1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/filemap.c 4 * 5 * Copyright (C) 1994-1999 Linus Torvalds 6 */ 7 8 /* 9 * This file handles the generic file mmap semantics used by 10 * most "normal" filesystems (but you don't /have/ to use this: 11 * the NFS filesystem used to do this differently, for example) 12 */ 13 #include <linux/export.h> 14 #include <linux/compiler.h> 15 #include <linux/dax.h> 16 #include <linux/fs.h> 17 #include <linux/sched/signal.h> 18 #include <linux/uaccess.h> 19 #include <linux/capability.h> 20 #include <linux/kernel_stat.h> 21 #include <linux/gfp.h> 22 #include <linux/mm.h> 23 #include <linux/swap.h> 24 #include <linux/mman.h> 25 #include <linux/pagemap.h> 26 #include <linux/file.h> 27 #include <linux/uio.h> 28 #include <linux/error-injection.h> 29 #include <linux/hash.h> 30 #include <linux/writeback.h> 31 #include <linux/backing-dev.h> 32 #include <linux/pagevec.h> 33 #include <linux/security.h> 34 #include <linux/cpuset.h> 35 #include <linux/hugetlb.h> 36 #include <linux/memcontrol.h> 37 #include <linux/cleancache.h> 38 #include <linux/shmem_fs.h> 39 #include <linux/rmap.h> 40 #include <linux/delayacct.h> 41 #include <linux/psi.h> 42 #include <linux/ramfs.h> 43 #include <linux/page_idle.h> 44 #include <asm/pgalloc.h> 45 #include <asm/tlbflush.h> 46 #include "internal.h" 47 48 #define CREATE_TRACE_POINTS 49 #include <trace/events/filemap.h> 50 51 /* 52 * FIXME: remove all knowledge of the buffer layer from the core VM 53 */ 54 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 55 56 #include <asm/mman.h> 57 58 /* 59 * Shared mappings implemented 30.11.1994. It's not fully working yet, 60 * though. 61 * 62 * Shared mappings now work. 15.8.1995 Bruno. 63 * 64 * finished 'unifying' the page and buffer cache and SMP-threaded the 65 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 66 * 67 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 68 */ 69 70 /* 71 * Lock ordering: 72 * 73 * ->i_mmap_rwsem (truncate_pagecache) 74 * ->private_lock (__free_pte->__set_page_dirty_buffers) 75 * ->swap_lock (exclusive_swap_page, others) 76 * ->i_pages lock 77 * 78 * ->i_rwsem 79 * ->invalidate_lock (acquired by fs in truncate path) 80 * ->i_mmap_rwsem (truncate->unmap_mapping_range) 81 * 82 * ->mmap_lock 83 * ->i_mmap_rwsem 84 * ->page_table_lock or pte_lock (various, mainly in memory.c) 85 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock) 86 * 87 * ->mmap_lock 88 * ->invalidate_lock (filemap_fault) 89 * ->lock_page (filemap_fault, access_process_vm) 90 * 91 * ->i_rwsem (generic_perform_write) 92 * ->mmap_lock (fault_in_pages_readable->do_page_fault) 93 * 94 * bdi->wb.list_lock 95 * sb_lock (fs/fs-writeback.c) 96 * ->i_pages lock (__sync_single_inode) 97 * 98 * ->i_mmap_rwsem 99 * ->anon_vma.lock (vma_adjust) 100 * 101 * ->anon_vma.lock 102 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 103 * 104 * ->page_table_lock or pte_lock 105 * ->swap_lock (try_to_unmap_one) 106 * ->private_lock (try_to_unmap_one) 107 * ->i_pages lock (try_to_unmap_one) 108 * ->lruvec->lru_lock (follow_page->mark_page_accessed) 109 * ->lruvec->lru_lock (check_pte_range->isolate_lru_page) 110 * ->private_lock (page_remove_rmap->set_page_dirty) 111 * ->i_pages lock (page_remove_rmap->set_page_dirty) 112 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty) 113 * ->inode->i_lock (page_remove_rmap->set_page_dirty) 114 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg) 115 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 116 * ->inode->i_lock (zap_pte_range->set_page_dirty) 117 * ->private_lock (zap_pte_range->__set_page_dirty_buffers) 118 * 119 * ->i_mmap_rwsem 120 * ->tasklist_lock (memory_failure, collect_procs_ao) 121 */ 122 123 static void page_cache_delete(struct address_space *mapping, 124 struct page *page, void *shadow) 125 { 126 XA_STATE(xas, &mapping->i_pages, page->index); 127 unsigned int nr = 1; 128 129 mapping_set_update(&xas, mapping); 130 131 /* hugetlb pages are represented by a single entry in the xarray */ 132 if (!PageHuge(page)) { 133 xas_set_order(&xas, page->index, compound_order(page)); 134 nr = compound_nr(page); 135 } 136 137 VM_BUG_ON_PAGE(!PageLocked(page), page); 138 VM_BUG_ON_PAGE(PageTail(page), page); 139 VM_BUG_ON_PAGE(nr != 1 && shadow, page); 140 141 xas_store(&xas, shadow); 142 xas_init_marks(&xas); 143 144 page->mapping = NULL; 145 /* Leave page->index set: truncation lookup relies upon it */ 146 mapping->nrpages -= nr; 147 } 148 149 static void unaccount_page_cache_page(struct address_space *mapping, 150 struct page *page) 151 { 152 int nr; 153 154 /* 155 * if we're uptodate, flush out into the cleancache, otherwise 156 * invalidate any existing cleancache entries. We can't leave 157 * stale data around in the cleancache once our page is gone 158 */ 159 if (PageUptodate(page) && PageMappedToDisk(page)) 160 cleancache_put_page(page); 161 else 162 cleancache_invalidate_page(mapping, page); 163 164 VM_BUG_ON_PAGE(PageTail(page), page); 165 VM_BUG_ON_PAGE(page_mapped(page), page); 166 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) { 167 int mapcount; 168 169 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n", 170 current->comm, page_to_pfn(page)); 171 dump_page(page, "still mapped when deleted"); 172 dump_stack(); 173 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 174 175 mapcount = page_mapcount(page); 176 if (mapping_exiting(mapping) && 177 page_count(page) >= mapcount + 2) { 178 /* 179 * All vmas have already been torn down, so it's 180 * a good bet that actually the page is unmapped, 181 * and we'd prefer not to leak it: if we're wrong, 182 * some other bad page check should catch it later. 183 */ 184 page_mapcount_reset(page); 185 page_ref_sub(page, mapcount); 186 } 187 } 188 189 /* hugetlb pages do not participate in page cache accounting. */ 190 if (PageHuge(page)) 191 return; 192 193 nr = thp_nr_pages(page); 194 195 __mod_lruvec_page_state(page, NR_FILE_PAGES, -nr); 196 if (PageSwapBacked(page)) { 197 __mod_lruvec_page_state(page, NR_SHMEM, -nr); 198 if (PageTransHuge(page)) 199 __mod_lruvec_page_state(page, NR_SHMEM_THPS, -nr); 200 } else if (PageTransHuge(page)) { 201 __mod_lruvec_page_state(page, NR_FILE_THPS, -nr); 202 filemap_nr_thps_dec(mapping); 203 } 204 205 /* 206 * At this point page must be either written or cleaned by 207 * truncate. Dirty page here signals a bug and loss of 208 * unwritten data. 209 * 210 * This fixes dirty accounting after removing the page entirely 211 * but leaves PageDirty set: it has no effect for truncated 212 * page and anyway will be cleared before returning page into 213 * buddy allocator. 214 */ 215 if (WARN_ON_ONCE(PageDirty(page))) 216 account_page_cleaned(page, mapping, inode_to_wb(mapping->host)); 217 } 218 219 /* 220 * Delete a page from the page cache and free it. Caller has to make 221 * sure the page is locked and that nobody else uses it - or that usage 222 * is safe. The caller must hold the i_pages lock. 223 */ 224 void __delete_from_page_cache(struct page *page, void *shadow) 225 { 226 struct address_space *mapping = page->mapping; 227 228 trace_mm_filemap_delete_from_page_cache(page); 229 230 unaccount_page_cache_page(mapping, page); 231 page_cache_delete(mapping, page, shadow); 232 } 233 234 static void page_cache_free_page(struct address_space *mapping, 235 struct page *page) 236 { 237 void (*freepage)(struct page *); 238 239 freepage = mapping->a_ops->freepage; 240 if (freepage) 241 freepage(page); 242 243 if (PageTransHuge(page) && !PageHuge(page)) { 244 page_ref_sub(page, thp_nr_pages(page)); 245 VM_BUG_ON_PAGE(page_count(page) <= 0, page); 246 } else { 247 put_page(page); 248 } 249 } 250 251 /** 252 * delete_from_page_cache - delete page from page cache 253 * @page: the page which the kernel is trying to remove from page cache 254 * 255 * This must be called only on pages that have been verified to be in the page 256 * cache and locked. It will never put the page into the free list, the caller 257 * has a reference on the page. 258 */ 259 void delete_from_page_cache(struct page *page) 260 { 261 struct address_space *mapping = page_mapping(page); 262 263 BUG_ON(!PageLocked(page)); 264 xa_lock_irq(&mapping->i_pages); 265 __delete_from_page_cache(page, NULL); 266 xa_unlock_irq(&mapping->i_pages); 267 268 page_cache_free_page(mapping, page); 269 } 270 EXPORT_SYMBOL(delete_from_page_cache); 271 272 /* 273 * page_cache_delete_batch - delete several pages from page cache 274 * @mapping: the mapping to which pages belong 275 * @pvec: pagevec with pages to delete 276 * 277 * The function walks over mapping->i_pages and removes pages passed in @pvec 278 * from the mapping. The function expects @pvec to be sorted by page index 279 * and is optimised for it to be dense. 280 * It tolerates holes in @pvec (mapping entries at those indices are not 281 * modified). The function expects only THP head pages to be present in the 282 * @pvec. 283 * 284 * The function expects the i_pages lock to be held. 285 */ 286 static void page_cache_delete_batch(struct address_space *mapping, 287 struct pagevec *pvec) 288 { 289 XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index); 290 int total_pages = 0; 291 int i = 0; 292 struct page *page; 293 294 mapping_set_update(&xas, mapping); 295 xas_for_each(&xas, page, ULONG_MAX) { 296 if (i >= pagevec_count(pvec)) 297 break; 298 299 /* A swap/dax/shadow entry got inserted? Skip it. */ 300 if (xa_is_value(page)) 301 continue; 302 /* 303 * A page got inserted in our range? Skip it. We have our 304 * pages locked so they are protected from being removed. 305 * If we see a page whose index is higher than ours, it 306 * means our page has been removed, which shouldn't be 307 * possible because we're holding the PageLock. 308 */ 309 if (page != pvec->pages[i]) { 310 VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index, 311 page); 312 continue; 313 } 314 315 WARN_ON_ONCE(!PageLocked(page)); 316 317 if (page->index == xas.xa_index) 318 page->mapping = NULL; 319 /* Leave page->index set: truncation lookup relies on it */ 320 321 /* 322 * Move to the next page in the vector if this is a regular 323 * page or the index is of the last sub-page of this compound 324 * page. 325 */ 326 if (page->index + compound_nr(page) - 1 == xas.xa_index) 327 i++; 328 xas_store(&xas, NULL); 329 total_pages++; 330 } 331 mapping->nrpages -= total_pages; 332 } 333 334 void delete_from_page_cache_batch(struct address_space *mapping, 335 struct pagevec *pvec) 336 { 337 int i; 338 339 if (!pagevec_count(pvec)) 340 return; 341 342 xa_lock_irq(&mapping->i_pages); 343 for (i = 0; i < pagevec_count(pvec); i++) { 344 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]); 345 346 unaccount_page_cache_page(mapping, pvec->pages[i]); 347 } 348 page_cache_delete_batch(mapping, pvec); 349 xa_unlock_irq(&mapping->i_pages); 350 351 for (i = 0; i < pagevec_count(pvec); i++) 352 page_cache_free_page(mapping, pvec->pages[i]); 353 } 354 355 int filemap_check_errors(struct address_space *mapping) 356 { 357 int ret = 0; 358 /* Check for outstanding write errors */ 359 if (test_bit(AS_ENOSPC, &mapping->flags) && 360 test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 361 ret = -ENOSPC; 362 if (test_bit(AS_EIO, &mapping->flags) && 363 test_and_clear_bit(AS_EIO, &mapping->flags)) 364 ret = -EIO; 365 return ret; 366 } 367 EXPORT_SYMBOL(filemap_check_errors); 368 369 static int filemap_check_and_keep_errors(struct address_space *mapping) 370 { 371 /* Check for outstanding write errors */ 372 if (test_bit(AS_EIO, &mapping->flags)) 373 return -EIO; 374 if (test_bit(AS_ENOSPC, &mapping->flags)) 375 return -ENOSPC; 376 return 0; 377 } 378 379 /** 380 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range 381 * @mapping: address space structure to write 382 * @wbc: the writeback_control controlling the writeout 383 * 384 * Call writepages on the mapping using the provided wbc to control the 385 * writeout. 386 * 387 * Return: %0 on success, negative error code otherwise. 388 */ 389 int filemap_fdatawrite_wbc(struct address_space *mapping, 390 struct writeback_control *wbc) 391 { 392 int ret; 393 394 if (!mapping_can_writeback(mapping) || 395 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 396 return 0; 397 398 wbc_attach_fdatawrite_inode(wbc, mapping->host); 399 ret = do_writepages(mapping, wbc); 400 wbc_detach_inode(wbc); 401 return ret; 402 } 403 EXPORT_SYMBOL(filemap_fdatawrite_wbc); 404 405 /** 406 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 407 * @mapping: address space structure to write 408 * @start: offset in bytes where the range starts 409 * @end: offset in bytes where the range ends (inclusive) 410 * @sync_mode: enable synchronous operation 411 * 412 * Start writeback against all of a mapping's dirty pages that lie 413 * within the byte offsets <start, end> inclusive. 414 * 415 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 416 * opposed to a regular memory cleansing writeback. The difference between 417 * these two operations is that if a dirty page/buffer is encountered, it must 418 * be waited upon, and not just skipped over. 419 * 420 * Return: %0 on success, negative error code otherwise. 421 */ 422 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 423 loff_t end, int sync_mode) 424 { 425 struct writeback_control wbc = { 426 .sync_mode = sync_mode, 427 .nr_to_write = LONG_MAX, 428 .range_start = start, 429 .range_end = end, 430 }; 431 432 return filemap_fdatawrite_wbc(mapping, &wbc); 433 } 434 435 static inline int __filemap_fdatawrite(struct address_space *mapping, 436 int sync_mode) 437 { 438 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 439 } 440 441 int filemap_fdatawrite(struct address_space *mapping) 442 { 443 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 444 } 445 EXPORT_SYMBOL(filemap_fdatawrite); 446 447 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 448 loff_t end) 449 { 450 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 451 } 452 EXPORT_SYMBOL(filemap_fdatawrite_range); 453 454 /** 455 * filemap_flush - mostly a non-blocking flush 456 * @mapping: target address_space 457 * 458 * This is a mostly non-blocking flush. Not suitable for data-integrity 459 * purposes - I/O may not be started against all dirty pages. 460 * 461 * Return: %0 on success, negative error code otherwise. 462 */ 463 int filemap_flush(struct address_space *mapping) 464 { 465 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 466 } 467 EXPORT_SYMBOL(filemap_flush); 468 469 /** 470 * filemap_range_has_page - check if a page exists in range. 471 * @mapping: address space within which to check 472 * @start_byte: offset in bytes where the range starts 473 * @end_byte: offset in bytes where the range ends (inclusive) 474 * 475 * Find at least one page in the range supplied, usually used to check if 476 * direct writing in this range will trigger a writeback. 477 * 478 * Return: %true if at least one page exists in the specified range, 479 * %false otherwise. 480 */ 481 bool filemap_range_has_page(struct address_space *mapping, 482 loff_t start_byte, loff_t end_byte) 483 { 484 struct page *page; 485 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 486 pgoff_t max = end_byte >> PAGE_SHIFT; 487 488 if (end_byte < start_byte) 489 return false; 490 491 rcu_read_lock(); 492 for (;;) { 493 page = xas_find(&xas, max); 494 if (xas_retry(&xas, page)) 495 continue; 496 /* Shadow entries don't count */ 497 if (xa_is_value(page)) 498 continue; 499 /* 500 * We don't need to try to pin this page; we're about to 501 * release the RCU lock anyway. It is enough to know that 502 * there was a page here recently. 