1 /* 2 * linux/mm/filemap.c 3 * 4 * Copyright (C) 1994-1999 Linus Torvalds 5 */ 6 7 /* 8 * This file handles the generic file mmap semantics used by 9 * most "normal" filesystems (but you don't /have/ to use this: 10 * the NFS filesystem used to do this differently, for example) 11 */ 12 #include <linux/export.h> 13 #include <linux/compiler.h> 14 #include <linux/dax.h> 15 #include <linux/fs.h> 16 #include <linux/sched/signal.h> 17 #include <linux/uaccess.h> 18 #include <linux/capability.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/gfp.h> 21 #include <linux/mm.h> 22 #include <linux/swap.h> 23 #include <linux/mman.h> 24 #include <linux/pagemap.h> 25 #include <linux/file.h> 26 #include <linux/uio.h> 27 #include <linux/hash.h> 28 #include <linux/writeback.h> 29 #include <linux/backing-dev.h> 30 #include <linux/pagevec.h> 31 #include <linux/blkdev.h> 32 #include <linux/security.h> 33 #include <linux/cpuset.h> 34 #include <linux/hugetlb.h> 35 #include <linux/memcontrol.h> 36 #include <linux/cleancache.h> 37 #include <linux/shmem_fs.h> 38 #include <linux/rmap.h> 39 #include "internal.h" 40 41 #define CREATE_TRACE_POINTS 42 #include <trace/events/filemap.h> 43 44 /* 45 * FIXME: remove all knowledge of the buffer layer from the core VM 46 */ 47 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 48 49 #include <asm/mman.h> 50 51 /* 52 * Shared mappings implemented 30.11.1994. It's not fully working yet, 53 * though. 54 * 55 * Shared mappings now work. 15.8.1995 Bruno. 56 * 57 * finished 'unifying' the page and buffer cache and SMP-threaded the 58 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 59 * 60 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 61 */ 62 63 /* 64 * Lock ordering: 65 * 66 * ->i_mmap_rwsem (truncate_pagecache) 67 * ->private_lock (__free_pte->__set_page_dirty_buffers) 68 * ->swap_lock (exclusive_swap_page, others) 69 * ->mapping->tree_lock 70 * 71 * ->i_mutex 72 * ->i_mmap_rwsem (truncate->unmap_mapping_range) 73 * 74 * ->mmap_sem 75 * ->i_mmap_rwsem 76 * ->page_table_lock or pte_lock (various, mainly in memory.c) 77 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock) 78 * 79 * ->mmap_sem 80 * ->lock_page (access_process_vm) 81 * 82 * ->i_mutex (generic_perform_write) 83 * ->mmap_sem (fault_in_pages_readable->do_page_fault) 84 * 85 * bdi->wb.list_lock 86 * sb_lock (fs/fs-writeback.c) 87 * ->mapping->tree_lock (__sync_single_inode) 88 * 89 * ->i_mmap_rwsem 90 * ->anon_vma.lock (vma_adjust) 91 * 92 * ->anon_vma.lock 93 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 94 * 95 * ->page_table_lock or pte_lock 96 * ->swap_lock (try_to_unmap_one) 97 * ->private_lock (try_to_unmap_one) 98 * ->tree_lock (try_to_unmap_one) 99 * ->zone_lru_lock(zone) (follow_page->mark_page_accessed) 100 * ->zone_lru_lock(zone) (check_pte_range->isolate_lru_page) 101 * ->private_lock (page_remove_rmap->set_page_dirty) 102 * ->tree_lock (page_remove_rmap->set_page_dirty) 103 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty) 104 * ->inode->i_lock (page_remove_rmap->set_page_dirty) 105 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg) 106 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 107 * ->inode->i_lock (zap_pte_range->set_page_dirty) 108 * ->private_lock (zap_pte_range->__set_page_dirty_buffers) 109 * 110 * ->i_mmap_rwsem 111 * ->tasklist_lock (memory_failure, collect_procs_ao) 112 */ 113 114 static int page_cache_tree_insert(struct address_space *mapping, 115 struct page *page, void **shadowp) 116 { 117 struct radix_tree_node *node; 118 void **slot; 119 int error; 120 121 error = __radix_tree_create(&mapping->page_tree, page->index, 0, 122 &node, &slot); 123 if (error) 124 return error; 125 if (*slot) { 126 void *p; 127 128 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock); 129 if (!radix_tree_exceptional_entry(p)) 130 return -EEXIST; 131 132 mapping->nrexceptional--; 133 if (shadowp) 134 *shadowp = p; 135 } 136 __radix_tree_replace(&mapping->page_tree, node, slot, page, 137 workingset_lookup_update(mapping)); 138 mapping->nrpages++; 139 return 0; 140 } 141 142 static void page_cache_tree_delete(struct address_space *mapping, 143 struct page *page, void *shadow) 144 { 145 int i, nr; 146 147 /* hugetlb pages are represented by one entry in the radix tree */ 148 nr = PageHuge(page) ? 1 : hpage_nr_pages(page); 149 150 VM_BUG_ON_PAGE(!PageLocked(page), page); 151 VM_BUG_ON_PAGE(PageTail(page), page); 152 VM_BUG_ON_PAGE(nr != 1 && shadow, page); 153 154 for (i = 0; i < nr; i++) { 155 struct radix_tree_node *node; 156 void **slot; 157 158 __radix_tree_lookup(&mapping->page_tree, page->index + i, 159 &node, &slot); 160 161 VM_BUG_ON_PAGE(!node && nr != 1, page); 162 163 radix_tree_clear_tags(&mapping->page_tree, node, slot); 164 __radix_tree_replace(&mapping->page_tree, node, slot, shadow, 165 workingset_lookup_update(mapping)); 166 } 167 168 page->mapping = NULL; 169 /* Leave page->index set: truncation lookup relies upon it */ 170 171 if (shadow) { 172 mapping->nrexceptional += nr; 173 /* 174 * Make sure the nrexceptional update is committed before 175 * the nrpages update so that final truncate racing 176 * with reclaim does not see both counters 0 at the 177 * same time and miss a shadow entry. 178 */ 179 smp_wmb(); 180 } 181 mapping->nrpages -= nr; 182 } 183 184 static void unaccount_page_cache_page(struct address_space *mapping, 185 struct page *page) 186 { 187 int nr; 188 189 /* 190 * if we're uptodate, flush out into the cleancache, otherwise 191 * invalidate any existing cleancache entries. We can't leave 192 * stale data around in the cleancache once our page is gone 193 */ 194 if (PageUptodate(page) && PageMappedToDisk(page)) 195 cleancache_put_page(page); 196 else 197 cleancache_invalidate_page(mapping, page); 198 199 VM_BUG_ON_PAGE(PageTail(page), page); 200 VM_BUG_ON_PAGE(page_mapped(page), page); 201 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) { 202 int mapcount; 203 204 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n", 205 current->comm, page_to_pfn(page)); 206 dump_page(page, "still mapped when deleted"); 207 dump_stack(); 208 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 209 210 mapcount = page_mapcount(page); 211 if (mapping_exiting(mapping) && 212 page_count(page) >= mapcount + 2) { 213 /* 214 * All vmas have already been torn down, so it's 215 * a good bet that actually the page is unmapped, 216 * and we'd prefer not to leak it: if we're wrong, 217 * some other bad page check should catch it later. 218 */ 219 page_mapcount_reset(page); 220 page_ref_sub(page, mapcount); 221 } 222 } 223 224 /* hugetlb pages do not participate in page cache accounting. */ 225 if (PageHuge(page)) 226 return; 227 228 nr = hpage_nr_pages(page); 229 230 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr); 231 if (PageSwapBacked(page)) { 232 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr); 233 if (PageTransHuge(page)) 234 __dec_node_page_state(page, NR_SHMEM_THPS); 235 } else { 236 VM_BUG_ON_PAGE(PageTransHuge(page), page); 237 } 238 239 /* 240 * At this point page must be either written or cleaned by 241 * truncate. Dirty page here signals a bug and loss of 242 * unwritten data. 243 * 244 * This fixes dirty accounting after removing the page entirely 245 * but leaves PageDirty set: it has no effect for truncated 246 * page and anyway will be cleared before returning page into 247 * buddy allocator. 248 */ 249 if (WARN_ON_ONCE(PageDirty(page))) 250 account_page_cleaned(page, mapping, inode_to_wb(mapping->host)); 251 } 252 253 /* 254 * Delete a page from the page cache and free it. Caller has to make 255 * sure the page is locked and that nobody else uses it - or that usage 256 * is safe. The caller must hold the mapping's tree_lock. 257 */ 258 void __delete_from_page_cache(struct page *page, void *shadow) 259 { 260 struct address_space *mapping = page->mapping; 261 262 trace_mm_filemap_delete_from_page_cache(page); 263 264 unaccount_page_cache_page(mapping, page); 265 page_cache_tree_delete(mapping, page, shadow); 266 } 267 268 static void page_cache_free_page(struct address_space *mapping, 269 struct page *page) 270 { 271 void (*freepage)(struct page *); 272 273 freepage = mapping->a_ops->freepage; 274 if (freepage) 275 freepage(page); 276 277 if (PageTransHuge(page) && !PageHuge(page)) { 278 page_ref_sub(page, HPAGE_PMD_NR); 279 VM_BUG_ON_PAGE(page_count(page) <= 0, page); 280 } else { 281 put_page(page); 282 } 283 } 284 285 /** 286 * delete_from_page_cache - delete page from page cache 287 * @page: the page which the kernel is trying to remove from page cache 288 * 289 * This must be called only on pages that have been verified to be in the page 290 * cache and locked. It will never put the page into the free list, the caller 291 * has a reference on the page. 292 */ 293 void delete_from_page_cache(struct page *page) 294 { 295 struct address_space *mapping = page_mapping(page); 296 unsigned long flags; 297 298 BUG_ON(!PageLocked(page)); 299 spin_lock_irqsave(&mapping->tree_lock, flags); 300 __delete_from_page_cache(page, NULL); 301 spin_unlock_irqrestore(&mapping->tree_lock, flags); 302 303 page_cache_free_page(mapping, page); 304 } 305 EXPORT_SYMBOL(delete_from_page_cache); 306 307 /* 308 * page_cache_tree_delete_batch - delete several pages from page cache 309 * @mapping: the mapping to which pages belong 310 * @pvec: pagevec with pages to delete 311 * 312 * The function walks over mapping->page_tree and removes pages passed in @pvec 313 * from the radix tree. The function expects @pvec to be sorted by page index. 314 * It tolerates holes in @pvec (radix tree entries at those indices are not 315 * modified). The function expects only THP head pages to be present in the 316 * @pvec and takes care to delete all corresponding tail pages from the radix 317 * tree as well. 318 * 319 * The function expects mapping->tree_lock to be held. 320 */ 321 static void 322 page_cache_tree_delete_batch(struct address_space *mapping, 323 struct pagevec *pvec) 324 { 325 struct radix_tree_iter iter; 326 void **slot; 327 int total_pages = 0; 328 int i = 0, tail_pages = 0; 329 struct page *page; 330 pgoff_t start; 331 332 start = pvec->pages[0]->index; 333 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { 334 if (i >= pagevec_count(pvec) && !tail_pages) 335 break; 336 page = radix_tree_deref_slot_protected(slot, 337 &mapping->tree_lock); 338 if (radix_tree_exceptional_entry(page)) 339 continue; 340 if (!tail_pages) { 341 /* 342 * Some page got inserted in our range? Skip it. We 343 * have our pages locked so they are protected from 344 * being removed. 345 */ 346 if (page != pvec->pages[i]) 347 continue; 348 WARN_ON_ONCE(!PageLocked(page)); 349 if (PageTransHuge(page) && !PageHuge(page)) 350 tail_pages = HPAGE_PMD_NR - 1; 351 page->mapping = NULL; 352 /* 353 * Leave page->index set: truncation lookup relies 354 * upon it 355 */ 356 i++; 357 } else { 358 tail_pages--; 359 } 360 radix_tree_clear_tags(&mapping->page_tree, iter.node, slot); 361 __radix_tree_replace(&mapping->page_tree, iter.node, slot, NULL, 362 workingset_lookup_update(mapping)); 363 total_pages++; 364 } 365 mapping->nrpages -= total_pages; 366 } 367 368 void delete_from_page_cache_batch(struct address_space *mapping, 369 struct pagevec *pvec) 370 { 371 int i; 372 unsigned long flags; 373 374 if (!pagevec_count(pvec)) 375 return; 376 377 spin_lock_irqsave(&mapping->tree_lock, flags); 378 for (i = 0; i < pagevec_count(pvec); i++) { 379 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]); 380 381 unaccount_page_cache_page(mapping, pvec->pages[i]); 382 } 383 page_cache_tree_delete_batch(mapping, pvec); 384 spin_unlock_irqrestore(&mapping->tree_lock, flags); 385 386 for (i = 0; i < pagevec_count(pvec); i++) 387 page_cache_free_page(mapping, pvec->pages[i]); 388 } 389 390 int filemap_check_errors(struct address_space *mapping) 391 { 392 int ret = 0; 393 /* Check for outstanding write errors */ 394 if (test_bit(AS_ENOSPC, &mapping->flags) && 395 test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 396 ret = -ENOSPC; 397 if (test_bit(AS_EIO, &mapping->flags) && 398 test_and_clear_bit(AS_EIO, &mapping->flags)) 399 ret = -EIO; 400 return ret; 401 } 402 EXPORT_SYMBOL(filemap_check_errors); 403 404 static int filemap_check_and_keep_errors(struct address_space *mapping) 405 { 406 /* Check for outstanding write errors */ 407 if (test_bit(AS_EIO, &mapping->flags)) 408 return -EIO; 409 if (test_bit(AS_ENOSPC, &mapping->flags)) 410 return -ENOSPC; 411 return 0; 412 } 413 414 /** 415 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 416 * @mapping: address space structure to write 417 * @start: offset in bytes where the range starts 418 * @end: offset in bytes where the range ends (inclusive) 419 * @sync_mode: enable synchronous operation 420 * 421 * Start writeback against all of a mapping's dirty pages that lie 422 * within the byte offsets <start, end> inclusive. 