xref: /openbmc/linux/mm/filemap.c (revision 827beb77)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	linux/mm/filemap.c
4  *
5  * Copyright (C) 1994-1999  Linus Torvalds
6  */
7 
8 /*
9  * This file handles the generic file mmap semantics used by
10  * most "normal" filesystems (but you don't /have/ to use this:
11  * the NFS filesystem used to do this differently, for example)
12  */
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
16 #include <linux/fs.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
22 #include <linux/mm.h>
23 #include <linux/swap.h>
24 #include <linux/mman.h>
25 #include <linux/pagemap.h>
26 #include <linux/file.h>
27 #include <linux/uio.h>
28 #include <linux/error-injection.h>
29 #include <linux/hash.h>
30 #include <linux/writeback.h>
31 #include <linux/backing-dev.h>
32 #include <linux/pagevec.h>
33 #include <linux/security.h>
34 #include <linux/cpuset.h>
35 #include <linux/hugetlb.h>
36 #include <linux/memcontrol.h>
37 #include <linux/cleancache.h>
38 #include <linux/shmem_fs.h>
39 #include <linux/rmap.h>
40 #include <linux/delayacct.h>
41 #include <linux/psi.h>
42 #include <linux/ramfs.h>
43 #include <linux/page_idle.h>
44 #include <asm/pgalloc.h>
45 #include <asm/tlbflush.h>
46 #include "internal.h"
47 
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/filemap.h>
50 
51 /*
52  * FIXME: remove all knowledge of the buffer layer from the core VM
53  */
54 #include <linux/buffer_head.h> /* for try_to_free_buffers */
55 
56 #include <asm/mman.h>
57 
58 /*
59  * Shared mappings implemented 30.11.1994. It's not fully working yet,
60  * though.
61  *
62  * Shared mappings now work. 15.8.1995  Bruno.
63  *
64  * finished 'unifying' the page and buffer cache and SMP-threaded the
65  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
66  *
67  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
68  */
69 
70 /*
71  * Lock ordering:
72  *
73  *  ->i_mmap_rwsem		(truncate_pagecache)
74  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
75  *      ->swap_lock		(exclusive_swap_page, others)
76  *        ->i_pages lock
77  *
78  *  ->i_rwsem
79  *    ->invalidate_lock		(acquired by fs in truncate path)
80  *      ->i_mmap_rwsem		(truncate->unmap_mapping_range)
81  *
82  *  ->mmap_lock
83  *    ->i_mmap_rwsem
84  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
85  *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
86  *
87  *  ->mmap_lock
88  *    ->invalidate_lock		(filemap_fault)
89  *      ->lock_page		(filemap_fault, access_process_vm)
90  *
91  *  ->i_rwsem			(generic_perform_write)
92  *    ->mmap_lock		(fault_in_pages_readable->do_page_fault)
93  *
94  *  bdi->wb.list_lock
95  *    sb_lock			(fs/fs-writeback.c)
96  *    ->i_pages lock		(__sync_single_inode)
97  *
98  *  ->i_mmap_rwsem
99  *    ->anon_vma.lock		(vma_adjust)
100  *
101  *  ->anon_vma.lock
102  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
103  *
104  *  ->page_table_lock or pte_lock
105  *    ->swap_lock		(try_to_unmap_one)
106  *    ->private_lock		(try_to_unmap_one)
107  *    ->i_pages lock		(try_to_unmap_one)
108  *    ->lruvec->lru_lock	(follow_page->mark_page_accessed)
109  *    ->lruvec->lru_lock	(check_pte_range->isolate_lru_page)
110  *    ->private_lock		(page_remove_rmap->set_page_dirty)
111  *    ->i_pages lock		(page_remove_rmap->set_page_dirty)
112  *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
113  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
114  *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
115  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
116  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
117  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
118  *
119  * ->i_mmap_rwsem
120  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
121  */
122 
123 static void page_cache_delete(struct address_space *mapping,
124 				   struct page *page, void *shadow)
125 {
126 	XA_STATE(xas, &mapping->i_pages, page->index);
127 	unsigned int nr = 1;
128 
129 	mapping_set_update(&xas, mapping);
130 
131 	/* hugetlb pages are represented by a single entry in the xarray */
132 	if (!PageHuge(page)) {
133 		xas_set_order(&xas, page->index, compound_order(page));
134 		nr = compound_nr(page);
135 	}
136 
137 	VM_BUG_ON_PAGE(!PageLocked(page), page);
138 	VM_BUG_ON_PAGE(PageTail(page), page);
139 	VM_BUG_ON_PAGE(nr != 1 && shadow, page);
140 
141 	xas_store(&xas, shadow);
142 	xas_init_marks(&xas);
143 
144 	page->mapping = NULL;
145 	/* Leave page->index set: truncation lookup relies upon it */
146 	mapping->nrpages -= nr;
147 }
148 
149 static void unaccount_page_cache_page(struct address_space *mapping,
150 				      struct page *page)
151 {
152 	int nr;
153 
154 	/*
155 	 * if we're uptodate, flush out into the cleancache, otherwise
156 	 * invalidate any existing cleancache entries.  We can't leave
157 	 * stale data around in the cleancache once our page is gone
158 	 */
159 	if (PageUptodate(page) && PageMappedToDisk(page))
160 		cleancache_put_page(page);
161 	else
162 		cleancache_invalidate_page(mapping, page);
163 
164 	VM_BUG_ON_PAGE(PageTail(page), page);
165 	VM_BUG_ON_PAGE(page_mapped(page), page);
166 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
167 		int mapcount;
168 
169 		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
170 			 current->comm, page_to_pfn(page));
171 		dump_page(page, "still mapped when deleted");
172 		dump_stack();
173 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
174 
175 		mapcount = page_mapcount(page);
176 		if (mapping_exiting(mapping) &&
177 		    page_count(page) >= mapcount + 2) {
178 			/*
179 			 * All vmas have already been torn down, so it's
180 			 * a good bet that actually the page is unmapped,
181 			 * and we'd prefer not to leak it: if we're wrong,
182 			 * some other bad page check should catch it later.
183 			 */
184 			page_mapcount_reset(page);
185 			page_ref_sub(page, mapcount);
186 		}
187 	}
188 
189 	/* hugetlb pages do not participate in page cache accounting. */
190 	if (PageHuge(page))
191 		return;
192 
193 	nr = thp_nr_pages(page);
194 
195 	__mod_lruvec_page_state(page, NR_FILE_PAGES, -nr);
196 	if (PageSwapBacked(page)) {
197 		__mod_lruvec_page_state(page, NR_SHMEM, -nr);
198 		if (PageTransHuge(page))
199 			__mod_lruvec_page_state(page, NR_SHMEM_THPS, -nr);
200 	} else if (PageTransHuge(page)) {
201 		__mod_lruvec_page_state(page, NR_FILE_THPS, -nr);
202 		filemap_nr_thps_dec(mapping);
203 	}
204 
205 	/*
206 	 * At this point page must be either written or cleaned by
207 	 * truncate.  Dirty page here signals a bug and loss of
208 	 * unwritten data.
209 	 *
210 	 * This fixes dirty accounting after removing the page entirely
211 	 * but leaves PageDirty set: it has no effect for truncated
212 	 * page and anyway will be cleared before returning page into
213 	 * buddy allocator.
214 	 */
215 	if (WARN_ON_ONCE(PageDirty(page)))
216 		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
217 }
218 
219 /*
220  * Delete a page from the page cache and free it. Caller has to make
221  * sure the page is locked and that nobody else uses it - or that usage
222  * is safe.  The caller must hold the i_pages lock.
223  */
224 void __delete_from_page_cache(struct page *page, void *shadow)
225 {
226 	struct address_space *mapping = page->mapping;
227 
228 	trace_mm_filemap_delete_from_page_cache(page);
229 
230 	unaccount_page_cache_page(mapping, page);
231 	page_cache_delete(mapping, page, shadow);
232 }
233 
234 static void page_cache_free_page(struct address_space *mapping,
235 				struct page *page)
236 {
237 	void (*freepage)(struct page *);
238 
239 	freepage = mapping->a_ops->freepage;
240 	if (freepage)
241 		freepage(page);
242 
243 	if (PageTransHuge(page) && !PageHuge(page)) {
244 		page_ref_sub(page, thp_nr_pages(page));
245 		VM_BUG_ON_PAGE(page_count(page) <= 0, page);
246 	} else {
247 		put_page(page);
248 	}
249 }
250 
251 /**
252  * delete_from_page_cache - delete page from page cache
253  * @page: the page which the kernel is trying to remove from page cache
254  *
255  * This must be called only on pages that have been verified to be in the page
256  * cache and locked.  It will never put the page into the free list, the caller
257  * has a reference on the page.
258  */
259 void delete_from_page_cache(struct page *page)
260 {
261 	struct address_space *mapping = page_mapping(page);
262 
263 	BUG_ON(!PageLocked(page));
264 	xa_lock_irq(&mapping->i_pages);
265 	__delete_from_page_cache(page, NULL);
266 	xa_unlock_irq(&mapping->i_pages);
267 
268 	page_cache_free_page(mapping, page);
269 }
270 EXPORT_SYMBOL(delete_from_page_cache);
271 
272 /*
273  * page_cache_delete_batch - delete several pages from page cache
274  * @mapping: the mapping to which pages belong
275  * @pvec: pagevec with pages to delete
276  *
277  * The function walks over mapping->i_pages and removes pages passed in @pvec
278  * from the mapping. The function expects @pvec to be sorted by page index
279  * and is optimised for it to be dense.
280  * It tolerates holes in @pvec (mapping entries at those indices are not
281  * modified). The function expects only THP head pages to be present in the
282  * @pvec.
283  *
284  * The function expects the i_pages lock to be held.
285  */
286 static void page_cache_delete_batch(struct address_space *mapping,
287 			     struct pagevec *pvec)
288 {
289 	XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
290 	int total_pages = 0;
291 	int i = 0;
292 	struct page *page;
293 
294 	mapping_set_update(&xas, mapping);
295 	xas_for_each(&xas, page, ULONG_MAX) {
296 		if (i >= pagevec_count(pvec))
297 			break;
298 
299 		/* A swap/dax/shadow entry got inserted? Skip it. */
300 		if (xa_is_value(page))
301 			continue;
302 		/*
303 		 * A page got inserted in our range? Skip it. We have our
304 		 * pages locked so they are protected from being removed.
305 		 * If we see a page whose index is higher than ours, it
306 		 * means our page has been removed, which shouldn't be
307 		 * possible because we're holding the PageLock.
308 		 */
309 		if (page != pvec->pages[i]) {
310 			VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
311 					page);
312 			continue;
313 		}
314 
315 		WARN_ON_ONCE(!PageLocked(page));
316 
317 		if (page->index == xas.xa_index)
318 			page->mapping = NULL;
319 		/* Leave page->index set: truncation lookup relies on it */
320 
321 		/*
322 		 * Move to the next page in the vector if this is a regular
323 		 * page or the index is of the last sub-page of this compound
324 		 * page.
325 		 */
326 		if (page->index + compound_nr(page) - 1 == xas.xa_index)
327 			i++;
328 		xas_store(&xas, NULL);
329 		total_pages++;
330 	}
331 	mapping->nrpages -= total_pages;
332 }
333 
334 void delete_from_page_cache_batch(struct address_space *mapping,
335 				  struct pagevec *pvec)
336 {
337 	int i;
338 
339 	if (!pagevec_count(pvec))
340 		return;
341 
342 	xa_lock_irq(&mapping->i_pages);
343 	for (i = 0; i < pagevec_count(pvec); i++) {
344 		trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
345 
346 		unaccount_page_cache_page(mapping, pvec->pages[i]);
347 	}
348 	page_cache_delete_batch(mapping, pvec);
349 	xa_unlock_irq(&mapping->i_pages);
350 
351 	for (i = 0; i < pagevec_count(pvec); i++)
352 		page_cache_free_page(mapping, pvec->pages[i]);
353 }
354 
355 int filemap_check_errors(struct address_space *mapping)
356 {
357 	int ret = 0;
358 	/* Check for outstanding write errors */
359 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
360 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
361 		ret = -ENOSPC;
362 	if (test_bit(AS_EIO, &mapping->flags) &&
363 	    test_and_clear_bit(AS_EIO, &mapping->flags))
364 		ret = -EIO;
365 	return ret;
366 }
367 EXPORT_SYMBOL(filemap_check_errors);
368 
369 static int filemap_check_and_keep_errors(struct address_space *mapping)
370 {
371 	/* Check for outstanding write errors */
372 	if (test_bit(AS_EIO, &mapping->flags))
373 		return -EIO;
374 	if (test_bit(AS_ENOSPC, &mapping->flags))
375 		return -ENOSPC;
376 	return 0;
377 }
378 
379 /**
380  * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
381  * @mapping:	address space structure to write
382  * @wbc:	the writeback_control controlling the writeout
383  *
384  * Call writepages on the mapping using the provided wbc to control the
385  * writeout.
386  *
387  * Return: %0 on success, negative error code otherwise.
388  */
389 int filemap_fdatawrite_wbc(struct address_space *mapping,
390 			   struct writeback_control *wbc)
391 {
392 	int ret;
393 
394 	if (!mapping_can_writeback(mapping) ||
395 	    !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
396 		return 0;
397 
398 	wbc_attach_fdatawrite_inode(wbc, mapping->host);
399 	ret = do_writepages(mapping, wbc);
400 	wbc_detach_inode(wbc);
401 	return ret;
402 }
403 EXPORT_SYMBOL(filemap_fdatawrite_wbc);
404 
405 /**
406  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
407  * @mapping:	address space structure to write
408  * @start:	offset in bytes where the range starts
409  * @end:	offset in bytes where the range ends (inclusive)
410  * @sync_mode:	enable synchronous operation
411  *
412  * Start writeback against all of a mapping's dirty pages that lie
413  * within the byte offsets <start, end> inclusive.
414  *
415  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
416  * opposed to a regular memory cleansing writeback.  The difference between
417  * these two operations is that if a dirty page/buffer is encountered, it must
418  * be waited upon, and not just skipped over.
419  *
420  * Return: %0 on success, negative error code otherwise.
421  */
422 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
423 				loff_t end, int sync_mode)
424 {
425 	struct writeback_control wbc = {
426 		.sync_mode = sync_mode,
427 		.nr_to_write = LONG_MAX,
428 		.range_start = start,
429 		.range_end = end,
430 	};
431 
432 	return filemap_fdatawrite_wbc(mapping, &wbc);
433 }
434 
435 static inline int __filemap_fdatawrite(struct address_space *mapping,
436 	int sync_mode)
437 {
438 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
439 }
440 
441 int filemap_fdatawrite(struct address_space *mapping)
442 {
443 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
444 }
445 EXPORT_SYMBOL(filemap_fdatawrite);
446 
447 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
448 				loff_t end)
449 {
450 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
451 }
452 EXPORT_SYMBOL(filemap_fdatawrite_range);
453 
454 /**
455  * filemap_flush - mostly a non-blocking flush
456  * @mapping:	target address_space
457  *
458  * This is a mostly non-blocking flush.  Not suitable for data-integrity
459  * purposes - I/O may not be started against all dirty pages.
460  *
461  * Return: %0 on success, negative error code otherwise.
462  */
463 int filemap_flush(struct address_space *mapping)
464 {
465 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
466 }
467 EXPORT_SYMBOL(filemap_flush);
468 
469 /**
470  * filemap_range_has_page - check if a page exists in range.
471  * @mapping:           address space within which to check
472  * @start_byte:        offset in bytes where the range starts
473  * @end_byte:          offset in bytes where the range ends (inclusive)
474  *
475  * Find at least one page in the range supplied, usually used to check if
476  * direct writing in this range will trigger a writeback.
477  *
478  * Return: %true if at least one page exists in the specified range,
479  * %false otherwise.
480  */
481 bool filemap_range_has_page(struct address_space *mapping,
482 			   loff_t start_byte, loff_t end_byte)
483 {
484 	struct page *page;
485 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
486 	pgoff_t max = end_byte >> PAGE_SHIFT;
487 
488 	if (end_byte < start_byte)
489 		return false;
490 
491 	rcu_read_lock();
492 	for (;;) {
493 		page = xas_find(&xas, max);
494 		if (xas_retry(&xas, page))
495 			continue;
496 		/* Shadow entries don't count */
497 		if (xa_is_value(page))
498 			continue;
499 		/*
500 		 * We don't need to try to pin this page; we're about to
501 		 * release the RCU lock anyway.  It is enough to know that
502 		 * there was a page here recently.
