1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/filemap.c 4 * 5 * Copyright (C) 1994-1999 Linus Torvalds 6 */ 7 8 /* 9 * This file handles the generic file mmap semantics used by 10 * most "normal" filesystems (but you don't /have/ to use this: 11 * the NFS filesystem used to do this differently, for example) 12 */ 13 #include <linux/export.h> 14 #include <linux/compiler.h> 15 #include <linux/dax.h> 16 #include <linux/fs.h> 17 #include <linux/sched/signal.h> 18 #include <linux/uaccess.h> 19 #include <linux/capability.h> 20 #include <linux/kernel_stat.h> 21 #include <linux/gfp.h> 22 #include <linux/mm.h> 23 #include <linux/swap.h> 24 #include <linux/mman.h> 25 #include <linux/pagemap.h> 26 #include <linux/file.h> 27 #include <linux/uio.h> 28 #include <linux/error-injection.h> 29 #include <linux/hash.h> 30 #include <linux/writeback.h> 31 #include <linux/backing-dev.h> 32 #include <linux/pagevec.h> 33 #include <linux/blkdev.h> 34 #include <linux/security.h> 35 #include <linux/cpuset.h> 36 #include <linux/hugetlb.h> 37 #include <linux/memcontrol.h> 38 #include <linux/cleancache.h> 39 #include <linux/shmem_fs.h> 40 #include <linux/rmap.h> 41 #include <linux/delayacct.h> 42 #include <linux/psi.h> 43 #include "internal.h" 44 45 #define CREATE_TRACE_POINTS 46 #include <trace/events/filemap.h> 47 48 /* 49 * FIXME: remove all knowledge of the buffer layer from the core VM 50 */ 51 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 52 53 #include <asm/mman.h> 54 55 /* 56 * Shared mappings implemented 30.11.1994. It's not fully working yet, 57 * though. 58 * 59 * Shared mappings now work. 15.8.1995 Bruno. 60 * 61 * finished 'unifying' the page and buffer cache and SMP-threaded the 62 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 63 * 64 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 65 */ 66 67 /* 68 * Lock ordering: 69 * 70 * ->i_mmap_rwsem (truncate_pagecache) 71 * ->private_lock (__free_pte->__set_page_dirty_buffers) 72 * ->swap_lock (exclusive_swap_page, others) 73 * ->i_pages lock 74 * 75 * ->i_mutex 76 * ->i_mmap_rwsem (truncate->unmap_mapping_range) 77 * 78 * ->mmap_sem 79 * ->i_mmap_rwsem 80 * ->page_table_lock or pte_lock (various, mainly in memory.c) 81 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock) 82 * 83 * ->mmap_sem 84 * ->lock_page (access_process_vm) 85 * 86 * ->i_mutex (generic_perform_write) 87 * ->mmap_sem (fault_in_pages_readable->do_page_fault) 88 * 89 * bdi->wb.list_lock 90 * sb_lock (fs/fs-writeback.c) 91 * ->i_pages lock (__sync_single_inode) 92 * 93 * ->i_mmap_rwsem 94 * ->anon_vma.lock (vma_adjust) 95 * 96 * ->anon_vma.lock 97 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 98 * 99 * ->page_table_lock or pte_lock 100 * ->swap_lock (try_to_unmap_one) 101 * ->private_lock (try_to_unmap_one) 102 * ->i_pages lock (try_to_unmap_one) 103 * ->pgdat->lru_lock (follow_page->mark_page_accessed) 104 * ->pgdat->lru_lock (check_pte_range->isolate_lru_page) 105 * ->private_lock (page_remove_rmap->set_page_dirty) 106 * ->i_pages lock (page_remove_rmap->set_page_dirty) 107 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty) 108 * ->inode->i_lock (page_remove_rmap->set_page_dirty) 109 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg) 110 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 111 * ->inode->i_lock (zap_pte_range->set_page_dirty) 112 * ->private_lock (zap_pte_range->__set_page_dirty_buffers) 113 * 114 * ->i_mmap_rwsem 115 * ->tasklist_lock (memory_failure, collect_procs_ao) 116 */ 117 118 static void page_cache_delete(struct address_space *mapping, 119 struct page *page, void *shadow) 120 { 121 XA_STATE(xas, &mapping->i_pages, page->index); 122 unsigned int nr = 1; 123 124 mapping_set_update(&xas, mapping); 125 126 /* hugetlb pages are represented by a single entry in the xarray */ 127 if (!PageHuge(page)) { 128 xas_set_order(&xas, page->index, compound_order(page)); 129 nr = compound_nr(page); 130 } 131 132 VM_BUG_ON_PAGE(!PageLocked(page), page); 133 VM_BUG_ON_PAGE(PageTail(page), page); 134 VM_BUG_ON_PAGE(nr != 1 && shadow, page); 135 136 xas_store(&xas, shadow); 137 xas_init_marks(&xas); 138 139 page->mapping = NULL; 140 /* Leave page->index set: truncation lookup relies upon it */ 141 142 if (shadow) { 143 mapping->nrexceptional += nr; 144 /* 145 * Make sure the nrexceptional update is committed before 146 * the nrpages update so that final truncate racing 147 * with reclaim does not see both counters 0 at the 148 * same time and miss a shadow entry. 149 */ 150 smp_wmb(); 151 } 152 mapping->nrpages -= nr; 153 } 154 155 static void unaccount_page_cache_page(struct address_space *mapping, 156 struct page *page) 157 { 158 int nr; 159 160 /* 161 * if we're uptodate, flush out into the cleancache, otherwise 162 * invalidate any existing cleancache entries. We can't leave 163 * stale data around in the cleancache once our page is gone 164 */ 165 if (PageUptodate(page) && PageMappedToDisk(page)) 166 cleancache_put_page(page); 167 else 168 cleancache_invalidate_page(mapping, page); 169 170 VM_BUG_ON_PAGE(PageTail(page), page); 171 VM_BUG_ON_PAGE(page_mapped(page), page); 172 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) { 173 int mapcount; 174 175 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n", 176 current->comm, page_to_pfn(page)); 177 dump_page(page, "still mapped when deleted"); 178 dump_stack(); 179 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 180 181 mapcount = page_mapcount(page); 182 if (mapping_exiting(mapping) && 183 page_count(page) >= mapcount + 2) { 184 /* 185 * All vmas have already been torn down, so it's 186 * a good bet that actually the page is unmapped, 187 * and we'd prefer not to leak it: if we're wrong, 188 * some other bad page check should catch it later. 189 */ 190 page_mapcount_reset(page); 191 page_ref_sub(page, mapcount); 192 } 193 } 194 195 /* hugetlb pages do not participate in page cache accounting. */ 196 if (PageHuge(page)) 197 return; 198 199 nr = hpage_nr_pages(page); 200 201 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr); 202 if (PageSwapBacked(page)) { 203 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr); 204 if (PageTransHuge(page)) 205 __dec_node_page_state(page, NR_SHMEM_THPS); 206 } else if (PageTransHuge(page)) { 207 __dec_node_page_state(page, NR_FILE_THPS); 208 filemap_nr_thps_dec(mapping); 209 } 210 211 /* 212 * At this point page must be either written or cleaned by 213 * truncate. Dirty page here signals a bug and loss of 214 * unwritten data. 215 * 216 * This fixes dirty accounting after removing the page entirely 217 * but leaves PageDirty set: it has no effect for truncated 218 * page and anyway will be cleared before returning page into 219 * buddy allocator. 220 */ 221 if (WARN_ON_ONCE(PageDirty(page))) 222 account_page_cleaned(page, mapping, inode_to_wb(mapping->host)); 223 } 224 225 /* 226 * Delete a page from the page cache and free it. Caller has to make 227 * sure the page is locked and that nobody else uses it - or that usage 228 * is safe. The caller must hold the i_pages lock. 229 */ 230 void __delete_from_page_cache(struct page *page, void *shadow) 231 { 232 struct address_space *mapping = page->mapping; 233 234 trace_mm_filemap_delete_from_page_cache(page); 235 236 unaccount_page_cache_page(mapping, page); 237 page_cache_delete(mapping, page, shadow); 238 } 239 240 static void page_cache_free_page(struct address_space *mapping, 241 struct page *page) 242 { 243 void (*freepage)(struct page *); 244 245 freepage = mapping->a_ops->freepage; 246 if (freepage) 247 freepage(page); 248 249 if (PageTransHuge(page) && !PageHuge(page)) { 250 page_ref_sub(page, HPAGE_PMD_NR); 251 VM_BUG_ON_PAGE(page_count(page) <= 0, page); 252 } else { 253 put_page(page); 254 } 255 } 256 257 /** 258 * delete_from_page_cache - delete page from page cache 259 * @page: the page which the kernel is trying to remove from page cache 260 * 261 * This must be called only on pages that have been verified to be in the page 262 * cache and locked. It will never put the page into the free list, the caller 263 * has a reference on the page. 264 */ 265 void delete_from_page_cache(struct page *page) 266 { 267 struct address_space *mapping = page_mapping(page); 268 unsigned long flags; 269 270 BUG_ON(!PageLocked(page)); 271 xa_lock_irqsave(&mapping->i_pages, flags); 272 __delete_from_page_cache(page, NULL); 273 xa_unlock_irqrestore(&mapping->i_pages, flags); 274 275 page_cache_free_page(mapping, page); 276 } 277 EXPORT_SYMBOL(delete_from_page_cache); 278 279 /* 280 * page_cache_delete_batch - delete several pages from page cache 281 * @mapping: the mapping to which pages belong 282 * @pvec: pagevec with pages to delete 283 * 284 * The function walks over mapping->i_pages and removes pages passed in @pvec 285 * from the mapping. The function expects @pvec to be sorted by page index 286 * and is optimised for it to be dense. 287 * It tolerates holes in @pvec (mapping entries at those indices are not 288 * modified). The function expects only THP head pages to be present in the 289 * @pvec. 290 * 291 * The function expects the i_pages lock to be held. 292 */ 293 static void page_cache_delete_batch(struct address_space *mapping, 294 struct pagevec *pvec) 295 { 296 XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index); 297 int total_pages = 0; 298 int i = 0; 299 struct page *page; 300 301 mapping_set_update(&xas, mapping); 302 xas_for_each(&xas, page, ULONG_MAX) { 303 if (i >= pagevec_count(pvec)) 304 break; 305 306 /* A swap/dax/shadow entry got inserted? Skip it. */ 307 if (xa_is_value(page)) 308 continue; 309 /* 310 * A page got inserted in our range? Skip it. We have our 311 * pages locked so they are protected from being removed. 312 * If we see a page whose index is higher than ours, it 313 * means our page has been removed, which shouldn't be 314 * possible because we're holding the PageLock. 315 */ 316 if (page != pvec->pages[i]) { 317 VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index, 318 page); 319 continue; 320 } 321 322 WARN_ON_ONCE(!PageLocked(page)); 323 324 if (page->index == xas.xa_index) 325 page->mapping = NULL; 326 /* Leave page->index set: truncation lookup relies on it */ 327 328 /* 329 * Move to the next page in the vector if this is a regular 330 * page or the index is of the last sub-page of this compound 331 * page. 332 */ 333 if (page->index + compound_nr(page) - 1 == xas.xa_index) 334 i++; 335 xas_store(&xas, NULL); 336 total_pages++; 337 } 338 mapping->nrpages -= total_pages; 339 } 340 341 void delete_from_page_cache_batch(struct address_space *mapping, 342 struct pagevec *pvec) 343 { 344 int i; 345 unsigned long flags; 346 347 if (!pagevec_count(pvec)) 348 return; 349 350 xa_lock_irqsave(&mapping->i_pages, flags); 351 for (i = 0; i < pagevec_count(pvec); i++) { 352 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]); 353 354 unaccount_page_cache_page(mapping, pvec->pages[i]); 355 } 356 page_cache_delete_batch(mapping, pvec); 357 xa_unlock_irqrestore(&mapping->i_pages, flags); 358 359 for (i = 0; i < pagevec_count(pvec); i++) 360 page_cache_free_page(mapping, pvec->pages[i]); 361 } 362 363 int filemap_check_errors(struct address_space *mapping) 364 { 365 int ret = 0; 366 /* Check for outstanding write errors */ 367 if (test_bit(AS_ENOSPC, &mapping->flags) && 368 test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 369 ret = -ENOSPC; 370 if (test_bit(AS_EIO, &mapping->flags) && 371 test_and_clear_bit(AS_EIO, &mapping->flags)) 372 ret = -EIO; 373 return ret; 374 } 375 EXPORT_SYMBOL(filemap_check_errors); 376 377 static int filemap_check_and_keep_errors(struct address_space *mapping) 378 { 379 /* Check for outstanding write errors */ 380 if (test_bit(AS_EIO, &mapping->flags)) 381 return -EIO; 382 if (test_bit(AS_ENOSPC, &mapping->flags)) 383 return -ENOSPC; 384 return 0; 385 } 386 387 /** 388 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 389 * @mapping: address space structure to write 390 * @start: offset in bytes where the range starts 391 * @end: offset in bytes where the range ends (inclusive) 392 * @sync_mode: enable synchronous operation 393 * 394 * Start writeback against all of a mapping's dirty pages that lie 395 * within the byte offsets <start, end> inclusive. 396 * 397 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 398 * opposed to a regular memory cleansing writeback. The difference between 399 * these two operations is that if a dirty page/buffer is encountered, it must 400 * be waited upon, and not just skipped over. 401 * 402 * Return: %0 on success, negative error code otherwise. 403 */ 404 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 405 loff_t end, int sync_mode) 406 { 407 int ret; 408 struct writeback_control wbc = { 409 .sync_mode = sync_mode, 410 .nr_to_write = LONG_MAX, 411 .range_start = start, 412 .range_end = end, 413 }; 414 415 if (!mapping_cap_writeback_dirty(mapping) || 416 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 417 return 0; 418 419 wbc_attach_fdatawrite_inode(&wbc, mapping->host); 420 ret = do_writepages(mapping, &wbc); 421 wbc_detach_inode(&wbc); 422 return ret; 423 } 424 425 static inline int __filemap_fdatawrite(struct address_space *mapping, 426 int sync_mode) 427 { 428 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 429 } 430 431 int filemap_fdatawrite(struct address_space *mapping) 432 { 433 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 434 } 435 EXPORT_SYMBOL(filemap_fdatawrite); 436 437 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 438 loff_t end) 439 { 440 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 441 } 442 EXPORT_SYMBOL(filemap_fdatawrite_range); 443 444 /** 445 * filemap_flush - mostly a non-blocking flush 446 * @mapping: target address_space 447 * 448 * This is a mostly non-blocking flush. Not suitable for data-integrity 449 * purposes - I/O may not be started against all dirty pages. 