
1950 
1951 		/*
1952 		 * Bring in the user page that we will copy from _first_.
1953 		 * Otherwise there's a nasty deadlock on copying from the
1954 		 * same page as we're writing to, without it being marked
1955 		 * up-to-date.
1956 		 */
1957 		maxlen = cur_iov->iov_len - iov_base;
1958 		if (maxlen > bytes)
1959 			maxlen = bytes;
1960 		fault_in_pages_readable(buf, maxlen);
1961 
1962 		page = __grab_cache_page(mapping,index,&cached_page,&lru_pvec);
1963 		if (!page) {
1964 			status = -ENOMEM;
1965 			break;
1966 		}
1967 
1968 		status = a_ops->prepare_write(file, page, offset, offset+bytes);
1969 		if (unlikely(status)) {
1970 			loff_t isize = i_size_read(inode);
1971 
1972 			if (status != AOP_TRUNCATED_PAGE)
1973 				unlock_page(page);
1974 			page_cache_release(page);
1975 			if (status == AOP_TRUNCATED_PAGE)
1976 				continue;
1977 			/*
1978 			 * prepare_write() may have instantiated a few blocks
1979 			 * outside i_size.  Trim these off again.
1980 			 */
1981 			if (pos + bytes > isize)
1982 				vmtruncate(inode, isize);
1983 			break;
1984 		}
1985 		if (likely(nr_segs == 1))
1986 			copied = filemap_copy_from_user(page, offset,
1987 							buf, bytes);
1988 		else
1989 			copied = filemap_copy_from_user_iovec(page, offset,
1990 						cur_iov, iov_base, bytes);
1991 		flush_dcache_page(page);
1992 		status = a_ops->commit_write(file, page, offset, offset+bytes);
1993 		if (status == AOP_TRUNCATED_PAGE) {
1994 			page_cache_release(page);
1995 			continue;
1996 		}
1997 		if (likely(copied > 0)) {
1998 			if (!status)
1999 				status = copied;
2000 
2001 			if (status >= 0) {
2002 				written += status;
2003 				count -= status;
2004 				pos += status;
2005 				buf += status;
2006 				if (unlikely(nr_segs > 1)) {
2007 					filemap_set_next_iovec(&cur_iov,
2008 							&iov_base, status);
2009 					if (count)
2010 						buf = cur_iov->iov_base +
2011 							iov_base;
2012 				} else {
2013 					iov_base += status;
2014 				}
2015 			}
2016 		}
2017 		if (unlikely(copied != bytes))
2018 			if (status >= 0)
2019 				status = -EFAULT;
2020 		unlock_page(page);
2021 		mark_page_accessed(page);
2022 		page_cache_release(page);
2023 		if (status < 0)
2024 			break;
2025 		balance_dirty_pages_ratelimited(mapping);
2026 		cond_resched();
2027 	} while (count);
2028 	*ppos = pos;
2029 
2030 	if (cached_page)
2031 		page_cache_release(cached_page);
2032 
2033 	/*
2034 	 * For now, when the user asks for O_SYNC, we'll actually give O_DSYNC
2035 	 */
2036 	if (likely(status >= 0)) {
2037 		if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2038 			if (!a_ops->writepage || !is_sync_kiocb(iocb))
2039 				status = generic_osync_inode(inode, mapping,
2040 						OSYNC_METADATA|OSYNC_DATA);
2041 		}
2042   	}
2043 
2044 	/*
2045 	 * If we get here for O_DIRECT writes then we must have fallen through
2046 	 * to buffered writes (block instantiation inside i_size).  So we sync
2047 	 * the file data here, to try to honour O_DIRECT expectations.
2048 	 */
2049 	if (unlikely(file->f_flags & O_DIRECT) && written)
2050 		status = filemap_write_and_wait(mapping);
2051 
2052 	pagevec_lru_add(&lru_pvec);
2053 	return written ? written : status;
2054 }
2055 EXPORT_SYMBOL(generic_file_buffered_write);
2056 
2057 static ssize_t
2058 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2059 				unsigned long nr_segs, loff_t *ppos)
2060 {
2061 	struct file *file = iocb->ki_filp;
2062 	struct address_space * mapping = file->f_mapping;
2063 	size_t ocount;		/* original count */
2064 	size_t count;		/* after file limit checks */
2065 	struct inode 	*inode = mapping->host;
2066 	unsigned long	seg;
2067 	loff_t		pos;
2068 	ssize_t		written;
2069 	ssize_t		err;
2070 
2071 	ocount = 0;
2072 	for (seg = 0; seg < nr_segs; seg++) {
2073 		const struct iovec *iv = &iov[seg];
2074 
2075 		/*
2076 		 * If any segment has a negative length, or the cumulative
2077 		 * length ever wraps negative then return -EINVAL.
