xref: /openbmc/linux/mm/filemap.c (revision 81d67439)
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/module.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include <linux/mm_inline.h> /* for page_is_file_cache() */
37 #include <linux/cleancache.h>
38 #include "internal.h"
39 
40 /*
41  * FIXME: remove all knowledge of the buffer layer from the core VM
42  */
43 #include <linux/buffer_head.h> /* for try_to_free_buffers */
44 
45 #include <asm/mman.h>
46 
47 /*
48  * Shared mappings implemented 30.11.1994. It's not fully working yet,
49  * though.
50  *
51  * Shared mappings now work. 15.8.1995  Bruno.
52  *
53  * finished 'unifying' the page and buffer cache and SMP-threaded the
54  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
55  *
56  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
57  */
58 
59 /*
60  * Lock ordering:
61  *
62  *  ->i_mmap_mutex		(truncate_pagecache)
63  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
64  *      ->swap_lock		(exclusive_swap_page, others)
65  *        ->mapping->tree_lock
66  *
67  *  ->i_mutex
68  *    ->i_mmap_mutex		(truncate->unmap_mapping_range)
69  *
70  *  ->mmap_sem
71  *    ->i_mmap_mutex
72  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
73  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
74  *
75  *  ->mmap_sem
76  *    ->lock_page		(access_process_vm)
77  *
78  *  ->i_mutex			(generic_file_buffered_write)
79  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
80  *
81  *  inode_wb_list_lock
82  *    sb_lock			(fs/fs-writeback.c)
83  *    ->mapping->tree_lock	(__sync_single_inode)
84  *
85  *  ->i_mmap_mutex
86  *    ->anon_vma.lock		(vma_adjust)
87  *
88  *  ->anon_vma.lock
89  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
90  *
91  *  ->page_table_lock or pte_lock
92  *    ->swap_lock		(try_to_unmap_one)
93  *    ->private_lock		(try_to_unmap_one)
94  *    ->tree_lock		(try_to_unmap_one)
95  *    ->zone.lru_lock		(follow_page->mark_page_accessed)
96  *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
97  *    ->private_lock		(page_remove_rmap->set_page_dirty)
98  *    ->tree_lock		(page_remove_rmap->set_page_dirty)
99  *    inode_wb_list_lock	(page_remove_rmap->set_page_dirty)
100  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
101  *    inode_wb_list_lock	(zap_pte_range->set_page_dirty)
102  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
103  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
104  *
105  *  (code doesn't rely on that order, so you could switch it around)
106  *  ->tasklist_lock             (memory_failure, collect_procs_ao)
107  *    ->i_mmap_mutex
108  */
109 
110 /*
111  * Delete a page from the page cache and free it. Caller has to make
112  * sure the page is locked and that nobody else uses it - or that usage
113  * is safe.  The caller must hold the mapping's tree_lock.
114  */
115 void __delete_from_page_cache(struct page *page)
116 {
117 	struct address_space *mapping = page->mapping;
118 
119 	/*
120 	 * if we're uptodate, flush out into the cleancache, otherwise
121 	 * invalidate any existing cleancache entries.  We can't leave
122 	 * stale data around in the cleancache once our page is gone
123 	 */
124 	if (PageUptodate(page) && PageMappedToDisk(page))
125 		cleancache_put_page(page);
126 	else
127 		cleancache_flush_page(mapping, page);
128 
129 	radix_tree_delete(&mapping->page_tree, page->index);
130 	page->mapping = NULL;
131 	mapping->nrpages--;
132 	__dec_zone_page_state(page, NR_FILE_PAGES);
133 	if (PageSwapBacked(page))
134 		__dec_zone_page_state(page, NR_SHMEM);
135 	BUG_ON(page_mapped(page));
136 
137 	/*
138 	 * Some filesystems seem to re-dirty the page even after
139 	 * the VM has canceled the dirty bit (eg ext3 journaling).