503 		 */
504 		break;
505 	}
506 	rcu_read_unlock();
507 
508 	return page != NULL;
509 }
510 EXPORT_SYMBOL(filemap_range_has_page);
511 
512 static void __filemap_fdatawait_range(struct address_space *mapping,
513 				     loff_t start_byte, loff_t end_byte)
514 {
515 	pgoff_t index = start_byte >> PAGE_SHIFT;
516 	pgoff_t end = end_byte >> PAGE_SHIFT;
517 	struct pagevec pvec;
518 	int nr_pages;
519 
520 	if (end_byte < start_byte)
521 		return;
522 
523 	pagevec_init(&pvec);
524 	while (index <= end) {
525 		unsigned i;
526 
527 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
528 				end, PAGECACHE_TAG_WRITEBACK);
529 		if (!nr_pages)
530 			break;
531 
532 		for (i = 0; i < nr_pages; i++) {
533 			struct page *page = pvec.pages[i];
534 
535 			wait_on_page_writeback(page);
536 			ClearPageError(page);
537 		}
538 		pagevec_release(&pvec);
539 		cond_resched();
540 	}
541 }
542 
543 /**
544  * filemap_fdatawait_range - wait for writeback to complete
545  * @mapping:		address space structure to wait for
546  * @start_byte:		offset in bytes where the range starts
547  * @end_byte:		offset in bytes where the range ends (inclusive)
548  *
549  * Walk the list of under-writeback pages of the given address space
550  * in the given range and wait for all of them.  Check error status of
551  * the address space and return it.
552  *
553  * Since the error status of the address space is cleared by this function,
554  * callers are responsible for checking the return value and handling and/or
555  * reporting the error.
556  *
557  * Return: error status of the address space.
558  */
559 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
560 			    loff_t end_byte)
561 {
562 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
563 	return filemap_check_errors(mapping);
564 }
565 EXPORT_SYMBOL(filemap_fdatawait_range);
566 
567 /**
568  * filemap_fdatawait_range_keep_errors - wait for writeback to complete
569  * @mapping:		address space structure to wait for
570  * @start_byte:		offset in bytes where the range starts
571  * @end_byte:		offset in bytes where the range ends (inclusive)
572  *
573  * Walk the list of under-writeback pages of the given address space in the
574  * given range and wait for all of them.  Unlike filemap_fdatawait_range(),
575  * this function does not clear error status of the address space.
576  *
577  * Use this function if callers don't handle errors themselves.  Expected
578  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
579  * fsfreeze(8)
580  */
581 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
582 		loff_t start_byte, loff_t end_byte)
583 {
584 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
585 	return filemap_check_and_keep_errors(mapping);
586 }
587 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
588 
589 /**
590  * file_fdatawait_range - wait for writeback to complete
591  * @file:		file pointing to address space structure to wait for
592  * @start_byte:		offset in bytes where the range starts
593  * @end_byte:		offset in bytes where the range ends (inclusive)
594  *
595  * Walk the list of under-writeback pages of the address space that file
596  * refers to, in the given range and wait for all of them.  Check error
597  * status of the address space vs. the file->f_wb_err cursor and return it.
598  *
599  * Since the error status of the file is advanced by this function,
600  * callers are responsible for checking the return value and handling and/or
601  * reporting the error.
602  *
603  * Return: error status of the address space vs. the file->f_wb_err cursor.
604  */
605 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
606 {
607 	struct address_space *mapping = file->f_mapping;
608 
609 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
610 	return file_check_and_advance_wb_err(file);
611 }
612 EXPORT_SYMBOL(file_fdatawait_range);
613 
614 /**
615  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
616  * @mapping: address space structure to wait for
617  *
618  * Walk the list of under-writeback pages of the given address space
619  * and wait for all of them.  Unlike filemap_fdatawait(), this function
620  * does not clear error status of the address space.
621  *
622  * Use this function if callers don't handle errors themselves.  Expected
623  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
624  * fsfreeze(8)
625  *
626  * Return: error status of the address space.
627  */
628 int filemap_fdatawait_keep_errors(struct address_space *mapping)
629 {
630 	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
631 	return filemap_check_and_keep_errors(mapping);
632 }
633 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
634 
635 /* Returns true if writeback might be needed or already in progress. */
636 static bool mapping_needs_writeback(struct address_space *mapping)
637 {
638 	return mapping->nrpages;
639 }
640 
641 /**
642  * filemap_range_needs_writeback - check if range potentially needs writeback
643  * @mapping:           address space within which to check
644  * @start_byte:        offset in bytes where the range starts
645  * @end_byte:          offset in bytes where the range ends (inclusive)
646  *
647  * Find at least one page in the range supplied, usually used to check if
648  * direct writing in this range will trigger a writeback. Used by O_DIRECT
649  * read/write with IOCB_NOWAIT, to see if the caller needs to do
650  * filemap_write_and_wait_range() before proceeding.
651  *
652  * Return: %true if the caller should do filemap_write_and_wait_range() before
653  * doing O_DIRECT to a page in this range, %false otherwise.
654  */
655 bool filemap_range_needs_writeback(struct address_space *mapping,
656 				   loff_t start_byte, loff_t end_byte)
657 {
658 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
659 	pgoff_t max = end_byte >> PAGE_SHIFT;
660 	struct page *page;
661 
662 	if (!mapping_needs_writeback(mapping))
663 		return false;
664 	if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
665 	    !mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
666 		return false;
667 	if (end_byte < start_byte)
668 		return false;
669 
670 	rcu_read_lock();
671 	xas_for_each(&xas, page, max) {
672 		if (xas_retry(&xas, page))
673 			continue;
674 		if (xa_is_value(page))
675 			continue;
676 		if (PageDirty(page) || PageLocked(page) || PageWriteback(page))
677 			break;
678 	}
679 	rcu_read_unlock();
680 	return page != NULL;
681 }
682 EXPORT_SYMBOL_GPL(filemap_range_needs_writeback);
683 
684 /**
685  * filemap_write_and_wait_range - write out & wait on a file range
686  * @mapping:	the address_space for the pages
687  * @lstart:	offset in bytes where the range starts
688  * @lend:	offset in bytes where the range ends (inclusive)
689  *
690  * Write out and wait upon file offsets lstart->lend, inclusive.
691  *
692  * Note that @lend is inclusive (describes the last byte to be written) so
693  * that this function can be used to write to the very end-of-file (end = -1).
694  *
695  * Return: error status of the address space.
696  */
697 int filemap_write_and_wait_range(struct address_space *mapping,
698 				 loff_t lstart, loff_t lend)
699 {
700 	int err = 0;
701 
702 	if (mapping_needs_writeback(mapping)) {
703 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
704 						 WB_SYNC_ALL);
705 		/*
706 		 * Even if the above returned error, the pages may be
707 		 * written partially (e.g. -ENOSPC), so we wait for it.
708 		 * But the -EIO is special case, it may indicate the worst
709 		 * thing (e.g. bug) happened, so we avoid waiting for it.
710 		 */
711 		if (err != -EIO) {
712 			int err2 = filemap_fdatawait_range(mapping,
713 						lstart, lend);
714 			if (!err)
715 				err = err2;
716 		} else {
717 			/* Clear any previously stored errors */
718 			filemap_check_errors(mapping);
719 		}
720 	} else {
721 		err = filemap_check_errors(mapping);
722 	}
723 	return err;
724 }
725 EXPORT_SYMBOL(filemap_write_and_wait_range);
726 
727 void __filemap_set_wb_err(struct address_space *mapping, int err)
728 {
729 	errseq_t eseq = errseq_set(&mapping->wb_err, err);
730 
731 	trace_filemap_set_wb_err(mapping, eseq);
732 }
733 EXPORT_SYMBOL(__filemap_set_wb_err);
734 
735 /**
736  * file_check_and_advance_wb_err - report wb error (if any) that was previously
737  * 				   and advance wb_err to current one
738  * @file: struct file on which the error is being reported
739  *
740  * When userland calls fsync (or something like nfsd does the equivalent), we
741  * want to report any writeback errors that occurred since the last fsync (or
742  * since the file was opened if there haven't been any).
743  *
744  * Grab the wb_err from the mapping. If it matches what we have in the file,
745  * then just quickly return 0. The file is all caught up.
746  *
747  * If it doesn't match, then take the mapping value, set the "seen" flag in
748  * it and try to swap it into place. If it works, or another task beat us
749  * to it with the new value, then update the f_wb_err and return the error
750  * portion. The error at this point must be reported via proper channels
751  * (a'la fsync, or NFS COMMIT operation, etc.).
752  *
753  * While we handle mapping->wb_err with atomic operations, the f_wb_err
754  * value is protected by the f_lock since we must ensure that it reflects
755  * the latest value swapped in for this file descriptor.
756  *
757  * Return: %0 on success, negative error code otherwise.
758  */
759 int file_check_and_advance_wb_err(struct file *file)
760 {
761 	int err = 0;
762 	errseq_t old = READ_ONCE(file->f_wb_err);
763 	struct address_space *mapping = file->f_mapping;
764 
765 	/* Locklessly handle the common case where nothing has changed */
766 	if (errseq_check(&mapping->wb_err, old)) {
767 		/* Something changed, must use slow path */
768 		spin_lock(&file->f_lock);
769 		old = file->f_wb_err;
770 		err = errseq_check_and_advance(&mapping->wb_err,
771 						&file->f_wb_err);
772 		trace_file_check_and_advance_wb_err(file, old);
773 		spin_unlock(&file->f_lock);
774 	}
775 
776 	/*
777 	 * We're mostly using this function as a drop in replacement for
778 	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
779 	 * that the legacy code would have had on these flags.
780 	 */
781 	clear_bit(AS_EIO, &mapping->flags);
782 	clear_bit(AS_ENOSPC, &mapping->flags);
783 	return err;
784 }
785 EXPORT_SYMBOL(file_check_and_advance_wb_err);
786 
787 /**
788  * file_write_and_wait_range - write out & wait on a file range
789  * @file:	file pointing to address_space with pages
790  * @lstart:	offset in bytes where the range starts
791  * @lend:	offset in bytes where the range ends (inclusive)
792  *
793  * Write out and wait upon file offsets lstart->lend, inclusive.
794  *
795  * Note that @lend is inclusive (describes the last byte to be written) so
796  * that this function can be used to write to the very end-of-file (end = -1).
797  *
798  * After writing out and waiting on the data, we check and advance the
799  * f_wb_err cursor to the latest value, and return any errors detected there.
800  *
801  * Return: %0 on success, negative error code otherwise.
802  */
803 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
804 {
805 	int err = 0, err2;
806 	struct address_space *mapping = file->f_mapping;
807 
808 	if (mapping_needs_writeback(mapping)) {
809 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
810 						 WB_SYNC_ALL);
811 		/* See comment of filemap_write_and_wait() */
812 		if (err != -EIO)
813 			__filemap_fdatawait_range(mapping, lstart, lend);
814 	}
815 	err2 = file_check_and_advance_wb_err(file);
816 	if (!err)
817 		err = err2;
818 	return err;
819 }
820 EXPORT_SYMBOL(file_write_and_wait_range);
821 
822 /**
823  * replace_page_cache_page - replace a pagecache page with a new one
824  * @old:	page to be replaced
825  * @new:	page to replace with
826  *
827  * This function replaces a page in the pagecache with a new one.  On
828  * success it acquires the pagecache reference for the new page and
829  * drops it for the old page.  Both the old and new pages must be
830  * locked.  This function does not add the new page to the LRU, the
831  * caller must do that.
832  *
833  * The remove + add is atomic.  This function cannot fail.
834  */
835 void replace_page_cache_page(struct page *old, struct page *new)
836 {
837 	struct folio *fold = page_folio(old);
838 	struct folio *fnew = page_folio(new);
839 	struct address_space *mapping = old->mapping;
840 	void (*freepage)(struct page *) = mapping->a_ops->freepage;
841 	pgoff_t offset = old->index;
842 	XA_STATE(xas, &mapping->i_pages, offset);
843 
844 	VM_BUG_ON_PAGE(!PageLocked(old), old);
845 	VM_BUG_ON_PAGE(!PageLocked(new), new);
846 	VM_BUG_ON_PAGE(new->mapping, new);
847 
848 	get_page(new);
849 	new->mapping = mapping;
850 	new->index = offset;
851 
852 	mem_cgroup_migrate(fold, fnew);
853 
854 	xas_lock_irq(&xas);
855 	xas_store(&xas, new);
856 
857 	old->mapping = NULL;
858 	/* hugetlb pages do not participate in page cache accounting. */
859 	if (!PageHuge(old))
860 		__dec_lruvec_page_state(old, NR_FILE_PAGES);
861 	if (!PageHuge(new))
862 		__inc_lruvec_page_state(new, NR_FILE_PAGES);
863 	if (PageSwapBacked(old))
864 		__dec_lruvec_page_state(old, NR_SHMEM);
865 	if (PageSwapBacked(new))
866 		__inc_lruvec_page_state(new, NR_SHMEM);
867 	xas_unlock_irq(&xas);
868 	if (freepage)
869 		freepage(old);
870 	put_page(old);
871 }
872 EXPORT_SYMBOL_GPL(replace_page_cache_page);
873 
874 noinline int __filemap_add_folio(struct address_space *mapping,
875 		struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
876 {
877 	XA_STATE(xas, &mapping->i_pages, index);
878 	int huge = folio_test_hugetlb(folio);
879 	int error;
880 	bool charged = false;
881 
882 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
883 	VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
884 	mapping_set_update(&xas, mapping);
885 
886 	folio_get(folio);
887 	folio->mapping = mapping;
888 	folio->index = index;
889 
890 	if (!huge) {
891 		error = mem_cgroup_charge(folio, NULL, gfp);
892 		VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
893 		if (error)
894 			goto error;
895 		charged = true;
896 	}
897 
898 	gfp &= GFP_RECLAIM_MASK;
899 
900 	do {
901 		unsigned int order = xa_get_order(xas.xa, xas.xa_index);
902 		void *entry, *old = NULL;
903 
904 		if (order > folio_order(folio))
905 			xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
906 					order, gfp);
907 		xas_lock_irq(&xas);
908 		xas_for_each_conflict(&xas, entry) {
909 			old = entry;
910 			if (!xa_is_value(entry)) {
911 				xas_set_err(&xas, -EEXIST);
912 				goto unlock;
913 			}
914 		}
915 
916 		if (old) {
917 			if (shadowp)
918 				*shadowp = old;
919 			/* entry may have been split before we acquired lock */
920 			order = xa_get_order(xas.xa, xas.xa_index);
921 			if (order > folio_order(folio)) {
922 				xas_split(&xas, old, order);
923 				xas_reset(&xas);
924 			}
925 		}
926 
927 		xas_store(&xas, folio);
928 		if (xas_error(&xas))
929 			goto unlock;
930 
931 		mapping->nrpages++;
932 
933 		/* hugetlb pages do not participate in page cache accounting */
934 		if (!huge)
935 			__lruvec_stat_add_folio(folio, NR_FILE_PAGES);
936 unlock:
937 		xas_unlock_irq(&xas);
938 	} while (xas_nomem(&xas, gfp));
939 
940 	if (xas_error(&xas)) {
941 		error = xas_error(&xas);
942 		if (charged)
943 			mem_cgroup_uncharge(folio);
944 		goto error;
945 	}
946 
947 	trace_mm_filemap_add_to_page_cache(&folio->page);
948 	return 0;
949 error:
950 	folio->mapping = NULL;
951 	/* Leave page->index set: truncation relies upon it */
952 	folio_put(folio);
953 	return error;
954 }
955 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
956 
957 /**
958  * add_to_page_cache_locked - add a locked page to the pagecache
959  * @page:	page to add
960  * @mapping:	the page's address_space
961  * @offset:	page index
962  * @gfp_mask:	page allocation mode
963  *
964  * This function is used to add a page to the pagecache. It must be locked.
965  * This function does not add the page to the LRU.  The caller must do that.
966  *
967  * Return: %0 on success, negative error code otherwise.
968  */
969 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
970 		pgoff_t offset, gfp_t gfp_mask)
971 {
972 	return __filemap_add_folio(mapping, page_folio(page), offset,
973 					  gfp_mask, NULL);
974 }
975 EXPORT_SYMBOL(add_to_page_cache_locked);
976 
977 int filemap_add_folio(struct address_space *mapping, struct folio *folio,
978 				pgoff_t index, gfp_t gfp)
979 {
980 	void *shadow = NULL;
981 	int ret;
982 
983 	__folio_set_locked(folio);
984 	ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
985 	if (unlikely(ret))
986 		__folio_clear_locked(folio);
987 	else {
988 		/*
989 		 * The folio might have been evicted from cache only
990 		 * recently, in which case it should be activated like
991 		 * any other repeatedly accessed folio.
992 		 * The exception is folios getting rewritten; evicting other
993 		 * data from the working set, only to cache data that will
994 		 * get overwritten with something else, is a waste of memory.
