1 /* 2 * linux/mm/filemap.c 3 * 4 * Copyright (C) 1994-1999 Linus Torvalds 5 */ 6 7 /* 8 * This file handles the generic file mmap semantics used by 9 * most "normal" filesystems (but you don't /have/ to use this: 10 * the NFS filesystem used to do this differently, for example) 11 */ 12 #include <linux/config.h> 13 #include <linux/module.h> 14 #include <linux/slab.h> 15 #include <linux/compiler.h> 16 #include <linux/fs.h> 17 #include <linux/aio.h> 18 #include <linux/kernel_stat.h> 19 #include <linux/mm.h> 20 #include <linux/swap.h> 21 #include <linux/mman.h> 22 #include <linux/pagemap.h> 23 #include <linux/file.h> 24 #include <linux/uio.h> 25 #include <linux/hash.h> 26 #include <linux/writeback.h> 27 #include <linux/pagevec.h> 28 #include <linux/blkdev.h> 29 #include <linux/security.h> 30 #include <linux/syscalls.h> 31 #include "filemap.h" 32 /* 33 * FIXME: remove all knowledge of the buffer layer from the core VM 34 */ 35 #include <linux/buffer_head.h> /* for generic_osync_inode */ 36 37 #include <asm/uaccess.h> 38 #include <asm/mman.h> 39 40 static ssize_t 41 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, 42 loff_t offset, unsigned long nr_segs); 43 44 /* 45 * Shared mappings implemented 30.11.1994. It's not fully working yet, 46 * though. 47 * 48 * Shared mappings now work. 15.8.1995 Bruno. 49 * 50 * finished 'unifying' the page and buffer cache and SMP-threaded the 51 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 52 * 53 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 54 */ 55 56 /* 57 * Lock ordering: 58 * 59 * ->i_mmap_lock (vmtruncate) 60 * ->private_lock (__free_pte->__set_page_dirty_buffers) 61 * ->swap_lock (exclusive_swap_page, others) 62 * ->mapping->tree_lock 63 * 64 * ->i_mutex 65 * ->i_mmap_lock (truncate->unmap_mapping_range) 66 * 67 * ->mmap_sem 68 * ->i_mmap_lock 69 * ->page_table_lock or pte_lock (various, mainly in memory.c) 70 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock) 71 * 72 * ->mmap_sem 73 * ->lock_page (access_process_vm) 74 * 75 * ->mmap_sem 76 * ->i_mutex (msync) 77 * 78 * ->i_mutex 79 * ->i_alloc_sem (various) 80 * 81 * ->inode_lock 82 * ->sb_lock (fs/fs-writeback.c) 83 * ->mapping->tree_lock (__sync_single_inode) 84 * 85 * ->i_mmap_lock 86 * ->anon_vma.lock (vma_adjust) 87 * 88 * ->anon_vma.lock 89 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 90 * 91 * ->page_table_lock or pte_lock 92 * ->swap_lock (try_to_unmap_one) 93 * ->private_lock (try_to_unmap_one) 94 * ->tree_lock (try_to_unmap_one) 95 * ->zone.lru_lock (follow_page->mark_page_accessed) 96 * ->private_lock (page_remove_rmap->set_page_dirty) 97 * ->tree_lock (page_remove_rmap->set_page_dirty) 98 * ->inode_lock (page_remove_rmap->set_page_dirty) 99 * ->inode_lock (zap_pte_range->set_page_dirty) 100 * ->private_lock (zap_pte_range->__set_page_dirty_buffers) 101 * 102 * ->task->proc_lock 103 * ->dcache_lock (proc_pid_lookup) 104 */ 105 106 /* 107 * Remove a page from the page cache and free it. Caller has to make 108 * sure the page is locked and that nobody else uses it - or that usage 109 * is safe. The caller must hold a write_lock on the mapping's tree_lock. 110 */ 111 void __remove_from_page_cache(struct page *page) 112 { 113 struct address_space *mapping = page->mapping; 114 115 radix_tree_delete(&mapping->page_tree, page->index); 116 page->mapping = NULL; 117 mapping->nrpages--; 118 pagecache_acct(-1); 119 } 120 121 void remove_from_page_cache(struct page *page) 122 { 123 struct address_space *mapping = page->mapping; 124 125 BUG_ON(!PageLocked(page)); 126 127 write_lock_irq(&mapping->tree_lock); 128 __remove_from_page_cache(page); 129 write_unlock_irq(&mapping->tree_lock); 130 } 131 132 static int sync_page(void *word) 133 { 134 struct address_space *mapping; 135 struct page *page; 136 137 page = container_of((unsigned long *)word, struct page, flags); 138 139 /* 140 * page_mapping() is being called without PG_locked held. 141 * Some knowledge of the state and use of the page is used to 142 * reduce the requirements down to a memory barrier. 143 * The danger here is of a stale page_mapping() return value 144 * indicating a struct address_space different from the one it's 145 * associated with when it is associated with one. 146 * After smp_mb(), it's either the correct page_mapping() for 147 * the page, or an old page_mapping() and the page's own 148 * page_mapping() has gone NULL. 149 * The ->sync_page() address_space operation must tolerate 150 * page_mapping() going NULL. By an amazing coincidence, 151 * this comes about because none of the users of the page 152 * in the ->sync_page() methods make essential use of the 153 * page_mapping(), merely passing the page down to the backing 154 * device's unplug functions when it's non-NULL, which in turn 155 * ignore it for all cases but swap, where only page_private(page) is 156 * of interest. When page_mapping() does go NULL, the entire 157 * call stack gracefully ignores the page and returns. 158 * -- wli 159 */ 160 smp_mb(); 161 mapping = page_mapping(page); 162 if (mapping && mapping->a_ops && mapping->a_ops->sync_page) 163 mapping->a_ops->sync_page(page); 164 io_schedule(); 165 return 0; 166 } 167 168 /** 169 * filemap_fdatawrite_range - start writeback against all of a mapping's 170 * dirty pages that lie within the byte offsets <start, end> 171 * @mapping: address space structure to write 172 * @start: offset in bytes where the range starts 173 * @end: offset in bytes where the range ends 174 * @sync_mode: enable synchronous operation 175 * 176 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 177 * opposed to a regular memory * cleansing writeback. The difference between 178 * these two operations is that if a dirty page/buffer is encountered, it must 179 * be waited upon, and not just skipped over. 180 */ 181 static int __filemap_fdatawrite_range(struct address_space *mapping, 182 loff_t start, loff_t end, int sync_mode) 183 { 184 int ret; 185 struct writeback_control wbc = { 186 .sync_mode = sync_mode, 187 .nr_to_write = mapping->nrpages * 2, 188 .start = start, 189 .end = end, 190 }; 191 192 if (!mapping_cap_writeback_dirty(mapping)) 193 return 0; 194 195 ret = do_writepages(mapping, &wbc); 196 return ret; 197 } 198 199 static inline int __filemap_fdatawrite(struct address_space *mapping, 200 int sync_mode) 201 { 202 return __filemap_fdatawrite_range(mapping, 0, 0, sync_mode); 203 } 204 205 int filemap_fdatawrite(struct address_space *mapping) 206 { 207 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 208 } 209 EXPORT_SYMBOL(filemap_fdatawrite); 210 211 static int filemap_fdatawrite_range(struct address_space *mapping, 212 loff_t start, loff_t end) 213 { 214 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 215 } 216 217 /* 218 * This is a mostly non-blocking flush. Not suitable for data-integrity 219 * purposes - I/O may not be started against all dirty pages. 220 */ 221 int filemap_flush(struct address_space *mapping) 222 { 223 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 224 } 225 EXPORT_SYMBOL(filemap_flush); 226 227 /* 228 * Wait for writeback to complete against pages indexed by start->end 229 * inclusive 230 */ 231 static int wait_on_page_writeback_range(struct address_space *mapping, 232 pgoff_t start, pgoff_t end) 233 { 234 struct pagevec pvec; 235 int nr_pages; 236 int ret = 0; 237 pgoff_t index; 238 239 if (end < start) 240 return 0; 241 242 pagevec_init(&pvec, 0); 243 index = start; 244 while ((index <= end) && 245 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 246 PAGECACHE_TAG_WRITEBACK, 247 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) { 248 unsigned i; 249 250 for (i = 0; i < nr_pages; i++) { 251 struct page *page = pvec.pages[i]; 252 253 /* until radix tree lookup accepts end_index */ 254 if (page->index > end) 255 continue; 256 257 wait_on_page_writeback(page); 258 if (PageError(page)) 259 ret = -EIO; 260 } 261 pagevec_release(&pvec); 262 cond_resched(); 263 } 264 265 /* Check for outstanding write errors */ 266 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 267 ret = -ENOSPC; 268 if (test_and_clear_bit(AS_EIO, &mapping->flags)) 269 ret = -EIO; 270 271 return ret; 272 } 273 274 /* 275 * Write and wait upon all the pages in the passed range. This is a "data 276 * integrity" operation. It waits upon in-flight writeout before starting and 277 * waiting upon new writeout. If there was an IO error, return it. 278 * 279 * We need to re-take i_mutex during the generic_osync_inode list walk because 280 * it is otherwise livelockable. 