xref: /openbmc/linux/mm/filemap.c (revision 82ced6fd)
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/compiler.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include <linux/mm_inline.h> /* for page_is_file_cache() */
37 #include "internal.h"
38 
39 /*
40  * FIXME: remove all knowledge of the buffer layer from the core VM
41  */
42 #include <linux/buffer_head.h> /* for generic_osync_inode */
43 
44 #include <asm/mman.h>
45 
46 
47 /*
48  * Shared mappings implemented 30.11.1994. It's not fully working yet,
49  * though.
50  *
51  * Shared mappings now work. 15.8.1995  Bruno.
52  *
53  * finished 'unifying' the page and buffer cache and SMP-threaded the
54  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
55  *
56  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
57  */
58 
59 /*
60  * Lock ordering:
61  *
62  *  ->i_mmap_lock		(vmtruncate)
63  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
64  *      ->swap_lock		(exclusive_swap_page, others)
65  *        ->mapping->tree_lock
66  *
67  *  ->i_mutex
68  *    ->i_mmap_lock		(truncate->unmap_mapping_range)
69  *
70  *  ->mmap_sem
71  *    ->i_mmap_lock
72  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
73  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
74  *
75  *  ->mmap_sem
76  *    ->lock_page		(access_process_vm)
77  *
78  *  ->i_mutex			(generic_file_buffered_write)
79  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
80  *
81  *  ->i_mutex
82  *    ->i_alloc_sem             (various)
83  *
84  *  ->inode_lock
85  *    ->sb_lock			(fs/fs-writeback.c)
86  *    ->mapping->tree_lock	(__sync_single_inode)
87  *
88  *  ->i_mmap_lock
89  *    ->anon_vma.lock		(vma_adjust)
90  *
91  *  ->anon_vma.lock
92  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
93  *
94  *  ->page_table_lock or pte_lock
95  *    ->swap_lock		(try_to_unmap_one)
96  *    ->private_lock		(try_to_unmap_one)
97  *    ->tree_lock		(try_to_unmap_one)
98  *    ->zone.lru_lock		(follow_page->mark_page_accessed)
99  *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
100  *    ->private_lock		(page_remove_rmap->set_page_dirty)
101  *    ->tree_lock		(page_remove_rmap->set_page_dirty)
102  *    ->inode_lock		(page_remove_rmap->set_page_dirty)
103  *    ->inode_lock		(zap_pte_range->set_page_dirty)
104  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
105  *
106  *  ->task->proc_lock
107  *    ->dcache_lock		(proc_pid_lookup)
108  */
109 
110 /*
111  * Remove a page from the page cache and free it. Caller has to make
112  * sure the page is locked and that nobody else uses it - or that usage
113  * is safe.  The caller must hold the mapping's tree_lock.
114  */
115 void __remove_from_page_cache(struct page *page)
116 {
117 	struct address_space *mapping = page->mapping;
118 
119 	radix_tree_delete(&mapping->page_tree, page->index);
120 	page->mapping = NULL;
121 	mapping->nrpages--;
122 	__dec_zone_page_state(page, NR_FILE_PAGES);
123 	BUG_ON(page_mapped(page));
124 
125 	/*
126 	 * Some filesystems seem to re-dirty the page even after
127 	 * the VM has canceled the dirty bit (eg ext3 journaling).
128 	 *
129 	 * Fix it up by doing a final dirty accounting check after
130 	 * having removed the page entirely.
131 	 */
132 	if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
133 		dec_zone_page_state(page, NR_FILE_DIRTY);
134 		dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
135 	}
136 }
137 
138 void remove_from_page_cache(struct page *page)
139 {
140 	struct address_space *mapping = page->mapping;
141 
142 	BUG_ON(!PageLocked(page));
143 
144 	spin_lock_irq(&mapping->tree_lock);
145 	__remove_from_page_cache(page);
146 	spin_unlock_irq(&mapping->tree_lock);
147 	mem_cgroup_uncharge_cache_page(page);
148 }
149 
150 static int sync_page(void *word)
151 {
152 	struct address_space *mapping;
153 	struct page *page;
154 
155 	page = container_of((unsigned long *)word, struct page, flags);
156 
157 	/*
158 	 * page_mapping() is being called without PG_locked held.
159 	 * Some knowledge of the state and use of the page is used to
160 	 * reduce the requirements down to a memory barrier.
161 	 * The danger here is of a stale page_mapping() return value
162 	 * indicating a struct address_space different from the one it's
163 	 * associated with when it is associated with one.
164 	 * After smp_mb(), it's either the correct page_mapping() for
165 	 * the page, or an old page_mapping() and the page's own
166 	 * page_mapping() has gone NULL.
167 	 * The ->sync_page() address_space operation must tolerate
168 	 * page_mapping() going NULL. By an amazing coincidence,
169 	 * this comes about because none of the users of the page
170 	 * in the ->sync_page() methods make essential use of the
171 	 * page_mapping(), merely passing the page down to the backing
172 	 * device's unplug functions when it's non-NULL, which in turn
173 	 * ignore it for all cases but swap, where only page_private(page) is
174 	 * of interest. When page_mapping() does go NULL, the entire
175 	 * call stack gracefully ignores the page and returns.
176 	 * -- wli
177 	 */
178 	smp_mb();
179 	mapping = page_mapping(page);
180 	if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
181 		mapping->a_ops->sync_page(page);
182 	io_schedule();
183 	return 0;
184 }
185 
186 static int sync_page_killable(void *word)
187 {
188 	sync_page(word);
189 	return fatal_signal_pending(current) ? -EINTR : 0;
190 }
191 
192 /**
193  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
194  * @mapping:	address space structure to write
195  * @start:	offset in bytes where the range starts
196  * @end:	offset in bytes where the range ends (inclusive)
197  * @sync_mode:	enable synchronous operation
198  *
199  * Start writeback against all of a mapping's dirty pages that lie
200  * within the byte offsets <start, end> inclusive.
201  *
202  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
203  * opposed to a regular memory cleansing writeback.  The difference between
204  * these two operations is that if a dirty page/buffer is encountered, it must
205  * be waited upon, and not just skipped over.
206  */
207 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
208 				loff_t end, int sync_mode)
209 {
210 	int ret;
211 	struct writeback_control wbc = {
212 		.sync_mode = sync_mode,
213 		.nr_to_write = LONG_MAX,
214 		.range_start = start,
215 		.range_end = end,
216 	};
217 
218 	if (!mapping_cap_writeback_dirty(mapping))
219 		return 0;
220 
221 	ret = do_writepages(mapping, &wbc);
222 	return ret;
223 }
224 
225 static inline int __filemap_fdatawrite(struct address_space *mapping,
226 	int sync_mode)
227 {
228 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
229 }
230 
231 int filemap_fdatawrite(struct address_space *mapping)
232 {
233 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
234 }
235 EXPORT_SYMBOL(filemap_fdatawrite);
236 
237 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
238 				loff_t end)
239 {
240 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
241 }
242 EXPORT_SYMBOL(filemap_fdatawrite_range);
243 
244 /**
245  * filemap_flush - mostly a non-blocking flush
246  * @mapping:	target address_space
247  *
248  * This is a mostly non-blocking flush.  Not suitable for data-integrity
249  * purposes - I/O may not be started against all dirty pages.
250  */
251 int filemap_flush(struct address_space *mapping)
252 {
253 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
254 }
255 EXPORT_SYMBOL(filemap_flush);
256 
257 /**
258  * wait_on_page_writeback_range - wait for writeback to complete
259  * @mapping:	target address_space
260  * @start:	beginning page index
261  * @end:	ending page index
262  *
263  * Wait for writeback to complete against pages indexed by start->end
264  * inclusive
265  */
266 int wait_on_page_writeback_range(struct address_space *mapping,
267 				pgoff_t start, pgoff_t end)
268 {
269 	struct pagevec pvec;
270 	int nr_pages;
271 	int ret = 0;
272 	pgoff_t index;
273 
274 	if (end < start)
275 		return 0;
276 
277 	pagevec_init(&pvec, 0);
278 	index = start;
279 	while ((index <= end) &&
280 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
281 			PAGECACHE_TAG_WRITEBACK,
282 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
283 		unsigned i;
284 
285 		for (i = 0; i < nr_pages; i++) {
286 			struct page *page = pvec.pages[i];
287 
288 			/* until radix tree lookup accepts end_index */
289 			if (page->index > end)
290 				continue;
291 
292 			wait_on_page_writeback(page);
293 			if (PageError(page))
294 				ret = -EIO;
295 		}
296 		pagevec_release(&pvec);
297 		cond_resched();
298 	}
299 
300 	/* Check for outstanding write errors */
301 	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
302 		ret = -ENOSPC;
303 	if (test_and_clear_bit(AS_EIO, &mapping->flags))
304 		ret = -EIO;
305 
306 	return ret;
307 }
308 
309 /**
310  * sync_page_range - write and wait on all pages in the passed range
311  * @inode:	target inode
312  * @mapping:	target address_space
313  * @pos:	beginning offset in pages to write
314  * @count:	number of bytes to write
315  *
316  * Write and wait upon all the pages in the passed range.  This is a "data
317  * integrity" operation.  It waits upon in-flight writeout before starting and
318  * waiting upon new writeout.  If there was an IO error, return it.
319  *
320  * We need to re-take i_mutex during the generic_osync_inode list walk because
321  * it is otherwise livelockable.
322  */
323 int sync_page_range(struct inode *inode, struct address_space *mapping,
324 			loff_t pos, loff_t count)
325 {
326 	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
327 	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
328 	int ret;
329 
330 	if (!mapping_cap_writeback_dirty(mapping) || !count)
331 		return 0;
332 	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
333 	if (ret == 0) {
334 		mutex_lock(&inode->i_mutex);
335 		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
336 		mutex_unlock(&inode->i_mutex);
337 	}
338 	if (ret == 0)
339 		ret = wait_on_page_writeback_range(mapping, start, end);
340 	return ret;
341 }
342 EXPORT_SYMBOL(sync_page_range);
343 
344 /**
345  * sync_page_range_nolock - write & wait on all pages in the passed range without locking
346  * @inode:	target inode
347  * @mapping:	target address_space
348  * @pos:	beginning offset in pages to write
349  * @count:	number of bytes to write
350  *
351  * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
352  * as it forces O_SYNC writers to different parts of the same file
353  * to be serialised right until io completion.