450 * 451 * Return: %0 on success, negative error code otherwise. 452 */ 453 int filemap_flush(struct address_space *mapping) 454 { 455 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 456 } 457 EXPORT_SYMBOL(filemap_flush); 458 459 /** 460 * filemap_range_has_page - check if a page exists in range. 461 * @mapping: address space within which to check 462 * @start_byte: offset in bytes where the range starts 463 * @end_byte: offset in bytes where the range ends (inclusive) 464 * 465 * Find at least one page in the range supplied, usually used to check if 466 * direct writing in this range will trigger a writeback. 467 * 468 * Return: %true if at least one page exists in the specified range, 469 * %false otherwise. 470 */ 471 bool filemap_range_has_page(struct address_space *mapping, 472 loff_t start_byte, loff_t end_byte) 473 { 474 struct page *page; 475 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 476 pgoff_t max = end_byte >> PAGE_SHIFT; 477 478 if (end_byte < start_byte) 479 return false; 480 481 rcu_read_lock(); 482 for (;;) { 483 page = xas_find(&xas, max); 484 if (xas_retry(&xas, page)) 485 continue; 486 /* Shadow entries don't count */ 487 if (xa_is_value(page)) 488 continue; 489 /* 490 * We don't need to try to pin this page; we're about to 491 * release the RCU lock anyway. It is enough to know that 492 * there was a page here recently. 493 */ 494 break; 495 } 496 rcu_read_unlock(); 497 498 return page != NULL; 499 } 500 EXPORT_SYMBOL(filemap_range_has_page); 501 502 static void __filemap_fdatawait_range(struct address_space *mapping, 503 loff_t start_byte, loff_t end_byte) 504 { 505 pgoff_t index = start_byte >> PAGE_SHIFT; 506 pgoff_t end = end_byte >> PAGE_SHIFT; 507 struct pagevec pvec; 508 int nr_pages; 509 510 if (end_byte < start_byte) 511 return; 512 513 pagevec_init(&pvec); 514 while (index <= end) { 515 unsigned i; 516 517 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, 518 end, PAGECACHE_TAG_WRITEBACK); 519 if (!nr_pages) 520 break; 521 522 for (i = 0; i < nr_pages; i++) { 523 struct page *page = pvec.pages[i]; 524 525 wait_on_page_writeback(page); 526 ClearPageError(page); 527 } 528 pagevec_release(&pvec); 529 cond_resched(); 530 } 531 } 532 533 /** 534 * filemap_fdatawait_range - wait for writeback to complete 535 * @mapping: address space structure to wait for 536 * @start_byte: offset in bytes where the range starts 537 * @end_byte: offset in bytes where the range ends (inclusive) 538 * 539 * Walk the list of under-writeback pages of the given address space 540 * in the given range and wait for all of them. Check error status of 541 * the address space and return it. 542 * 543 * Since the error status of the address space is cleared by this function, 544 * callers are responsible for checking the return value and handling and/or 545 * reporting the error. 546 * 547 * Return: error status of the address space. 548 */ 549 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 550 loff_t end_byte) 551 { 552 __filemap_fdatawait_range(mapping, start_byte, end_byte); 553 return filemap_check_errors(mapping); 554 } 555 EXPORT_SYMBOL(filemap_fdatawait_range); 556 557 /** 558 * filemap_fdatawait_range_keep_errors - wait for writeback to complete 559 * @mapping: address space structure to wait for 560 * @start_byte: offset in bytes where the range starts 561 * @end_byte: offset in bytes where the range ends (inclusive) 562 * 563 * Walk the list of under-writeback pages of the given address space in the 564 * given range and wait for all of them. Unlike filemap_fdatawait_range(), 565 * this function does not clear error status of the address space. 566 * 567 * Use this function if callers don't handle errors themselves. Expected 568 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 569 * fsfreeze(8) 570 */ 571 int filemap_fdatawait_range_keep_errors(struct address_space *mapping, 572 loff_t start_byte, loff_t end_byte) 573 { 574 __filemap_fdatawait_range(mapping, start_byte, end_byte); 575 return filemap_check_and_keep_errors(mapping); 576 } 577 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors); 578 579 /** 580 * file_fdatawait_range - wait for writeback to complete 581 * @file: file pointing to address space structure to wait for 582 * @start_byte: offset in bytes where the range starts 583 * @end_byte: offset in bytes where the range ends (inclusive) 584 * 585 * Walk the list of under-writeback pages of the address space that file 586 * refers to, in the given range and wait for all of them. Check error 587 * status of the address space vs. the file->f_wb_err cursor and return it. 588 * 589 * Since the error status of the file is advanced by this function, 590 * callers are responsible for checking the return value and handling and/or 591 * reporting the error. 592 * 593 * Return: error status of the address space vs. the file->f_wb_err cursor. 594 */ 595 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte) 596 { 597 struct address_space *mapping = file->f_mapping; 598 599 __filemap_fdatawait_range(mapping, start_byte, end_byte); 600 return file_check_and_advance_wb_err(file); 601 } 602 EXPORT_SYMBOL(file_fdatawait_range); 603 604 /** 605 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors 606 * @mapping: address space structure to wait for 607 * 608 * Walk the list of under-writeback pages of the given address space 609 * and wait for all of them. Unlike filemap_fdatawait(), this function 610 * does not clear error status of the address space. 611 * 612 * Use this function if callers don't handle errors themselves. Expected 613 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 614 * fsfreeze(8) 615 * 616 * Return: error status of the address space. 617 */ 618 int filemap_fdatawait_keep_errors(struct address_space *mapping) 619 { 620 __filemap_fdatawait_range(mapping, 0, LLONG_MAX); 621 return filemap_check_and_keep_errors(mapping); 622 } 623 EXPORT_SYMBOL(filemap_fdatawait_keep_errors); 624 625 /* Returns true if writeback might be needed or already in progress. */ 626 static bool mapping_needs_writeback(struct address_space *mapping) 627 { 628 if (dax_mapping(mapping)) 629 return mapping->nrexceptional; 630 631 return mapping->nrpages; 632 } 633 634 int filemap_write_and_wait(struct address_space *mapping) 635 { 636 int err = 0; 637 638 if (mapping_needs_writeback(mapping)) { 639 err = filemap_fdatawrite(mapping); 640 /* 641 * Even if the above returned error, the pages may be 642 * written partially (e.g. -ENOSPC), so we wait for it. 643 * But the -EIO is special case, it may indicate the worst 644 * thing (e.g. bug) happened, so we avoid waiting for it. 645 */ 646 if (err != -EIO) { 647 int err2 = filemap_fdatawait(mapping); 648 if (!err) 649 err = err2; 650 } else { 651 /* Clear any previously stored errors */ 652 filemap_check_errors(mapping); 653 } 654 } else { 655 err = filemap_check_errors(mapping); 656 } 657 return err; 658 } 659 EXPORT_SYMBOL(filemap_write_and_wait); 660 661 /** 662 * filemap_write_and_wait_range - write out & wait on a file range 663 * @mapping: the address_space for the pages 664 * @lstart: offset in bytes where the range starts 665 * @lend: offset in bytes where the range ends (inclusive) 666 * 667 * Write out and wait upon file offsets lstart->lend, inclusive. 668 * 669 * Note that @lend is inclusive (describes the last byte to be written) so 670 * that this function can be used to write to the very end-of-file (end = -1). 671 * 672 * Return: error status of the address space. 673 */ 674 int filemap_write_and_wait_range(struct address_space *mapping, 675 loff_t lstart, loff_t lend) 676 { 677 int err = 0; 678 679 if (mapping_needs_writeback(mapping)) { 680 err = __filemap_fdatawrite_range(mapping, lstart, lend, 681 WB_SYNC_ALL); 682 /* See comment of filemap_write_and_wait() */ 683 if (err != -EIO) { 684 int err2 = filemap_fdatawait_range(mapping, 685 lstart, lend); 686 if (!err) 687 err = err2; 688 } else { 689 /* Clear any previously stored errors */ 690 filemap_check_errors(mapping); 691 } 692 } else { 693 err = filemap_check_errors(mapping); 694 } 695 return err; 696 } 697 EXPORT_SYMBOL(filemap_write_and_wait_range); 698 699 void __filemap_set_wb_err(struct address_space *mapping, int err) 700 { 701 errseq_t eseq = errseq_set(&mapping->wb_err, err); 702 703 trace_filemap_set_wb_err(mapping, eseq); 704 } 705 EXPORT_SYMBOL(__filemap_set_wb_err); 706 707 /** 708 * file_check_and_advance_wb_err - report wb error (if any) that was previously 709 * and advance wb_err to current one 710 * @file: struct file on which the error is being reported 711 * 712 * When userland calls fsync (or something like nfsd does the equivalent), we 713 * want to report any writeback errors that occurred since the last fsync (or 714 * since the file was opened if there haven't been any). 715 * 716 * Grab the wb_err from the mapping. If it matches what we have in the file, 717 * then just quickly return 0. The file is all caught up. 718 * 719 * If it doesn't match, then take the mapping value, set the "seen" flag in 720 * it and try to swap it into place. If it works, or another task beat us 721 * to it with the new value, then update the f_wb_err and return the error 722 * portion. The error at this point must be reported via proper channels 723 * (a'la fsync, or NFS COMMIT operation, etc.). 724 * 725 * While we handle mapping->wb_err with atomic operations, the f_wb_err 726 * value is protected by the f_lock since we must ensure that it reflects 727 * the latest value swapped in for this file descriptor. 728 * 729 * Return: %0 on success, negative error code otherwise. 730 */ 731 int file_check_and_advance_wb_err(struct file *file) 732 { 733 int err = 0; 734 errseq_t old = READ_ONCE(file->f_wb_err); 735 struct address_space *mapping = file->f_mapping; 736 737 /* Locklessly handle the common case where nothing has changed */ 738 if (errseq_check(&mapping->wb_err, old)) { 739 /* Something changed, must use slow path */ 740 spin_lock(&file->f_lock); 741 old = file->f_wb_err; 742 err = errseq_check_and_advance(&mapping->wb_err, 743 &file->f_wb_err); 744 trace_file_check_and_advance_wb_err(file, old); 745 spin_unlock(&file->f_lock); 746 } 747 748 /* 749 * We're mostly using this function as a drop in replacement for 750 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect 751 * that the legacy code would have had on these flags. 752 */ 753 clear_bit(AS_EIO, &mapping->flags); 754 clear_bit(AS_ENOSPC, &mapping->flags); 755 return err; 756 } 757 EXPORT_SYMBOL(file_check_and_advance_wb_err); 758 759 /** 760 * file_write_and_wait_range - write out & wait on a file range 761 * @file: file pointing to address_space with pages 762 * @lstart: offset in bytes where the range starts 763 * @lend: offset in bytes where the range ends (inclusive) 764 * 765 * Write out and wait upon file offsets lstart->lend, inclusive. 766 * 767 * Note that @lend is inclusive (describes the last byte to be written) so 768 * that this function can be used to write to the very end-of-file (end = -1). 769 * 770 * After writing out and waiting on the data, we check and advance the 771 * f_wb_err cursor to the latest value, and return any errors detected there. 772 * 773 * Return: %0 on success, negative error code otherwise. 