995 		 */
996 		WARN_ON_ONCE(folio_test_active(folio));
997 		if (!(gfp & __GFP_WRITE) && shadow)
998 			workingset_refault(folio, shadow);
999 		folio_add_lru(folio);
1000 	}
1001 	return ret;
1002 }
1003 EXPORT_SYMBOL_GPL(filemap_add_folio);
1004 
1005 #ifdef CONFIG_NUMA
1006 struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order)
1007 {
1008 	int n;
1009 	struct folio *folio;
1010 
1011 	if (cpuset_do_page_mem_spread()) {
1012 		unsigned int cpuset_mems_cookie;
1013 		do {
1014 			cpuset_mems_cookie = read_mems_allowed_begin();
1015 			n = cpuset_mem_spread_node();
1016 			folio = __folio_alloc_node(gfp, order, n);
1017 		} while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
1018 
1019 		return folio;
1020 	}
1021 	return folio_alloc(gfp, order);
1022 }
1023 EXPORT_SYMBOL(filemap_alloc_folio);
1024 #endif
1025 
1026 /*
1027  * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
1028  *
1029  * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
1030  *
1031  * @mapping1: the first mapping to lock
1032  * @mapping2: the second mapping to lock
1033  */
1034 void filemap_invalidate_lock_two(struct address_space *mapping1,
1035 				 struct address_space *mapping2)
1036 {
1037 	if (mapping1 > mapping2)
1038 		swap(mapping1, mapping2);
1039 	if (mapping1)
1040 		down_write(&mapping1->invalidate_lock);
1041 	if (mapping2 && mapping1 != mapping2)
1042 		down_write_nested(&mapping2->invalidate_lock, 1);
1043 }
1044 EXPORT_SYMBOL(filemap_invalidate_lock_two);
1045 
1046 /*
1047  * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
1048  *
1049  * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1050  *
1051  * @mapping1: the first mapping to unlock
1052  * @mapping2: the second mapping to unlock
1053  */
1054 void filemap_invalidate_unlock_two(struct address_space *mapping1,
1055 				   struct address_space *mapping2)
1056 {
1057 	if (mapping1)
1058 		up_write(&mapping1->invalidate_lock);
1059 	if (mapping2 && mapping1 != mapping2)
1060 		up_write(&mapping2->invalidate_lock);
1061 }
1062 EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1063 
1064 /*
1065  * In order to wait for pages to become available there must be
1066  * waitqueues associated with pages. By using a hash table of
1067  * waitqueues where the bucket discipline is to maintain all
1068  * waiters on the same queue and wake all when any of the pages
1069  * become available, and for the woken contexts to check to be
1070  * sure the appropriate page became available, this saves space
1071  * at a cost of "thundering herd" phenomena during rare hash
1072  * collisions.
1073  */
1074 #define PAGE_WAIT_TABLE_BITS 8
1075 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1076 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1077 
1078 static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1079 {
1080 	return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
1081 }
1082 
1083 void __init pagecache_init(void)
1084 {
1085 	int i;
1086 
1087 	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1088 		init_waitqueue_head(&folio_wait_table[i]);
1089 
1090 	page_writeback_init();
1091 }
1092 
1093 /*
1094  * The page wait code treats the "wait->flags" somewhat unusually, because
1095  * we have multiple different kinds of waits, not just the usual "exclusive"
1096  * one.
1097  *
1098  * We have:
1099  *
1100  *  (a) no special bits set:
1101  *
1102  *	We're just waiting for the bit to be released, and when a waker
1103  *	calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1104  *	and remove it from the wait queue.
1105  *
1106  *	Simple and straightforward.
1107  *
1108  *  (b) WQ_FLAG_EXCLUSIVE:
1109  *
1110  *	The waiter is waiting to get the lock, and only one waiter should
1111  *	be woken up to avoid any thundering herd behavior. We'll set the
1112  *	WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1113  *
1114  *	This is the traditional exclusive wait.
1115  *
1116  *  (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1117  *
1118  *	The waiter is waiting to get the bit, and additionally wants the
1119  *	lock to be transferred to it for fair lock behavior. If the lock
1120  *	cannot be taken, we stop walking the wait queue without waking
1121  *	the waiter.
1122  *
1123  *	This is the "fair lock handoff" case, and in addition to setting
1124  *	WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1125  *	that it now has the lock.
1126  */
1127 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1128 {
1129 	unsigned int flags;
1130 	struct wait_page_key *key = arg;
1131 	struct wait_page_queue *wait_page
1132 		= container_of(wait, struct wait_page_queue, wait);
1133 
1134 	if (!wake_page_match(wait_page, key))
1135 		return 0;
1136 
1137 	/*
1138 	 * If it's a lock handoff wait, we get the bit for it, and
1139 	 * stop walking (and do not wake it up) if we can't.
1140 	 */
1141 	flags = wait->flags;
1142 	if (flags & WQ_FLAG_EXCLUSIVE) {
1143 		if (test_bit(key->bit_nr, &key->folio->flags))
1144 			return -1;
1145 		if (flags & WQ_FLAG_CUSTOM) {
1146 			if (test_and_set_bit(key->bit_nr, &key->folio->flags))
1147 				return -1;
1148 			flags |= WQ_FLAG_DONE;
1149 		}
1150 	}
1151 
1152 	/*
1153 	 * We are holding the wait-queue lock, but the waiter that
1154 	 * is waiting for this will be checking the flags without
1155 	 * any locking.
1156 	 *
1157 	 * So update the flags atomically, and wake up the waiter
1158 	 * afterwards to avoid any races. This store-release pairs
1159 	 * with the load-acquire in folio_wait_bit_common().
1160 	 */
1161 	smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1162 	wake_up_state(wait->private, mode);
1163 
1164 	/*
1165 	 * Ok, we have successfully done what we're waiting for,
1166 	 * and we can unconditionally remove the wait entry.
1167 	 *
1168 	 * Note that this pairs with the "finish_wait()" in the
1169 	 * waiter, and has to be the absolute last thing we do.
1170 	 * After this list_del_init(&wait->entry) the wait entry
1171 	 * might be de-allocated and the process might even have
1172 	 * exited.
1173 	 */
1174 	list_del_init_careful(&wait->entry);
1175 	return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1176 }
1177 
1178 static void folio_wake_bit(struct folio *folio, int bit_nr)
1179 {
1180 	wait_queue_head_t *q = folio_waitqueue(folio);
1181 	struct wait_page_key key;
1182 	unsigned long flags;
1183 	wait_queue_entry_t bookmark;
1184 
1185 	key.folio = folio;
1186 	key.bit_nr = bit_nr;
1187 	key.page_match = 0;
1188 
1189 	bookmark.flags = 0;
1190 	bookmark.private = NULL;
1191 	bookmark.func = NULL;
1192 	INIT_LIST_HEAD(&bookmark.entry);
1193 
1194 	spin_lock_irqsave(&q->lock, flags);
1195 	__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1196 
1197 	while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1198 		/*
1199 		 * Take a breather from holding the lock,
1200 		 * allow pages that finish wake up asynchronously
1201 		 * to acquire the lock and remove themselves
1202 		 * from wait queue
1203 		 */
1204 		spin_unlock_irqrestore(&q->lock, flags);
1205 		cpu_relax();
1206 		spin_lock_irqsave(&q->lock, flags);
1207 		__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1208 	}
1209 
1210 	/*
1211 	 * It is possible for other pages to have collided on the waitqueue
1212 	 * hash, so in that case check for a page match. That prevents a long-
1213 	 * term waiter
1214 	 *
1215 	 * It is still possible to miss a case here, when we woke page waiters
1216 	 * and removed them from the waitqueue, but there are still other
1217 	 * page waiters.
1218 	 */
1219 	if (!waitqueue_active(q) || !key.page_match) {
1220 		folio_clear_waiters(folio);
1221 		/*
1222 		 * It's possible to miss clearing Waiters here, when we woke
1223 		 * our page waiters, but the hashed waitqueue has waiters for
1224 		 * other pages on it.
1225 		 *
1226 		 * That's okay, it's a rare case. The next waker will clear it.
1227 		 */
1228 	}
1229 	spin_unlock_irqrestore(&q->lock, flags);
1230 }
1231 
1232 static void folio_wake(struct folio *folio, int bit)
1233 {
1234 	if (!folio_test_waiters(folio))
1235 		return;
1236 	folio_wake_bit(folio, bit);
1237 }
1238 
1239 /*
1240  * A choice of three behaviors for folio_wait_bit_common():
1241  */
1242 enum behavior {
1243 	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
1244 			 * __folio_lock() waiting on then setting PG_locked.
1245 			 */
1246 	SHARED,		/* Hold ref to page and check the bit when woken, like
1247 			 * wait_on_page_writeback() waiting on PG_writeback.
1248 			 */
1249 	DROP,		/* Drop ref to page before wait, no check when woken,
1250 			 * like put_and_wait_on_page_locked() on PG_locked.
1251 			 */
1252 };
1253 
1254 /*
1255  * Attempt to check (or get) the folio flag, and mark us done
1256  * if successful.
1257  */
1258 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
1259 					struct wait_queue_entry *wait)
1260 {
1261 	if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1262 		if (test_and_set_bit(bit_nr, &folio->flags))
1263 			return false;
1264 	} else if (test_bit(bit_nr, &folio->flags))
1265 		return false;
1266 
1267 	wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1268 	return true;
1269 }
1270 
1271 /* How many times do we accept lock stealing from under a waiter? */
1272 int sysctl_page_lock_unfairness = 5;
1273 
1274 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1275 		int state, enum behavior behavior)
1276 {
1277 	wait_queue_head_t *q = folio_waitqueue(folio);
1278 	int unfairness = sysctl_page_lock_unfairness;
1279 	struct wait_page_queue wait_page;
1280 	wait_queue_entry_t *wait = &wait_page.wait;
1281 	bool thrashing = false;
1282 	bool delayacct = false;
1283 	unsigned long pflags;
1284 
1285 	if (bit_nr == PG_locked &&
1286 	    !folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1287 		if (!folio_test_swapbacked(folio)) {
1288 			delayacct_thrashing_start();
1289 			delayacct = true;
1290 		}
1291 		psi_memstall_enter(&pflags);
1292 		thrashing = true;
1293 	}
1294 
1295 	init_wait(wait);
1296 	wait->func = wake_page_function;
1297 	wait_page.folio = folio;
1298 	wait_page.bit_nr = bit_nr;
1299 
1300 repeat:
1301 	wait->flags = 0;
1302 	if (behavior == EXCLUSIVE) {
1303 		wait->flags = WQ_FLAG_EXCLUSIVE;
1304 		if (--unfairness < 0)
1305 			wait->flags |= WQ_FLAG_CUSTOM;
1306 	}
1307 
1308 	/*
1309 	 * Do one last check whether we can get the
1310 	 * page bit synchronously.
1311 	 *
1312 	 * Do the folio_set_waiters() marking before that
1313 	 * to let any waker we _just_ missed know they
1314 	 * need to wake us up (otherwise they'll never
1315 	 * even go to the slow case that looks at the
1316 	 * page queue), and add ourselves to the wait
1317 	 * queue if we need to sleep.
1318 	 *
1319 	 * This part needs to be done under the queue
1320 	 * lock to avoid races.
1321 	 */
1322 	spin_lock_irq(&q->lock);
1323 	folio_set_waiters(folio);
1324 	if (!folio_trylock_flag(folio, bit_nr, wait))
1325 		__add_wait_queue_entry_tail(q, wait);
1326 	spin_unlock_irq(&q->lock);
1327 
1328 	/*
1329 	 * From now on, all the logic will be based on
1330 	 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1331 	 * see whether the page bit testing has already
1332 	 * been done by the wake function.
1333 	 *
1334 	 * We can drop our reference to the folio.
1335 	 */
1336 	if (behavior == DROP)
1337 		folio_put(folio);
1338 
1339 	/*
1340 	 * Note that until the "finish_wait()", or until
1341 	 * we see the WQ_FLAG_WOKEN flag, we need to
1342 	 * be very careful with the 'wait->flags', because
1343 	 * we may race with a waker that sets them.
1344 	 */
1345 	for (;;) {
1346 		unsigned int flags;
1347 
1348 		set_current_state(state);
1349 
1350 		/* Loop until we've been woken or interrupted */
1351 		flags = smp_load_acquire(&wait->flags);
1352 		if (!(flags & WQ_FLAG_WOKEN)) {
1353 			if (signal_pending_state(state, current))
1354 				break;
1355 
1356 			io_schedule();
1357 			continue;
1358 		}
1359 
1360 		/* If we were non-exclusive, we're done */
1361 		if (behavior != EXCLUSIVE)
1362 			break;
1363 
1364 		/* If the waker got the lock for us, we're done */
1365 		if (flags & WQ_FLAG_DONE)
1366 			break;
1367 
1368 		/*
1369 		 * Otherwise, if we're getting the lock, we need to
1370 		 * try to get it ourselves.
1371 		 *
1372 		 * And if that fails, we'll have to retry this all.
1373 		 */
1374 		if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
1375 			goto repeat;
1376 
1377 		wait->flags |= WQ_FLAG_DONE;
1378 		break;
1379 	}
1380 
1381 	/*
1382 	 * If a signal happened, this 'finish_wait()' may remove the last
1383 	 * waiter from the wait-queues, but the folio waiters bit will remain
1384 	 * set. That's ok. The next wakeup will take care of it, and trying
1385 	 * to do it here would be difficult and prone to races.
1386 	 */
1387 	finish_wait(q, wait);
1388 
1389 	if (thrashing) {
1390 		if (delayacct)
1391 			delayacct_thrashing_end();
1392 		psi_memstall_leave(&pflags);
1393 	}
1394 
1395 	/*
1396 	 * NOTE! The wait->flags weren't stable until we've done the
1397 	 * 'finish_wait()', and we could have exited the loop above due
1398 	 * to a signal, and had a wakeup event happen after the signal
1399 	 * test but before the 'finish_wait()'.
1400 	 *
1401 	 * So only after the finish_wait() can we reliably determine
1402 	 * if we got woken up or not, so we can now figure out the final
1403 	 * return value based on that state without races.
1404 	 *
1405 	 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1406 	 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1407 	 */
1408 	if (behavior == EXCLUSIVE)
1409 		return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1410 
1411 	return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1412 }
1413 
1414 void folio_wait_bit(struct folio *folio, int bit_nr)
1415 {
1416 	folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1417 }
1418 EXPORT_SYMBOL(folio_wait_bit);
1419 
1420 int folio_wait_bit_killable(struct folio *folio, int bit_nr)
1421 {
1422 	return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
1423 }
1424 EXPORT_SYMBOL(folio_wait_bit_killable);
1425 
1426 /**
1427  * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1428  * @page: The page to wait for.
1429  * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1430  *
1431  * The caller should hold a reference on @page.  They expect the page to
1432  * become unlocked relatively soon, but do not wish to hold up migration
1433  * (for example) by holding the reference while waiting for the page to
1434  * come unlocked.  After this function returns, the caller should not
1435  * dereference @page.
1436  *
1437  * Return: 0 if the page was unlocked or -EINTR if interrupted by a signal.
1438  */
1439 int put_and_wait_on_page_locked(struct page *page, int state)
1440 {
1441 	return folio_wait_bit_common(page_folio(page), PG_locked, state,
1442 			DROP);
1443 }
1444 
1445 /**
1446  * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue
1447  * @folio: Folio defining the wait queue of interest
1448  * @waiter: Waiter to add to the queue
1449  *
1450  * Add an arbitrary @waiter to the wait queue for the nominated @folio.
1451  */
1452 void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter)
1453 {
1454 	wait_queue_head_t *q = folio_waitqueue(folio);
1455 	unsigned long flags;
1456 
1457 	spin_lock_irqsave(&q->lock, flags);
1458 	__add_wait_queue_entry_tail(q, waiter);
1459 	folio_set_waiters(folio);
1460 	spin_unlock_irqrestore(&q->lock, flags);
1461 }
1462 EXPORT_SYMBOL_GPL(folio_add_wait_queue);
1463 
1464 #ifndef clear_bit_unlock_is_negative_byte
1465 
1466 /*
1467  * PG_waiters is the high bit in the same byte as PG_lock.
1468  *
1469  * On x86 (and on many other architectures), we can clear PG_lock and
1470  * test the sign bit at the same time. But if the architecture does
1471  * not support that special operation, we just do this all by hand
1472  * instead.
1473  *
1474  * The read of PG_waiters has to be after (or concurrently with) PG_locked
1475  * being cleared, but a memory barrier should be unnecessary since it is
1476  * in the same byte as PG_locked.
1477  */
1478 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1479 {
1480 	clear_bit_unlock(nr, mem);
1481 	/* smp_mb__after_atomic(); */
1482 	return test_bit(PG_waiters, mem);
1483 }
1484 
1485 #endif
1486 
1487 /**
1488  * folio_unlock - Unlock a locked folio.
1489  * @folio: The folio.
1490  *
1491  * Unlocks the folio and wakes up any thread sleeping on the page lock.
1492  *
1493  * Context: May be called from interrupt or process context.  May not be
1494  * called from NMI context.
1495  */
1496 void folio_unlock(struct folio *folio)
1497 {
1498 	/* Bit 7 allows x86 to check the byte's sign bit */
1499 	BUILD_BUG_ON(PG_waiters != 7);
1500 	BUILD_BUG_ON(PG_locked > 7);
1501 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1502 	if (clear_bit_unlock_is_negative_byte(PG_locked, folio_flags(folio, 0)))
1503 		folio_wake_bit(folio, PG_locked);
1504 }
1505 EXPORT_SYMBOL(folio_unlock);
1506 
1507 /**
1508  * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1509  * @folio: The folio.
1510  *
1511  * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1512  * it.  The folio reference held for PG_private_2 being set is released.
1513  *
1514  * This is, for example, used when a netfs folio is being written to a local
1515  * disk cache, thereby allowing writes to the cache for the same folio to be
1516  * serialised.
1517  */
1518 void folio_end_private_2(struct folio *folio)
1519 {
1520 	VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1521 	clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
1522 	folio_wake_bit(folio, PG_private_2);
1523 	folio_put(folio);
1524 }
1525 EXPORT_SYMBOL(folio_end_private_2);
1526 
1527 /**
1528  * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1529  * @folio: The folio to wait on.