423 * 424 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 425 * opposed to a regular memory cleansing writeback. The difference between 426 * these two operations is that if a dirty page/buffer is encountered, it must 427 * be waited upon, and not just skipped over. 428 */ 429 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 430 loff_t end, int sync_mode) 431 { 432 int ret; 433 struct writeback_control wbc = { 434 .sync_mode = sync_mode, 435 .nr_to_write = LONG_MAX, 436 .range_start = start, 437 .range_end = end, 438 }; 439 440 if (!mapping_cap_writeback_dirty(mapping)) 441 return 0; 442 443 wbc_attach_fdatawrite_inode(&wbc, mapping->host); 444 ret = do_writepages(mapping, &wbc); 445 wbc_detach_inode(&wbc); 446 return ret; 447 } 448 449 static inline int __filemap_fdatawrite(struct address_space *mapping, 450 int sync_mode) 451 { 452 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 453 } 454 455 int filemap_fdatawrite(struct address_space *mapping) 456 { 457 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 458 } 459 EXPORT_SYMBOL(filemap_fdatawrite); 460 461 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 462 loff_t end) 463 { 464 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 465 } 466 EXPORT_SYMBOL(filemap_fdatawrite_range); 467 468 /** 469 * filemap_flush - mostly a non-blocking flush 470 * @mapping: target address_space 471 * 472 * This is a mostly non-blocking flush. Not suitable for data-integrity 473 * purposes - I/O may not be started against all dirty pages. 474 */ 475 int filemap_flush(struct address_space *mapping) 476 { 477 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 478 } 479 EXPORT_SYMBOL(filemap_flush); 480 481 /** 482 * filemap_range_has_page - check if a page exists in range. 483 * @mapping: address space within which to check 484 * @start_byte: offset in bytes where the range starts 485 * @end_byte: offset in bytes where the range ends (inclusive) 486 * 487 * Find at least one page in the range supplied, usually used to check if 488 * direct writing in this range will trigger a writeback. 489 */ 490 bool filemap_range_has_page(struct address_space *mapping, 491 loff_t start_byte, loff_t end_byte) 492 { 493 pgoff_t index = start_byte >> PAGE_SHIFT; 494 pgoff_t end = end_byte >> PAGE_SHIFT; 495 struct page *page; 496 497 if (end_byte < start_byte) 498 return false; 499 500 if (mapping->nrpages == 0) 501 return false; 502 503 if (!find_get_pages_range(mapping, &index, end, 1, &page)) 504 return false; 505 put_page(page); 506 return true; 507 } 508 EXPORT_SYMBOL(filemap_range_has_page); 509 510 static void __filemap_fdatawait_range(struct address_space *mapping, 511 loff_t start_byte, loff_t end_byte) 512 { 513 pgoff_t index = start_byte >> PAGE_SHIFT; 514 pgoff_t end = end_byte >> PAGE_SHIFT; 515 struct pagevec pvec; 516 int nr_pages; 517 518 if (end_byte < start_byte) 519 return; 520 521 pagevec_init(&pvec); 522 while (index <= end) { 523 unsigned i; 524 525 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, 526 end, PAGECACHE_TAG_WRITEBACK); 527 if (!nr_pages) 528 break; 529 530 for (i = 0; i < nr_pages; i++) { 531 struct page *page = pvec.pages[i]; 532 533 wait_on_page_writeback(page); 534 ClearPageError(page); 535 } 536 pagevec_release(&pvec); 537 cond_resched(); 538 } 539 } 540 541 /** 542 * filemap_fdatawait_range - wait for writeback to complete 543 * @mapping: address space structure to wait for 544 * @start_byte: offset in bytes where the range starts 545 * @end_byte: offset in bytes where the range ends (inclusive) 546 * 547 * Walk the list of under-writeback pages of the given address space 548 * in the given range and wait for all of them. Check error status of 549 * the address space and return it. 550 * 551 * Since the error status of the address space is cleared by this function, 552 * callers are responsible for checking the return value and handling and/or 553 * reporting the error. 554 */ 555 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 556 loff_t end_byte) 557 { 558 __filemap_fdatawait_range(mapping, start_byte, end_byte); 559 return filemap_check_errors(mapping); 560 } 561 EXPORT_SYMBOL(filemap_fdatawait_range); 562 563 /** 564 * file_fdatawait_range - wait for writeback to complete 565 * @file: file pointing to address space structure to wait for 566 * @start_byte: offset in bytes where the range starts 567 * @end_byte: offset in bytes where the range ends (inclusive) 568 * 569 * Walk the list of under-writeback pages of the address space that file 570 * refers to, in the given range and wait for all of them. Check error 571 * status of the address space vs. the file->f_wb_err cursor and return it. 572 * 573 * Since the error status of the file is advanced by this function, 574 * callers are responsible for checking the return value and handling and/or 575 * reporting the error. 576 */ 577 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte) 578 { 579 struct address_space *mapping = file->f_mapping; 580 581 __filemap_fdatawait_range(mapping, start_byte, end_byte); 582 return file_check_and_advance_wb_err(file); 583 } 584 EXPORT_SYMBOL(file_fdatawait_range); 585 586 /** 587 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors 588 * @mapping: address space structure to wait for 589 * 590 * Walk the list of under-writeback pages of the given address space 591 * and wait for all of them. Unlike filemap_fdatawait(), this function 592 * does not clear error status of the address space. 593 * 594 * Use this function if callers don't handle errors themselves. Expected 595 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 596 * fsfreeze(8) 597 */ 598 int filemap_fdatawait_keep_errors(struct address_space *mapping) 599 { 600 __filemap_fdatawait_range(mapping, 0, LLONG_MAX); 601 return filemap_check_and_keep_errors(mapping); 602 } 603 EXPORT_SYMBOL(filemap_fdatawait_keep_errors); 604 605 static bool mapping_needs_writeback(struct address_space *mapping) 606 { 607 return (!dax_mapping(mapping) && mapping->nrpages) || 608 (dax_mapping(mapping) && mapping->nrexceptional); 609 } 610 611 int filemap_write_and_wait(struct address_space *mapping) 612 { 613 int err = 0; 614 615 if (mapping_needs_writeback(mapping)) { 616 err = filemap_fdatawrite(mapping); 617 /* 618 * Even if the above returned error, the pages may be 619 * written partially (e.g. -ENOSPC), so we wait for it. 620 * But the -EIO is special case, it may indicate the worst 621 * thing (e.g. bug) happened, so we avoid waiting for it. 622 */ 623 if (err != -EIO) { 624 int err2 = filemap_fdatawait(mapping); 625 if (!err) 626 err = err2; 627 } else { 628 /* Clear any previously stored errors */ 629 filemap_check_errors(mapping); 630 } 631 } else { 632 err = filemap_check_errors(mapping); 633 } 634 return err; 635 } 636 EXPORT_SYMBOL(filemap_write_and_wait); 637 638 /** 639 * filemap_write_and_wait_range - write out & wait on a file range 640 * @mapping: the address_space for the pages 641 * @lstart: offset in bytes where the range starts 642 * @lend: offset in bytes where the range ends (inclusive) 643 * 644 * Write out and wait upon file offsets lstart->lend, inclusive. 645 * 646 * Note that @lend is inclusive (describes the last byte to be written) so 647 * that this function can be used to write to the very end-of-file (end = -1). 648 */ 649 int filemap_write_and_wait_range(struct address_space *mapping, 650 loff_t lstart, loff_t lend) 651 { 652 int err = 0; 653 654 if (mapping_needs_writeback(mapping)) { 655 err = __filemap_fdatawrite_range(mapping, lstart, lend, 656 WB_SYNC_ALL); 657 /* See comment of filemap_write_and_wait() */ 658 if (err != -EIO) { 659 int err2 = filemap_fdatawait_range(mapping, 660 lstart, lend); 661 if (!err) 662 err = err2; 663 } else { 664 /* Clear any previously stored errors */ 665 filemap_check_errors(mapping); 666 } 667 } else { 668 err = filemap_check_errors(mapping); 669 } 670 return err; 671 } 672 EXPORT_SYMBOL(filemap_write_and_wait_range); 673 674 void __filemap_set_wb_err(struct address_space *mapping, int err) 675 { 676 errseq_t eseq = errseq_set(&mapping->wb_err, err); 677 678 trace_filemap_set_wb_err(mapping, eseq); 679 } 680 EXPORT_SYMBOL(__filemap_set_wb_err); 681 682 /** 683 * file_check_and_advance_wb_err - report wb error (if any) that was previously 684 * and advance wb_err to current one 685 * @file: struct file on which the error is being reported 686 * 687 * When userland calls fsync (or something like nfsd does the equivalent), we 688 * want to report any writeback errors that occurred since the last fsync (or 689 * since the file was opened if there haven't been any). 690 * 691 * Grab the wb_err from the mapping. If it matches what we have in the file, 692 * then just quickly return 0. The file is all caught up. 693 * 694 * If it doesn't match, then take the mapping value, set the "seen" flag in 695 * it and try to swap it into place. If it works, or another task beat us 696 * to it with the new value, then update the f_wb_err and return the error 697 * portion. The error at this point must be reported via proper channels 698 * (a'la fsync, or NFS COMMIT operation, etc.). 699 * 700 * While we handle mapping->wb_err with atomic operations, the f_wb_err 701 * value is protected by the f_lock since we must ensure that it reflects 702 * the latest value swapped in for this file descriptor. 703 */ 704 int file_check_and_advance_wb_err(struct file *file) 705 { 706 int err = 0; 707 errseq_t old = READ_ONCE(file->f_wb_err); 708 struct address_space *mapping = file->f_mapping; 709 710 /* Locklessly handle the common case where nothing has changed */ 711 if (errseq_check(&mapping->wb_err, old)) { 712 /* Something changed, must use slow path */ 713 spin_lock(&file->f_lock); 714 old = file->f_wb_err; 715 err = errseq_check_and_advance(&mapping->wb_err, 716 &file->f_wb_err); 717 trace_file_check_and_advance_wb_err(file, old); 718 spin_unlock(&file->f_lock); 719 } 720 721 /* 722 * We're mostly using this function as a drop in replacement for 723 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect 724 * that the legacy code would have had on these flags. 725 */ 726 clear_bit(AS_EIO, &mapping->flags); 727 clear_bit(AS_ENOSPC, &mapping->flags); 728 return err; 729 } 730 EXPORT_SYMBOL(file_check_and_advance_wb_err); 731 732 /** 733 * file_write_and_wait_range - write out & wait on a file range 734 * @file: file pointing to address_space with pages 735 * @lstart: offset in bytes where the range starts 736 * @lend: offset in bytes where the range ends (inclusive) 737 * 738 * Write out and wait upon file offsets lstart->lend, inclusive. 739 * 740 * Note that @lend is inclusive (describes the last byte to be written) so 741 * that this function can be used to write to the very end-of-file (end = -1). 742 * 743 * After writing out and waiting on the data, we check and advance the 744 * f_wb_err cursor to the latest value, and return any errors detected there. 745 */ 746 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend) 747 { 748 int err = 0, err2; 749 struct address_space *mapping = file->f_mapping; 750 751 if (mapping_needs_writeback(mapping)) { 752 err = __filemap_fdatawrite_range(mapping, lstart, lend, 753 WB_SYNC_ALL); 754 /* See comment of filemap_write_and_wait() */ 755 if (err != -EIO) 756 __filemap_fdatawait_range(mapping, lstart, lend); 757 } 758 err2 = file_check_and_advance_wb_err(file); 759 if (!err) 760 err = err2; 761 return err; 762 } 763 EXPORT_SYMBOL(file_write_and_wait_range); 764 765 /** 766 * replace_page_cache_page - replace a pagecache page with a new one 767 * @old: page to be replaced 768 * @new: page to replace with 769 * @gfp_mask: allocation mode 770 * 771 * This function replaces a page in the pagecache with a new one. On 772 * success it acquires the pagecache reference for the new page and 773 * drops it for the old page. Both the old and new pages must be 774 * locked. This function does not add the new page to the LRU, the 775 * caller must do that. 776 * 777 * The remove + add is atomic. The only way this function can fail is 778 * memory allocation failure. 