2078 		 */
2079 		ocount += iv->iov_len;
2080 		if (unlikely((ssize_t)(ocount|iv->iov_len) < 0))
2081 			return -EINVAL;
2082 		if (access_ok(VERIFY_READ, iv->iov_base, iv->iov_len))
2083 			continue;
2084 		if (seg == 0)
2085 			return -EFAULT;
2086 		nr_segs = seg;
2087 		ocount -= iv->iov_len;	/* This segment is no good */
2088 		break;
2089 	}
2090 
2091 	count = ocount;
2092 	pos = *ppos;
2093 
2094 	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2095 
2096 	/* We can write back this queue in page reclaim */
2097 	current->backing_dev_info = mapping->backing_dev_info;
2098 	written = 0;
2099 
2100 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2101 	if (err)
2102 		goto out;
2103 
2104 	if (count == 0)
2105 		goto out;
2106 
2107 	err = remove_suid(file->f_dentry);
2108 	if (err)
2109 		goto out;
2110 
2111 	file_update_time(file);
2112 
2113 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2114 	if (unlikely(file->f_flags & O_DIRECT)) {
2115 		written = generic_file_direct_write(iocb, iov,
2116 				&nr_segs, pos, ppos, count, ocount);
2117 		if (written < 0 || written == count)
2118 			goto out;
2119 		/*
2120 		 * direct-io write to a hole: fall through to buffered I/O
2121 		 * for completing the rest of the request.
2122 		 */
2123 		pos += written;
2124 		count -= written;
2125 	}
2126 
2127 	written = generic_file_buffered_write(iocb, iov, nr_segs,
2128 			pos, ppos, count, written);
2129 out:
2130 	current->backing_dev_info = NULL;
2131 	return written ? written : err;
2132 }
2133 EXPORT_SYMBOL(generic_file_aio_write_nolock);
2134 
2135 ssize_t
2136 generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2137 				unsigned long nr_segs, loff_t *ppos)
2138 {
2139 	struct file *file = iocb->ki_filp;
2140 	struct address_space *mapping = file->f_mapping;
2141 	struct inode *inode = mapping->host;
2142 	ssize_t ret;
2143 	loff_t pos = *ppos;
2144 
2145 	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs, ppos);
2146 
2147 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2148 		int err;
2149 
2150 		err = sync_page_range_nolock(inode, mapping, pos, ret);
2151 		if (err < 0)
2152 			ret = err;
2153 	}
2154 	return ret;
2155 }
2156 
2157 static ssize_t
2158 __generic_file_write_nolock(struct file *file, const struct iovec *iov,
2159 				unsigned long nr_segs, loff_t *ppos)
2160 {
2161 	struct kiocb kiocb;
2162 	ssize_t ret;
2163 
2164 	init_sync_kiocb(&kiocb, file);
2165 	ret = __generic_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos);
2166 	if (ret == -EIOCBQUEUED)
2167 		ret = wait_on_sync_kiocb(&kiocb);
2168 	return ret;
2169 }
2170 
2171 ssize_t
2172 generic_file_write_nolock(struct file *file, const struct iovec *iov,
2173 				unsigned long nr_segs, loff_t *ppos)
2174 {
2175 	struct kiocb kiocb;
2176 	ssize_t ret;
2177 
2178 	init_sync_kiocb(&kiocb, file);
2179 	ret = generic_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos);
2180 	if (-EIOCBQUEUED == ret)
2181 		ret = wait_on_sync_kiocb(&kiocb);
2182 	return ret;
2183 }
2184 EXPORT_SYMBOL(generic_file_write_nolock);
2185 
2186 ssize_t generic_file_aio_write(struct kiocb *iocb, const char __user *buf,
2187 			       size_t count, loff_t pos)
2188 {
2189 	struct file *file = iocb->ki_filp;
2190 	struct address_space *mapping = file->f_mapping;
2191 	struct inode *inode = mapping->host;
2192 	ssize_t ret;
2193 	struct iovec local_iov = { .iov_base = (void __user *)buf,
2194 					.iov_len = count };
2195 
2196 	BUG_ON(iocb->ki_pos != pos);
2197 
2198 	mutex_lock(&inode->i_mutex);