281 */ 282 int sync_page_range(struct inode *inode, struct address_space *mapping, 283 loff_t pos, loff_t count) 284 { 285 pgoff_t start = pos >> PAGE_CACHE_SHIFT; 286 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT; 287 int ret; 288 289 if (!mapping_cap_writeback_dirty(mapping) || !count) 290 return 0; 291 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1); 292 if (ret == 0) { 293 mutex_lock(&inode->i_mutex); 294 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA); 295 mutex_unlock(&inode->i_mutex); 296 } 297 if (ret == 0) 298 ret = wait_on_page_writeback_range(mapping, start, end); 299 return ret; 300 } 301 EXPORT_SYMBOL(sync_page_range); 302 303 /* 304 * Note: Holding i_mutex across sync_page_range_nolock is not a good idea 305 * as it forces O_SYNC writers to different parts of the same file 306 * to be serialised right until io completion. 307 */ 308 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping, 309 loff_t pos, loff_t count) 310 { 311 pgoff_t start = pos >> PAGE_CACHE_SHIFT; 312 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT; 313 int ret; 314 315 if (!mapping_cap_writeback_dirty(mapping) || !count) 316 return 0; 317 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1); 318 if (ret == 0) 319 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA); 320 if (ret == 0) 321 ret = wait_on_page_writeback_range(mapping, start, end); 322 return ret; 323 } 324 EXPORT_SYMBOL(sync_page_range_nolock); 325 326 /** 327 * filemap_fdatawait - walk the list of under-writeback pages of the given 328 * address space and wait for all of them. 329 * 330 * @mapping: address space structure to wait for 331 */ 332 int filemap_fdatawait(struct address_space *mapping) 333 { 334 loff_t i_size = i_size_read(mapping->host); 335 336 if (i_size == 0) 337 return 0; 338 339 return wait_on_page_writeback_range(mapping, 0, 340 (i_size - 1) >> PAGE_CACHE_SHIFT); 341 } 342 EXPORT_SYMBOL(filemap_fdatawait); 343 344 int filemap_write_and_wait(struct address_space *mapping) 345 { 346 int err = 0; 347 348 if (mapping->nrpages) { 349 err = filemap_fdatawrite(mapping); 350 /* 351 * Even if the above returned error, the pages may be 352 * written partially (e.g. -ENOSPC), so we wait for it. 353 * But the -EIO is special case, it may indicate the worst 354 * thing (e.g. bug) happened, so we avoid waiting for it. 355 */ 356 if (err != -EIO) { 357 int err2 = filemap_fdatawait(mapping); 358 if (!err) 359 err = err2; 360 } 361 } 362 return err; 363 } 364 EXPORT_SYMBOL(filemap_write_and_wait); 365 366 int filemap_write_and_wait_range(struct address_space *mapping, 367 loff_t lstart, loff_t lend) 368 { 369 int err = 0; 370 371 if (mapping->nrpages) { 372 err = __filemap_fdatawrite_range(mapping, lstart, lend, 373 WB_SYNC_ALL); 374 /* See comment of filemap_write_and_wait() */ 375 if (err != -EIO) { 376 int err2 = wait_on_page_writeback_range(mapping, 377 lstart >> PAGE_CACHE_SHIFT, 378 lend >> PAGE_CACHE_SHIFT); 379 if (!err) 380 err = err2; 381 } 382 } 383 return err; 384 } 385 386 /* 387 * This function is used to add newly allocated pagecache pages: 388 * the page is new, so we can just run SetPageLocked() against it. 389 * The other page state flags were set by rmqueue(). 390 * 391 * This function does not add the page to the LRU. The caller must do that. 392 */ 393 int add_to_page_cache(struct page *page, struct address_space *mapping, 394 pgoff_t offset, gfp_t gfp_mask) 395 { 396 int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM); 397 398 if (error == 0) { 399 write_lock_irq(&mapping->tree_lock); 400 error = radix_tree_insert(&mapping->page_tree, offset, page); 401 if (!error) { 402 page_cache_get(page); 403 SetPageLocked(page); 404 page->mapping = mapping; 405 page->index = offset; 406 mapping->nrpages++; 407 pagecache_acct(1); 408 } 409 write_unlock_irq(&mapping->tree_lock); 410 radix_tree_preload_end(); 411 } 412 return error; 413 } 414 415 EXPORT_SYMBOL(add_to_page_cache); 416 417 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 418 pgoff_t offset, gfp_t gfp_mask) 419 { 420 int ret = add_to_page_cache(page, mapping, offset, gfp_mask); 421 if (ret == 0) 422 lru_cache_add(page); 423 return ret; 424 } 425 426 /* 427 * In order to wait for pages to become available there must be 428 * waitqueues associated with pages. By using a hash table of 429 * waitqueues where the bucket discipline is to maintain all 430 * waiters on the same queue and wake all when any of the pages 431 * become available, and for the woken contexts to check to be 432 * sure the appropriate page became available, this saves space 433 * at a cost of "thundering herd" phenomena during rare hash 434 * collisions. 435 */ 436 static wait_queue_head_t *page_waitqueue(struct page *page) 437 { 438 const struct zone *zone = page_zone(page); 439 440 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)]; 441 } 442 443 static inline void wake_up_page(struct page *page, int bit) 444 { 445 __wake_up_bit(page_waitqueue(page), &page->flags, bit); 446 } 447 448 void fastcall wait_on_page_bit(struct page *page, int bit_nr) 449 { 450 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr); 451 452 if (test_bit(bit_nr, &page->flags)) 453 __wait_on_bit(page_waitqueue(page), &wait, sync_page, 454 TASK_UNINTERRUPTIBLE); 455 } 456 EXPORT_SYMBOL(wait_on_page_bit); 457 458 /** 459 * unlock_page() - unlock a locked page 460 * 461 * @page: the page 462 * 463 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). 464 * Also wakes sleepers in wait_on_page_writeback() because the wakeup 465 * mechananism between PageLocked pages and PageWriteback pages is shared. 466 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. 467 * 468 * The first mb is necessary to safely close the critical section opened by the 469 * TestSetPageLocked(), the second mb is necessary to enforce ordering between 470 * the clear_bit and the read of the waitqueue (to avoid SMP races with a 471 * parallel wait_on_page_locked()). 472 */ 473 void fastcall unlock_page(struct page *page) 474 { 475 smp_mb__before_clear_bit(); 476 if (!TestClearPageLocked(page)) 477 BUG(); 478 smp_mb__after_clear_bit(); 479 wake_up_page(page, PG_locked); 480 } 481 EXPORT_SYMBOL(unlock_page); 482 483 /* 484 * End writeback against a page. 485 */ 486 void end_page_writeback(struct page *page) 487 { 488 if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) { 489 if (!test_clear_page_writeback(page)) 490 BUG(); 491 } 492 smp_mb__after_clear_bit(); 493 wake_up_page(page, PG_writeback); 494 } 495 EXPORT_SYMBOL(end_page_writeback); 496 497 /* 498 * Get a lock on the page, assuming we need to sleep to get it. 499 * 500 * Ugly: running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some 501 * random driver's requestfn sets TASK_RUNNING, we could busywait. However 502 * chances are that on the second loop, the block layer's plug list is empty, 503 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE. 504 */ 505 void fastcall __lock_page(struct page *page) 506 { 507 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 508 509 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page, 510 TASK_UNINTERRUPTIBLE); 511 } 512 EXPORT_SYMBOL(__lock_page); 513 514 /* 515 * a rather lightweight function, finding and getting a reference to a 516 * hashed page atomically. 517 */ 518 struct page * find_get_page(struct address_space *mapping, unsigned long offset) 519 { 520 struct page *page; 521 522 read_lock_irq(&mapping->tree_lock); 523 page = radix_tree_lookup(&mapping->page_tree, offset); 524 if (page) 525 page_cache_get(page); 526 read_unlock_irq(&mapping->tree_lock); 527 return page; 528 } 529 530 EXPORT_SYMBOL(find_get_page); 531 532 /* 533 * Same as above, but trylock it instead of incrementing the count. 