774 */ 775 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend) 776 { 777 int err = 0, err2; 778 struct address_space *mapping = file->f_mapping; 779 780 if (mapping_needs_writeback(mapping)) { 781 err = __filemap_fdatawrite_range(mapping, lstart, lend, 782 WB_SYNC_ALL); 783 /* See comment of filemap_write_and_wait() */ 784 if (err != -EIO) 785 __filemap_fdatawait_range(mapping, lstart, lend); 786 } 787 err2 = file_check_and_advance_wb_err(file); 788 if (!err) 789 err = err2; 790 return err; 791 } 792 EXPORT_SYMBOL(file_write_and_wait_range); 793 794 /** 795 * replace_page_cache_page - replace a pagecache page with a new one 796 * @old: page to be replaced 797 * @new: page to replace with 798 * @gfp_mask: allocation mode 799 * 800 * This function replaces a page in the pagecache with a new one. On 801 * success it acquires the pagecache reference for the new page and 802 * drops it for the old page. Both the old and new pages must be 803 * locked. This function does not add the new page to the LRU, the 804 * caller must do that. 805 * 806 * The remove + add is atomic. This function cannot fail. 807 * 808 * Return: %0 809 */ 810 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask) 811 { 812 struct address_space *mapping = old->mapping; 813 void (*freepage)(struct page *) = mapping->a_ops->freepage; 814 pgoff_t offset = old->index; 815 XA_STATE(xas, &mapping->i_pages, offset); 816 unsigned long flags; 817 818 VM_BUG_ON_PAGE(!PageLocked(old), old); 819 VM_BUG_ON_PAGE(!PageLocked(new), new); 820 VM_BUG_ON_PAGE(new->mapping, new); 821 822 get_page(new); 823 new->mapping = mapping; 824 new->index = offset; 825 826 xas_lock_irqsave(&xas, flags); 827 xas_store(&xas, new); 828 829 old->mapping = NULL; 830 /* hugetlb pages do not participate in page cache accounting. */ 831 if (!PageHuge(old)) 832 __dec_node_page_state(new, NR_FILE_PAGES); 833 if (!PageHuge(new)) 834 __inc_node_page_state(new, NR_FILE_PAGES); 835 if (PageSwapBacked(old)) 836 __dec_node_page_state(new, NR_SHMEM); 837 if (PageSwapBacked(new)) 838 __inc_node_page_state(new, NR_SHMEM); 839 xas_unlock_irqrestore(&xas, flags); 840 mem_cgroup_migrate(old, new); 841 if (freepage) 842 freepage(old); 843 put_page(old); 844 845 return 0; 846 } 847 EXPORT_SYMBOL_GPL(replace_page_cache_page); 848 849 static int __add_to_page_cache_locked(struct page *page, 850 struct address_space *mapping, 851 pgoff_t offset, gfp_t gfp_mask, 852 void **shadowp) 853 { 854 XA_STATE(xas, &mapping->i_pages, offset); 855 int huge = PageHuge(page); 856 struct mem_cgroup *memcg; 857 int error; 858 void *old; 859 860 VM_BUG_ON_PAGE(!PageLocked(page), page); 861 VM_BUG_ON_PAGE(PageSwapBacked(page), page); 862 mapping_set_update(&xas, mapping); 863 864 if (!huge) { 865 error = mem_cgroup_try_charge(page, current->mm, 866 gfp_mask, &memcg, false); 867 if (error) 868 return error; 869 } 870 871 get_page(page); 872 page->mapping = mapping; 873 page->index = offset; 874 875 do { 876 xas_lock_irq(&xas); 877 old = xas_load(&xas); 878 if (old && !xa_is_value(old)) 879 xas_set_err(&xas, -EEXIST); 880 xas_store(&xas, page); 881 if (xas_error(&xas)) 882 goto unlock; 883 884 if (xa_is_value(old)) { 885 mapping->nrexceptional--; 886 if (shadowp) 887 *shadowp = old; 888 } 889 mapping->nrpages++; 890 891 /* hugetlb pages do not participate in page cache accounting */ 892 if (!huge) 893 __inc_node_page_state(page, NR_FILE_PAGES); 894 unlock: 895 xas_unlock_irq(&xas); 896 } while (xas_nomem(&xas, gfp_mask & GFP_RECLAIM_MASK)); 897 898 if (xas_error(&xas)) 899 goto error; 900 901 if (!huge) 902 mem_cgroup_commit_charge(page, memcg, false, false); 903 trace_mm_filemap_add_to_page_cache(page); 904 return 0; 905 error: 906 page->mapping = NULL; 907 /* Leave page->index set: truncation relies upon it */ 908 if (!huge) 909 mem_cgroup_cancel_charge(page, memcg, false); 910 put_page(page); 911 return xas_error(&xas); 912 } 913 ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO); 914 915 /** 916 * add_to_page_cache_locked - add a locked page to the pagecache 917 * @page: page to add 918 * @mapping: the page's address_space 919 * @offset: page index 920 * @gfp_mask: page allocation mode 921 * 922 * This function is used to add a page to the pagecache. It must be locked. 923 * This function does not add the page to the LRU. The caller must do that. 924 * 925 * Return: %0 on success, negative error code otherwise. 926 */ 927 int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 928 pgoff_t offset, gfp_t gfp_mask) 929 { 930 return __add_to_page_cache_locked(page, mapping, offset, 931 gfp_mask, NULL); 932 } 933 EXPORT_SYMBOL(add_to_page_cache_locked); 934 935 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 936 pgoff_t offset, gfp_t gfp_mask) 937 { 938 void *shadow = NULL; 939 int ret; 940 941 __SetPageLocked(page); 942 ret = __add_to_page_cache_locked(page, mapping, offset, 943 gfp_mask, &shadow); 944 if (unlikely(ret)) 945 __ClearPageLocked(page); 946 else { 947 /* 948 * The page might have been evicted from cache only 949 * recently, in which case it should be activated like 950 * any other repeatedly accessed page. 951 * The exception is pages getting rewritten; evicting other 952 * data from the working set, only to cache data that will 953 * get overwritten with something else, is a waste of memory. 954 */ 955 WARN_ON_ONCE(PageActive(page)); 956 if (!(gfp_mask & __GFP_WRITE) && shadow) 957 workingset_refault(page, shadow); 958 lru_cache_add(page); 959 } 960 return ret; 961 } 962 EXPORT_SYMBOL_GPL(add_to_page_cache_lru); 963 964 #ifdef CONFIG_NUMA 965 struct page *__page_cache_alloc(gfp_t gfp) 966 { 967 int n; 968 struct page *page; 969 970 if (cpuset_do_page_mem_spread()) { 971 unsigned int cpuset_mems_cookie; 972 do { 973 cpuset_mems_cookie = read_mems_allowed_begin(); 974 n = cpuset_mem_spread_node(); 975 page = __alloc_pages_node(n, gfp, 0); 976 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie)); 977 978 return page; 979 } 980 return alloc_pages(gfp, 0); 981 } 982 EXPORT_SYMBOL(__page_cache_alloc); 983 #endif 984 985 /* 986 * In order to wait for pages to become available there must be 987 * waitqueues associated with pages. By using a hash table of 988 * waitqueues where the bucket discipline is to maintain all 989 * waiters on the same queue and wake all when any of the pages 990 * become available, and for the woken contexts to check to be 991 * sure the appropriate page became available, this saves space 992 * at a cost of "thundering herd" phenomena during rare hash 993 * collisions. 994 */ 995 #define PAGE_WAIT_TABLE_BITS 8 996 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS) 997 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned; 998 999 static wait_queue_head_t *page_waitqueue(struct page *page) 1000 { 1001 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)]; 1002 } 1003 1004 void __init pagecache_init(void) 1005 { 1006 int i; 1007 1008 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++) 1009 init_waitqueue_head(&page_wait_table[i]); 1010 1011 page_writeback_init(); 1012 } 1013 1014 /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */ 1015 struct wait_page_key { 1016 struct page *page; 1017 int bit_nr; 1018 int page_match; 1019 }; 1020 1021 struct wait_page_queue { 1022 struct page *page; 1023 int bit_nr; 1024 wait_queue_entry_t wait; 1025 }; 1026 1027 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg) 1028 { 1029 struct wait_page_key *key = arg; 1030 struct wait_page_queue *wait_page 1031 = container_of(wait, struct wait_page_queue, wait); 1032 1033 if (wait_page->page != key->page) 1034 return 0; 1035 key->page_match = 1; 1036 1037 if (wait_page->bit_nr != key->bit_nr) 1038 return 0; 1039 1040 /* 1041 * Stop walking if it's locked. 1042 * Is this safe if put_and_wait_on_page_locked() is in use? 1043 * Yes: the waker must hold a reference to this page, and if PG_locked 1044 * has now already been set by another task, that task must also hold 1045 * a reference to the *same usage* of this page; so there is no need 1046 * to walk on to wake even the put_and_wait_on_page_locked() callers. 1047 */ 1048 if (test_bit(key->bit_nr, &key->page->flags)) 1049 return -1; 1050 1051 return autoremove_wake_function(wait, mode, sync, key); 1052 } 1053 1054 static void wake_up_page_bit(struct page *page, int bit_nr) 1055 { 1056 wait_queue_head_t *q = page_waitqueue(page); 1057 struct wait_page_key key; 1058 unsigned long flags; 1059 wait_queue_entry_t bookmark; 1060 1061 key.page = page; 1062 key.bit_nr = bit_nr; 1063 key.page_match = 0; 1064 1065 bookmark.flags = 0; 1066 bookmark.private = NULL; 1067 bookmark.func = NULL; 1068 INIT_LIST_HEAD(&bookmark.entry); 1069 1070 spin_lock_irqsave(&q->lock, flags); 1071 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); 1072 1073 while (bookmark.flags & WQ_FLAG_BOOKMARK) { 1074 /* 1075 * Take a breather from holding the lock, 1076 * allow pages that finish wake up asynchronously 1077 * to acquire the lock and remove themselves 1078 * from wait queue 1079 */ 1080 spin_unlock_irqrestore(&q->lock, flags); 1081 cpu_relax(); 1082 spin_lock_irqsave(&q->lock, flags); 1083 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); 1084 } 1085 1086 /* 1087 * It is possible for other pages to have collided on the waitqueue 1088 * hash, so in that case check for a page match. That prevents a long- 1089 * term waiter 1090 * 1091 * It is still possible to miss a case here, when we woke page waiters 1092 * and removed them from the waitqueue, but there are still other 1093 * page waiters. 1094 */ 1095 if (!waitqueue_active(q) || !key.page_match) { 1096 ClearPageWaiters(page); 1097 /* 1098 * It's possible to miss clearing Waiters here, when we woke 1099 * our page waiters, but the hashed waitqueue has waiters for 1100 * other pages on it. 1101 * 1102 * That's okay, it's a rare case. The next waker will clear it. 1103 */ 1104 } 1105 spin_unlock_irqrestore(&q->lock, flags); 1106 } 1107 1108 static void wake_up_page(struct page *page, int bit) 1109 { 1110 if (!PageWaiters(page)) 1111 return; 1112 wake_up_page_bit(page, bit); 1113 } 1114 1115 /* 1116 * A choice of three behaviors for wait_on_page_bit_common(): 1117 */ 1118 enum behavior { 1119 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like 1120 * __lock_page() waiting on then setting PG_locked. 1121 */ 1122 SHARED, /* Hold ref to page and check the bit when woken, like 1123 * wait_on_page_writeback() waiting on PG_writeback. 1124 */ 1125 DROP, /* Drop ref to page before wait, no check when woken, 1126 * like put_and_wait_on_page_locked() on PG_locked. 1127 */ 1128 }; 1129 1130 static inline int wait_on_page_bit_common(wait_queue_head_t *q, 1131 struct page *page, int bit_nr, int state, enum behavior behavior) 1132 { 1133 struct wait_page_queue wait_page; 1134 wait_queue_entry_t *wait = &wait_page.wait; 1135 bool bit_is_set; 1136 bool thrashing = false; 1137 bool delayacct = false; 1138 unsigned long pflags; 1139 int ret = 0; 1140 1141 if (bit_nr == PG_locked && 1142 !PageUptodate(page) && PageWorkingset(page)) { 1143 if (!PageSwapBacked(page)) { 1144 delayacct_thrashing_start(); 1145 delayacct = true; 1146 } 1147 psi_memstall_enter(&pflags); 1148 thrashing = true; 1149 } 1150 1151 init_wait(wait); 1152 wait->flags = behavior == EXCLUSIVE ? WQ_FLAG_EXCLUSIVE : 0; 1153 wait->func = wake_page_function; 1154 wait_page.page = page; 1155 wait_page.bit_nr = bit_nr; 1156 1157 for (;;) { 1158 spin_lock_irq(&q->lock); 1159 1160 if (likely(list_empty(&wait->entry))) { 1161 __add_wait_queue_entry_tail(q, wait); 1162 SetPageWaiters(page); 1163 } 1164 1165 set_current_state(state); 1166 1167 spin_unlock_irq(&q->lock); 1168 1169 bit_is_set = test_bit(bit_nr, &page->flags); 1170 if (behavior == DROP) 1171 put_page(page); 1172 1173 if (likely(bit_is_set)) 1174 io_schedule(); 1175 1176 if (behavior == EXCLUSIVE) { 1177 if (!test_and_set_bit_lock(bit_nr, &page->flags)) 1178 break; 1179 } else if (behavior == SHARED) { 1180 if (!test_bit(bit_nr, &page->flags)) 1181 break; 1182 } 1183 1184 if (signal_pending_state(state, current)) { 1185 ret = -EINTR; 1186 break; 1187 } 1188 1189 if (behavior == DROP) { 1190 /* 1191 * We can no longer safely access page->flags: 1192 * even if CONFIG_MEMORY_HOTREMOVE is not enabled, 1193 * there is a risk of waiting forever on a page reused 1194 * for something that keeps it locked indefinitely. 1195 * But best check for -EINTR above before breaking. 1196 */ 1197 break; 1198 } 1199 } 1200 1201 finish_wait(q, wait); 1202 1203 if (thrashing) { 1204 if (delayacct) 1205 delayacct_thrashing_end(); 1206 psi_memstall_leave(&pflags); 1207 } 1208 1209 /* 1210 * A signal could leave PageWaiters set. Clearing it here if 1211 * !waitqueue_active would be possible (by open-coding finish_wait), 1212 * but still fail to catch it in the case of wait hash collision. We 1213 * already can fail to clear wait hash collision cases, so don't 1214 * bother with signals either. 1215 */ 1216 1217 return ret; 1218 } 1219 1220 void wait_on_page_bit(struct page *page, int bit_nr) 1221 { 1222 wait_queue_head_t *q = page_waitqueue(page); 1223 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED); 1224 } 1225 EXPORT_SYMBOL(wait_on_page_bit); 1226 1227 int wait_on_page_bit_killable(struct page *page, int bit_nr) 1228 { 1229 wait_queue_head_t *q = page_waitqueue(page); 1230 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED); 1231 } 1232 EXPORT_SYMBOL(wait_on_page_bit_killable); 1233 1234 /** 1235 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked 1236 * @page: The page to wait for. 1237 * 1238 * The caller should hold a reference on @page. They expect the page to 1239 * become unlocked relatively soon, but do not wish to hold up migration 1240 * (for example) by holding the reference while waiting for the page to 1241 * come unlocked. After this function returns, the caller should not 1242 * dereference @page. 1243 */ 1244 void put_and_wait_on_page_locked(struct page *page) 1245 { 1246 wait_queue_head_t *q; 1247 1248 page = compound_head(page); 1249 q = page_waitqueue(page); 1250 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP); 1251 } 1252 1253 /** 1254 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue 1255 * @page: Page defining the wait queue of interest 1256 * @waiter: Waiter to add to the queue 1257 * 1258 * Add an arbitrary @waiter to the wait queue for the nominated @page. 1259 */ 1260 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter) 1261 { 1262 wait_queue_head_t *q = page_waitqueue(page); 1263 unsigned long flags; 1264 1265 spin_lock_irqsave(&q->lock, flags); 1266 __add_wait_queue_entry_tail(q, waiter); 1267 SetPageWaiters(page); 1268 spin_unlock_irqrestore(&q->lock, flags); 1269 } 1270 EXPORT_SYMBOL_GPL(add_page_wait_queue); 1271 1272 #ifndef clear_bit_unlock_is_negative_byte 1273 1274 /* 1275 * PG_waiters is the high bit in the same byte as PG_lock. 1276 * 1277 * On x86 (and on many other architectures), we can clear PG_lock and 1278 * test the sign bit at the same time. But if the architecture does 1279 * not support that special operation, we just do this all by hand 1280 * instead. 1281 * 1282 * The read of PG_waiters has to be after (or concurrently with) PG_locked 1283 * being cleared, but a memory barrier should be unneccssary since it is 1284 * in the same byte as PG_locked. 