2199 	ret = __generic_file_aio_write_nolock(iocb, &local_iov, 1,
2200 						&iocb->ki_pos);
2201 	mutex_unlock(&inode->i_mutex);
2202 
2203 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2204 		ssize_t err;
2205 
2206 		err = sync_page_range(inode, mapping, pos, ret);
2207 		if (err < 0)
2208 			ret = err;
2209 	}
2210 	return ret;
2211 }
2212 EXPORT_SYMBOL(generic_file_aio_write);
2213 
2214 ssize_t generic_file_write(struct file *file, const char __user *buf,
2215 			   size_t count, loff_t *ppos)
2216 {
2217 	struct address_space *mapping = file->f_mapping;
2218 	struct inode *inode = mapping->host;
2219 	ssize_t	ret;
2220 	struct iovec local_iov = { .iov_base = (void __user *)buf,
2221 					.iov_len = count };
2222 
2223 	mutex_lock(&inode->i_mutex);
2224 	ret = __generic_file_write_nolock(file, &local_iov, 1, ppos);
2225 	mutex_unlock(&inode->i_mutex);
2226 
2227 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2228 		ssize_t err;
2229 
2230 		err = sync_page_range(inode, mapping, *ppos - ret, ret);
2231 		if (err < 0)
2232 			ret = err;
2233 	}
2234 	return ret;
2235 }
2236 EXPORT_SYMBOL(generic_file_write);
2237 
2238 ssize_t generic_file_readv(struct file *filp, const struct iovec *iov,
2239 			unsigned long nr_segs, loff_t *ppos)
2240 {
2241 	struct kiocb kiocb;
2242 	ssize_t ret;
2243 
2244 	init_sync_kiocb(&kiocb, filp);
2245 	ret = __generic_file_aio_read(&kiocb, iov, nr_segs, ppos);
2246 	if (-EIOCBQUEUED == ret)
2247 		ret = wait_on_sync_kiocb(&kiocb);
2248 	return ret;
2249 }
2250 EXPORT_SYMBOL(generic_file_readv);
2251 
2252 ssize_t generic_file_writev(struct file *file, const struct iovec *iov,
2253 			unsigned long nr_segs, loff_t *ppos)
2254 {
2255 	struct address_space *mapping = file->f_mapping;
2256 	struct inode *inode = mapping->host;
2257 	ssize_t ret;
2258 
2259 	mutex_lock(&inode->i_mutex);
2260 	ret = __generic_file_write_nolock(file, iov, nr_segs, ppos);
2261 	mutex_unlock(&inode->i_mutex);
2262 
2263 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2264 		int err;
2265 
2266 		err = sync_page_range(inode, mapping, *ppos - ret, ret);
2267 		if (err < 0)
2268 			ret = err;
2269 	}
2270 	return ret;
2271 }
2272 EXPORT_SYMBOL(generic_file_writev);
2273 
2274 /*
2275  * Called under i_mutex for writes to S_ISREG files.   Returns -EIO if something
2276  * went wrong during pagecache shootdown.
2277  */
2278 static ssize_t
2279 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
2280 	loff_t offset, unsigned long nr_segs)
2281 {
2282 	struct file *file = iocb->ki_filp;
2283 	struct address_space *mapping = file->f_mapping;
2284 	ssize_t retval;
2285 	size_t write_len = 0;
2286 
2287 	/*
2288 	 * If it's a write, unmap all mmappings of the file up-front.  This
2289 	 * will cause any pte dirty bits to be propagated into the pageframes
2290 	 * for the subsequent filemap_write_and_wait().
2291 	 */
2292 	if (rw == WRITE) {
2293 		write_len = iov_length(iov, nr_segs);
2294 	       	if (mapping_mapped(mapping))
2295 			unmap_mapping_range(mapping, offset, write_len, 0);
2296 	}
2297 
2298 	retval = filemap_write_and_wait(mapping);
2299 	if (retval == 0) {
2300 		retval = mapping->a_ops->direct_IO(rw, iocb, iov,
2301 						offset, nr_segs);
2302 		if (rw == WRITE && mapping->nrpages) {
2303 			pgoff_t end = (offset + write_len - 1)
2304 						>> PAGE_CACHE_SHIFT;
2305 			int err = invalidate_inode_pages2_range(mapping,
2306 					offset >> PAGE_CACHE_SHIFT, end);
2307 			if (err)
2308 				retval = err;
2309 		}
2310 	}
2311 	return retval;
2312 }
2313