534 */ 535 struct page *find_trylock_page(struct address_space *mapping, unsigned long offset) 536 { 537 struct page *page; 538 539 read_lock_irq(&mapping->tree_lock); 540 page = radix_tree_lookup(&mapping->page_tree, offset); 541 if (page && TestSetPageLocked(page)) 542 page = NULL; 543 read_unlock_irq(&mapping->tree_lock); 544 return page; 545 } 546 547 EXPORT_SYMBOL(find_trylock_page); 548 549 /** 550 * find_lock_page - locate, pin and lock a pagecache page 551 * 552 * @mapping: the address_space to search 553 * @offset: the page index 554 * 555 * Locates the desired pagecache page, locks it, increments its reference 556 * count and returns its address. 557 * 558 * Returns zero if the page was not present. find_lock_page() may sleep. 559 */ 560 struct page *find_lock_page(struct address_space *mapping, 561 unsigned long offset) 562 { 563 struct page *page; 564 565 read_lock_irq(&mapping->tree_lock); 566 repeat: 567 page = radix_tree_lookup(&mapping->page_tree, offset); 568 if (page) { 569 page_cache_get(page); 570 if (TestSetPageLocked(page)) { 571 read_unlock_irq(&mapping->tree_lock); 572 __lock_page(page); 573 read_lock_irq(&mapping->tree_lock); 574 575 /* Has the page been truncated while we slept? */ 576 if (unlikely(page->mapping != mapping || 577 page->index != offset)) { 578 unlock_page(page); 579 page_cache_release(page); 580 goto repeat; 581 } 582 } 583 } 584 read_unlock_irq(&mapping->tree_lock); 585 return page; 586 } 587 588 EXPORT_SYMBOL(find_lock_page); 589 590 /** 591 * find_or_create_page - locate or add a pagecache page 592 * 593 * @mapping: the page's address_space 594 * @index: the page's index into the mapping 595 * @gfp_mask: page allocation mode 596 * 597 * Locates a page in the pagecache. If the page is not present, a new page 598 * is allocated using @gfp_mask and is added to the pagecache and to the VM's 599 * LRU list. The returned page is locked and has its reference count 600 * incremented. 601 * 602 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic 603 * allocation! 604 * 605 * find_or_create_page() returns the desired page's address, or zero on 606 * memory exhaustion. 607 */ 608 struct page *find_or_create_page(struct address_space *mapping, 609 unsigned long index, gfp_t gfp_mask) 610 { 611 struct page *page, *cached_page = NULL; 612 int err; 613 repeat: 614 page = find_lock_page(mapping, index); 615 if (!page) { 616 if (!cached_page) { 617 cached_page = alloc_page(gfp_mask); 618 if (!cached_page) 619 return NULL; 620 } 621 err = add_to_page_cache_lru(cached_page, mapping, 622 index, gfp_mask); 623 if (!err) { 624 page = cached_page; 625 cached_page = NULL; 626 } else if (err == -EEXIST) 627 goto repeat; 628 } 629 if (cached_page) 630 page_cache_release(cached_page); 631 return page; 632 } 633 634 EXPORT_SYMBOL(find_or_create_page); 635 636 /** 637 * find_get_pages - gang pagecache lookup 638 * @mapping: The address_space to search 639 * @start: The starting page index 640 * @nr_pages: The maximum number of pages 641 * @pages: Where the resulting pages are placed 642 * 643 * find_get_pages() will search for and return a group of up to 644 * @nr_pages pages in the mapping. The pages are placed at @pages. 645 * find_get_pages() takes a reference against the returned pages. 646 * 647 * The search returns a group of mapping-contiguous pages with ascending 648 * indexes. There may be holes in the indices due to not-present pages. 649 * 650 * find_get_pages() returns the number of pages which were found. 651 */ 652 unsigned find_get_pages(struct address_space *mapping, pgoff_t start, 653 unsigned int nr_pages, struct page **pages) 654 { 655 unsigned int i; 656 unsigned int ret; 657 658 read_lock_irq(&mapping->tree_lock); 659 ret = radix_tree_gang_lookup(&mapping->page_tree, 660 (void **)pages, start, nr_pages); 661 for (i = 0; i < ret; i++) 662 page_cache_get(pages[i]); 663 read_unlock_irq(&mapping->tree_lock); 664 return ret; 665 } 666 667 /* 668 * Like find_get_pages, except we only return pages which are tagged with 669 * `tag'. We update *index to index the next page for the traversal. 670 */ 671 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, 672 int tag, unsigned int nr_pages, struct page **pages) 673 { 674 unsigned int i; 675 unsigned int ret; 676 677 read_lock_irq(&mapping->tree_lock); 678 ret = radix_tree_gang_lookup_tag(&mapping->page_tree, 679 (void **)pages, *index, nr_pages, tag); 680 for (i = 0; i < ret; i++) 681 page_cache_get(pages[i]); 682 if (ret) 683 *index = pages[ret - 1]->index + 1; 684 read_unlock_irq(&mapping->tree_lock); 685 return ret; 686 } 687 688 /* 689 * Same as grab_cache_page, but do not wait if the page is unavailable. 690 * This is intended for speculative data generators, where the data can 691 * be regenerated if the page couldn't be grabbed. This routine should 692 * be safe to call while holding the lock for another page. 693 * 694 * Clear __GFP_FS when allocating the page to avoid recursion into the fs 695 * and deadlock against the caller's locked page. 696 */ 697 struct page * 698 grab_cache_page_nowait(struct address_space *mapping, unsigned long index) 699 { 700 struct page *page = find_get_page(mapping, index); 701 gfp_t gfp_mask; 702 703 if (page) { 704 if (!TestSetPageLocked(page)) 705 return page; 706 page_cache_release(page); 707 return NULL; 708 } 709 gfp_mask = mapping_gfp_mask(mapping) & ~__GFP_FS; 710 page = alloc_pages(gfp_mask, 0); 711 if (page && add_to_page_cache_lru(page, mapping, index, gfp_mask)) { 712 page_cache_release(page); 713 page = NULL; 714 } 715 return page; 716 } 717 718 EXPORT_SYMBOL(grab_cache_page_nowait); 719 720 /* 721 * This is a generic file read routine, and uses the 722 * mapping->a_ops->readpage() function for the actual low-level 723 * stuff. 724 * 725 * This is really ugly. But the goto's actually try to clarify some 726 * of the logic when it comes to error handling etc. 727 * 728 * Note the struct file* is only passed for the use of readpage. It may be 729 * NULL. 730 */ 731 void do_generic_mapping_read(struct address_space *mapping, 732 struct file_ra_state *_ra, 733 struct file *filp, 734 loff_t *ppos, 735 read_descriptor_t *desc, 736 read_actor_t actor) 737 { 738 struct inode *inode = mapping->host; 739 unsigned long index; 740 unsigned long end_index; 741 unsigned long offset; 742 unsigned long last_index; 743 unsigned long next_index; 744 unsigned long prev_index; 745 loff_t isize; 746 struct page *cached_page; 747 int error; 748 struct file_ra_state ra = *_ra; 749 750 cached_page = NULL; 751 index = *ppos >> PAGE_CACHE_SHIFT; 752 next_index = index; 753 prev_index = ra.prev_page; 754 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT; 755 offset = *ppos & ~PAGE_CACHE_MASK; 756 757 isize = i_size_read(inode); 758 if (!isize) 759 goto out; 760 761 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 762 for (;;) { 763 struct page *page; 764 unsigned long nr, ret; 765 766 /* nr is the maximum number of bytes to copy from this page */ 767 nr = PAGE_CACHE_SIZE; 768 if (index >= end_index) { 769 if (index > end_index) 770 goto out; 771 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 772 if (nr <= offset) { 773 goto out; 774 } 775 } 776 nr = nr - offset; 777 778 cond_resched(); 779 if (index == next_index) 780 next_index = page_cache_readahead(mapping, &ra, filp, 781 index, last_index - index); 782 783 find_page: 784 page = find_get_page(mapping, index); 785 if (unlikely(page == NULL)) { 786 handle_ra_miss(mapping, &ra, index); 787 goto no_cached_page; 788 } 789 if (!PageUptodate(page)) 790 goto page_not_up_to_date; 791 page_ok: 792 793 /* If users can be writing to this page using arbitrary 794 * virtual addresses, take care about potential aliasing 795 * before reading the page on the kernel side. 796 */ 797 if (mapping_writably_mapped(mapping)) 798 flush_dcache_page(page); 799 800 /* 801 * When (part of) the same page is read multiple times 802 * in succession, only mark it as accessed the first time. 803 */ 804 if (prev_index != index) 805 mark_page_accessed(page); 806 prev_index = index; 807 808 /* 809 * Ok, we have the page, and it's up-to-date, so 810 * now we can copy it to user space... 