140 	 *
141 	 * Fix it up by doing a final dirty accounting check after
142 	 * having removed the page entirely.
143 	 */
144 	if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
145 		dec_zone_page_state(page, NR_FILE_DIRTY);
146 		dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
147 	}
148 }
149 
150 /**
151  * delete_from_page_cache - delete page from page cache
152  * @page: the page which the kernel is trying to remove from page cache
153  *
154  * This must be called only on pages that have been verified to be in the page
155  * cache and locked.  It will never put the page into the free list, the caller
156  * has a reference on the page.
157  */
158 void delete_from_page_cache(struct page *page)
159 {
160 	struct address_space *mapping = page->mapping;
161 	void (*freepage)(struct page *);
162 
163 	BUG_ON(!PageLocked(page));
164 
165 	freepage = mapping->a_ops->freepage;
166 	spin_lock_irq(&mapping->tree_lock);
167 	__delete_from_page_cache(page);
168 	spin_unlock_irq(&mapping->tree_lock);
169 	mem_cgroup_uncharge_cache_page(page);
170 
171 	if (freepage)
172 		freepage(page);
173 	page_cache_release(page);
174 }
175 EXPORT_SYMBOL(delete_from_page_cache);
176 
177 static int sleep_on_page(void *word)
178 {
179 	io_schedule();
180 	return 0;
181 }
182 
183 static int sleep_on_page_killable(void *word)
184 {
185 	sleep_on_page(word);
186 	return fatal_signal_pending(current) ? -EINTR : 0;
187 }
188 
189 /**
190  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
191  * @mapping:	address space structure to write
192  * @start:	offset in bytes where the range starts
193  * @end:	offset in bytes where the range ends (inclusive)
194  * @sync_mode:	enable synchronous operation
195  *
196  * Start writeback against all of a mapping's dirty pages that lie
197  * within the byte offsets <start, end> inclusive.
198  *
199  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
200  * opposed to a regular memory cleansing writeback.  The difference between
201  * these two operations is that if a dirty page/buffer is encountered, it must
202  * be waited upon, and not just skipped over.
203  */
204 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
205 				loff_t end, int sync_mode)
206 {
207 	int ret;
208 	struct writeback_control wbc = {
209 		.sync_mode = sync_mode,
210 		.nr_to_write = LONG_MAX,
211 		.range_start = start,
212 		.range_end = end,
213 	};
214 
215 	if (!mapping_cap_writeback_dirty(mapping))
216 		return 0;
217 
218 	ret = do_writepages(mapping, &wbc);
219 	return ret;
220 }
221 
222 static inline int __filemap_fdatawrite(struct address_space *mapping,
223 	int sync_mode)
224 {
225 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
226 }
227 
228 int filemap_fdatawrite(struct address_space *mapping)
229 {
230 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
231 }
232 EXPORT_SYMBOL(filemap_fdatawrite);
233 
234 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
235 				loff_t end)
236 {
237 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
238 }
239 EXPORT_SYMBOL(filemap_fdatawrite_range);
240 
241 /**
242  * filemap_flush - mostly a non-blocking flush
243  * @mapping:	target address_space
244  *
245  * This is a mostly non-blocking flush.  Not suitable for data-integrity
246  * purposes - I/O may not be started against all dirty pages.
247  */
248 int filemap_flush(struct address_space *mapping)
249 {
250 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
251 }
252 EXPORT_SYMBOL(filemap_flush);
253 
254 /**
255  * filemap_fdatawait_range - wait for writeback to complete
256  * @mapping:		address space structure to wait for
257  * @start_byte:		offset in bytes where the range starts
258  * @end_byte:		offset in bytes where the range ends (inclusive)
259  *
260  * Walk the list of under-writeback pages of the given address space
261  * in the given range and wait for all of them.