503 */ 504 break; 505 } 506 rcu_read_unlock(); 507 508 return page != NULL; 509 } 510 EXPORT_SYMBOL(filemap_range_has_page); 511 512 static void __filemap_fdatawait_range(struct address_space *mapping, 513 loff_t start_byte, loff_t end_byte) 514 { 515 pgoff_t index = start_byte >> PAGE_SHIFT; 516 pgoff_t end = end_byte >> PAGE_SHIFT; 517 struct pagevec pvec; 518 int nr_pages; 519 520 if (end_byte < start_byte) 521 return; 522 523 pagevec_init(&pvec); 524 while (index <= end) { 525 unsigned i; 526 527 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, 528 end, PAGECACHE_TAG_WRITEBACK); 529 if (!nr_pages) 530 break; 531 532 for (i = 0; i < nr_pages; i++) { 533 struct page *page = pvec.pages[i]; 534 535 wait_on_page_writeback(page); 536 ClearPageError(page); 537 } 538 pagevec_release(&pvec); 539 cond_resched(); 540 } 541 } 542 543 /** 544 * filemap_fdatawait_range - wait for writeback to complete 545 * @mapping: address space structure to wait for 546 * @start_byte: offset in bytes where the range starts 547 * @end_byte: offset in bytes where the range ends (inclusive) 548 * 549 * Walk the list of under-writeback pages of the given address space 550 * in the given range and wait for all of them. Check error status of 551 * the address space and return it. 552 * 553 * Since the error status of the address space is cleared by this function, 554 * callers are responsible for checking the return value and handling and/or 555 * reporting the error. 556 * 557 * Return: error status of the address space. 558 */ 559 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 560 loff_t end_byte) 561 { 562 __filemap_fdatawait_range(mapping, start_byte, end_byte); 563 return filemap_check_errors(mapping); 564 } 565 EXPORT_SYMBOL(filemap_fdatawait_range); 566 567 /** 568 * filemap_fdatawait_range_keep_errors - wait for writeback to complete 569 * @mapping: address space structure to wait for 570 * @start_byte: offset in bytes where the range starts 571 * @end_byte: offset in bytes where the range ends (inclusive) 572 * 573 * Walk the list of under-writeback pages of the given address space in the 574 * given range and wait for all of them. Unlike filemap_fdatawait_range(), 575 * this function does not clear error status of the address space. 576 * 577 * Use this function if callers don't handle errors themselves. Expected 578 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 579 * fsfreeze(8) 580 */ 581 int filemap_fdatawait_range_keep_errors(struct address_space *mapping, 582 loff_t start_byte, loff_t end_byte) 583 { 584 __filemap_fdatawait_range(mapping, start_byte, end_byte); 585 return filemap_check_and_keep_errors(mapping); 586 } 587 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors); 588 589 /** 590 * file_fdatawait_range - wait for writeback to complete 591 * @file: file pointing to address space structure to wait for 592 * @start_byte: offset in bytes where the range starts 593 * @end_byte: offset in bytes where the range ends (inclusive) 594 * 595 * Walk the list of under-writeback pages of the address space that file 596 * refers to, in the given range and wait for all of them. Check error 597 * status of the address space vs. the file->f_wb_err cursor and return it. 598 * 599 * Since the error status of the file is advanced by this function, 600 * callers are responsible for checking the return value and handling and/or 601 * reporting the error. 602 * 603 * Return: error status of the address space vs. the file->f_wb_err cursor. 604 */ 605 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte) 606 { 607 struct address_space *mapping = file->f_mapping; 608 609 __filemap_fdatawait_range(mapping, start_byte, end_byte); 610 return file_check_and_advance_wb_err(file); 611 } 612 EXPORT_SYMBOL(file_fdatawait_range); 613 614 /** 615 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors 616 * @mapping: address space structure to wait for 617 * 618 * Walk the list of under-writeback pages of the given address space 619 * and wait for all of them. Unlike filemap_fdatawait(), this function 620 * does not clear error status of the address space. 621 * 622 * Use this function if callers don't handle errors themselves. Expected 623 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 624 * fsfreeze(8) 625 * 626 * Return: error status of the address space. 627 */ 628 int filemap_fdatawait_keep_errors(struct address_space *mapping) 629 { 630 __filemap_fdatawait_range(mapping, 0, LLONG_MAX); 631 return filemap_check_and_keep_errors(mapping); 632 } 633 EXPORT_SYMBOL(filemap_fdatawait_keep_errors); 634 635 /* Returns true if writeback might be needed or already in progress. */ 636 static bool mapping_needs_writeback(struct address_space *mapping) 637 { 638 return mapping->nrpages; 639 } 640 641 /** 642 * filemap_range_needs_writeback - check if range potentially needs writeback 643 * @mapping: address space within which to check 644 * @start_byte: offset in bytes where the range starts 645 * @end_byte: offset in bytes where the range ends (inclusive) 646 * 647 * Find at least one page in the range supplied, usually used to check if 648 * direct writing in this range will trigger a writeback. Used by O_DIRECT 649 * read/write with IOCB_NOWAIT, to see if the caller needs to do 650 * filemap_write_and_wait_range() before proceeding. 651 * 652 * Return: %true if the caller should do filemap_write_and_wait_range() before 653 * doing O_DIRECT to a page in this range, %false otherwise. 654 */ 655 bool filemap_range_needs_writeback(struct address_space *mapping, 656 loff_t start_byte, loff_t end_byte) 657 { 658 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 659 pgoff_t max = end_byte >> PAGE_SHIFT; 660 struct page *page; 661 662 if (!mapping_needs_writeback(mapping)) 663 return false; 664 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 665 !mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) 666 return false; 667 if (end_byte < start_byte) 668 return false; 669 670 rcu_read_lock(); 671 xas_for_each(&xas, page, max) { 672 if (xas_retry(&xas, page)) 673 continue; 674 if (xa_is_value(page)) 675 continue; 676 if (PageDirty(page) || PageLocked(page) || PageWriteback(page)) 677 break; 678 } 679 rcu_read_unlock(); 680 return page != NULL; 681 } 682 EXPORT_SYMBOL_GPL(filemap_range_needs_writeback); 683 684 /** 685 * filemap_write_and_wait_range - write out & wait on a file range 686 * @mapping: the address_space for the pages 687 * @lstart: offset in bytes where the range starts 688 * @lend: offset in bytes where the range ends (inclusive) 689 * 690 * Write out and wait upon file offsets lstart->lend, inclusive. 691 * 692 * Note that @lend is inclusive (describes the last byte to be written) so 693 * that this function can be used to write to the very end-of-file (end = -1). 694 * 695 * Return: error status of the address space. 696 */ 697 int filemap_write_and_wait_range(struct address_space *mapping, 698 loff_t lstart, loff_t lend) 699 { 700 int err = 0; 701 702 if (mapping_needs_writeback(mapping)) { 703 err = __filemap_fdatawrite_range(mapping, lstart, lend, 704 WB_SYNC_ALL); 705 /* 706 * Even if the above returned error, the pages may be 707 * written partially (e.g. -ENOSPC), so we wait for it. 708 * But the -EIO is special case, it may indicate the worst 709 * thing (e.g. bug) happened, so we avoid waiting for it. 710 */ 711 if (err != -EIO) { 712 int err2 = filemap_fdatawait_range(mapping, 713 lstart, lend); 714 if (!err) 715 err = err2; 716 } else { 717 /* Clear any previously stored errors */ 718 filemap_check_errors(mapping); 719 } 720 } else { 721 err = filemap_check_errors(mapping); 722 } 723 return err; 724 } 725 EXPORT_SYMBOL(filemap_write_and_wait_range); 726 727 void __filemap_set_wb_err(struct address_space *mapping, int err) 728 { 729 errseq_t eseq = errseq_set(&mapping->wb_err, err); 730 731 trace_filemap_set_wb_err(mapping, eseq); 732 } 733 EXPORT_SYMBOL(__filemap_set_wb_err); 734 735 /** 736 * file_check_and_advance_wb_err - report wb error (if any) that was previously 737 * and advance wb_err to current one 738 * @file: struct file on which the error is being reported 739 * 740 * When userland calls fsync (or something like nfsd does the equivalent), we 741 * want to report any writeback errors that occurred since the last fsync (or 742 * since the file was opened if there haven't been any). 743 * 744 * Grab the wb_err from the mapping. If it matches what we have in the file, 745 * then just quickly return 0. The file is all caught up. 746 * 747 * If it doesn't match, then take the mapping value, set the "seen" flag in 748 * it and try to swap it into place. If it works, or another task beat us 749 * to it with the new value, then update the f_wb_err and return the error 750 * portion. The error at this point must be reported via proper channels 751 * (a'la fsync, or NFS COMMIT operation, etc.). 752 * 753 * While we handle mapping->wb_err with atomic operations, the f_wb_err 754 * value is protected by the f_lock since we must ensure that it reflects 755 * the latest value swapped in for this file descriptor. 756 * 757 * Return: %0 on success, negative error code otherwise. 758 */ 759 int file_check_and_advance_wb_err(struct file *file) 760 { 761 int err = 0; 762 errseq_t old = READ_ONCE(file->f_wb_err); 763 struct address_space *mapping = file->f_mapping; 764 765 /* Locklessly handle the common case where nothing has changed */ 766 if (errseq_check(&mapping->wb_err, old)) { 767 /* Something changed, must use slow path */ 768 spin_lock(&file->f_lock); 769 old = file->f_wb_err; 770 err = errseq_check_and_advance(&mapping->wb_err, 771 &file->f_wb_err); 772 trace_file_check_and_advance_wb_err(file, old); 773 spin_unlock(&file->f_lock); 774 } 775 776 /* 777 * We're mostly using this function as a drop in replacement for 778 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect 779 * that the legacy code would have had on these flags. 780 */ 781 clear_bit(AS_EIO, &mapping->flags); 782 clear_bit(AS_ENOSPC, &mapping->flags); 783 return err; 784 } 785 EXPORT_SYMBOL(file_check_and_advance_wb_err); 786 787 /** 788 * file_write_and_wait_range - write out & wait on a file range 789 * @file: file pointing to address_space with pages 790 * @lstart: offset in bytes where the range starts 791 * @lend: offset in bytes where the range ends (inclusive) 792 * 793 * Write out and wait upon file offsets lstart->lend, inclusive. 794 * 795 * Note that @lend is inclusive (describes the last byte to be written) so 796 * that this function can be used to write to the very end-of-file (end = -1). 797 * 798 * After writing out and waiting on the data, we check and advance the 799 * f_wb_err cursor to the latest value, and return any errors detected there. 800 * 801 * Return: %0 on success, negative error code otherwise. 802 */ 803 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend) 804 { 805 int err = 0, err2; 806 struct address_space *mapping = file->f_mapping; 807 808 if (mapping_needs_writeback(mapping)) { 809 err = __filemap_fdatawrite_range(mapping, lstart, lend, 810 WB_SYNC_ALL); 811 /* See comment of filemap_write_and_wait() */ 812 if (err != -EIO) 813 __filemap_fdatawait_range(mapping, lstart, lend); 814 } 815 err2 = file_check_and_advance_wb_err(file); 816 if (!err) 817 err = err2; 818 return err; 819 } 820 EXPORT_SYMBOL(file_write_and_wait_range); 821 822 /** 823 * replace_page_cache_page - replace a pagecache page with a new one 824 * @old: page to be replaced 825 * @new: page to replace with 826 * 827 * This function replaces a page in the pagecache with a new one. On 828 * success it acquires the pagecache reference for the new page and 829 * drops it for the old page. Both the old and new pages must be 830 * locked. This function does not add the new page to the LRU, the 831 * caller must do that. 832 * 833 * The remove + add is atomic. This function cannot fail. 834 */ 835 void replace_page_cache_page(struct page *old, struct page *new) 836 { 837 struct folio *fold = page_folio(old); 838 struct folio *fnew = page_folio(new); 839 struct address_space *mapping = old->mapping; 840 void (*freepage)(struct page *) = mapping->a_ops->freepage; 841 pgoff_t offset = old->index; 842 XA_STATE(xas, &mapping->i_pages, offset); 843 844 VM_BUG_ON_PAGE(!PageLocked(old), old); 845 VM_BUG_ON_PAGE(!PageLocked(new), new); 846 VM_BUG_ON_PAGE(new->mapping, new); 847 848 get_page(new); 849 new->mapping = mapping; 850 new->index = offset; 851 852 mem_cgroup_migrate(fold, fnew); 853 854 xas_lock_irq(&xas); 855 xas_store(&xas, new); 856 857 old->mapping = NULL; 858 /* hugetlb pages do not participate in page cache accounting. */ 859 if (!PageHuge(old)) 860 __dec_lruvec_page_state(old, NR_FILE_PAGES); 861 if (!PageHuge(new)) 862 __inc_lruvec_page_state(new, NR_FILE_PAGES); 863 if (PageSwapBacked(old)) 864 __dec_lruvec_page_state(old, NR_SHMEM); 865 if (PageSwapBacked(new)) 866 __inc_lruvec_page_state(new, NR_SHMEM); 867 xas_unlock_irq(&xas); 868 if (freepage) 869 freepage(old); 870 put_page(old); 871 } 872 EXPORT_SYMBOL_GPL(replace_page_cache_page); 873 874 noinline int __filemap_add_folio(struct address_space *mapping, 875 struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp) 876 { 877 XA_STATE(xas, &mapping->i_pages, index); 878 int huge = folio_test_hugetlb(folio); 879 int error; 880 bool charged = false; 881 882 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 883 VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio); 884 mapping_set_update(&xas, mapping); 885 886 folio_get(folio); 887 folio->mapping = mapping; 888 folio->index = index; 889 890 if (!huge) { 891 error = mem_cgroup_charge(folio, NULL, gfp); 892 VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio); 893 if (error) 894 goto error; 895 charged = true; 896 } 897 898 gfp &= GFP_RECLAIM_MASK; 899 900 do { 901 unsigned int order = xa_get_order(xas.xa, xas.xa_index); 902 void *entry, *old = NULL; 903 904 if (order > folio_order(folio)) 905 xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index), 906 order, gfp); 907 xas_lock_irq(&xas); 908 xas_for_each_conflict(&xas, entry) { 909 old = entry; 910 if (!xa_is_value(entry)) { 911 xas_set_err(&xas, -EEXIST); 912 goto unlock; 913 } 914 } 915 916 if (old) { 917 if (shadowp) 918 *shadowp = old; 919 /* entry may have been split before we acquired lock */ 920 order = xa_get_order(xas.xa, xas.xa_index); 921 if (order > folio_order(folio)) { 922 xas_split(&xas, old, order); 923 xas_reset(&xas); 924 } 925 } 926 927 xas_store(&xas, folio); 928 if (xas_error(&xas)) 929 goto unlock; 930 931 mapping->nrpages++; 932 933 /* hugetlb pages do not participate in page cache accounting */ 934 if (!huge) 935 __lruvec_stat_add_folio(folio, NR_FILE_PAGES); 936 unlock: 937 xas_unlock_irq(&xas); 938 } while (xas_nomem(&xas, gfp)); 939 940 if (xas_error(&xas)) { 941 error = xas_error(&xas); 942 if (charged) 943 mem_cgroup_uncharge(folio); 944 goto error; 945 } 946 947 trace_mm_filemap_add_to_page_cache(&folio->page); 948 return 0; 949 error: 950 folio->mapping = NULL; 951 /* Leave page->index set: truncation relies upon it */ 952 folio_put(folio); 953 return error; 954 } 955 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO); 956 957 /** 958 * add_to_page_cache_locked - add a locked page to the pagecache 959 * @page: page to add 960 * @mapping: the page's address_space 961 * @offset: page index 962 * @gfp_mask: page allocation mode 963 * 964 * This function is used to add a page to the pagecache. It must be locked. 965 * This function does not add the page to the LRU. The caller must do that. 966 * 967 * Return: %0 on success, negative error code otherwise. 