779 */ 780 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask) 781 { 782 int error; 783 784 VM_BUG_ON_PAGE(!PageLocked(old), old); 785 VM_BUG_ON_PAGE(!PageLocked(new), new); 786 VM_BUG_ON_PAGE(new->mapping, new); 787 788 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM); 789 if (!error) { 790 struct address_space *mapping = old->mapping; 791 void (*freepage)(struct page *); 792 unsigned long flags; 793 794 pgoff_t offset = old->index; 795 freepage = mapping->a_ops->freepage; 796 797 get_page(new); 798 new->mapping = mapping; 799 new->index = offset; 800 801 spin_lock_irqsave(&mapping->tree_lock, flags); 802 __delete_from_page_cache(old, NULL); 803 error = page_cache_tree_insert(mapping, new, NULL); 804 BUG_ON(error); 805 806 /* 807 * hugetlb pages do not participate in page cache accounting. 808 */ 809 if (!PageHuge(new)) 810 __inc_node_page_state(new, NR_FILE_PAGES); 811 if (PageSwapBacked(new)) 812 __inc_node_page_state(new, NR_SHMEM); 813 spin_unlock_irqrestore(&mapping->tree_lock, flags); 814 mem_cgroup_migrate(old, new); 815 radix_tree_preload_end(); 816 if (freepage) 817 freepage(old); 818 put_page(old); 819 } 820 821 return error; 822 } 823 EXPORT_SYMBOL_GPL(replace_page_cache_page); 824 825 static int __add_to_page_cache_locked(struct page *page, 826 struct address_space *mapping, 827 pgoff_t offset, gfp_t gfp_mask, 828 void **shadowp) 829 { 830 int huge = PageHuge(page); 831 struct mem_cgroup *memcg; 832 int error; 833 834 VM_BUG_ON_PAGE(!PageLocked(page), page); 835 VM_BUG_ON_PAGE(PageSwapBacked(page), page); 836 837 if (!huge) { 838 error = mem_cgroup_try_charge(page, current->mm, 839 gfp_mask, &memcg, false); 840 if (error) 841 return error; 842 } 843 844 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM); 845 if (error) { 846 if (!huge) 847 mem_cgroup_cancel_charge(page, memcg, false); 848 return error; 849 } 850 851 get_page(page); 852 page->mapping = mapping; 853 page->index = offset; 854 855 spin_lock_irq(&mapping->tree_lock); 856 error = page_cache_tree_insert(mapping, page, shadowp); 857 radix_tree_preload_end(); 858 if (unlikely(error)) 859 goto err_insert; 860 861 /* hugetlb pages do not participate in page cache accounting. */ 862 if (!huge) 863 __inc_node_page_state(page, NR_FILE_PAGES); 864 spin_unlock_irq(&mapping->tree_lock); 865 if (!huge) 866 mem_cgroup_commit_charge(page, memcg, false, false); 867 trace_mm_filemap_add_to_page_cache(page); 868 return 0; 869 err_insert: 870 page->mapping = NULL; 871 /* Leave page->index set: truncation relies upon it */ 872 spin_unlock_irq(&mapping->tree_lock); 873 if (!huge) 874 mem_cgroup_cancel_charge(page, memcg, false); 875 put_page(page); 876 return error; 877 } 878 879 /** 880 * add_to_page_cache_locked - add a locked page to the pagecache 881 * @page: page to add 882 * @mapping: the page's address_space 883 * @offset: page index 884 * @gfp_mask: page allocation mode 885 * 886 * This function is used to add a page to the pagecache. It must be locked. 887 * This function does not add the page to the LRU. The caller must do that. 888 */ 889 int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 890 pgoff_t offset, gfp_t gfp_mask) 891 { 892 return __add_to_page_cache_locked(page, mapping, offset, 893 gfp_mask, NULL); 894 } 895 EXPORT_SYMBOL(add_to_page_cache_locked); 896 897 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 898 pgoff_t offset, gfp_t gfp_mask) 899 { 900 void *shadow = NULL; 901 int ret; 902 903 __SetPageLocked(page); 904 ret = __add_to_page_cache_locked(page, mapping, offset, 905 gfp_mask, &shadow); 906 if (unlikely(ret)) 907 __ClearPageLocked(page); 908 else { 909 /* 910 * The page might have been evicted from cache only 911 * recently, in which case it should be activated like 912 * any other repeatedly accessed page. 913 * The exception is pages getting rewritten; evicting other 914 * data from the working set, only to cache data that will 915 * get overwritten with something else, is a waste of memory. 916 */ 917 if (!(gfp_mask & __GFP_WRITE) && 918 shadow && workingset_refault(shadow)) { 919 SetPageActive(page); 920 workingset_activation(page); 921 } else 922 ClearPageActive(page); 923 lru_cache_add(page); 924 } 925 return ret; 926 } 927 EXPORT_SYMBOL_GPL(add_to_page_cache_lru); 928 929 #ifdef CONFIG_NUMA 930 struct page *__page_cache_alloc(gfp_t gfp) 931 { 932 int n; 933 struct page *page; 934 935 if (cpuset_do_page_mem_spread()) { 936 unsigned int cpuset_mems_cookie; 937 do { 938 cpuset_mems_cookie = read_mems_allowed_begin(); 939 n = cpuset_mem_spread_node(); 940 page = __alloc_pages_node(n, gfp, 0); 941 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie)); 942 943 return page; 944 } 945 return alloc_pages(gfp, 0); 946 } 947 EXPORT_SYMBOL(__page_cache_alloc); 948 #endif 949 950 /* 951 * In order to wait for pages to become available there must be 952 * waitqueues associated with pages. By using a hash table of 953 * waitqueues where the bucket discipline is to maintain all 954 * waiters on the same queue and wake all when any of the pages 955 * become available, and for the woken contexts to check to be 956 * sure the appropriate page became available, this saves space 957 * at a cost of "thundering herd" phenomena during rare hash 958 * collisions. 959 */ 960 #define PAGE_WAIT_TABLE_BITS 8 961 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS) 962 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned; 963 964 static wait_queue_head_t *page_waitqueue(struct page *page) 965 { 966 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)]; 967 } 968 969 void __init pagecache_init(void) 970 { 971 int i; 972 973 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++) 974 init_waitqueue_head(&page_wait_table[i]); 975 976 page_writeback_init(); 977 } 978 979 /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */ 980 struct wait_page_key { 981 struct page *page; 982 int bit_nr; 983 int page_match; 984 }; 985 986 struct wait_page_queue { 987 struct page *page; 988 int bit_nr; 989 wait_queue_entry_t wait; 990 }; 991 992 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg) 993 { 994 struct wait_page_key *key = arg; 995 struct wait_page_queue *wait_page 996 = container_of(wait, struct wait_page_queue, wait); 997 998 if (wait_page->page != key->page) 999 return 0; 1000 key->page_match = 1; 1001 1002 if (wait_page->bit_nr != key->bit_nr) 1003 return 0; 1004 1005 /* Stop walking if it's locked */ 1006 if (test_bit(key->bit_nr, &key->page->flags)) 1007 return -1; 1008 1009 return autoremove_wake_function(wait, mode, sync, key); 1010 } 1011 1012 static void wake_up_page_bit(struct page *page, int bit_nr) 1013 { 1014 wait_queue_head_t *q = page_waitqueue(page); 1015 struct wait_page_key key; 1016 unsigned long flags; 1017 wait_queue_entry_t bookmark; 1018 1019 key.page = page; 1020 key.bit_nr = bit_nr; 1021 key.page_match = 0; 1022 1023 bookmark.flags = 0; 1024 bookmark.private = NULL; 1025 bookmark.func = NULL; 1026 INIT_LIST_HEAD(&bookmark.entry); 1027 1028 spin_lock_irqsave(&q->lock, flags); 1029 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); 1030 1031 while (bookmark.flags & WQ_FLAG_BOOKMARK) { 1032 /* 1033 * Take a breather from holding the lock, 1034 * allow pages that finish wake up asynchronously 1035 * to acquire the lock and remove themselves 1036 * from wait queue 1037 */ 1038 spin_unlock_irqrestore(&q->lock, flags); 1039 cpu_relax(); 1040 spin_lock_irqsave(&q->lock, flags); 1041 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); 1042 } 1043 1044 /* 1045 * It is possible for other pages to have collided on the waitqueue 1046 * hash, so in that case check for a page match. That prevents a long- 1047 * term waiter 1048 * 1049 * It is still possible to miss a case here, when we woke page waiters 1050 * and removed them from the waitqueue, but there are still other 1051 * page waiters. 1052 */ 1053 if (!waitqueue_active(q) || !key.page_match) { 1054 ClearPageWaiters(page); 1055 /* 1056 * It's possible to miss clearing Waiters here, when we woke 1057 * our page waiters, but the hashed waitqueue has waiters for 1058 * other pages on it. 1059 * 1060 * That's okay, it's a rare case. The next waker will clear it. 1061 */ 1062 } 1063 spin_unlock_irqrestore(&q->lock, flags); 1064 } 1065 1066 static void wake_up_page(struct page *page, int bit) 1067 { 1068 if (!PageWaiters(page)) 1069 return; 1070 wake_up_page_bit(page, bit); 1071 } 1072 1073 static inline int wait_on_page_bit_common(wait_queue_head_t *q, 1074 struct page *page, int bit_nr, int state, bool lock) 1075 { 1076 struct wait_page_queue wait_page; 1077 wait_queue_entry_t *wait = &wait_page.wait; 1078 int ret = 0; 1079 1080 init_wait(wait); 1081 wait->flags = lock ? WQ_FLAG_EXCLUSIVE : 0; 1082 wait->func = wake_page_function; 1083 wait_page.page = page; 1084 wait_page.bit_nr = bit_nr; 1085 1086 for (;;) { 1087 spin_lock_irq(&q->lock); 1088 1089 if (likely(list_empty(&wait->entry))) { 1090 __add_wait_queue_entry_tail(q, wait); 1091 SetPageWaiters(page); 1092 } 1093 1094 set_current_state(state); 1095 1096 spin_unlock_irq(&q->lock); 1097 1098 if (likely(test_bit(bit_nr, &page->flags))) { 1099 io_schedule(); 1100 } 1101 1102 if (lock) { 1103 if (!test_and_set_bit_lock(bit_nr, &page->flags)) 1104 break; 1105 } else { 1106 if (!test_bit(bit_nr, &page->flags)) 1107 break; 1108 } 1109 1110 if (unlikely(signal_pending_state(state, current))) { 1111 ret = -EINTR; 1112 break; 1113 } 1114 } 1115 1116 finish_wait(q, wait); 1117 1118 /* 1119 * A signal could leave PageWaiters set. Clearing it here if 1120 * !waitqueue_active would be possible (by open-coding finish_wait), 1121 * but still fail to catch it in the case of wait hash collision. We 1122 * already can fail to clear wait hash collision cases, so don't 1123 * bother with signals either. 1124 */ 1125 1126 return ret; 1127 } 1128 1129 void wait_on_page_bit(struct page *page, int bit_nr) 1130 { 1131 wait_queue_head_t *q = page_waitqueue(page); 1132 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false); 1133 } 1134 EXPORT_SYMBOL(wait_on_page_bit); 1135 1136 int wait_on_page_bit_killable(struct page *page, int bit_nr) 1137 { 1138 wait_queue_head_t *q = page_waitqueue(page); 1139 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false); 1140 } 1141 EXPORT_SYMBOL(wait_on_page_bit_killable); 1142 1143 /** 1144 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue 1145 * @page: Page defining the wait queue of interest 1146 * @waiter: Waiter to add to the queue 1147 * 1148 * Add an arbitrary @waiter to the wait queue for the nominated @page. 1149 */ 1150 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter) 1151 { 1152 wait_queue_head_t *q = page_waitqueue(page); 1153 unsigned long flags; 1154 1155 spin_lock_irqsave(&q->lock, flags); 1156 __add_wait_queue_entry_tail(q, waiter); 1157 SetPageWaiters(page); 1158 spin_unlock_irqrestore(&q->lock, flags); 1159 } 1160 EXPORT_SYMBOL_GPL(add_page_wait_queue); 1161 1162 #ifndef clear_bit_unlock_is_negative_byte 1163 1164 /* 1165 * PG_waiters is the high bit in the same byte as PG_lock. 1166 * 1167 * On x86 (and on many other architectures), we can clear PG_lock and 1168 * test the sign bit at the same time. But if the architecture does 1169 * not support that special operation, we just do this all by hand 1170 * instead. 1171 * 1172 * The read of PG_waiters has to be after (or concurrently with) PG_locked 1173 * being cleared, but a memory barrier should be unneccssary since it is 1174 * in the same byte as PG_locked. 1175 */ 1176 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem) 1177 { 1178 clear_bit_unlock(nr, mem); 1179 /* smp_mb__after_atomic(); */ 1180 return test_bit(PG_waiters, mem); 1181 } 1182 1183 #endif 1184 1185 /** 1186 * unlock_page - unlock a locked page 1187 * @page: the page 1188 * 1189 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). 1190 * Also wakes sleepers in wait_on_page_writeback() because the wakeup 1191 * mechanism between PageLocked pages and PageWriteback pages is shared. 1192 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. 1193 * 1194 * Note that this depends on PG_waiters being the sign bit in the byte 1195 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to 1196 * clear the PG_locked bit and test PG_waiters at the same time fairly 1197 * portably (architectures that do LL/SC can test any bit, while x86 can 1198 * test the sign bit). 