354  */
355 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
356 			   loff_t pos, loff_t count)
357 {
358 	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
359 	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
360 	int ret;
361 
362 	if (!mapping_cap_writeback_dirty(mapping) || !count)
363 		return 0;
364 	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
365 	if (ret == 0)
366 		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
367 	if (ret == 0)
368 		ret = wait_on_page_writeback_range(mapping, start, end);
369 	return ret;
370 }
371 EXPORT_SYMBOL(sync_page_range_nolock);
372 
373 /**
374  * filemap_fdatawait - wait for all under-writeback pages to complete
375  * @mapping: address space structure to wait for
376  *
377  * Walk the list of under-writeback pages of the given address space
378  * and wait for all of them.
379  */
380 int filemap_fdatawait(struct address_space *mapping)
381 {
382 	loff_t i_size = i_size_read(mapping->host);
383 
384 	if (i_size == 0)
385 		return 0;
386 
387 	return wait_on_page_writeback_range(mapping, 0,
388 				(i_size - 1) >> PAGE_CACHE_SHIFT);
389 }
390 EXPORT_SYMBOL(filemap_fdatawait);
391 
392 int filemap_write_and_wait(struct address_space *mapping)
393 {
394 	int err = 0;
395 
396 	if (mapping->nrpages) {
397 		err = filemap_fdatawrite(mapping);
398 		/*
399 		 * Even if the above returned error, the pages may be
400 		 * written partially (e.g. -ENOSPC), so we wait for it.
401 		 * But the -EIO is special case, it may indicate the worst
402 		 * thing (e.g. bug) happened, so we avoid waiting for it.
403 		 */
404 		if (err != -EIO) {
405 			int err2 = filemap_fdatawait(mapping);
406 			if (!err)
407 				err = err2;
408 		}
409 	}
410 	return err;
411 }
412 EXPORT_SYMBOL(filemap_write_and_wait);
413 
414 /**
415  * filemap_write_and_wait_range - write out & wait on a file range
416  * @mapping:	the address_space for the pages
417  * @lstart:	offset in bytes where the range starts
418  * @lend:	offset in bytes where the range ends (inclusive)
419  *
420  * Write out and wait upon file offsets lstart->lend, inclusive.
421  *
422  * Note that `lend' is inclusive (describes the last byte to be written) so
423  * that this function can be used to write to the very end-of-file (end = -1).
424  */
425 int filemap_write_and_wait_range(struct address_space *mapping,
426 				 loff_t lstart, loff_t lend)
427 {
428 	int err = 0;
429 
430 	if (mapping->nrpages) {
431 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
432 						 WB_SYNC_ALL);
433 		/* See comment of filemap_write_and_wait() */
434 		if (err != -EIO) {
435 			int err2 = wait_on_page_writeback_range(mapping,
436 						lstart >> PAGE_CACHE_SHIFT,
437 						lend >> PAGE_CACHE_SHIFT);
438 			if (!err)
439 				err = err2;
440 		}
441 	}
442 	return err;
443 }
444 EXPORT_SYMBOL(filemap_write_and_wait_range);
445 
446 /**
447  * add_to_page_cache_locked - add a locked page to the pagecache
448  * @page:	page to add
449  * @mapping:	the page's address_space
450  * @offset:	page index
451  * @gfp_mask:	page allocation mode
452  *
453  * This function is used to add a page to the pagecache. It must be locked.
454  * This function does not add the page to the LRU.  The caller must do that.
455  */
456 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
457 		pgoff_t offset, gfp_t gfp_mask)
458 {
459 	int error;
460 
461 	VM_BUG_ON(!PageLocked(page));
462 
463 	error = mem_cgroup_cache_charge(page, current->mm,
464 					gfp_mask & GFP_RECLAIM_MASK);
465 	if (error)
466 		goto out;
467 
468 	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
469 	if (error == 0) {
470 		page_cache_get(page);
471 		page->mapping = mapping;
472 		page->index = offset;
473 
474 		spin_lock_irq(&mapping->tree_lock);
475 		error = radix_tree_insert(&mapping->page_tree, offset, page);
476 		if (likely(!error)) {
477 			mapping->nrpages++;
478 			__inc_zone_page_state(page, NR_FILE_PAGES);
479 			spin_unlock_irq(&mapping->tree_lock);
480 		} else {
481 			page->mapping = NULL;
482 			spin_unlock_irq(&mapping->tree_lock);
483 			mem_cgroup_uncharge_cache_page(page);
484 			page_cache_release(page);
485 		}
486 		radix_tree_preload_end();
487 	} else
488 		mem_cgroup_uncharge_cache_page(page);
489 out:
490 	return error;
491 }
492 EXPORT_SYMBOL(add_to_page_cache_locked);
493 
494 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
495 				pgoff_t offset, gfp_t gfp_mask)
496 {
497 	int ret;
498 
499 	/*
500 	 * Splice_read and readahead add shmem/tmpfs pages into the page cache
501 	 * before shmem_readpage has a chance to mark them as SwapBacked: they
502 	 * need to go on the active_anon lru below, and mem_cgroup_cache_charge
503 	 * (called in add_to_page_cache) needs to know where they're going too.
504 	 */
505 	if (mapping_cap_swap_backed(mapping))
506 		SetPageSwapBacked(page);
507 
508 	ret = add_to_page_cache(page, mapping, offset, gfp_mask);
509 	if (ret == 0) {
510 		if (page_is_file_cache(page))
511 			lru_cache_add_file(page);
512 		else
513 			lru_cache_add_active_anon(page);
514 	}
515 	return ret;
516 }
517 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
518 
519 #ifdef CONFIG_NUMA
520 struct page *__page_cache_alloc(gfp_t gfp)
521 {
522 	if (cpuset_do_page_mem_spread()) {
523 		int n = cpuset_mem_spread_node();
524 		return alloc_pages_node(n, gfp, 0);
525 	}
526 	return alloc_pages(gfp, 0);
527 }
528 EXPORT_SYMBOL(__page_cache_alloc);
529 #endif
530 
531 static int __sleep_on_page_lock(void *word)
532 {
533 	io_schedule();
534 	return 0;
535 }
536 
537 /*
538  * In order to wait for pages to become available there must be
539  * waitqueues associated with pages. By using a hash table of
540  * waitqueues where the bucket discipline is to maintain all
541  * waiters on the same queue and wake all when any of the pages
542  * become available, and for the woken contexts to check to be
543  * sure the appropriate page became available, this saves space
544  * at a cost of "thundering herd" phenomena during rare hash
545  * collisions.
546  */
547 static wait_queue_head_t *page_waitqueue(struct page *page)
548 {
549 	const struct zone *zone = page_zone(page);
550 
551 	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
552 }
553 
554 static inline void wake_up_page(struct page *page, int bit)
555 {
556 	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
557 }
558 
559 void wait_on_page_bit(struct page *page, int bit_nr)
560 {
561 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
562 
563 	if (test_bit(bit_nr, &page->flags))
564 		__wait_on_bit(page_waitqueue(page), &wait, sync_page,
565 							TASK_UNINTERRUPTIBLE);
566 }
567 EXPORT_SYMBOL(wait_on_page_bit);
568 
569 /**
570  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
571  * @page: Page defining the wait queue of interest
572  * @waiter: Waiter to add to the queue
573  *
574  * Add an arbitrary @waiter to the wait queue for the nominated @page.
575  */
576 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
577 {
578 	wait_queue_head_t *q = page_waitqueue(page);
579 	unsigned long flags;
580 
581 	spin_lock_irqsave(&q->lock, flags);
582 	__add_wait_queue(q, waiter);
583 	spin_unlock_irqrestore(&q->lock, flags);
584 }
585 EXPORT_SYMBOL_GPL(add_page_wait_queue);
586 
587 /**
588  * unlock_page - unlock a locked page
589  * @page: the page
590  *
591  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
592  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
593  * mechananism between PageLocked pages and PageWriteback pages is shared.
594  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
595  *
596  * The mb is necessary to enforce ordering between the clear_bit and the read
597  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
598  */
599 void unlock_page(struct page *page)
600 {
601 	VM_BUG_ON(!PageLocked(page));
602 	clear_bit_unlock(PG_locked, &page->flags);
603 	smp_mb__after_clear_bit();
604 	wake_up_page(page, PG_locked);
605 }
606 EXPORT_SYMBOL(unlock_page);
607 
608 /**
609  * end_page_writeback - end writeback against a page
610  * @page: the page
611  */
612 void end_page_writeback(struct page *page)
613 {
614 	if (TestClearPageReclaim(page))
615 		rotate_reclaimable_page(page);
616 
617 	if (!test_clear_page_writeback(page))
618 		BUG();
619 
620 	smp_mb__after_clear_bit();
621 	wake_up_page(page, PG_writeback);
622 }
623 EXPORT_SYMBOL(end_page_writeback);
624 
625 /**
626  * __lock_page - get a lock on the page, assuming we need to sleep to get it
627  * @page: the page to lock
628  *
629  * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary.  If some
630  * random driver's requestfn sets TASK_RUNNING, we could busywait.  However
631  * chances are that on the second loop, the block layer's plug list is empty,
632  * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
633  */
634 void __lock_page(struct page *page)
635 {
636 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
637 
638 	__wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
639 							TASK_UNINTERRUPTIBLE);
640 }
641 EXPORT_SYMBOL(__lock_page);
642 
643 int __lock_page_killable(struct page *page)
644 {
645 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
646 
647 	return __wait_on_bit_lock(page_waitqueue(page), &wait,
648 					sync_page_killable, TASK_KILLABLE);
649 }
650 EXPORT_SYMBOL_GPL(__lock_page_killable);
651 
652 /**
653  * __lock_page_nosync - get a lock on the page, without calling sync_page()
654  * @page: the page to lock
655  *
656  * Variant of lock_page that does not require the caller to hold a reference
657  * on the page's mapping.