1530  *
1531  * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio.
1532  */
1533 void folio_wait_private_2(struct folio *folio)
1534 {
1535 	while (folio_test_private_2(folio))
1536 		folio_wait_bit(folio, PG_private_2);
1537 }
1538 EXPORT_SYMBOL(folio_wait_private_2);
1539 
1540 /**
1541  * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1542  * @folio: The folio to wait on.
1543  *
1544  * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio or until a
1545  * fatal signal is received by the calling task.
1546  *
1547  * Return:
1548  * - 0 if successful.
1549  * - -EINTR if a fatal signal was encountered.
1550  */
1551 int folio_wait_private_2_killable(struct folio *folio)
1552 {
1553 	int ret = 0;
1554 
1555 	while (folio_test_private_2(folio)) {
1556 		ret = folio_wait_bit_killable(folio, PG_private_2);
1557 		if (ret < 0)
1558 			break;
1559 	}
1560 
1561 	return ret;
1562 }
1563 EXPORT_SYMBOL(folio_wait_private_2_killable);
1564 
1565 /**
1566  * folio_end_writeback - End writeback against a folio.
1567  * @folio: The folio.
1568  */
1569 void folio_end_writeback(struct folio *folio)
1570 {
1571 	/*
1572 	 * folio_test_clear_reclaim() could be used here but it is an
1573 	 * atomic operation and overkill in this particular case. Failing
1574 	 * to shuffle a folio marked for immediate reclaim is too mild
1575 	 * a gain to justify taking an atomic operation penalty at the
1576 	 * end of every folio writeback.
1577 	 */
1578 	if (folio_test_reclaim(folio)) {
1579 		folio_clear_reclaim(folio);
1580 		folio_rotate_reclaimable(folio);
1581 	}
1582 
1583 	/*
1584 	 * Writeback does not hold a folio reference of its own, relying
1585 	 * on truncation to wait for the clearing of PG_writeback.
1586 	 * But here we must make sure that the folio is not freed and
1587 	 * reused before the folio_wake().
1588 	 */
1589 	folio_get(folio);
1590 	if (!__folio_end_writeback(folio))
1591 		BUG();
1592 
1593 	smp_mb__after_atomic();
1594 	folio_wake(folio, PG_writeback);
1595 	folio_put(folio);
1596 }
1597 EXPORT_SYMBOL(folio_end_writeback);
1598 
1599 /*
1600  * After completing I/O on a page, call this routine to update the page
1601  * flags appropriately
1602  */
1603 void page_endio(struct page *page, bool is_write, int err)
1604 {
1605 	if (!is_write) {
1606 		if (!err) {
1607 			SetPageUptodate(page);
1608 		} else {
1609 			ClearPageUptodate(page);
1610 			SetPageError(page);
1611 		}
1612 		unlock_page(page);
1613 	} else {
1614 		if (err) {
1615 			struct address_space *mapping;
1616 
1617 			SetPageError(page);
1618 			mapping = page_mapping(page);
1619 			if (mapping)
1620 				mapping_set_error(mapping, err);
1621 		}
1622 		end_page_writeback(page);
1623 	}
1624 }
1625 EXPORT_SYMBOL_GPL(page_endio);
1626 
1627 /**
1628  * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1629  * @folio: The folio to lock
1630  */
1631 void __folio_lock(struct folio *folio)
1632 {
1633 	folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
1634 				EXCLUSIVE);
1635 }
1636 EXPORT_SYMBOL(__folio_lock);
1637 
1638 int __folio_lock_killable(struct folio *folio)
1639 {
1640 	return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
1641 					EXCLUSIVE);
1642 }
1643 EXPORT_SYMBOL_GPL(__folio_lock_killable);
1644 
1645 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
1646 {
1647 	struct wait_queue_head *q = folio_waitqueue(folio);
1648 	int ret = 0;
1649 
1650 	wait->folio = folio;
1651 	wait->bit_nr = PG_locked;
1652 
1653 	spin_lock_irq(&q->lock);
1654 	__add_wait_queue_entry_tail(q, &wait->wait);
1655 	folio_set_waiters(folio);
1656 	ret = !folio_trylock(folio);
1657 	/*
1658 	 * If we were successful now, we know we're still on the
1659 	 * waitqueue as we're still under the lock. This means it's
1660 	 * safe to remove and return success, we know the callback
1661 	 * isn't going to trigger.
1662 	 */
1663 	if (!ret)
1664 		__remove_wait_queue(q, &wait->wait);
1665 	else
1666 		ret = -EIOCBQUEUED;
1667 	spin_unlock_irq(&q->lock);
1668 	return ret;
1669 }
1670 
1671 /*
1672  * Return values:
1673  * true - folio is locked; mmap_lock is still held.
1674  * false - folio is not locked.
1675  *     mmap_lock has been released (mmap_read_unlock(), unless flags had both
1676  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1677  *     which case mmap_lock is still held.
1678  *
1679  * If neither ALLOW_RETRY nor KILLABLE are set, will always return true
1680  * with the folio locked and the mmap_lock unperturbed.
1681  */
1682 bool __folio_lock_or_retry(struct folio *folio, struct mm_struct *mm,
1683 			 unsigned int flags)
1684 {
1685 	if (fault_flag_allow_retry_first(flags)) {
1686 		/*
1687 		 * CAUTION! In this case, mmap_lock is not released
1688 		 * even though return 0.
1689 		 */
1690 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1691 			return false;
1692 
1693 		mmap_read_unlock(mm);
1694 		if (flags & FAULT_FLAG_KILLABLE)
1695 			folio_wait_locked_killable(folio);
1696 		else
1697 			folio_wait_locked(folio);
1698 		return false;
1699 	}
1700 	if (flags & FAULT_FLAG_KILLABLE) {
1701 		bool ret;
1702 
1703 		ret = __folio_lock_killable(folio);
1704 		if (ret) {
1705 			mmap_read_unlock(mm);
1706 			return false;
1707 		}
1708 	} else {
1709 		__folio_lock(folio);
1710 	}
1711 
1712 	return true;
1713 }
1714 
1715 /**
1716  * page_cache_next_miss() - Find the next gap in the page cache.
1717  * @mapping: Mapping.
1718  * @index: Index.
1719  * @max_scan: Maximum range to search.
1720  *
1721  * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1722  * gap with the lowest index.
1723  *
1724  * This function may be called under the rcu_read_lock.  However, this will
1725  * not atomically search a snapshot of the cache at a single point in time.
1726  * For example, if a gap is created at index 5, then subsequently a gap is
1727  * created at index 10, page_cache_next_miss covering both indices may
1728  * return 10 if called under the rcu_read_lock.
1729  *
1730  * Return: The index of the gap if found, otherwise an index outside the
1731  * range specified (in which case 'return - index >= max_scan' will be true).
1732  * In the rare case of index wrap-around, 0 will be returned.
1733  */
1734 pgoff_t page_cache_next_miss(struct address_space *mapping,
1735 			     pgoff_t index, unsigned long max_scan)
1736 {
1737 	XA_STATE(xas, &mapping->i_pages, index);
1738 
1739 	while (max_scan--) {
1740 		void *entry = xas_next(&xas);
1741 		if (!entry || xa_is_value(entry))
1742 			break;
1743 		if (xas.xa_index == 0)
1744 			break;
1745 	}
1746 
1747 	return xas.xa_index;
1748 }
1749 EXPORT_SYMBOL(page_cache_next_miss);
1750 
1751 /**
1752  * page_cache_prev_miss() - Find the previous gap in the page cache.
1753  * @mapping: Mapping.
1754  * @index: Index.
1755  * @max_scan: Maximum range to search.
1756  *
1757  * Search the range [max(index - max_scan + 1, 0), index] for the
1758  * gap with the highest index.
1759  *
1760  * This function may be called under the rcu_read_lock.  However, this will
1761  * not atomically search a snapshot of the cache at a single point in time.
1762  * For example, if a gap is created at index 10, then subsequently a gap is
1763  * created at index 5, page_cache_prev_miss() covering both indices may
1764  * return 5 if called under the rcu_read_lock.
1765  *
1766  * Return: The index of the gap if found, otherwise an index outside the
1767  * range specified (in which case 'index - return >= max_scan' will be true).
1768  * In the rare case of wrap-around, ULONG_MAX will be returned.
1769  */
1770 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1771 			     pgoff_t index, unsigned long max_scan)
1772 {
1773 	XA_STATE(xas, &mapping->i_pages, index);
1774 
1775 	while (max_scan--) {
1776 		void *entry = xas_prev(&xas);
1777 		if (!entry || xa_is_value(entry))
1778 			break;
1779 		if (xas.xa_index == ULONG_MAX)
1780 			break;
1781 	}
1782 
1783 	return xas.xa_index;
1784 }
1785 EXPORT_SYMBOL(page_cache_prev_miss);
1786 
1787 /*
1788  * Lockless page cache protocol:
1789  * On the lookup side:
1790  * 1. Load the folio from i_pages
1791  * 2. Increment the refcount if it's not zero
1792  * 3. If the folio is not found by xas_reload(), put the refcount and retry
1793  *
1794  * On the removal side:
1795  * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1796  * B. Remove the page from i_pages
1797  * C. Return the page to the page allocator
1798  *
1799  * This means that any page may have its reference count temporarily
1800  * increased by a speculative page cache (or fast GUP) lookup as it can
1801  * be allocated by another user before the RCU grace period expires.
1802  * Because the refcount temporarily acquired here may end up being the
1803  * last refcount on the page, any page allocation must be freeable by
1804  * folio_put().
1805  */
1806 
1807 /*
1808  * mapping_get_entry - Get a page cache entry.
1809  * @mapping: the address_space to search
1810  * @index: The page cache index.
1811  *
1812  * Looks up the page cache entry at @mapping & @index.  If it is a folio,
1813  * it is returned with an increased refcount.  If it is a shadow entry
1814  * of a previously evicted folio, or a swap entry from shmem/tmpfs,
1815  * it is returned without further action.
1816  *
1817  * Return: The folio, swap or shadow entry, %NULL if nothing is found.
1818  */
1819 static void *mapping_get_entry(struct address_space *mapping, pgoff_t index)
1820 {
1821 	XA_STATE(xas, &mapping->i_pages, index);
1822 	struct folio *folio;
1823 
1824 	rcu_read_lock();
1825 repeat:
1826 	xas_reset(&xas);
1827 	folio = xas_load(&xas);
1828 	if (xas_retry(&xas, folio))
1829 		goto repeat;
1830 	/*
1831 	 * A shadow entry of a recently evicted page, or a swap entry from
1832 	 * shmem/tmpfs.  Return it without attempting to raise page count.
1833 	 */
1834 	if (!folio || xa_is_value(folio))
1835 		goto out;
1836 
1837 	if (!folio_try_get_rcu(folio))
1838 		goto repeat;
1839 
1840 	if (unlikely(folio != xas_reload(&xas))) {
1841 		folio_put(folio);
1842 		goto repeat;
1843 	}
1844 out:
1845 	rcu_read_unlock();
1846 
1847 	return folio;
1848 }
1849 
1850 /**
1851  * __filemap_get_folio - Find and get a reference to a folio.
1852  * @mapping: The address_space to search.
1853  * @index: The page index.
1854  * @fgp_flags: %FGP flags modify how the folio is returned.
1855  * @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
1856  *
1857  * Looks up the page cache entry at @mapping & @index.
1858  *
1859  * @fgp_flags can be zero or more of these flags:
1860  *
1861  * * %FGP_ACCESSED - The folio will be marked accessed.
1862  * * %FGP_LOCK - The folio is returned locked.
1863  * * %FGP_ENTRY - If there is a shadow / swap / DAX entry, return it
1864  *   instead of allocating a new folio to replace it.
1865  * * %FGP_CREAT - If no page is present then a new page is allocated using
1866  *   @gfp and added to the page cache and the VM's LRU list.
1867  *   The page is returned locked and with an increased refcount.
1868  * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1869  *   page is already in cache.  If the page was allocated, unlock it before
1870  *   returning so the caller can do the same dance.
1871  * * %FGP_WRITE - The page will be written to by the caller.
1872  * * %FGP_NOFS - __GFP_FS will get cleared in gfp.
1873  * * %FGP_NOWAIT - Don't get blocked by page lock.
1874  * * %FGP_STABLE - Wait for the folio to be stable (finished writeback)
1875  *
1876  * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1877  * if the %GFP flags specified for %FGP_CREAT are atomic.
1878  *
1879  * If there is a page cache page, it is returned with an increased refcount.
1880  *
1881  * Return: The found folio or %NULL otherwise.
1882  */
1883 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
1884 		int fgp_flags, gfp_t gfp)
1885 {
1886 	struct folio *folio;
1887 
1888 repeat:
1889 	folio = mapping_get_entry(mapping, index);
1890 	if (xa_is_value(folio)) {
1891 		if (fgp_flags & FGP_ENTRY)
1892 			return folio;
1893 		folio = NULL;
1894 	}
1895 	if (!folio)
1896 		goto no_page;
1897 
1898 	if (fgp_flags & FGP_LOCK) {
1899 		if (fgp_flags & FGP_NOWAIT) {
1900 			if (!folio_trylock(folio)) {
1901 				folio_put(folio);
1902 				return NULL;
1903 			}
1904 		} else {
1905 			folio_lock(folio);
1906 		}
1907 
1908 		/* Has the page been truncated? */
1909 		if (unlikely(folio->mapping != mapping)) {
1910 			folio_unlock(folio);
1911 			folio_put(folio);
1912 			goto repeat;
1913 		}
1914 		VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
1915 	}
1916 
1917 	if (fgp_flags & FGP_ACCESSED)
1918 		folio_mark_accessed(folio);
1919 	else if (fgp_flags & FGP_WRITE) {
1920 		/* Clear idle flag for buffer write */
1921 		if (folio_test_idle(folio))
1922 			folio_clear_idle(folio);
1923 	}
1924 
1925 	if (fgp_flags & FGP_STABLE)
1926 		folio_wait_stable(folio);
1927 no_page:
1928 	if (!folio && (fgp_flags & FGP_CREAT)) {
1929 		int err;
1930 		if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1931 			gfp |= __GFP_WRITE;
1932 		if (fgp_flags & FGP_NOFS)
1933 			gfp &= ~__GFP_FS;
1934 
1935 		folio = filemap_alloc_folio(gfp, 0);
1936 		if (!folio)
1937 			return NULL;
1938 
1939 		if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1940 			fgp_flags |= FGP_LOCK;
1941 
1942 		/* Init accessed so avoid atomic mark_page_accessed later */
1943 		if (fgp_flags & FGP_ACCESSED)
1944 			__folio_set_referenced(folio);
1945 
1946 		err = filemap_add_folio(mapping, folio, index, gfp);
1947 		if (unlikely(err)) {
1948 			folio_put(folio);
1949 			folio = NULL;
1950 			if (err == -EEXIST)
1951 				goto repeat;
1952 		}
1953 
1954 		/*
1955 		 * filemap_add_folio locks the page, and for mmap
1956 		 * we expect an unlocked page.
1957 		 */
1958 		if (folio && (fgp_flags & FGP_FOR_MMAP))
1959 			folio_unlock(folio);
1960 	}
1961 
1962 	return folio;
1963 }
1964 EXPORT_SYMBOL(__filemap_get_folio);
1965 
1966 static inline struct page *find_get_entry(struct xa_state *xas, pgoff_t max,
1967 		xa_mark_t mark)
1968 {
1969 	struct page *page;
1970 
1971 retry:
1972 	if (mark == XA_PRESENT)
1973 		page = xas_find(xas, max);
1974 	else
1975 		page = xas_find_marked(xas, max, mark);
1976 
1977 	if (xas_retry(xas, page))
1978 		goto retry;
1979 	/*
1980 	 * A shadow entry of a recently evicted page, a swap
1981 	 * entry from shmem/tmpfs or a DAX entry.  Return it
1982 	 * without attempting to raise page count.
1983 	 */
1984 	if (!page || xa_is_value(page))
1985 		return page;
1986 
1987 	if (!page_cache_get_speculative(page))
1988 		goto reset;
1989 
1990 	/* Has the page moved or been split? */
1991 	if (unlikely(page != xas_reload(xas))) {
1992 		put_page(page);
1993 		goto reset;
1994 	}
1995 
1996 	return page;
1997 reset:
1998 	xas_reset(xas);
1999 	goto retry;
2000 }
2001 
2002 /**
2003  * find_get_entries - gang pagecache lookup
2004  * @mapping:	The address_space to search
2005  * @start:	The starting page cache index
2006  * @end:	The final page index (inclusive).
2007  * @pvec:	Where the resulting entries are placed.
2008  * @indices:	The cache indices corresponding to the entries in @entries
2009  *
2010  * find_get_entries() will search for and return a batch of entries in
2011  * the mapping.  The entries are placed in @pvec.  find_get_entries()
2012  * takes a reference on any actual pages it returns.
2013  *
2014  * The search returns a group of mapping-contiguous page cache entries
2015  * with ascending indexes.  There may be holes in the indices due to
2016  * not-present pages.
2017  *
2018  * Any shadow entries of evicted pages, or swap entries from
2019  * shmem/tmpfs, are included in the returned array.