1199 */ 1200 void unlock_page(struct page *page) 1201 { 1202 BUILD_BUG_ON(PG_waiters != 7); 1203 page = compound_head(page); 1204 VM_BUG_ON_PAGE(!PageLocked(page), page); 1205 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags)) 1206 wake_up_page_bit(page, PG_locked); 1207 } 1208 EXPORT_SYMBOL(unlock_page); 1209 1210 /** 1211 * end_page_writeback - end writeback against a page 1212 * @page: the page 1213 */ 1214 void end_page_writeback(struct page *page) 1215 { 1216 /* 1217 * TestClearPageReclaim could be used here but it is an atomic 1218 * operation and overkill in this particular case. Failing to 1219 * shuffle a page marked for immediate reclaim is too mild to 1220 * justify taking an atomic operation penalty at the end of 1221 * ever page writeback. 1222 */ 1223 if (PageReclaim(page)) { 1224 ClearPageReclaim(page); 1225 rotate_reclaimable_page(page); 1226 } 1227 1228 if (!test_clear_page_writeback(page)) 1229 BUG(); 1230 1231 smp_mb__after_atomic(); 1232 wake_up_page(page, PG_writeback); 1233 } 1234 EXPORT_SYMBOL(end_page_writeback); 1235 1236 /* 1237 * After completing I/O on a page, call this routine to update the page 1238 * flags appropriately 1239 */ 1240 void page_endio(struct page *page, bool is_write, int err) 1241 { 1242 if (!is_write) { 1243 if (!err) { 1244 SetPageUptodate(page); 1245 } else { 1246 ClearPageUptodate(page); 1247 SetPageError(page); 1248 } 1249 unlock_page(page); 1250 } else { 1251 if (err) { 1252 struct address_space *mapping; 1253 1254 SetPageError(page); 1255 mapping = page_mapping(page); 1256 if (mapping) 1257 mapping_set_error(mapping, err); 1258 } 1259 end_page_writeback(page); 1260 } 1261 } 1262 EXPORT_SYMBOL_GPL(page_endio); 1263 1264 /** 1265 * __lock_page - get a lock on the page, assuming we need to sleep to get it 1266 * @__page: the page to lock 1267 */ 1268 void __lock_page(struct page *__page) 1269 { 1270 struct page *page = compound_head(__page); 1271 wait_queue_head_t *q = page_waitqueue(page); 1272 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true); 1273 } 1274 EXPORT_SYMBOL(__lock_page); 1275 1276 int __lock_page_killable(struct page *__page) 1277 { 1278 struct page *page = compound_head(__page); 1279 wait_queue_head_t *q = page_waitqueue(page); 1280 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true); 1281 } 1282 EXPORT_SYMBOL_GPL(__lock_page_killable); 1283 1284 /* 1285 * Return values: 1286 * 1 - page is locked; mmap_sem is still held. 1287 * 0 - page is not locked. 1288 * mmap_sem has been released (up_read()), unless flags had both 1289 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in 1290 * which case mmap_sem is still held. 1291 * 1292 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1 1293 * with the page locked and the mmap_sem unperturbed. 1294 */ 1295 int __lock_page_or_retry(struct page *page, struct mm_struct *mm, 1296 unsigned int flags) 1297 { 1298 if (flags & FAULT_FLAG_ALLOW_RETRY) { 1299 /* 1300 * CAUTION! In this case, mmap_sem is not released 1301 * even though return 0. 1302 */ 1303 if (flags & FAULT_FLAG_RETRY_NOWAIT) 1304 return 0; 1305 1306 up_read(&mm->mmap_sem); 1307 if (flags & FAULT_FLAG_KILLABLE) 1308 wait_on_page_locked_killable(page); 1309 else 1310 wait_on_page_locked(page); 1311 return 0; 1312 } else { 1313 if (flags & FAULT_FLAG_KILLABLE) { 1314 int ret; 1315 1316 ret = __lock_page_killable(page); 1317 if (ret) { 1318 up_read(&mm->mmap_sem); 1319 return 0; 1320 } 1321 } else 1322 __lock_page(page); 1323 return 1; 1324 } 1325 } 1326 1327 /** 1328 * page_cache_next_hole - find the next hole (not-present entry) 1329 * @mapping: mapping 1330 * @index: index 1331 * @max_scan: maximum range to search 1332 * 1333 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the 1334 * lowest indexed hole. 1335 * 1336 * Returns: the index of the hole if found, otherwise returns an index 1337 * outside of the set specified (in which case 'return - index >= 1338 * max_scan' will be true). In rare cases of index wrap-around, 0 will 1339 * be returned. 1340 * 1341 * page_cache_next_hole may be called under rcu_read_lock. However, 1342 * like radix_tree_gang_lookup, this will not atomically search a 1343 * snapshot of the tree at a single point in time. For example, if a 1344 * hole is created at index 5, then subsequently a hole is created at 1345 * index 10, page_cache_next_hole covering both indexes may return 10 1346 * if called under rcu_read_lock. 1347 */ 1348 pgoff_t page_cache_next_hole(struct address_space *mapping, 1349 pgoff_t index, unsigned long max_scan) 1350 { 1351 unsigned long i; 1352 1353 for (i = 0; i < max_scan; i++) { 1354 struct page *page; 1355 1356 page = radix_tree_lookup(&mapping->page_tree, index); 1357 if (!page || radix_tree_exceptional_entry(page)) 1358 break; 1359 index++; 1360 if (index == 0) 1361 break; 1362 } 1363 1364 return index; 1365 } 1366 EXPORT_SYMBOL(page_cache_next_hole); 1367 1368 /** 1369 * page_cache_prev_hole - find the prev hole (not-present entry) 1370 * @mapping: mapping 1371 * @index: index 1372 * @max_scan: maximum range to search 1373 * 1374 * Search backwards in the range [max(index-max_scan+1, 0), index] for 1375 * the first hole. 1376 * 1377 * Returns: the index of the hole if found, otherwise returns an index 1378 * outside of the set specified (in which case 'index - return >= 1379 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX 1380 * will be returned. 1381 * 1382 * page_cache_prev_hole may be called under rcu_read_lock. However, 1383 * like radix_tree_gang_lookup, this will not atomically search a 1384 * snapshot of the tree at a single point in time. For example, if a 1385 * hole is created at index 10, then subsequently a hole is created at 1386 * index 5, page_cache_prev_hole covering both indexes may return 5 if 1387 * called under rcu_read_lock. 1388 */ 1389 pgoff_t page_cache_prev_hole(struct address_space *mapping, 1390 pgoff_t index, unsigned long max_scan) 1391 { 1392 unsigned long i; 1393 1394 for (i = 0; i < max_scan; i++) { 1395 struct page *page; 1396 1397 page = radix_tree_lookup(&mapping->page_tree, index); 1398 if (!page || radix_tree_exceptional_entry(page)) 1399 break; 1400 index--; 1401 if (index == ULONG_MAX) 1402 break; 1403 } 1404 1405 return index; 1406 } 1407 EXPORT_SYMBOL(page_cache_prev_hole); 1408 1409 /** 1410 * find_get_entry - find and get a page cache entry 1411 * @mapping: the address_space to search 1412 * @offset: the page cache index 1413 * 1414 * Looks up the page cache slot at @mapping & @offset. If there is a 1415 * page cache page, it is returned with an increased refcount. 1416 * 1417 * If the slot holds a shadow entry of a previously evicted page, or a 1418 * swap entry from shmem/tmpfs, it is returned. 1419 * 1420 * Otherwise, %NULL is returned. 1421 */ 1422 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset) 1423 { 1424 void **pagep; 1425 struct page *head, *page; 1426 1427 rcu_read_lock(); 1428 repeat: 1429 page = NULL; 1430 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset); 1431 if (pagep) { 1432 page = radix_tree_deref_slot(pagep); 1433 if (unlikely(!page)) 1434 goto out; 1435 if (radix_tree_exception(page)) { 1436 if (radix_tree_deref_retry(page)) 1437 goto repeat; 1438 /* 1439 * A shadow entry of a recently evicted page, 1440 * or a swap entry from shmem/tmpfs. Return 1441 * it without attempting to raise page count. 1442 */ 1443 goto out; 1444 } 1445 1446 head = compound_head(page); 1447 if (!page_cache_get_speculative(head)) 1448 goto repeat; 1449 1450 /* The page was split under us? */ 1451 if (compound_head(page) != head) { 1452 put_page(head); 1453 goto repeat; 1454 } 1455 1456 /* 1457 * Has the page moved? 1458 * This is part of the lockless pagecache protocol. See 1459 * include/linux/pagemap.h for details. 1460 */ 1461 if (unlikely(page != *pagep)) { 1462 put_page(head); 1463 goto repeat; 1464 } 1465 } 1466 out: 1467 rcu_read_unlock(); 1468 1469 return page; 1470 } 1471 EXPORT_SYMBOL(find_get_entry); 1472 1473 /** 1474 * find_lock_entry - locate, pin and lock a page cache entry 1475 * @mapping: the address_space to search 1476 * @offset: the page cache index 1477 * 1478 * Looks up the page cache slot at @mapping & @offset. If there is a 1479 * page cache page, it is returned locked and with an increased 1480 * refcount. 1481 * 1482 * If the slot holds a shadow entry of a previously evicted page, or a 1483 * swap entry from shmem/tmpfs, it is returned. 1484 * 1485 * Otherwise, %NULL is returned. 1486 * 1487 * find_lock_entry() may sleep. 1488 */ 1489 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset) 1490 { 1491 struct page *page; 1492 1493 repeat: 1494 page = find_get_entry(mapping, offset); 1495 if (page && !radix_tree_exception(page)) { 1496 lock_page(page); 1497 /* Has the page been truncated? */ 1498 if (unlikely(page_mapping(page) != mapping)) { 1499 unlock_page(page); 1500 put_page(page); 1501 goto repeat; 1502 } 1503 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page); 1504 } 1505 return page; 1506 } 1507 EXPORT_SYMBOL(find_lock_entry); 1508 1509 /** 1510 * pagecache_get_page - find and get a page reference 1511 * @mapping: the address_space to search 1512 * @offset: the page index 1513 * @fgp_flags: PCG flags 1514 * @gfp_mask: gfp mask to use for the page cache data page allocation 1515 * 1516 * Looks up the page cache slot at @mapping & @offset. 1517 * 1518 * PCG flags modify how the page is returned. 1519 * 1520 * @fgp_flags can be: 1521 * 1522 * - FGP_ACCESSED: the page will be marked accessed 1523 * - FGP_LOCK: Page is return locked 1524 * - FGP_CREAT: If page is not present then a new page is allocated using 1525 * @gfp_mask and added to the page cache and the VM's LRU 1526 * list. The page is returned locked and with an increased 1527 * refcount. Otherwise, NULL is returned. 1528 * 1529 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even 1530 * if the GFP flags specified for FGP_CREAT are atomic. 1531 * 1532 * If there is a page cache page, it is returned with an increased refcount. 1533 */ 1534 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset, 1535 int fgp_flags, gfp_t gfp_mask) 1536 { 1537 struct page *page; 1538 1539 repeat: 1540 page = find_get_entry(mapping, offset); 1541 if (radix_tree_exceptional_entry(page)) 1542 page = NULL; 1543 if (!page) 1544 goto no_page; 1545 1546 if (fgp_flags & FGP_LOCK) { 1547 if (fgp_flags & FGP_NOWAIT) { 1548 if (!trylock_page(page)) { 1549 put_page(page); 1550 return NULL; 1551 } 1552 } else { 1553 lock_page(page); 1554 } 1555 1556 /* Has the page been truncated? */ 1557 if (unlikely(page->mapping != mapping)) { 1558 unlock_page(page); 1559 put_page(page); 1560 goto repeat; 1561 } 1562 VM_BUG_ON_PAGE(page->index != offset, page); 1563 } 1564 1565 if (page && (fgp_flags & FGP_ACCESSED)) 1566 mark_page_accessed(page); 1567 1568 no_page: 1569 if (!page && (fgp_flags & FGP_CREAT)) { 1570 int err; 1571 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping)) 1572 gfp_mask |= __GFP_WRITE; 1573 if (fgp_flags & FGP_NOFS) 1574 gfp_mask &= ~__GFP_FS; 1575 1576 page = __page_cache_alloc(gfp_mask); 1577 if (!page) 1578 return NULL; 1579 1580 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK))) 1581 fgp_flags |= FGP_LOCK; 1582 1583 /* Init accessed so avoid atomic mark_page_accessed later */ 1584 if (fgp_flags & FGP_ACCESSED) 1585 __SetPageReferenced(page); 1586 1587 err = add_to_page_cache_lru(page, mapping, offset, 1588 gfp_mask & GFP_RECLAIM_MASK); 1589 if (unlikely(err)) { 1590 put_page(page); 1591 page = NULL; 1592 if (err == -EEXIST) 1593 goto repeat; 1594 } 1595 } 1596 1597 return page; 1598 } 1599 EXPORT_SYMBOL(pagecache_get_page); 1600 1601 /** 1602 * find_get_entries - gang pagecache lookup 1603 * @mapping: The address_space to search 1604 * @start: The starting page cache index 1605 * @nr_entries: The maximum number of entries 1606 * @entries: Where the resulting entries are placed 1607 * @indices: The cache indices corresponding to the entries in @entries 1608 * 1609 * find_get_entries() will search for and return a group of up to 1610 * @nr_entries entries in the mapping. The entries are placed at 1611 * @entries. find_get_entries() takes a reference against any actual 1612 * pages it returns. 1613 * 1614 * The search returns a group of mapping-contiguous page cache entries 1615 * with ascending indexes. There may be holes in the indices due to 1616 * not-present pages. 1617 * 1618 * Any shadow entries of evicted pages, or swap entries from 1619 * shmem/tmpfs, are included in the returned array. 1620 * 1621 * find_get_entries() returns the number of pages and shadow entries 1622 * which were found. 