658  */
659 void __lock_page_nosync(struct page *page)
660 {
661 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
662 	__wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
663 							TASK_UNINTERRUPTIBLE);
664 }
665 
666 /**
667  * find_get_page - find and get a page reference
668  * @mapping: the address_space to search
669  * @offset: the page index
670  *
671  * Is there a pagecache struct page at the given (mapping, offset) tuple?
672  * If yes, increment its refcount and return it; if no, return NULL.
673  */
674 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
675 {
676 	void **pagep;
677 	struct page *page;
678 
679 	rcu_read_lock();
680 repeat:
681 	page = NULL;
682 	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
683 	if (pagep) {
684 		page = radix_tree_deref_slot(pagep);
685 		if (unlikely(!page || page == RADIX_TREE_RETRY))
686 			goto repeat;
687 
688 		if (!page_cache_get_speculative(page))
689 			goto repeat;
690 
691 		/*
692 		 * Has the page moved?
693 		 * This is part of the lockless pagecache protocol. See
694 		 * include/linux/pagemap.h for details.
695 		 */
696 		if (unlikely(page != *pagep)) {
697 			page_cache_release(page);
698 			goto repeat;
699 		}
700 	}
701 	rcu_read_unlock();
702 
703 	return page;
704 }
705 EXPORT_SYMBOL(find_get_page);
706 
707 /**
708  * find_lock_page - locate, pin and lock a pagecache page
709  * @mapping: the address_space to search
710  * @offset: the page index
711  *
712  * Locates the desired pagecache page, locks it, increments its reference
713  * count and returns its address.
714  *
715  * Returns zero if the page was not present. find_lock_page() may sleep.
716  */
717 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
718 {
719 	struct page *page;
720 
721 repeat:
722 	page = find_get_page(mapping, offset);
723 	if (page) {
724 		lock_page(page);
725 		/* Has the page been truncated? */
726 		if (unlikely(page->mapping != mapping)) {
727 			unlock_page(page);
728 			page_cache_release(page);
729 			goto repeat;
730 		}
731 		VM_BUG_ON(page->index != offset);
732 	}
733 	return page;
734 }
735 EXPORT_SYMBOL(find_lock_page);
736 
737 /**
738  * find_or_create_page - locate or add a pagecache page
739  * @mapping: the page's address_space
740  * @index: the page's index into the mapping
741  * @gfp_mask: page allocation mode
742  *
743  * Locates a page in the pagecache.  If the page is not present, a new page
744  * is allocated using @gfp_mask and is added to the pagecache and to the VM's
745  * LRU list.  The returned page is locked and has its reference count
746  * incremented.
747  *
748  * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
749  * allocation!
750  *
751  * find_or_create_page() returns the desired page's address, or zero on
752  * memory exhaustion.
753  */
754 struct page *find_or_create_page(struct address_space *mapping,
755 		pgoff_t index, gfp_t gfp_mask)
756 {
757 	struct page *page;
758 	int err;
759 repeat:
760 	page = find_lock_page(mapping, index);
761 	if (!page) {
762 		page = __page_cache_alloc(gfp_mask);
763 		if (!page)
764 			return NULL;
765 		/*
766 		 * We want a regular kernel memory (not highmem or DMA etc)
767 		 * allocation for the radix tree nodes, but we need to honour
768 		 * the context-specific requirements the caller has asked for.
769 		 * GFP_RECLAIM_MASK collects those requirements.
770 		 */
771 		err = add_to_page_cache_lru(page, mapping, index,
772 			(gfp_mask & GFP_RECLAIM_MASK));
773 		if (unlikely(err)) {
774 			page_cache_release(page);
775 			page = NULL;
776 			if (err == -EEXIST)
777 				goto repeat;
778 		}
779 	}
780 	return page;
781 }
782 EXPORT_SYMBOL(find_or_create_page);
783 
784 /**
785  * find_get_pages - gang pagecache lookup
786  * @mapping:	The address_space to search
787  * @start:	The starting page index
788  * @nr_pages:	The maximum number of pages
789  * @pages:	Where the resulting pages are placed
790  *
791  * find_get_pages() will search for and return a group of up to
792  * @nr_pages pages in the mapping.  The pages are placed at @pages.
793  * find_get_pages() takes a reference against the returned pages.
794  *
795  * The search returns a group of mapping-contiguous pages with ascending
796  * indexes.  There may be holes in the indices due to not-present pages.
797  *
798  * find_get_pages() returns the number of pages which were found.
799  */
800 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
801 			    unsigned int nr_pages, struct page **pages)
802 {
803 	unsigned int i;
804 	unsigned int ret;
805 	unsigned int nr_found;
806 
807 	rcu_read_lock();
808 restart:
809 	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
810 				(void ***)pages, start, nr_pages);
811 	ret = 0;
812 	for (i = 0; i < nr_found; i++) {
813 		struct page *page;
814 repeat:
815 		page = radix_tree_deref_slot((void **)pages[i]);
816 		if (unlikely(!page))
817 			continue;
818 		/*
819 		 * this can only trigger if nr_found == 1, making livelock
820 		 * a non issue.
821 		 */
822 		if (unlikely(page == RADIX_TREE_RETRY))
823 			goto restart;
824 
825 		if (!page_cache_get_speculative(page))
826 			goto repeat;
827 
828 		/* Has the page moved? */
829 		if (unlikely(page != *((void **)pages[i]))) {
830 			page_cache_release(page);
831 			goto repeat;
832 		}
833 
834 		pages[ret] = page;
835 		ret++;
836 	}
837 	rcu_read_unlock();
838 	return ret;
839 }
840 
841 /**
842  * find_get_pages_contig - gang contiguous pagecache lookup
843  * @mapping:	The address_space to search
844  * @index:	The starting page index
845  * @nr_pages:	The maximum number of pages
846  * @pages:	Where the resulting pages are placed
847  *
848  * find_get_pages_contig() works exactly like find_get_pages(), except
849  * that the returned number of pages are guaranteed to be contiguous.
850  *
851  * find_get_pages_contig() returns the number of pages which were found.
852  */
853 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
854 			       unsigned int nr_pages, struct page **pages)
855 {
856 	unsigned int i;
857 	unsigned int ret;
858 	unsigned int nr_found;
859 
860 	rcu_read_lock();
861 restart:
862 	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
863 				(void ***)pages, index, nr_pages);
864 	ret = 0;
865 	for (i = 0; i < nr_found; i++) {
866 		struct page *page;
867 repeat:
868 		page = radix_tree_deref_slot((void **)pages[i]);
869 		if (unlikely(!page))
870 			continue;
871 		/*
872 		 * this can only trigger if nr_found == 1, making livelock
873 		 * a non issue.
874 		 */
875 		if (unlikely(page == RADIX_TREE_RETRY))
876 			goto restart;
877 
878 		if (page->mapping == NULL || page->index != index)
879 			break;
880 
881 		if (!page_cache_get_speculative(page))
882 			goto repeat;
883 
884 		/* Has the page moved? */
885 		if (unlikely(page != *((void **)pages[i]))) {
886 			page_cache_release(page);
887 			goto repeat;
888 		}
889 
890 		pages[ret] = page;
891 		ret++;
892 		index++;
893 	}
894 	rcu_read_unlock();
895 	return ret;
896 }
897 EXPORT_SYMBOL(find_get_pages_contig);
898 
899 /**
900  * find_get_pages_tag - find and return pages that match @tag
901  * @mapping:	the address_space to search
902  * @index:	the starting page index
903  * @tag:	the tag index
904  * @nr_pages:	the maximum number of pages
905  * @pages:	where the resulting pages are placed
906  *
907  * Like find_get_pages, except we only return pages which are tagged with
908  * @tag.   We update @index to index the next page for the traversal.
909  */
910 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
911 			int tag, unsigned int nr_pages, struct page **pages)
912 {
913 	unsigned int i;
914 	unsigned int ret;
915 	unsigned int nr_found;
916 
917 	rcu_read_lock();
918 restart:
919 	nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
920 				(void ***)pages, *index, nr_pages, tag);
921 	ret = 0;
922 	for (i = 0; i < nr_found; i++) {
923 		struct page *page;
924 repeat:
925 		page = radix_tree_deref_slot((void **)pages[i]);
926 		if (unlikely(!page))
927 			continue;
928 		/*
929 		 * this can only trigger if nr_found == 1, making livelock
930 		 * a non issue.
931 		 */
932 		if (unlikely(page == RADIX_TREE_RETRY))
933 			goto restart;
934 
935 		if (!page_cache_get_speculative(page))
936 			goto repeat;
937 
938 		/* Has the page moved? */
939 		if (unlikely(page != *((void **)pages[i]))) {
940 			page_cache_release(page);
941 			goto repeat;
942 		}
943 
944 		pages[ret] = page;
945 		ret++;
946 	}
947 	rcu_read_unlock();
948 
949 	if (ret)
950 		*index = pages[ret - 1]->index + 1;
951 
952 	return ret;
953 }
954 EXPORT_SYMBOL(find_get_pages_tag);
955 
956 /**
957  * grab_cache_page_nowait - returns locked page at given index in given cache
958  * @mapping: target address_space
959  * @index: the page index
960  *
961  * Same as grab_cache_page(), but do not wait if the page is unavailable.
962  * This is intended for speculative data generators, where the data can
963  * be regenerated if the page couldn't be grabbed.  This routine should
964  * be safe to call while holding the lock for another page.
965  *
966  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
967  * and deadlock against the caller's locked page.
968  */
969 struct page *
970 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
971 {
972 	struct page *page = find_get_page(mapping, index);
973 
974 	if (page) {
975 		if (trylock_page(page))
976 			return page;
977 		page_cache_release(page);
978 		return NULL;
979 	}
980 	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
981 	if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
982 		page_cache_release(page);
983 		page = NULL;
984 	}
985 	return page;
986 }
987 EXPORT_SYMBOL(grab_cache_page_nowait);
988 
989 /*
990  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
991  * a _large_ part of the i/o request. Imagine the worst scenario:
992  *
993  *      ---R__________________________________________B__________
994  *         ^ reading here                             ^ bad block(assume 4k)
995  *
996  * read(R) => miss => readahead(R...B) => media error => frustrating retries
997  * => failing the whole request => read(R) => read(R+1) =>
998  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
999  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1000  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1001  *
1002  * It is going insane. Fix it by quickly scaling down the readahead size.