1285 */ 1286 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem) 1287 { 1288 clear_bit_unlock(nr, mem); 1289 /* smp_mb__after_atomic(); */ 1290 return test_bit(PG_waiters, mem); 1291 } 1292 1293 #endif 1294 1295 /** 1296 * unlock_page - unlock a locked page 1297 * @page: the page 1298 * 1299 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). 1300 * Also wakes sleepers in wait_on_page_writeback() because the wakeup 1301 * mechanism between PageLocked pages and PageWriteback pages is shared. 1302 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. 1303 * 1304 * Note that this depends on PG_waiters being the sign bit in the byte 1305 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to 1306 * clear the PG_locked bit and test PG_waiters at the same time fairly 1307 * portably (architectures that do LL/SC can test any bit, while x86 can 1308 * test the sign bit). 1309 */ 1310 void unlock_page(struct page *page) 1311 { 1312 BUILD_BUG_ON(PG_waiters != 7); 1313 page = compound_head(page); 1314 VM_BUG_ON_PAGE(!PageLocked(page), page); 1315 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags)) 1316 wake_up_page_bit(page, PG_locked); 1317 } 1318 EXPORT_SYMBOL(unlock_page); 1319 1320 /** 1321 * end_page_writeback - end writeback against a page 1322 * @page: the page 1323 */ 1324 void end_page_writeback(struct page *page) 1325 { 1326 /* 1327 * TestClearPageReclaim could be used here but it is an atomic 1328 * operation and overkill in this particular case. Failing to 1329 * shuffle a page marked for immediate reclaim is too mild to 1330 * justify taking an atomic operation penalty at the end of 1331 * ever page writeback. 1332 */ 1333 if (PageReclaim(page)) { 1334 ClearPageReclaim(page); 1335 rotate_reclaimable_page(page); 1336 } 1337 1338 if (!test_clear_page_writeback(page)) 1339 BUG(); 1340 1341 smp_mb__after_atomic(); 1342 wake_up_page(page, PG_writeback); 1343 } 1344 EXPORT_SYMBOL(end_page_writeback); 1345 1346 /* 1347 * After completing I/O on a page, call this routine to update the page 1348 * flags appropriately 1349 */ 1350 void page_endio(struct page *page, bool is_write, int err) 1351 { 1352 if (!is_write) { 1353 if (!err) { 1354 SetPageUptodate(page); 1355 } else { 1356 ClearPageUptodate(page); 1357 SetPageError(page); 1358 } 1359 unlock_page(page); 1360 } else { 1361 if (err) { 1362 struct address_space *mapping; 1363 1364 SetPageError(page); 1365 mapping = page_mapping(page); 1366 if (mapping) 1367 mapping_set_error(mapping, err); 1368 } 1369 end_page_writeback(page); 1370 } 1371 } 1372 EXPORT_SYMBOL_GPL(page_endio); 1373 1374 /** 1375 * __lock_page - get a lock on the page, assuming we need to sleep to get it 1376 * @__page: the page to lock 1377 */ 1378 void __lock_page(struct page *__page) 1379 { 1380 struct page *page = compound_head(__page); 1381 wait_queue_head_t *q = page_waitqueue(page); 1382 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, 1383 EXCLUSIVE); 1384 } 1385 EXPORT_SYMBOL(__lock_page); 1386 1387 int __lock_page_killable(struct page *__page) 1388 { 1389 struct page *page = compound_head(__page); 1390 wait_queue_head_t *q = page_waitqueue(page); 1391 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, 1392 EXCLUSIVE); 1393 } 1394 EXPORT_SYMBOL_GPL(__lock_page_killable); 1395 1396 /* 1397 * Return values: 1398 * 1 - page is locked; mmap_sem is still held. 1399 * 0 - page is not locked. 1400 * mmap_sem has been released (up_read()), unless flags had both 1401 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in 1402 * which case mmap_sem is still held. 1403 * 1404 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1 1405 * with the page locked and the mmap_sem unperturbed. 1406 */ 1407 int __lock_page_or_retry(struct page *page, struct mm_struct *mm, 1408 unsigned int flags) 1409 { 1410 if (flags & FAULT_FLAG_ALLOW_RETRY) { 1411 /* 1412 * CAUTION! In this case, mmap_sem is not released 1413 * even though return 0. 1414 */ 1415 if (flags & FAULT_FLAG_RETRY_NOWAIT) 1416 return 0; 1417 1418 up_read(&mm->mmap_sem); 1419 if (flags & FAULT_FLAG_KILLABLE) 1420 wait_on_page_locked_killable(page); 1421 else 1422 wait_on_page_locked(page); 1423 return 0; 1424 } else { 1425 if (flags & FAULT_FLAG_KILLABLE) { 1426 int ret; 1427 1428 ret = __lock_page_killable(page); 1429 if (ret) { 1430 up_read(&mm->mmap_sem); 1431 return 0; 1432 } 1433 } else 1434 __lock_page(page); 1435 return 1; 1436 } 1437 } 1438 1439 /** 1440 * page_cache_next_miss() - Find the next gap in the page cache. 1441 * @mapping: Mapping. 1442 * @index: Index. 1443 * @max_scan: Maximum range to search. 1444 * 1445 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the 1446 * gap with the lowest index. 1447 * 1448 * This function may be called under the rcu_read_lock. However, this will 1449 * not atomically search a snapshot of the cache at a single point in time. 1450 * For example, if a gap is created at index 5, then subsequently a gap is 1451 * created at index 10, page_cache_next_miss covering both indices may 1452 * return 10 if called under the rcu_read_lock. 1453 * 1454 * Return: The index of the gap if found, otherwise an index outside the 1455 * range specified (in which case 'return - index >= max_scan' will be true). 1456 * In the rare case of index wrap-around, 0 will be returned. 1457 */ 1458 pgoff_t page_cache_next_miss(struct address_space *mapping, 1459 pgoff_t index, unsigned long max_scan) 1460 { 1461 XA_STATE(xas, &mapping->i_pages, index); 1462 1463 while (max_scan--) { 1464 void *entry = xas_next(&xas); 1465 if (!entry || xa_is_value(entry)) 1466 break; 1467 if (xas.xa_index == 0) 1468 break; 1469 } 1470 1471 return xas.xa_index; 1472 } 1473 EXPORT_SYMBOL(page_cache_next_miss); 1474 1475 /** 1476 * page_cache_prev_miss() - Find the previous gap in the page cache. 1477 * @mapping: Mapping. 1478 * @index: Index. 1479 * @max_scan: Maximum range to search. 1480 * 1481 * Search the range [max(index - max_scan + 1, 0), index] for the 1482 * gap with the highest index. 1483 * 1484 * This function may be called under the rcu_read_lock. However, this will 1485 * not atomically search a snapshot of the cache at a single point in time. 1486 * For example, if a gap is created at index 10, then subsequently a gap is 1487 * created at index 5, page_cache_prev_miss() covering both indices may 1488 * return 5 if called under the rcu_read_lock. 1489 * 1490 * Return: The index of the gap if found, otherwise an index outside the 1491 * range specified (in which case 'index - return >= max_scan' will be true). 1492 * In the rare case of wrap-around, ULONG_MAX will be returned. 1493 */ 1494 pgoff_t page_cache_prev_miss(struct address_space *mapping, 1495 pgoff_t index, unsigned long max_scan) 1496 { 1497 XA_STATE(xas, &mapping->i_pages, index); 1498 1499 while (max_scan--) { 1500 void *entry = xas_prev(&xas); 1501 if (!entry || xa_is_value(entry)) 1502 break; 1503 if (xas.xa_index == ULONG_MAX) 1504 break; 1505 } 1506 1507 return xas.xa_index; 1508 } 1509 EXPORT_SYMBOL(page_cache_prev_miss); 1510 1511 /** 1512 * find_get_entry - find and get a page cache entry 1513 * @mapping: the address_space to search 1514 * @offset: the page cache index 1515 * 1516 * Looks up the page cache slot at @mapping & @offset. If there is a 1517 * page cache page, it is returned with an increased refcount. 1518 * 1519 * If the slot holds a shadow entry of a previously evicted page, or a 1520 * swap entry from shmem/tmpfs, it is returned. 1521 * 1522 * Return: the found page or shadow entry, %NULL if nothing is found. 1523 */ 1524 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset) 1525 { 1526 XA_STATE(xas, &mapping->i_pages, offset); 1527 struct page *page; 1528 1529 rcu_read_lock(); 1530 repeat: 1531 xas_reset(&xas); 1532 page = xas_load(&xas); 1533 if (xas_retry(&xas, page)) 1534 goto repeat; 1535 /* 1536 * A shadow entry of a recently evicted page, or a swap entry from 1537 * shmem/tmpfs. Return it without attempting to raise page count. 1538 */ 1539 if (!page || xa_is_value(page)) 1540 goto out; 1541 1542 if (!page_cache_get_speculative(page)) 1543 goto repeat; 1544 1545 /* 1546 * Has the page moved or been split? 1547 * This is part of the lockless pagecache protocol. See 1548 * include/linux/pagemap.h for details. 1549 */ 1550 if (unlikely(page != xas_reload(&xas))) { 1551 put_page(page); 1552 goto repeat; 1553 } 1554 page = find_subpage(page, offset); 1555 out: 1556 rcu_read_unlock(); 1557 1558 return page; 1559 } 1560 EXPORT_SYMBOL(find_get_entry); 1561 1562 /** 1563 * find_lock_entry - locate, pin and lock a page cache entry 1564 * @mapping: the address_space to search 1565 * @offset: the page cache index 1566 * 1567 * Looks up the page cache slot at @mapping & @offset. If there is a 1568 * page cache page, it is returned locked and with an increased 1569 * refcount. 1570 * 1571 * If the slot holds a shadow entry of a previously evicted page, or a 1572 * swap entry from shmem/tmpfs, it is returned. 1573 * 1574 * find_lock_entry() may sleep. 1575 * 1576 * Return: the found page or shadow entry, %NULL if nothing is found. 1577 */ 1578 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset) 1579 { 1580 struct page *page; 1581 1582 repeat: 1583 page = find_get_entry(mapping, offset); 1584 if (page && !xa_is_value(page)) { 1585 lock_page(page); 1586 /* Has the page been truncated? */ 1587 if (unlikely(page_mapping(page) != mapping)) { 1588 unlock_page(page); 1589 put_page(page); 1590 goto repeat; 1591 } 1592 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page); 1593 } 1594 return page; 1595 } 1596 EXPORT_SYMBOL(find_lock_entry); 1597 1598 /** 1599 * pagecache_get_page - find and get a page reference 1600 * @mapping: the address_space to search 1601 * @offset: the page index 1602 * @fgp_flags: PCG flags 1603 * @gfp_mask: gfp mask to use for the page cache data page allocation 1604 * 1605 * Looks up the page cache slot at @mapping & @offset. 1606 * 1607 * PCG flags modify how the page is returned. 1608 * 1609 * @fgp_flags can be: 1610 * 1611 * - FGP_ACCESSED: the page will be marked accessed 1612 * - FGP_LOCK: Page is return locked 1613 * - FGP_CREAT: If page is not present then a new page is allocated using 1614 * @gfp_mask and added to the page cache and the VM's LRU 1615 * list. The page is returned locked and with an increased 1616 * refcount. 1617 * - FGP_FOR_MMAP: Similar to FGP_CREAT, only we want to allow the caller to do 1618 * its own locking dance if the page is already in cache, or unlock the page 1619 * before returning if we had to add the page to pagecache. 1620 * 1621 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even 1622 * if the GFP flags specified for FGP_CREAT are atomic. 1623 * 1624 * If there is a page cache page, it is returned with an increased refcount. 1625 * 1626 * Return: the found page or %NULL otherwise. 1627 */ 1628 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset, 1629 int fgp_flags, gfp_t gfp_mask) 1630 { 1631 struct page *page; 1632 1633 repeat: 1634 page = find_get_entry(mapping, offset); 1635 if (xa_is_value(page)) 1636 page = NULL; 1637 if (!page) 1638 goto no_page; 1639 1640 if (fgp_flags & FGP_LOCK) { 1641 if (fgp_flags & FGP_NOWAIT) { 1642 if (!trylock_page(page)) { 1643 put_page(page); 1644 return NULL; 1645 } 1646 } else { 1647 lock_page(page); 1648 } 1649 1650 /* Has the page been truncated? */ 1651 if (unlikely(compound_head(page)->mapping != mapping)) { 1652 unlock_page(page); 1653 put_page(page); 1654 goto repeat; 1655 } 1656 VM_BUG_ON_PAGE(page->index != offset, page); 1657 } 1658 1659 if (fgp_flags & FGP_ACCESSED) 1660 mark_page_accessed(page); 1661 1662 no_page: 1663 if (!page && (fgp_flags & FGP_CREAT)) { 1664 int err; 1665 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping)) 1666 gfp_mask |= __GFP_WRITE; 1667 if (fgp_flags & FGP_NOFS) 1668 gfp_mask &= ~__GFP_FS; 1669 1670 page = __page_cache_alloc(gfp_mask); 1671 if (!page) 1672 return NULL; 1673 1674 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP)))) 1675 fgp_flags |= FGP_LOCK; 1676 1677 /* Init accessed so avoid atomic mark_page_accessed later */ 1678 if (fgp_flags & FGP_ACCESSED) 1679 __SetPageReferenced(page); 1680 1681 err = add_to_page_cache_lru(page, mapping, offset, gfp_mask); 1682 if (unlikely(err)) { 1683 put_page(page); 1684 page = NULL; 1685 if (err == -EEXIST) 1686 goto repeat; 1687 } 1688 1689 /* 1690 * add_to_page_cache_lru locks the page, and for mmap we expect 1691 * an unlocked page. 1692 */ 1693 if (page && (fgp_flags & FGP_FOR_MMAP)) 1694 unlock_page(page); 1695 } 1696 1697 return page; 1698 } 1699 EXPORT_SYMBOL(pagecache_get_page); 1700 1701 /** 1702 * find_get_entries - gang pagecache lookup 1703 * @mapping: The address_space to search 1704 * @start: The starting page cache index 1705 * @nr_entries: The maximum number of entries 1706 * @entries: Where the resulting entries are placed 1707 * @indices: The cache indices corresponding to the entries in @entries 1708 * 1709 * find_get_entries() will search for and return a group of up to 1710 * @nr_entries entries in the mapping. The entries are placed at 1711 * @entries. find_get_entries() takes a reference against any actual 1712 * pages it returns. 1713 * 1714 * The search returns a group of mapping-contiguous page cache entries 1715 * with ascending indexes. There may be holes in the indices due to 1716 * not-present pages. 1717 * 1718 * Any shadow entries of evicted pages, or swap entries from 1719 * shmem/tmpfs, are included in the returned array. 1720 * 1721 * Return: the number of pages and shadow entries which were found. 