262  */
263 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
264 			    loff_t end_byte)
265 {
266 	pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
267 	pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
268 	struct pagevec pvec;
269 	int nr_pages;
270 	int ret = 0;
271 
272 	if (end_byte < start_byte)
273 		return 0;
274 
275 	pagevec_init(&pvec, 0);
276 	while ((index <= end) &&
277 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
278 			PAGECACHE_TAG_WRITEBACK,
279 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
280 		unsigned i;
281 
282 		for (i = 0; i < nr_pages; i++) {
283 			struct page *page = pvec.pages[i];
284 
285 			/* until radix tree lookup accepts end_index */
286 			if (page->index > end)
287 				continue;
288 
289 			wait_on_page_writeback(page);
290 			if (TestClearPageError(page))
291 				ret = -EIO;
292 		}
293 		pagevec_release(&pvec);
294 		cond_resched();
295 	}
296 
297 	/* Check for outstanding write errors */
298 	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
299 		ret = -ENOSPC;
300 	if (test_and_clear_bit(AS_EIO, &mapping->flags))
301 		ret = -EIO;
302 
303 	return ret;
304 }
305 EXPORT_SYMBOL(filemap_fdatawait_range);
306 
307 /**
308  * filemap_fdatawait - wait for all under-writeback pages to complete
309  * @mapping: address space structure to wait for
310  *
311  * Walk the list of under-writeback pages of the given address space
312  * and wait for all of them.
313  */
314 int filemap_fdatawait(struct address_space *mapping)
315 {
316 	loff_t i_size = i_size_read(mapping->host);
317 
318 	if (i_size == 0)
319 		return 0;
320 
321 	return filemap_fdatawait_range(mapping, 0, i_size - 1);
322 }
323 EXPORT_SYMBOL(filemap_fdatawait);
324 
325 int filemap_write_and_wait(struct address_space *mapping)
326 {
327 	int err = 0;
328 
329 	if (mapping->nrpages) {
330 		err = filemap_fdatawrite(mapping);
331 		/*
332 		 * Even if the above returned error, the pages may be
333 		 * written partially (e.g. -ENOSPC), so we wait for it.
334 		 * But the -EIO is special case, it may indicate the worst
335 		 * thing (e.g. bug) happened, so we avoid waiting for it.
336 		 */
337 		if (err != -EIO) {
338 			int err2 = filemap_fdatawait(mapping);
339 			if (!err)
340 				err = err2;
341 		}
342 	}
343 	return err;
344 }
345 EXPORT_SYMBOL(filemap_write_and_wait);
346 
347 /**
348  * filemap_write_and_wait_range - write out & wait on a file range
349  * @mapping:	the address_space for the pages
350  * @lstart:	offset in bytes where the range starts
351  * @lend:	offset in bytes where the range ends (inclusive)
352  *
353  * Write out and wait upon file offsets lstart->lend, inclusive.
354  *
355  * Note that `lend' is inclusive (describes the last byte to be written) so
356  * that this function can be used to write to the very end-of-file (end = -1).
357  */
358 int filemap_write_and_wait_range(struct address_space *mapping,
359 				 loff_t lstart, loff_t lend)
360 {
361 	int err = 0;
362 
363 	if (mapping->nrpages) {
364 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
365 						 WB_SYNC_ALL);
366 		/* See comment of filemap_write_and_wait() */
367 		if (err != -EIO) {
368 			int err2 = filemap_fdatawait_range(mapping,
369 						lstart, lend);
370 			if (!err)
371 				err = err2;
372 		}
373 	}
374 	return err;
375 }
376 EXPORT_SYMBOL(filemap_write_and_wait_range);
377 
378 /**
379  * replace_page_cache_page - replace a pagecache page with a new one
380  * @old:	page to be replaced
381  * @new:	page to replace with
382  * @gfp_mask:	allocation mode
383  *
384  * This function replaces a page in the pagecache with a new one.  On
385  * success it acquires the pagecache reference for the new page and
386  * drops it for the old page.  Both the old and new pages must be
387  * locked.  This function does not add the new page to the LRU, the
388  * caller must do that.