1003  */
1004 static void shrink_readahead_size_eio(struct file *filp,
1005 					struct file_ra_state *ra)
1006 {
1007 	if (!ra->ra_pages)
1008 		return;
1009 
1010 	ra->ra_pages /= 4;
1011 }
1012 
1013 /**
1014  * do_generic_file_read - generic file read routine
1015  * @filp:	the file to read
1016  * @ppos:	current file position
1017  * @desc:	read_descriptor
1018  * @actor:	read method
1019  *
1020  * This is a generic file read routine, and uses the
1021  * mapping->a_ops->readpage() function for the actual low-level stuff.
1022  *
1023  * This is really ugly. But the goto's actually try to clarify some
1024  * of the logic when it comes to error handling etc.
1025  */
1026 static void do_generic_file_read(struct file *filp, loff_t *ppos,
1027 		read_descriptor_t *desc, read_actor_t actor)
1028 {
1029 	struct address_space *mapping = filp->f_mapping;
1030 	struct inode *inode = mapping->host;
1031 	struct file_ra_state *ra = &filp->f_ra;
1032 	pgoff_t index;
1033 	pgoff_t last_index;
1034 	pgoff_t prev_index;
1035 	unsigned long offset;      /* offset into pagecache page */
1036 	unsigned int prev_offset;
1037 	int error;
1038 
1039 	index = *ppos >> PAGE_CACHE_SHIFT;
1040 	prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1041 	prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1042 	last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1043 	offset = *ppos & ~PAGE_CACHE_MASK;
1044 
1045 	for (;;) {
1046 		struct page *page;
1047 		pgoff_t end_index;
1048 		loff_t isize;
1049 		unsigned long nr, ret;
1050 
1051 		cond_resched();
1052 find_page:
1053 		page = find_get_page(mapping, index);
1054 		if (!page) {
1055 			page_cache_sync_readahead(mapping,
1056 					ra, filp,
1057 					index, last_index - index);
1058 			page = find_get_page(mapping, index);
1059 			if (unlikely(page == NULL))
1060 				goto no_cached_page;
1061 		}
1062 		if (PageReadahead(page)) {
1063 			page_cache_async_readahead(mapping,
1064 					ra, filp, page,
1065 					index, last_index - index);
1066 		}
1067 		if (!PageUptodate(page)) {
1068 			if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1069 					!mapping->a_ops->is_partially_uptodate)
1070 				goto page_not_up_to_date;
1071 			if (!trylock_page(page))
1072 				goto page_not_up_to_date;
1073 			if (!mapping->a_ops->is_partially_uptodate(page,
1074 								desc, offset))
1075 				goto page_not_up_to_date_locked;
1076 			unlock_page(page);
1077 		}
1078 page_ok:
1079 		/*
1080 		 * i_size must be checked after we know the page is Uptodate.
1081 		 *
1082 		 * Checking i_size after the check allows us to calculate
1083 		 * the correct value for "nr", which means the zero-filled
1084 		 * part of the page is not copied back to userspace (unless
1085 		 * another truncate extends the file - this is desired though).
1086 		 */
1087 
1088 		isize = i_size_read(inode);
1089 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1090 		if (unlikely(!isize || index > end_index)) {
1091 			page_cache_release(page);
1092 			goto out;
1093 		}
1094 
1095 		/* nr is the maximum number of bytes to copy from this page */
1096 		nr = PAGE_CACHE_SIZE;
1097 		if (index == end_index) {
1098 			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1099 			if (nr <= offset) {
1100 				page_cache_release(page);
1101 				goto out;
1102 			}
1103 		}
1104 		nr = nr - offset;
1105 
1106 		/* If users can be writing to this page using arbitrary
1107 		 * virtual addresses, take care about potential aliasing
1108 		 * before reading the page on the kernel side.
1109 		 */
1110 		if (mapping_writably_mapped(mapping))
1111 			flush_dcache_page(page);
1112 
1113 		/*
1114 		 * When a sequential read accesses a page several times,
1115 		 * only mark it as accessed the first time.
1116 		 */
1117 		if (prev_index != index || offset != prev_offset)
1118 			mark_page_accessed(page);
1119 		prev_index = index;
1120 
1121 		/*
1122 		 * Ok, we have the page, and it's up-to-date, so
1123 		 * now we can copy it to user space...
1124 		 *
1125 		 * The actor routine returns how many bytes were actually used..
1126 		 * NOTE! This may not be the same as how much of a user buffer
1127 		 * we filled up (we may be padding etc), so we can only update
1128 		 * "pos" here (the actor routine has to update the user buffer
1129 		 * pointers and the remaining count).
1130 		 */
1131 		ret = actor(desc, page, offset, nr);
1132 		offset += ret;
1133 		index += offset >> PAGE_CACHE_SHIFT;
1134 		offset &= ~PAGE_CACHE_MASK;
1135 		prev_offset = offset;
1136 
1137 		page_cache_release(page);
1138 		if (ret == nr && desc->count)
1139 			continue;
1140 		goto out;
1141 
1142 page_not_up_to_date:
1143 		/* Get exclusive access to the page ... */
1144 		error = lock_page_killable(page);
1145 		if (unlikely(error))
1146 			goto readpage_error;
1147 
1148 page_not_up_to_date_locked:
1149 		/* Did it get truncated before we got the lock? */
1150 		if (!page->mapping) {
1151 			unlock_page(page);
1152 			page_cache_release(page);
1153 			continue;
1154 		}
1155 
1156 		/* Did somebody else fill it already? */
1157 		if (PageUptodate(page)) {
1158 			unlock_page(page);
1159 			goto page_ok;
1160 		}
1161 
1162 readpage:
1163 		/* Start the actual read. The read will unlock the page. */
1164 		error = mapping->a_ops->readpage(filp, page);
1165 
1166 		if (unlikely(error)) {
1167 			if (error == AOP_TRUNCATED_PAGE) {
1168 				page_cache_release(page);
1169 				goto find_page;
1170 			}
1171 			goto readpage_error;
1172 		}
1173 
1174 		if (!PageUptodate(page)) {
1175 			error = lock_page_killable(page);
1176 			if (unlikely(error))
1177 				goto readpage_error;
1178 			if (!PageUptodate(page)) {
1179 				if (page->mapping == NULL) {
1180 					/*
1181 					 * invalidate_inode_pages got it
1182 					 */
1183 					unlock_page(page);
1184 					page_cache_release(page);
1185 					goto find_page;
1186 				}
1187 				unlock_page(page);
1188 				shrink_readahead_size_eio(filp, ra);
1189 				error = -EIO;
1190 				goto readpage_error;
1191 			}
1192 			unlock_page(page);
1193 		}
1194 
1195 		goto page_ok;
1196 
1197 readpage_error:
1198 		/* UHHUH! A synchronous read error occurred. Report it */
1199 		desc->error = error;
1200 		page_cache_release(page);
1201 		goto out;
1202 
1203 no_cached_page:
1204 		/*
1205 		 * Ok, it wasn't cached, so we need to create a new
1206 		 * page..
1207 		 */
1208 		page = page_cache_alloc_cold(mapping);
1209 		if (!page) {
1210 			desc->error = -ENOMEM;
1211 			goto out;
1212 		}
1213 		error = add_to_page_cache_lru(page, mapping,
1214 						index, GFP_KERNEL);
1215 		if (error) {
1216 			page_cache_release(page);
1217 			if (error == -EEXIST)
1218 				goto find_page;
1219 			desc->error = error;
1220 			goto out;
1221 		}
1222 		goto readpage;
1223 	}
1224 
1225 out:
1226 	ra->prev_pos = prev_index;
1227 	ra->prev_pos <<= PAGE_CACHE_SHIFT;
1228 	ra->prev_pos |= prev_offset;
1229 
1230 	*ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1231 	file_accessed(filp);
1232 }
1233 
1234 int file_read_actor(read_descriptor_t *desc, struct page *page,
1235 			unsigned long offset, unsigned long size)
1236 {
1237 	char *kaddr;
1238 	unsigned long left, count = desc->count;
1239 
1240 	if (size > count)
1241 		size = count;
1242 
1243 	/*
1244 	 * Faults on the destination of a read are common, so do it before
1245 	 * taking the kmap.
1246 	 */
1247 	if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1248 		kaddr = kmap_atomic(page, KM_USER0);
1249 		left = __copy_to_user_inatomic(desc->arg.buf,
1250 						kaddr + offset, size);
1251 		kunmap_atomic(kaddr, KM_USER0);
1252 		if (left == 0)
1253 			goto success;
1254 	}
1255 
1256 	/* Do it the slow way */
1257 	kaddr = kmap(page);
1258 	left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1259 	kunmap(page);
1260 
1261 	if (left) {
1262 		size -= left;
1263 		desc->error = -EFAULT;
1264 	}
1265 success:
1266 	desc->count = count - size;
1267 	desc->written += size;
1268 	desc->arg.buf += size;
1269 	return size;
1270 }
1271 
1272 /*
1273  * Performs necessary checks before doing a write
1274  * @iov:	io vector request
1275  * @nr_segs:	number of segments in the iovec
1276  * @count:	number of bytes to write
1277  * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1278  *
1279  * Adjust number of segments and amount of bytes to write (nr_segs should be
1280  * properly initialized first). Returns appropriate error code that caller
1281  * should return or zero in case that write should be allowed.
1282  */
1283 int generic_segment_checks(const struct iovec *iov,
1284 			unsigned long *nr_segs, size_t *count, int access_flags)
1285 {
1286 	unsigned long   seg;
1287 	size_t cnt = 0;
1288 	for (seg = 0; seg < *nr_segs; seg++) {
1289 		const struct iovec *iv = &iov[seg];
1290 
1291 		/*
1292 		 * If any segment has a negative length, or the cumulative
1293 		 * length ever wraps negative then return -EINVAL.