2020  *
2021  * If it finds a Transparent Huge Page, head or tail, find_get_entries()
2022  * stops at that page: the caller is likely to have a better way to handle
2023  * the compound page as a whole, and then skip its extent, than repeatedly
2024  * calling find_get_entries() to return all its tails.
2025  *
2026  * Return: the number of pages and shadow entries which were found.
2027  */
2028 unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
2029 		pgoff_t end, struct pagevec *pvec, pgoff_t *indices)
2030 {
2031 	XA_STATE(xas, &mapping->i_pages, start);
2032 	struct page *page;
2033 	unsigned int ret = 0;
2034 	unsigned nr_entries = PAGEVEC_SIZE;
2035 
2036 	rcu_read_lock();
2037 	while ((page = find_get_entry(&xas, end, XA_PRESENT))) {
2038 		/*
2039 		 * Terminate early on finding a THP, to allow the caller to
2040 		 * handle it all at once; but continue if this is hugetlbfs.
2041 		 */
2042 		if (!xa_is_value(page) && PageTransHuge(page) &&
2043 				!PageHuge(page)) {
2044 			page = find_subpage(page, xas.xa_index);
2045 			nr_entries = ret + 1;
2046 		}
2047 
2048 		indices[ret] = xas.xa_index;
2049 		pvec->pages[ret] = page;
2050 		if (++ret == nr_entries)
2051 			break;
2052 	}
2053 	rcu_read_unlock();
2054 
2055 	pvec->nr = ret;
2056 	return ret;
2057 }
2058 
2059 /**
2060  * find_lock_entries - Find a batch of pagecache entries.
2061  * @mapping:	The address_space to search.
2062  * @start:	The starting page cache index.
2063  * @end:	The final page index (inclusive).
2064  * @pvec:	Where the resulting entries are placed.
2065  * @indices:	The cache indices of the entries in @pvec.
2066  *
2067  * find_lock_entries() will return a batch of entries from @mapping.
2068  * Swap, shadow and DAX entries are included.  Pages are returned
2069  * locked and with an incremented refcount.  Pages which are locked by
2070  * somebody else or under writeback are skipped.  Only the head page of
2071  * a THP is returned.  Pages which are partially outside the range are
2072  * not returned.
2073  *
2074  * The entries have ascending indexes.  The indices may not be consecutive
2075  * due to not-present entries, THP pages, pages which could not be locked
2076  * or pages under writeback.
2077  *
2078  * Return: The number of entries which were found.
2079  */
2080 unsigned find_lock_entries(struct address_space *mapping, pgoff_t start,
2081 		pgoff_t end, struct pagevec *pvec, pgoff_t *indices)
2082 {
2083 	XA_STATE(xas, &mapping->i_pages, start);
2084 	struct page *page;
2085 
2086 	rcu_read_lock();
2087 	while ((page = find_get_entry(&xas, end, XA_PRESENT))) {
2088 		if (!xa_is_value(page)) {
2089 			if (page->index < start)
2090 				goto put;
2091 			VM_BUG_ON_PAGE(page->index != xas.xa_index, page);
2092 			if (page->index + thp_nr_pages(page) - 1 > end)
2093 				goto put;
2094 			if (!trylock_page(page))
2095 				goto put;
2096 			if (page->mapping != mapping || PageWriteback(page))
2097 				goto unlock;
2098 			VM_BUG_ON_PAGE(!thp_contains(page, xas.xa_index),
2099 					page);
2100 		}
2101 		indices[pvec->nr] = xas.xa_index;
2102 		if (!pagevec_add(pvec, page))
2103 			break;
2104 		goto next;
2105 unlock:
2106 		unlock_page(page);
2107 put:
2108 		put_page(page);
2109 next:
2110 		if (!xa_is_value(page) && PageTransHuge(page)) {
2111 			unsigned int nr_pages = thp_nr_pages(page);
2112 
2113 			/* Final THP may cross MAX_LFS_FILESIZE on 32-bit */
2114 			xas_set(&xas, page->index + nr_pages);
2115 			if (xas.xa_index < nr_pages)
2116 				break;
2117 		}
2118 	}
2119 	rcu_read_unlock();
2120 
2121 	return pagevec_count(pvec);
2122 }
2123 
2124 /**
2125  * find_get_pages_range - gang pagecache lookup
2126  * @mapping:	The address_space to search
2127  * @start:	The starting page index
2128  * @end:	The final page index (inclusive)
2129  * @nr_pages:	The maximum number of pages
2130  * @pages:	Where the resulting pages are placed
2131  *
2132  * find_get_pages_range() will search for and return a group of up to @nr_pages
2133  * pages in the mapping starting at index @start and up to index @end
2134  * (inclusive).  The pages are placed at @pages.  find_get_pages_range() takes
2135  * a reference against the returned pages.
2136  *
2137  * The search returns a group of mapping-contiguous pages with ascending
2138  * indexes.  There may be holes in the indices due to not-present pages.
2139  * We also update @start to index the next page for the traversal.
2140  *
2141  * Return: the number of pages which were found. If this number is
2142  * smaller than @nr_pages, the end of specified range has been
2143  * reached.
2144  */
2145 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
2146 			      pgoff_t end, unsigned int nr_pages,
2147 			      struct page **pages)
2148 {
2149 	XA_STATE(xas, &mapping->i_pages, *start);
2150 	struct page *page;
2151 	unsigned ret = 0;
2152 
2153 	if (unlikely(!nr_pages))
2154 		return 0;
2155 
2156 	rcu_read_lock();
2157 	while ((page = find_get_entry(&xas, end, XA_PRESENT))) {
2158 		/* Skip over shadow, swap and DAX entries */
2159 		if (xa_is_value(page))
2160 			continue;
2161 
2162 		pages[ret] = find_subpage(page, xas.xa_index);
2163 		if (++ret == nr_pages) {
2164 			*start = xas.xa_index + 1;
2165 			goto out;
2166 		}
2167 	}
2168 
2169 	/*
2170 	 * We come here when there is no page beyond @end. We take care to not
2171 	 * overflow the index @start as it confuses some of the callers. This
2172 	 * breaks the iteration when there is a page at index -1 but that is
2173 	 * already broken anyway.
2174 	 */
2175 	if (end == (pgoff_t)-1)
2176 		*start = (pgoff_t)-1;
2177 	else
2178 		*start = end + 1;
2179 out:
2180 	rcu_read_unlock();
2181 
2182 	return ret;
2183 }
2184 
2185 /**
2186  * find_get_pages_contig - gang contiguous pagecache lookup
2187  * @mapping:	The address_space to search
2188  * @index:	The starting page index
2189  * @nr_pages:	The maximum number of pages
2190  * @pages:	Where the resulting pages are placed
2191  *
2192  * find_get_pages_contig() works exactly like find_get_pages(), except
2193  * that the returned number of pages are guaranteed to be contiguous.
2194  *
2195  * Return: the number of pages which were found.
2196  */
2197 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
2198 			       unsigned int nr_pages, struct page **pages)
2199 {
2200 	XA_STATE(xas, &mapping->i_pages, index);
2201 	struct page *page;
2202 	unsigned int ret = 0;
2203 
2204 	if (unlikely(!nr_pages))
2205 		return 0;
2206 
2207 	rcu_read_lock();
2208 	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
2209 		if (xas_retry(&xas, page))
2210 			continue;
2211 		/*
2212 		 * If the entry has been swapped out, we can stop looking.
2213 		 * No current caller is looking for DAX entries.
2214 		 */
2215 		if (xa_is_value(page))
2216 			break;
2217 
2218 		if (!page_cache_get_speculative(page))
2219 			goto retry;
2220 
2221 		/* Has the page moved or been split? */
2222 		if (unlikely(page != xas_reload(&xas)))
2223 			goto put_page;
2224 
2225 		pages[ret] = find_subpage(page, xas.xa_index);
2226 		if (++ret == nr_pages)
2227 			break;
2228 		continue;
2229 put_page:
2230 		put_page(page);
2231 retry:
2232 		xas_reset(&xas);
2233 	}
2234 	rcu_read_unlock();
2235 	return ret;
2236 }
2237 EXPORT_SYMBOL(find_get_pages_contig);
2238 
2239 /**
2240  * find_get_pages_range_tag - Find and return head pages matching @tag.
2241  * @mapping:	the address_space to search
2242  * @index:	the starting page index
2243  * @end:	The final page index (inclusive)
2244  * @tag:	the tag index
2245  * @nr_pages:	the maximum number of pages
2246  * @pages:	where the resulting pages are placed
2247  *
2248  * Like find_get_pages(), except we only return head pages which are tagged
2249  * with @tag.  @index is updated to the index immediately after the last
2250  * page we return, ready for the next iteration.
2251  *
2252  * Return: the number of pages which were found.
2253  */
2254 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
2255 			pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
2256 			struct page **pages)
2257 {
2258 	XA_STATE(xas, &mapping->i_pages, *index);
2259 	struct page *page;
2260 	unsigned ret = 0;
2261 
2262 	if (unlikely(!nr_pages))
2263 		return 0;
2264 
2265 	rcu_read_lock();
2266 	while ((page = find_get_entry(&xas, end, tag))) {
2267 		/*
2268 		 * Shadow entries should never be tagged, but this iteration
2269 		 * is lockless so there is a window for page reclaim to evict
2270 		 * a page we saw tagged.  Skip over it.
2271 		 */
2272 		if (xa_is_value(page))
2273 			continue;
2274 
2275 		pages[ret] = page;
2276 		if (++ret == nr_pages) {
2277 			*index = page->index + thp_nr_pages(page);
2278 			goto out;
2279 		}
2280 	}
2281 
2282 	/*
2283 	 * We come here when we got to @end. We take care to not overflow the
2284 	 * index @index as it confuses some of the callers. This breaks the
2285 	 * iteration when there is a page at index -1 but that is already
2286 	 * broken anyway.
2287 	 */
2288 	if (end == (pgoff_t)-1)
2289 		*index = (pgoff_t)-1;
2290 	else
2291 		*index = end + 1;
2292 out:
2293 	rcu_read_unlock();
2294 
2295 	return ret;
2296 }
2297 EXPORT_SYMBOL(find_get_pages_range_tag);
2298 
2299 /*
2300  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2301  * a _large_ part of the i/o request. Imagine the worst scenario:
2302  *
2303  *      ---R__________________________________________B__________
2304  *         ^ reading here                             ^ bad block(assume 4k)
2305  *
2306  * read(R) => miss => readahead(R...B) => media error => frustrating retries
2307  * => failing the whole request => read(R) => read(R+1) =>
2308  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2309  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2310  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2311  *
2312  * It is going insane. Fix it by quickly scaling down the readahead size.
2313  */
2314 static void shrink_readahead_size_eio(struct file_ra_state *ra)
2315 {
2316 	ra->ra_pages /= 4;
2317 }
2318 
2319 /*
2320  * filemap_get_read_batch - Get a batch of pages for read
2321  *
2322  * Get a batch of pages which represent a contiguous range of bytes
2323  * in the file.  No tail pages will be returned.  If @index is in the
2324  * middle of a THP, the entire THP will be returned.  The last page in
2325  * the batch may have Readahead set or be not Uptodate so that the
2326  * caller can take the appropriate action.
2327  */
2328 static void filemap_get_read_batch(struct address_space *mapping,
2329 		pgoff_t index, pgoff_t max, struct pagevec *pvec)
2330 {
2331 	XA_STATE(xas, &mapping->i_pages, index);
2332 	struct page *head;
2333 
2334 	rcu_read_lock();
2335 	for (head = xas_load(&xas); head; head = xas_next(&xas)) {
2336 		if (xas_retry(&xas, head))
2337 			continue;
2338 		if (xas.xa_index > max || xa_is_value(head))
2339 			break;
2340 		if (!page_cache_get_speculative(head))
2341 			goto retry;
2342 
2343 		/* Has the page moved or been split? */
2344 		if (unlikely(head != xas_reload(&xas)))
2345 			goto put_page;
2346 
2347 		if (!pagevec_add(pvec, head))
2348 			break;
2349 		if (!PageUptodate(head))
2350 			break;
2351 		if (PageReadahead(head))
2352 			break;
2353 		xas.xa_index = head->index + thp_nr_pages(head) - 1;
2354 		xas.xa_offset = (xas.xa_index >> xas.xa_shift) & XA_CHUNK_MASK;
2355 		continue;
2356 put_page:
2357 		put_page(head);
2358 retry:
2359 		xas_reset(&xas);
2360 	}
2361 	rcu_read_unlock();
2362 }
2363 
2364 static int filemap_read_page(struct file *file, struct address_space *mapping,
2365 		struct page *page)
2366 {
2367 	int error;
2368 
2369 	/*
2370 	 * A previous I/O error may have been due to temporary failures,
2371 	 * eg. multipath errors.  PG_error will be set again if readpage
2372 	 * fails.
2373 	 */
2374 	ClearPageError(page);
2375 	/* Start the actual read. The read will unlock the page. */
2376 	error = mapping->a_ops->readpage(file, page);
2377 	if (error)
2378 		return error;
2379 
2380 	error = wait_on_page_locked_killable(page);
2381 	if (error)
2382 		return error;
2383 	if (PageUptodate(page))
2384 		return 0;
2385 	shrink_readahead_size_eio(&file->f_ra);
2386 	return -EIO;
2387 }
2388 
2389 static bool filemap_range_uptodate(struct address_space *mapping,
2390 		loff_t pos, struct iov_iter *iter, struct page *page)
2391 {
2392 	int count;
2393 
2394 	if (PageUptodate(page))
2395 		return true;
2396 	/* pipes can't handle partially uptodate pages */
2397 	if (iov_iter_is_pipe(iter))
2398 		return false;
2399 	if (!mapping->a_ops->is_partially_uptodate)
2400 		return false;
2401 	if (mapping->host->i_blkbits >= (PAGE_SHIFT + thp_order(page)))
2402 		return false;
2403 
2404 	count = iter->count;
2405 	if (page_offset(page) > pos) {
2406 		count -= page_offset(page) - pos;
2407 		pos = 0;
2408 	} else {
2409 		pos -= page_offset(page);
2410 	}
2411 
2412 	return mapping->a_ops->is_partially_uptodate(page, pos, count);
2413 }
2414 
2415 static int filemap_update_page(struct kiocb *iocb,
2416 		struct address_space *mapping, struct iov_iter *iter,
2417 		struct page *page)
2418 {
2419 	struct folio *folio = page_folio(page);
2420 	int error;
2421 
2422 	if (iocb->ki_flags & IOCB_NOWAIT) {
2423 		if (!filemap_invalidate_trylock_shared(mapping))
2424 			return -EAGAIN;
2425 	} else {
2426 		filemap_invalidate_lock_shared(mapping);
2427 	}
2428 
2429 	if (!folio_trylock(folio)) {
2430 		error = -EAGAIN;
2431 		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2432 			goto unlock_mapping;
2433 		if (!(iocb->ki_flags & IOCB_WAITQ)) {
2434 			filemap_invalidate_unlock_shared(mapping);
2435 			put_and_wait_on_page_locked(&folio->page, TASK_KILLABLE);
2436 			return AOP_TRUNCATED_PAGE;
2437 		}
2438 		error = __folio_lock_async(folio, iocb->ki_waitq);
2439 		if (error)
2440 			goto unlock_mapping;
2441 	}
2442 
2443 	error = AOP_TRUNCATED_PAGE;
2444 	if (!folio->mapping)
2445 		goto unlock;
2446 
2447 	error = 0;
2448 	if (filemap_range_uptodate(mapping, iocb->ki_pos, iter, &folio->page))
2449 		goto unlock;
2450 
2451 	error = -EAGAIN;
2452 	if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2453 		goto unlock;
2454 
2455 	error = filemap_read_page(iocb->ki_filp, mapping, &folio->page);
2456 	goto unlock_mapping;
2457 unlock:
2458 	folio_unlock(folio);
2459 unlock_mapping:
2460 	filemap_invalidate_unlock_shared(mapping);
2461 	if (error == AOP_TRUNCATED_PAGE)
2462 		folio_put(folio);
2463 	return error;
2464 }
2465 
2466 static int filemap_create_page(struct file *file,
2467 		struct address_space *mapping, pgoff_t index,
2468 		struct pagevec *pvec)
2469 {
2470 	struct page *page;
2471 	int error;
2472 
2473 	page = page_cache_alloc(mapping);
2474 	if (!page)
2475 		return -ENOMEM;
2476 
2477 	/*
2478 	 * Protect against truncate / hole punch. Grabbing invalidate_lock here
2479 	 * assures we cannot instantiate and bring uptodate new pagecache pages
2480 	 * after evicting page cache during truncate and before actually
2481 	 * freeing blocks.  Note that we could release invalidate_lock after
2482 	 * inserting the page into page cache as the locked page would then be
2483 	 * enough to synchronize with hole punching. But there are code paths
2484 	 * such as filemap_update_page() filling in partially uptodate pages or
2485 	 * ->readpages() that need to hold invalidate_lock while mapping blocks
2486 	 * for IO so let's hold the lock here as well to keep locking rules
2487 	 * simple.