1623 */ 1624 unsigned find_get_entries(struct address_space *mapping, 1625 pgoff_t start, unsigned int nr_entries, 1626 struct page **entries, pgoff_t *indices) 1627 { 1628 void **slot; 1629 unsigned int ret = 0; 1630 struct radix_tree_iter iter; 1631 1632 if (!nr_entries) 1633 return 0; 1634 1635 rcu_read_lock(); 1636 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { 1637 struct page *head, *page; 1638 repeat: 1639 page = radix_tree_deref_slot(slot); 1640 if (unlikely(!page)) 1641 continue; 1642 if (radix_tree_exception(page)) { 1643 if (radix_tree_deref_retry(page)) { 1644 slot = radix_tree_iter_retry(&iter); 1645 continue; 1646 } 1647 /* 1648 * A shadow entry of a recently evicted page, a swap 1649 * entry from shmem/tmpfs or a DAX entry. Return it 1650 * without attempting to raise page count. 1651 */ 1652 goto export; 1653 } 1654 1655 head = compound_head(page); 1656 if (!page_cache_get_speculative(head)) 1657 goto repeat; 1658 1659 /* The page was split under us? */ 1660 if (compound_head(page) != head) { 1661 put_page(head); 1662 goto repeat; 1663 } 1664 1665 /* Has the page moved? */ 1666 if (unlikely(page != *slot)) { 1667 put_page(head); 1668 goto repeat; 1669 } 1670 export: 1671 indices[ret] = iter.index; 1672 entries[ret] = page; 1673 if (++ret == nr_entries) 1674 break; 1675 } 1676 rcu_read_unlock(); 1677 return ret; 1678 } 1679 1680 /** 1681 * find_get_pages_range - gang pagecache lookup 1682 * @mapping: The address_space to search 1683 * @start: The starting page index 1684 * @end: The final page index (inclusive) 1685 * @nr_pages: The maximum number of pages 1686 * @pages: Where the resulting pages are placed 1687 * 1688 * find_get_pages_range() will search for and return a group of up to @nr_pages 1689 * pages in the mapping starting at index @start and up to index @end 1690 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes 1691 * a reference against the returned pages. 1692 * 1693 * The search returns a group of mapping-contiguous pages with ascending 1694 * indexes. There may be holes in the indices due to not-present pages. 1695 * We also update @start to index the next page for the traversal. 1696 * 1697 * find_get_pages_range() returns the number of pages which were found. If this 1698 * number is smaller than @nr_pages, the end of specified range has been 1699 * reached. 1700 */ 1701 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start, 1702 pgoff_t end, unsigned int nr_pages, 1703 struct page **pages) 1704 { 1705 struct radix_tree_iter iter; 1706 void **slot; 1707 unsigned ret = 0; 1708 1709 if (unlikely(!nr_pages)) 1710 return 0; 1711 1712 rcu_read_lock(); 1713 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, *start) { 1714 struct page *head, *page; 1715 1716 if (iter.index > end) 1717 break; 1718 repeat: 1719 page = radix_tree_deref_slot(slot); 1720 if (unlikely(!page)) 1721 continue; 1722 1723 if (radix_tree_exception(page)) { 1724 if (radix_tree_deref_retry(page)) { 1725 slot = radix_tree_iter_retry(&iter); 1726 continue; 1727 } 1728 /* 1729 * A shadow entry of a recently evicted page, 1730 * or a swap entry from shmem/tmpfs. Skip 1731 * over it. 1732 */ 1733 continue; 1734 } 1735 1736 head = compound_head(page); 1737 if (!page_cache_get_speculative(head)) 1738 goto repeat; 1739 1740 /* The page was split under us? */ 1741 if (compound_head(page) != head) { 1742 put_page(head); 1743 goto repeat; 1744 } 1745 1746 /* Has the page moved? */ 1747 if (unlikely(page != *slot)) { 1748 put_page(head); 1749 goto repeat; 1750 } 1751 1752 pages[ret] = page; 1753 if (++ret == nr_pages) { 1754 *start = pages[ret - 1]->index + 1; 1755 goto out; 1756 } 1757 } 1758 1759 /* 1760 * We come here when there is no page beyond @end. We take care to not 1761 * overflow the index @start as it confuses some of the callers. This 1762 * breaks the iteration when there is page at index -1 but that is 1763 * already broken anyway. 1764 */ 1765 if (end == (pgoff_t)-1) 1766 *start = (pgoff_t)-1; 1767 else 1768 *start = end + 1; 1769 out: 1770 rcu_read_unlock(); 1771 1772 return ret; 1773 } 1774 1775 /** 1776 * find_get_pages_contig - gang contiguous pagecache lookup 1777 * @mapping: The address_space to search 1778 * @index: The starting page index 1779 * @nr_pages: The maximum number of pages 1780 * @pages: Where the resulting pages are placed 1781 * 1782 * find_get_pages_contig() works exactly like find_get_pages(), except 1783 * that the returned number of pages are guaranteed to be contiguous. 1784 * 1785 * find_get_pages_contig() returns the number of pages which were found. 1786 */ 1787 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, 1788 unsigned int nr_pages, struct page **pages) 1789 { 1790 struct radix_tree_iter iter; 1791 void **slot; 1792 unsigned int ret = 0; 1793 1794 if (unlikely(!nr_pages)) 1795 return 0; 1796 1797 rcu_read_lock(); 1798 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) { 1799 struct page *head, *page; 1800 repeat: 1801 page = radix_tree_deref_slot(slot); 1802 /* The hole, there no reason to continue */ 1803 if (unlikely(!page)) 1804 break; 1805 1806 if (radix_tree_exception(page)) { 1807 if (radix_tree_deref_retry(page)) { 1808 slot = radix_tree_iter_retry(&iter); 1809 continue; 1810 } 1811 /* 1812 * A shadow entry of a recently evicted page, 1813 * or a swap entry from shmem/tmpfs. Stop 1814 * looking for contiguous pages. 1815 */ 1816 break; 1817 } 1818 1819 head = compound_head(page); 1820 if (!page_cache_get_speculative(head)) 1821 goto repeat; 1822 1823 /* The page was split under us? */ 1824 if (compound_head(page) != head) { 1825 put_page(head); 1826 goto repeat; 1827 } 1828 1829 /* Has the page moved? */ 1830 if (unlikely(page != *slot)) { 1831 put_page(head); 1832 goto repeat; 1833 } 1834 1835 /* 1836 * must check mapping and index after taking the ref. 1837 * otherwise we can get both false positives and false 1838 * negatives, which is just confusing to the caller. 1839 */ 1840 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) { 1841 put_page(page); 1842 break; 1843 } 1844 1845 pages[ret] = page; 1846 if (++ret == nr_pages) 1847 break; 1848 } 1849 rcu_read_unlock(); 1850 return ret; 1851 } 1852 EXPORT_SYMBOL(find_get_pages_contig); 1853 1854 /** 1855 * find_get_pages_range_tag - find and return pages in given range matching @tag 1856 * @mapping: the address_space to search 1857 * @index: the starting page index 1858 * @end: The final page index (inclusive) 1859 * @tag: the tag index 1860 * @nr_pages: the maximum number of pages 1861 * @pages: where the resulting pages are placed 1862 * 1863 * Like find_get_pages, except we only return pages which are tagged with 1864 * @tag. We update @index to index the next page for the traversal. 1865 */ 1866 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index, 1867 pgoff_t end, int tag, unsigned int nr_pages, 1868 struct page **pages) 1869 { 1870 struct radix_tree_iter iter; 1871 void **slot; 1872 unsigned ret = 0; 1873 1874 if (unlikely(!nr_pages)) 1875 return 0; 1876 1877 rcu_read_lock(); 1878 radix_tree_for_each_tagged(slot, &mapping->page_tree, 1879 &iter, *index, tag) { 1880 struct page *head, *page; 1881 1882 if (iter.index > end) 1883 break; 1884 repeat: 1885 page = radix_tree_deref_slot(slot); 1886 if (unlikely(!page)) 1887 continue; 1888 1889 if (radix_tree_exception(page)) { 1890 if (radix_tree_deref_retry(page)) { 1891 slot = radix_tree_iter_retry(&iter); 1892 continue; 1893 } 1894 /* 1895 * A shadow entry of a recently evicted page. 1896 * 1897 * Those entries should never be tagged, but 1898 * this tree walk is lockless and the tags are 1899 * looked up in bulk, one radix tree node at a 1900 * time, so there is a sizable window for page 1901 * reclaim to evict a page we saw tagged. 1902 * 1903 * Skip over it. 1904 */ 1905 continue; 1906 } 1907 1908 head = compound_head(page); 1909 if (!page_cache_get_speculative(head)) 1910 goto repeat; 1911 1912 /* The page was split under us? */ 1913 if (compound_head(page) != head) { 1914 put_page(head); 1915 goto repeat; 1916 } 1917 1918 /* Has the page moved? */ 1919 if (unlikely(page != *slot)) { 1920 put_page(head); 1921 goto repeat; 1922 } 1923 1924 pages[ret] = page; 1925 if (++ret == nr_pages) { 1926 *index = pages[ret - 1]->index + 1; 1927 goto out; 1928 } 1929 } 1930 1931 /* 1932 * We come here when we got at @end. We take care to not overflow the 1933 * index @index as it confuses some of the callers. This breaks the 1934 * iteration when there is page at index -1 but that is already broken 1935 * anyway. 1936 */ 1937 if (end == (pgoff_t)-1) 1938 *index = (pgoff_t)-1; 1939 else 1940 *index = end + 1; 1941 out: 1942 rcu_read_unlock(); 1943 1944 return ret; 1945 } 1946 EXPORT_SYMBOL(find_get_pages_range_tag); 1947 1948 /** 1949 * find_get_entries_tag - find and return entries that match @tag 1950 * @mapping: the address_space to search 1951 * @start: the starting page cache index 1952 * @tag: the tag index 1953 * @nr_entries: the maximum number of entries 1954 * @entries: where the resulting entries are placed 1955 * @indices: the cache indices corresponding to the entries in @entries 1956 * 1957 * Like find_get_entries, except we only return entries which are tagged with 1958 * @tag. 1959 */ 1960 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start, 1961 int tag, unsigned int nr_entries, 1962 struct page **entries, pgoff_t *indices) 1963 { 1964 void **slot; 1965 unsigned int ret = 0; 1966 struct radix_tree_iter iter; 1967 1968 if (!nr_entries) 1969 return 0; 1970 1971 rcu_read_lock(); 1972 radix_tree_for_each_tagged(slot, &mapping->page_tree, 1973 &iter, start, tag) { 1974 struct page *head, *page; 1975 repeat: 1976 page = radix_tree_deref_slot(slot); 1977 if (unlikely(!page)) 1978 continue; 1979 if (radix_tree_exception(page)) { 1980 if (radix_tree_deref_retry(page)) { 1981 slot = radix_tree_iter_retry(&iter); 1982 continue; 1983 } 1984 1985 /* 1986 * A shadow entry of a recently evicted page, a swap 1987 * entry from shmem/tmpfs or a DAX entry. Return it 1988 * without attempting to raise page count. 1989 */ 1990 goto export; 1991 } 1992 1993 head = compound_head(page); 1994 if (!page_cache_get_speculative(head)) 1995 goto repeat; 1996 1997 /* The page was split under us? */ 1998 if (compound_head(page) != head) { 1999 put_page(head); 2000 goto repeat; 2001 } 2002 2003 /* Has the page moved? */ 2004 if (unlikely(page != *slot)) { 2005 put_page(head); 2006 goto repeat; 2007 } 2008 export: 2009 indices[ret] = iter.index; 2010 entries[ret] = page; 2011 if (++ret == nr_entries) 2012 break; 2013 } 2014 rcu_read_unlock(); 2015 return ret; 2016 } 2017 EXPORT_SYMBOL(find_get_entries_tag); 2018 2019 /* 2020 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 2021 * a _large_ part of the i/o request. Imagine the worst scenario: 2022 * 2023 * ---R__________________________________________B__________ 2024 * ^ reading here ^ bad block(assume 4k) 2025 * 2026 * read(R) => miss => readahead(R...B) => media error => frustrating retries 2027 * => failing the whole request => read(R) => read(R+1) => 2028 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 2029 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 2030 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 2031 * 2032 * It is going insane. Fix it by quickly scaling down the readahead size. 2033 */ 2034 static void shrink_readahead_size_eio(struct file *filp, 2035 struct file_ra_state *ra) 2036 { 2037 ra->ra_pages /= 4; 2038 } 2039 2040 /** 2041 * generic_file_buffered_read - generic file read routine 2042 * @iocb: the iocb to read 2043 * @iter: data destination 2044 * @written: already copied 2045 * 2046 * This is a generic file read routine, and uses the 2047 * mapping->a_ops->readpage() function for the actual low-level stuff. 