1294 		 */
1295 		cnt += iv->iov_len;
1296 		if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1297 			return -EINVAL;
1298 		if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1299 			continue;
1300 		if (seg == 0)
1301 			return -EFAULT;
1302 		*nr_segs = seg;
1303 		cnt -= iv->iov_len;	/* This segment is no good */
1304 		break;
1305 	}
1306 	*count = cnt;
1307 	return 0;
1308 }
1309 EXPORT_SYMBOL(generic_segment_checks);
1310 
1311 /**
1312  * generic_file_aio_read - generic filesystem read routine
1313  * @iocb:	kernel I/O control block
1314  * @iov:	io vector request
1315  * @nr_segs:	number of segments in the iovec
1316  * @pos:	current file position
1317  *
1318  * This is the "read()" routine for all filesystems
1319  * that can use the page cache directly.
1320  */
1321 ssize_t
1322 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1323 		unsigned long nr_segs, loff_t pos)
1324 {
1325 	struct file *filp = iocb->ki_filp;
1326 	ssize_t retval;
1327 	unsigned long seg;
1328 	size_t count;
1329 	loff_t *ppos = &iocb->ki_pos;
1330 
1331 	count = 0;
1332 	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1333 	if (retval)
1334 		return retval;
1335 
1336 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1337 	if (filp->f_flags & O_DIRECT) {
1338 		loff_t size;
1339 		struct address_space *mapping;
1340 		struct inode *inode;
1341 
1342 		mapping = filp->f_mapping;
1343 		inode = mapping->host;
1344 		if (!count)
1345 			goto out; /* skip atime */
1346 		size = i_size_read(inode);
1347 		if (pos < size) {
1348 			retval = filemap_write_and_wait_range(mapping, pos,
1349 					pos + iov_length(iov, nr_segs) - 1);
1350 			if (!retval) {
1351 				retval = mapping->a_ops->direct_IO(READ, iocb,
1352 							iov, pos, nr_segs);
1353 			}
1354 			if (retval > 0)
1355 				*ppos = pos + retval;
1356 			if (retval) {
1357 				file_accessed(filp);
1358 				goto out;
1359 			}
1360 		}
1361 	}
1362 
1363 	for (seg = 0; seg < nr_segs; seg++) {
1364 		read_descriptor_t desc;
1365 
1366 		desc.written = 0;
1367 		desc.arg.buf = iov[seg].iov_base;
1368 		desc.count = iov[seg].iov_len;
1369 		if (desc.count == 0)
1370 			continue;
1371 		desc.error = 0;
1372 		do_generic_file_read(filp, ppos, &desc, file_read_actor);
1373 		retval += desc.written;
1374 		if (desc.error) {
1375 			retval = retval ?: desc.error;
1376 			break;
1377 		}
1378 		if (desc.count > 0)
1379 			break;
1380 	}
1381 out:
1382 	return retval;
1383 }
1384 EXPORT_SYMBOL(generic_file_aio_read);
1385 
1386 static ssize_t
1387 do_readahead(struct address_space *mapping, struct file *filp,
1388 	     pgoff_t index, unsigned long nr)
1389 {
1390 	if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1391 		return -EINVAL;
1392 
1393 	force_page_cache_readahead(mapping, filp, index,
1394 					max_sane_readahead(nr));
1395 	return 0;
1396 }
1397 
1398 SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1399 {
1400 	ssize_t ret;
1401 	struct file *file;
1402 
1403 	ret = -EBADF;
1404 	file = fget(fd);
1405 	if (file) {
1406 		if (file->f_mode & FMODE_READ) {
1407 			struct address_space *mapping = file->f_mapping;
1408 			pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1409 			pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1410 			unsigned long len = end - start + 1;
1411 			ret = do_readahead(mapping, file, start, len);
1412 		}
1413 		fput(file);
1414 	}
1415 	return ret;
1416 }
1417 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1418 asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1419 {
1420 	return SYSC_readahead((int) fd, offset, (size_t) count);
1421 }
1422 SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1423 #endif
1424 
1425 #ifdef CONFIG_MMU
1426 /**
1427  * page_cache_read - adds requested page to the page cache if not already there
1428  * @file:	file to read
1429  * @offset:	page index
1430  *
1431  * This adds the requested page to the page cache if it isn't already there,
1432  * and schedules an I/O to read in its contents from disk.
1433  */
1434 static int page_cache_read(struct file *file, pgoff_t offset)
1435 {
1436 	struct address_space *mapping = file->f_mapping;
1437 	struct page *page;
1438 	int ret;
1439 
1440 	do {
1441 		page = page_cache_alloc_cold(mapping);
1442 		if (!page)
1443 			return -ENOMEM;
1444 
1445 		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1446 		if (ret == 0)
1447 			ret = mapping->a_ops->readpage(file, page);
1448 		else if (ret == -EEXIST)
1449 			ret = 0; /* losing race to add is OK */
1450 
1451 		page_cache_release(page);
1452 
1453 	} while (ret == AOP_TRUNCATED_PAGE);
1454 
1455 	return ret;
1456 }
1457 
1458 #define MMAP_LOTSAMISS  (100)
1459 
1460 /**
1461  * filemap_fault - read in file data for page fault handling
1462  * @vma:	vma in which the fault was taken
1463  * @vmf:	struct vm_fault containing details of the fault
1464  *
1465  * filemap_fault() is invoked via the vma operations vector for a
1466  * mapped memory region to read in file data during a page fault.
1467  *
1468  * The goto's are kind of ugly, but this streamlines the normal case of having
1469  * it in the page cache, and handles the special cases reasonably without
1470  * having a lot of duplicated code.
1471  */
1472 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1473 {
1474 	int error;
1475 	struct file *file = vma->vm_file;
1476 	struct address_space *mapping = file->f_mapping;
1477 	struct file_ra_state *ra = &file->f_ra;
1478 	struct inode *inode = mapping->host;
1479 	struct page *page;
1480 	pgoff_t size;
1481 	int did_readaround = 0;
1482 	int ret = 0;
1483 
1484 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1485 	if (vmf->pgoff >= size)
1486 		return VM_FAULT_SIGBUS;
1487 
1488 	/* If we don't want any read-ahead, don't bother */
1489 	if (VM_RandomReadHint(vma))
1490 		goto no_cached_page;
1491 
1492 	/*
1493 	 * Do we have something in the page cache already?
1494 	 */
1495 retry_find:
1496 	page = find_lock_page(mapping, vmf->pgoff);
1497 	/*
1498 	 * For sequential accesses, we use the generic readahead logic.
1499 	 */
1500 	if (VM_SequentialReadHint(vma)) {
1501 		if (!page) {
1502 			page_cache_sync_readahead(mapping, ra, file,
1503 							   vmf->pgoff, 1);
1504 			page = find_lock_page(mapping, vmf->pgoff);
1505 			if (!page)
1506 				goto no_cached_page;
1507 		}
1508 		if (PageReadahead(page)) {
1509 			page_cache_async_readahead(mapping, ra, file, page,
1510 							   vmf->pgoff, 1);
1511 		}
1512 	}
1513 
1514 	if (!page) {
1515 		unsigned long ra_pages;
1516 
1517 		ra->mmap_miss++;
1518 
1519 		/*
1520 		 * Do we miss much more than hit in this file? If so,
1521 		 * stop bothering with read-ahead. It will only hurt.
1522 		 */
1523 		if (ra->mmap_miss > MMAP_LOTSAMISS)
1524 			goto no_cached_page;
1525 
1526 		/*
1527 		 * To keep the pgmajfault counter straight, we need to
1528 		 * check did_readaround, as this is an inner loop.
1529 		 */
1530 		if (!did_readaround) {
1531 			ret = VM_FAULT_MAJOR;
1532 			count_vm_event(PGMAJFAULT);
1533 		}
1534 		did_readaround = 1;
1535 		ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1536 		if (ra_pages) {
1537 			pgoff_t start = 0;
1538 
1539 			if (vmf->pgoff > ra_pages / 2)
1540 				start = vmf->pgoff - ra_pages / 2;
1541 			do_page_cache_readahead(mapping, file, start, ra_pages);
1542 		}
1543 		page = find_lock_page(mapping, vmf->pgoff);
1544 		if (!page)
1545 			goto no_cached_page;
1546 	}
1547 
1548 	if (!did_readaround)
1549 		ra->mmap_miss--;
1550 
1551 	/*
1552 	 * We have a locked page in the page cache, now we need to check
1553 	 * that it's up-to-date. If not, it is going to be due to an error.
1554 	 */
1555 	if (unlikely(!PageUptodate(page)))
1556 		goto page_not_uptodate;
1557 
1558 	/* Must recheck i_size under page lock */
1559 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1560 	if (unlikely(vmf->pgoff >= size)) {
1561 		unlock_page(page);
1562 		page_cache_release(page);
1563 		return VM_FAULT_SIGBUS;
1564 	}
1565 
1566 	/*
1567 	 * Found the page and have a reference on it.
1568 	 */
1569 	ra->prev_pos = (loff_t)page->index << PAGE_CACHE_SHIFT;
1570 	vmf->page = page;
1571 	return ret | VM_FAULT_LOCKED;
1572 
1573 no_cached_page:
1574 	/*
1575 	 * We're only likely to ever get here if MADV_RANDOM is in
1576 	 * effect.
1577 	 */
1578 	error = page_cache_read(file, vmf->pgoff);
1579 
1580 	/*
1581 	 * The page we want has now been added to the page cache.
1582 	 * In the unlikely event that someone removed it in the
1583 	 * meantime, we'll just come back here and read it again.
1584 	 */
1585 	if (error >= 0)
1586 		goto retry_find;
1587 
1588 	/*
1589 	 * An error return from page_cache_read can result if the
1590 	 * system is low on memory, or a problem occurs while trying
1591 	 * to schedule I/O.
1592 	 */
1593 	if (error == -ENOMEM)
1594 		return VM_FAULT_OOM;
1595 	return VM_FAULT_SIGBUS;
1596 
1597 page_not_uptodate:
1598 	/* IO error path */
1599 	if (!did_readaround) {
1600 		ret = VM_FAULT_MAJOR;
1601 		count_vm_event(PGMAJFAULT);
1602 	}
1603 
1604 	/*
1605 	 * Umm, take care of errors if the page isn't up-to-date.