968 */ 969 int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 970 pgoff_t offset, gfp_t gfp_mask) 971 { 972 return __filemap_add_folio(mapping, page_folio(page), offset, 973 gfp_mask, NULL); 974 } 975 EXPORT_SYMBOL(add_to_page_cache_locked); 976 977 int filemap_add_folio(struct address_space *mapping, struct folio *folio, 978 pgoff_t index, gfp_t gfp) 979 { 980 void *shadow = NULL; 981 int ret; 982 983 __folio_set_locked(folio); 984 ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow); 985 if (unlikely(ret)) 986 __folio_clear_locked(folio); 987 else { 988 /* 989 * The folio might have been evicted from cache only 990 * recently, in which case it should be activated like 991 * any other repeatedly accessed folio. 992 * The exception is folios getting rewritten; evicting other 993 * data from the working set, only to cache data that will 994 * get overwritten with something else, is a waste of memory. 995 */ 996 WARN_ON_ONCE(folio_test_active(folio)); 997 if (!(gfp & __GFP_WRITE) && shadow) 998 workingset_refault(folio, shadow); 999 folio_add_lru(folio); 1000 } 1001 return ret; 1002 } 1003 EXPORT_SYMBOL_GPL(filemap_add_folio); 1004 1005 #ifdef CONFIG_NUMA 1006 struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order) 1007 { 1008 int n; 1009 struct folio *folio; 1010 1011 if (cpuset_do_page_mem_spread()) { 1012 unsigned int cpuset_mems_cookie; 1013 do { 1014 cpuset_mems_cookie = read_mems_allowed_begin(); 1015 n = cpuset_mem_spread_node(); 1016 folio = __folio_alloc_node(gfp, order, n); 1017 } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie)); 1018 1019 return folio; 1020 } 1021 return folio_alloc(gfp, order); 1022 } 1023 EXPORT_SYMBOL(filemap_alloc_folio); 1024 #endif 1025 1026 /* 1027 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings 1028 * 1029 * Lock exclusively invalidate_lock of any passed mapping that is not NULL. 1030 * 1031 * @mapping1: the first mapping to lock 1032 * @mapping2: the second mapping to lock 1033 */ 1034 void filemap_invalidate_lock_two(struct address_space *mapping1, 1035 struct address_space *mapping2) 1036 { 1037 if (mapping1 > mapping2) 1038 swap(mapping1, mapping2); 1039 if (mapping1) 1040 down_write(&mapping1->invalidate_lock); 1041 if (mapping2 && mapping1 != mapping2) 1042 down_write_nested(&mapping2->invalidate_lock, 1); 1043 } 1044 EXPORT_SYMBOL(filemap_invalidate_lock_two); 1045 1046 /* 1047 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings 1048 * 1049 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL. 1050 * 1051 * @mapping1: the first mapping to unlock 1052 * @mapping2: the second mapping to unlock 1053 */ 1054 void filemap_invalidate_unlock_two(struct address_space *mapping1, 1055 struct address_space *mapping2) 1056 { 1057 if (mapping1) 1058 up_write(&mapping1->invalidate_lock); 1059 if (mapping2 && mapping1 != mapping2) 1060 up_write(&mapping2->invalidate_lock); 1061 } 1062 EXPORT_SYMBOL(filemap_invalidate_unlock_two); 1063 1064 /* 1065 * In order to wait for pages to become available there must be 1066 * waitqueues associated with pages. By using a hash table of 1067 * waitqueues where the bucket discipline is to maintain all 1068 * waiters on the same queue and wake all when any of the pages 1069 * become available, and for the woken contexts to check to be 1070 * sure the appropriate page became available, this saves space 1071 * at a cost of "thundering herd" phenomena during rare hash 1072 * collisions. 1073 */ 1074 #define PAGE_WAIT_TABLE_BITS 8 1075 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS) 1076 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned; 1077 1078 static wait_queue_head_t *folio_waitqueue(struct folio *folio) 1079 { 1080 return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)]; 1081 } 1082 1083 void __init pagecache_init(void) 1084 { 1085 int i; 1086 1087 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++) 1088 init_waitqueue_head(&folio_wait_table[i]); 1089 1090 page_writeback_init(); 1091 } 1092 1093 /* 1094 * The page wait code treats the "wait->flags" somewhat unusually, because 1095 * we have multiple different kinds of waits, not just the usual "exclusive" 1096 * one. 1097 * 1098 * We have: 1099 * 1100 * (a) no special bits set: 1101 * 1102 * We're just waiting for the bit to be released, and when a waker 1103 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up, 1104 * and remove it from the wait queue. 1105 * 1106 * Simple and straightforward. 1107 * 1108 * (b) WQ_FLAG_EXCLUSIVE: 1109 * 1110 * The waiter is waiting to get the lock, and only one waiter should 1111 * be woken up to avoid any thundering herd behavior. We'll set the 1112 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue. 1113 * 1114 * This is the traditional exclusive wait. 1115 * 1116 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM: 1117 * 1118 * The waiter is waiting to get the bit, and additionally wants the 1119 * lock to be transferred to it for fair lock behavior. If the lock 1120 * cannot be taken, we stop walking the wait queue without waking 1121 * the waiter. 1122 * 1123 * This is the "fair lock handoff" case, and in addition to setting 1124 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see 1125 * that it now has the lock. 1126 */ 1127 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg) 1128 { 1129 unsigned int flags; 1130 struct wait_page_key *key = arg; 1131 struct wait_page_queue *wait_page 1132 = container_of(wait, struct wait_page_queue, wait); 1133 1134 if (!wake_page_match(wait_page, key)) 1135 return 0; 1136 1137 /* 1138 * If it's a lock handoff wait, we get the bit for it, and 1139 * stop walking (and do not wake it up) if we can't. 1140 */ 1141 flags = wait->flags; 1142 if (flags & WQ_FLAG_EXCLUSIVE) { 1143 if (test_bit(key->bit_nr, &key->folio->flags)) 1144 return -1; 1145 if (flags & WQ_FLAG_CUSTOM) { 1146 if (test_and_set_bit(key->bit_nr, &key->folio->flags)) 1147 return -1; 1148 flags |= WQ_FLAG_DONE; 1149 } 1150 } 1151 1152 /* 1153 * We are holding the wait-queue lock, but the waiter that 1154 * is waiting for this will be checking the flags without 1155 * any locking. 1156 * 1157 * So update the flags atomically, and wake up the waiter 1158 * afterwards to avoid any races. This store-release pairs 1159 * with the load-acquire in folio_wait_bit_common(). 1160 */ 1161 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN); 1162 wake_up_state(wait->private, mode); 1163 1164 /* 1165 * Ok, we have successfully done what we're waiting for, 1166 * and we can unconditionally remove the wait entry. 1167 * 1168 * Note that this pairs with the "finish_wait()" in the 1169 * waiter, and has to be the absolute last thing we do. 1170 * After this list_del_init(&wait->entry) the wait entry 1171 * might be de-allocated and the process might even have 1172 * exited. 1173 */ 1174 list_del_init_careful(&wait->entry); 1175 return (flags & WQ_FLAG_EXCLUSIVE) != 0; 1176 } 1177 1178 static void folio_wake_bit(struct folio *folio, int bit_nr) 1179 { 1180 wait_queue_head_t *q = folio_waitqueue(folio); 1181 struct wait_page_key key; 1182 unsigned long flags; 1183 wait_queue_entry_t bookmark; 1184 1185 key.folio = folio; 1186 key.bit_nr = bit_nr; 1187 key.page_match = 0; 1188 1189 bookmark.flags = 0; 1190 bookmark.private = NULL; 1191 bookmark.func = NULL; 1192 INIT_LIST_HEAD(&bookmark.entry); 1193 1194 spin_lock_irqsave(&q->lock, flags); 1195 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); 1196 1197 while (bookmark.flags & WQ_FLAG_BOOKMARK) { 1198 /* 1199 * Take a breather from holding the lock, 1200 * allow pages that finish wake up asynchronously 1201 * to acquire the lock and remove themselves 1202 * from wait queue 1203 */ 1204 spin_unlock_irqrestore(&q->lock, flags); 1205 cpu_relax(); 1206 spin_lock_irqsave(&q->lock, flags); 1207 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); 1208 } 1209 1210 /* 1211 * It is possible for other pages to have collided on the waitqueue 1212 * hash, so in that case check for a page match. That prevents a long- 1213 * term waiter 1214 * 1215 * It is still possible to miss a case here, when we woke page waiters 1216 * and removed them from the waitqueue, but there are still other 1217 * page waiters. 1218 */ 1219 if (!waitqueue_active(q) || !key.page_match) { 1220 folio_clear_waiters(folio); 1221 /* 1222 * It's possible to miss clearing Waiters here, when we woke 1223 * our page waiters, but the hashed waitqueue has waiters for 1224 * other pages on it. 1225 * 1226 * That's okay, it's a rare case. The next waker will clear it. 1227 */ 1228 } 1229 spin_unlock_irqrestore(&q->lock, flags); 1230 } 1231 1232 static void folio_wake(struct folio *folio, int bit) 1233 { 1234 if (!folio_test_waiters(folio)) 1235 return; 1236 folio_wake_bit(folio, bit); 1237 } 1238 1239 /* 1240 * A choice of three behaviors for folio_wait_bit_common(): 1241 */ 1242 enum behavior { 1243 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like 1244 * __folio_lock() waiting on then setting PG_locked. 1245 */ 1246 SHARED, /* Hold ref to page and check the bit when woken, like 1247 * wait_on_page_writeback() waiting on PG_writeback. 1248 */ 1249 DROP, /* Drop ref to page before wait, no check when woken, 1250 * like put_and_wait_on_page_locked() on PG_locked. 1251 */ 1252 }; 1253 1254 /* 1255 * Attempt to check (or get) the folio flag, and mark us done 1256 * if successful. 1257 */ 1258 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr, 1259 struct wait_queue_entry *wait) 1260 { 1261 if (wait->flags & WQ_FLAG_EXCLUSIVE) { 1262 if (test_and_set_bit(bit_nr, &folio->flags)) 1263 return false; 1264 } else if (test_bit(bit_nr, &folio->flags)) 1265 return false; 1266 1267 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE; 1268 return true; 1269 } 1270 1271 /* How many times do we accept lock stealing from under a waiter? */ 1272 int sysctl_page_lock_unfairness = 5; 1273 1274 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr, 1275 int state, enum behavior behavior) 1276 { 1277 wait_queue_head_t *q = folio_waitqueue(folio); 1278 int unfairness = sysctl_page_lock_unfairness; 1279 struct wait_page_queue wait_page; 1280 wait_queue_entry_t *wait = &wait_page.wait; 1281 bool thrashing = false; 1282 bool delayacct = false; 1283 unsigned long pflags; 1284 1285 if (bit_nr == PG_locked && 1286 !folio_test_uptodate(folio) && folio_test_workingset(folio)) { 1287 if (!folio_test_swapbacked(folio)) { 1288 delayacct_thrashing_start(); 1289 delayacct = true; 1290 } 1291 psi_memstall_enter(&pflags); 1292 thrashing = true; 1293 } 1294 1295 init_wait(wait); 1296 wait->func = wake_page_function; 1297 wait_page.folio = folio; 1298 wait_page.bit_nr = bit_nr; 1299 1300 repeat: 1301 wait->flags = 0; 1302 if (behavior == EXCLUSIVE) { 1303 wait->flags = WQ_FLAG_EXCLUSIVE; 1304 if (--unfairness < 0) 1305 wait->flags |= WQ_FLAG_CUSTOM; 1306 } 1307 1308 /* 1309 * Do one last check whether we can get the 1310 * page bit synchronously. 1311 * 1312 * Do the folio_set_waiters() marking before that 1313 * to let any waker we _just_ missed know they 1314 * need to wake us up (otherwise they'll never 1315 * even go to the slow case that looks at the 1316 * page queue), and add ourselves to the wait 1317 * queue if we need to sleep. 1318 * 1319 * This part needs to be done under the queue 1320 * lock to avoid races. 1321 */ 1322 spin_lock_irq(&q->lock); 1323 folio_set_waiters(folio); 1324 if (!folio_trylock_flag(folio, bit_nr, wait)) 1325 __add_wait_queue_entry_tail(q, wait); 1326 spin_unlock_irq(&q->lock); 1327 1328 /* 1329 * From now on, all the logic will be based on 1330 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to 1331 * see whether the page bit testing has already 1332 * been done by the wake function. 1333 * 1334 * We can drop our reference to the folio. 1335 */ 1336 if (behavior == DROP) 1337 folio_put(folio); 1338 1339 /* 1340 * Note that until the "finish_wait()", or until 1341 * we see the WQ_FLAG_WOKEN flag, we need to 1342 * be very careful with the 'wait->flags', because 1343 * we may race with a waker that sets them. 1344 */ 1345 for (;;) { 1346 unsigned int flags; 1347 1348 set_current_state(state); 1349 1350 /* Loop until we've been woken or interrupted */ 1351 flags = smp_load_acquire(&wait->flags); 1352 if (!(flags & WQ_FLAG_WOKEN)) { 1353 if (signal_pending_state(state, current)) 1354 break; 1355 1356 io_schedule(); 1357 continue; 1358 } 1359 1360 /* If we were non-exclusive, we're done */ 1361 if (behavior != EXCLUSIVE) 1362 break; 1363 1364 /* If the waker got the lock for us, we're done */ 1365 if (flags & WQ_FLAG_DONE) 1366 break; 1367 1368 /* 1369 * Otherwise, if we're getting the lock, we need to 1370 * try to get it ourselves. 1371 * 1372 * And if that fails, we'll have to retry this all. 1373 */ 1374 if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0)))) 1375 goto repeat; 1376 1377 wait->flags |= WQ_FLAG_DONE; 1378 break; 1379 } 1380 1381 /* 1382 * If a signal happened, this 'finish_wait()' may remove the last 1383 * waiter from the wait-queues, but the folio waiters bit will remain 1384 * set. That's ok. The next wakeup will take care of it, and trying 1385 * to do it here would be difficult and prone to races. 1386 */ 1387 finish_wait(q, wait); 1388 1389 if (thrashing) { 1390 if (delayacct) 1391 delayacct_thrashing_end(); 1392 psi_memstall_leave(&pflags); 1393 } 1394 1395 /* 1396 * NOTE! The wait->flags weren't stable until we've done the 1397 * 'finish_wait()', and we could have exited the loop above due 1398 * to a signal, and had a wakeup event happen after the signal 1399 * test but before the 'finish_wait()'. 1400 * 1401 * So only after the finish_wait() can we reliably determine 1402 * if we got woken up or not, so we can now figure out the final 1403 * return value based on that state without races. 1404 * 1405 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive 1406 * waiter, but an exclusive one requires WQ_FLAG_DONE. 1407 */ 1408 if (behavior == EXCLUSIVE) 1409 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR; 1410 1411 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR; 1412 } 1413 1414 void folio_wait_bit(struct folio *folio, int bit_nr) 1415 { 1416 folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED); 1417 } 1418 EXPORT_SYMBOL(folio_wait_bit); 1419 1420 int folio_wait_bit_killable(struct folio *folio, int bit_nr) 1421 { 1422 return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED); 1423 } 1424 EXPORT_SYMBOL(folio_wait_bit_killable); 1425 1426 /** 1427 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked 1428 * @page: The page to wait for. 1429 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc). 1430 * 1431 * The caller should hold a reference on @page. They expect the page to 1432 * become unlocked relatively soon, but do not wish to hold up migration 1433 * (for example) by holding the reference while waiting for the page to 1434 * come unlocked. After this function returns, the caller should not 1435 * dereference @page. 1436 * 1437 * Return: 0 if the page was unlocked or -EINTR if interrupted by a signal. 1438 */ 1439 int put_and_wait_on_page_locked(struct page *page, int state) 1440 { 1441 return folio_wait_bit_common(page_folio(page), PG_locked, state, 1442 DROP); 1443 } 1444 1445 /** 1446 * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue 1447 * @folio: Folio defining the wait queue of interest 1448 * @waiter: Waiter to add to the queue 1449 * 1450 * Add an arbitrary @waiter to the wait queue for the nominated @folio. 