2048 * 2049 * This is really ugly. But the goto's actually try to clarify some 2050 * of the logic when it comes to error handling etc. 2051 */ 2052 static ssize_t generic_file_buffered_read(struct kiocb *iocb, 2053 struct iov_iter *iter, ssize_t written) 2054 { 2055 struct file *filp = iocb->ki_filp; 2056 struct address_space *mapping = filp->f_mapping; 2057 struct inode *inode = mapping->host; 2058 struct file_ra_state *ra = &filp->f_ra; 2059 loff_t *ppos = &iocb->ki_pos; 2060 pgoff_t index; 2061 pgoff_t last_index; 2062 pgoff_t prev_index; 2063 unsigned long offset; /* offset into pagecache page */ 2064 unsigned int prev_offset; 2065 int error = 0; 2066 2067 if (unlikely(*ppos >= inode->i_sb->s_maxbytes)) 2068 return 0; 2069 iov_iter_truncate(iter, inode->i_sb->s_maxbytes); 2070 2071 index = *ppos >> PAGE_SHIFT; 2072 prev_index = ra->prev_pos >> PAGE_SHIFT; 2073 prev_offset = ra->prev_pos & (PAGE_SIZE-1); 2074 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT; 2075 offset = *ppos & ~PAGE_MASK; 2076 2077 for (;;) { 2078 struct page *page; 2079 pgoff_t end_index; 2080 loff_t isize; 2081 unsigned long nr, ret; 2082 2083 cond_resched(); 2084 find_page: 2085 if (fatal_signal_pending(current)) { 2086 error = -EINTR; 2087 goto out; 2088 } 2089 2090 page = find_get_page(mapping, index); 2091 if (!page) { 2092 if (iocb->ki_flags & IOCB_NOWAIT) 2093 goto would_block; 2094 page_cache_sync_readahead(mapping, 2095 ra, filp, 2096 index, last_index - index); 2097 page = find_get_page(mapping, index); 2098 if (unlikely(page == NULL)) 2099 goto no_cached_page; 2100 } 2101 if (PageReadahead(page)) { 2102 page_cache_async_readahead(mapping, 2103 ra, filp, page, 2104 index, last_index - index); 2105 } 2106 if (!PageUptodate(page)) { 2107 if (iocb->ki_flags & IOCB_NOWAIT) { 2108 put_page(page); 2109 goto would_block; 2110 } 2111 2112 /* 2113 * See comment in do_read_cache_page on why 2114 * wait_on_page_locked is used to avoid unnecessarily 2115 * serialisations and why it's safe. 2116 */ 2117 error = wait_on_page_locked_killable(page); 2118 if (unlikely(error)) 2119 goto readpage_error; 2120 if (PageUptodate(page)) 2121 goto page_ok; 2122 2123 if (inode->i_blkbits == PAGE_SHIFT || 2124 !mapping->a_ops->is_partially_uptodate) 2125 goto page_not_up_to_date; 2126 /* pipes can't handle partially uptodate pages */ 2127 if (unlikely(iter->type & ITER_PIPE)) 2128 goto page_not_up_to_date; 2129 if (!trylock_page(page)) 2130 goto page_not_up_to_date; 2131 /* Did it get truncated before we got the lock? */ 2132 if (!page->mapping) 2133 goto page_not_up_to_date_locked; 2134 if (!mapping->a_ops->is_partially_uptodate(page, 2135 offset, iter->count)) 2136 goto page_not_up_to_date_locked; 2137 unlock_page(page); 2138 } 2139 page_ok: 2140 /* 2141 * i_size must be checked after we know the page is Uptodate. 2142 * 2143 * Checking i_size after the check allows us to calculate 2144 * the correct value for "nr", which means the zero-filled 2145 * part of the page is not copied back to userspace (unless 2146 * another truncate extends the file - this is desired though). 2147 */ 2148 2149 isize = i_size_read(inode); 2150 end_index = (isize - 1) >> PAGE_SHIFT; 2151 if (unlikely(!isize || index > end_index)) { 2152 put_page(page); 2153 goto out; 2154 } 2155 2156 /* nr is the maximum number of bytes to copy from this page */ 2157 nr = PAGE_SIZE; 2158 if (index == end_index) { 2159 nr = ((isize - 1) & ~PAGE_MASK) + 1; 2160 if (nr <= offset) { 2161 put_page(page); 2162 goto out; 2163 } 2164 } 2165 nr = nr - offset; 2166 2167 /* If users can be writing to this page using arbitrary 2168 * virtual addresses, take care about potential aliasing 2169 * before reading the page on the kernel side. 2170 */ 2171 if (mapping_writably_mapped(mapping)) 2172 flush_dcache_page(page); 2173 2174 /* 2175 * When a sequential read accesses a page several times, 2176 * only mark it as accessed the first time. 2177 */ 2178 if (prev_index != index || offset != prev_offset) 2179 mark_page_accessed(page); 2180 prev_index = index; 2181 2182 /* 2183 * Ok, we have the page, and it's up-to-date, so 2184 * now we can copy it to user space... 2185 */ 2186 2187 ret = copy_page_to_iter(page, offset, nr, iter); 2188 offset += ret; 2189 index += offset >> PAGE_SHIFT; 2190 offset &= ~PAGE_MASK; 2191 prev_offset = offset; 2192 2193 put_page(page); 2194 written += ret; 2195 if (!iov_iter_count(iter)) 2196 goto out; 2197 if (ret < nr) { 2198 error = -EFAULT; 2199 goto out; 2200 } 2201 continue; 2202 2203 page_not_up_to_date: 2204 /* Get exclusive access to the page ... */ 2205 error = lock_page_killable(page); 2206 if (unlikely(error)) 2207 goto readpage_error; 2208 2209 page_not_up_to_date_locked: 2210 /* Did it get truncated before we got the lock? */ 2211 if (!page->mapping) { 2212 unlock_page(page); 2213 put_page(page); 2214 continue; 2215 } 2216 2217 /* Did somebody else fill it already? */ 2218 if (PageUptodate(page)) { 2219 unlock_page(page); 2220 goto page_ok; 2221 } 2222 2223 readpage: 2224 /* 2225 * A previous I/O error may have been due to temporary 2226 * failures, eg. multipath errors. 2227 * PG_error will be set again if readpage fails. 2228 */ 2229 ClearPageError(page); 2230 /* Start the actual read. The read will unlock the page. */ 2231 error = mapping->a_ops->readpage(filp, page); 2232 2233 if (unlikely(error)) { 2234 if (error == AOP_TRUNCATED_PAGE) { 2235 put_page(page); 2236 error = 0; 2237 goto find_page; 2238 } 2239 goto readpage_error; 2240 } 2241 2242 if (!PageUptodate(page)) { 2243 error = lock_page_killable(page); 2244 if (unlikely(error)) 2245 goto readpage_error; 2246 if (!PageUptodate(page)) { 2247 if (page->mapping == NULL) { 2248 /* 2249 * invalidate_mapping_pages got it 2250 */ 2251 unlock_page(page); 2252 put_page(page); 2253 goto find_page; 2254 } 2255 unlock_page(page); 2256 shrink_readahead_size_eio(filp, ra); 2257 error = -EIO; 2258 goto readpage_error; 2259 } 2260 unlock_page(page); 2261 } 2262 2263 goto page_ok; 2264 2265 readpage_error: 2266 /* UHHUH! A synchronous read error occurred. Report it */ 2267 put_page(page); 2268 goto out; 2269 2270 no_cached_page: 2271 /* 2272 * Ok, it wasn't cached, so we need to create a new 2273 * page.. 2274 */ 2275 page = page_cache_alloc(mapping); 2276 if (!page) { 2277 error = -ENOMEM; 2278 goto out; 2279 } 2280 error = add_to_page_cache_lru(page, mapping, index, 2281 mapping_gfp_constraint(mapping, GFP_KERNEL)); 2282 if (error) { 2283 put_page(page); 2284 if (error == -EEXIST) { 2285 error = 0; 2286 goto find_page; 2287 } 2288 goto out; 2289 } 2290 goto readpage; 2291 } 2292 2293 would_block: 2294 error = -EAGAIN; 2295 out: 2296 ra->prev_pos = prev_index; 2297 ra->prev_pos <<= PAGE_SHIFT; 2298 ra->prev_pos |= prev_offset; 2299 2300 *ppos = ((loff_t)index << PAGE_SHIFT) + offset; 2301 file_accessed(filp); 2302 return written ? written : error; 2303 } 2304 2305 /** 2306 * generic_file_read_iter - generic filesystem read routine 2307 * @iocb: kernel I/O control block 2308 * @iter: destination for the data read 2309 * 2310 * This is the "read_iter()" routine for all filesystems 2311 * that can use the page cache directly. 2312 */ 2313 ssize_t 2314 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 2315 { 2316 size_t count = iov_iter_count(iter); 2317 ssize_t retval = 0; 2318 2319 if (!count) 2320 goto out; /* skip atime */ 2321 2322 if (iocb->ki_flags & IOCB_DIRECT) { 2323 struct file *file = iocb->ki_filp; 2324 struct address_space *mapping = file->f_mapping; 2325 struct inode *inode = mapping->host; 2326 loff_t size; 2327 2328 size = i_size_read(inode); 2329 if (iocb->ki_flags & IOCB_NOWAIT) { 2330 if (filemap_range_has_page(mapping, iocb->ki_pos, 2331 iocb->ki_pos + count - 1)) 2332 return -EAGAIN; 2333 } else { 2334 retval = filemap_write_and_wait_range(mapping, 2335 iocb->ki_pos, 2336 iocb->ki_pos + count - 1); 2337 if (retval < 0) 2338 goto out; 2339 } 2340 2341 file_accessed(file); 2342 2343 retval = mapping->a_ops->direct_IO(iocb, iter); 2344 if (retval >= 0) { 2345 iocb->ki_pos += retval; 2346 count -= retval; 2347 } 2348 iov_iter_revert(iter, count - iov_iter_count(iter)); 2349 2350 /* 2351 * Btrfs can have a short DIO read if we encounter 2352 * compressed extents, so if there was an error, or if 2353 * we've already read everything we wanted to, or if 2354 * there was a short read because we hit EOF, go ahead 2355 * and return. Otherwise fallthrough to buffered io for 2356 * the rest of the read. Buffered reads will not work for 2357 * DAX files, so don't bother trying. 2358 */ 2359 if (retval < 0 || !count || iocb->ki_pos >= size || 2360 IS_DAX(inode)) 2361 goto out; 2362 } 2363 2364 retval = generic_file_buffered_read(iocb, iter, retval); 2365 out: 2366 return retval; 2367 } 2368 EXPORT_SYMBOL(generic_file_read_iter); 2369 2370 #ifdef CONFIG_MMU 2371 /** 2372 * page_cache_read - adds requested page to the page cache if not already there 2373 * @file: file to read 2374 * @offset: page index 2375 * @gfp_mask: memory allocation flags 2376 * 2377 * This adds the requested page to the page cache if it isn't already there, 2378 * and schedules an I/O to read in its contents from disk. 2379 */ 2380 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask) 2381 { 2382 struct address_space *mapping = file->f_mapping; 2383 struct page *page; 2384 int ret; 2385 2386 do { 2387 page = __page_cache_alloc(gfp_mask); 2388 if (!page) 2389 return -ENOMEM; 2390 2391 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL); 2392 if (ret == 0) 2393 ret = mapping->a_ops->readpage(file, page); 2394 else if (ret == -EEXIST) 2395 ret = 0; /* losing race to add is OK */ 2396 2397 put_page(page); 2398 2399 } while (ret == AOP_TRUNCATED_PAGE); 2400 2401 return ret; 2402 } 2403 2404 #define MMAP_LOTSAMISS (100) 2405 2406 /* 2407 * Synchronous readahead happens when we don't even find 2408 * a page in the page cache at all. 2409 */ 2410 static void do_sync_mmap_readahead(struct vm_area_struct *vma, 2411 struct file_ra_state *ra, 2412 struct file *file, 2413 pgoff_t offset) 2414 { 2415 struct address_space *mapping = file->f_mapping; 2416 2417 /* If we don't want any read-ahead, don't bother */ 2418 if (vma->vm_flags & VM_RAND_READ) 2419 return; 2420 if (!ra->ra_pages) 2421 return; 2422 2423 if (vma->vm_flags & VM_SEQ_READ) { 2424 page_cache_sync_readahead(mapping, ra, file, offset, 2425 ra->ra_pages); 2426 return; 2427 } 2428 2429 /* Avoid banging the cache line if not needed */ 2430 if (ra->mmap_miss < MMAP_LOTSAMISS * 10) 2431 ra->mmap_miss++; 2432 2433 /* 2434 * Do we miss much more than hit in this file? If so, 2435 * stop bothering with read-ahead. It will only hurt. 2436 */ 2437 if (ra->mmap_miss > MMAP_LOTSAMISS) 2438 return; 2439 2440 /* 2441 * mmap read-around 2442 */ 2443 ra->start = max_t(long, 0, offset - ra->ra_pages / 2); 2444 ra->size = ra->ra_pages; 2445 ra->async_size = ra->ra_pages / 4; 2446 ra_submit(ra, mapping, file); 2447 } 2448 2449 /* 2450 * Asynchronous readahead happens when we find the page and PG_readahead, 2451 * so we want to possibly extend the readahead further.. 2452 */ 2453 static void do_async_mmap_readahead(struct vm_area_struct *vma, 2454 struct file_ra_state *ra, 2455 struct file *file, 2456 struct page *page, 2457 pgoff_t offset) 2458 { 2459 struct address_space *mapping = file->f_mapping; 2460 2461 /* If we don't want any read-ahead, don't bother */ 2462 if (vma->vm_flags & VM_RAND_READ) 2463 return; 2464 if (ra->mmap_miss > 0) 2465 ra->mmap_miss--; 2466 if (PageReadahead(page)) 2467 page_cache_async_readahead(mapping, ra, file, 2468 page, offset, ra->ra_pages); 2469 } 2470 2471 /** 2472 * filemap_fault - read in file data for page fault handling 2473 * @vmf: struct vm_fault containing details of the fault 2474 * 2475 * filemap_fault() is invoked via the vma operations vector for a 2476 * mapped memory region to read in file data during a page fault. 2477 * 2478 * The goto's are kind of ugly, but this streamlines the normal case of having 2479 * it in the page cache, and handles the special cases reasonably without 2480 * having a lot of duplicated code. 2481 * 2482 * vma->vm_mm->mmap_sem must be held on entry. 2483 * 2484 * If our return value has VM_FAULT_RETRY set, it's because 2485 * lock_page_or_retry() returned 0. 2486 * The mmap_sem has usually been released in this case. 2487 * See __lock_page_or_retry() for the exception. 2488 * 2489 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem 2490 * has not been released. 2491 * 2492 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. 2493 */ 2494 int filemap_fault(struct vm_fault *vmf) 2495 { 2496 int error; 2497 struct file *file = vmf->vma->vm_file; 2498 struct address_space *mapping = file->f_mapping; 2499 struct file_ra_state *ra = &file->f_ra; 2500 struct inode *inode = mapping->host; 2501 pgoff_t offset = vmf->pgoff; 2502 pgoff_t max_off; 2503 struct page *page; 2504 int ret = 0; 2505 2506 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2507 if (unlikely(offset >= max_off)) 2508 return VM_FAULT_SIGBUS; 2509 2510 /* 2511 * Do we have something in the page cache already? 