389  *
390  * The remove + add is atomic.  The only way this function can fail is
391  * memory allocation failure.
392  */
393 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
394 {
395 	int error;
396 	struct mem_cgroup *memcg = NULL;
397 
398 	VM_BUG_ON(!PageLocked(old));
399 	VM_BUG_ON(!PageLocked(new));
400 	VM_BUG_ON(new->mapping);
401 
402 	/*
403 	 * This is not page migration, but prepare_migration and
404 	 * end_migration does enough work for charge replacement.
405 	 *
406 	 * In the longer term we probably want a specialized function
407 	 * for moving the charge from old to new in a more efficient
408 	 * manner.
409 	 */
410 	error = mem_cgroup_prepare_migration(old, new, &memcg, gfp_mask);
411 	if (error)
412 		return error;
413 
414 	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
415 	if (!error) {
416 		struct address_space *mapping = old->mapping;
417 		void (*freepage)(struct page *);
418 
419 		pgoff_t offset = old->index;
420 		freepage = mapping->a_ops->freepage;
421 
422 		page_cache_get(new);
423 		new->mapping = mapping;
424 		new->index = offset;
425 
426 		spin_lock_irq(&mapping->tree_lock);
427 		__delete_from_page_cache(old);
428 		error = radix_tree_insert(&mapping->page_tree, offset, new);
429 		BUG_ON(error);
430 		mapping->nrpages++;
431 		__inc_zone_page_state(new, NR_FILE_PAGES);
432 		if (PageSwapBacked(new))
433 			__inc_zone_page_state(new, NR_SHMEM);
434 		spin_unlock_irq(&mapping->tree_lock);
435 		radix_tree_preload_end();
436 		if (freepage)
437 			freepage(old);
438 		page_cache_release(old);
439 		mem_cgroup_end_migration(memcg, old, new, true);
440 	} else {
441 		mem_cgroup_end_migration(memcg, old, new, false);
442 	}
443 
444 	return error;
445 }
446 EXPORT_SYMBOL_GPL(replace_page_cache_page);
447 
448 /**
449  * add_to_page_cache_locked - add a locked page to the pagecache
450  * @page:	page to add
451  * @mapping:	the page's address_space
452  * @offset:	page index
453  * @gfp_mask:	page allocation mode
454  *
455  * This function is used to add a page to the pagecache. It must be locked.
456  * This function does not add the page to the LRU.  The caller must do that.
457  */
458 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
459 		pgoff_t offset, gfp_t gfp_mask)
460 {
461 	int error;
462 
463 	VM_BUG_ON(!PageLocked(page));
464 
465 	error = mem_cgroup_cache_charge(page, current->mm,
466 					gfp_mask & GFP_RECLAIM_MASK);
467 	if (error)
468 		goto out;
469 
470 	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
471 	if (error == 0) {
472 		page_cache_get(page);
473 		page->mapping = mapping;
474 		page->index = offset;
475 
476 		spin_lock_irq(&mapping->tree_lock);
477 		error = radix_tree_insert(&mapping->page_tree, offset, page);
478 		if (likely(!error)) {
479 			mapping->nrpages++;
480 			__inc_zone_page_state(page, NR_FILE_PAGES);
481 			if (PageSwapBacked(page))
482 				__inc_zone_page_state(page, NR_SHMEM);
483 			spin_unlock_irq(&mapping->tree_lock);
484 		} else {
485 			page->mapping = NULL;
486 			spin_unlock_irq(&mapping->tree_lock);
487 			mem_cgroup_uncharge_cache_page(page);
488 			page_cache_release(page);
489 		}
490 		radix_tree_preload_end();
491 	} else
492 		mem_cgroup_uncharge_cache_page(page);
493 out:
494 	return error;
495 }
496 EXPORT_SYMBOL(add_to_page_cache_locked);
497 
498 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
499 				pgoff_t offset, gfp_t gfp_mask)
500 {
501 	int ret;
502 
503 	/*
504 	 * Splice_read and readahead add shmem/tmpfs pages into the page cache
505 	 * before shmem_readpage has a chance to mark them as SwapBacked: they
506 	 * need to go on the anon lru below, and mem_cgroup_cache_charge
507 	 * (called in add_to_page_cache) needs to know where they're going too.