1451 */ 1452 void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter) 1453 { 1454 wait_queue_head_t *q = folio_waitqueue(folio); 1455 unsigned long flags; 1456 1457 spin_lock_irqsave(&q->lock, flags); 1458 __add_wait_queue_entry_tail(q, waiter); 1459 folio_set_waiters(folio); 1460 spin_unlock_irqrestore(&q->lock, flags); 1461 } 1462 EXPORT_SYMBOL_GPL(folio_add_wait_queue); 1463 1464 #ifndef clear_bit_unlock_is_negative_byte 1465 1466 /* 1467 * PG_waiters is the high bit in the same byte as PG_lock. 1468 * 1469 * On x86 (and on many other architectures), we can clear PG_lock and 1470 * test the sign bit at the same time. But if the architecture does 1471 * not support that special operation, we just do this all by hand 1472 * instead. 1473 * 1474 * The read of PG_waiters has to be after (or concurrently with) PG_locked 1475 * being cleared, but a memory barrier should be unnecessary since it is 1476 * in the same byte as PG_locked. 1477 */ 1478 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem) 1479 { 1480 clear_bit_unlock(nr, mem); 1481 /* smp_mb__after_atomic(); */ 1482 return test_bit(PG_waiters, mem); 1483 } 1484 1485 #endif 1486 1487 /** 1488 * folio_unlock - Unlock a locked folio. 1489 * @folio: The folio. 1490 * 1491 * Unlocks the folio and wakes up any thread sleeping on the page lock. 1492 * 1493 * Context: May be called from interrupt or process context. May not be 1494 * called from NMI context. 1495 */ 1496 void folio_unlock(struct folio *folio) 1497 { 1498 /* Bit 7 allows x86 to check the byte's sign bit */ 1499 BUILD_BUG_ON(PG_waiters != 7); 1500 BUILD_BUG_ON(PG_locked > 7); 1501 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1502 if (clear_bit_unlock_is_negative_byte(PG_locked, folio_flags(folio, 0))) 1503 folio_wake_bit(folio, PG_locked); 1504 } 1505 EXPORT_SYMBOL(folio_unlock); 1506 1507 /** 1508 * folio_end_private_2 - Clear PG_private_2 and wake any waiters. 1509 * @folio: The folio. 1510 * 1511 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for 1512 * it. The folio reference held for PG_private_2 being set is released. 1513 * 1514 * This is, for example, used when a netfs folio is being written to a local 1515 * disk cache, thereby allowing writes to the cache for the same folio to be 1516 * serialised. 1517 */ 1518 void folio_end_private_2(struct folio *folio) 1519 { 1520 VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio); 1521 clear_bit_unlock(PG_private_2, folio_flags(folio, 0)); 1522 folio_wake_bit(folio, PG_private_2); 1523 folio_put(folio); 1524 } 1525 EXPORT_SYMBOL(folio_end_private_2); 1526 1527 /** 1528 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio. 1529 * @folio: The folio to wait on. 1530 * 1531 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio. 1532 */ 1533 void folio_wait_private_2(struct folio *folio) 1534 { 1535 while (folio_test_private_2(folio)) 1536 folio_wait_bit(folio, PG_private_2); 1537 } 1538 EXPORT_SYMBOL(folio_wait_private_2); 1539 1540 /** 1541 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio. 1542 * @folio: The folio to wait on. 1543 * 1544 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio or until a 1545 * fatal signal is received by the calling task. 1546 * 1547 * Return: 1548 * - 0 if successful. 1549 * - -EINTR if a fatal signal was encountered. 1550 */ 1551 int folio_wait_private_2_killable(struct folio *folio) 1552 { 1553 int ret = 0; 1554 1555 while (folio_test_private_2(folio)) { 1556 ret = folio_wait_bit_killable(folio, PG_private_2); 1557 if (ret < 0) 1558 break; 1559 } 1560 1561 return ret; 1562 } 1563 EXPORT_SYMBOL(folio_wait_private_2_killable); 1564 1565 /** 1566 * folio_end_writeback - End writeback against a folio. 1567 * @folio: The folio. 1568 */ 1569 void folio_end_writeback(struct folio *folio) 1570 { 1571 /* 1572 * folio_test_clear_reclaim() could be used here but it is an 1573 * atomic operation and overkill in this particular case. Failing 1574 * to shuffle a folio marked for immediate reclaim is too mild 1575 * a gain to justify taking an atomic operation penalty at the 1576 * end of every folio writeback. 1577 */ 1578 if (folio_test_reclaim(folio)) { 1579 folio_clear_reclaim(folio); 1580 folio_rotate_reclaimable(folio); 1581 } 1582 1583 /* 1584 * Writeback does not hold a folio reference of its own, relying 1585 * on truncation to wait for the clearing of PG_writeback. 1586 * But here we must make sure that the folio is not freed and 1587 * reused before the folio_wake(). 1588 */ 1589 folio_get(folio); 1590 if (!__folio_end_writeback(folio)) 1591 BUG(); 1592 1593 smp_mb__after_atomic(); 1594 folio_wake(folio, PG_writeback); 1595 folio_put(folio); 1596 } 1597 EXPORT_SYMBOL(folio_end_writeback); 1598 1599 /* 1600 * After completing I/O on a page, call this routine to update the page 1601 * flags appropriately 1602 */ 1603 void page_endio(struct page *page, bool is_write, int err) 1604 { 1605 if (!is_write) { 1606 if (!err) { 1607 SetPageUptodate(page); 1608 } else { 1609 ClearPageUptodate(page); 1610 SetPageError(page); 1611 } 1612 unlock_page(page); 1613 } else { 1614 if (err) { 1615 struct address_space *mapping; 1616 1617 SetPageError(page); 1618 mapping = page_mapping(page); 1619 if (mapping) 1620 mapping_set_error(mapping, err); 1621 } 1622 end_page_writeback(page); 1623 } 1624 } 1625 EXPORT_SYMBOL_GPL(page_endio); 1626 1627 /** 1628 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it. 1629 * @folio: The folio to lock 1630 */ 1631 void __folio_lock(struct folio *folio) 1632 { 1633 folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE, 1634 EXCLUSIVE); 1635 } 1636 EXPORT_SYMBOL(__folio_lock); 1637 1638 int __folio_lock_killable(struct folio *folio) 1639 { 1640 return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE, 1641 EXCLUSIVE); 1642 } 1643 EXPORT_SYMBOL_GPL(__folio_lock_killable); 1644 1645 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait) 1646 { 1647 struct wait_queue_head *q = folio_waitqueue(folio); 1648 int ret = 0; 1649 1650 wait->folio = folio; 1651 wait->bit_nr = PG_locked; 1652 1653 spin_lock_irq(&q->lock); 1654 __add_wait_queue_entry_tail(q, &wait->wait); 1655 folio_set_waiters(folio); 1656 ret = !folio_trylock(folio); 1657 /* 1658 * If we were successful now, we know we're still on the 1659 * waitqueue as we're still under the lock. This means it's 1660 * safe to remove and return success, we know the callback 1661 * isn't going to trigger. 1662 */ 1663 if (!ret) 1664 __remove_wait_queue(q, &wait->wait); 1665 else 1666 ret = -EIOCBQUEUED; 1667 spin_unlock_irq(&q->lock); 1668 return ret; 1669 } 1670 1671 /* 1672 * Return values: 1673 * true - folio is locked; mmap_lock is still held. 1674 * false - folio is not locked. 1675 * mmap_lock has been released (mmap_read_unlock(), unless flags had both 1676 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in 1677 * which case mmap_lock is still held. 1678 * 1679 * If neither ALLOW_RETRY nor KILLABLE are set, will always return true 1680 * with the folio locked and the mmap_lock unperturbed. 1681 */ 1682 bool __folio_lock_or_retry(struct folio *folio, struct mm_struct *mm, 1683 unsigned int flags) 1684 { 1685 if (fault_flag_allow_retry_first(flags)) { 1686 /* 1687 * CAUTION! In this case, mmap_lock is not released 1688 * even though return 0. 1689 */ 1690 if (flags & FAULT_FLAG_RETRY_NOWAIT) 1691 return false; 1692 1693 mmap_read_unlock(mm); 1694 if (flags & FAULT_FLAG_KILLABLE) 1695 folio_wait_locked_killable(folio); 1696 else 1697 folio_wait_locked(folio); 1698 return false; 1699 } 1700 if (flags & FAULT_FLAG_KILLABLE) { 1701 bool ret; 1702 1703 ret = __folio_lock_killable(folio); 1704 if (ret) { 1705 mmap_read_unlock(mm); 1706 return false; 1707 } 1708 } else { 1709 __folio_lock(folio); 1710 } 1711 1712 return true; 1713 } 1714 1715 /** 1716 * page_cache_next_miss() - Find the next gap in the page cache. 1717 * @mapping: Mapping. 1718 * @index: Index. 1719 * @max_scan: Maximum range to search. 1720 * 1721 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the 1722 * gap with the lowest index. 1723 * 1724 * This function may be called under the rcu_read_lock. However, this will 1725 * not atomically search a snapshot of the cache at a single point in time. 1726 * For example, if a gap is created at index 5, then subsequently a gap is 1727 * created at index 10, page_cache_next_miss covering both indices may 1728 * return 10 if called under the rcu_read_lock. 1729 * 1730 * Return: The index of the gap if found, otherwise an index outside the 1731 * range specified (in which case 'return - index >= max_scan' will be true). 1732 * In the rare case of index wrap-around, 0 will be returned. 1733 */ 1734 pgoff_t page_cache_next_miss(struct address_space *mapping, 1735 pgoff_t index, unsigned long max_scan) 1736 { 1737 XA_STATE(xas, &mapping->i_pages, index); 1738 1739 while (max_scan--) { 1740 void *entry = xas_next(&xas); 1741 if (!entry || xa_is_value(entry)) 1742 break; 1743 if (xas.xa_index == 0) 1744 break; 1745 } 1746 1747 return xas.xa_index; 1748 } 1749 EXPORT_SYMBOL(page_cache_next_miss); 1750 1751 /** 1752 * page_cache_prev_miss() - Find the previous gap in the page cache. 1753 * @mapping: Mapping. 1754 * @index: Index. 1755 * @max_scan: Maximum range to search. 1756 * 1757 * Search the range [max(index - max_scan + 1, 0), index] for the 1758 * gap with the highest index. 1759 * 1760 * This function may be called under the rcu_read_lock. However, this will 1761 * not atomically search a snapshot of the cache at a single point in time. 1762 * For example, if a gap is created at index 10, then subsequently a gap is 1763 * created at index 5, page_cache_prev_miss() covering both indices may 1764 * return 5 if called under the rcu_read_lock. 1765 * 1766 * Return: The index of the gap if found, otherwise an index outside the 1767 * range specified (in which case 'index - return >= max_scan' will be true). 1768 * In the rare case of wrap-around, ULONG_MAX will be returned. 1769 */ 1770 pgoff_t page_cache_prev_miss(struct address_space *mapping, 1771 pgoff_t index, unsigned long max_scan) 1772 { 1773 XA_STATE(xas, &mapping->i_pages, index); 1774 1775 while (max_scan--) { 1776 void *entry = xas_prev(&xas); 1777 if (!entry || xa_is_value(entry)) 1778 break; 1779 if (xas.xa_index == ULONG_MAX) 1780 break; 1781 } 1782 1783 return xas.xa_index; 1784 } 1785 EXPORT_SYMBOL(page_cache_prev_miss); 1786 1787 /* 1788 * Lockless page cache protocol: 1789 * On the lookup side: 1790 * 1. Load the folio from i_pages 1791 * 2. Increment the refcount if it's not zero 1792 * 3. If the folio is not found by xas_reload(), put the refcount and retry 1793 * 1794 * On the removal side: 1795 * A. Freeze the page (by zeroing the refcount if nobody else has a reference) 1796 * B. Remove the page from i_pages 1797 * C. Return the page to the page allocator 1798 * 1799 * This means that any page may have its reference count temporarily 1800 * increased by a speculative page cache (or fast GUP) lookup as it can 1801 * be allocated by another user before the RCU grace period expires. 1802 * Because the refcount temporarily acquired here may end up being the 1803 * last refcount on the page, any page allocation must be freeable by 1804 * folio_put(). 1805 */ 1806 1807 /* 1808 * mapping_get_entry - Get a page cache entry. 1809 * @mapping: the address_space to search 1810 * @index: The page cache index. 1811 * 1812 * Looks up the page cache entry at @mapping & @index. If it is a folio, 1813 * it is returned with an increased refcount. If it is a shadow entry 1814 * of a previously evicted folio, or a swap entry from shmem/tmpfs, 1815 * it is returned without further action. 1816 * 1817 * Return: The folio, swap or shadow entry, %NULL if nothing is found. 1818 */ 1819 static void *mapping_get_entry(struct address_space *mapping, pgoff_t index) 1820 { 1821 XA_STATE(xas, &mapping->i_pages, index); 1822 struct folio *folio; 1823 1824 rcu_read_lock(); 1825 repeat: 1826 xas_reset(&xas); 1827 folio = xas_load(&xas); 1828 if (xas_retry(&xas, folio)) 1829 goto repeat; 1830 /* 1831 * A shadow entry of a recently evicted page, or a swap entry from 1832 * shmem/tmpfs. Return it without attempting to raise page count. 1833 */ 1834 if (!folio || xa_is_value(folio)) 1835 goto out; 1836 1837 if (!folio_try_get_rcu(folio)) 1838 goto repeat; 1839 1840 if (unlikely(folio != xas_reload(&xas))) { 1841 folio_put(folio); 1842 goto repeat; 1843 } 1844 out: 1845 rcu_read_unlock(); 1846 1847 return folio; 1848 } 1849 1850 /** 1851 * __filemap_get_folio - Find and get a reference to a folio. 1852 * @mapping: The address_space to search. 1853 * @index: The page index. 1854 * @fgp_flags: %FGP flags modify how the folio is returned. 1855 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified. 1856 * 1857 * Looks up the page cache entry at @mapping & @index. 1858 * 1859 * @fgp_flags can be zero or more of these flags: 1860 * 1861 * * %FGP_ACCESSED - The folio will be marked accessed. 1862 * * %FGP_LOCK - The folio is returned locked. 1863 * * %FGP_ENTRY - If there is a shadow / swap / DAX entry, return it 1864 * instead of allocating a new folio to replace it. 1865 * * %FGP_CREAT - If no page is present then a new page is allocated using 1866 * @gfp and added to the page cache and the VM's LRU list. 1867 * The page is returned locked and with an increased refcount. 1868 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the 1869 * page is already in cache. If the page was allocated, unlock it before 1870 * returning so the caller can do the same dance. 1871 * * %FGP_WRITE - The page will be written to by the caller. 1872 * * %FGP_NOFS - __GFP_FS will get cleared in gfp. 1873 * * %FGP_NOWAIT - Don't get blocked by page lock. 1874 * * %FGP_STABLE - Wait for the folio to be stable (finished writeback) 1875 * 1876 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even 1877 * if the %GFP flags specified for %FGP_CREAT are atomic. 1878 * 1879 * If there is a page cache page, it is returned with an increased refcount. 1880 * 1881 * Return: The found folio or %NULL otherwise. 1882 */ 1883 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index, 1884 int fgp_flags, gfp_t gfp) 1885 { 1886 struct folio *folio; 1887 1888 repeat: 1889 folio = mapping_get_entry(mapping, index); 1890 if (xa_is_value(folio)) { 1891 if (fgp_flags & FGP_ENTRY) 1892 return folio; 1893 folio = NULL; 1894 } 1895 if (!folio) 1896 goto no_page; 1897 1898 if (fgp_flags & FGP_LOCK) { 1899 if (fgp_flags & FGP_NOWAIT) { 1900 if (!folio_trylock(folio)) { 1901 folio_put(folio); 1902 return NULL; 1903 } 1904 } else { 1905 folio_lock(folio); 1906 } 1907 1908 /* Has the page been truncated? */ 1909 if (unlikely(folio->mapping != mapping)) { 1910 folio_unlock(folio); 1911 folio_put(folio); 1912 goto repeat; 1913 } 1914 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio); 1915 } 1916 1917 if (fgp_flags & FGP_ACCESSED) 1918 folio_mark_accessed(folio); 1919 else if (fgp_flags & FGP_WRITE) { 1920 /* Clear idle flag for buffer write */ 1921 if (folio_test_idle(folio)) 1922 folio_clear_idle(folio); 1923 } 1924 1925 if (fgp_flags & FGP_STABLE) 1926 folio_wait_stable(folio); 1927 no_page: 1928 if (!folio && (fgp_flags & FGP_CREAT)) { 1929 int err; 1930 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping)) 1931 gfp |= __GFP_WRITE; 1932 if (fgp_flags & FGP_NOFS) 1933 gfp &= ~__GFP_FS; 1934 1935 folio = filemap_alloc_folio(gfp, 0); 1936 if (!folio) 1937 return NULL; 1938 1939 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP)))) 1940 fgp_flags |= FGP_LOCK; 1941 1942 /* Init accessed so avoid atomic mark_page_accessed later */ 1943 if (fgp_flags & FGP_ACCESSED) 1944 __folio_set_referenced(folio); 1945 1946 err = filemap_add_folio(mapping, folio, index, gfp); 1947 if (unlikely(err)) { 1948 folio_put(folio); 1949 folio = NULL; 1950 if (err == -EEXIST) 1951 goto repeat; 1952 } 1953 1954 /* 1955 * filemap_add_folio locks the page, and for mmap 1956 * we expect an unlocked page. 1957 */ 1958 if (folio && (fgp_flags & FGP_FOR_MMAP)) 1959 folio_unlock(folio); 1960 } 1961 1962 return folio; 1963 } 1964 EXPORT_SYMBOL(__filemap_get_folio); 1965 1966 static inline struct page *find_get_entry(struct xa_state *xas, pgoff_t max, 1967 xa_mark_t mark) 1968 { 1969 struct page *page; 1970 1971 retry: 1972 if (mark == XA_PRESENT) 1973 page = xas_find(xas, max); 1974 else 1975 page = xas_find_marked(xas, max, mark); 1976 1977 if (xas_retry(xas, page)) 1978 goto retry; 1979 /* 1980 * A shadow entry of a recently evicted page, a swap 1981 * entry from shmem/tmpfs or a DAX entry. Return it 1982 * without attempting to raise page count. 