1722 */ 1723 unsigned find_get_entries(struct address_space *mapping, 1724 pgoff_t start, unsigned int nr_entries, 1725 struct page **entries, pgoff_t *indices) 1726 { 1727 XA_STATE(xas, &mapping->i_pages, start); 1728 struct page *page; 1729 unsigned int ret = 0; 1730 1731 if (!nr_entries) 1732 return 0; 1733 1734 rcu_read_lock(); 1735 xas_for_each(&xas, page, ULONG_MAX) { 1736 if (xas_retry(&xas, page)) 1737 continue; 1738 /* 1739 * A shadow entry of a recently evicted page, a swap 1740 * entry from shmem/tmpfs or a DAX entry. Return it 1741 * without attempting to raise page count. 1742 */ 1743 if (xa_is_value(page)) 1744 goto export; 1745 1746 if (!page_cache_get_speculative(page)) 1747 goto retry; 1748 1749 /* Has the page moved or been split? */ 1750 if (unlikely(page != xas_reload(&xas))) 1751 goto put_page; 1752 page = find_subpage(page, xas.xa_index); 1753 1754 export: 1755 indices[ret] = xas.xa_index; 1756 entries[ret] = page; 1757 if (++ret == nr_entries) 1758 break; 1759 continue; 1760 put_page: 1761 put_page(page); 1762 retry: 1763 xas_reset(&xas); 1764 } 1765 rcu_read_unlock(); 1766 return ret; 1767 } 1768 1769 /** 1770 * find_get_pages_range - gang pagecache lookup 1771 * @mapping: The address_space to search 1772 * @start: The starting page index 1773 * @end: The final page index (inclusive) 1774 * @nr_pages: The maximum number of pages 1775 * @pages: Where the resulting pages are placed 1776 * 1777 * find_get_pages_range() will search for and return a group of up to @nr_pages 1778 * pages in the mapping starting at index @start and up to index @end 1779 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes 1780 * a reference against the returned pages. 1781 * 1782 * The search returns a group of mapping-contiguous pages with ascending 1783 * indexes. There may be holes in the indices due to not-present pages. 1784 * We also update @start to index the next page for the traversal. 1785 * 1786 * Return: the number of pages which were found. If this number is 1787 * smaller than @nr_pages, the end of specified range has been 1788 * reached. 1789 */ 1790 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start, 1791 pgoff_t end, unsigned int nr_pages, 1792 struct page **pages) 1793 { 1794 XA_STATE(xas, &mapping->i_pages, *start); 1795 struct page *page; 1796 unsigned ret = 0; 1797 1798 if (unlikely(!nr_pages)) 1799 return 0; 1800 1801 rcu_read_lock(); 1802 xas_for_each(&xas, page, end) { 1803 if (xas_retry(&xas, page)) 1804 continue; 1805 /* Skip over shadow, swap and DAX entries */ 1806 if (xa_is_value(page)) 1807 continue; 1808 1809 if (!page_cache_get_speculative(page)) 1810 goto retry; 1811 1812 /* Has the page moved or been split? */ 1813 if (unlikely(page != xas_reload(&xas))) 1814 goto put_page; 1815 1816 pages[ret] = find_subpage(page, xas.xa_index); 1817 if (++ret == nr_pages) { 1818 *start = xas.xa_index + 1; 1819 goto out; 1820 } 1821 continue; 1822 put_page: 1823 put_page(page); 1824 retry: 1825 xas_reset(&xas); 1826 } 1827 1828 /* 1829 * We come here when there is no page beyond @end. We take care to not 1830 * overflow the index @start as it confuses some of the callers. This 1831 * breaks the iteration when there is a page at index -1 but that is 1832 * already broken anyway. 1833 */ 1834 if (end == (pgoff_t)-1) 1835 *start = (pgoff_t)-1; 1836 else 1837 *start = end + 1; 1838 out: 1839 rcu_read_unlock(); 1840 1841 return ret; 1842 } 1843 1844 /** 1845 * find_get_pages_contig - gang contiguous pagecache lookup 1846 * @mapping: The address_space to search 1847 * @index: The starting page index 1848 * @nr_pages: The maximum number of pages 1849 * @pages: Where the resulting pages are placed 1850 * 1851 * find_get_pages_contig() works exactly like find_get_pages(), except 1852 * that the returned number of pages are guaranteed to be contiguous. 1853 * 1854 * Return: the number of pages which were found. 1855 */ 1856 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, 1857 unsigned int nr_pages, struct page **pages) 1858 { 1859 XA_STATE(xas, &mapping->i_pages, index); 1860 struct page *page; 1861 unsigned int ret = 0; 1862 1863 if (unlikely(!nr_pages)) 1864 return 0; 1865 1866 rcu_read_lock(); 1867 for (page = xas_load(&xas); page; page = xas_next(&xas)) { 1868 if (xas_retry(&xas, page)) 1869 continue; 1870 /* 1871 * If the entry has been swapped out, we can stop looking. 1872 * No current caller is looking for DAX entries. 1873 */ 1874 if (xa_is_value(page)) 1875 break; 1876 1877 if (!page_cache_get_speculative(page)) 1878 goto retry; 1879 1880 /* Has the page moved or been split? */ 1881 if (unlikely(page != xas_reload(&xas))) 1882 goto put_page; 1883 1884 pages[ret] = find_subpage(page, xas.xa_index); 1885 if (++ret == nr_pages) 1886 break; 1887 continue; 1888 put_page: 1889 put_page(page); 1890 retry: 1891 xas_reset(&xas); 1892 } 1893 rcu_read_unlock(); 1894 return ret; 1895 } 1896 EXPORT_SYMBOL(find_get_pages_contig); 1897 1898 /** 1899 * find_get_pages_range_tag - find and return pages in given range matching @tag 1900 * @mapping: the address_space to search 1901 * @index: the starting page index 1902 * @end: The final page index (inclusive) 1903 * @tag: the tag index 1904 * @nr_pages: the maximum number of pages 1905 * @pages: where the resulting pages are placed 1906 * 1907 * Like find_get_pages, except we only return pages which are tagged with 1908 * @tag. We update @index to index the next page for the traversal. 1909 * 1910 * Return: the number of pages which were found. 1911 */ 1912 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index, 1913 pgoff_t end, xa_mark_t tag, unsigned int nr_pages, 1914 struct page **pages) 1915 { 1916 XA_STATE(xas, &mapping->i_pages, *index); 1917 struct page *page; 1918 unsigned ret = 0; 1919 1920 if (unlikely(!nr_pages)) 1921 return 0; 1922 1923 rcu_read_lock(); 1924 xas_for_each_marked(&xas, page, end, tag) { 1925 if (xas_retry(&xas, page)) 1926 continue; 1927 /* 1928 * Shadow entries should never be tagged, but this iteration 1929 * is lockless so there is a window for page reclaim to evict 1930 * a page we saw tagged. Skip over it. 1931 */ 1932 if (xa_is_value(page)) 1933 continue; 1934 1935 if (!page_cache_get_speculative(page)) 1936 goto retry; 1937 1938 /* Has the page moved or been split? */ 1939 if (unlikely(page != xas_reload(&xas))) 1940 goto put_page; 1941 1942 pages[ret] = find_subpage(page, xas.xa_index); 1943 if (++ret == nr_pages) { 1944 *index = xas.xa_index + 1; 1945 goto out; 1946 } 1947 continue; 1948 put_page: 1949 put_page(page); 1950 retry: 1951 xas_reset(&xas); 1952 } 1953 1954 /* 1955 * We come here when we got to @end. We take care to not overflow the 1956 * index @index as it confuses some of the callers. This breaks the 1957 * iteration when there is a page at index -1 but that is already 1958 * broken anyway. 1959 */ 1960 if (end == (pgoff_t)-1) 1961 *index = (pgoff_t)-1; 1962 else 1963 *index = end + 1; 1964 out: 1965 rcu_read_unlock(); 1966 1967 return ret; 1968 } 1969 EXPORT_SYMBOL(find_get_pages_range_tag); 1970 1971 /* 1972 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 1973 * a _large_ part of the i/o request. Imagine the worst scenario: 1974 * 1975 * ---R__________________________________________B__________ 1976 * ^ reading here ^ bad block(assume 4k) 1977 * 1978 * read(R) => miss => readahead(R...B) => media error => frustrating retries 1979 * => failing the whole request => read(R) => read(R+1) => 1980 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 1981 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 1982 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 1983 * 1984 * It is going insane. Fix it by quickly scaling down the readahead size. 1985 */ 1986 static void shrink_readahead_size_eio(struct file *filp, 1987 struct file_ra_state *ra) 1988 { 1989 ra->ra_pages /= 4; 1990 } 1991 1992 /** 1993 * generic_file_buffered_read - generic file read routine 1994 * @iocb: the iocb to read 1995 * @iter: data destination 1996 * @written: already copied 1997 * 1998 * This is a generic file read routine, and uses the 1999 * mapping->a_ops->readpage() function for the actual low-level stuff. 2000 * 2001 * This is really ugly. But the goto's actually try to clarify some 2002 * of the logic when it comes to error handling etc. 2003 * 2004 * Return: 2005 * * total number of bytes copied, including those the were already @written 2006 * * negative error code if nothing was copied 2007 */ 2008 static ssize_t generic_file_buffered_read(struct kiocb *iocb, 2009 struct iov_iter *iter, ssize_t written) 2010 { 2011 struct file *filp = iocb->ki_filp; 2012 struct address_space *mapping = filp->f_mapping; 2013 struct inode *inode = mapping->host; 2014 struct file_ra_state *ra = &filp->f_ra; 2015 loff_t *ppos = &iocb->ki_pos; 2016 pgoff_t index; 2017 pgoff_t last_index; 2018 pgoff_t prev_index; 2019 unsigned long offset; /* offset into pagecache page */ 2020 unsigned int prev_offset; 2021 int error = 0; 2022 2023 if (unlikely(*ppos >= inode->i_sb->s_maxbytes)) 2024 return 0; 2025 iov_iter_truncate(iter, inode->i_sb->s_maxbytes); 2026 2027 index = *ppos >> PAGE_SHIFT; 2028 prev_index = ra->prev_pos >> PAGE_SHIFT; 2029 prev_offset = ra->prev_pos & (PAGE_SIZE-1); 2030 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT; 2031 offset = *ppos & ~PAGE_MASK; 2032 2033 for (;;) { 2034 struct page *page; 2035 pgoff_t end_index; 2036 loff_t isize; 2037 unsigned long nr, ret; 2038 2039 cond_resched(); 2040 find_page: 2041 if (fatal_signal_pending(current)) { 2042 error = -EINTR; 2043 goto out; 2044 } 2045 2046 page = find_get_page(mapping, index); 2047 if (!page) { 2048 if (iocb->ki_flags & IOCB_NOWAIT) 2049 goto would_block; 2050 page_cache_sync_readahead(mapping, 2051 ra, filp, 2052 index, last_index - index); 2053 page = find_get_page(mapping, index); 2054 if (unlikely(page == NULL)) 2055 goto no_cached_page; 2056 } 2057 if (PageReadahead(page)) { 2058 page_cache_async_readahead(mapping, 2059 ra, filp, page, 2060 index, last_index - index); 2061 } 2062 if (!PageUptodate(page)) { 2063 if (iocb->ki_flags & IOCB_NOWAIT) { 2064 put_page(page); 2065 goto would_block; 2066 } 2067 2068 /* 2069 * See comment in do_read_cache_page on why 2070 * wait_on_page_locked is used to avoid unnecessarily 2071 * serialisations and why it's safe. 2072 */ 2073 error = wait_on_page_locked_killable(page); 2074 if (unlikely(error)) 2075 goto readpage_error; 2076 if (PageUptodate(page)) 2077 goto page_ok; 2078 2079 if (inode->i_blkbits == PAGE_SHIFT || 2080 !mapping->a_ops->is_partially_uptodate) 2081 goto page_not_up_to_date; 2082 /* pipes can't handle partially uptodate pages */ 2083 if (unlikely(iov_iter_is_pipe(iter))) 2084 goto page_not_up_to_date; 2085 if (!trylock_page(page)) 2086 goto page_not_up_to_date; 2087 /* Did it get truncated before we got the lock? */ 2088 if (!page->mapping) 2089 goto page_not_up_to_date_locked; 2090 if (!mapping->a_ops->is_partially_uptodate(page, 2091 offset, iter->count)) 2092 goto page_not_up_to_date_locked; 2093 unlock_page(page); 2094 } 2095 page_ok: 2096 /* 2097 * i_size must be checked after we know the page is Uptodate. 2098 * 2099 * Checking i_size after the check allows us to calculate 2100 * the correct value for "nr", which means the zero-filled 2101 * part of the page is not copied back to userspace (unless 2102 * another truncate extends the file - this is desired though). 2103 */ 2104 2105 isize = i_size_read(inode); 2106 end_index = (isize - 1) >> PAGE_SHIFT; 2107 if (unlikely(!isize || index > end_index)) { 2108 put_page(page); 2109 goto out; 2110 } 2111 2112 /* nr is the maximum number of bytes to copy from this page */ 2113 nr = PAGE_SIZE; 2114 if (index == end_index) { 2115 nr = ((isize - 1) & ~PAGE_MASK) + 1; 2116 if (nr <= offset) { 2117 put_page(page); 2118 goto out; 2119 } 2120 } 2121 nr = nr - offset; 2122 2123 /* If users can be writing to this page using arbitrary 2124 * virtual addresses, take care about potential aliasing 2125 * before reading the page on the kernel side. 2126 */ 2127 if (mapping_writably_mapped(mapping)) 2128 flush_dcache_page(page); 2129 2130 /* 2131 * When a sequential read accesses a page several times, 2132 * only mark it as accessed the first time. 2133 */ 2134 if (prev_index != index || offset != prev_offset) 2135 mark_page_accessed(page); 2136 prev_index = index; 2137 2138 /* 2139 * Ok, we have the page, and it's up-to-date, so 2140 * now we can copy it to user space... 2141 */ 2142 2143 ret = copy_page_to_iter(page, offset, nr, iter); 2144 offset += ret; 2145 index += offset >> PAGE_SHIFT; 2146 offset &= ~PAGE_MASK; 2147 prev_offset = offset; 2148 2149 put_page(page); 2150 written += ret; 2151 if (!iov_iter_count(iter)) 2152 goto out; 2153 if (ret < nr) { 2154 error = -EFAULT; 2155 goto out; 2156 } 2157 continue; 2158 2159 page_not_up_to_date: 2160 /* Get exclusive access to the page ... */ 2161 error = lock_page_killable(page); 2162 if (unlikely(error)) 2163 goto readpage_error; 2164 2165 page_not_up_to_date_locked: 2166 /* Did it get truncated before we got the lock? */ 2167 if (!page->mapping) { 2168 unlock_page(page); 2169 put_page(page); 2170 continue; 2171 } 2172 2173 /* Did somebody else fill it already? */ 2174 if (PageUptodate(page)) { 2175 unlock_page(page); 2176 goto page_ok; 2177 } 2178 2179 readpage: 2180 /* 2181 * A previous I/O error may have been due to temporary 2182 * failures, eg. multipath errors. 2183 * PG_error will be set again if readpage fails. 