508 	 */
509 	if (mapping_cap_swap_backed(mapping))
510 		SetPageSwapBacked(page);
511 
512 	ret = add_to_page_cache(page, mapping, offset, gfp_mask);
513 	if (ret == 0) {
514 		if (page_is_file_cache(page))
515 			lru_cache_add_file(page);
516 		else
517 			lru_cache_add_anon(page);
518 	}
519 	return ret;
520 }
521 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
522 
523 #ifdef CONFIG_NUMA
524 struct page *__page_cache_alloc(gfp_t gfp)
525 {
526 	int n;
527 	struct page *page;
528 
529 	if (cpuset_do_page_mem_spread()) {
530 		get_mems_allowed();
531 		n = cpuset_mem_spread_node();
532 		page = alloc_pages_exact_node(n, gfp, 0);
533 		put_mems_allowed();
534 		return page;
535 	}
536 	return alloc_pages(gfp, 0);
537 }
538 EXPORT_SYMBOL(__page_cache_alloc);
539 #endif
540 
541 /*
542  * In order to wait for pages to become available there must be
543  * waitqueues associated with pages. By using a hash table of
544  * waitqueues where the bucket discipline is to maintain all
545  * waiters on the same queue and wake all when any of the pages
546  * become available, and for the woken contexts to check to be
547  * sure the appropriate page became available, this saves space
548  * at a cost of "thundering herd" phenomena during rare hash
549  * collisions.
550  */
551 static wait_queue_head_t *page_waitqueue(struct page *page)
552 {
553 	const struct zone *zone = page_zone(page);
554 
555 	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
556 }
557 
558 static inline void wake_up_page(struct page *page, int bit)
559 {
560 	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
561 }
562 
563 void wait_on_page_bit(struct page *page, int bit_nr)
564 {
565 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
566 
567 	if (test_bit(bit_nr, &page->flags))
568 		__wait_on_bit(page_waitqueue(page), &wait, sleep_on_page,
569 							TASK_UNINTERRUPTIBLE);
570 }
571 EXPORT_SYMBOL(wait_on_page_bit);
572 
573 int wait_on_page_bit_killable(struct page *page, int bit_nr)
574 {
575 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
576 
577 	if (!test_bit(bit_nr, &page->flags))
578 		return 0;
579 
580 	return __wait_on_bit(page_waitqueue(page), &wait,
581 			     sleep_on_page_killable, TASK_KILLABLE);
582 }
583 
584 /**
585  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
586  * @page: Page defining the wait queue of interest
587  * @waiter: Waiter to add to the queue
588  *
589  * Add an arbitrary @waiter to the wait queue for the nominated @page.
590  */
591 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
592 {
593 	wait_queue_head_t *q = page_waitqueue(page);
594 	unsigned long flags;
595 
596 	spin_lock_irqsave(&q->lock, flags);
597 	__add_wait_queue(q, waiter);
598 	spin_unlock_irqrestore(&q->lock, flags);
599 }
600 EXPORT_SYMBOL_GPL(add_page_wait_queue);
601 
602 /**
603  * unlock_page - unlock a locked page
604  * @page: the page
605  *
606  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
607  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
608  * mechananism between PageLocked pages and PageWriteback pages is shared.