2488 	 */
2489 	filemap_invalidate_lock_shared(mapping);
2490 	error = add_to_page_cache_lru(page, mapping, index,
2491 			mapping_gfp_constraint(mapping, GFP_KERNEL));
2492 	if (error == -EEXIST)
2493 		error = AOP_TRUNCATED_PAGE;
2494 	if (error)
2495 		goto error;
2496 
2497 	error = filemap_read_page(file, mapping, page);
2498 	if (error)
2499 		goto error;
2500 
2501 	filemap_invalidate_unlock_shared(mapping);
2502 	pagevec_add(pvec, page);
2503 	return 0;
2504 error:
2505 	filemap_invalidate_unlock_shared(mapping);
2506 	put_page(page);
2507 	return error;
2508 }
2509 
2510 static int filemap_readahead(struct kiocb *iocb, struct file *file,
2511 		struct address_space *mapping, struct page *page,
2512 		pgoff_t last_index)
2513 {
2514 	if (iocb->ki_flags & IOCB_NOIO)
2515 		return -EAGAIN;
2516 	page_cache_async_readahead(mapping, &file->f_ra, file, page,
2517 			page->index, last_index - page->index);
2518 	return 0;
2519 }
2520 
2521 static int filemap_get_pages(struct kiocb *iocb, struct iov_iter *iter,
2522 		struct pagevec *pvec)
2523 {
2524 	struct file *filp = iocb->ki_filp;
2525 	struct address_space *mapping = filp->f_mapping;
2526 	struct file_ra_state *ra = &filp->f_ra;
2527 	pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2528 	pgoff_t last_index;
2529 	struct page *page;
2530 	int err = 0;
2531 
2532 	last_index = DIV_ROUND_UP(iocb->ki_pos + iter->count, PAGE_SIZE);
2533 retry:
2534 	if (fatal_signal_pending(current))
2535 		return -EINTR;
2536 
2537 	filemap_get_read_batch(mapping, index, last_index, pvec);
2538 	if (!pagevec_count(pvec)) {
2539 		if (iocb->ki_flags & IOCB_NOIO)
2540 			return -EAGAIN;
2541 		page_cache_sync_readahead(mapping, ra, filp, index,
2542 				last_index - index);
2543 		filemap_get_read_batch(mapping, index, last_index, pvec);
2544 	}
2545 	if (!pagevec_count(pvec)) {
2546 		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2547 			return -EAGAIN;
2548 		err = filemap_create_page(filp, mapping,
2549 				iocb->ki_pos >> PAGE_SHIFT, pvec);
2550 		if (err == AOP_TRUNCATED_PAGE)
2551 			goto retry;
2552 		return err;
2553 	}
2554 
2555 	page = pvec->pages[pagevec_count(pvec) - 1];
2556 	if (PageReadahead(page)) {
2557 		err = filemap_readahead(iocb, filp, mapping, page, last_index);
2558 		if (err)
2559 			goto err;
2560 	}
2561 	if (!PageUptodate(page)) {
2562 		if ((iocb->ki_flags & IOCB_WAITQ) && pagevec_count(pvec) > 1)
2563 			iocb->ki_flags |= IOCB_NOWAIT;
2564 		err = filemap_update_page(iocb, mapping, iter, page);
2565 		if (err)
2566 			goto err;
2567 	}
2568 
2569 	return 0;
2570 err:
2571 	if (err < 0)
2572 		put_page(page);
2573 	if (likely(--pvec->nr))
2574 		return 0;
2575 	if (err == AOP_TRUNCATED_PAGE)
2576 		goto retry;
2577 	return err;
2578 }
2579 
2580 /**
2581  * filemap_read - Read data from the page cache.
2582  * @iocb: The iocb to read.
2583  * @iter: Destination for the data.
2584  * @already_read: Number of bytes already read by the caller.
2585  *
2586  * Copies data from the page cache.  If the data is not currently present,
2587  * uses the readahead and readpage address_space operations to fetch it.
2588  *
2589  * Return: Total number of bytes copied, including those already read by
2590  * the caller.  If an error happens before any bytes are copied, returns
2591  * a negative error number.
2592  */
2593 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2594 		ssize_t already_read)
2595 {
2596 	struct file *filp = iocb->ki_filp;
2597 	struct file_ra_state *ra = &filp->f_ra;
2598 	struct address_space *mapping = filp->f_mapping;
2599 	struct inode *inode = mapping->host;
2600 	struct pagevec pvec;
2601 	int i, error = 0;
2602 	bool writably_mapped;
2603 	loff_t isize, end_offset;
2604 
2605 	if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2606 		return 0;
2607 	if (unlikely(!iov_iter_count(iter)))
2608 		return 0;
2609 
2610 	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2611 	pagevec_init(&pvec);
2612 
2613 	do {
2614 		cond_resched();
2615 
2616 		/*
2617 		 * If we've already successfully copied some data, then we
2618 		 * can no longer safely return -EIOCBQUEUED. Hence mark
2619 		 * an async read NOWAIT at that point.
2620 		 */
2621 		if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2622 			iocb->ki_flags |= IOCB_NOWAIT;
2623 
2624 		error = filemap_get_pages(iocb, iter, &pvec);
2625 		if (error < 0)
2626 			break;
2627 
2628 		/*
2629 		 * i_size must be checked after we know the pages are Uptodate.
2630 		 *
2631 		 * Checking i_size after the check allows us to calculate
2632 		 * the correct value for "nr", which means the zero-filled
2633 		 * part of the page is not copied back to userspace (unless
2634 		 * another truncate extends the file - this is desired though).
2635 		 */
2636 		isize = i_size_read(inode);
2637 		if (unlikely(iocb->ki_pos >= isize))
2638 			goto put_pages;
2639 		end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2640 
2641 		/*
2642 		 * Once we start copying data, we don't want to be touching any
2643 		 * cachelines that might be contended:
2644 		 */
2645 		writably_mapped = mapping_writably_mapped(mapping);
2646 
2647 		/*
2648 		 * When a sequential read accesses a page several times, only
2649 		 * mark it as accessed the first time.
2650 		 */
2651 		if (iocb->ki_pos >> PAGE_SHIFT !=
2652 		    ra->prev_pos >> PAGE_SHIFT)
2653 			mark_page_accessed(pvec.pages[0]);
2654 
2655 		for (i = 0; i < pagevec_count(&pvec); i++) {
2656 			struct page *page = pvec.pages[i];
2657 			size_t page_size = thp_size(page);
2658 			size_t offset = iocb->ki_pos & (page_size - 1);
2659 			size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2660 					     page_size - offset);
2661 			size_t copied;
2662 
2663 			if (end_offset < page_offset(page))
2664 				break;
2665 			if (i > 0)
2666 				mark_page_accessed(page);
2667 			/*
2668 			 * If users can be writing to this page using arbitrary
2669 			 * virtual addresses, take care about potential aliasing
2670 			 * before reading the page on the kernel side.
2671 			 */
2672 			if (writably_mapped) {
2673 				int j;
2674 
2675 				for (j = 0; j < thp_nr_pages(page); j++)
2676 					flush_dcache_page(page + j);
2677 			}
2678 
2679 			copied = copy_page_to_iter(page, offset, bytes, iter);
2680 
2681 			already_read += copied;
2682 			iocb->ki_pos += copied;
2683 			ra->prev_pos = iocb->ki_pos;
2684 
2685 			if (copied < bytes) {
2686 				error = -EFAULT;
2687 				break;
2688 			}
2689 		}
2690 put_pages:
2691 		for (i = 0; i < pagevec_count(&pvec); i++)
2692 			put_page(pvec.pages[i]);
2693 		pagevec_reinit(&pvec);
2694 	} while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2695 
2696 	file_accessed(filp);
2697 
2698 	return already_read ? already_read : error;
2699 }
2700 EXPORT_SYMBOL_GPL(filemap_read);
2701 
2702 /**
2703  * generic_file_read_iter - generic filesystem read routine
2704  * @iocb:	kernel I/O control block
2705  * @iter:	destination for the data read
2706  *
2707  * This is the "read_iter()" routine for all filesystems
2708  * that can use the page cache directly.
2709  *
2710  * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2711  * be returned when no data can be read without waiting for I/O requests
2712  * to complete; it doesn't prevent readahead.
2713  *
2714  * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2715  * requests shall be made for the read or for readahead.  When no data
2716  * can be read, -EAGAIN shall be returned.  When readahead would be
2717  * triggered, a partial, possibly empty read shall be returned.
2718  *
2719  * Return:
2720  * * number of bytes copied, even for partial reads
2721  * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2722  */
2723 ssize_t
2724 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2725 {
2726 	size_t count = iov_iter_count(iter);
2727 	ssize_t retval = 0;
2728 
2729 	if (!count)
2730 		return 0; /* skip atime */
2731 
2732 	if (iocb->ki_flags & IOCB_DIRECT) {
2733 		struct file *file = iocb->ki_filp;
2734 		struct address_space *mapping = file->f_mapping;
2735 		struct inode *inode = mapping->host;
2736 		loff_t size;
2737 
2738 		size = i_size_read(inode);
2739 		if (iocb->ki_flags & IOCB_NOWAIT) {
2740 			if (filemap_range_needs_writeback(mapping, iocb->ki_pos,
2741 						iocb->ki_pos + count - 1))
2742 				return -EAGAIN;
2743 		} else {
2744 			retval = filemap_write_and_wait_range(mapping,
2745 						iocb->ki_pos,
2746 					        iocb->ki_pos + count - 1);
2747 			if (retval < 0)
2748 				return retval;
2749 		}
2750 
2751 		file_accessed(file);
2752 
2753 		retval = mapping->a_ops->direct_IO(iocb, iter);
2754 		if (retval >= 0) {
2755 			iocb->ki_pos += retval;
2756 			count -= retval;
2757 		}
2758 		if (retval != -EIOCBQUEUED)
2759 			iov_iter_revert(iter, count - iov_iter_count(iter));
2760 
2761 		/*
2762 		 * Btrfs can have a short DIO read if we encounter
2763 		 * compressed extents, so if there was an error, or if
2764 		 * we've already read everything we wanted to, or if
2765 		 * there was a short read because we hit EOF, go ahead
2766 		 * and return.  Otherwise fallthrough to buffered io for
2767 		 * the rest of the read.  Buffered reads will not work for
2768 		 * DAX files, so don't bother trying.
2769 		 */
2770 		if (retval < 0 || !count || iocb->ki_pos >= size ||
2771 		    IS_DAX(inode))
2772 			return retval;
2773 	}
2774 
2775 	return filemap_read(iocb, iter, retval);
2776 }
2777 EXPORT_SYMBOL(generic_file_read_iter);
2778 
2779 static inline loff_t page_seek_hole_data(struct xa_state *xas,
2780 		struct address_space *mapping, struct page *page,
2781 		loff_t start, loff_t end, bool seek_data)
2782 {
2783 	const struct address_space_operations *ops = mapping->a_ops;
2784 	size_t offset, bsz = i_blocksize(mapping->host);
2785 
2786 	if (xa_is_value(page) || PageUptodate(page))
2787 		return seek_data ? start : end;
2788 	if (!ops->is_partially_uptodate)
2789 		return seek_data ? end : start;
2790 
2791 	xas_pause(xas);
2792 	rcu_read_unlock();
2793 	lock_page(page);
2794 	if (unlikely(page->mapping != mapping))
2795 		goto unlock;
2796 
2797 	offset = offset_in_thp(page, start) & ~(bsz - 1);
2798 
2799 	do {
2800 		if (ops->is_partially_uptodate(page, offset, bsz) == seek_data)
2801 			break;
2802 		start = (start + bsz) & ~(bsz - 1);
2803 		offset += bsz;
2804 	} while (offset < thp_size(page));
2805 unlock:
2806 	unlock_page(page);
2807 	rcu_read_lock();
2808 	return start;
2809 }
2810 
2811 static inline
2812 unsigned int seek_page_size(struct xa_state *xas, struct page *page)
2813 {
2814 	if (xa_is_value(page))
2815 		return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
2816 	return thp_size(page);
2817 }
2818 
2819 /**
2820  * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
2821  * @mapping: Address space to search.
2822  * @start: First byte to consider.
2823  * @end: Limit of search (exclusive).
2824  * @whence: Either SEEK_HOLE or SEEK_DATA.
2825  *
2826  * If the page cache knows which blocks contain holes and which blocks
2827  * contain data, your filesystem can use this function to implement
2828  * SEEK_HOLE and SEEK_DATA.  This is useful for filesystems which are
2829  * entirely memory-based such as tmpfs, and filesystems which support
2830  * unwritten extents.
2831  *
2832  * Return: The requested offset on success, or -ENXIO if @whence specifies
2833  * SEEK_DATA and there is no data after @start.  There is an implicit hole
2834  * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
2835  * and @end contain data.
2836  */
2837 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
2838 		loff_t end, int whence)
2839 {
2840 	XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
2841 	pgoff_t max = (end - 1) >> PAGE_SHIFT;
2842 	bool seek_data = (whence == SEEK_DATA);
2843 	struct page *page;
2844 
2845 	if (end <= start)
2846 		return -ENXIO;
2847 
2848 	rcu_read_lock();
2849 	while ((page = find_get_entry(&xas, max, XA_PRESENT))) {
2850 		loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
2851 		unsigned int seek_size;
2852 
2853 		if (start < pos) {
2854 			if (!seek_data)
2855 				goto unlock;
2856 			start = pos;
2857 		}
2858 
2859 		seek_size = seek_page_size(&xas, page);
2860 		pos = round_up(pos + 1, seek_size);
2861 		start = page_seek_hole_data(&xas, mapping, page, start, pos,
2862 				seek_data);
2863 		if (start < pos)
2864 			goto unlock;
2865 		if (start >= end)
2866 			break;
2867 		if (seek_size > PAGE_SIZE)
2868 			xas_set(&xas, pos >> PAGE_SHIFT);
2869 		if (!xa_is_value(page))
2870 			put_page(page);
2871 	}
2872 	if (seek_data)
2873 		start = -ENXIO;
2874 unlock:
2875 	rcu_read_unlock();
2876 	if (page && !xa_is_value(page))
2877 		put_page(page);
2878 	if (start > end)
2879 		return end;
2880 	return start;
2881 }
2882 
2883 #ifdef CONFIG_MMU
2884 #define MMAP_LOTSAMISS  (100)
2885 /*
2886  * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
2887  * @vmf - the vm_fault for this fault.
2888  * @page - the page to lock.
2889  * @fpin - the pointer to the file we may pin (or is already pinned).
2890  *
2891  * This works similar to lock_page_or_retry in that it can drop the mmap_lock.
2892  * It differs in that it actually returns the page locked if it returns 1 and 0
2893  * if it couldn't lock the page.  If we did have to drop the mmap_lock then fpin
2894  * will point to the pinned file and needs to be fput()'ed at a later point.
2895  */
2896 static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
2897 				     struct file **fpin)
2898 {
2899 	struct folio *folio = page_folio(page);
2900 
2901 	if (folio_trylock(folio))
2902 		return 1;
2903 
2904 	/*
2905 	 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2906 	 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
2907 	 * is supposed to work. We have way too many special cases..
2908 	 */
2909 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2910 		return 0;
2911 
2912 	*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2913 	if (vmf->flags & FAULT_FLAG_KILLABLE) {
2914 		if (__folio_lock_killable(folio)) {
2915 			/*
2916 			 * We didn't have the right flags to drop the mmap_lock,
2917 			 * but all fault_handlers only check for fatal signals
2918 			 * if we return VM_FAULT_RETRY, so we need to drop the
2919 			 * mmap_lock here and return 0 if we don't have a fpin.
2920 			 */
2921 			if (*fpin == NULL)
2922 				mmap_read_unlock(vmf->vma->vm_mm);
2923 			return 0;
2924 		}
2925 	} else
2926 		__folio_lock(folio);
2927 
2928 	return 1;
2929 }
2930 
2931 /*
2932  * Synchronous readahead happens when we don't even find a page in the page
2933  * cache at all.  We don't want to perform IO under the mmap sem, so if we have
2934  * to drop the mmap sem we return the file that was pinned in order for us to do
2935  * that.  If we didn't pin a file then we return NULL.  The file that is
2936  * returned needs to be fput()'ed when we're done with it.
2937  */
2938 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
2939 {
2940 	struct file *file = vmf->vma->vm_file;
2941 	struct file_ra_state *ra = &file->f_ra;
2942 	struct address_space *mapping = file->f_mapping;
2943 	DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
2944 	struct file *fpin = NULL;
2945 	unsigned int mmap_miss;
2946 
2947 	/* If we don't want any read-ahead, don't bother */
2948 	if (vmf->vma->vm_flags & VM_RAND_READ)
2949 		return fpin;
2950 	if (!ra->ra_pages)
2951 		return fpin;
2952 
2953 	if (vmf->vma->vm_flags & VM_SEQ_READ) {
2954 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2955 		page_cache_sync_ra(&ractl, ra->ra_pages);
2956 		return fpin;
2957 	}
2958 
2959 	/* Avoid banging the cache line if not needed */
2960 	mmap_miss = READ_ONCE(ra->mmap_miss);
2961 	if (mmap_miss < MMAP_LOTSAMISS * 10)
2962 		WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
2963 
2964 	/*
2965 	 * Do we miss much more than hit in this file? If so,
2966 	 * stop bothering with read-ahead. It will only hurt.