2512 */ 2513 page = find_get_page(mapping, offset); 2514 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) { 2515 /* 2516 * We found the page, so try async readahead before 2517 * waiting for the lock. 2518 */ 2519 do_async_mmap_readahead(vmf->vma, ra, file, page, offset); 2520 } else if (!page) { 2521 /* No page in the page cache at all */ 2522 do_sync_mmap_readahead(vmf->vma, ra, file, offset); 2523 count_vm_event(PGMAJFAULT); 2524 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); 2525 ret = VM_FAULT_MAJOR; 2526 retry_find: 2527 page = find_get_page(mapping, offset); 2528 if (!page) 2529 goto no_cached_page; 2530 } 2531 2532 if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) { 2533 put_page(page); 2534 return ret | VM_FAULT_RETRY; 2535 } 2536 2537 /* Did it get truncated? */ 2538 if (unlikely(page->mapping != mapping)) { 2539 unlock_page(page); 2540 put_page(page); 2541 goto retry_find; 2542 } 2543 VM_BUG_ON_PAGE(page->index != offset, page); 2544 2545 /* 2546 * We have a locked page in the page cache, now we need to check 2547 * that it's up-to-date. If not, it is going to be due to an error. 2548 */ 2549 if (unlikely(!PageUptodate(page))) 2550 goto page_not_uptodate; 2551 2552 /* 2553 * Found the page and have a reference on it. 2554 * We must recheck i_size under page lock. 2555 */ 2556 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2557 if (unlikely(offset >= max_off)) { 2558 unlock_page(page); 2559 put_page(page); 2560 return VM_FAULT_SIGBUS; 2561 } 2562 2563 vmf->page = page; 2564 return ret | VM_FAULT_LOCKED; 2565 2566 no_cached_page: 2567 /* 2568 * We're only likely to ever get here if MADV_RANDOM is in 2569 * effect. 2570 */ 2571 error = page_cache_read(file, offset, vmf->gfp_mask); 2572 2573 /* 2574 * The page we want has now been added to the page cache. 2575 * In the unlikely event that someone removed it in the 2576 * meantime, we'll just come back here and read it again. 2577 */ 2578 if (error >= 0) 2579 goto retry_find; 2580 2581 /* 2582 * An error return from page_cache_read can result if the 2583 * system is low on memory, or a problem occurs while trying 2584 * to schedule I/O. 2585 */ 2586 if (error == -ENOMEM) 2587 return VM_FAULT_OOM; 2588 return VM_FAULT_SIGBUS; 2589 2590 page_not_uptodate: 2591 /* 2592 * Umm, take care of errors if the page isn't up-to-date. 2593 * Try to re-read it _once_. We do this synchronously, 2594 * because there really aren't any performance issues here 2595 * and we need to check for errors. 2596 */ 2597 ClearPageError(page); 2598 error = mapping->a_ops->readpage(file, page); 2599 if (!error) { 2600 wait_on_page_locked(page); 2601 if (!PageUptodate(page)) 2602 error = -EIO; 2603 } 2604 put_page(page); 2605 2606 if (!error || error == AOP_TRUNCATED_PAGE) 2607 goto retry_find; 2608 2609 /* Things didn't work out. Return zero to tell the mm layer so. */ 2610 shrink_readahead_size_eio(file, ra); 2611 return VM_FAULT_SIGBUS; 2612 } 2613 EXPORT_SYMBOL(filemap_fault); 2614 2615 void filemap_map_pages(struct vm_fault *vmf, 2616 pgoff_t start_pgoff, pgoff_t end_pgoff) 2617 { 2618 struct radix_tree_iter iter; 2619 void **slot; 2620 struct file *file = vmf->vma->vm_file; 2621 struct address_space *mapping = file->f_mapping; 2622 pgoff_t last_pgoff = start_pgoff; 2623 unsigned long max_idx; 2624 struct page *head, *page; 2625 2626 rcu_read_lock(); 2627 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, 2628 start_pgoff) { 2629 if (iter.index > end_pgoff) 2630 break; 2631 repeat: 2632 page = radix_tree_deref_slot(slot); 2633 if (unlikely(!page)) 2634 goto next; 2635 if (radix_tree_exception(page)) { 2636 if (radix_tree_deref_retry(page)) { 2637 slot = radix_tree_iter_retry(&iter); 2638 continue; 2639 } 2640 goto next; 2641 } 2642 2643 head = compound_head(page); 2644 if (!page_cache_get_speculative(head)) 2645 goto repeat; 2646 2647 /* The page was split under us? */ 2648 if (compound_head(page) != head) { 2649 put_page(head); 2650 goto repeat; 2651 } 2652 2653 /* Has the page moved? */ 2654 if (unlikely(page != *slot)) { 2655 put_page(head); 2656 goto repeat; 2657 } 2658 2659 if (!PageUptodate(page) || 2660 PageReadahead(page) || 2661 PageHWPoison(page)) 2662 goto skip; 2663 if (!trylock_page(page)) 2664 goto skip; 2665 2666 if (page->mapping != mapping || !PageUptodate(page)) 2667 goto unlock; 2668 2669 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 2670 if (page->index >= max_idx) 2671 goto unlock; 2672 2673 if (file->f_ra.mmap_miss > 0) 2674 file->f_ra.mmap_miss--; 2675 2676 vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT; 2677 if (vmf->pte) 2678 vmf->pte += iter.index - last_pgoff; 2679 last_pgoff = iter.index; 2680 if (alloc_set_pte(vmf, NULL, page)) 2681 goto unlock; 2682 unlock_page(page); 2683 goto next; 2684 unlock: 2685 unlock_page(page); 2686 skip: 2687 put_page(page); 2688 next: 2689 /* Huge page is mapped? No need to proceed. */ 2690 if (pmd_trans_huge(*vmf->pmd)) 2691 break; 2692 if (iter.index == end_pgoff) 2693 break; 2694 } 2695 rcu_read_unlock(); 2696 } 2697 EXPORT_SYMBOL(filemap_map_pages); 2698 2699 int filemap_page_mkwrite(struct vm_fault *vmf) 2700 { 2701 struct page *page = vmf->page; 2702 struct inode *inode = file_inode(vmf->vma->vm_file); 2703 int ret = VM_FAULT_LOCKED; 2704 2705 sb_start_pagefault(inode->i_sb); 2706 file_update_time(vmf->vma->vm_file); 2707 lock_page(page); 2708 if (page->mapping != inode->i_mapping) { 2709 unlock_page(page); 2710 ret = VM_FAULT_NOPAGE; 2711 goto out; 2712 } 2713 /* 2714 * We mark the page dirty already here so that when freeze is in 2715 * progress, we are guaranteed that writeback during freezing will 2716 * see the dirty page and writeprotect it again. 2717 */ 2718 set_page_dirty(page); 2719 wait_for_stable_page(page); 2720 out: 2721 sb_end_pagefault(inode->i_sb); 2722 return ret; 2723 } 2724 EXPORT_SYMBOL(filemap_page_mkwrite); 2725 2726 const struct vm_operations_struct generic_file_vm_ops = { 2727 .fault = filemap_fault, 2728 .map_pages = filemap_map_pages, 2729 .page_mkwrite = filemap_page_mkwrite, 2730 }; 2731 2732 /* This is used for a general mmap of a disk file */ 2733 2734 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 2735 { 2736 struct address_space *mapping = file->f_mapping; 2737 2738 if (!mapping->a_ops->readpage) 2739 return -ENOEXEC; 2740 file_accessed(file); 2741 vma->vm_ops = &generic_file_vm_ops; 2742 return 0; 2743 } 2744 2745 /* 2746 * This is for filesystems which do not implement ->writepage. 2747 */ 2748 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 2749 { 2750 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 2751 return -EINVAL; 2752 return generic_file_mmap(file, vma); 2753 } 2754 #else 2755 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 2756 { 2757 return -ENOSYS; 2758 } 2759 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) 2760 { 2761 return -ENOSYS; 2762 } 2763 #endif /* CONFIG_MMU */ 2764 2765 EXPORT_SYMBOL(generic_file_mmap); 2766 EXPORT_SYMBOL(generic_file_readonly_mmap); 2767 2768 static struct page *wait_on_page_read(struct page *page) 2769 { 2770 if (!IS_ERR(page)) { 2771 wait_on_page_locked(page); 2772 if (!PageUptodate(page)) { 2773 put_page(page); 2774 page = ERR_PTR(-EIO); 2775 } 2776 } 2777 return page; 2778 } 2779 2780 static struct page *do_read_cache_page(struct address_space *mapping, 2781 pgoff_t index, 2782 int (*filler)(void *, struct page *), 2783 void *data, 2784 gfp_t gfp) 2785 { 2786 struct page *page; 2787 int err; 2788 repeat: 2789 page = find_get_page(mapping, index); 2790 if (!page) { 2791 page = __page_cache_alloc(gfp); 2792 if (!page) 2793 return ERR_PTR(-ENOMEM); 2794 err = add_to_page_cache_lru(page, mapping, index, gfp); 2795 if (unlikely(err)) { 2796 put_page(page); 2797 if (err == -EEXIST) 2798 goto repeat; 2799 /* Presumably ENOMEM for radix tree node */ 2800 return ERR_PTR(err); 2801 } 2802 2803 filler: 2804 err = filler(data, page); 2805 if (err < 0) { 2806 put_page(page); 2807 return ERR_PTR(err); 2808 } 2809 2810 page = wait_on_page_read(page); 2811 if (IS_ERR(page)) 2812 return page; 2813 goto out; 2814 } 2815 if (PageUptodate(page)) 2816 goto out; 2817 2818 /* 2819 * Page is not up to date and may be locked due one of the following 2820 * case a: Page is being filled and the page lock is held 2821 * case b: Read/write error clearing the page uptodate status 2822 * case c: Truncation in progress (page locked) 2823 * case d: Reclaim in progress 2824 * 2825 * Case a, the page will be up to date when the page is unlocked. 2826 * There is no need to serialise on the page lock here as the page 2827 * is pinned so the lock gives no additional protection. Even if the 2828 * the page is truncated, the data is still valid if PageUptodate as 2829 * it's a race vs truncate race. 2830 * Case b, the page will not be up to date 2831 * Case c, the page may be truncated but in itself, the data may still 2832 * be valid after IO completes as it's a read vs truncate race. The 2833 * operation must restart if the page is not uptodate on unlock but 2834 * otherwise serialising on page lock to stabilise the mapping gives 2835 * no additional guarantees to the caller as the page lock is 2836 * released before return. 2837 * Case d, similar to truncation. If reclaim holds the page lock, it 2838 * will be a race with remove_mapping that determines if the mapping 2839 * is valid on unlock but otherwise the data is valid and there is 2840 * no need to serialise with page lock. 2841 * 2842 * As the page lock gives no additional guarantee, we optimistically 2843 * wait on the page to be unlocked and check if it's up to date and 2844 * use the page if it is. Otherwise, the page lock is required to 2845 * distinguish between the different cases. The motivation is that we 2846 * avoid spurious serialisations and wakeups when multiple processes 2847 * wait on the same page for IO to complete. 2848 */ 2849 wait_on_page_locked(page); 2850 if (PageUptodate(page)) 2851 goto out; 2852 2853 /* Distinguish between all the cases under the safety of the lock */ 2854 lock_page(page); 2855 2856 /* Case c or d, restart the operation */ 2857 if (!page->mapping) { 2858 unlock_page(page); 2859 put_page(page); 2860 goto repeat; 2861 } 2862 2863 /* Someone else locked and filled the page in a very small window */ 2864 if (PageUptodate(page)) { 2865 unlock_page(page); 2866 goto out; 2867 } 2868 goto filler; 2869 2870 out: 2871 mark_page_accessed(page); 2872 return page; 2873 } 2874 2875 /** 2876 * read_cache_page - read into page cache, fill it if needed 2877 * @mapping: the page's address_space 2878 * @index: the page index 2879 * @filler: function to perform the read 2880 * @data: first arg to filler(data, page) function, often left as NULL 2881 * 2882 * Read into the page cache. If a page already exists, and PageUptodate() is 2883 * not set, try to fill the page and wait for it to become unlocked. 2884 * 2885 * If the page does not get brought uptodate, return -EIO. 2886 */ 2887 struct page *read_cache_page(struct address_space *mapping, 2888 pgoff_t index, 2889 int (*filler)(void *, struct page *), 2890 void *data) 2891 { 2892 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping)); 2893 } 2894 EXPORT_SYMBOL(read_cache_page); 2895 2896 /** 2897 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 2898 * @mapping: the page's address_space 2899 * @index: the page index 2900 * @gfp: the page allocator flags to use if allocating 2901 * 2902 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 2903 * any new page allocations done using the specified allocation flags. 2904 * 2905 * If the page does not get brought uptodate, return -EIO. 2906 */ 2907 struct page *read_cache_page_gfp(struct address_space *mapping, 2908 pgoff_t index, 2909 gfp_t gfp) 2910 { 2911 filler_t *filler = (filler_t *)mapping->a_ops->readpage; 2912 2913 return do_read_cache_page(mapping, index, filler, NULL, gfp); 2914 } 2915 EXPORT_SYMBOL(read_cache_page_gfp); 2916 2917 /* 2918 * Performs necessary checks before doing a write 2919 * 2920 * Can adjust writing position or amount of bytes to write. 2921 * Returns appropriate error code that caller should return or 2922 * zero in case that write should be allowed. 2923 */ 2924 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from) 2925 { 2926 struct file *file = iocb->ki_filp; 2927 struct inode *inode = file->f_mapping->host; 2928 unsigned long limit = rlimit(RLIMIT_FSIZE); 2929 loff_t pos; 2930 2931 if (!iov_iter_count(from)) 2932 return 0; 2933 2934 /* FIXME: this is for backwards compatibility with 2.4 */ 2935 if (iocb->ki_flags & IOCB_APPEND) 2936 iocb->ki_pos = i_size_read(inode); 2937 2938 pos = iocb->ki_pos; 2939 2940 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT)) 2941 return -EINVAL; 2942 2943 if (limit != RLIM_INFINITY) { 2944 if (iocb->ki_pos >= limit) { 2945 send_sig(SIGXFSZ, current, 0); 2946 return -EFBIG; 2947 } 2948 iov_iter_truncate(from, limit - (unsigned long)pos); 2949 } 2950 2951 /* 2952 * LFS rule 2953 */ 2954 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS && 2955 !