1983 */ 1984 if (!page || xa_is_value(page)) 1985 return page; 1986 1987 if (!page_cache_get_speculative(page)) 1988 goto reset; 1989 1990 /* Has the page moved or been split? */ 1991 if (unlikely(page != xas_reload(xas))) { 1992 put_page(page); 1993 goto reset; 1994 } 1995 1996 return page; 1997 reset: 1998 xas_reset(xas); 1999 goto retry; 2000 } 2001 2002 /** 2003 * find_get_entries - gang pagecache lookup 2004 * @mapping: The address_space to search 2005 * @start: The starting page cache index 2006 * @end: The final page index (inclusive). 2007 * @pvec: Where the resulting entries are placed. 2008 * @indices: The cache indices corresponding to the entries in @entries 2009 * 2010 * find_get_entries() will search for and return a batch of entries in 2011 * the mapping. The entries are placed in @pvec. find_get_entries() 2012 * takes a reference on any actual pages it returns. 2013 * 2014 * The search returns a group of mapping-contiguous page cache entries 2015 * with ascending indexes. There may be holes in the indices due to 2016 * not-present pages. 2017 * 2018 * Any shadow entries of evicted pages, or swap entries from 2019 * shmem/tmpfs, are included in the returned array. 2020 * 2021 * If it finds a Transparent Huge Page, head or tail, find_get_entries() 2022 * stops at that page: the caller is likely to have a better way to handle 2023 * the compound page as a whole, and then skip its extent, than repeatedly 2024 * calling find_get_entries() to return all its tails. 2025 * 2026 * Return: the number of pages and shadow entries which were found. 2027 */ 2028 unsigned find_get_entries(struct address_space *mapping, pgoff_t start, 2029 pgoff_t end, struct pagevec *pvec, pgoff_t *indices) 2030 { 2031 XA_STATE(xas, &mapping->i_pages, start); 2032 struct page *page; 2033 unsigned int ret = 0; 2034 unsigned nr_entries = PAGEVEC_SIZE; 2035 2036 rcu_read_lock(); 2037 while ((page = find_get_entry(&xas, end, XA_PRESENT))) { 2038 /* 2039 * Terminate early on finding a THP, to allow the caller to 2040 * handle it all at once; but continue if this is hugetlbfs. 2041 */ 2042 if (!xa_is_value(page) && PageTransHuge(page) && 2043 !PageHuge(page)) { 2044 page = find_subpage(page, xas.xa_index); 2045 nr_entries = ret + 1; 2046 } 2047 2048 indices[ret] = xas.xa_index; 2049 pvec->pages[ret] = page; 2050 if (++ret == nr_entries) 2051 break; 2052 } 2053 rcu_read_unlock(); 2054 2055 pvec->nr = ret; 2056 return ret; 2057 } 2058 2059 /** 2060 * find_lock_entries - Find a batch of pagecache entries. 2061 * @mapping: The address_space to search. 2062 * @start: The starting page cache index. 2063 * @end: The final page index (inclusive). 2064 * @pvec: Where the resulting entries are placed. 2065 * @indices: The cache indices of the entries in @pvec. 2066 * 2067 * find_lock_entries() will return a batch of entries from @mapping. 2068 * Swap, shadow and DAX entries are included. Pages are returned 2069 * locked and with an incremented refcount. Pages which are locked by 2070 * somebody else or under writeback are skipped. Only the head page of 2071 * a THP is returned. Pages which are partially outside the range are 2072 * not returned. 2073 * 2074 * The entries have ascending indexes. The indices may not be consecutive 2075 * due to not-present entries, THP pages, pages which could not be locked 2076 * or pages under writeback. 2077 * 2078 * Return: The number of entries which were found. 2079 */ 2080 unsigned find_lock_entries(struct address_space *mapping, pgoff_t start, 2081 pgoff_t end, struct pagevec *pvec, pgoff_t *indices) 2082 { 2083 XA_STATE(xas, &mapping->i_pages, start); 2084 struct page *page; 2085 2086 rcu_read_lock(); 2087 while ((page = find_get_entry(&xas, end, XA_PRESENT))) { 2088 if (!xa_is_value(page)) { 2089 if (page->index < start) 2090 goto put; 2091 VM_BUG_ON_PAGE(page->index != xas.xa_index, page); 2092 if (page->index + thp_nr_pages(page) - 1 > end) 2093 goto put; 2094 if (!trylock_page(page)) 2095 goto put; 2096 if (page->mapping != mapping || PageWriteback(page)) 2097 goto unlock; 2098 VM_BUG_ON_PAGE(!thp_contains(page, xas.xa_index), 2099 page); 2100 } 2101 indices[pvec->nr] = xas.xa_index; 2102 if (!pagevec_add(pvec, page)) 2103 break; 2104 goto next; 2105 unlock: 2106 unlock_page(page); 2107 put: 2108 put_page(page); 2109 next: 2110 if (!xa_is_value(page) && PageTransHuge(page)) { 2111 unsigned int nr_pages = thp_nr_pages(page); 2112 2113 /* Final THP may cross MAX_LFS_FILESIZE on 32-bit */ 2114 xas_set(&xas, page->index + nr_pages); 2115 if (xas.xa_index < nr_pages) 2116 break; 2117 } 2118 } 2119 rcu_read_unlock(); 2120 2121 return pagevec_count(pvec); 2122 } 2123 2124 /** 2125 * find_get_pages_range - gang pagecache lookup 2126 * @mapping: The address_space to search 2127 * @start: The starting page index 2128 * @end: The final page index (inclusive) 2129 * @nr_pages: The maximum number of pages 2130 * @pages: Where the resulting pages are placed 2131 * 2132 * find_get_pages_range() will search for and return a group of up to @nr_pages 2133 * pages in the mapping starting at index @start and up to index @end 2134 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes 2135 * a reference against the returned pages. 2136 * 2137 * The search returns a group of mapping-contiguous pages with ascending 2138 * indexes. There may be holes in the indices due to not-present pages. 2139 * We also update @start to index the next page for the traversal. 2140 * 2141 * Return: the number of pages which were found. If this number is 2142 * smaller than @nr_pages, the end of specified range has been 2143 * reached. 2144 */ 2145 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start, 2146 pgoff_t end, unsigned int nr_pages, 2147 struct page **pages) 2148 { 2149 XA_STATE(xas, &mapping->i_pages, *start); 2150 struct page *page; 2151 unsigned ret = 0; 2152 2153 if (unlikely(!nr_pages)) 2154 return 0; 2155 2156 rcu_read_lock(); 2157 while ((page = find_get_entry(&xas, end, XA_PRESENT))) { 2158 /* Skip over shadow, swap and DAX entries */ 2159 if (xa_is_value(page)) 2160 continue; 2161 2162 pages[ret] = find_subpage(page, xas.xa_index); 2163 if (++ret == nr_pages) { 2164 *start = xas.xa_index + 1; 2165 goto out; 2166 } 2167 } 2168 2169 /* 2170 * We come here when there is no page beyond @end. We take care to not 2171 * overflow the index @start as it confuses some of the callers. This 2172 * breaks the iteration when there is a page at index -1 but that is 2173 * already broken anyway. 2174 */ 2175 if (end == (pgoff_t)-1) 2176 *start = (pgoff_t)-1; 2177 else 2178 *start = end + 1; 2179 out: 2180 rcu_read_unlock(); 2181 2182 return ret; 2183 } 2184 2185 /** 2186 * find_get_pages_contig - gang contiguous pagecache lookup 2187 * @mapping: The address_space to search 2188 * @index: The starting page index 2189 * @nr_pages: The maximum number of pages 2190 * @pages: Where the resulting pages are placed 2191 * 2192 * find_get_pages_contig() works exactly like find_get_pages(), except 2193 * that the returned number of pages are guaranteed to be contiguous. 2194 * 2195 * Return: the number of pages which were found. 2196 */ 2197 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, 2198 unsigned int nr_pages, struct page **pages) 2199 { 2200 XA_STATE(xas, &mapping->i_pages, index); 2201 struct page *page; 2202 unsigned int ret = 0; 2203 2204 if (unlikely(!nr_pages)) 2205 return 0; 2206 2207 rcu_read_lock(); 2208 for (page = xas_load(&xas); page; page = xas_next(&xas)) { 2209 if (xas_retry(&xas, page)) 2210 continue; 2211 /* 2212 * If the entry has been swapped out, we can stop looking. 2213 * No current caller is looking for DAX entries. 2214 */ 2215 if (xa_is_value(page)) 2216 break; 2217 2218 if (!page_cache_get_speculative(page)) 2219 goto retry; 2220 2221 /* Has the page moved or been split? */ 2222 if (unlikely(page != xas_reload(&xas))) 2223 goto put_page; 2224 2225 pages[ret] = find_subpage(page, xas.xa_index); 2226 if (++ret == nr_pages) 2227 break; 2228 continue; 2229 put_page: 2230 put_page(page); 2231 retry: 2232 xas_reset(&xas); 2233 } 2234 rcu_read_unlock(); 2235 return ret; 2236 } 2237 EXPORT_SYMBOL(find_get_pages_contig); 2238 2239 /** 2240 * find_get_pages_range_tag - Find and return head pages matching @tag. 2241 * @mapping: the address_space to search 2242 * @index: the starting page index 2243 * @end: The final page index (inclusive) 2244 * @tag: the tag index 2245 * @nr_pages: the maximum number of pages 2246 * @pages: where the resulting pages are placed 2247 * 2248 * Like find_get_pages(), except we only return head pages which are tagged 2249 * with @tag. @index is updated to the index immediately after the last 2250 * page we return, ready for the next iteration. 2251 * 2252 * Return: the number of pages which were found. 2253 */ 2254 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index, 2255 pgoff_t end, xa_mark_t tag, unsigned int nr_pages, 2256 struct page **pages) 2257 { 2258 XA_STATE(xas, &mapping->i_pages, *index); 2259 struct page *page; 2260 unsigned ret = 0; 2261 2262 if (unlikely(!nr_pages)) 2263 return 0; 2264 2265 rcu_read_lock(); 2266 while ((page = find_get_entry(&xas, end, tag))) { 2267 /* 2268 * Shadow entries should never be tagged, but this iteration 2269 * is lockless so there is a window for page reclaim to evict 2270 * a page we saw tagged. Skip over it. 2271 */ 2272 if (xa_is_value(page)) 2273 continue; 2274 2275 pages[ret] = page; 2276 if (++ret == nr_pages) { 2277 *index = page->index + thp_nr_pages(page); 2278 goto out; 2279 } 2280 } 2281 2282 /* 2283 * We come here when we got to @end. We take care to not overflow the 2284 * index @index as it confuses some of the callers. This breaks the 2285 * iteration when there is a page at index -1 but that is already 2286 * broken anyway. 2287 */ 2288 if (end == (pgoff_t)-1) 2289 *index = (pgoff_t)-1; 2290 else 2291 *index = end + 1; 2292 out: 2293 rcu_read_unlock(); 2294 2295 return ret; 2296 } 2297 EXPORT_SYMBOL(find_get_pages_range_tag); 2298 2299 /* 2300 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 2301 * a _large_ part of the i/o request. Imagine the worst scenario: 2302 * 2303 * ---R__________________________________________B__________ 2304 * ^ reading here ^ bad block(assume 4k) 2305 * 2306 * read(R) => miss => readahead(R...B) => media error => frustrating retries 2307 * => failing the whole request => read(R) => read(R+1) => 2308 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 2309 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 2310 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 2311 * 2312 * It is going insane. Fix it by quickly scaling down the readahead size. 2313 */ 2314 static void shrink_readahead_size_eio(struct file_ra_state *ra) 2315 { 2316 ra->ra_pages /= 4; 2317 } 2318 2319 /* 2320 * filemap_get_read_batch - Get a batch of pages for read 2321 * 2322 * Get a batch of pages which represent a contiguous range of bytes 2323 * in the file. No tail pages will be returned. If @index is in the 2324 * middle of a THP, the entire THP will be returned. The last page in 2325 * the batch may have Readahead set or be not Uptodate so that the 2326 * caller can take the appropriate action. 2327 */ 2328 static void filemap_get_read_batch(struct address_space *mapping, 2329 pgoff_t index, pgoff_t max, struct pagevec *pvec) 2330 { 2331 XA_STATE(xas, &mapping->i_pages, index); 2332 struct page *head; 2333 2334 rcu_read_lock(); 2335 for (head = xas_load(&xas); head; head = xas_next(&xas)) { 2336 if (xas_retry(&xas, head)) 2337 continue; 2338 if (xas.xa_index > max || xa_is_value(head)) 2339 break; 2340 if (!page_cache_get_speculative(head)) 2341 goto retry; 2342 2343 /* Has the page moved or been split? */ 2344 if (unlikely(head != xas_reload(&xas))) 2345 goto put_page; 2346 2347 if (!pagevec_add(pvec, head)) 2348 break; 2349 if (!PageUptodate(head)) 2350 break; 2351 if (PageReadahead(head)) 2352 break; 2353 xas.xa_index = head->index + thp_nr_pages(head) - 1; 2354 xas.xa_offset = (xas.xa_index >> xas.xa_shift) & XA_CHUNK_MASK; 2355 continue; 2356 put_page: 2357 put_page(head); 2358 retry: 2359 xas_reset(&xas); 2360 } 2361 rcu_read_unlock(); 2362 } 2363 2364 static int filemap_read_page(struct file *file, struct address_space *mapping, 2365 struct page *page) 2366 { 2367 int error; 2368 2369 /* 2370 * A previous I/O error may have been due to temporary failures, 2371 * eg. multipath errors. PG_error will be set again if readpage 2372 * fails. 2373 */ 2374 ClearPageError(page); 2375 /* Start the actual read. The read will unlock the page. */ 2376 error = mapping->a_ops->readpage(file, page); 2377 if (error) 2378 return error; 2379 2380 error = wait_on_page_locked_killable(page); 2381 if (error) 2382 return error; 2383 if (PageUptodate(page)) 2384 return 0; 2385 shrink_readahead_size_eio(&file->f_ra); 2386 return -EIO; 2387 } 2388 2389 static bool filemap_range_uptodate(struct address_space *mapping, 2390 loff_t pos, struct iov_iter *iter, struct page *page) 2391 { 2392 int count; 2393 2394 if (PageUptodate(page)) 2395 return true; 2396 /* pipes can't handle partially uptodate pages */ 2397 if (iov_iter_is_pipe(iter)) 2398 return false; 2399 if (!mapping->a_ops->is_partially_uptodate) 2400 return false; 2401 if (mapping->host->i_blkbits >= (PAGE_SHIFT + thp_order(page))) 2402 return false; 2403 2404 count = iter->count; 2405 if (page_offset(page) > pos) { 2406 count -= page_offset(page) - pos; 2407 pos = 0; 2408 } else { 2409 pos -= page_offset(page); 2410 } 2411 2412 return mapping->a_ops->is_partially_uptodate(page, pos, count); 2413 } 2414 2415 static int filemap_update_page(struct kiocb *iocb, 2416 struct address_space *mapping, struct iov_iter *iter, 2417 struct page *page) 2418 { 2419 struct folio *folio = page_folio(page); 2420 int error; 2421 2422 if (iocb->ki_flags & IOCB_NOWAIT) { 2423 if (!filemap_invalidate_trylock_shared(mapping)) 2424 return -EAGAIN; 2425 } else { 2426 filemap_invalidate_lock_shared(mapping); 2427 } 2428 2429 if (!folio_trylock(folio)) { 2430 error = -EAGAIN; 2431 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) 2432 goto unlock_mapping; 2433 if (!