609  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
610  *
611  * The mb is necessary to enforce ordering between the clear_bit and the read
612  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
613  */
614 void unlock_page(struct page *page)
615 {
616 	VM_BUG_ON(!PageLocked(page));
617 	clear_bit_unlock(PG_locked, &page->flags);
618 	smp_mb__after_clear_bit();
619 	wake_up_page(page, PG_locked);
620 }
621 EXPORT_SYMBOL(unlock_page);
622 
623 /**
624  * end_page_writeback - end writeback against a page
625  * @page: the page
626  */
627 void end_page_writeback(struct page *page)
628 {
629 	if (TestClearPageReclaim(page))
630 		rotate_reclaimable_page(page);
631 
632 	if (!test_clear_page_writeback(page))
633 		BUG();
634 
635 	smp_mb__after_clear_bit();
636 	wake_up_page(page, PG_writeback);
637 }
638 EXPORT_SYMBOL(end_page_writeback);
639 
640 /**
641  * __lock_page - get a lock on the page, assuming we need to sleep to get it
642  * @page: the page to lock
643  */
644 void __lock_page(struct page *page)
645 {
646 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
647 
648 	__wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page,
649 							TASK_UNINTERRUPTIBLE);
650 }
651 EXPORT_SYMBOL(__lock_page);
652 
653 int __lock_page_killable(struct page *page)
654 {
655 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
656 
657 	return __wait_on_bit_lock(page_waitqueue(page), &wait,
658 					sleep_on_page_killable, TASK_KILLABLE);
659 }
660 EXPORT_SYMBOL_GPL(__lock_page_killable);
661 
662 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
663 			 unsigned int flags)
664 {
665 	if (flags & FAULT_FLAG_ALLOW_RETRY) {
666 		/*
667 		 * CAUTION! In this case, mmap_sem is not released
668 		 * even though return 0.
669 		 */
670 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
671 			return 0;
672 
673 		up_read(&mm->mmap_sem);
674 		if (flags & FAULT_FLAG_KILLABLE)
675 			wait_on_page_locked_killable(page);
676 		else
677 			wait_on_page_locked(page);
678 		return 0;
679 	} else {
680 		if (flags & FAULT_FLAG_KILLABLE) {
681 			int ret;
682 
683 			ret = __lock_page_killable(page);
684 			if (ret) {
685 				up_read(&mm->mmap_sem);
686 				return 0;
687 			}
688 		} else
689 			__lock_page(page);
690 		return 1;
691 	}
692 }
693 
694 /**
695  * find_get_page - find and get a page reference
696  * @mapping: the address_space to search
697  * @offset: the page index
698  *
699  * Is there a pagecache struct page at the given (mapping, offset) tuple?
700  * If yes, increment its refcount and return it; if no, return NULL.
701  */
702 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
703 {
704 	void **pagep;
705 	struct page *page;
706 
707 	rcu_read_lock();
708 repeat:
709 	page = NULL;
710 	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
711 	if (pagep) {
712 		page = radix_tree_deref_slot(pagep);
713 		if (unlikely(!page))
714 			goto out;
715 		if (radix_tree_deref_retry(page))
716 			goto repeat;
717 
718 		if (!page_cache_get_speculative(page))
719 			goto repeat;
720 
721 		/*
722 		 * Has the page moved?
723 		 * This is part of the lockless pagecache protocol. See
724 		 * include/linux/pagemap.h for details.
725 		 */
726 		if (unlikely(page != *pagep)) {
727 			page_cache_release(page);
728 			goto repeat;
729 		}
730 	}
731 out:
732 	rcu_read_unlock();
733 
734 	return page;
735 }
736 EXPORT_SYMBOL(find_get_page);
737 
738 /**
739  * find_lock_page - locate, pin and lock a pagecache page
740  * @mapping: the address_space to search
741  * @offset: the page index
742  *
743  * Locates the desired pagecache page, locks it, increments its reference
744  * count and returns its address.