1606 	 * Try to re-read it _once_. We do this synchronously,
1607 	 * because there really aren't any performance issues here
1608 	 * and we need to check for errors.
1609 	 */
1610 	ClearPageError(page);
1611 	error = mapping->a_ops->readpage(file, page);
1612 	if (!error) {
1613 		wait_on_page_locked(page);
1614 		if (!PageUptodate(page))
1615 			error = -EIO;
1616 	}
1617 	page_cache_release(page);
1618 
1619 	if (!error || error == AOP_TRUNCATED_PAGE)
1620 		goto retry_find;
1621 
1622 	/* Things didn't work out. Return zero to tell the mm layer so. */
1623 	shrink_readahead_size_eio(file, ra);
1624 	return VM_FAULT_SIGBUS;
1625 }
1626 EXPORT_SYMBOL(filemap_fault);
1627 
1628 struct vm_operations_struct generic_file_vm_ops = {
1629 	.fault		= filemap_fault,
1630 };
1631 
1632 /* This is used for a general mmap of a disk file */
1633 
1634 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1635 {
1636 	struct address_space *mapping = file->f_mapping;
1637 
1638 	if (!mapping->a_ops->readpage)
1639 		return -ENOEXEC;
1640 	file_accessed(file);
1641 	vma->vm_ops = &generic_file_vm_ops;
1642 	vma->vm_flags |= VM_CAN_NONLINEAR;
1643 	return 0;
1644 }
1645 
1646 /*
1647  * This is for filesystems which do not implement ->writepage.
1648  */
1649 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1650 {
1651 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1652 		return -EINVAL;
1653 	return generic_file_mmap(file, vma);
1654 }
1655 #else
1656 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1657 {
1658 	return -ENOSYS;
1659 }
1660 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1661 {
1662 	return -ENOSYS;
1663 }
1664 #endif /* CONFIG_MMU */
1665 
1666 EXPORT_SYMBOL(generic_file_mmap);
1667 EXPORT_SYMBOL(generic_file_readonly_mmap);
1668 
1669 static struct page *__read_cache_page(struct address_space *mapping,
1670 				pgoff_t index,
1671 				int (*filler)(void *,struct page*),
1672 				void *data)
1673 {
1674 	struct page *page;
1675 	int err;
1676 repeat:
1677 	page = find_get_page(mapping, index);
1678 	if (!page) {
1679 		page = page_cache_alloc_cold(mapping);
1680 		if (!page)
1681 			return ERR_PTR(-ENOMEM);
1682 		err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1683 		if (unlikely(err)) {
1684 			page_cache_release(page);
1685 			if (err == -EEXIST)
1686 				goto repeat;
1687 			/* Presumably ENOMEM for radix tree node */
1688 			return ERR_PTR(err);
1689 		}
1690 		err = filler(data, page);
1691 		if (err < 0) {
1692 			page_cache_release(page);
1693 			page = ERR_PTR(err);
1694 		}
1695 	}
1696 	return page;
1697 }
1698 
1699 /**
1700  * read_cache_page_async - read into page cache, fill it if needed
1701  * @mapping:	the page's address_space
1702  * @index:	the page index
1703  * @filler:	function to perform the read
1704  * @data:	destination for read data
1705  *
1706  * Same as read_cache_page, but don't wait for page to become unlocked
1707  * after submitting it to the filler.
1708  *
1709  * Read into the page cache. If a page already exists, and PageUptodate() is
1710  * not set, try to fill the page but don't wait for it to become unlocked.
1711  *
1712  * If the page does not get brought uptodate, return -EIO.
1713  */
1714 struct page *read_cache_page_async(struct address_space *mapping,
1715 				pgoff_t index,
1716 				int (*filler)(void *,struct page*),
1717 				void *data)
1718 {
1719 	struct page *page;
1720 	int err;
1721 
1722 retry:
1723 	page = __read_cache_page(mapping, index, filler, data);
1724 	if (IS_ERR(page))
1725 		return page;
1726 	if (PageUptodate(page))
1727 		goto out;
1728 
1729 	lock_page(page);
1730 	if (!page->mapping) {
1731 		unlock_page(page);
1732 		page_cache_release(page);
1733 		goto retry;
1734 	}
1735 	if (PageUptodate(page)) {
1736 		unlock_page(page);
1737 		goto out;
1738 	}
1739 	err = filler(data, page);
1740 	if (err < 0) {
1741 		page_cache_release(page);
1742 		return ERR_PTR(err);
1743 	}
1744 out:
1745 	mark_page_accessed(page);
1746 	return page;
1747 }
1748 EXPORT_SYMBOL(read_cache_page_async);
1749 
1750 /**
1751  * read_cache_page - read into page cache, fill it if needed
1752  * @mapping:	the page's address_space
1753  * @index:	the page index
1754  * @filler:	function to perform the read
1755  * @data:	destination for read data
1756  *
1757  * Read into the page cache. If a page already exists, and PageUptodate() is
1758  * not set, try to fill the page then wait for it to become unlocked.
1759  *
1760  * If the page does not get brought uptodate, return -EIO.
1761  */
1762 struct page *read_cache_page(struct address_space *mapping,
1763 				pgoff_t index,
1764 				int (*filler)(void *,struct page*),
1765 				void *data)
1766 {
1767 	struct page *page;
1768 
1769 	page = read_cache_page_async(mapping, index, filler, data);
1770 	if (IS_ERR(page))
1771 		goto out;
1772 	wait_on_page_locked(page);
1773 	if (!PageUptodate(page)) {
1774 		page_cache_release(page);
1775 		page = ERR_PTR(-EIO);
1776 	}
1777  out:
1778 	return page;
1779 }
1780 EXPORT_SYMBOL(read_cache_page);
1781 
1782 /*
1783  * The logic we want is
1784  *
1785  *	if suid or (sgid and xgrp)
1786  *		remove privs
1787  */
1788 int should_remove_suid(struct dentry *dentry)
1789 {
1790 	mode_t mode = dentry->d_inode->i_mode;
1791 	int kill = 0;
1792 
1793 	/* suid always must be killed */
1794 	if (unlikely(mode & S_ISUID))
1795 		kill = ATTR_KILL_SUID;
1796 
1797 	/*
1798 	 * sgid without any exec bits is just a mandatory locking mark; leave
1799 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1800 	 */
1801 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1802 		kill |= ATTR_KILL_SGID;
1803 
1804 	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1805 		return kill;
1806 
1807 	return 0;
1808 }
1809 EXPORT_SYMBOL(should_remove_suid);
1810 
1811 static int __remove_suid(struct dentry *dentry, int kill)
1812 {
1813 	struct iattr newattrs;
1814 
1815 	newattrs.ia_valid = ATTR_FORCE | kill;
1816 	return notify_change(dentry, &newattrs);
1817 }
1818 
1819 int file_remove_suid(struct file *file)
1820 {
1821 	struct dentry *dentry = file->f_path.dentry;
1822 	int killsuid = should_remove_suid(dentry);
1823 	int killpriv = security_inode_need_killpriv(dentry);
1824 	int error = 0;
1825 
1826 	if (killpriv < 0)
1827 		return killpriv;
1828 	if (killpriv)
1829 		error = security_inode_killpriv(dentry);
1830 	if (!error && killsuid)
1831 		error = __remove_suid(dentry, killsuid);
1832 
1833 	return error;
1834 }
1835 EXPORT_SYMBOL(file_remove_suid);
1836 
1837 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1838 			const struct iovec *iov, size_t base, size_t bytes)
1839 {
1840 	size_t copied = 0, left = 0;
1841 
1842 	while (bytes) {
1843 		char __user *buf = iov->iov_base + base;
1844 		int copy = min(bytes, iov->iov_len - base);
1845 
1846 		base = 0;
1847 		left = __copy_from_user_inatomic(vaddr, buf, copy);
1848 		copied += copy;
1849 		bytes -= copy;
1850 		vaddr += copy;
1851 		iov++;
1852 
1853 		if (unlikely(left))
1854 			break;
1855 	}
1856 	return copied - left;
1857 }
1858 
1859 /*
1860  * Copy as much as we can into the page and return the number of bytes which
1861  * were sucessfully copied.  If a fault is encountered then return the number of
1862  * bytes which were copied.
1863  */
1864 size_t iov_iter_copy_from_user_atomic(struct page *page,
1865 		struct iov_iter *i, unsigned long offset, size_t bytes)
1866 {
1867 	char *kaddr;
1868 	size_t copied;
1869 
1870 	BUG_ON(!in_atomic());
1871 	kaddr = kmap_atomic(page, KM_USER0);
1872 	if (likely(i->nr_segs == 1)) {
1873 		int left;
1874 		char __user *buf = i->iov->iov_base + i->iov_offset;
1875 		left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
1876 		copied = bytes - left;
1877 	} else {
1878 		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1879 						i->iov, i->iov_offset, bytes);
1880 	}
1881 	kunmap_atomic(kaddr, KM_USER0);
1882 
1883 	return copied;
1884 }
1885 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1886 
1887 /*
1888  * This has the same sideeffects and return value as
1889  * iov_iter_copy_from_user_atomic().
1890  * The difference is that it attempts to resolve faults.
1891  * Page must not be locked.
1892  */
1893 size_t iov_iter_copy_from_user(struct page *page,
1894 		struct iov_iter *i, unsigned long offset, size_t bytes)
1895 {
1896 	char *kaddr;
1897 	size_t copied;
1898 
1899 	kaddr = kmap(page);
1900 	if (likely(i->nr_segs == 1)) {
1901 		int left;
1902 		char __user *buf = i->iov->iov_base + i->iov_offset;
1903 		left = __copy_from_user(kaddr + offset, buf, bytes);
1904 		copied = bytes - left;
1905 	} else {
1906 		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1907 						i->iov, i->iov_offset, bytes);
1908 	}
1909 	kunmap(page);
1910 	return copied;
1911 }
1912 EXPORT_SYMBOL(iov_iter_copy_from_user);
1913 
1914 void iov_iter_advance(struct iov_iter *i, size_t bytes)
1915 {
1916 	BUG_ON(i->count < bytes);
1917 
1918 	if (likely(i->nr_segs == 1)) {
1919 		i->iov_offset += bytes;
1920 		i->count -= bytes;
1921 	} else {
1922 		const struct iovec *iov = i->iov;
1923 		size_t base = i->iov_offset;
1924 
1925 		/*
1926 		 * The !iov->iov_len check ensures we skip over unlikely
1927 		 * zero-length segments (without overruning the iovec).