811 * 812 * The actor routine returns how many bytes were actually used.. 813 * NOTE! This may not be the same as how much of a user buffer 814 * we filled up (we may be padding etc), so we can only update 815 * "pos" here (the actor routine has to update the user buffer 816 * pointers and the remaining count). 817 */ 818 ret = actor(desc, page, offset, nr); 819 offset += ret; 820 index += offset >> PAGE_CACHE_SHIFT; 821 offset &= ~PAGE_CACHE_MASK; 822 823 page_cache_release(page); 824 if (ret == nr && desc->count) 825 continue; 826 goto out; 827 828 page_not_up_to_date: 829 /* Get exclusive access to the page ... */ 830 lock_page(page); 831 832 /* Did it get unhashed before we got the lock? */ 833 if (!page->mapping) { 834 unlock_page(page); 835 page_cache_release(page); 836 continue; 837 } 838 839 /* Did somebody else fill it already? */ 840 if (PageUptodate(page)) { 841 unlock_page(page); 842 goto page_ok; 843 } 844 845 readpage: 846 /* Start the actual read. The read will unlock the page. */ 847 error = mapping->a_ops->readpage(filp, page); 848 849 if (unlikely(error)) { 850 if (error == AOP_TRUNCATED_PAGE) { 851 page_cache_release(page); 852 goto find_page; 853 } 854 goto readpage_error; 855 } 856 857 if (!PageUptodate(page)) { 858 lock_page(page); 859 if (!PageUptodate(page)) { 860 if (page->mapping == NULL) { 861 /* 862 * invalidate_inode_pages got it 863 */ 864 unlock_page(page); 865 page_cache_release(page); 866 goto find_page; 867 } 868 unlock_page(page); 869 error = -EIO; 870 goto readpage_error; 871 } 872 unlock_page(page); 873 } 874 875 /* 876 * i_size must be checked after we have done ->readpage. 877 * 878 * Checking i_size after the readpage allows us to calculate 879 * the correct value for "nr", which means the zero-filled 880 * part of the page is not copied back to userspace (unless 881 * another truncate extends the file - this is desired though). 882 */ 883 isize = i_size_read(inode); 884 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 885 if (unlikely(!isize || index > end_index)) { 886 page_cache_release(page); 887 goto out; 888 } 889 890 /* nr is the maximum number of bytes to copy from this page */ 891 nr = PAGE_CACHE_SIZE; 892 if (index == end_index) { 893 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 894 if (nr <= offset) { 895 page_cache_release(page); 896 goto out; 897 } 898 } 899 nr = nr - offset; 900 goto page_ok; 901 902 readpage_error: 903 /* UHHUH! A synchronous read error occurred. Report it */ 904 desc->error = error; 905 page_cache_release(page); 906 goto out; 907 908 no_cached_page: 909 /* 910 * Ok, it wasn't cached, so we need to create a new 911 * page.. 912 */ 913 if (!cached_page) { 914 cached_page = page_cache_alloc_cold(mapping); 915 if (!cached_page) { 916 desc->error = -ENOMEM; 917 goto out; 918 } 919 } 920 error = add_to_page_cache_lru(cached_page, mapping, 921 index, GFP_KERNEL); 922 if (error) { 923 if (error == -EEXIST) 924 goto find_page; 925 desc->error = error; 926 goto out; 927 } 928 page = cached_page; 929 cached_page = NULL; 930 goto readpage; 931 } 932 933 out: 934 *_ra = ra; 935 936 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset; 937 if (cached_page) 938 page_cache_release(cached_page); 939 if (filp) 940 file_accessed(filp); 941 } 942 943 EXPORT_SYMBOL(do_generic_mapping_read); 944 945 int file_read_actor(read_descriptor_t *desc, struct page *page, 946 unsigned long offset, unsigned long size) 947 { 948 char *kaddr; 949 unsigned long left, count = desc->count; 950 951 if (size > count) 952 size = count; 953 954 /* 955 * Faults on the destination of a read are common, so do it before 956 * taking the kmap. 957 */ 958 if (!fault_in_pages_writeable(desc->arg.buf, size)) { 959 kaddr = kmap_atomic(page, KM_USER0); 960 left = __copy_to_user_inatomic(desc->arg.buf, 961 kaddr + offset, size); 962 kunmap_atomic(kaddr, KM_USER0); 963 if (left == 0) 964 goto success; 965 } 966 967 /* Do it the slow way */ 968 kaddr = kmap(page); 969 left = __copy_to_user(desc->arg.buf, kaddr + offset, size); 970 kunmap(page); 971 972 if (left) { 973 size -= left; 974 desc->error = -EFAULT; 975 } 976 success: 977 desc->count = count - size; 978 desc->written += size; 979 desc->arg.buf += size; 980 return size; 981 } 982 983 /* 984 * This is the "read()" routine for all filesystems 985 * that can use the page cache directly. 986 */ 987 ssize_t 988 __generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov, 989 unsigned long nr_segs, loff_t *ppos) 990 { 991 struct file *filp = iocb->ki_filp; 992 ssize_t retval; 993 unsigned long seg; 994 size_t count; 995 996 count = 0; 997 for (seg = 0; seg < nr_segs; seg++) { 998 const struct iovec *iv = &iov[seg]; 999 1000 /* 1001 * If any segment has a negative length, or the cumulative 1002 * length ever wraps negative then return -EINVAL. 1003 */ 1004 count += iv->iov_len; 1005 if (unlikely((ssize_t)(count|iv->iov_len) < 0)) 1006 return -EINVAL; 1007 if (access_ok(VERIFY_WRITE, iv->iov_base, iv->iov_len)) 1008 continue; 1009 if (seg == 0) 1010 return -EFAULT; 1011 nr_segs = seg; 1012 count -= iv->iov_len; /* This segment is no good */ 1013 break; 1014 } 1015 1016 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ 1017 if (filp->f_flags & O_DIRECT) { 1018 loff_t pos = *ppos, size; 1019 struct address_space *mapping; 1020 struct inode *inode; 1021 1022 mapping = filp->f_mapping; 1023 inode = mapping->host; 1024 retval = 0; 1025 if (!count) 1026 goto out; /* skip atime */ 1027 size = i_size_read(inode); 1028 if (pos < size) { 1029 retval = generic_file_direct_IO(READ, iocb, 1030 iov, pos, nr_segs); 1031 if (retval > 0 && !is_sync_kiocb(iocb)) 1032 retval = -EIOCBQUEUED; 1033 if (retval > 0) 1034 *ppos = pos + retval; 1035 } 1036 file_accessed(filp); 1037 goto out; 1038 } 1039 1040 retval = 0; 1041 if (count) { 1042 for (seg = 0; seg < nr_segs; seg++) { 1043 read_descriptor_t desc; 1044 1045 desc.written = 0; 1046 desc.arg.buf = iov[seg].iov_base; 1047 desc.count = iov[seg].iov_len; 1048 if (desc.count == 0) 1049 continue; 1050 desc.error = 0; 1051 do_generic_file_read(filp,ppos,&desc,file_read_actor); 1052 retval += desc.written; 1053 if (desc.error) { 1054 retval = retval ?: desc.error; 1055 break; 1056 } 1057 } 1058 } 1059 out: 1060 return retval; 1061 } 1062 1063 EXPORT_SYMBOL(__generic_file_aio_read); 1064 1065 ssize_t 1066 generic_file_aio_read(struct kiocb *iocb, char __user *buf, size_t count, loff_t pos) 1067 { 1068 struct iovec local_iov = { .iov_base = buf, .iov_len = count }; 1069 1070 BUG_ON(iocb->ki_pos != pos); 1071 return __generic_file_aio_read(iocb, &local_iov, 1, &iocb->ki_pos); 1072 } 1073 1074 EXPORT_SYMBOL(generic_file_aio_read); 1075 1076 ssize_t 1077 generic_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos) 1078 { 1079 struct iovec local_iov = { .iov_base = buf, .iov_len = count }; 1080 struct kiocb kiocb; 1081 ssize_t ret; 1082 1083 init_sync_kiocb(&kiocb, filp); 1084 ret = __generic_file_aio_read(&kiocb, &local_iov, 1, ppos); 1085 if (-EIOCBQUEUED == ret) 1086 ret = wait_on_sync_kiocb(&kiocb); 1087 return ret; 1088 } 1089 1090 EXPORT_SYMBOL(generic_file_read); 1091 1092 int file_send_actor(read_descriptor_t * desc, struct page *page, unsigned long offset, unsigned long size) 1093 { 1094 ssize_t written; 1095 unsigned long count = desc->count; 1096 struct file *file = desc->arg.data; 1097 1098 if (size > count) 1099 size = count; 1100 1101 written = file->f_op->sendpage(file, page, offset, 1102 size, &file->f_pos, size<count); 1103 if (written < 0) { 1104 desc->error = written; 1105 written = 0; 1106 } 1107 desc->count = count - written; 1108 desc->written += written; 1109 return written; 1110 } 1111 1112 ssize_t generic_file_sendfile(struct file *in_file, loff_t *ppos, 1113 size_t count, read_actor_t actor, void *target) 1114 { 1115 read_descriptor_t desc; 1116 1117 if (!count) 1118 return 0; 1119 1120 desc.written = 0; 1121 desc.count = count; 1122 desc.arg.data = target; 1123 desc.error = 0; 1124 1125 do_generic_file_read(in_file, ppos, &desc, actor); 1126 if (desc.written) 1127 return desc.written; 1128 return desc.error; 1129 } 1130 1131 