(iocb->ki_flags & IOCB_WAITQ)) { 2434 filemap_invalidate_unlock_shared(mapping); 2435 put_and_wait_on_page_locked(&folio->page, TASK_KILLABLE); 2436 return AOP_TRUNCATED_PAGE; 2437 } 2438 error = __folio_lock_async(folio, iocb->ki_waitq); 2439 if (error) 2440 goto unlock_mapping; 2441 } 2442 2443 error = AOP_TRUNCATED_PAGE; 2444 if (!folio->mapping) 2445 goto unlock; 2446 2447 error = 0; 2448 if (filemap_range_uptodate(mapping, iocb->ki_pos, iter, &folio->page)) 2449 goto unlock; 2450 2451 error = -EAGAIN; 2452 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ)) 2453 goto unlock; 2454 2455 error = filemap_read_page(iocb->ki_filp, mapping, &folio->page); 2456 goto unlock_mapping; 2457 unlock: 2458 folio_unlock(folio); 2459 unlock_mapping: 2460 filemap_invalidate_unlock_shared(mapping); 2461 if (error == AOP_TRUNCATED_PAGE) 2462 folio_put(folio); 2463 return error; 2464 } 2465 2466 static int filemap_create_page(struct file *file, 2467 struct address_space *mapping, pgoff_t index, 2468 struct pagevec *pvec) 2469 { 2470 struct page *page; 2471 int error; 2472 2473 page = page_cache_alloc(mapping); 2474 if (!page) 2475 return -ENOMEM; 2476 2477 /* 2478 * Protect against truncate / hole punch. Grabbing invalidate_lock here 2479 * assures we cannot instantiate and bring uptodate new pagecache pages 2480 * after evicting page cache during truncate and before actually 2481 * freeing blocks. Note that we could release invalidate_lock after 2482 * inserting the page into page cache as the locked page would then be 2483 * enough to synchronize with hole punching. But there are code paths 2484 * such as filemap_update_page() filling in partially uptodate pages or 2485 * ->readpages() that need to hold invalidate_lock while mapping blocks 2486 * for IO so let's hold the lock here as well to keep locking rules 2487 * simple. 2488 */ 2489 filemap_invalidate_lock_shared(mapping); 2490 error = add_to_page_cache_lru(page, mapping, index, 2491 mapping_gfp_constraint(mapping, GFP_KERNEL)); 2492 if (error == -EEXIST) 2493 error = AOP_TRUNCATED_PAGE; 2494 if (error) 2495 goto error; 2496 2497 error = filemap_read_page(file, mapping, page); 2498 if (error) 2499 goto error; 2500 2501 filemap_invalidate_unlock_shared(mapping); 2502 pagevec_add(pvec, page); 2503 return 0; 2504 error: 2505 filemap_invalidate_unlock_shared(mapping); 2506 put_page(page); 2507 return error; 2508 } 2509 2510 static int filemap_readahead(struct kiocb *iocb, struct file *file, 2511 struct address_space *mapping, struct page *page, 2512 pgoff_t last_index) 2513 { 2514 if (iocb->ki_flags & IOCB_NOIO) 2515 return -EAGAIN; 2516 page_cache_async_readahead(mapping, &file->f_ra, file, page, 2517 page->index, last_index - page->index); 2518 return 0; 2519 } 2520 2521 static int filemap_get_pages(struct kiocb *iocb, struct iov_iter *iter, 2522 struct pagevec *pvec) 2523 { 2524 struct file *filp = iocb->ki_filp; 2525 struct address_space *mapping = filp->f_mapping; 2526 struct file_ra_state *ra = &filp->f_ra; 2527 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT; 2528 pgoff_t last_index; 2529 struct page *page; 2530 int err = 0; 2531 2532 last_index = DIV_ROUND_UP(iocb->ki_pos + iter->count, PAGE_SIZE); 2533 retry: 2534 if (fatal_signal_pending(current)) 2535 return -EINTR; 2536 2537 filemap_get_read_batch(mapping, index, last_index, pvec); 2538 if (!pagevec_count(pvec)) { 2539 if (iocb->ki_flags & IOCB_NOIO) 2540 return -EAGAIN; 2541 page_cache_sync_readahead(mapping, ra, filp, index, 2542 last_index - index); 2543 filemap_get_read_batch(mapping, index, last_index, pvec); 2544 } 2545 if (!pagevec_count(pvec)) { 2546 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ)) 2547 return -EAGAIN; 2548 err = filemap_create_page(filp, mapping, 2549 iocb->ki_pos >> PAGE_SHIFT, pvec); 2550 if (err == AOP_TRUNCATED_PAGE) 2551 goto retry; 2552 return err; 2553 } 2554 2555 page = pvec->pages[pagevec_count(pvec) - 1]; 2556 if (PageReadahead(page)) { 2557 err = filemap_readahead(iocb, filp, mapping, page, last_index); 2558 if (err) 2559 goto err; 2560 } 2561 if (!PageUptodate(page)) { 2562 if ((iocb->ki_flags & IOCB_WAITQ) && pagevec_count(pvec) > 1) 2563 iocb->ki_flags |= IOCB_NOWAIT; 2564 err = filemap_update_page(iocb, mapping, iter, page); 2565 if (err) 2566 goto err; 2567 } 2568 2569 return 0; 2570 err: 2571 if (err < 0) 2572 put_page(page); 2573 if (likely(--pvec->nr)) 2574 return 0; 2575 if (err == AOP_TRUNCATED_PAGE) 2576 goto retry; 2577 return err; 2578 } 2579 2580 /** 2581 * filemap_read - Read data from the page cache. 2582 * @iocb: The iocb to read. 2583 * @iter: Destination for the data. 2584 * @already_read: Number of bytes already read by the caller. 2585 * 2586 * Copies data from the page cache. If the data is not currently present, 2587 * uses the readahead and readpage address_space operations to fetch it. 2588 * 2589 * Return: Total number of bytes copied, including those already read by 2590 * the caller. If an error happens before any bytes are copied, returns 2591 * a negative error number. 2592 */ 2593 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter, 2594 ssize_t already_read) 2595 { 2596 struct file *filp = iocb->ki_filp; 2597 struct file_ra_state *ra = &filp->f_ra; 2598 struct address_space *mapping = filp->f_mapping; 2599 struct inode *inode = mapping->host; 2600 struct pagevec pvec; 2601 int i, error = 0; 2602 bool writably_mapped; 2603 loff_t isize, end_offset; 2604 2605 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes)) 2606 return 0; 2607 if (unlikely(!iov_iter_count(iter))) 2608 return 0; 2609 2610 iov_iter_truncate(iter, inode->i_sb->s_maxbytes); 2611 pagevec_init(&pvec); 2612 2613 do { 2614 cond_resched(); 2615 2616 /* 2617 * If we've already successfully copied some data, then we 2618 * can no longer safely return -EIOCBQUEUED. Hence mark 2619 * an async read NOWAIT at that point. 2620 */ 2621 if ((iocb->ki_flags & IOCB_WAITQ) && already_read) 2622 iocb->ki_flags |= IOCB_NOWAIT; 2623 2624 error = filemap_get_pages(iocb, iter, &pvec); 2625 if (error < 0) 2626 break; 2627 2628 /* 2629 * i_size must be checked after we know the pages are Uptodate. 2630 * 2631 * Checking i_size after the check allows us to calculate 2632 * the correct value for "nr", which means the zero-filled 2633 * part of the page is not copied back to userspace (unless 2634 * another truncate extends the file - this is desired though). 2635 */ 2636 isize = i_size_read(inode); 2637 if (unlikely(iocb->ki_pos >= isize)) 2638 goto put_pages; 2639 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count); 2640 2641 /* 2642 * Once we start copying data, we don't want to be touching any 2643 * cachelines that might be contended: 2644 */ 2645 writably_mapped = mapping_writably_mapped(mapping); 2646 2647 /* 2648 * When a sequential read accesses a page several times, only 2649 * mark it as accessed the first time. 2650 */ 2651 if (iocb->ki_pos >> PAGE_SHIFT != 2652 ra->prev_pos >> PAGE_SHIFT) 2653 mark_page_accessed(pvec.pages[0]); 2654 2655 for (i = 0; i < pagevec_count(&pvec); i++) { 2656 struct page *page = pvec.pages[i]; 2657 size_t page_size = thp_size(page); 2658 size_t offset = iocb->ki_pos & (page_size - 1); 2659 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos, 2660 page_size - offset); 2661 size_t copied; 2662 2663 if (end_offset < page_offset(page)) 2664 break; 2665 if (i > 0) 2666 mark_page_accessed(page); 2667 /* 2668 * If users can be writing to this page using arbitrary 2669 * virtual addresses, take care about potential aliasing 2670 * before reading the page on the kernel side. 2671 */ 2672 if (writably_mapped) { 2673 int j; 2674 2675 for (j = 0; j < thp_nr_pages(page); j++) 2676 flush_dcache_page(page + j); 2677 } 2678 2679 copied = copy_page_to_iter(page, offset, bytes, iter); 2680 2681 already_read += copied; 2682 iocb->ki_pos += copied; 2683 ra->prev_pos = iocb->ki_pos; 2684 2685 if (copied < bytes) { 2686 error = -EFAULT; 2687 break; 2688 } 2689 } 2690 put_pages: 2691 for (i = 0; i < pagevec_count(&pvec); i++) 2692 put_page(pvec.pages[i]); 2693 pagevec_reinit(&pvec); 2694 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error); 2695 2696 file_accessed(filp); 2697 2698 return already_read ? already_read : error; 2699 } 2700 EXPORT_SYMBOL_GPL(filemap_read); 2701 2702 /** 2703 * generic_file_read_iter - generic filesystem read routine 2704 * @iocb: kernel I/O control block 2705 * @iter: destination for the data read 2706 * 2707 * This is the "read_iter()" routine for all filesystems 2708 * that can use the page cache directly. 2709 * 2710 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall 2711 * be returned when no data can be read without waiting for I/O requests 2712 * to complete; it doesn't prevent readahead. 2713 * 2714 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O 2715 * requests shall be made for the read or for readahead. When no data 2716 * can be read, -EAGAIN shall be returned. When readahead would be 2717 * triggered, a partial, possibly empty read shall be returned. 2718 * 2719 * Return: 2720 * * number of bytes copied, even for partial reads 2721 * * negative error code (or 0 if IOCB_NOIO) if nothing was read 2722 */ 2723 ssize_t 2724 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 2725 { 2726 size_t count = iov_iter_count(iter); 2727 ssize_t retval = 0; 2728 2729 if (!count) 2730 return 0; /* skip atime */ 2731 2732 if (iocb->ki_flags & IOCB_DIRECT) { 2733 struct file *file = iocb->ki_filp; 2734 struct address_space *mapping = file->f_mapping; 2735 struct inode *inode = mapping->host; 2736 loff_t size; 2737 2738 size = i_size_read(inode); 2739 if (iocb->ki_flags & IOCB_NOWAIT) { 2740 if (filemap_range_needs_writeback(mapping, iocb->ki_pos, 2741 iocb->ki_pos + count - 1)) 2742 return -EAGAIN; 2743 } else { 2744 retval = filemap_write_and_wait_range(mapping, 2745 iocb->ki_pos, 2746 iocb->ki_pos + count - 1); 2747 if (retval < 0) 2748 return retval; 2749 } 2750 2751 file_accessed(file); 2752 2753 retval = mapping->a_ops->direct_IO(iocb, iter); 2754 if (retval >= 0) { 2755 iocb->ki_pos += retval; 2756 count -= retval; 2757 } 2758 if (retval != -EIOCBQUEUED) 2759 iov_iter_revert(iter, count - iov_iter_count(iter)); 2760 2761 /* 2762 * Btrfs can have a short DIO read if we encounter 2763 * compressed extents, so if there was an error, or if 2764 * we've already read everything we wanted to, or if 2765 * there was a short read because we hit EOF, go ahead 2766 * and return. Otherwise fallthrough to buffered io for 2767 * the rest of the read. Buffered reads will not work for 2768 * DAX files, so don't bother trying. 2769 */ 2770 if (retval < 0 || !count || iocb->ki_pos >= size || 2771 IS_DAX(inode)) 2772 return retval; 2773 } 2774 2775 return filemap_read(iocb, iter, retval); 2776 } 2777 EXPORT_SYMBOL(generic_file_read_iter); 2778 2779 static inline loff_t page_seek_hole_data(struct xa_state *xas, 2780 struct address_space *mapping, struct page *page, 2781 loff_t start, loff_t end, bool seek_data) 2782 { 2783 const struct address_space_operations *ops = mapping->a_ops; 2784 size_t offset, bsz = i_blocksize(mapping->host); 2785 2786 if (xa_is_value(page) || PageUptodate(page)) 2787 return seek_data ? start : end; 2788 if (!ops->is_partially_uptodate) 2789 return seek_data ? end : start; 2790 2791 xas_pause(xas); 2792 rcu_read_unlock(); 2793 lock_page(page); 2794 if (unlikely(page->mapping != mapping)) 2795 goto unlock; 2796 2797 offset = offset_in_thp(page, start) & ~(bsz - 1); 2798 2799 do { 2800 if (ops->is_partially_uptodate(page, offset, bsz) == seek_data) 2801 break; 2802 start = (start + bsz) & ~(bsz - 1); 2803 offset += bsz; 2804 } while (offset < thp_size(page)); 2805 unlock: 2806 unlock_page(page); 2807 rcu_read_lock(); 2808 return start; 2809 } 2810 2811 static inline 2812 unsigned int seek_page_size(struct xa_state *xas, struct page *page) 2813 { 2814 if (xa_is_value(page)) 2815 return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index); 2816 return thp_size(page); 2817 } 2818 2819 /** 2820 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache. 2821 * @mapping: Address space to search. 2822 * @start: First byte to consider. 2823 * @end: Limit of search (exclusive). 2824 * @whence: Either SEEK_HOLE or SEEK_DATA. 2825 * 2826 * If the page cache knows which blocks contain holes and which blocks 2827 * contain data, your filesystem can use this function to implement 2828 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are 2829 * entirely memory-based such as tmpfs, and filesystems which support 2830 * unwritten extents. 2831 * 2832 * Return: The requested offset on success, or -ENXIO if @whence specifies 2833 * SEEK_DATA and there is no data after @start. There is an implicit hole 2834 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start 2835 * and @end contain data. 2836 */ 2837 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start, 2838 loff_t end, int whence) 2839 { 2840 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT); 2841 pgoff_t max = (end - 1) >> PAGE_SHIFT; 2842 bool seek_data = (whence == SEEK_DATA); 2843 struct page *page; 2844 2845 if (end <= start) 2846 return -ENXIO; 2847 2848 rcu_read_lock(); 2849 while ((page = find_get_entry(&xas, max, XA_PRESENT))) { 2850 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT; 2851 unsigned int seek_size; 2852 2853 if (start < pos) { 2854 if (!seek_data) 2855 goto unlock; 2856 start = pos; 2857 } 2858 2859 seek_size = seek_page_size(&xas, page); 2860 pos = round_up(pos + 1, seek_size); 2861 start = page_seek_hole_data(&xas, mapping, page, start, pos, 2862 seek_data); 2863 if (start < pos) 2864 goto unlock; 2865 if (start >= end) 2866 break; 2867 if (seek_size > PAGE_SIZE) 2868 xas_set(&xas, pos >> PAGE_SHIFT); 2869 if (!xa_is_value(page)) 2870 put_page(page); 2871 } 2872 if (seek_data) 2873 start = -ENXIO; 2874 unlock: 2875 rcu_read_unlock(); 2876 if (page && !xa_is_value(page)) 2877 put_page(page); 2878 if (start > end) 2879 return end; 2880 return start; 2881 } 2882 2883 #ifdef CONFIG_MMU 2884 #define MMAP_LOTSAMISS (100) 2885 /* 2886 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock 2887 * @vmf - the vm_fault for this fault. 2888 * @page - the page to lock. 2889 * @fpin - the pointer to the file we may pin (or is already pinned). 2890 * 2891 * This works similar to lock_page_or_retry in that it can drop the mmap_lock. 2892 * It differs in that it actually returns the page locked if it returns 1 and 0 2893 * if it couldn't lock the page. If we did have to drop the mmap_lock then fpin 2894 * will point to the pinned file and needs to be fput()'ed at a later point. 2895 */ 2896 static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page, 2897 struct file **fpin) 2898 { 2899 struct folio *folio = page_folio(page); 2900 2901 if (folio_trylock(folio)) 2902 return 1; 2903 2904 /* 2905 * NOTE! This will make us return with VM_FAULT_RETRY, but with 2906 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT 2907 * is supposed to work. We have way too many special cases.. 