1928 		 */
1929 		while (bytes || unlikely(i->count && !iov->iov_len)) {
1930 			int copy;
1931 
1932 			copy = min(bytes, iov->iov_len - base);
1933 			BUG_ON(!i->count || i->count < copy);
1934 			i->count -= copy;
1935 			bytes -= copy;
1936 			base += copy;
1937 			if (iov->iov_len == base) {
1938 				iov++;
1939 				base = 0;
1940 			}
1941 		}
1942 		i->iov = iov;
1943 		i->iov_offset = base;
1944 	}
1945 }
1946 EXPORT_SYMBOL(iov_iter_advance);
1947 
1948 /*
1949  * Fault in the first iovec of the given iov_iter, to a maximum length
1950  * of bytes. Returns 0 on success, or non-zero if the memory could not be
1951  * accessed (ie. because it is an invalid address).
1952  *
1953  * writev-intensive code may want this to prefault several iovecs -- that
1954  * would be possible (callers must not rely on the fact that _only_ the
1955  * first iovec will be faulted with the current implementation).
1956  */
1957 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
1958 {
1959 	char __user *buf = i->iov->iov_base + i->iov_offset;
1960 	bytes = min(bytes, i->iov->iov_len - i->iov_offset);
1961 	return fault_in_pages_readable(buf, bytes);
1962 }
1963 EXPORT_SYMBOL(iov_iter_fault_in_readable);
1964 
1965 /*
1966  * Return the count of just the current iov_iter segment.
1967  */
1968 size_t iov_iter_single_seg_count(struct iov_iter *i)
1969 {
1970 	const struct iovec *iov = i->iov;
1971 	if (i->nr_segs == 1)
1972 		return i->count;
1973 	else
1974 		return min(i->count, iov->iov_len - i->iov_offset);
1975 }
1976 EXPORT_SYMBOL(iov_iter_single_seg_count);
1977 
1978 /*
1979  * Performs necessary checks before doing a write
1980  *
1981  * Can adjust writing position or amount of bytes to write.
1982  * Returns appropriate error code that caller should return or
1983  * zero in case that write should be allowed.
1984  */
1985 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1986 {
1987 	struct inode *inode = file->f_mapping->host;
1988 	unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1989 
1990         if (unlikely(*pos < 0))
1991                 return -EINVAL;
1992 
1993 	if (!isblk) {
1994 		/* FIXME: this is for backwards compatibility with 2.4 */
1995 		if (file->f_flags & O_APPEND)
1996                         *pos = i_size_read(inode);
1997 
1998 		if (limit != RLIM_INFINITY) {
1999 			if (*pos >= limit) {
2000 				send_sig(SIGXFSZ, current, 0);
2001 				return -EFBIG;
2002 			}
2003 			if (*count > limit - (typeof(limit))*pos) {
2004 				*count = limit - (typeof(limit))*pos;
2005 			}
2006 		}
2007 	}
2008 
2009 	/*
2010 	 * LFS rule
2011 	 */
2012 	if (unlikely(*pos + *count > MAX_NON_LFS &&
2013 				!(file->f_flags & O_LARGEFILE))) {
2014 		if (*pos >= MAX_NON_LFS) {
2015 			return -EFBIG;
2016 		}
2017 		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2018 			*count = MAX_NON_LFS - (unsigned long)*pos;
2019 		}
2020 	}
2021 
2022 	/*
2023 	 * Are we about to exceed the fs block limit ?
2024 	 *
2025 	 * If we have written data it becomes a short write.  If we have
2026 	 * exceeded without writing data we send a signal and return EFBIG.
2027 	 * Linus frestrict idea will clean these up nicely..
2028 	 */
2029 	if (likely(!isblk)) {
2030 		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2031 			if (*count || *pos > inode->i_sb->s_maxbytes) {
2032 				return -EFBIG;
2033 			}
2034 			/* zero-length writes at ->s_maxbytes are OK */
2035 		}
2036 
2037 		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2038 			*count = inode->i_sb->s_maxbytes - *pos;
2039 	} else {
2040 #ifdef CONFIG_BLOCK
2041 		loff_t isize;
2042 		if (bdev_read_only(I_BDEV(inode)))
2043 			return -EPERM;
2044 		isize = i_size_read(inode);
2045 		if (*pos >= isize) {
2046 			if (*count || *pos > isize)
2047 				return -ENOSPC;
2048 		}
2049 
2050 		if (*pos + *count > isize)
2051 			*count = isize - *pos;
2052 #else
2053 		return -EPERM;
2054 #endif
2055 	}
2056 	return 0;
2057 }
2058 EXPORT_SYMBOL(generic_write_checks);
2059 
2060 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2061 				loff_t pos, unsigned len, unsigned flags,
2062 				struct page **pagep, void **fsdata)
2063 {
2064 	const struct address_space_operations *aops = mapping->a_ops;
2065 
2066 	return aops->write_begin(file, mapping, pos, len, flags,
2067 							pagep, fsdata);
2068 }
2069 EXPORT_SYMBOL(pagecache_write_begin);
2070 
2071 int pagecache_write_end(struct file *file, struct address_space *mapping,
2072 				loff_t pos, unsigned len, unsigned copied,
2073 				struct page *page, void *fsdata)
2074 {
2075 	const struct address_space_operations *aops = mapping->a_ops;
2076 
2077 	mark_page_accessed(page);
2078 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2079 }
2080 EXPORT_SYMBOL(pagecache_write_end);
2081 
2082 ssize_t
2083 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2084 		unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2085 		size_t count, size_t ocount)
2086 {
2087 	struct file	*file = iocb->ki_filp;
2088 	struct address_space *mapping = file->f_mapping;
2089 	struct inode	*inode = mapping->host;
2090 	ssize_t		written;
2091 	size_t		write_len;
2092 	pgoff_t		end;
2093 
2094 	if (count != ocount)
2095 		*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2096 
2097 	write_len = iov_length(iov, *nr_segs);
2098 	end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2099 
2100 	written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2101 	if (written)
2102 		goto out;
2103 
2104 	/*
2105 	 * After a write we want buffered reads to be sure to go to disk to get
2106 	 * the new data.  We invalidate clean cached page from the region we're
2107 	 * about to write.  We do this *before* the write so that we can return
2108 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2109 	 */
2110 	if (mapping->nrpages) {
2111 		written = invalidate_inode_pages2_range(mapping,
2112 					pos >> PAGE_CACHE_SHIFT, end);
2113 		/*
2114 		 * If a page can not be invalidated, return 0 to fall back
2115 		 * to buffered write.
2116 		 */
2117 		if (written) {
2118 			if (written == -EBUSY)
2119 				return 0;
2120 			goto out;
2121 		}
2122 	}
2123 
2124 	written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2125 
2126 	/*
2127 	 * Finally, try again to invalidate clean pages which might have been
2128 	 * cached by non-direct readahead, or faulted in by get_user_pages()
2129 	 * if the source of the write was an mmap'ed region of the file
2130 	 * we're writing.  Either one is a pretty crazy thing to do,
2131 	 * so we don't support it 100%.  If this invalidation
2132 	 * fails, tough, the write still worked...
2133 	 */
2134 	if (mapping->nrpages) {
2135 		invalidate_inode_pages2_range(mapping,
2136 					      pos >> PAGE_CACHE_SHIFT, end);
2137 	}
2138 
2139 	if (written > 0) {
2140 		loff_t end = pos + written;
2141 		if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2142 			i_size_write(inode,  end);
2143 			mark_inode_dirty(inode);
2144 		}
2145 		*ppos = end;
2146 	}
2147 
2148 	/*
2149 	 * Sync the fs metadata but not the minor inode changes and
2150 	 * of course not the data as we did direct DMA for the IO.
2151 	 * i_mutex is held, which protects generic_osync_inode() from
2152 	 * livelocking.  AIO O_DIRECT ops attempt to sync metadata here.
2153 	 */
2154 out:
2155 	if ((written >= 0 || written == -EIOCBQUEUED) &&
2156 	    ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2157 		int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
2158 		if (err < 0)
2159 			written = err;
2160 	}
2161 	return written;
2162 }
2163 EXPORT_SYMBOL(generic_file_direct_write);
2164 
2165 /*
2166  * Find or create a page at the given pagecache position. Return the locked
2167  * page. This function is specifically for buffered writes.
2168  */
2169 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2170 					pgoff_t index, unsigned flags)
2171 {
2172 	int status;
2173 	struct page *page;
2174 	gfp_t gfp_notmask = 0;
2175 	if (flags & AOP_FLAG_NOFS)
2176 		gfp_notmask = __GFP_FS;
2177 repeat:
2178 	page = find_lock_page(mapping, index);
2179 	if (likely(page))
2180 		return page;
2181 
2182 	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
2183 	if (!page)
2184 		return NULL;
2185 	status = add_to_page_cache_lru(page, mapping, index,
2186 						GFP_KERNEL & ~gfp_notmask);
2187 	if (unlikely(status)) {
2188 		page_cache_release(page);
2189 		if (status == -EEXIST)
2190 			goto repeat;
2191 		return NULL;
2192 	}
2193 	return page;
2194 }
2195 EXPORT_SYMBOL(grab_cache_page_write_begin);
2196 
2197 static ssize_t generic_perform_write(struct file *file,
2198 				struct iov_iter *i, loff_t pos)
2199 {
2200 	struct address_space *mapping = file->f_mapping;
2201 	const struct address_space_operations *a_ops = mapping->a_ops;
2202 	long status = 0;
2203 	ssize_t written = 0;
2204 	unsigned int flags = 0;
2205 
2206 	/*
2207 	 * Copies from kernel address space cannot fail (NFSD is a big user).