EXPORT_SYMBOL(generic_file_sendfile); 1132 1133 static ssize_t 1134 do_readahead(struct address_space *mapping, struct file *filp, 1135 unsigned long index, unsigned long nr) 1136 { 1137 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage) 1138 return -EINVAL; 1139 1140 force_page_cache_readahead(mapping, filp, index, 1141 max_sane_readahead(nr)); 1142 return 0; 1143 } 1144 1145 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count) 1146 { 1147 ssize_t ret; 1148 struct file *file; 1149 1150 ret = -EBADF; 1151 file = fget(fd); 1152 if (file) { 1153 if (file->f_mode & FMODE_READ) { 1154 struct address_space *mapping = file->f_mapping; 1155 unsigned long start = offset >> PAGE_CACHE_SHIFT; 1156 unsigned long end = (offset + count - 1) >> PAGE_CACHE_SHIFT; 1157 unsigned long len = end - start + 1; 1158 ret = do_readahead(mapping, file, start, len); 1159 } 1160 fput(file); 1161 } 1162 return ret; 1163 } 1164 1165 #ifdef CONFIG_MMU 1166 /* 1167 * This adds the requested page to the page cache if it isn't already there, 1168 * and schedules an I/O to read in its contents from disk. 1169 */ 1170 static int FASTCALL(page_cache_read(struct file * file, unsigned long offset)); 1171 static int fastcall page_cache_read(struct file * file, unsigned long offset) 1172 { 1173 struct address_space *mapping = file->f_mapping; 1174 struct page *page; 1175 int ret; 1176 1177 do { 1178 page = page_cache_alloc_cold(mapping); 1179 if (!page) 1180 return -ENOMEM; 1181 1182 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL); 1183 if (ret == 0) 1184 ret = mapping->a_ops->readpage(file, page); 1185 else if (ret == -EEXIST) 1186 ret = 0; /* losing race to add is OK */ 1187 1188 page_cache_release(page); 1189 1190 } while (ret == AOP_TRUNCATED_PAGE); 1191 1192 return ret; 1193 } 1194 1195 #define MMAP_LOTSAMISS (100) 1196 1197 /* 1198 * filemap_nopage() is invoked via the vma operations vector for a 1199 * mapped memory region to read in file data during a page fault. 1200 * 1201 * The goto's are kind of ugly, but this streamlines the normal case of having 1202 * it in the page cache, and handles the special cases reasonably without 1203 * having a lot of duplicated code. 1204 */ 1205 struct page *filemap_nopage(struct vm_area_struct *area, 1206 unsigned long address, int *type) 1207 { 1208 int error; 1209 struct file *file = area->vm_file; 1210 struct address_space *mapping = file->f_mapping; 1211 struct file_ra_state *ra = &file->f_ra; 1212 struct inode *inode = mapping->host; 1213 struct page *page; 1214 unsigned long size, pgoff; 1215 int did_readaround = 0, majmin = VM_FAULT_MINOR; 1216 1217 pgoff = ((address-area->vm_start) >> PAGE_CACHE_SHIFT) + area->vm_pgoff; 1218 1219 retry_all: 1220 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1221 if (pgoff >= size) 1222 goto outside_data_content; 1223 1224 /* If we don't want any read-ahead, don't bother */ 1225 if (VM_RandomReadHint(area)) 1226 goto no_cached_page; 1227 1228 /* 1229 * The readahead code wants to be told about each and every page 1230 * so it can build and shrink its windows appropriately 1231 * 1232 * For sequential accesses, we use the generic readahead logic. 1233 */ 1234 if (VM_SequentialReadHint(area)) 1235 page_cache_readahead(mapping, ra, file, pgoff, 1); 1236 1237 /* 1238 * Do we have something in the page cache already? 1239 */ 1240 retry_find: 1241 page = find_get_page(mapping, pgoff); 1242 if (!page) { 1243 unsigned long ra_pages; 1244 1245 if (VM_SequentialReadHint(area)) { 1246 handle_ra_miss(mapping, ra, pgoff); 1247 goto no_cached_page; 1248 } 1249 ra->mmap_miss++; 1250 1251 /* 1252 * Do we miss much more than hit in this file? If so, 1253 * stop bothering with read-ahead. It will only hurt. 1254 */ 1255 if (ra->mmap_miss > ra->mmap_hit + MMAP_LOTSAMISS) 1256 goto no_cached_page; 1257 1258 /* 1259 * To keep the pgmajfault counter straight, we need to 1260 * check did_readaround, as this is an inner loop. 1261 */ 1262 if (!did_readaround) { 1263 majmin = VM_FAULT_MAJOR; 1264 inc_page_state(pgmajfault); 1265 } 1266 did_readaround = 1; 1267 ra_pages = max_sane_readahead(file->f_ra.ra_pages); 1268 if (ra_pages) { 1269 pgoff_t start = 0; 1270 1271 if (pgoff > ra_pages / 2) 1272 start = pgoff - ra_pages / 2; 1273 do_page_cache_readahead(mapping, file, start, ra_pages); 1274 } 1275 page = find_get_page(mapping, pgoff); 1276 if (!page) 1277 goto no_cached_page; 1278 } 1279 1280 if (!did_readaround) 1281 ra->mmap_hit++; 1282 1283 /* 1284 * Ok, found a page in the page cache, now we need to check 1285 * that it's up-to-date. 1286 */ 1287 if (!PageUptodate(page)) 1288 goto page_not_uptodate; 1289 1290 success: 1291 /* 1292 * Found the page and have a reference on it. 1293 */ 1294 mark_page_accessed(page); 1295 if (type) 1296 *type = majmin; 1297 return page; 1298 1299 outside_data_content: 1300 /* 1301 * An external ptracer can access pages that normally aren't 1302 * accessible.. 1303 */ 1304 if (area->vm_mm == current->mm) 1305 return NULL; 1306 /* Fall through to the non-read-ahead case */ 1307 no_cached_page: 1308 /* 1309 * We're only likely to ever get here if MADV_RANDOM is in 1310 * effect. 1311 */ 1312 error = page_cache_read(file, pgoff); 1313 grab_swap_token(); 1314 1315 /* 1316 * The page we want has now been added to the page cache. 1317 * In the unlikely event that someone removed it in the 1318 * meantime, we'll just come back here and read it again. 1319 */ 1320 if (error >= 0) 1321 goto retry_find; 1322 1323 /* 1324 * An error return from page_cache_read can result if the 1325 * system is low on memory, or a problem occurs while trying 1326 * to schedule I/O. 1327 */ 1328 if (error == -ENOMEM) 1329 return NOPAGE_OOM; 1330 return NULL; 1331 1332 page_not_uptodate: 1333 if (!did_readaround) { 1334 majmin = VM_FAULT_MAJOR; 1335 inc_page_state(pgmajfault); 1336 } 1337 lock_page(page); 1338 1339 /* Did it get unhashed while we waited for it? */ 1340 if (!page->mapping) { 1341 unlock_page(page); 1342 page_cache_release(page); 1343 goto retry_all; 1344 } 1345 1346 /* Did somebody else get it up-to-date? */ 1347 if (PageUptodate(page)) { 1348 unlock_page(page); 1349 goto success; 1350 } 1351 1352 error = mapping->a_ops->readpage(file, page); 1353 if (!error) { 1354 wait_on_page_locked(page); 1355 if (PageUptodate(page)) 1356 goto success; 1357 } else if (error == AOP_TRUNCATED_PAGE) { 1358 page_cache_release(page); 1359 goto retry_find; 1360 } 1361 1362 /* 1363 * Umm, take care of errors if the page isn't up-to-date. 1364 * Try to re-read it _once_. We do this synchronously, 1365 * because there really aren't any performance issues here 1366 * and we need to check for errors. 1367 */ 1368 lock_page(page); 1369 1370 /* Somebody truncated the page on us? */ 1371 if (!page->mapping) { 1372 unlock_page(page); 1373 page_cache_release(page); 1374 goto retry_all; 1375 } 1376 1377 /* Somebody else successfully read it in? */ 1378 if (PageUptodate(page)) { 1379 unlock_page(page); 1380 goto success; 1381 } 1382 ClearPageError(page); 1383 error = mapping->a_ops->readpage(file, page); 1384 if (!error) { 1385 wait_on_page_locked(page); 1386 if (PageUptodate(page)) 1387 goto success; 1388 } else if (error == AOP_TRUNCATED_PAGE) { 1389 page_cache_release(page); 1390 goto retry_find; 1391 } 1392 1393 /* 1394 * Things didn't work out. Return zero to tell the 1395 * mm layer so, possibly freeing the page cache page first. 1396 */ 1397 page_cache_release(page); 1398 return NULL; 1399 } 1400 1401 EXPORT_SYMBOL(filemap_nopage); 1402 1403 static struct page * filemap_getpage(struct file *file, unsigned long pgoff, 1404 int nonblock) 1405 { 1406 struct address_space *mapping = file->f_mapping; 1407 struct page *page; 1408 int error; 1409 1410 /* 1411 * Do we have something in the page cache already? 1412 */ 1413 retry_find: 1414 page = find_get_page(mapping, pgoff); 1415 if (!page) { 1416 if (nonblock) 1417 return NULL; 1418 goto no_cached_page; 1419 } 1420 1421 /* 1422 * Ok, found a page in the page cache, now we need to check 1423 * that it's up-to-date. 1424 */ 1425 if (!PageUptodate(page)) { 1426 if (nonblock) { 1427 page_cache_release(page); 1428 return NULL; 1429 } 1430 goto page_not_uptodate; 1431 } 1432 1433 success: 1434 /* 1435 * Found the page and have a reference on it. 1436 */ 1437 mark_page_accessed(page); 1438 return page; 1439 1440 no_cached_page: 1441 error = page_cache_read(file, pgoff); 1442 1443 /* 1444 * The page we want has now been added to the page cache. 