2908 */ 2909 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 2910 return 0; 2911 2912 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin); 2913 if (vmf->flags & FAULT_FLAG_KILLABLE) { 2914 if (__folio_lock_killable(folio)) { 2915 /* 2916 * We didn't have the right flags to drop the mmap_lock, 2917 * but all fault_handlers only check for fatal signals 2918 * if we return VM_FAULT_RETRY, so we need to drop the 2919 * mmap_lock here and return 0 if we don't have a fpin. 2920 */ 2921 if (*fpin == NULL) 2922 mmap_read_unlock(vmf->vma->vm_mm); 2923 return 0; 2924 } 2925 } else 2926 __folio_lock(folio); 2927 2928 return 1; 2929 } 2930 2931 /* 2932 * Synchronous readahead happens when we don't even find a page in the page 2933 * cache at all. We don't want to perform IO under the mmap sem, so if we have 2934 * to drop the mmap sem we return the file that was pinned in order for us to do 2935 * that. If we didn't pin a file then we return NULL. The file that is 2936 * returned needs to be fput()'ed when we're done with it. 2937 */ 2938 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf) 2939 { 2940 struct file *file = vmf->vma->vm_file; 2941 struct file_ra_state *ra = &file->f_ra; 2942 struct address_space *mapping = file->f_mapping; 2943 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff); 2944 struct file *fpin = NULL; 2945 unsigned int mmap_miss; 2946 2947 /* If we don't want any read-ahead, don't bother */ 2948 if (vmf->vma->vm_flags & VM_RAND_READ) 2949 return fpin; 2950 if (!ra->ra_pages) 2951 return fpin; 2952 2953 if (vmf->vma->vm_flags & VM_SEQ_READ) { 2954 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 2955 page_cache_sync_ra(&ractl, ra->ra_pages); 2956 return fpin; 2957 } 2958 2959 /* Avoid banging the cache line if not needed */ 2960 mmap_miss = READ_ONCE(ra->mmap_miss); 2961 if (mmap_miss < MMAP_LOTSAMISS * 10) 2962 WRITE_ONCE(ra->mmap_miss, ++mmap_miss); 2963 2964 /* 2965 * Do we miss much more than hit in this file? If so, 2966 * stop bothering with read-ahead. It will only hurt. 2967 */ 2968 if (mmap_miss > MMAP_LOTSAMISS) 2969 return fpin; 2970 2971 /* 2972 * mmap read-around 2973 */ 2974 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 2975 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2); 2976 ra->size = ra->ra_pages; 2977 ra->async_size = ra->ra_pages / 4; 2978 ractl._index = ra->start; 2979 do_page_cache_ra(&ractl, ra->size, ra->async_size); 2980 return fpin; 2981 } 2982 2983 /* 2984 * Asynchronous readahead happens when we find the page and PG_readahead, 2985 * so we want to possibly extend the readahead further. We return the file that 2986 * was pinned if we have to drop the mmap_lock in order to do IO. 2987 */ 2988 static struct file *do_async_mmap_readahead(struct vm_fault *vmf, 2989 struct page *page) 2990 { 2991 struct file *file = vmf->vma->vm_file; 2992 struct file_ra_state *ra = &file->f_ra; 2993 struct address_space *mapping = file->f_mapping; 2994 struct file *fpin = NULL; 2995 unsigned int mmap_miss; 2996 pgoff_t offset = vmf->pgoff; 2997 2998 /* If we don't want any read-ahead, don't bother */ 2999 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages) 3000 return fpin; 3001 mmap_miss = READ_ONCE(ra->mmap_miss); 3002 if (mmap_miss) 3003 WRITE_ONCE(ra->mmap_miss, --mmap_miss); 3004 if (PageReadahead(page)) { 3005 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3006 page_cache_async_readahead(mapping, ra, file, 3007 page, offset, ra->ra_pages); 3008 } 3009 return fpin; 3010 } 3011 3012 /** 3013 * filemap_fault - read in file data for page fault handling 3014 * @vmf: struct vm_fault containing details of the fault 3015 * 3016 * filemap_fault() is invoked via the vma operations vector for a 3017 * mapped memory region to read in file data during a page fault. 3018 * 3019 * The goto's are kind of ugly, but this streamlines the normal case of having 3020 * it in the page cache, and handles the special cases reasonably without 3021 * having a lot of duplicated code. 3022 * 3023 * vma->vm_mm->mmap_lock must be held on entry. 3024 * 3025 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock 3026 * may be dropped before doing I/O or by lock_page_maybe_drop_mmap(). 3027 * 3028 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock 3029 * has not been released. 3030 * 3031 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. 3032 * 3033 * Return: bitwise-OR of %VM_FAULT_ codes. 3034 */ 3035 vm_fault_t filemap_fault(struct vm_fault *vmf) 3036 { 3037 int error; 3038 struct file *file = vmf->vma->vm_file; 3039 struct file *fpin = NULL; 3040 struct address_space *mapping = file->f_mapping; 3041 struct inode *inode = mapping->host; 3042 pgoff_t offset = vmf->pgoff; 3043 pgoff_t max_off; 3044 struct page *page; 3045 vm_fault_t ret = 0; 3046 bool mapping_locked = false; 3047 3048 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3049 if (unlikely(offset >= max_off)) 3050 return VM_FAULT_SIGBUS; 3051 3052 /* 3053 * Do we have something in the page cache already? 3054 */ 3055 page = find_get_page(mapping, offset); 3056 if (likely(page)) { 3057 /* 3058 * We found the page, so try async readahead before waiting for 3059 * the lock. 3060 */ 3061 if (!(vmf->flags & FAULT_FLAG_TRIED)) 3062 fpin = do_async_mmap_readahead(vmf, page); 3063 if (unlikely(!PageUptodate(page))) { 3064 filemap_invalidate_lock_shared(mapping); 3065 mapping_locked = true; 3066 } 3067 } else { 3068 /* No page in the page cache at all */ 3069 count_vm_event(PGMAJFAULT); 3070 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); 3071 ret = VM_FAULT_MAJOR; 3072 fpin = do_sync_mmap_readahead(vmf); 3073 retry_find: 3074 /* 3075 * See comment in filemap_create_page() why we need 3076 * invalidate_lock 3077 */ 3078 if (!mapping_locked) { 3079 filemap_invalidate_lock_shared(mapping); 3080 mapping_locked = true; 3081 } 3082 page = pagecache_get_page(mapping, offset, 3083 FGP_CREAT|FGP_FOR_MMAP, 3084 vmf->gfp_mask); 3085 if (!page) { 3086 if (fpin) 3087 goto out_retry; 3088 filemap_invalidate_unlock_shared(mapping); 3089 return VM_FAULT_OOM; 3090 } 3091 } 3092 3093 if (!lock_page_maybe_drop_mmap(vmf, page, &fpin)) 3094 goto out_retry; 3095 3096 /* Did it get truncated? */ 3097 if (unlikely(compound_head(page)->mapping != mapping)) { 3098 unlock_page(page); 3099 put_page(page); 3100 goto retry_find; 3101 } 3102 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page); 3103 3104 /* 3105 * We have a locked page in the page cache, now we need to check 3106 * that it's up-to-date. If not, it is going to be due to an error. 3107 */ 3108 if (unlikely(!PageUptodate(page))) { 3109 /* 3110 * The page was in cache and uptodate and now it is not. 3111 * Strange but possible since we didn't hold the page lock all 3112 * the time. Let's drop everything get the invalidate lock and 3113 * try again. 3114 */ 3115 if (!mapping_locked) { 3116 unlock_page(page); 3117 put_page(page); 3118 goto retry_find; 3119 } 3120 goto page_not_uptodate; 3121 } 3122 3123 /* 3124 * We've made it this far and we had to drop our mmap_lock, now is the 3125 * time to return to the upper layer and have it re-find the vma and 3126 * redo the fault. 3127 */ 3128 if (fpin) { 3129 unlock_page(page); 3130 goto out_retry; 3131 } 3132 if (mapping_locked) 3133 filemap_invalidate_unlock_shared(mapping); 3134 3135 /* 3136 * Found the page and have a reference on it. 3137 * We must recheck i_size under page lock. 3138 */ 3139 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3140 if (unlikely(offset >= max_off)) { 3141 unlock_page(page); 3142 put_page(page); 3143 return VM_FAULT_SIGBUS; 3144 } 3145 3146 vmf->page = page; 3147 return ret | VM_FAULT_LOCKED; 3148 3149 page_not_uptodate: 3150 /* 3151 * Umm, take care of errors if the page isn't up-to-date. 3152 * Try to re-read it _once_. We do this synchronously, 3153 * because there really aren't any performance issues here 3154 * and we need to check for errors. 3155 */ 3156 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3157 error = filemap_read_page(file, mapping, page); 3158 if (fpin) 3159 goto out_retry; 3160 put_page(page); 3161 3162 if (!error || error == AOP_TRUNCATED_PAGE) 3163 goto retry_find; 3164 filemap_invalidate_unlock_shared(mapping); 3165 3166 return VM_FAULT_SIGBUS; 3167 3168 out_retry: 3169 /* 3170 * We dropped the mmap_lock, we need to return to the fault handler to 3171 * re-find the vma and come back and find our hopefully still populated 3172 * page. 3173 */ 3174 if (page) 3175 put_page(page); 3176 if (mapping_locked) 3177 filemap_invalidate_unlock_shared(mapping); 3178 if (fpin) 3179 fput(fpin); 3180 return ret | VM_FAULT_RETRY; 3181 } 3182 EXPORT_SYMBOL(filemap_fault); 3183 3184 static bool filemap_map_pmd(struct vm_fault *vmf, struct page *page) 3185 { 3186 struct mm_struct *mm = vmf->vma->vm_mm; 3187 3188 /* Huge page is mapped? No need to proceed. */ 3189 if (pmd_trans_huge(*vmf->pmd)) { 3190 unlock_page(page); 3191 put_page(page); 3192 return true; 3193 } 3194 3195 if (pmd_none(*vmf->pmd) && PageTransHuge(page)) { 3196 vm_fault_t ret = do_set_pmd(vmf, page); 3197 if (!ret) { 3198 /* The page is mapped successfully, reference consumed. */ 3199 unlock_page(page); 3200 return true; 3201 } 3202 } 3203 3204 if (pmd_none(*vmf->pmd)) { 3205 vmf->ptl = pmd_lock(mm, vmf->pmd); 3206 if (likely(pmd_none(*vmf->pmd))) { 3207 mm_inc_nr_ptes(mm); 3208 pmd_populate(mm, vmf->pmd, vmf->prealloc_pte); 3209 vmf->prealloc_pte = NULL; 3210 } 3211 spin_unlock(vmf->ptl); 3212 } 3213 3214 /* See comment in handle_pte_fault() */ 3215 if (pmd_devmap_trans_unstable(vmf->pmd)) { 3216 unlock_page(page); 3217 put_page(page); 3218 return true; 3219 } 3220 3221 return false; 3222 } 3223 3224 static struct page *next_uptodate_page(struct page *page, 3225 struct address_space *mapping, 3226 struct xa_state *xas, pgoff_t end_pgoff) 3227 { 3228 unsigned long max_idx; 3229 3230 do { 3231 if (!page) 3232 return NULL; 3233 if (xas_retry(xas, page)) 3234 continue; 3235 if (xa_is_value(page)) 3236 continue; 3237 if (PageLocked(page)) 3238 continue; 3239 if (!page_cache_get_speculative(page)) 3240 continue; 3241 /* Has the page moved or been split? */ 3242 if (unlikely(page != xas_reload(xas))) 3243 goto skip; 3244 if (!PageUptodate(page) || PageReadahead(page)) 3245 goto skip; 3246 if (PageHWPoison(page)) 3247 goto skip; 3248 if (!trylock_page(page)) 3249 goto skip; 3250 if (page->mapping != mapping) 3251 goto unlock; 3252 if (!PageUptodate(page)) 3253 goto unlock; 3254 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 3255 if (xas->xa_index >= max_idx) 3256 goto unlock; 3257 return page; 3258 unlock: 3259 unlock_page(page); 3260 skip: 3261 put_page(page); 3262 } while ((page = xas_next_entry(xas, end_pgoff)) != NULL); 3263 3264 return NULL; 3265 } 3266 3267 static inline struct page *first_map_page(struct address_space *mapping, 3268 struct xa_state *xas, 3269 pgoff_t end_pgoff) 3270 { 3271 return next_uptodate_page(xas_find(xas, end_pgoff), 3272 mapping, xas, end_pgoff); 3273 } 3274 3275 static inline struct page *next_map_page(struct address_space *mapping, 3276 struct xa_state *xas, 3277 pgoff_t end_pgoff) 3278 { 3279 return next_uptodate_page(xas_next_entry(xas, end_pgoff), 3280 mapping, xas, end_pgoff); 3281 } 3282 3283 vm_fault_t filemap_map_pages(struct vm_fault *vmf, 3284 pgoff_t start_pgoff, pgoff_t end_pgoff) 3285 { 3286 struct vm_area_struct *vma = vmf->vma; 3287 struct file *file = vma->vm_file; 3288 struct address_space *mapping = file->f_mapping; 3289 pgoff_t last_pgoff = start_pgoff; 3290 unsigned long addr; 3291 XA_STATE(xas, &mapping->i_pages, start_pgoff); 3292 struct page *head, *page; 3293 unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss); 3294 vm_fault_t ret = 0; 3295 3296 rcu_read_lock(); 3297 head = first_map_page(mapping, &xas, end_pgoff); 3298 if (!head) 3299 goto out; 3300 3301 if (filemap_map_pmd(vmf, head)) { 3302 ret = VM_FAULT_NOPAGE; 3303 goto out; 3304 } 3305 3306 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT); 3307 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl); 3308 do { 3309 page = find_subpage(head, xas.xa_index); 3310 if (PageHWPoison(page)) 3311 goto unlock; 3312 3313 if (mmap_miss > 0) 3314 mmap_miss--; 3315 3316 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT; 3317 vmf->pte += xas.xa_index - last_pgoff; 3318 last_pgoff = xas.xa_index; 3319 3320 if (!pte_none(*vmf->pte)) 3321 goto unlock; 3322 3323 /* We're about to handle the fault */ 3324 if (vmf->address == addr) 3325 ret = VM_FAULT_NOPAGE; 3326 3327 do_set_pte(vmf, page, addr); 3328 /* no need to invalidate: a not-present page won't be cached */ 3329 update_mmu_cache(vma, addr, vmf->pte); 3330 unlock_page(head); 3331 continue; 3332 unlock: 3333 unlock_page(head); 3334 put_page(head); 3335 } while ((head = next_map_page(mapping, &xas, end_pgoff)) != NULL); 3336 pte_unmap_unlock(vmf->pte, vmf->ptl); 3337 out: 3338 rcu_read_unlock(); 3339 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss); 3340 return ret; 3341 } 3342 EXPORT_SYMBOL(filemap_map_pages); 3343 3344 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3345 { 3346 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 3347 struct page *page = vmf->page; 3348 vm_fault_t ret = VM_FAULT_LOCKED; 3349 3350 sb_start_pagefault(mapping->host->i_sb); 3351 file_update_time(vmf->vma->vm_file); 3352 lock_page(page); 3353 if (page->mapping != mapping) { 3354 unlock_page(page); 3355 ret = VM_FAULT_NOPAGE; 3356 goto out; 3357 } 3358 /* 3359 * We mark the page dirty already here so that when freeze is in 3360 * progress, we are guaranteed that writeback during freezing will 3361 * see the dirty page and writeprotect it again. 3362 */ 3363 set_page_dirty(page); 3364 wait_for_stable_page(page); 3365 out: 3366 sb_end_pagefault(mapping->host->i_sb); 3367 return ret; 3368 } 3369 3370 const struct vm_operations_struct generic_file_vm_ops = { 3371 .fault = filemap_fault, 3372 .map_pages = filemap_map_pages, 3373 .page_mkwrite = filemap_page_mkwrite, 3374 }; 3375 3376 /* This is used for a general mmap of a disk file */ 3377 3378 int generic_file_mmap(struct file *file, struct vm_area_struct *vma) 3379 { 3380 struct address_space *mapping = file->f_mapping; 3381 3382 if (!mapping->a_ops->readpage) 3383 return -ENOEXEC; 3384 file_accessed(file); 3385 vma->vm_ops = &generic_file_vm_ops; 3386 return 0; 3387 } 3388 3389 /* 3390 * This is for filesystems which do not implement ->writepage. 3391 */ 3392 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3393 { 3394 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 3395 return -EINVAL; 3396 return generic_file_mmap(file, vma); 3397 } 3398 #else 3399 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3400 { 3401 return VM_FAULT_SIGBUS; 3402 } 3403 int generic_file_mmap(struct file *file, struct vm_area_struct *vma) 3404 { 3405 return -ENOSYS; 3406 } 3407 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3408 { 3409 return -ENOSYS; 3410 } 3411 #endif /* CONFIG_MMU */ 3412 3413 EXPORT_SYMBOL(filemap_page_mkwrite); 3414 EXPORT_SYMBOL(generic_file_mmap); 3415 EXPORT_SYMBOL(generic_file_readonly_mmap); 3416 3417 static struct page *wait_on_page_read(struct page *page) 3418 { 3419 if (!IS_ERR(page)) { 3420 wait_on_page_locked(page); 3421 if (!PageUptodate(page)) { 3422 put_page(page); 3423 page = ERR_PTR(-EIO); 3424 } 3425 } 3426 return page; 3427 } 3428 3429 static struct page *do_read_cache_page(struct address_space *mapping, 3430 pgoff_t index, 3431 int (*filler)(void *, struct page *), 3432 void *data, 3433 gfp_t gfp) 3434 { 3435 struct page *page; 3436 int err; 3437 repeat: 3438 page = find_get_page(mapping, index); 3439 if (!page) { 3440 page = __page_cache_alloc(gfp); 3441 if (!page) 3442 return ERR_PTR(-ENOMEM); 3443 err = add_to_page_cache_lru(page, mapping, index, gfp); 3444 if (unlikely(err)) { 3445 put_page(page); 3446 if (err == -EEXIST) 3447 goto repeat; 3448 /* Presumably ENOMEM for xarray node */ 3449 return ERR_PTR(err); 3450 } 3451 3452 filler: 3453 if (filler) 3454 err = filler(data, page); 3455 else 3456 err = mapping->a_ops->readpage(data, page); 3457 3458 if (err < 0) { 3459 put_page(page); 3460 return ERR_PTR(err); 3461 } 3462 3463 page = wait_on_page_read(page); 3464 if (IS_ERR(page)) 3465 return page; 3466 goto out; 3467 } 3468 if (PageUptodate(page)) 3469 goto out; 3470 3471 /* 3472 * Page is not up to date and may be locked due to one of the following 3473 * case a: Page is being filled and the page lock is held 3474 * case b: Read/write error clearing the page uptodate status 3475 * case c: Truncation in progress (page locked) 3476 * case d: Reclaim in progress 3477 * 3478 * Case a, the page will be up to date when the page is unlocked. 