2967 	 */
2968 	if (mmap_miss > MMAP_LOTSAMISS)
2969 		return fpin;
2970 
2971 	/*
2972 	 * mmap read-around
2973 	 */
2974 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2975 	ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
2976 	ra->size = ra->ra_pages;
2977 	ra->async_size = ra->ra_pages / 4;
2978 	ractl._index = ra->start;
2979 	do_page_cache_ra(&ractl, ra->size, ra->async_size);
2980 	return fpin;
2981 }
2982 
2983 /*
2984  * Asynchronous readahead happens when we find the page and PG_readahead,
2985  * so we want to possibly extend the readahead further.  We return the file that
2986  * was pinned if we have to drop the mmap_lock in order to do IO.
2987  */
2988 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
2989 					    struct page *page)
2990 {
2991 	struct file *file = vmf->vma->vm_file;
2992 	struct file_ra_state *ra = &file->f_ra;
2993 	struct address_space *mapping = file->f_mapping;
2994 	struct file *fpin = NULL;
2995 	unsigned int mmap_miss;
2996 	pgoff_t offset = vmf->pgoff;
2997 
2998 	/* If we don't want any read-ahead, don't bother */
2999 	if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
3000 		return fpin;
3001 	mmap_miss = READ_ONCE(ra->mmap_miss);
3002 	if (mmap_miss)
3003 		WRITE_ONCE(ra->mmap_miss, --mmap_miss);
3004 	if (PageReadahead(page)) {
3005 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3006 		page_cache_async_readahead(mapping, ra, file,
3007 					   page, offset, ra->ra_pages);
3008 	}
3009 	return fpin;
3010 }
3011 
3012 /**
3013  * filemap_fault - read in file data for page fault handling
3014  * @vmf:	struct vm_fault containing details of the fault
3015  *
3016  * filemap_fault() is invoked via the vma operations vector for a
3017  * mapped memory region to read in file data during a page fault.
3018  *
3019  * The goto's are kind of ugly, but this streamlines the normal case of having
3020  * it in the page cache, and handles the special cases reasonably without
3021  * having a lot of duplicated code.
3022  *
3023  * vma->vm_mm->mmap_lock must be held on entry.
3024  *
3025  * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
3026  * may be dropped before doing I/O or by lock_page_maybe_drop_mmap().
3027  *
3028  * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
3029  * has not been released.
3030  *
3031  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
3032  *
3033  * Return: bitwise-OR of %VM_FAULT_ codes.
3034  */
3035 vm_fault_t filemap_fault(struct vm_fault *vmf)
3036 {
3037 	int error;
3038 	struct file *file = vmf->vma->vm_file;
3039 	struct file *fpin = NULL;
3040 	struct address_space *mapping = file->f_mapping;
3041 	struct inode *inode = mapping->host;
3042 	pgoff_t offset = vmf->pgoff;
3043 	pgoff_t max_off;
3044 	struct page *page;
3045 	vm_fault_t ret = 0;
3046 	bool mapping_locked = false;
3047 
3048 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3049 	if (unlikely(offset >= max_off))
3050 		return VM_FAULT_SIGBUS;
3051 
3052 	/*
3053 	 * Do we have something in the page cache already?
3054 	 */
3055 	page = find_get_page(mapping, offset);
3056 	if (likely(page)) {
3057 		/*
3058 		 * We found the page, so try async readahead before waiting for
3059 		 * the lock.
3060 		 */
3061 		if (!(vmf->flags & FAULT_FLAG_TRIED))
3062 			fpin = do_async_mmap_readahead(vmf, page);
3063 		if (unlikely(!PageUptodate(page))) {
3064 			filemap_invalidate_lock_shared(mapping);
3065 			mapping_locked = true;
3066 		}
3067 	} else {
3068 		/* No page in the page cache at all */
3069 		count_vm_event(PGMAJFAULT);
3070 		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
3071 		ret = VM_FAULT_MAJOR;
3072 		fpin = do_sync_mmap_readahead(vmf);
3073 retry_find:
3074 		/*
3075 		 * See comment in filemap_create_page() why we need
3076 		 * invalidate_lock
3077 		 */
3078 		if (!mapping_locked) {
3079 			filemap_invalidate_lock_shared(mapping);
3080 			mapping_locked = true;
3081 		}
3082 		page = pagecache_get_page(mapping, offset,
3083 					  FGP_CREAT|FGP_FOR_MMAP,
3084 					  vmf->gfp_mask);
3085 		if (!page) {
3086 			if (fpin)
3087 				goto out_retry;
3088 			filemap_invalidate_unlock_shared(mapping);
3089 			return VM_FAULT_OOM;
3090 		}
3091 	}
3092 
3093 	if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
3094 		goto out_retry;
3095 
3096 	/* Did it get truncated? */
3097 	if (unlikely(compound_head(page)->mapping != mapping)) {
3098 		unlock_page(page);
3099 		put_page(page);
3100 		goto retry_find;
3101 	}
3102 	VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
3103 
3104 	/*
3105 	 * We have a locked page in the page cache, now we need to check
3106 	 * that it's up-to-date. If not, it is going to be due to an error.
3107 	 */
3108 	if (unlikely(!PageUptodate(page))) {
3109 		/*
3110 		 * The page was in cache and uptodate and now it is not.
3111 		 * Strange but possible since we didn't hold the page lock all
3112 		 * the time. Let's drop everything get the invalidate lock and
3113 		 * try again.
3114 		 */
3115 		if (!mapping_locked) {
3116 			unlock_page(page);
3117 			put_page(page);
3118 			goto retry_find;
3119 		}
3120 		goto page_not_uptodate;
3121 	}
3122 
3123 	/*
3124 	 * We've made it this far and we had to drop our mmap_lock, now is the
3125 	 * time to return to the upper layer and have it re-find the vma and
3126 	 * redo the fault.
3127 	 */
3128 	if (fpin) {
3129 		unlock_page(page);
3130 		goto out_retry;
3131 	}
3132 	if (mapping_locked)
3133 		filemap_invalidate_unlock_shared(mapping);
3134 
3135 	/*
3136 	 * Found the page and have a reference on it.
3137 	 * We must recheck i_size under page lock.
3138 	 */
3139 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3140 	if (unlikely(offset >= max_off)) {
3141 		unlock_page(page);
3142 		put_page(page);
3143 		return VM_FAULT_SIGBUS;
3144 	}
3145 
3146 	vmf->page = page;
3147 	return ret | VM_FAULT_LOCKED;
3148 
3149 page_not_uptodate:
3150 	/*
3151 	 * Umm, take care of errors if the page isn't up-to-date.
3152 	 * Try to re-read it _once_. We do this synchronously,
3153 	 * because there really aren't any performance issues here
3154 	 * and we need to check for errors.
3155 	 */
3156 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3157 	error = filemap_read_page(file, mapping, page);
3158 	if (fpin)
3159 		goto out_retry;
3160 	put_page(page);
3161 
3162 	if (!error || error == AOP_TRUNCATED_PAGE)
3163 		goto retry_find;
3164 	filemap_invalidate_unlock_shared(mapping);
3165 
3166 	return VM_FAULT_SIGBUS;
3167 
3168 out_retry:
3169 	/*
3170 	 * We dropped the mmap_lock, we need to return to the fault handler to
3171 	 * re-find the vma and come back and find our hopefully still populated
3172 	 * page.
3173 	 */
3174 	if (page)
3175 		put_page(page);
3176 	if (mapping_locked)
3177 		filemap_invalidate_unlock_shared(mapping);
3178 	if (fpin)
3179 		fput(fpin);
3180 	return ret | VM_FAULT_RETRY;
3181 }
3182 EXPORT_SYMBOL(filemap_fault);
3183 
3184 static bool filemap_map_pmd(struct vm_fault *vmf, struct page *page)
3185 {
3186 	struct mm_struct *mm = vmf->vma->vm_mm;
3187 
3188 	/* Huge page is mapped? No need to proceed. */
3189 	if (pmd_trans_huge(*vmf->pmd)) {
3190 		unlock_page(page);
3191 		put_page(page);
3192 		return true;
3193 	}
3194 
3195 	if (pmd_none(*vmf->pmd) && PageTransHuge(page)) {
3196 	    vm_fault_t ret = do_set_pmd(vmf, page);
3197 	    if (!ret) {
3198 		    /* The page is mapped successfully, reference consumed. */
3199 		    unlock_page(page);
3200 		    return true;
3201 	    }
3202 	}
3203 
3204 	if (pmd_none(*vmf->pmd)) {
3205 		vmf->ptl = pmd_lock(mm, vmf->pmd);
3206 		if (likely(pmd_none(*vmf->pmd))) {
3207 			mm_inc_nr_ptes(mm);
3208 			pmd_populate(mm, vmf->pmd, vmf->prealloc_pte);
3209 			vmf->prealloc_pte = NULL;
3210 		}
3211 		spin_unlock(vmf->ptl);
3212 	}
3213 
3214 	/* See comment in handle_pte_fault() */
3215 	if (pmd_devmap_trans_unstable(vmf->pmd)) {
3216 		unlock_page(page);
3217 		put_page(page);
3218 		return true;
3219 	}
3220 
3221 	return false;
3222 }
3223 
3224 static struct page *next_uptodate_page(struct page *page,
3225 				       struct address_space *mapping,
3226 				       struct xa_state *xas, pgoff_t end_pgoff)
3227 {
3228 	unsigned long max_idx;
3229 
3230 	do {
3231 		if (!page)
3232 			return NULL;
3233 		if (xas_retry(xas, page))
3234 			continue;
3235 		if (xa_is_value(page))
3236 			continue;
3237 		if (PageLocked(page))
3238 			continue;
3239 		if (!page_cache_get_speculative(page))
3240 			continue;
3241 		/* Has the page moved or been split? */
3242 		if (unlikely(page != xas_reload(xas)))
3243 			goto skip;
3244 		if (!PageUptodate(page) || PageReadahead(page))
3245 			goto skip;
3246 		if (PageHWPoison(page))
3247 			goto skip;
3248 		if (!trylock_page(page))
3249 			goto skip;
3250 		if (page->mapping != mapping)
3251 			goto unlock;
3252 		if (!PageUptodate(page))
3253 			goto unlock;
3254 		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3255 		if (xas->xa_index >= max_idx)
3256 			goto unlock;
3257 		return page;
3258 unlock:
3259 		unlock_page(page);
3260 skip:
3261 		put_page(page);
3262 	} while ((page = xas_next_entry(xas, end_pgoff)) != NULL);
3263 
3264 	return NULL;
3265 }
3266 
3267 static inline struct page *first_map_page(struct address_space *mapping,
3268 					  struct xa_state *xas,
3269 					  pgoff_t end_pgoff)
3270 {
3271 	return next_uptodate_page(xas_find(xas, end_pgoff),
3272 				  mapping, xas, end_pgoff);
3273 }
3274 
3275 static inline struct page *next_map_page(struct address_space *mapping,
3276 					 struct xa_state *xas,
3277 					 pgoff_t end_pgoff)
3278 {
3279 	return next_uptodate_page(xas_next_entry(xas, end_pgoff),
3280 				  mapping, xas, end_pgoff);
3281 }
3282 
3283 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3284 			     pgoff_t start_pgoff, pgoff_t end_pgoff)
3285 {
3286 	struct vm_area_struct *vma = vmf->vma;
3287 	struct file *file = vma->vm_file;
3288 	struct address_space *mapping = file->f_mapping;
3289 	pgoff_t last_pgoff = start_pgoff;
3290 	unsigned long addr;
3291 	XA_STATE(xas, &mapping->i_pages, start_pgoff);
3292 	struct page *head, *page;
3293 	unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss);
3294 	vm_fault_t ret = 0;
3295 
3296 	rcu_read_lock();
3297 	head = first_map_page(mapping, &xas, end_pgoff);
3298 	if (!head)
3299 		goto out;
3300 
3301 	if (filemap_map_pmd(vmf, head)) {
3302 		ret = VM_FAULT_NOPAGE;
3303 		goto out;
3304 	}
3305 
3306 	addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3307 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3308 	do {
3309 		page = find_subpage(head, xas.xa_index);
3310 		if (PageHWPoison(page))
3311 			goto unlock;
3312 
3313 		if (mmap_miss > 0)
3314 			mmap_miss--;
3315 
3316 		addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3317 		vmf->pte += xas.xa_index - last_pgoff;
3318 		last_pgoff = xas.xa_index;
3319 
3320 		if (!pte_none(*vmf->pte))
3321 			goto unlock;
3322 
3323 		/* We're about to handle the fault */
3324 		if (vmf->address == addr)
3325 			ret = VM_FAULT_NOPAGE;
3326 
3327 		do_set_pte(vmf, page, addr);
3328 		/* no need to invalidate: a not-present page won't be cached */
3329 		update_mmu_cache(vma, addr, vmf->pte);
3330 		unlock_page(head);
3331 		continue;
3332 unlock:
3333 		unlock_page(head);
3334 		put_page(head);
3335 	} while ((head = next_map_page(mapping, &xas, end_pgoff)) != NULL);
3336 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3337 out:
3338 	rcu_read_unlock();
3339 	WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss);
3340 	return ret;
3341 }
3342 EXPORT_SYMBOL(filemap_map_pages);
3343 
3344 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3345 {
3346 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3347 	struct page *page = vmf->page;
3348 	vm_fault_t ret = VM_FAULT_LOCKED;
3349 
3350 	sb_start_pagefault(mapping->host->i_sb);
3351 	file_update_time(vmf->vma->vm_file);
3352 	lock_page(page);
3353 	if (page->mapping != mapping) {
3354 		unlock_page(page);
3355 		ret = VM_FAULT_NOPAGE;
3356 		goto out;
3357 	}
3358 	/*
3359 	 * We mark the page dirty already here so that when freeze is in
3360 	 * progress, we are guaranteed that writeback during freezing will
3361 	 * see the dirty page and writeprotect it again.
3362 	 */
3363 	set_page_dirty(page);
3364 	wait_for_stable_page(page);
3365 out:
3366 	sb_end_pagefault(mapping->host->i_sb);
3367 	return ret;
3368 }
3369 
3370 const struct vm_operations_struct generic_file_vm_ops = {
3371 	.fault		= filemap_fault,
3372 	.map_pages	= filemap_map_pages,
3373 	.page_mkwrite	= filemap_page_mkwrite,
3374 };
3375 
3376 /* This is used for a general mmap of a disk file */
3377 
3378 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3379 {
3380 	struct address_space *mapping = file->f_mapping;
3381 
3382 	if (!mapping->a_ops->readpage)
3383 		return -ENOEXEC;
3384 	file_accessed(file);
3385 	vma->vm_ops = &generic_file_vm_ops;
3386 	return 0;
3387 }
3388 
3389 /*
3390  * This is for filesystems which do not implement ->writepage.
3391  */
3392 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3393 {
3394 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
3395 		return -EINVAL;
3396 	return generic_file_mmap(file, vma);
3397 }
3398 #else
3399 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3400 {
3401 	return VM_FAULT_SIGBUS;
3402 }
3403 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3404 {
3405 	return -ENOSYS;
3406 }
3407 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3408 {
3409 	return -ENOSYS;
3410 }
3411 #endif /* CONFIG_MMU */
3412 
3413 EXPORT_SYMBOL(filemap_page_mkwrite);
3414 EXPORT_SYMBOL(generic_file_mmap);
3415 EXPORT_SYMBOL(generic_file_readonly_mmap);
3416 
3417 static struct page *wait_on_page_read(struct page *page)
3418 {
3419 	if (!IS_ERR(page)) {
3420 		wait_on_page_locked(page);
3421 		if (!PageUptodate(page)) {
3422 			put_page(page);
3423 			page = ERR_PTR(-EIO);
3424 		}
3425 	}
3426 	return page;
3427 }
3428 
3429 static struct page *do_read_cache_page(struct address_space *mapping,
3430 				pgoff_t index,
3431 				int (*filler)(void *, struct page *),
3432 				void *data,
3433 				gfp_t gfp)
3434 {
3435 	struct page *page;
3436 	int err;
3437 repeat:
3438 	page = find_get_page(mapping, index);
3439 	if (!page) {
3440 		page = __page_cache_alloc(gfp);
3441 		if (!page)
3442 			return ERR_PTR(-ENOMEM);
3443 		err = add_to_page_cache_lru(page, mapping, index, gfp);
3444 		if (unlikely(err)) {
3445 			put_page(page);
3446 			if (err == -EEXIST)
3447 				goto repeat;
3448 			/* Presumably ENOMEM for xarray node */
3449 			return ERR_PTR(err);
3450 		}
3451 
3452 filler:
3453 		if (filler)
3454 			err = filler(data, page);
3455 		else
3456 			err = mapping->a_ops->readpage(data, page);
3457 
3458 		if (err < 0) {
3459 			put_page(page);
3460 			return ERR_PTR(err);
3461 		}
3462 
3463 		page = wait_on_page_read(page);
3464 		if (IS_ERR(page))
3465 			return page;
3466 		goto out;
3467 	}
3468 	if (PageUptodate(page))
3469 		goto out;
3470 
3471 	/*
3472 	 * Page is not up to date and may be locked due to one of the following
3473 	 * case a: Page is being filled and the page lock is held
3474 	 * case b: Read/write error clearing the page uptodate status
3475 	 * case c: Truncation in progress (page locked)
3476 	 * case d: Reclaim in progress
3477 	 *
3478 	 * Case a, the page will be up to date when the page is unlocked.