1445 * In the unlikely event that someone removed it in the 1446 * meantime, we'll just come back here and read it again. 1447 */ 1448 if (error >= 0) 1449 goto retry_find; 1450 1451 /* 1452 * An error return from page_cache_read can result if the 1453 * system is low on memory, or a problem occurs while trying 1454 * to schedule I/O. 1455 */ 1456 return NULL; 1457 1458 page_not_uptodate: 1459 lock_page(page); 1460 1461 /* Did it get unhashed while we waited for it? */ 1462 if (!page->mapping) { 1463 unlock_page(page); 1464 goto err; 1465 } 1466 1467 /* Did somebody else get it up-to-date? */ 1468 if (PageUptodate(page)) { 1469 unlock_page(page); 1470 goto success; 1471 } 1472 1473 error = mapping->a_ops->readpage(file, page); 1474 if (!error) { 1475 wait_on_page_locked(page); 1476 if (PageUptodate(page)) 1477 goto success; 1478 } else if (error == AOP_TRUNCATED_PAGE) { 1479 page_cache_release(page); 1480 goto retry_find; 1481 } 1482 1483 /* 1484 * Umm, take care of errors if the page isn't up-to-date. 1485 * Try to re-read it _once_. We do this synchronously, 1486 * because there really aren't any performance issues here 1487 * and we need to check for errors. 1488 */ 1489 lock_page(page); 1490 1491 /* Somebody truncated the page on us? */ 1492 if (!page->mapping) { 1493 unlock_page(page); 1494 goto err; 1495 } 1496 /* Somebody else successfully read it in? */ 1497 if (PageUptodate(page)) { 1498 unlock_page(page); 1499 goto success; 1500 } 1501 1502 ClearPageError(page); 1503 error = mapping->a_ops->readpage(file, page); 1504 if (!error) { 1505 wait_on_page_locked(page); 1506 if (PageUptodate(page)) 1507 goto success; 1508 } else if (error == AOP_TRUNCATED_PAGE) { 1509 page_cache_release(page); 1510 goto retry_find; 1511 } 1512 1513 /* 1514 * Things didn't work out. Return zero to tell the 1515 * mm layer so, possibly freeing the page cache page first. 1516 */ 1517 err: 1518 page_cache_release(page); 1519 1520 return NULL; 1521 } 1522 1523 int filemap_populate(struct vm_area_struct *vma, unsigned long addr, 1524 unsigned long len, pgprot_t prot, unsigned long pgoff, 1525 int nonblock) 1526 { 1527 struct file *file = vma->vm_file; 1528 struct address_space *mapping = file->f_mapping; 1529 struct inode *inode = mapping->host; 1530 unsigned long size; 1531 struct mm_struct *mm = vma->vm_mm; 1532 struct page *page; 1533 int err; 1534 1535 if (!nonblock) 1536 force_page_cache_readahead(mapping, vma->vm_file, 1537 pgoff, len >> PAGE_CACHE_SHIFT); 1538 1539 repeat: 1540 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1541 if (pgoff + (len >> PAGE_CACHE_SHIFT) > size) 1542 return -EINVAL; 1543 1544 page = filemap_getpage(file, pgoff, nonblock); 1545 1546 /* XXX: This is wrong, a filesystem I/O error may have happened. Fix that as 1547 * done in shmem_populate calling shmem_getpage */ 1548 if (!page && !nonblock) 1549 return -ENOMEM; 1550 1551 if (page) { 1552 err = install_page(mm, vma, addr, page, prot); 1553 if (err) { 1554 page_cache_release(page); 1555 return err; 1556 } 1557 } else if (vma->vm_flags & VM_NONLINEAR) { 1558 /* No page was found just because we can't read it in now (being 1559 * here implies nonblock != 0), but the page may exist, so set 1560 * the PTE to fault it in later. */ 1561 err = install_file_pte(mm, vma, addr, pgoff, prot); 1562 if (err) 1563 return err; 1564 } 1565 1566 len -= PAGE_SIZE; 1567 addr += PAGE_SIZE; 1568 pgoff++; 1569 if (len) 1570 goto repeat; 1571 1572 return 0; 1573 } 1574 EXPORT_SYMBOL(filemap_populate); 1575 1576 struct vm_operations_struct generic_file_vm_ops = { 1577 .nopage = filemap_nopage, 1578 .populate = filemap_populate, 1579 }; 1580 1581 /* This is used for a general mmap of a disk file */ 1582 1583 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 1584 { 1585 struct address_space *mapping = file->f_mapping; 1586 1587 if (!mapping->a_ops->readpage) 1588 return -ENOEXEC; 1589 file_accessed(file); 1590 vma->vm_ops = &generic_file_vm_ops; 1591 return 0; 1592 } 1593 1594 /* 1595 * This is for filesystems which do not implement ->writepage. 1596 */ 1597 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 1598 { 1599 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 1600 return -EINVAL; 1601 return generic_file_mmap(file, vma); 1602 } 1603 #else 1604 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 1605 { 1606 return -ENOSYS; 1607 } 1608 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) 1609 { 1610 return -ENOSYS; 1611 } 1612 #endif /* CONFIG_MMU */ 1613 1614 EXPORT_SYMBOL(generic_file_mmap); 1615 EXPORT_SYMBOL(generic_file_readonly_mmap); 1616 1617 static inline struct page *__read_cache_page(struct address_space *mapping, 1618 unsigned long index, 1619 int (*filler)(void *,struct page*), 1620 void *data) 1621 { 1622 struct page *page, *cached_page = NULL; 1623 int err; 1624 repeat: 1625 page = find_get_page(mapping, index); 1626 if (!page) { 1627 if (!cached_page) { 1628 cached_page = page_cache_alloc_cold(mapping); 1629 if (!cached_page) 1630 return ERR_PTR(-ENOMEM); 1631 } 1632 err = add_to_page_cache_lru(cached_page, mapping, 1633 index, GFP_KERNEL); 1634 if (err == -EEXIST) 1635 goto repeat; 1636 if (err < 0) { 1637 /* Presumably ENOMEM for radix tree node */ 1638 page_cache_release(cached_page); 1639 return ERR_PTR(err); 1640 } 1641 page = cached_page; 1642 cached_page = NULL; 1643 err = filler(data, page); 1644 if (err < 0) { 1645 page_cache_release(page); 1646 page = ERR_PTR(err); 1647 } 1648 } 1649 if (cached_page) 1650 page_cache_release(cached_page); 1651 return page; 1652 } 1653 1654 /* 1655 * Read into the page cache. If a page already exists, 1656 * and PageUptodate() is not set, try to fill the page. 1657 */ 1658 struct page *read_cache_page(struct address_space *mapping, 1659 unsigned long index, 1660 int (*filler)(void *,struct page*), 1661 void *data) 1662 { 1663 struct page *page; 1664 int err; 1665 1666 retry: 1667 page = __read_cache_page(mapping, index, filler, data); 1668 if (IS_ERR(page)) 1669 goto out; 1670 mark_page_accessed(page); 1671 if (PageUptodate(page)) 1672 goto out; 1673 1674 lock_page(page); 1675 if (!page->mapping) { 1676 unlock_page(page); 1677 page_cache_release(page); 1678 goto retry; 1679 } 1680 if (PageUptodate(page)) { 1681 unlock_page(page); 1682 goto out; 1683 } 1684 err = filler(data, page); 1685 if (err < 0) { 1686 page_cache_release(page); 1687 page = ERR_PTR(err); 1688 } 1689 out: 1690 return page; 1691 } 1692 1693 EXPORT_SYMBOL(read_cache_page); 1694 1695 /* 1696 * If the page was newly created, increment its refcount and add it to the 1697 * caller's lru-buffering pagevec. This function is specifically for 1698 * generic_file_write(). 1699 */ 1700 static inline struct page * 1701 __grab_cache_page(struct address_space *mapping, unsigned long index, 1702 struct page **cached_page, struct pagevec *lru_pvec) 1703 { 1704 int err; 1705 struct page *page; 1706 repeat: 1707 page = find_lock_page(mapping, index); 1708 if (!page) { 1709 if (!*cached_page) { 1710 *cached_page = page_cache_alloc(mapping); 1711 if (!