2184 */ 2185 ClearPageError(page); 2186 /* Start the actual read. The read will unlock the page. */ 2187 error = mapping->a_ops->readpage(filp, page); 2188 2189 if (unlikely(error)) { 2190 if (error == AOP_TRUNCATED_PAGE) { 2191 put_page(page); 2192 error = 0; 2193 goto find_page; 2194 } 2195 goto readpage_error; 2196 } 2197 2198 if (!PageUptodate(page)) { 2199 error = lock_page_killable(page); 2200 if (unlikely(error)) 2201 goto readpage_error; 2202 if (!PageUptodate(page)) { 2203 if (page->mapping == NULL) { 2204 /* 2205 * invalidate_mapping_pages got it 2206 */ 2207 unlock_page(page); 2208 put_page(page); 2209 goto find_page; 2210 } 2211 unlock_page(page); 2212 shrink_readahead_size_eio(filp, ra); 2213 error = -EIO; 2214 goto readpage_error; 2215 } 2216 unlock_page(page); 2217 } 2218 2219 goto page_ok; 2220 2221 readpage_error: 2222 /* UHHUH! A synchronous read error occurred. Report it */ 2223 put_page(page); 2224 goto out; 2225 2226 no_cached_page: 2227 /* 2228 * Ok, it wasn't cached, so we need to create a new 2229 * page.. 2230 */ 2231 page = page_cache_alloc(mapping); 2232 if (!page) { 2233 error = -ENOMEM; 2234 goto out; 2235 } 2236 error = add_to_page_cache_lru(page, mapping, index, 2237 mapping_gfp_constraint(mapping, GFP_KERNEL)); 2238 if (error) { 2239 put_page(page); 2240 if (error == -EEXIST) { 2241 error = 0; 2242 goto find_page; 2243 } 2244 goto out; 2245 } 2246 goto readpage; 2247 } 2248 2249 would_block: 2250 error = -EAGAIN; 2251 out: 2252 ra->prev_pos = prev_index; 2253 ra->prev_pos <<= PAGE_SHIFT; 2254 ra->prev_pos |= prev_offset; 2255 2256 *ppos = ((loff_t)index << PAGE_SHIFT) + offset; 2257 file_accessed(filp); 2258 return written ? written : error; 2259 } 2260 2261 /** 2262 * generic_file_read_iter - generic filesystem read routine 2263 * @iocb: kernel I/O control block 2264 * @iter: destination for the data read 2265 * 2266 * This is the "read_iter()" routine for all filesystems 2267 * that can use the page cache directly. 2268 * Return: 2269 * * number of bytes copied, even for partial reads 2270 * * negative error code if nothing was read 2271 */ 2272 ssize_t 2273 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 2274 { 2275 size_t count = iov_iter_count(iter); 2276 ssize_t retval = 0; 2277 2278 if (!count) 2279 goto out; /* skip atime */ 2280 2281 if (iocb->ki_flags & IOCB_DIRECT) { 2282 struct file *file = iocb->ki_filp; 2283 struct address_space *mapping = file->f_mapping; 2284 struct inode *inode = mapping->host; 2285 loff_t size; 2286 2287 size = i_size_read(inode); 2288 if (iocb->ki_flags & IOCB_NOWAIT) { 2289 if (filemap_range_has_page(mapping, iocb->ki_pos, 2290 iocb->ki_pos + count - 1)) 2291 return -EAGAIN; 2292 } else { 2293 retval = filemap_write_and_wait_range(mapping, 2294 iocb->ki_pos, 2295 iocb->ki_pos + count - 1); 2296 if (retval < 0) 2297 goto out; 2298 } 2299 2300 file_accessed(file); 2301 2302 retval = mapping->a_ops->direct_IO(iocb, iter); 2303 if (retval >= 0) { 2304 iocb->ki_pos += retval; 2305 count -= retval; 2306 } 2307 iov_iter_revert(iter, count - iov_iter_count(iter)); 2308 2309 /* 2310 * Btrfs can have a short DIO read if we encounter 2311 * compressed extents, so if there was an error, or if 2312 * we've already read everything we wanted to, or if 2313 * there was a short read because we hit EOF, go ahead 2314 * and return. Otherwise fallthrough to buffered io for 2315 * the rest of the read. Buffered reads will not work for 2316 * DAX files, so don't bother trying. 2317 */ 2318 if (retval < 0 || !count || iocb->ki_pos >= size || 2319 IS_DAX(inode)) 2320 goto out; 2321 } 2322 2323 retval = generic_file_buffered_read(iocb, iter, retval); 2324 out: 2325 return retval; 2326 } 2327 EXPORT_SYMBOL(generic_file_read_iter); 2328 2329 #ifdef CONFIG_MMU 2330 #define MMAP_LOTSAMISS (100) 2331 static struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf, 2332 struct file *fpin) 2333 { 2334 int flags = vmf->flags; 2335 2336 if (fpin) 2337 return fpin; 2338 2339 /* 2340 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or 2341 * anything, so we only pin the file and drop the mmap_sem if only 2342 * FAULT_FLAG_ALLOW_RETRY is set. 2343 */ 2344 if ((flags & (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT)) == 2345 FAULT_FLAG_ALLOW_RETRY) { 2346 fpin = get_file(vmf->vma->vm_file); 2347 up_read(&vmf->vma->vm_mm->mmap_sem); 2348 } 2349 return fpin; 2350 } 2351 2352 /* 2353 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_sem 2354 * @vmf - the vm_fault for this fault. 2355 * @page - the page to lock. 2356 * @fpin - the pointer to the file we may pin (or is already pinned). 2357 * 2358 * This works similar to lock_page_or_retry in that it can drop the mmap_sem. 2359 * It differs in that it actually returns the page locked if it returns 1 and 0 2360 * if it couldn't lock the page. If we did have to drop the mmap_sem then fpin 2361 * will point to the pinned file and needs to be fput()'ed at a later point. 2362 */ 2363 static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page, 2364 struct file **fpin) 2365 { 2366 if (trylock_page(page)) 2367 return 1; 2368 2369 /* 2370 * NOTE! This will make us return with VM_FAULT_RETRY, but with 2371 * the mmap_sem still held. That's how FAULT_FLAG_RETRY_NOWAIT 2372 * is supposed to work. We have way too many special cases.. 2373 */ 2374 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 2375 return 0; 2376 2377 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin); 2378 if (vmf->flags & FAULT_FLAG_KILLABLE) { 2379 if (__lock_page_killable(page)) { 2380 /* 2381 * We didn't have the right flags to drop the mmap_sem, 2382 * but all fault_handlers only check for fatal signals 2383 * if we return VM_FAULT_RETRY, so we need to drop the 2384 * mmap_sem here and return 0 if we don't have a fpin. 2385 */ 2386 if (*fpin == NULL) 2387 up_read(&vmf->vma->vm_mm->mmap_sem); 2388 return 0; 2389 } 2390 } else 2391 __lock_page(page); 2392 return 1; 2393 } 2394 2395 2396 /* 2397 * Synchronous readahead happens when we don't even find a page in the page 2398 * cache at all. We don't want to perform IO under the mmap sem, so if we have 2399 * to drop the mmap sem we return the file that was pinned in order for us to do 2400 * that. If we didn't pin a file then we return NULL. The file that is 2401 * returned needs to be fput()'ed when we're done with it. 2402 */ 2403 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf) 2404 { 2405 struct file *file = vmf->vma->vm_file; 2406 struct file_ra_state *ra = &file->f_ra; 2407 struct address_space *mapping = file->f_mapping; 2408 struct file *fpin = NULL; 2409 pgoff_t offset = vmf->pgoff; 2410 2411 /* If we don't want any read-ahead, don't bother */ 2412 if (vmf->vma->vm_flags & VM_RAND_READ) 2413 return fpin; 2414 if (!ra->ra_pages) 2415 return fpin; 2416 2417 if (vmf->vma->vm_flags & VM_SEQ_READ) { 2418 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 2419 page_cache_sync_readahead(mapping, ra, file, offset, 2420 ra->ra_pages); 2421 return fpin; 2422 } 2423 2424 /* Avoid banging the cache line if not needed */ 2425 if (ra->mmap_miss < MMAP_LOTSAMISS * 10) 2426 ra->mmap_miss++; 2427 2428 /* 2429 * Do we miss much more than hit in this file? If so, 2430 * stop bothering with read-ahead. It will only hurt. 2431 */ 2432 if (ra->mmap_miss > MMAP_LOTSAMISS) 2433 return fpin; 2434 2435 /* 2436 * mmap read-around 2437 */ 2438 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 2439 ra->start = max_t(long, 0, offset - ra->ra_pages / 2); 2440 ra->size = ra->ra_pages; 2441 ra->async_size = ra->ra_pages / 4; 2442 ra_submit(ra, mapping, file); 2443 return fpin; 2444 } 2445 2446 /* 2447 * Asynchronous readahead happens when we find the page and PG_readahead, 2448 * so we want to possibly extend the readahead further. We return the file that 2449 * was pinned if we have to drop the mmap_sem in order to do IO. 2450 */ 2451 static struct file *do_async_mmap_readahead(struct vm_fault *vmf, 2452 struct page *page) 2453 { 2454 struct file *file = vmf->vma->vm_file; 2455 struct file_ra_state *ra = &file->f_ra; 2456 struct address_space *mapping = file->f_mapping; 2457 struct file *fpin = NULL; 2458 pgoff_t offset = vmf->pgoff; 2459 2460 /* If we don't want any read-ahead, don't bother */ 2461 if (vmf->vma->vm_flags & VM_RAND_READ) 2462 return fpin; 2463 if (ra->mmap_miss > 0) 2464 ra->mmap_miss--; 2465 if (PageReadahead(page)) { 2466 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 2467 page_cache_async_readahead(mapping, ra, file, 2468 page, offset, ra->ra_pages); 2469 } 2470 return fpin; 2471 } 2472 2473 /** 2474 * filemap_fault - read in file data for page fault handling 2475 * @vmf: struct vm_fault containing details of the fault 2476 * 2477 * filemap_fault() is invoked via the vma operations vector for a 2478 * mapped memory region to read in file data during a page fault. 2479 * 2480 * The goto's are kind of ugly, but this streamlines the normal case of having 2481 * it in the page cache, and handles the special cases reasonably without 2482 * having a lot of duplicated code. 2483 * 2484 * vma->vm_mm->mmap_sem must be held on entry. 2485 * 2486 * If our return value has VM_FAULT_RETRY set, it's because the mmap_sem 2487 * may be dropped before doing I/O or by lock_page_maybe_drop_mmap(). 2488 * 2489 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem 2490 * has not been released. 2491 * 2492 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. 2493 * 2494 * Return: bitwise-OR of %VM_FAULT_ codes. 2495 */ 2496 vm_fault_t filemap_fault(struct vm_fault *vmf) 2497 { 2498 int error; 2499 struct file *file = vmf->vma->vm_file; 2500 struct file *fpin = NULL; 2501 struct address_space *mapping = file->f_mapping; 2502 struct file_ra_state *ra = &file->f_ra; 2503 struct inode *inode = mapping->host; 2504 pgoff_t offset = vmf->pgoff; 2505 pgoff_t max_off; 2506 struct page *page; 2507 vm_fault_t ret = 0; 2508 2509 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2510 if (unlikely(offset >= max_off)) 2511 return VM_FAULT_SIGBUS; 2512 2513 /* 2514 * Do we have something in the page cache already? 2515 */ 2516 page = find_get_page(mapping, offset); 2517 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) { 2518 /* 2519 * We found the page, so try async readahead before 2520 * waiting for the lock. 2521 */ 2522 fpin = do_async_mmap_readahead(vmf, page); 2523 } else if (!page) { 2524 /* No page in the page cache at all */ 2525 count_vm_event(PGMAJFAULT); 2526 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); 2527 ret = VM_FAULT_MAJOR; 2528 fpin = do_sync_mmap_readahead(vmf); 2529 retry_find: 2530 page = pagecache_get_page(mapping, offset, 2531 FGP_CREAT|FGP_FOR_MMAP, 2532 vmf->gfp_mask); 2533 if (!page) { 2534 if (fpin) 2535 goto out_retry; 2536 return vmf_error(-ENOMEM); 2537 } 2538 } 2539 2540 if (!lock_page_maybe_drop_mmap(vmf, page, &fpin)) 2541 goto out_retry; 2542 2543 /* Did it get truncated? */ 2544 if (unlikely(compound_head(page)->mapping != mapping)) { 2545 unlock_page(page); 2546 put_page(page); 2547 goto retry_find; 2548 } 2549 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page); 2550 2551 /* 2552 * We have a locked page in the page cache, now we need to check 2553 * that it's up-to-date. If not, it is going to be due to an error. 2554 */ 2555 if (unlikely(!PageUptodate(page))) 2556 goto page_not_uptodate; 2557 2558 /* 2559 * We've made it this far and we had to drop our mmap_sem, now is the 2560 * time to return to the upper layer and have it re-find the vma and 2561 * redo the fault. 2562 */ 2563 if (fpin) { 2564 unlock_page(page); 2565 goto out_retry; 2566 } 2567 2568 /* 2569 * Found the page and have a reference on it. 2570 * We must recheck i_size under page lock. 2571 */ 2572 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2573 if (unlikely(offset >= max_off)) { 2574 unlock_page(page); 2575 put_page(page); 2576 return VM_FAULT_SIGBUS; 2577 } 2578 2579 vmf->page = page; 2580 return ret | VM_FAULT_LOCKED; 2581 2582 page_not_uptodate: 2583 /* 2584 * Umm, take care of errors if the page isn't up-to-date. 2585 * Try to re-read it _once_. We do this synchronously, 2586 * because there really aren't any performance issues here 2587 * and we need to check for errors. 2588 */ 2589 ClearPageError(page); 2590 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 2591 error = mapping->a_ops->readpage(file, page); 2592 if (!error) { 2593 wait_on_page_locked(page); 2594 if (!PageUptodate(page)) 2595 error = -EIO; 2596 } 2597 if (fpin) 2598 goto out_retry; 2599 put_page(page); 2600 2601 if (!error || error == AOP_TRUNCATED_PAGE) 2602 goto retry_find; 2603 2604 /* Things didn't work out. Return zero to tell the mm layer so. */ 2605 shrink_readahead_size_eio(file, ra); 2606 return VM_FAULT_SIGBUS; 2607 2608 out_retry: 2609 /* 2610 * We dropped the mmap_sem, we need to return to the fault handler to 2611 * re-find the vma and come back and find our hopefully still populated 2612 * page. 2613 */ 2614 if (page) 2615 put_page(page); 2616 if (fpin) 2617 fput(fpin); 2618 return ret | VM_FAULT_RETRY; 2619 } 2620 EXPORT_SYMBOL(filemap_fault); 2621 2622 void filemap_map_pages(struct vm_fault *vmf, 2623 pgoff_t start_pgoff, pgoff_t end_pgoff) 2624 { 2625 struct file *file = vmf->vma->vm_file; 2626 struct address_space *mapping = file->f_mapping; 2627 pgoff_t last_pgoff = start_pgoff; 2628 unsigned long max_idx; 2629 XA_STATE(xas, &mapping->i_pages, start_pgoff); 2630 struct page *page; 2631 2632 rcu_read_lock(); 2633 xas_for_each(&xas, page, end_pgoff) { 2634 if (xas_retry(&xas, page)) 2635 continue; 2636 if (xa_is_value(page)) 2637 goto next; 2638 2639 /* 2640 * Check for a locked page first, as a speculative 2641 * reference may adversely influence page migration. 