3479 * There is no need to serialise on the page lock here as the page 3480 * is pinned so the lock gives no additional protection. Even if the 3481 * page is truncated, the data is still valid if PageUptodate as 3482 * it's a race vs truncate race. 3483 * Case b, the page will not be up to date 3484 * Case c, the page may be truncated but in itself, the data may still 3485 * be valid after IO completes as it's a read vs truncate race. The 3486 * operation must restart if the page is not uptodate on unlock but 3487 * otherwise serialising on page lock to stabilise the mapping gives 3488 * no additional guarantees to the caller as the page lock is 3489 * released before return. 3490 * Case d, similar to truncation. If reclaim holds the page lock, it 3491 * will be a race with remove_mapping that determines if the mapping 3492 * is valid on unlock but otherwise the data is valid and there is 3493 * no need to serialise with page lock. 3494 * 3495 * As the page lock gives no additional guarantee, we optimistically 3496 * wait on the page to be unlocked and check if it's up to date and 3497 * use the page if it is. Otherwise, the page lock is required to 3498 * distinguish between the different cases. The motivation is that we 3499 * avoid spurious serialisations and wakeups when multiple processes 3500 * wait on the same page for IO to complete. 3501 */ 3502 wait_on_page_locked(page); 3503 if (PageUptodate(page)) 3504 goto out; 3505 3506 /* Distinguish between all the cases under the safety of the lock */ 3507 lock_page(page); 3508 3509 /* Case c or d, restart the operation */ 3510 if (!page->mapping) { 3511 unlock_page(page); 3512 put_page(page); 3513 goto repeat; 3514 } 3515 3516 /* Someone else locked and filled the page in a very small window */ 3517 if (PageUptodate(page)) { 3518 unlock_page(page); 3519 goto out; 3520 } 3521 3522 /* 3523 * A previous I/O error may have been due to temporary 3524 * failures. 3525 * Clear page error before actual read, PG_error will be 3526 * set again if read page fails. 3527 */ 3528 ClearPageError(page); 3529 goto filler; 3530 3531 out: 3532 mark_page_accessed(page); 3533 return page; 3534 } 3535 3536 /** 3537 * read_cache_page - read into page cache, fill it if needed 3538 * @mapping: the page's address_space 3539 * @index: the page index 3540 * @filler: function to perform the read 3541 * @data: first arg to filler(data, page) function, often left as NULL 3542 * 3543 * Read into the page cache. If a page already exists, and PageUptodate() is 3544 * not set, try to fill the page and wait for it to become unlocked. 3545 * 3546 * If the page does not get brought uptodate, return -EIO. 3547 * 3548 * The function expects mapping->invalidate_lock to be already held. 3549 * 3550 * Return: up to date page on success, ERR_PTR() on failure. 3551 */ 3552 struct page *read_cache_page(struct address_space *mapping, 3553 pgoff_t index, 3554 int (*filler)(void *, struct page *), 3555 void *data) 3556 { 3557 return do_read_cache_page(mapping, index, filler, data, 3558 mapping_gfp_mask(mapping)); 3559 } 3560 EXPORT_SYMBOL(read_cache_page); 3561 3562 /** 3563 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 3564 * @mapping: the page's address_space 3565 * @index: the page index 3566 * @gfp: the page allocator flags to use if allocating 3567 * 3568 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 3569 * any new page allocations done using the specified allocation flags. 3570 * 3571 * If the page does not get brought uptodate, return -EIO. 3572 * 3573 * The function expects mapping->invalidate_lock to be already held. 3574 * 3575 * Return: up to date page on success, ERR_PTR() on failure. 3576 */ 3577 struct page *read_cache_page_gfp(struct address_space *mapping, 3578 pgoff_t index, 3579 gfp_t gfp) 3580 { 3581 return do_read_cache_page(mapping, index, NULL, NULL, gfp); 3582 } 3583 EXPORT_SYMBOL(read_cache_page_gfp); 3584 3585 int pagecache_write_begin(struct file *file, struct address_space *mapping, 3586 loff_t pos, unsigned len, unsigned flags, 3587 struct page **pagep, void **fsdata) 3588 { 3589 const struct address_space_operations *aops = mapping->a_ops; 3590 3591 return aops->write_begin(file, mapping, pos, len, flags, 3592 pagep, fsdata); 3593 } 3594 EXPORT_SYMBOL(pagecache_write_begin); 3595 3596 int pagecache_write_end(struct file *file, struct address_space *mapping, 3597 loff_t pos, unsigned len, unsigned copied, 3598 struct page *page, void *fsdata) 3599 { 3600 const struct address_space_operations *aops = mapping->a_ops; 3601 3602 return aops->write_end(file, mapping, pos, len, copied, page, fsdata); 3603 } 3604 EXPORT_SYMBOL(pagecache_write_end); 3605 3606 /* 3607 * Warn about a page cache invalidation failure during a direct I/O write. 3608 */ 3609 void dio_warn_stale_pagecache(struct file *filp) 3610 { 3611 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST); 3612 char pathname[128]; 3613 char *path; 3614 3615 errseq_set(&filp->f_mapping->wb_err, -EIO); 3616 if (__ratelimit(&_rs)) { 3617 path = file_path(filp, pathname, sizeof(pathname)); 3618 if (IS_ERR(path)) 3619 path = "(unknown)"; 3620 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n"); 3621 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid, 3622 current->comm); 3623 } 3624 } 3625 3626 ssize_t 3627 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) 3628 { 3629 struct file *file = iocb->ki_filp; 3630 struct address_space *mapping = file->f_mapping; 3631 struct inode *inode = mapping->host; 3632 loff_t pos = iocb->ki_pos; 3633 ssize_t written; 3634 size_t write_len; 3635 pgoff_t end; 3636 3637 write_len = iov_iter_count(from); 3638 end = (pos + write_len - 1) >> PAGE_SHIFT; 3639 3640 if (iocb->ki_flags & IOCB_NOWAIT) { 3641 /* If there are pages to writeback, return */ 3642 if (filemap_range_has_page(file->f_mapping, pos, 3643 pos + write_len - 1)) 3644 return -EAGAIN; 3645 } else { 3646 written = filemap_write_and_wait_range(mapping, pos, 3647 pos + write_len - 1); 3648 if (written) 3649 goto out; 3650 } 3651 3652 /* 3653 * After a write we want buffered reads to be sure to go to disk to get 3654 * the new data. We invalidate clean cached page from the region we're 3655 * about to write. We do this *before* the write so that we can return 3656 * without clobbering -EIOCBQUEUED from ->direct_IO(). 3657 */ 3658 written = invalidate_inode_pages2_range(mapping, 3659 pos >> PAGE_SHIFT, end); 3660 /* 3661 * If a page can not be invalidated, return 0 to fall back 3662 * to buffered write. 3663 */ 3664 if (written) { 3665 if (written == -EBUSY) 3666 return 0; 3667 goto out; 3668 } 3669 3670 written = mapping->a_ops->direct_IO(iocb, from); 3671 3672 /* 3673 * Finally, try again to invalidate clean pages which might have been 3674 * cached by non-direct readahead, or faulted in by get_user_pages() 3675 * if the source of the write was an mmap'ed region of the file 3676 * we're writing. Either one is a pretty crazy thing to do, 3677 * so we don't support it 100%. If this invalidation 3678 * fails, tough, the write still worked... 3679 * 3680 * Most of the time we do not need this since dio_complete() will do 3681 * the invalidation for us. However there are some file systems that 3682 * do not end up with dio_complete() being called, so let's not break 3683 * them by removing it completely. 3684 * 3685 * Noticeable example is a blkdev_direct_IO(). 3686 * 3687 * Skip invalidation for async writes or if mapping has no pages. 3688 */ 3689 if (written > 0 && mapping->nrpages && 3690 invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end)) 3691 dio_warn_stale_pagecache(file); 3692 3693 if (written > 0) { 3694 pos += written; 3695 write_len -= written; 3696 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 3697 i_size_write(inode, pos); 3698 mark_inode_dirty(inode); 3699 } 3700 iocb->ki_pos = pos; 3701 } 3702 if (written != -EIOCBQUEUED) 3703 iov_iter_revert(from, write_len - iov_iter_count(from)); 3704 out: 3705 return written; 3706 } 3707 EXPORT_SYMBOL(generic_file_direct_write); 3708 3709 ssize_t generic_perform_write(struct file *file, 3710 struct iov_iter *i, loff_t pos) 3711 { 3712 struct address_space *mapping = file->f_mapping; 3713 const struct address_space_operations *a_ops = mapping->a_ops; 3714 long status = 0; 3715 ssize_t written = 0; 3716 unsigned int flags = 0; 3717 3718 do { 3719 struct page *page; 3720 unsigned long offset; /* Offset into pagecache page */ 3721 unsigned long bytes; /* Bytes to write to page */ 3722 size_t copied; /* Bytes copied from user */ 3723 void *fsdata; 3724 3725 offset = (pos & (PAGE_SIZE - 1)); 3726 bytes = min_t(unsigned long, PAGE_SIZE - offset, 3727 iov_iter_count(i)); 3728 3729 again: 3730 /* 3731 * Bring in the user page that we will copy from _first_. 3732 * Otherwise there's a nasty deadlock on copying from the 3733 * same page as we're writing to, without it being marked 3734 * up-to-date. 3735 */ 3736 if (unlikely(iov_iter_fault_in_readable(i, bytes))) { 3737 status = -EFAULT; 3738 break; 3739 } 3740 3741 if (fatal_signal_pending(current)) { 3742 status = -EINTR; 3743 break; 3744 } 3745 3746 status = a_ops->write_begin(file, mapping, pos, bytes, flags, 3747 &page, &fsdata); 3748 if (unlikely(status < 0)) 3749 break; 3750 3751 if (mapping_writably_mapped(mapping)) 3752 flush_dcache_page(page); 3753 3754 copied = copy_page_from_iter_atomic(page, offset, bytes, i); 3755 flush_dcache_page(page); 3756 3757 status = a_ops->write_end(file, mapping, pos, bytes, copied, 3758 page, fsdata); 3759 if (unlikely(status != copied)) { 3760 iov_iter_revert(i, copied - max(status, 0L)); 3761 if (unlikely(status < 0)) 3762 break; 3763 } 3764 cond_resched(); 3765 3766 if (unlikely(status == 0)) { 3767 /* 3768 * A short copy made ->write_end() reject the 3769 * thing entirely. Might be memory poisoning 3770 * halfway through, might be a race with munmap, 3771 * might be severe memory pressure. 3772 */ 3773 if (copied) 3774 bytes = copied; 3775 goto again; 3776 } 3777 pos += status; 3778 written += status; 3779 3780 balance_dirty_pages_ratelimited(mapping); 3781 } while (iov_iter_count(i)); 3782 3783 return written ? written : status; 3784 } 3785 EXPORT_SYMBOL(generic_perform_write); 3786 3787 /** 3788 * __generic_file_write_iter - write data to a file 3789 * @iocb: IO state structure (file, offset, etc.) 3790 * @from: iov_iter with data to write 3791 * 3792 * This function does all the work needed for actually writing data to a 3793 * file. It does all basic checks, removes SUID from the file, updates 3794 * modification times and calls proper subroutines depending on whether we 3795 * do direct IO or a standard buffered write. 3796 * 3797 * It expects i_rwsem to be grabbed unless we work on a block device or similar 3798 * object which does not need locking at all. 3799 * 3800 * This function does *not* take care of syncing data in case of O_SYNC write. 3801 * A caller has to handle it. This is mainly due to the fact that we want to 3802 * avoid syncing under i_rwsem. 3803 * 3804 * Return: 3805 * * number of bytes written, even for truncated writes 3806 * * negative error code if no data has been written at all 3807 */ 3808 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3809 { 3810 struct file *file = iocb->ki_filp; 3811 struct address_space *mapping = file->f_mapping; 3812 struct inode *inode = mapping->host; 3813 ssize_t written = 0; 3814 ssize_t err; 3815 ssize_t status; 3816 3817 /* We can write back this queue in page reclaim */ 3818 current->backing_dev_info = inode_to_bdi(inode); 3819 err = file_remove_privs(file); 3820 if (err) 3821 goto out; 3822 3823 err = file_update_time(file); 3824 if (err) 3825 goto out; 3826 3827 if (iocb->ki_flags & IOCB_DIRECT) { 3828 loff_t pos, endbyte; 3829 3830 written = generic_file_direct_write(iocb, from); 3831 /* 3832 * If the write stopped short of completing, fall back to 3833 * buffered writes. Some filesystems do this for writes to 3834 * holes, for example. For DAX files, a buffered write will 3835 * not succeed (even if it did, DAX does not handle dirty 3836 * page-cache pages correctly). 3837 */ 3838 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode)) 3839 goto out; 3840 3841 status = generic_perform_write(file, from, pos = iocb->ki_pos); 3842 /* 3843 * If generic_perform_write() returned a synchronous error 3844 * then we want to return the number of bytes which were 3845 * direct-written, or the error code if that was zero. Note 3846 * that this differs from normal direct-io semantics, which 3847 * will return -EFOO even if some bytes were written. 3848 */ 3849 if (unlikely(status < 0)) { 3850 err = status; 3851 goto out; 3852 } 3853 /* 3854 * We need to ensure that the page cache pages are written to 3855 * disk and invalidated to preserve the expected O_DIRECT 3856 * semantics. 3857 */ 3858 endbyte = pos + status - 1; 3859 err = filemap_write_and_wait_range(mapping, pos, endbyte); 3860 if (err == 0) { 3861 iocb->ki_pos = endbyte + 1; 3862 written += status; 3863 invalidate_mapping_pages(mapping, 3864 pos >> PAGE_SHIFT, 3865 endbyte >> PAGE_SHIFT); 3866 } else { 3867 /* 3868 * We don't know how much we wrote, so just return 3869 * the number of bytes which were direct-written 3870 */ 3871 } 3872 } else { 3873 written = generic_perform_write(file, from, iocb->ki_pos); 3874 if (likely(written > 0)) 3875 iocb->ki_pos += written; 3876 } 3877 out: 3878 current->backing_dev_info = NULL; 3879 return written ? written : err; 3880 } 3881 EXPORT_SYMBOL(__generic_file_write_iter); 3882 3883 /** 3884 * generic_file_write_iter - write data to a file 3885 * @iocb: IO state structure 3886 * @from: iov_iter with data to write 3887 * 3888 * This is a wrapper around __generic_file_write_iter() to be used by most 3889 * filesystems. It takes care of syncing the file in case of O_SYNC file 3890 * and acquires i_rwsem as needed. 3891 * Return: 3892 * * negative error code if no data has been written at all of 3893 * vfs_fsync_range() failed for a synchronous write 3894 * * number of bytes written, even for truncated writes 3895 */ 3896 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3897 { 3898 struct file *file = iocb->ki_filp; 3899 struct inode *inode = file->f_mapping->host; 3900 ssize_t ret; 3901 3902 inode_lock(inode); 3903 ret = generic_write_checks(iocb, from); 3904 if (ret > 0) 3905 ret = __generic_file_write_iter(iocb, from); 3906 inode_unlock(inode); 3907 3908 if (ret > 0) 3909 ret = generic_write_sync(iocb, ret); 3910 return ret; 3911 } 3912 EXPORT_SYMBOL(generic_file_write_iter); 3913 3914 /** 3915 * try_to_release_page() - release old fs-specific metadata on a page 3916 * 3917 * @page: the page which the kernel is trying to free 3918 * @gfp_mask: memory allocation flags (and I/O mode) 3919 * 3920 * The address_space is to try to release any data against the page 3921 * (presumably at page->private). 3922 * 3923 * This may also be called if PG_fscache is set on a page, indicating that the 3924 * page is known to the local caching routines. 3925 * 3926 * The @gfp_mask argument specifies whether I/O may be performed to release 3927 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS). 3928 * 3929 * Return: %1 if the release was successful, otherwise return zero. 3930 */ 3931 int try_to_release_page(struct page *page, gfp_t gfp_mask) 3932 { 3933 struct address_space * const mapping = page->mapping; 3934 3935 BUG_ON(!PageLocked(page)); 3936 if (PageWriteback(page)) 3937 return 0; 3938 3939 if (mapping && mapping->a_ops->releasepage) 3940 return mapping->a_ops->releasepage(page, gfp_mask); 3941 return try_to_free_buffers(page); 3942 } 3943 3944 EXPORT_SYMBOL(try_to_release_page); 3945