3479 	 *    There is no need to serialise on the page lock here as the page
3480 	 *    is pinned so the lock gives no additional protection. Even if the
3481 	 *    page is truncated, the data is still valid if PageUptodate as
3482 	 *    it's a race vs truncate race.
3483 	 * Case b, the page will not be up to date
3484 	 * Case c, the page may be truncated but in itself, the data may still
3485 	 *    be valid after IO completes as it's a read vs truncate race. The
3486 	 *    operation must restart if the page is not uptodate on unlock but
3487 	 *    otherwise serialising on page lock to stabilise the mapping gives
3488 	 *    no additional guarantees to the caller as the page lock is
3489 	 *    released before return.
3490 	 * Case d, similar to truncation. If reclaim holds the page lock, it
3491 	 *    will be a race with remove_mapping that determines if the mapping
3492 	 *    is valid on unlock but otherwise the data is valid and there is
3493 	 *    no need to serialise with page lock.
3494 	 *
3495 	 * As the page lock gives no additional guarantee, we optimistically
3496 	 * wait on the page to be unlocked and check if it's up to date and
3497 	 * use the page if it is. Otherwise, the page lock is required to
3498 	 * distinguish between the different cases. The motivation is that we
3499 	 * avoid spurious serialisations and wakeups when multiple processes
3500 	 * wait on the same page for IO to complete.
3501 	 */
3502 	wait_on_page_locked(page);
3503 	if (PageUptodate(page))
3504 		goto out;
3505 
3506 	/* Distinguish between all the cases under the safety of the lock */
3507 	lock_page(page);
3508 
3509 	/* Case c or d, restart the operation */
3510 	if (!page->mapping) {
3511 		unlock_page(page);
3512 		put_page(page);
3513 		goto repeat;
3514 	}
3515 
3516 	/* Someone else locked and filled the page in a very small window */
3517 	if (PageUptodate(page)) {
3518 		unlock_page(page);
3519 		goto out;
3520 	}
3521 
3522 	/*
3523 	 * A previous I/O error may have been due to temporary
3524 	 * failures.
3525 	 * Clear page error before actual read, PG_error will be
3526 	 * set again if read page fails.
3527 	 */
3528 	ClearPageError(page);
3529 	goto filler;
3530 
3531 out:
3532 	mark_page_accessed(page);
3533 	return page;
3534 }
3535 
3536 /**
3537  * read_cache_page - read into page cache, fill it if needed
3538  * @mapping:	the page's address_space
3539  * @index:	the page index
3540  * @filler:	function to perform the read
3541  * @data:	first arg to filler(data, page) function, often left as NULL
3542  *
3543  * Read into the page cache. If a page already exists, and PageUptodate() is
3544  * not set, try to fill the page and wait for it to become unlocked.
3545  *
3546  * If the page does not get brought uptodate, return -EIO.
3547  *
3548  * The function expects mapping->invalidate_lock to be already held.
3549  *
3550  * Return: up to date page on success, ERR_PTR() on failure.
3551  */
3552 struct page *read_cache_page(struct address_space *mapping,
3553 				pgoff_t index,
3554 				int (*filler)(void *, struct page *),
3555 				void *data)
3556 {
3557 	return do_read_cache_page(mapping, index, filler, data,
3558 			mapping_gfp_mask(mapping));
3559 }
3560 EXPORT_SYMBOL(read_cache_page);
3561 
3562 /**
3563  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3564  * @mapping:	the page's address_space
3565  * @index:	the page index
3566  * @gfp:	the page allocator flags to use if allocating
3567  *
3568  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3569  * any new page allocations done using the specified allocation flags.
3570  *
3571  * If the page does not get brought uptodate, return -EIO.
3572  *
3573  * The function expects mapping->invalidate_lock to be already held.
3574  *
3575  * Return: up to date page on success, ERR_PTR() on failure.
3576  */
3577 struct page *read_cache_page_gfp(struct address_space *mapping,
3578 				pgoff_t index,
3579 				gfp_t gfp)
3580 {
3581 	return do_read_cache_page(mapping, index, NULL, NULL, gfp);
3582 }
3583 EXPORT_SYMBOL(read_cache_page_gfp);
3584 
3585 int pagecache_write_begin(struct file *file, struct address_space *mapping,
3586 				loff_t pos, unsigned len, unsigned flags,
3587 				struct page **pagep, void **fsdata)
3588 {
3589 	const struct address_space_operations *aops = mapping->a_ops;
3590 
3591 	return aops->write_begin(file, mapping, pos, len, flags,
3592 							pagep, fsdata);
3593 }
3594 EXPORT_SYMBOL(pagecache_write_begin);
3595 
3596 int pagecache_write_end(struct file *file, struct address_space *mapping,
3597 				loff_t pos, unsigned len, unsigned copied,
3598 				struct page *page, void *fsdata)
3599 {
3600 	const struct address_space_operations *aops = mapping->a_ops;
3601 
3602 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3603 }
3604 EXPORT_SYMBOL(pagecache_write_end);
3605 
3606 /*
3607  * Warn about a page cache invalidation failure during a direct I/O write.
3608  */
3609 void dio_warn_stale_pagecache(struct file *filp)
3610 {
3611 	static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3612 	char pathname[128];
3613 	char *path;
3614 
3615 	errseq_set(&filp->f_mapping->wb_err, -EIO);
3616 	if (__ratelimit(&_rs)) {
3617 		path = file_path(filp, pathname, sizeof(pathname));
3618 		if (IS_ERR(path))
3619 			path = "(unknown)";
3620 		pr_crit("Page cache invalidation failure on direct I/O.  Possible data corruption due to collision with buffered I/O!\n");
3621 		pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3622 			current->comm);
3623 	}
3624 }
3625 
3626 ssize_t
3627 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3628 {
3629 	struct file	*file = iocb->ki_filp;
3630 	struct address_space *mapping = file->f_mapping;
3631 	struct inode	*inode = mapping->host;
3632 	loff_t		pos = iocb->ki_pos;
3633 	ssize_t		written;
3634 	size_t		write_len;
3635 	pgoff_t		end;
3636 
3637 	write_len = iov_iter_count(from);
3638 	end = (pos + write_len - 1) >> PAGE_SHIFT;
3639 
3640 	if (iocb->ki_flags & IOCB_NOWAIT) {
3641 		/* If there are pages to writeback, return */
3642 		if (filemap_range_has_page(file->f_mapping, pos,
3643 					   pos + write_len - 1))
3644 			return -EAGAIN;
3645 	} else {
3646 		written = filemap_write_and_wait_range(mapping, pos,
3647 							pos + write_len - 1);
3648 		if (written)
3649 			goto out;
3650 	}
3651 
3652 	/*
3653 	 * After a write we want buffered reads to be sure to go to disk to get
3654 	 * the new data.  We invalidate clean cached page from the region we're
3655 	 * about to write.  We do this *before* the write so that we can return
3656 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
3657 	 */
3658 	written = invalidate_inode_pages2_range(mapping,
3659 					pos >> PAGE_SHIFT, end);
3660 	/*
3661 	 * If a page can not be invalidated, return 0 to fall back
3662 	 * to buffered write.
3663 	 */
3664 	if (written) {
3665 		if (written == -EBUSY)
3666 			return 0;
3667 		goto out;
3668 	}
3669 
3670 	written = mapping->a_ops->direct_IO(iocb, from);
3671 
3672 	/*
3673 	 * Finally, try again to invalidate clean pages which might have been
3674 	 * cached by non-direct readahead, or faulted in by get_user_pages()
3675 	 * if the source of the write was an mmap'ed region of the file
3676 	 * we're writing.  Either one is a pretty crazy thing to do,
3677 	 * so we don't support it 100%.  If this invalidation
3678 	 * fails, tough, the write still worked...
3679 	 *
3680 	 * Most of the time we do not need this since dio_complete() will do
3681 	 * the invalidation for us. However there are some file systems that
3682 	 * do not end up with dio_complete() being called, so let's not break
3683 	 * them by removing it completely.
3684 	 *
3685 	 * Noticeable example is a blkdev_direct_IO().
3686 	 *
3687 	 * Skip invalidation for async writes or if mapping has no pages.
3688 	 */
3689 	if (written > 0 && mapping->nrpages &&
3690 	    invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3691 		dio_warn_stale_pagecache(file);
3692 
3693 	if (written > 0) {
3694 		pos += written;
3695 		write_len -= written;
3696 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3697 			i_size_write(inode, pos);
3698 			mark_inode_dirty(inode);
3699 		}
3700 		iocb->ki_pos = pos;
3701 	}
3702 	if (written != -EIOCBQUEUED)
3703 		iov_iter_revert(from, write_len - iov_iter_count(from));
3704 out:
3705 	return written;
3706 }
3707 EXPORT_SYMBOL(generic_file_direct_write);
3708 
3709 ssize_t generic_perform_write(struct file *file,
3710 				struct iov_iter *i, loff_t pos)
3711 {
3712 	struct address_space *mapping = file->f_mapping;
3713 	const struct address_space_operations *a_ops = mapping->a_ops;
3714 	long status = 0;
3715 	ssize_t written = 0;
3716 	unsigned int flags = 0;
3717 
3718 	do {
3719 		struct page *page;
3720 		unsigned long offset;	/* Offset into pagecache page */
3721 		unsigned long bytes;	/* Bytes to write to page */
3722 		size_t copied;		/* Bytes copied from user */
3723 		void *fsdata;
3724 
3725 		offset = (pos & (PAGE_SIZE - 1));
3726 		bytes = min_t(unsigned long, PAGE_SIZE - offset,
3727 						iov_iter_count(i));
3728 
3729 again:
3730 		/*
3731 		 * Bring in the user page that we will copy from _first_.
3732 		 * Otherwise there's a nasty deadlock on copying from the
3733 		 * same page as we're writing to, without it being marked
3734 		 * up-to-date.
3735 		 */
3736 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3737 			status = -EFAULT;
3738 			break;
3739 		}
3740 
3741 		if (fatal_signal_pending(current)) {
3742 			status = -EINTR;
3743 			break;
3744 		}
3745 
3746 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3747 						&page, &fsdata);
3748 		if (unlikely(status < 0))
3749 			break;
3750 
3751 		if (mapping_writably_mapped(mapping))
3752 			flush_dcache_page(page);
3753 
3754 		copied = copy_page_from_iter_atomic(page, offset, bytes, i);
3755 		flush_dcache_page(page);
3756 
3757 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
3758 						page, fsdata);
3759 		if (unlikely(status != copied)) {
3760 			iov_iter_revert(i, copied - max(status, 0L));
3761 			if (unlikely(status < 0))
3762 				break;
3763 		}
3764 		cond_resched();
3765 
3766 		if (unlikely(status == 0)) {
3767 			/*
3768 			 * A short copy made ->write_end() reject the
3769 			 * thing entirely.  Might be memory poisoning
3770 			 * halfway through, might be a race with munmap,
3771 			 * might be severe memory pressure.
3772 			 */
3773 			if (copied)
3774 				bytes = copied;
3775 			goto again;
3776 		}
3777 		pos += status;
3778 		written += status;
3779 
3780 		balance_dirty_pages_ratelimited(mapping);
3781 	} while (iov_iter_count(i));
3782 
3783 	return written ? written : status;
3784 }
3785 EXPORT_SYMBOL(generic_perform_write);
3786 
3787 /**
3788  * __generic_file_write_iter - write data to a file
3789  * @iocb:	IO state structure (file, offset, etc.)
3790  * @from:	iov_iter with data to write
3791  *
3792  * This function does all the work needed for actually writing data to a
3793  * file. It does all basic checks, removes SUID from the file, updates
3794  * modification times and calls proper subroutines depending on whether we
3795  * do direct IO or a standard buffered write.
3796  *
3797  * It expects i_rwsem to be grabbed unless we work on a block device or similar
3798  * object which does not need locking at all.
3799  *
3800  * This function does *not* take care of syncing data in case of O_SYNC write.
3801  * A caller has to handle it. This is mainly due to the fact that we want to
3802  * avoid syncing under i_rwsem.
3803  *
3804  * Return:
3805  * * number of bytes written, even for truncated writes
3806  * * negative error code if no data has been written at all
3807  */
3808 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3809 {
3810 	struct file *file = iocb->ki_filp;
3811 	struct address_space *mapping = file->f_mapping;
3812 	struct inode 	*inode = mapping->host;
3813 	ssize_t		written = 0;
3814 	ssize_t		err;
3815 	ssize_t		status;
3816 
3817 	/* We can write back this queue in page reclaim */
3818 	current->backing_dev_info = inode_to_bdi(inode);
3819 	err = file_remove_privs(file);
3820 	if (err)
3821 		goto out;
3822 
3823 	err = file_update_time(file);
3824 	if (err)
3825 		goto out;
3826 
3827 	if (iocb->ki_flags & IOCB_DIRECT) {
3828 		loff_t pos, endbyte;
3829 
3830 		written = generic_file_direct_write(iocb, from);
3831 		/*
3832 		 * If the write stopped short of completing, fall back to
3833 		 * buffered writes.  Some filesystems do this for writes to
3834 		 * holes, for example.  For DAX files, a buffered write will
3835 		 * not succeed (even if it did, DAX does not handle dirty
3836 		 * page-cache pages correctly).
3837 		 */
3838 		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3839 			goto out;
3840 
3841 		status = generic_perform_write(file, from, pos = iocb->ki_pos);
3842 		/*
3843 		 * If generic_perform_write() returned a synchronous error
3844 		 * then we want to return the number of bytes which were
3845 		 * direct-written, or the error code if that was zero.  Note
3846 		 * that this differs from normal direct-io semantics, which
3847 		 * will return -EFOO even if some bytes were written.
3848 		 */
3849 		if (unlikely(status < 0)) {
3850 			err = status;
3851 			goto out;
3852 		}
3853 		/*
3854 		 * We need to ensure that the page cache pages are written to
3855 		 * disk and invalidated to preserve the expected O_DIRECT
3856 		 * semantics.
3857 		 */
3858 		endbyte = pos + status - 1;
3859 		err = filemap_write_and_wait_range(mapping, pos, endbyte);
3860 		if (err == 0) {
3861 			iocb->ki_pos = endbyte + 1;
3862 			written += status;
3863 			invalidate_mapping_pages(mapping,
3864 						 pos >> PAGE_SHIFT,
3865 						 endbyte >> PAGE_SHIFT);
3866 		} else {
3867 			/*
3868 			 * We don't know how much we wrote, so just return
3869 			 * the number of bytes which were direct-written
3870 			 */
3871 		}
3872 	} else {
3873 		written = generic_perform_write(file, from, iocb->ki_pos);
3874 		if (likely(written > 0))
3875 			iocb->ki_pos += written;
3876 	}
3877 out:
3878 	current->backing_dev_info = NULL;
3879 	return written ? written : err;
3880 }
3881 EXPORT_SYMBOL(__generic_file_write_iter);
3882 
3883 /**
3884  * generic_file_write_iter - write data to a file
3885  * @iocb:	IO state structure
3886  * @from:	iov_iter with data to write
3887  *
3888  * This is a wrapper around __generic_file_write_iter() to be used by most
3889  * filesystems. It takes care of syncing the file in case of O_SYNC file
3890  * and acquires i_rwsem as needed.
3891  * Return:
3892  * * negative error code if no data has been written at all of
3893  *   vfs_fsync_range() failed for a synchronous write
3894  * * number of bytes written, even for truncated writes
3895  */
3896 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3897 {
3898 	struct file *file = iocb->ki_filp;
3899 	struct inode *inode = file->f_mapping->host;
3900 	ssize_t ret;
3901 
3902 	inode_lock(inode);
3903 	ret = generic_write_checks(iocb, from);
3904 	if (ret > 0)
3905 		ret = __generic_file_write_iter(iocb, from);
3906 	inode_unlock(inode);
3907 
3908 	if (ret > 0)
3909 		ret = generic_write_sync(iocb, ret);
3910 	return ret;
3911 }
3912 EXPORT_SYMBOL(generic_file_write_iter);
3913 
3914 /**
3915  * try_to_release_page() - release old fs-specific metadata on a page
3916  *
3917  * @page: the page which the kernel is trying to free
3918  * @gfp_mask: memory allocation flags (and I/O mode)
3919  *
3920  * The address_space is to try to release any data against the page
3921  * (presumably at page->private).
3922  *
3923  * This may also be called if PG_fscache is set on a page, indicating that the
3924  * page is known to the local caching routines.
3925  *
3926  * The @gfp_mask argument specifies whether I/O may be performed to release
3927  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3928  *
3929  * Return: %1 if the release was successful, otherwise return zero.
3930  */
3931 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3932 {
3933 	struct address_space * const mapping = page->mapping;
3934 
3935 	BUG_ON(!PageLocked(page));
3936 	if (PageWriteback(page))
3937 		return 0;
3938 
3939 	if (mapping && mapping->a_ops->releasepage)
3940 		return mapping->a_ops->releasepage(page, gfp_mask);
3941 	return try_to_free_buffers(page);
3942 }
3943 
3944 EXPORT_SYMBOL(try_to_release_page);
3945