2208 	 */
2209 	if (segment_eq(get_fs(), KERNEL_DS))
2210 		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2211 
2212 	do {
2213 		struct page *page;
2214 		pgoff_t index;		/* Pagecache index for current page */
2215 		unsigned long offset;	/* Offset into pagecache page */
2216 		unsigned long bytes;	/* Bytes to write to page */
2217 		size_t copied;		/* Bytes copied from user */
2218 		void *fsdata;
2219 
2220 		offset = (pos & (PAGE_CACHE_SIZE - 1));
2221 		index = pos >> PAGE_CACHE_SHIFT;
2222 		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2223 						iov_iter_count(i));
2224 
2225 again:
2226 
2227 		/*
2228 		 * Bring in the user page that we will copy from _first_.
2229 		 * Otherwise there's a nasty deadlock on copying from the
2230 		 * same page as we're writing to, without it being marked
2231 		 * up-to-date.
2232 		 *
2233 		 * Not only is this an optimisation, but it is also required
2234 		 * to check that the address is actually valid, when atomic
2235 		 * usercopies are used, below.
2236 		 */
2237 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2238 			status = -EFAULT;
2239 			break;
2240 		}
2241 
2242 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2243 						&page, &fsdata);
2244 		if (unlikely(status))
2245 			break;
2246 
2247 		pagefault_disable();
2248 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2249 		pagefault_enable();
2250 		flush_dcache_page(page);
2251 
2252 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2253 						page, fsdata);
2254 		if (unlikely(status < 0))
2255 			break;
2256 		copied = status;
2257 
2258 		cond_resched();
2259 
2260 		iov_iter_advance(i, copied);
2261 		if (unlikely(copied == 0)) {
2262 			/*
2263 			 * If we were unable to copy any data at all, we must
2264 			 * fall back to a single segment length write.
2265 			 *
2266 			 * If we didn't fallback here, we could livelock
2267 			 * because not all segments in the iov can be copied at
2268 			 * once without a pagefault.
2269 			 */
2270 			bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2271 						iov_iter_single_seg_count(i));
2272 			goto again;
2273 		}
2274 		pos += copied;
2275 		written += copied;
2276 
2277 		balance_dirty_pages_ratelimited(mapping);
2278 
2279 	} while (iov_iter_count(i));
2280 
2281 	return written ? written : status;
2282 }
2283 
2284 ssize_t
2285 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2286 		unsigned long nr_segs, loff_t pos, loff_t *ppos,
2287 		size_t count, ssize_t written)
2288 {
2289 	struct file *file = iocb->ki_filp;
2290 	struct address_space *mapping = file->f_mapping;
2291 	const struct address_space_operations *a_ops = mapping->a_ops;
2292 	struct inode *inode = mapping->host;
2293 	ssize_t status;
2294 	struct iov_iter i;
2295 
2296 	iov_iter_init(&i, iov, nr_segs, count, written);
2297 	status = generic_perform_write(file, &i, pos);
2298 
2299 	if (likely(status >= 0)) {
2300 		written += status;
2301 		*ppos = pos + status;
2302 
2303 		/*
2304 		 * For now, when the user asks for O_SYNC, we'll actually give
2305 		 * O_DSYNC
2306 		 */
2307 		if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2308 			if (!a_ops->writepage || !is_sync_kiocb(iocb))
2309 				status = generic_osync_inode(inode, mapping,
2310 						OSYNC_METADATA|OSYNC_DATA);
2311 		}
2312   	}
2313 
2314 	/*
2315 	 * If we get here for O_DIRECT writes then we must have fallen through
2316 	 * to buffered writes (block instantiation inside i_size).  So we sync
2317 	 * the file data here, to try to honour O_DIRECT expectations.
2318 	 */
2319 	if (unlikely(file->f_flags & O_DIRECT) && written)
2320 		status = filemap_write_and_wait_range(mapping,
2321 					pos, pos + written - 1);
2322 
2323 	return written ? written : status;
2324 }
2325 EXPORT_SYMBOL(generic_file_buffered_write);
2326 
2327 static ssize_t
2328 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2329 				unsigned long nr_segs, loff_t *ppos)
2330 {
2331 	struct file *file = iocb->ki_filp;
2332 	struct address_space * mapping = file->f_mapping;
2333 	size_t ocount;		/* original count */
2334 	size_t count;		/* after file limit checks */
2335 	struct inode 	*inode = mapping->host;
2336 	loff_t		pos;
2337 	ssize_t		written;
2338 	ssize_t		err;
2339 
2340 	ocount = 0;
2341 	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2342 	if (err)
2343 		return err;
2344 
2345 	count = ocount;
2346 	pos = *ppos;
2347 
2348 	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2349 
2350 	/* We can write back this queue in page reclaim */
2351 	current->backing_dev_info = mapping->backing_dev_info;
2352 	written = 0;
2353 
2354 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2355 	if (err)
2356 		goto out;
2357 
2358 	if (count == 0)
2359 		goto out;
2360 
2361 	err = file_remove_suid(file);
2362 	if (err)
2363 		goto out;
2364 
2365 	file_update_time(file);
2366 
2367 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2368 	if (unlikely(file->f_flags & O_DIRECT)) {
2369 		loff_t endbyte;
2370 		ssize_t written_buffered;
2371 
2372 		written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2373 							ppos, count, ocount);
2374 		if (written < 0 || written == count)
2375 			goto out;
2376 		/*
2377 		 * direct-io write to a hole: fall through to buffered I/O
2378 		 * for completing the rest of the request.
2379 		 */
2380 		pos += written;
2381 		count -= written;
2382 		written_buffered = generic_file_buffered_write(iocb, iov,
2383 						nr_segs, pos, ppos, count,
2384 						written);
2385 		/*
2386 		 * If generic_file_buffered_write() retuned a synchronous error
2387 		 * then we want to return the number of bytes which were
2388 		 * direct-written, or the error code if that was zero.  Note
2389 		 * that this differs from normal direct-io semantics, which
2390 		 * will return -EFOO even if some bytes were written.
2391 		 */
2392 		if (written_buffered < 0) {
2393 			err = written_buffered;
2394 			goto out;
2395 		}
2396 
2397 		/*
2398 		 * We need to ensure that the page cache pages are written to
2399 		 * disk and invalidated to preserve the expected O_DIRECT
2400 		 * semantics.
2401 		 */
2402 		endbyte = pos + written_buffered - written - 1;
2403 		err = do_sync_mapping_range(file->f_mapping, pos, endbyte,
2404 					    SYNC_FILE_RANGE_WAIT_BEFORE|
2405 					    SYNC_FILE_RANGE_WRITE|
2406 					    SYNC_FILE_RANGE_WAIT_AFTER);
2407 		if (err == 0) {
2408 			written = written_buffered;
2409 			invalidate_mapping_pages(mapping,
2410 						 pos >> PAGE_CACHE_SHIFT,
2411 						 endbyte >> PAGE_CACHE_SHIFT);
2412 		} else {
2413 			/*
2414 			 * We don't know how much we wrote, so just return
2415 			 * the number of bytes which were direct-written
2416 			 */
2417 		}
2418 	} else {
2419 		written = generic_file_buffered_write(iocb, iov, nr_segs,
2420 				pos, ppos, count, written);
2421 	}
2422 out:
2423 	current->backing_dev_info = NULL;
2424 	return written ? written : err;
2425 }
2426 
2427 ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
2428 		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
2429 {
2430 	struct file *file = iocb->ki_filp;
2431 	struct address_space *mapping = file->f_mapping;
2432 	struct inode *inode = mapping->host;
2433 	ssize_t ret;
2434 
2435 	BUG_ON(iocb->ki_pos != pos);
2436 
2437 	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2438 			&iocb->ki_pos);
2439 
2440 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2441 		ssize_t err;
2442 
2443 		err = sync_page_range_nolock(inode, mapping, pos, ret);
2444 		if (err < 0)
2445 			ret = err;
2446 	}
2447 	return ret;
2448 }
2449 EXPORT_SYMBOL(generic_file_aio_write_nolock);
2450 
2451 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2452 		unsigned long nr_segs, loff_t pos)
2453 {
2454 	struct file *file = iocb->ki_filp;
2455 	struct address_space *mapping = file->f_mapping;
2456 	struct inode *inode = mapping->host;
2457 	ssize_t ret;
2458 
2459 	BUG_ON(iocb->ki_pos != pos);
2460 
2461 	mutex_lock(&inode->i_mutex);
2462 	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2463 			&iocb->ki_pos);
2464 	mutex_unlock(&inode->i_mutex);
2465 
2466 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2467 		ssize_t err;
2468 
2469 		err = sync_page_range(inode, mapping, pos, ret);
2470 		if (err < 0)
2471 			ret = err;
2472 	}
2473 	return ret;
2474 }
2475 EXPORT_SYMBOL(generic_file_aio_write);
2476 
2477 /**
2478  * try_to_release_page() - release old fs-specific metadata on a page
2479  *
2480  * @page: the page which the kernel is trying to free
2481  * @gfp_mask: memory allocation flags (and I/O mode)
2482  *
2483  * The address_space is to try to release any data against the page
2484  * (presumably at page->private).  If the release was successful, return `1'.
2485  * Otherwise return zero.
2486  *
2487  * This may also be called if PG_fscache is set on a page, indicating that the
2488  * page is known to the local caching routines.
2489  *
2490  * The @gfp_mask argument specifies whether I/O may be performed to release
2491  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2492  *
2493  */
2494 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2495 {
2496 	struct address_space * const mapping = page->mapping;
2497 
2498 	BUG_ON(!PageLocked(page));
2499 	if (PageWriteback(page))
2500 		return 0;
2501 
2502 	if (mapping && mapping->a_ops->releasepage)
2503 		return mapping->a_ops->releasepage(page, gfp_mask);
2504 	return try_to_free_buffers(page);
2505 }
2506 
2507 EXPORT_SYMBOL(try_to_release_page);
2508