745  *
746  * Returns zero if the page was not present. find_lock_page() may sleep.
747  */
748 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
749 {
750 	struct page *page;
751 
752 repeat:
753 	page = find_get_page(mapping, offset);
754 	if (page) {
755 		lock_page(page);
756 		/* Has the page been truncated? */
757 		if (unlikely(page->mapping != mapping)) {
758 			unlock_page(page);
759 			page_cache_release(page);
760 			goto repeat;
761 		}
762 		VM_BUG_ON(page->index != offset);
763 	}
764 	return page;
765 }
766 EXPORT_SYMBOL(find_lock_page);
767 
768 /**
769  * find_or_create_page - locate or add a pagecache page
770  * @mapping: the page's address_space
771  * @index: the page's index into the mapping
772  * @gfp_mask: page allocation mode
773  *
774  * Locates a page in the pagecache.  If the page is not present, a new page
775  * is allocated using @gfp_mask and is added to the pagecache and to the VM's
776  * LRU list.  The returned page is locked and has its reference count
777  * incremented.
778  *
779  * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
780  * allocation!
781  *
782  * find_or_create_page() returns the desired page's address, or zero on
783  * memory exhaustion.
784  */
785 struct page *find_or_create_page(struct address_space *mapping,
786 		pgoff_t index, gfp_t gfp_mask)
787 {
788 	struct page *page;
789 	int err;
790 repeat:
791 	page = find_lock_page(mapping, index);
792 	if (!page) {
793 		page = __page_cache_alloc(gfp_mask);
794 		if (!page)
795 			return NULL;
796 		/*
797 		 * We want a regular kernel memory (not highmem or DMA etc)
798 		 * allocation for the radix tree nodes, but we need to honour
799 		 * the context-specific requirements the caller has asked for.
800 		 * GFP_RECLAIM_MASK collects those requirements.
801 		 */
802 		err = add_to_page_cache_lru(page, mapping, index,
803 			(gfp_mask & GFP_RECLAIM_MASK));
804 		if (unlikely(err)) {
805 			page_cache_release(page);
806 			page = NULL;
807 			if (err == -EEXIST)
808 				goto repeat;
809 		}
810 	}
811 	return page;
812 }
813 EXPORT_SYMBOL(find_or_create_page);
814 
815 /**
816  * find_get_pages - gang pagecache lookup
817  * @mapping:	The address_space to search
818  * @start:	The starting page index
819  * @nr_pages:	The maximum number of pages
820  * @pages:	Where the resulting pages are placed
821  *
822  * find_get_pages() will search for and return a group of up to
823  * @nr_pages pages in the mapping.  The pages are placed at @pages.
824  * find_get_pages() takes a reference against the returned pages.
825  *
826  * The search returns a group of mapping-contiguous pages with ascending
827  * indexes.  There may be holes in the indices due to not-present pages.
828  *
829  * find_get_pages() returns the number of pages which were found.
830  */
831 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
832 			    unsigned int nr_pages, struct page **pages)
833 {
834 	unsigned int i;
835 	unsigned int ret;
836 	unsigned int nr_found;
837 
838 	rcu_read_lock();
839 restart:
840 	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
841 				(void ***)pages, start, nr_pages);
842 	ret = 0;
843 	for (i = 0; i < nr_found; i++) {
844 		struct page *page;
845 repeat:
846 		page = radix_tree_deref_slot((void **)pages[i]);
847 		if (unlikely(!page))
848 			continue;
849 
850 		/*
851 		 * This can only trigger when the entry at index 0 moves out
852 		 * of or back to the root: none yet gotten, safe to restart.