*cached_page) 1712 return NULL; 1713 } 1714 err = add_to_page_cache(*cached_page, mapping, 1715 index, GFP_KERNEL); 1716 if (err == -EEXIST) 1717 goto repeat; 1718 if (err == 0) { 1719 page = *cached_page; 1720 page_cache_get(page); 1721 if (!pagevec_add(lru_pvec, page)) 1722 __pagevec_lru_add(lru_pvec); 1723 *cached_page = NULL; 1724 } 1725 } 1726 return page; 1727 } 1728 1729 /* 1730 * The logic we want is 1731 * 1732 * if suid or (sgid and xgrp) 1733 * remove privs 1734 */ 1735 int remove_suid(struct dentry *dentry) 1736 { 1737 mode_t mode = dentry->d_inode->i_mode; 1738 int kill = 0; 1739 int result = 0; 1740 1741 /* suid always must be killed */ 1742 if (unlikely(mode & S_ISUID)) 1743 kill = ATTR_KILL_SUID; 1744 1745 /* 1746 * sgid without any exec bits is just a mandatory locking mark; leave 1747 * it alone. If some exec bits are set, it's a real sgid; kill it. 1748 */ 1749 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP))) 1750 kill |= ATTR_KILL_SGID; 1751 1752 if (unlikely(kill && !capable(CAP_FSETID))) { 1753 struct iattr newattrs; 1754 1755 newattrs.ia_valid = ATTR_FORCE | kill; 1756 result = notify_change(dentry, &newattrs); 1757 } 1758 return result; 1759 } 1760 EXPORT_SYMBOL(remove_suid); 1761 1762 size_t 1763 __filemap_copy_from_user_iovec(char *vaddr, 1764 const struct iovec *iov, size_t base, size_t bytes) 1765 { 1766 size_t copied = 0, left = 0; 1767 1768 while (bytes) { 1769 char __user *buf = iov->iov_base + base; 1770 int copy = min(bytes, iov->iov_len - base); 1771 1772 base = 0; 1773 left = __copy_from_user_inatomic(vaddr, buf, copy); 1774 copied += copy; 1775 bytes -= copy; 1776 vaddr += copy; 1777 iov++; 1778 1779 if (unlikely(left)) { 1780 /* zero the rest of the target like __copy_from_user */ 1781 if (bytes) 1782 memset(vaddr, 0, bytes); 1783 break; 1784 } 1785 } 1786 return copied - left; 1787 } 1788 1789 /* 1790 * Performs necessary checks before doing a write 1791 * 1792 * Can adjust writing position aor amount of bytes to write. 1793 * Returns appropriate error code that caller should return or 1794 * zero in case that write should be allowed. 1795 */ 1796 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk) 1797 { 1798 struct inode *inode = file->f_mapping->host; 1799 unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; 1800 1801 if (unlikely(*pos < 0)) 1802 return -EINVAL; 1803 1804 if (!isblk) { 1805 /* FIXME: this is for backwards compatibility with 2.4 */ 1806 if (file->f_flags & O_APPEND) 1807 *pos = i_size_read(inode); 1808 1809 if (limit != RLIM_INFINITY) { 1810 if (*pos >= limit) { 1811 send_sig(SIGXFSZ, current, 0); 1812 return -EFBIG; 1813 } 1814 if (*count > limit - (typeof(limit))*pos) { 1815 *count = limit - (typeof(limit))*pos; 1816 } 1817 } 1818 } 1819 1820 /* 1821 * LFS rule 1822 */ 1823 if (unlikely(*pos + *count > MAX_NON_LFS && 1824 !(file->f_flags & O_LARGEFILE))) { 1825 if (*pos >= MAX_NON_LFS) { 1826 send_sig(SIGXFSZ, current, 0); 1827 return -EFBIG; 1828 } 1829 if (*count > MAX_NON_LFS - (unsigned long)*pos) { 1830 *count = MAX_NON_LFS - (unsigned long)*pos; 1831 } 1832 } 1833 1834 /* 1835 * Are we about to exceed the fs block limit ? 1836 * 1837 * If we have written data it becomes a short write. If we have 1838 * exceeded without writing data we send a signal and return EFBIG. 1839 * Linus frestrict idea will clean these up nicely.. 1840 */ 1841 if (likely(!isblk)) { 1842 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) { 1843 if (*count || *pos > inode->i_sb->s_maxbytes) { 1844 send_sig(SIGXFSZ, current, 0); 1845 return -EFBIG; 1846 } 1847 /* zero-length writes at ->s_maxbytes are OK */ 1848 } 1849 1850 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes)) 1851 *count = inode->i_sb->s_maxbytes - *pos; 1852 } else { 1853 loff_t isize; 1854 if (bdev_read_only(I_BDEV(inode))) 1855 return -EPERM; 1856 isize = i_size_read(inode); 1857 if (*pos >= isize) { 1858 if (*count || *pos > isize) 1859 return -ENOSPC; 1860 } 1861 1862 if (*pos + *count > isize) 1863 *count = isize - *pos; 1864 } 1865 return 0; 1866 } 1867 EXPORT_SYMBOL(generic_write_checks); 1868 1869 ssize_t 1870 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov, 1871 unsigned long *nr_segs, loff_t pos, loff_t *ppos, 1872 size_t count, size_t ocount) 1873 { 1874 struct file *file = iocb->ki_filp; 1875 struct address_space *mapping = file->f_mapping; 1876 struct inode *inode = mapping->host; 1877 ssize_t written; 1878 1879 if (count != ocount) 1880 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count); 1881 1882 written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs); 1883 if (written > 0) { 1884 loff_t end = pos + written; 1885 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 1886 i_size_write(inode, end); 1887 mark_inode_dirty(inode); 1888 } 1889 *ppos = end; 1890 } 1891 1892 /* 1893 * Sync the fs metadata but not the minor inode changes and 1894 * of course not the data as we did direct DMA for the IO. 1895 * i_mutex is held, which protects generic_osync_inode() from 1896 * livelocking. 1897 */ 1898 if (written >= 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 1899 int err = generic_osync_inode(inode, mapping, OSYNC_METADATA); 1900 if (err < 0) 1901 written = err; 1902 } 1903 if (written == count && !is_sync_kiocb(iocb)) 1904 written = -EIOCBQUEUED; 1905 return written; 1906 } 1907 EXPORT_SYMBOL(generic_file_direct_write); 1908 1909 ssize_t 1910 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov, 1911 unsigned long nr_segs, loff_t pos, loff_t *ppos, 1912 size_t count, ssize_t written) 1913 { 1914 struct file *file = iocb->ki_filp; 1915 struct address_space * mapping = file->f_mapping; 1916 struct address_space_operations *a_ops = mapping->a_ops; 1917 struct inode *inode = mapping->host; 1918 long status = 0; 1919 struct page *page; 1920 struct page *cached_page = NULL; 1921 size_t bytes; 1922 struct pagevec lru_pvec; 1923 const struct iovec *cur_iov = iov; /* current iovec */ 1924 size_t iov_base = 0; /* offset in the current iovec */ 1925 char __user *buf; 1926 1927 pagevec_init(&lru_pvec, 0); 1928 1929 /* 1930 * handle partial DIO write. Adjust cur_iov if needed. 1931 */ 1932 if (likely(nr_segs == 1)) 1933 buf = iov->iov_base + written; 1934 else { 1935 filemap_set_next_iovec(&cur_iov, &iov_base, written); 1936 buf = cur_iov->iov_base + iov_base; 1937 } 1938 1939 do { 1940 unsigned long index; 1941 unsigned long offset; 1942 unsigned long maxlen; 1943 size_t copied; 1944 1945 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */ 1946 index = pos >> PAGE_CACHE_SHIFT; 1947 bytes = PAGE_CACHE_SIZE - offset; 1948 if (bytes > count) 1949 bytes = count; 1950 1951 /* 1952 * Bring in the user page that we will copy from _first_. 1953 * Otherwise there's a nasty deadlock on copying from the 1954 * same page as we're writing to, without it being marked 1955 * up-to-date. 1956 */ 1957 maxlen = cur_iov->iov_len - iov_base; 1958 if (maxlen > bytes) 1959 maxlen = bytes; 1960 fault_in_pages_readable(buf, maxlen); 1961 1962 page = __grab_cache_page(mapping,index,&cached_page,&lru_pvec); 1963 if (!page) { 1964 status = -ENOMEM; 1965 break; 1966 } 1967 1968 status = a_ops->prepare_write(file, page, offset, offset+bytes); 1969 if (unlikely(status)) { 1970 loff_t isize = i_size_read(inode); 1971 1972 if (status != AOP_TRUNCATED_PAGE) 1973 unlock_page(page); 1974 page_cache_release(page); 1975 if (status == AOP_TRUNCATED_PAGE) 1976 continue; 1977 /* 1978 * prepare_write() may have instantiated a few blocks 1979 * outside i_size. Trim these off again. 1980 */ 1981 if (pos + bytes > isize) 1982 vmtruncate(inode, isize); 1983 break; 1984 } 1985 if (likely(nr_segs == 1)) 1986 copied = filemap_copy_from_user(page, offset, 1987 buf, bytes); 1988 else 1989 copied = filemap_copy_from_user_iovec(page, offset, 1990 cur_iov, iov_base, bytes); 1991 flush_dcache_page(page); 1992 status = a_ops->commit_write(file, page, offset, offset+bytes); 1993 if (status == AOP_TRUNCATED_PAGE) { 1994 page_cache_release(page); 1995 continue; 1996 } 1997 if (likely(copied > 0)) { 1998 if (!status) 1999 status = copied; 2000 2001 if (status >= 0) { 2002 written += status; 2003 count -= status; 2004 pos += status; 2005 buf += status; 2006 if (unlikely(nr_segs > 1)) { 2007 filemap_set_next_iovec(&cur_iov, 2008 &iov_base, status); 2009 if (count) 2010 buf = cur_iov->iov_base + 2011 iov_base; 2012 } else { 2013 iov_base += status; 2014 } 2015 } 2016 } 2017 if (unlikely(copied != bytes)) 2018 if (status >= 0) 2019 status = -EFAULT; 2020 unlock_page(page); 2021 mark_page_accessed(page); 2022 page_cache_release(page); 2023 if (status < 0) 2024 break; 2025 balance_dirty_pages_ratelimited(mapping); 2026 cond_resched(); 2027 } while (count); 2028 *ppos = pos; 2029 2030 if (cached_page) 2031 page_cache_release(cached_page); 2032 2033 /* 2034 * For now, when the user asks for O_SYNC, we'll actually give O_DSYNC 2035 */ 2036 if (likely(status >= 0)) { 2037 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 2038 if (!a_ops->writepage || !is_sync_kiocb(iocb)) 2039 status = generic_osync_inode(inode, mapping, 2040 OSYNC_METADATA|OSYNC_DATA); 2041 } 2042 } 2043 2044 /* 2045 * If we get here for O_DIRECT writes then we must have fallen through 2046 * to buffered writes (block instantiation inside i_size). So we sync 2047 * the file data here, to try to honour O_DIRECT expectations. 