(file->f_flags & O_LARGEFILE))) { 2956 if (pos >= MAX_NON_LFS) 2957 return -EFBIG; 2958 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos); 2959 } 2960 2961 /* 2962 * Are we about to exceed the fs block limit ? 2963 * 2964 * If we have written data it becomes a short write. If we have 2965 * exceeded without writing data we send a signal and return EFBIG. 2966 * Linus frestrict idea will clean these up nicely.. 2967 */ 2968 if (unlikely(pos >= inode->i_sb->s_maxbytes)) 2969 return -EFBIG; 2970 2971 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos); 2972 return iov_iter_count(from); 2973 } 2974 EXPORT_SYMBOL(generic_write_checks); 2975 2976 int pagecache_write_begin(struct file *file, struct address_space *mapping, 2977 loff_t pos, unsigned len, unsigned flags, 2978 struct page **pagep, void **fsdata) 2979 { 2980 const struct address_space_operations *aops = mapping->a_ops; 2981 2982 return aops->write_begin(file, mapping, pos, len, flags, 2983 pagep, fsdata); 2984 } 2985 EXPORT_SYMBOL(pagecache_write_begin); 2986 2987 int pagecache_write_end(struct file *file, struct address_space *mapping, 2988 loff_t pos, unsigned len, unsigned copied, 2989 struct page *page, void *fsdata) 2990 { 2991 const struct address_space_operations *aops = mapping->a_ops; 2992 2993 return aops->write_end(file, mapping, pos, len, copied, page, fsdata); 2994 } 2995 EXPORT_SYMBOL(pagecache_write_end); 2996 2997 ssize_t 2998 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) 2999 { 3000 struct file *file = iocb->ki_filp; 3001 struct address_space *mapping = file->f_mapping; 3002 struct inode *inode = mapping->host; 3003 loff_t pos = iocb->ki_pos; 3004 ssize_t written; 3005 size_t write_len; 3006 pgoff_t end; 3007 3008 write_len = iov_iter_count(from); 3009 end = (pos + write_len - 1) >> PAGE_SHIFT; 3010 3011 if (iocb->ki_flags & IOCB_NOWAIT) { 3012 /* If there are pages to writeback, return */ 3013 if (filemap_range_has_page(inode->i_mapping, pos, 3014 pos + iov_iter_count(from))) 3015 return -EAGAIN; 3016 } else { 3017 written = filemap_write_and_wait_range(mapping, pos, 3018 pos + write_len - 1); 3019 if (written) 3020 goto out; 3021 } 3022 3023 /* 3024 * After a write we want buffered reads to be sure to go to disk to get 3025 * the new data. We invalidate clean cached page from the region we're 3026 * about to write. We do this *before* the write so that we can return 3027 * without clobbering -EIOCBQUEUED from ->direct_IO(). 3028 */ 3029 written = invalidate_inode_pages2_range(mapping, 3030 pos >> PAGE_SHIFT, end); 3031 /* 3032 * If a page can not be invalidated, return 0 to fall back 3033 * to buffered write. 3034 */ 3035 if (written) { 3036 if (written == -EBUSY) 3037 return 0; 3038 goto out; 3039 } 3040 3041 written = mapping->a_ops->direct_IO(iocb, from); 3042 3043 /* 3044 * Finally, try again to invalidate clean pages which might have been 3045 * cached by non-direct readahead, or faulted in by get_user_pages() 3046 * if the source of the write was an mmap'ed region of the file 3047 * we're writing. Either one is a pretty crazy thing to do, 3048 * so we don't support it 100%. If this invalidation 3049 * fails, tough, the write still worked... 3050 * 3051 * Most of the time we do not need this since dio_complete() will do 3052 * the invalidation for us. However there are some file systems that 3053 * do not end up with dio_complete() being called, so let's not break 3054 * them by removing it completely 3055 */ 3056 if (mapping->nrpages) 3057 invalidate_inode_pages2_range(mapping, 3058 pos >> PAGE_SHIFT, end); 3059 3060 if (written > 0) { 3061 pos += written; 3062 write_len -= written; 3063 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 3064 i_size_write(inode, pos); 3065 mark_inode_dirty(inode); 3066 } 3067 iocb->ki_pos = pos; 3068 } 3069 iov_iter_revert(from, write_len - iov_iter_count(from)); 3070 out: 3071 return written; 3072 } 3073 EXPORT_SYMBOL(generic_file_direct_write); 3074 3075 /* 3076 * Find or create a page at the given pagecache position. Return the locked 3077 * page. This function is specifically for buffered writes. 3078 */ 3079 struct page *grab_cache_page_write_begin(struct address_space *mapping, 3080 pgoff_t index, unsigned flags) 3081 { 3082 struct page *page; 3083 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT; 3084 3085 if (flags & AOP_FLAG_NOFS) 3086 fgp_flags |= FGP_NOFS; 3087 3088 page = pagecache_get_page(mapping, index, fgp_flags, 3089 mapping_gfp_mask(mapping)); 3090 if (page) 3091 wait_for_stable_page(page); 3092 3093 return page; 3094 } 3095 EXPORT_SYMBOL(grab_cache_page_write_begin); 3096 3097 ssize_t generic_perform_write(struct file *file, 3098 struct iov_iter *i, loff_t pos) 3099 { 3100 struct address_space *mapping = file->f_mapping; 3101 const struct address_space_operations *a_ops = mapping->a_ops; 3102 long status = 0; 3103 ssize_t written = 0; 3104 unsigned int flags = 0; 3105 3106 do { 3107 struct page *page; 3108 unsigned long offset; /* Offset into pagecache page */ 3109 unsigned long bytes; /* Bytes to write to page */ 3110 size_t copied; /* Bytes copied from user */ 3111 void *fsdata; 3112 3113 offset = (pos & (PAGE_SIZE - 1)); 3114 bytes = min_t(unsigned long, PAGE_SIZE - offset, 3115 iov_iter_count(i)); 3116 3117 again: 3118 /* 3119 * Bring in the user page that we will copy from _first_. 3120 * Otherwise there's a nasty deadlock on copying from the 3121 * same page as we're writing to, without it being marked 3122 * up-to-date. 3123 * 3124 * Not only is this an optimisation, but it is also required 3125 * to check that the address is actually valid, when atomic 3126 * usercopies are used, below. 3127 */ 3128 if (unlikely(iov_iter_fault_in_readable(i, bytes))) { 3129 status = -EFAULT; 3130 break; 3131 } 3132 3133 if (fatal_signal_pending(current)) { 3134 status = -EINTR; 3135 break; 3136 } 3137 3138 status = a_ops->write_begin(file, mapping, pos, bytes, flags, 3139 &page, &fsdata); 3140 if (unlikely(status < 0)) 3141 break; 3142 3143 if (mapping_writably_mapped(mapping)) 3144 flush_dcache_page(page); 3145 3146 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); 3147 flush_dcache_page(page); 3148 3149 status = a_ops->write_end(file, mapping, pos, bytes, copied, 3150 page, fsdata); 3151 if (unlikely(status < 0)) 3152 break; 3153 copied = status; 3154 3155 cond_resched(); 3156 3157 iov_iter_advance(i, copied); 3158 if (unlikely(copied == 0)) { 3159 /* 3160 * If we were unable to copy any data at all, we must 3161 * fall back to a single segment length write. 3162 * 3163 * If we didn't fallback here, we could livelock 3164 * because not all segments in the iov can be copied at 3165 * once without a pagefault. 3166 */ 3167 bytes = min_t(unsigned long, PAGE_SIZE - offset, 3168 iov_iter_single_seg_count(i)); 3169 goto again; 3170 } 3171 pos += copied; 3172 written += copied; 3173 3174 balance_dirty_pages_ratelimited(mapping); 3175 } while (iov_iter_count(i)); 3176 3177 return written ? written : status; 3178 } 3179 EXPORT_SYMBOL(generic_perform_write); 3180 3181 /** 3182 * __generic_file_write_iter - write data to a file 3183 * @iocb: IO state structure (file, offset, etc.) 3184 * @from: iov_iter with data to write 3185 * 3186 * This function does all the work needed for actually writing data to a 3187 * file. It does all basic checks, removes SUID from the file, updates 3188 * modification times and calls proper subroutines depending on whether we 3189 * do direct IO or a standard buffered write. 3190 * 3191 * It expects i_mutex to be grabbed unless we work on a block device or similar 3192 * object which does not need locking at all. 3193 * 3194 * This function does *not* take care of syncing data in case of O_SYNC write. 3195 * A caller has to handle it. This is mainly due to the fact that we want to 3196 * avoid syncing under i_mutex. 3197 */ 3198 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3199 { 3200 struct file *file = iocb->ki_filp; 3201 struct address_space * mapping = file->f_mapping; 3202 struct inode *inode = mapping->host; 3203 ssize_t written = 0; 3204 ssize_t err; 3205 ssize_t status; 3206 3207 /* We can write back this queue in page reclaim */ 3208 current->backing_dev_info = inode_to_bdi(inode); 3209 err = file_remove_privs(file); 3210 if (err) 3211 goto out; 3212 3213 err = file_update_time(file); 3214 if (err) 3215 goto out; 3216 3217 if (iocb->ki_flags & IOCB_DIRECT) { 3218 loff_t pos, endbyte; 3219 3220 written = generic_file_direct_write(iocb, from); 3221 /* 3222 * If the write stopped short of completing, fall back to 3223 * buffered writes. Some filesystems do this for writes to 3224 * holes, for example. For DAX files, a buffered write will 3225 * not succeed (even if it did, DAX does not handle dirty 3226 * page-cache pages correctly). 3227 */ 3228 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode)) 3229 goto out; 3230 3231 status = generic_perform_write(file, from, pos = iocb->ki_pos); 3232 /* 3233 * If generic_perform_write() returned a synchronous error 3234 * then we want to return the number of bytes which were 3235 * direct-written, or the error code if that was zero. Note 3236 * that this differs from normal direct-io semantics, which 3237 * will return -EFOO even if some bytes were written. 3238 */ 3239 if (unlikely(status < 0)) { 3240 err = status; 3241 goto out; 3242 } 3243 /* 3244 * We need to ensure that the page cache pages are written to 3245 * disk and invalidated to preserve the expected O_DIRECT 3246 * semantics. 3247 */ 3248 endbyte = pos + status - 1; 3249 err = filemap_write_and_wait_range(mapping, pos, endbyte); 3250 if (err == 0) { 3251 iocb->ki_pos = endbyte + 1; 3252 written += status; 3253 invalidate_mapping_pages(mapping, 3254 pos >> PAGE_SHIFT, 3255 endbyte >> PAGE_SHIFT); 3256 } else { 3257 /* 3258 * We don't know how much we wrote, so just return 3259 * the number of bytes which were direct-written 3260 */ 3261 } 3262 } else { 3263 written = generic_perform_write(file, from, iocb->ki_pos); 3264 if (likely(written > 0)) 3265 iocb->ki_pos += written; 3266 } 3267 out: 3268 current->backing_dev_info = NULL; 3269 return written ? written : err; 3270 } 3271 EXPORT_SYMBOL(__generic_file_write_iter); 3272 3273 /** 3274 * generic_file_write_iter - write data to a file 3275 * @iocb: IO state structure 3276 * @from: iov_iter with data to write 3277 * 3278 * This is a wrapper around __generic_file_write_iter() to be used by most 3279 * filesystems. It takes care of syncing the file in case of O_SYNC file 3280 * and acquires i_mutex as needed. 3281 */ 3282 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3283 { 3284 struct file *file = iocb->ki_filp; 3285 struct inode *inode = file->f_mapping->host; 3286 ssize_t ret; 3287 3288 inode_lock(inode); 3289 ret = generic_write_checks(iocb, from); 3290 if (ret > 0) 3291 ret = __generic_file_write_iter(iocb, from); 3292 inode_unlock(inode); 3293 3294 if (ret > 0) 3295 ret = generic_write_sync(iocb, ret); 3296 return ret; 3297 } 3298 EXPORT_SYMBOL(generic_file_write_iter); 3299 3300 /** 3301 * try_to_release_page() - release old fs-specific metadata on a page 3302 * 3303 * @page: the page which the kernel is trying to free 3304 * @gfp_mask: memory allocation flags (and I/O mode) 3305 * 3306 * The address_space is to try to release any data against the page 3307 * (presumably at page->private). If the release was successful, return '1'. 3308 * Otherwise return zero. 3309 * 3310 * This may also be called if PG_fscache is set on a page, indicating that the 3311 * page is known to the local caching routines. 3312 * 3313 * The @gfp_mask argument specifies whether I/O may be performed to release 3314 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS). 3315 * 3316 */ 3317 int try_to_release_page(struct page *page, gfp_t gfp_mask) 3318 { 3319 struct address_space * const mapping = page->mapping; 3320 3321 BUG_ON(!PageLocked(page)); 3322 if (PageWriteback(page)) 3323 return 0; 3324 3325 if (mapping && mapping->a_ops->releasepage) 3326 return mapping->a_ops->releasepage(page, gfp_mask); 3327 return try_to_free_buffers(page); 3328 } 3329 3330 EXPORT_SYMBOL(try_to_release_page); 3331