2642 */ 2643 if (PageLocked(page)) 2644 goto next; 2645 if (!page_cache_get_speculative(page)) 2646 goto next; 2647 2648 /* Has the page moved or been split? */ 2649 if (unlikely(page != xas_reload(&xas))) 2650 goto skip; 2651 page = find_subpage(page, xas.xa_index); 2652 2653 if (!PageUptodate(page) || 2654 PageReadahead(page) || 2655 PageHWPoison(page)) 2656 goto skip; 2657 if (!trylock_page(page)) 2658 goto skip; 2659 2660 if (page->mapping != mapping || !PageUptodate(page)) 2661 goto unlock; 2662 2663 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 2664 if (page->index >= max_idx) 2665 goto unlock; 2666 2667 if (file->f_ra.mmap_miss > 0) 2668 file->f_ra.mmap_miss--; 2669 2670 vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT; 2671 if (vmf->pte) 2672 vmf->pte += xas.xa_index - last_pgoff; 2673 last_pgoff = xas.xa_index; 2674 if (alloc_set_pte(vmf, NULL, page)) 2675 goto unlock; 2676 unlock_page(page); 2677 goto next; 2678 unlock: 2679 unlock_page(page); 2680 skip: 2681 put_page(page); 2682 next: 2683 /* Huge page is mapped? No need to proceed. */ 2684 if (pmd_trans_huge(*vmf->pmd)) 2685 break; 2686 } 2687 rcu_read_unlock(); 2688 } 2689 EXPORT_SYMBOL(filemap_map_pages); 2690 2691 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 2692 { 2693 struct page *page = vmf->page; 2694 struct inode *inode = file_inode(vmf->vma->vm_file); 2695 vm_fault_t ret = VM_FAULT_LOCKED; 2696 2697 sb_start_pagefault(inode->i_sb); 2698 file_update_time(vmf->vma->vm_file); 2699 lock_page(page); 2700 if (page->mapping != inode->i_mapping) { 2701 unlock_page(page); 2702 ret = VM_FAULT_NOPAGE; 2703 goto out; 2704 } 2705 /* 2706 * We mark the page dirty already here so that when freeze is in 2707 * progress, we are guaranteed that writeback during freezing will 2708 * see the dirty page and writeprotect it again. 2709 */ 2710 set_page_dirty(page); 2711 wait_for_stable_page(page); 2712 out: 2713 sb_end_pagefault(inode->i_sb); 2714 return ret; 2715 } 2716 2717 const struct vm_operations_struct generic_file_vm_ops = { 2718 .fault = filemap_fault, 2719 .map_pages = filemap_map_pages, 2720 .page_mkwrite = filemap_page_mkwrite, 2721 }; 2722 2723 /* This is used for a general mmap of a disk file */ 2724 2725 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 2726 { 2727 struct address_space *mapping = file->f_mapping; 2728 2729 if (!mapping->a_ops->readpage) 2730 return -ENOEXEC; 2731 file_accessed(file); 2732 vma->vm_ops = &generic_file_vm_ops; 2733 return 0; 2734 } 2735 2736 /* 2737 * This is for filesystems which do not implement ->writepage. 2738 */ 2739 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 2740 { 2741 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 2742 return -EINVAL; 2743 return generic_file_mmap(file, vma); 2744 } 2745 #else 2746 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 2747 { 2748 return VM_FAULT_SIGBUS; 2749 } 2750 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 2751 { 2752 return -ENOSYS; 2753 } 2754 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) 2755 { 2756 return -ENOSYS; 2757 } 2758 #endif /* CONFIG_MMU */ 2759 2760 EXPORT_SYMBOL(filemap_page_mkwrite); 2761 EXPORT_SYMBOL(generic_file_mmap); 2762 EXPORT_SYMBOL(generic_file_readonly_mmap); 2763 2764 static struct page *wait_on_page_read(struct page *page) 2765 { 2766 if (!IS_ERR(page)) { 2767 wait_on_page_locked(page); 2768 if (!PageUptodate(page)) { 2769 put_page(page); 2770 page = ERR_PTR(-EIO); 2771 } 2772 } 2773 return page; 2774 } 2775 2776 static struct page *do_read_cache_page(struct address_space *mapping, 2777 pgoff_t index, 2778 int (*filler)(void *, struct page *), 2779 void *data, 2780 gfp_t gfp) 2781 { 2782 struct page *page; 2783 int err; 2784 repeat: 2785 page = find_get_page(mapping, index); 2786 if (!page) { 2787 page = __page_cache_alloc(gfp); 2788 if (!page) 2789 return ERR_PTR(-ENOMEM); 2790 err = add_to_page_cache_lru(page, mapping, index, gfp); 2791 if (unlikely(err)) { 2792 put_page(page); 2793 if (err == -EEXIST) 2794 goto repeat; 2795 /* Presumably ENOMEM for xarray node */ 2796 return ERR_PTR(err); 2797 } 2798 2799 filler: 2800 if (filler) 2801 err = filler(data, page); 2802 else 2803 err = mapping->a_ops->readpage(data, page); 2804 2805 if (err < 0) { 2806 put_page(page); 2807 return ERR_PTR(err); 2808 } 2809 2810 page = wait_on_page_read(page); 2811 if (IS_ERR(page)) 2812 return page; 2813 goto out; 2814 } 2815 if (PageUptodate(page)) 2816 goto out; 2817 2818 /* 2819 * Page is not up to date and may be locked due one of the following 2820 * case a: Page is being filled and the page lock is held 2821 * case b: Read/write error clearing the page uptodate status 2822 * case c: Truncation in progress (page locked) 2823 * case d: Reclaim in progress 2824 * 2825 * Case a, the page will be up to date when the page is unlocked. 2826 * There is no need to serialise on the page lock here as the page 2827 * is pinned so the lock gives no additional protection. Even if the 2828 * the page is truncated, the data is still valid if PageUptodate as 2829 * it's a race vs truncate race. 2830 * Case b, the page will not be up to date 2831 * Case c, the page may be truncated but in itself, the data may still 2832 * be valid after IO completes as it's a read vs truncate race. The 2833 * operation must restart if the page is not uptodate on unlock but 2834 * otherwise serialising on page lock to stabilise the mapping gives 2835 * no additional guarantees to the caller as the page lock is 2836 * released before return. 2837 * Case d, similar to truncation. If reclaim holds the page lock, it 2838 * will be a race with remove_mapping that determines if the mapping 2839 * is valid on unlock but otherwise the data is valid and there is 2840 * no need to serialise with page lock. 2841 * 2842 * As the page lock gives no additional guarantee, we optimistically 2843 * wait on the page to be unlocked and check if it's up to date and 2844 * use the page if it is. Otherwise, the page lock is required to 2845 * distinguish between the different cases. The motivation is that we 2846 * avoid spurious serialisations and wakeups when multiple processes 2847 * wait on the same page for IO to complete. 2848 */ 2849 wait_on_page_locked(page); 2850 if (PageUptodate(page)) 2851 goto out; 2852 2853 /* Distinguish between all the cases under the safety of the lock */ 2854 lock_page(page); 2855 2856 /* Case c or d, restart the operation */ 2857 if (!page->mapping) { 2858 unlock_page(page); 2859 put_page(page); 2860 goto repeat; 2861 } 2862 2863 /* Someone else locked and filled the page in a very small window */ 2864 if (PageUptodate(page)) { 2865 unlock_page(page); 2866 goto out; 2867 } 2868 goto filler; 2869 2870 out: 2871 mark_page_accessed(page); 2872 return page; 2873 } 2874 2875 /** 2876 * read_cache_page - read into page cache, fill it if needed 2877 * @mapping: the page's address_space 2878 * @index: the page index 2879 * @filler: function to perform the read 2880 * @data: first arg to filler(data, page) function, often left as NULL 2881 * 2882 * Read into the page cache. If a page already exists, and PageUptodate() is 2883 * not set, try to fill the page and wait for it to become unlocked. 2884 * 2885 * If the page does not get brought uptodate, return -EIO. 2886 * 2887 * Return: up to date page on success, ERR_PTR() on failure. 2888 */ 2889 struct page *read_cache_page(struct address_space *mapping, 2890 pgoff_t index, 2891 int (*filler)(void *, struct page *), 2892 void *data) 2893 { 2894 return do_read_cache_page(mapping, index, filler, data, 2895 mapping_gfp_mask(mapping)); 2896 } 2897 EXPORT_SYMBOL(read_cache_page); 2898 2899 /** 2900 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 2901 * @mapping: the page's address_space 2902 * @index: the page index 2903 * @gfp: the page allocator flags to use if allocating 2904 * 2905 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 2906 * any new page allocations done using the specified allocation flags. 2907 * 2908 * If the page does not get brought uptodate, return -EIO. 2909 * 2910 * Return: up to date page on success, ERR_PTR() on failure. 2911 */ 2912 struct page *read_cache_page_gfp(struct address_space *mapping, 2913 pgoff_t index, 2914 gfp_t gfp) 2915 { 2916 return do_read_cache_page(mapping, index, NULL, NULL, gfp); 2917 } 2918 EXPORT_SYMBOL(read_cache_page_gfp); 2919 2920 /* 2921 * Don't operate on ranges the page cache doesn't support, and don't exceed the 2922 * LFS limits. If pos is under the limit it becomes a short access. If it 2923 * exceeds the limit we return -EFBIG. 2924 */ 2925 static int generic_write_check_limits(struct file *file, loff_t pos, 2926 loff_t *count) 2927 { 2928 struct inode *inode = file->f_mapping->host; 2929 loff_t max_size = inode->i_sb->s_maxbytes; 2930 loff_t limit = rlimit(RLIMIT_FSIZE); 2931 2932 if (limit != RLIM_INFINITY) { 2933 if (pos >= limit) { 2934 send_sig(SIGXFSZ, current, 0); 2935 return -EFBIG; 2936 } 2937 *count = min(*count, limit - pos); 2938 } 2939 2940 if (!(file->f_flags & O_LARGEFILE)) 2941 max_size = MAX_NON_LFS; 2942 2943 if (unlikely(pos >= max_size)) 2944 return -EFBIG; 2945 2946 *count = min(*count, max_size - pos); 2947 2948 return 0; 2949 } 2950 2951 /* 2952 * Performs necessary checks before doing a write 2953 * 2954 * Can adjust writing position or amount of bytes to write. 2955 * Returns appropriate error code that caller should return or 2956 * zero in case that write should be allowed. 2957 */ 2958 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from) 2959 { 2960 struct file *file = iocb->ki_filp; 2961 struct inode *inode = file->f_mapping->host; 2962 loff_t count; 2963 int ret; 2964 2965 if (IS_SWAPFILE(inode)) 2966 return -ETXTBSY; 2967 2968 if (!iov_iter_count(from)) 2969 return 0; 2970 2971 /* FIXME: this is for backwards compatibility with 2.4 */ 2972 if (iocb->ki_flags & IOCB_APPEND) 2973 iocb->ki_pos = i_size_read(inode); 2974 2975 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT)) 2976 return -EINVAL; 2977 2978 count = iov_iter_count(from); 2979 ret = generic_write_check_limits(file, iocb->ki_pos, &count); 2980 if (ret) 2981 return ret; 2982 2983 iov_iter_truncate(from, count); 2984 return iov_iter_count(from); 2985 } 2986 EXPORT_SYMBOL(generic_write_checks); 2987 2988 /* 2989 * Performs necessary checks before doing a clone. 2990 * 2991 * Can adjust amount of bytes to clone via @req_count argument. 2992 * Returns appropriate error code that caller should return or 2993 * zero in case the clone should be allowed. 2994 */ 2995 int generic_remap_checks(struct file *file_in, loff_t pos_in, 2996 struct file *file_out, loff_t pos_out, 2997 loff_t *req_count, unsigned int remap_flags) 2998 { 2999 struct inode *inode_in = file_in->f_mapping->host; 3000 struct inode *inode_out = file_out->f_mapping->host; 3001 uint64_t count = *req_count; 3002 uint64_t bcount; 3003 loff_t size_in, size_out; 3004 loff_t bs = inode_out->i_sb->s_blocksize; 3005 int ret; 3006 3007 /* The start of both ranges must be aligned to an fs block. */ 3008 if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_out, bs)) 3009 return -EINVAL; 3010 3011 /* Ensure offsets don't wrap. */ 3012 if (pos_in + count < pos_in || pos_out + count < pos_out) 3013 return -EINVAL; 3014 3015 size_in = i_size_read(inode_in); 3016 size_out = i_size_read(inode_out); 3017 3018 /* Dedupe requires both ranges to be within EOF. */ 3019 if ((remap_flags & REMAP_FILE_DEDUP) && 3020 (pos_in >= size_in || pos_in + count > size_in || 3021 pos_out >= size_out || pos_out + count > size_out)) 3022 return -EINVAL; 3023 3024 /* Ensure the infile range is within the infile. */ 3025 if (pos_in >= size_in) 3026 return -EINVAL; 3027 count = min(count, size_in - (uint64_t)pos_in); 3028 3029 ret = generic_write_check_limits(file_out, pos_out, &count); 3030 if (ret) 3031 return ret; 3032 3033 /* 3034 * If the user wanted us to link to the infile's EOF, round up to the 3035 * next block boundary for this check. 3036 * 3037 * Otherwise, make sure the count is also block-aligned, having 3038 * already confirmed the starting offsets' block alignment. 3039 */ 3040 if (pos_in + count == size_in) { 3041 bcount = ALIGN(size_in, bs) - pos_in; 3042 } else { 3043 if (!IS_ALIGNED(count, bs)) 3044 count = ALIGN_DOWN(count, bs); 3045 bcount = count; 3046 } 3047 3048 /* Don't allow overlapped cloning within the same file. */ 3049 if (inode_in == inode_out && 3050 pos_out + bcount > pos_in && 3051 pos_out < pos_in + bcount) 3052 return -EINVAL; 3053 3054 /* 3055 * We shortened the request but the caller can't deal with that, so 3056 * bounce the request back to userspace. 3057 */ 3058 if (*req_count != count && !(remap_flags & REMAP_FILE_CAN_SHORTEN)) 3059 return -EINVAL; 3060 3061 *req_count = count; 3062 return 0; 3063 } 3064 3065 3066 /* 3067 * Performs common checks before doing a file copy/clone 3068 * from @file_in to @file_out. 3069 */ 3070 int generic_file_rw_checks(struct file *file_in, struct file *file_out) 3071 { 3072 struct inode *inode_in = file_inode(file_in); 3073 struct inode *inode_out = file_inode(file_out); 3074 3075 /* Don't copy dirs, pipes, sockets... */ 3076 if (S_ISDIR(inode_in->i_mode) || S_ISDIR(inode_out->i_mode)) 3077 return -EISDIR; 3078 if (!S_ISREG(inode_in->i_mode) || !S_ISREG(inode_out->i_mode)) 3079 return -EINVAL; 3080 3081 if (!