2048 */ 2049 if (unlikely(file->f_flags & O_DIRECT) && written) 2050 status = filemap_write_and_wait(mapping); 2051 2052 pagevec_lru_add(&lru_pvec); 2053 return written ? written : status; 2054 } 2055 EXPORT_SYMBOL(generic_file_buffered_write); 2056 2057 static ssize_t 2058 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov, 2059 unsigned long nr_segs, loff_t *ppos) 2060 { 2061 struct file *file = iocb->ki_filp; 2062 struct address_space * mapping = file->f_mapping; 2063 size_t ocount; /* original count */ 2064 size_t count; /* after file limit checks */ 2065 struct inode *inode = mapping->host; 2066 unsigned long seg; 2067 loff_t pos; 2068 ssize_t written; 2069 ssize_t err; 2070 2071 ocount = 0; 2072 for (seg = 0; seg < nr_segs; seg++) { 2073 const struct iovec *iv = &iov[seg]; 2074 2075 /* 2076 * If any segment has a negative length, or the cumulative 2077 * length ever wraps negative then return -EINVAL. 2078 */ 2079 ocount += iv->iov_len; 2080 if (unlikely((ssize_t)(ocount|iv->iov_len) < 0)) 2081 return -EINVAL; 2082 if (access_ok(VERIFY_READ, iv->iov_base, iv->iov_len)) 2083 continue; 2084 if (seg == 0) 2085 return -EFAULT; 2086 nr_segs = seg; 2087 ocount -= iv->iov_len; /* This segment is no good */ 2088 break; 2089 } 2090 2091 count = ocount; 2092 pos = *ppos; 2093 2094 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE); 2095 2096 /* We can write back this queue in page reclaim */ 2097 current->backing_dev_info = mapping->backing_dev_info; 2098 written = 0; 2099 2100 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode)); 2101 if (err) 2102 goto out; 2103 2104 if (count == 0) 2105 goto out; 2106 2107 err = remove_suid(file->f_dentry); 2108 if (err) 2109 goto out; 2110 2111 file_update_time(file); 2112 2113 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ 2114 if (unlikely(file->f_flags & O_DIRECT)) { 2115 written = generic_file_direct_write(iocb, iov, 2116 &nr_segs, pos, ppos, count, ocount); 2117 if (written < 0 || written == count) 2118 goto out; 2119 /* 2120 * direct-io write to a hole: fall through to buffered I/O 2121 * for completing the rest of the request. 2122 */ 2123 pos += written; 2124 count -= written; 2125 } 2126 2127 written = generic_file_buffered_write(iocb, iov, nr_segs, 2128 pos, ppos, count, written); 2129 out: 2130 current->backing_dev_info = NULL; 2131 return written ? written : err; 2132 } 2133 EXPORT_SYMBOL(generic_file_aio_write_nolock); 2134 2135 ssize_t 2136 generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov, 2137 unsigned long nr_segs, loff_t *ppos) 2138 { 2139 struct file *file = iocb->ki_filp; 2140 struct address_space *mapping = file->f_mapping; 2141 struct inode *inode = mapping->host; 2142 ssize_t ret; 2143 loff_t pos = *ppos; 2144 2145 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs, ppos); 2146 2147 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 2148 int err; 2149 2150 err = sync_page_range_nolock(inode, mapping, pos, ret); 2151 if (err < 0) 2152 ret = err; 2153 } 2154 return ret; 2155 } 2156 2157 static ssize_t 2158 __generic_file_write_nolock(struct file *file, const struct iovec *iov, 2159 unsigned long nr_segs, loff_t *ppos) 2160 { 2161 struct kiocb kiocb; 2162 ssize_t ret; 2163 2164 init_sync_kiocb(&kiocb, file); 2165 ret = __generic_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos); 2166 if (ret == -EIOCBQUEUED) 2167 ret = wait_on_sync_kiocb(&kiocb); 2168 return ret; 2169 } 2170 2171 ssize_t 2172 generic_file_write_nolock(struct file *file, const struct iovec *iov, 2173 unsigned long nr_segs, loff_t *ppos) 2174 { 2175 struct kiocb kiocb; 2176 ssize_t ret; 2177 2178 init_sync_kiocb(&kiocb, file); 2179 ret = generic_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos); 2180 if (-EIOCBQUEUED == ret) 2181 ret = wait_on_sync_kiocb(&kiocb); 2182 return ret; 2183 } 2184 EXPORT_SYMBOL(generic_file_write_nolock); 2185 2186 ssize_t generic_file_aio_write(struct kiocb *iocb, const char __user *buf, 2187 size_t count, loff_t pos) 2188 { 2189 struct file *file = iocb->ki_filp; 2190 struct address_space *mapping = file->f_mapping; 2191 struct inode *inode = mapping->host; 2192 ssize_t ret; 2193 struct iovec local_iov = { .iov_base = (void __user *)buf, 2194 .iov_len = count }; 2195 2196 BUG_ON(iocb->ki_pos != pos); 2197 2198 mutex_lock(&inode->i_mutex); 2199 ret = __generic_file_aio_write_nolock(iocb, &local_iov, 1, 2200 &iocb->ki_pos); 2201 mutex_unlock(&inode->i_mutex); 2202 2203 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 2204 ssize_t err; 2205 2206 err = sync_page_range(inode, mapping, pos, ret); 2207 if (err < 0) 2208 ret = err; 2209 } 2210 return ret; 2211 } 2212 EXPORT_SYMBOL(generic_file_aio_write); 2213 2214 ssize_t generic_file_write(struct file *file, const char __user *buf, 2215 size_t count, loff_t *ppos) 2216 { 2217 struct address_space *mapping = file->f_mapping; 2218 struct inode *inode = mapping->host; 2219 ssize_t ret; 2220 struct iovec local_iov = { .iov_base = (void __user *)buf, 2221 .iov_len = count }; 2222 2223 mutex_lock(&inode->i_mutex); 2224 ret = __generic_file_write_nolock(file, &local_iov, 1, ppos); 2225 mutex_unlock(&inode->i_mutex); 2226 2227 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 2228 ssize_t err; 2229 2230 err = sync_page_range(inode, mapping, *ppos - ret, ret); 2231 if (err < 0) 2232 ret = err; 2233 } 2234 return ret; 2235 } 2236 EXPORT_SYMBOL(generic_file_write); 2237 2238 ssize_t generic_file_readv(struct file *filp, const struct iovec *iov, 2239 unsigned long nr_segs, loff_t *ppos) 2240 { 2241 struct kiocb kiocb; 2242 ssize_t ret; 2243 2244 init_sync_kiocb(&kiocb, filp); 2245 ret = __generic_file_aio_read(&kiocb, iov, nr_segs, ppos); 2246 if (-EIOCBQUEUED == ret) 2247 ret = wait_on_sync_kiocb(&kiocb); 2248 return ret; 2249 } 2250 EXPORT_SYMBOL(generic_file_readv); 2251 2252 ssize_t generic_file_writev(struct file *file, const struct iovec *iov, 2253 unsigned long nr_segs, loff_t *ppos) 2254 { 2255 struct address_space *mapping = file->f_mapping; 2256 struct inode *inode = mapping->host; 2257 ssize_t ret; 2258 2259 mutex_lock(&inode->i_mutex); 2260 ret = __generic_file_write_nolock(file, iov, nr_segs, ppos); 2261 mutex_unlock(&inode->i_mutex); 2262 2263 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 2264 int err; 2265 2266 err = sync_page_range(inode, mapping, *ppos - ret, ret); 2267 if (err < 0) 2268 ret = err; 2269 } 2270 return ret; 2271 } 2272 EXPORT_SYMBOL(generic_file_writev); 2273 2274 /* 2275 * Called under i_mutex for writes to S_ISREG files. Returns -EIO if something 2276 * went wrong during pagecache shootdown. 2277 */ 2278 static ssize_t 2279 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, 2280 loff_t offset, unsigned long nr_segs) 2281 { 2282 struct file *file = iocb->ki_filp; 2283 struct address_space *mapping = file->f_mapping; 2284 ssize_t retval; 2285 size_t write_len = 0; 2286 2287 /* 2288 * If it's a write, unmap all mmappings of the file up-front. This 2289 * will cause any pte dirty bits to be propagated into the pageframes 2290 * for the subsequent filemap_write_and_wait(). 2291 */ 2292 if (rw == WRITE) { 2293 write_len = iov_length(iov, nr_segs); 2294 if (mapping_mapped(mapping)) 2295 unmap_mapping_range(mapping, offset, write_len, 0); 2296 } 2297 2298 retval = filemap_write_and_wait(mapping); 2299 if (retval == 0) { 2300 retval = mapping->a_ops->direct_IO(rw, iocb, iov, 2301 offset, nr_segs); 2302 if (rw == WRITE && mapping->nrpages) { 2303 pgoff_t end = (offset + write_len - 1) 2304 >> PAGE_CACHE_SHIFT; 2305 int err = invalidate_inode_pages2_range(mapping, 2306 offset >> PAGE_CACHE_SHIFT, end); 2307 if (err) 2308 retval = err; 2309 } 2310 } 2311 return retval; 2312 } 2313