(file_in->f_mode & FMODE_READ) || 3082 !(file_out->f_mode & FMODE_WRITE) || 3083 (file_out->f_flags & O_APPEND)) 3084 return -EBADF; 3085 3086 return 0; 3087 } 3088 3089 /* 3090 * Performs necessary checks before doing a file copy 3091 * 3092 * Can adjust amount of bytes to copy via @req_count argument. 3093 * Returns appropriate error code that caller should return or 3094 * zero in case the copy should be allowed. 3095 */ 3096 int generic_copy_file_checks(struct file *file_in, loff_t pos_in, 3097 struct file *file_out, loff_t pos_out, 3098 size_t *req_count, unsigned int flags) 3099 { 3100 struct inode *inode_in = file_inode(file_in); 3101 struct inode *inode_out = file_inode(file_out); 3102 uint64_t count = *req_count; 3103 loff_t size_in; 3104 int ret; 3105 3106 ret = generic_file_rw_checks(file_in, file_out); 3107 if (ret) 3108 return ret; 3109 3110 /* Don't touch certain kinds of inodes */ 3111 if (IS_IMMUTABLE(inode_out)) 3112 return -EPERM; 3113 3114 if (IS_SWAPFILE(inode_in) || IS_SWAPFILE(inode_out)) 3115 return -ETXTBSY; 3116 3117 /* Ensure offsets don't wrap. */ 3118 if (pos_in + count < pos_in || pos_out + count < pos_out) 3119 return -EOVERFLOW; 3120 3121 /* Shorten the copy to EOF */ 3122 size_in = i_size_read(inode_in); 3123 if (pos_in >= size_in) 3124 count = 0; 3125 else 3126 count = min(count, size_in - (uint64_t)pos_in); 3127 3128 ret = generic_write_check_limits(file_out, pos_out, &count); 3129 if (ret) 3130 return ret; 3131 3132 /* Don't allow overlapped copying within the same file. */ 3133 if (inode_in == inode_out && 3134 pos_out + count > pos_in && 3135 pos_out < pos_in + count) 3136 return -EINVAL; 3137 3138 *req_count = count; 3139 return 0; 3140 } 3141 3142 int pagecache_write_begin(struct file *file, struct address_space *mapping, 3143 loff_t pos, unsigned len, unsigned flags, 3144 struct page **pagep, void **fsdata) 3145 { 3146 const struct address_space_operations *aops = mapping->a_ops; 3147 3148 return aops->write_begin(file, mapping, pos, len, flags, 3149 pagep, fsdata); 3150 } 3151 EXPORT_SYMBOL(pagecache_write_begin); 3152 3153 int pagecache_write_end(struct file *file, struct address_space *mapping, 3154 loff_t pos, unsigned len, unsigned copied, 3155 struct page *page, void *fsdata) 3156 { 3157 const struct address_space_operations *aops = mapping->a_ops; 3158 3159 return aops->write_end(file, mapping, pos, len, copied, page, fsdata); 3160 } 3161 EXPORT_SYMBOL(pagecache_write_end); 3162 3163 ssize_t 3164 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) 3165 { 3166 struct file *file = iocb->ki_filp; 3167 struct address_space *mapping = file->f_mapping; 3168 struct inode *inode = mapping->host; 3169 loff_t pos = iocb->ki_pos; 3170 ssize_t written; 3171 size_t write_len; 3172 pgoff_t end; 3173 3174 write_len = iov_iter_count(from); 3175 end = (pos + write_len - 1) >> PAGE_SHIFT; 3176 3177 if (iocb->ki_flags & IOCB_NOWAIT) { 3178 /* If there are pages to writeback, return */ 3179 if (filemap_range_has_page(inode->i_mapping, pos, 3180 pos + write_len - 1)) 3181 return -EAGAIN; 3182 } else { 3183 written = filemap_write_and_wait_range(mapping, pos, 3184 pos + write_len - 1); 3185 if (written) 3186 goto out; 3187 } 3188 3189 /* 3190 * After a write we want buffered reads to be sure to go to disk to get 3191 * the new data. We invalidate clean cached page from the region we're 3192 * about to write. We do this *before* the write so that we can return 3193 * without clobbering -EIOCBQUEUED from ->direct_IO(). 3194 */ 3195 written = invalidate_inode_pages2_range(mapping, 3196 pos >> PAGE_SHIFT, end); 3197 /* 3198 * If a page can not be invalidated, return 0 to fall back 3199 * to buffered write. 3200 */ 3201 if (written) { 3202 if (written == -EBUSY) 3203 return 0; 3204 goto out; 3205 } 3206 3207 written = mapping->a_ops->direct_IO(iocb, from); 3208 3209 /* 3210 * Finally, try again to invalidate clean pages which might have been 3211 * cached by non-direct readahead, or faulted in by get_user_pages() 3212 * if the source of the write was an mmap'ed region of the file 3213 * we're writing. Either one is a pretty crazy thing to do, 3214 * so we don't support it 100%. If this invalidation 3215 * fails, tough, the write still worked... 3216 * 3217 * Most of the time we do not need this since dio_complete() will do 3218 * the invalidation for us. However there are some file systems that 3219 * do not end up with dio_complete() being called, so let's not break 3220 * them by removing it completely 3221 */ 3222 if (mapping->nrpages) 3223 invalidate_inode_pages2_range(mapping, 3224 pos >> PAGE_SHIFT, end); 3225 3226 if (written > 0) { 3227 pos += written; 3228 write_len -= written; 3229 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 3230 i_size_write(inode, pos); 3231 mark_inode_dirty(inode); 3232 } 3233 iocb->ki_pos = pos; 3234 } 3235 iov_iter_revert(from, write_len - iov_iter_count(from)); 3236 out: 3237 return written; 3238 } 3239 EXPORT_SYMBOL(generic_file_direct_write); 3240 3241 /* 3242 * Find or create a page at the given pagecache position. Return the locked 3243 * page. This function is specifically for buffered writes. 3244 */ 3245 struct page *grab_cache_page_write_begin(struct address_space *mapping, 3246 pgoff_t index, unsigned flags) 3247 { 3248 struct page *page; 3249 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT; 3250 3251 if (flags & AOP_FLAG_NOFS) 3252 fgp_flags |= FGP_NOFS; 3253 3254 page = pagecache_get_page(mapping, index, fgp_flags, 3255 mapping_gfp_mask(mapping)); 3256 if (page) 3257 wait_for_stable_page(page); 3258 3259 return page; 3260 } 3261 EXPORT_SYMBOL(grab_cache_page_write_begin); 3262 3263 ssize_t generic_perform_write(struct file *file, 3264 struct iov_iter *i, loff_t pos) 3265 { 3266 struct address_space *mapping = file->f_mapping; 3267 const struct address_space_operations *a_ops = mapping->a_ops; 3268 long status = 0; 3269 ssize_t written = 0; 3270 unsigned int flags = 0; 3271 3272 do { 3273 struct page *page; 3274 unsigned long offset; /* Offset into pagecache page */ 3275 unsigned long bytes; /* Bytes to write to page */ 3276 size_t copied; /* Bytes copied from user */ 3277 void *fsdata; 3278 3279 offset = (pos & (PAGE_SIZE - 1)); 3280 bytes = min_t(unsigned long, PAGE_SIZE - offset, 3281 iov_iter_count(i)); 3282 3283 again: 3284 /* 3285 * Bring in the user page that we will copy from _first_. 3286 * Otherwise there's a nasty deadlock on copying from the 3287 * same page as we're writing to, without it being marked 3288 * up-to-date. 3289 * 3290 * Not only is this an optimisation, but it is also required 3291 * to check that the address is actually valid, when atomic 3292 * usercopies are used, below. 3293 */ 3294 if (unlikely(iov_iter_fault_in_readable(i, bytes))) { 3295 status = -EFAULT; 3296 break; 3297 } 3298 3299 if (fatal_signal_pending(current)) { 3300 status = -EINTR; 3301 break; 3302 } 3303 3304 status = a_ops->write_begin(file, mapping, pos, bytes, flags, 3305 &page, &fsdata); 3306 if (unlikely(status < 0)) 3307 break; 3308 3309 if (mapping_writably_mapped(mapping)) 3310 flush_dcache_page(page); 3311 3312 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); 3313 flush_dcache_page(page); 3314 3315 status = a_ops->write_end(file, mapping, pos, bytes, copied, 3316 page, fsdata); 3317 if (unlikely(status < 0)) 3318 break; 3319 copied = status; 3320 3321 cond_resched(); 3322 3323 iov_iter_advance(i, copied); 3324 if (unlikely(copied == 0)) { 3325 /* 3326 * If we were unable to copy any data at all, we must 3327 * fall back to a single segment length write. 3328 * 3329 * If we didn't fallback here, we could livelock 3330 * because not all segments in the iov can be copied at 3331 * once without a pagefault. 3332 */ 3333 bytes = min_t(unsigned long, PAGE_SIZE - offset, 3334 iov_iter_single_seg_count(i)); 3335 goto again; 3336 } 3337 pos += copied; 3338 written += copied; 3339 3340 balance_dirty_pages_ratelimited(mapping); 3341 } while (iov_iter_count(i)); 3342 3343 return written ? written : status; 3344 } 3345 EXPORT_SYMBOL(generic_perform_write); 3346 3347 /** 3348 * __generic_file_write_iter - write data to a file 3349 * @iocb: IO state structure (file, offset, etc.) 3350 * @from: iov_iter with data to write 3351 * 3352 * This function does all the work needed for actually writing data to a 3353 * file. It does all basic checks, removes SUID from the file, updates 3354 * modification times and calls proper subroutines depending on whether we 3355 * do direct IO or a standard buffered write. 3356 * 3357 * It expects i_mutex to be grabbed unless we work on a block device or similar 3358 * object which does not need locking at all. 3359 * 3360 * This function does *not* take care of syncing data in case of O_SYNC write. 3361 * A caller has to handle it. This is mainly due to the fact that we want to 3362 * avoid syncing under i_mutex. 3363 * 3364 * Return: 3365 * * number of bytes written, even for truncated writes 3366 * * negative error code if no data has been written at all 3367 */ 3368 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3369 { 3370 struct file *file = iocb->ki_filp; 3371 struct address_space * mapping = file->f_mapping; 3372 struct inode *inode = mapping->host; 3373 ssize_t written = 0; 3374 ssize_t err; 3375 ssize_t status; 3376 3377 /* We can write back this queue in page reclaim */ 3378 current->backing_dev_info = inode_to_bdi(inode); 3379 err = file_remove_privs(file); 3380 if (err) 3381 goto out; 3382 3383 err = file_update_time(file); 3384 if (err) 3385 goto out; 3386 3387 if (iocb->ki_flags & IOCB_DIRECT) { 3388 loff_t pos, endbyte; 3389 3390 written = generic_file_direct_write(iocb, from); 3391 /* 3392 * If the write stopped short of completing, fall back to 3393 * buffered writes. Some filesystems do this for writes to 3394 * holes, for example. For DAX files, a buffered write will 3395 * not succeed (even if it did, DAX does not handle dirty 3396 * page-cache pages correctly). 3397 */ 3398 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode)) 3399 goto out; 3400 3401 status = generic_perform_write(file, from, pos = iocb->ki_pos); 3402 /* 3403 * If generic_perform_write() returned a synchronous error 3404 * then we want to return the number of bytes which were 3405 * direct-written, or the error code if that was zero. Note 3406 * that this differs from normal direct-io semantics, which 3407 * will return -EFOO even if some bytes were written. 3408 */ 3409 if (unlikely(status < 0)) { 3410 err = status; 3411 goto out; 3412 } 3413 /* 3414 * We need to ensure that the page cache pages are written to 3415 * disk and invalidated to preserve the expected O_DIRECT 3416 * semantics. 3417 */ 3418 endbyte = pos + status - 1; 3419 err = filemap_write_and_wait_range(mapping, pos, endbyte); 3420 if (err == 0) { 3421 iocb->ki_pos = endbyte + 1; 3422 written += status; 3423 invalidate_mapping_pages(mapping, 3424 pos >> PAGE_SHIFT, 3425 endbyte >> PAGE_SHIFT); 3426 } else { 3427 /* 3428 * We don't know how much we wrote, so just return 3429 * the number of bytes which were direct-written 3430 */ 3431 } 3432 } else { 3433 written = generic_perform_write(file, from, iocb->ki_pos); 3434 if (likely(written > 0)) 3435 iocb->ki_pos += written; 3436 } 3437 out: 3438 current->backing_dev_info = NULL; 3439 return written ? written : err; 3440 } 3441 EXPORT_SYMBOL(__generic_file_write_iter); 3442 3443 /** 3444 * generic_file_write_iter - write data to a file 3445 * @iocb: IO state structure 3446 * @from: iov_iter with data to write 3447 * 3448 * This is a wrapper around __generic_file_write_iter() to be used by most 3449 * filesystems. It takes care of syncing the file in case of O_SYNC file 3450 * and acquires i_mutex as needed. 3451 * Return: 3452 * * negative error code if no data has been written at all of 3453 * vfs_fsync_range() failed for a synchronous write 3454 * * number of bytes written, even for truncated writes 3455 */ 3456 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3457 { 3458 struct file *file = iocb->ki_filp; 3459 struct inode *inode = file->f_mapping->host; 3460 ssize_t ret; 3461 3462 inode_lock(inode); 3463 ret = generic_write_checks(iocb, from); 3464 if (ret > 0) 3465 ret = __generic_file_write_iter(iocb, from); 3466 inode_unlock(inode); 3467 3468 if (ret > 0) 3469 ret = generic_write_sync(iocb, ret); 3470 return ret; 3471 } 3472 EXPORT_SYMBOL(generic_file_write_iter); 3473 3474 /** 3475 * try_to_release_page() - release old fs-specific metadata on a page 3476 * 3477 * @page: the page which the kernel is trying to free 3478 * @gfp_mask: memory allocation flags (and I/O mode) 3479 * 3480 * The address_space is to try to release any data against the page 3481 * (presumably at page->private). 3482 * 3483 * This may also be called if PG_fscache is set on a page, indicating that the 3484 * page is known to the local caching routines. 3485 * 3486 * The @gfp_mask argument specifies whether I/O may be performed to release 3487 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS). 3488 * 3489 * Return: %1 if the release was successful, otherwise return zero. 3490 */ 3491 int try_to_release_page(struct page *page, gfp_t gfp_mask) 3492 { 3493 struct address_space * const mapping = page->mapping; 3494 3495 BUG_ON(!PageLocked(page)); 3496 if (PageWriteback(page)) 3497 return 0; 3498 3499 if (mapping && mapping->a_ops->releasepage) 3500 return mapping->a_ops->releasepage(page, gfp_mask); 3501 return try_to_free_buffers(page); 3502 } 3503 3504 EXPORT_SYMBOL(try_to_release_page); 3505