853 		 */
854 		if (radix_tree_deref_retry(page)) {
855 			WARN_ON(start | i);
856 			goto restart;
857 		}
858 
859 		if (!page_cache_get_speculative(page))
860 			goto repeat;
861 
862 		/* Has the page moved? */
863 		if (unlikely(page != *((void **)pages[i]))) {
864 			page_cache_release(page);
865 			goto repeat;
866 		}
867 
868 		pages[ret] = page;
869 		ret++;
870 	}
871 
872 	/*
873 	 * If all entries were removed before we could secure them,
874 	 * try again, because callers stop trying once 0 is returned.
875 	 */
876 	if (unlikely(!ret && nr_found))
877 		goto restart;
878 	rcu_read_unlock();
879 	return ret;
880 }
881 
882 /**
883  * find_get_pages_contig - gang contiguous pagecache lookup
884  * @mapping:	The address_space to search
885  * @index:	The starting page index
886  * @nr_pages:	The maximum number of pages
887  * @pages:	Where the resulting pages are placed
888  *
889  * find_get_pages_contig() works exactly like find_get_pages(), except
890  * that the returned number of pages are guaranteed to be contiguous.
891  *
892  * find_get_pages_contig() returns the number of pages which were found.
893  */
894 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
895 			       unsigned int nr_pages, struct page **pages)
896 {
897 	unsigned int i;
898 	unsigned int ret;
899 	unsigned int nr_found;
900 
901 	rcu_read_lock();
902 restart:
903 	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
904 				(void ***)pages, index, nr_pages);
905 	ret = 0;
906 	for (i = 0; i < nr_found; i++) {
907 		struct page *page;
908 repeat:
909 		page = radix_tree_deref_slot((void **)pages[i]);
910 		if (unlikely(!page))
911 			continue;
912 
913 		/*
914 		 * This can only trigger when the entry at index 0 moves out
915 		 * of or back to the root: none yet gotten, safe to restart.
916 		 */
917 		if (radix_tree_deref_retry(page))
918 			goto restart;
919 
920 		if (!page_cache_get_speculative(page))
921 			goto repeat;
922 
923 		/* Has the page moved? */
924 		if (unlikely(page != *((void **)pages[i]))) {
925 			page_cache_release(page);
926 			goto repeat;
927 		}
928 
929 		/*
930 		 * must check mapping and index after taking the ref.
931 		 * otherwise we can get both false positives and false
932 		 * negatives, which is just confusing to the caller.
933 		 */
934 		if (page->mapping == NULL || page->index != index) {
935 			page_cache_release(page);
936 			break;
937 		}
938 
939 		pages[ret] = page;
940 		ret++;
941 		index++;
942 	}
943 	rcu_read_unlock();
944 	return ret;
945 }
946 EXPORT_SYMBOL(find_get_pages_contig);
947 
948 /**
949  * find_get_pages_tag - find and return pages that match @tag
950  * @mapping:	the address_space to search
951  * @index:	the starting page index
952  * @tag:	the tag index
953  * @nr_pages:	the maximum number of pages
954  * @pages:	where the resulting pages are placed
955  *
956  * Like find_get_pages, except we only return pages which are tagged with
957  * @tag.   We update @index to index the next page for the traversal.
958  */
959 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
960 			int tag, unsigned int nr_pages, struct page **pages)
961 {
962 	unsigned int i;
963 	unsigned int ret;
964 	unsigned int nr_found;
965 
966 	rcu_read_lock();
967 restart:
968 	nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
969 				(void ***)pages, *index, nr_pages, tag);
970 	ret = 0;
971 	for (i = 0; i < nr_found; i++) {
972 		struct page *page;
973 repeat:
974 		page = radix_tree_deref_slot((void **)pages[i]);
975 		if (unlikely(!page))
976 			continue;
977 
978 		/*
979 		 * This can only trigger when the entry at index 0 moves out
980 		 * of or back to the root: none yet gotten, safe to restart.
981 		 */
982 		if (radix_tree_deref_retry(page))
983 			goto restart;
984 
985 		if (!page_cache_get_speculative(page))
986 			goto repeat;
987 
988 		/* Has the page moved? */
989 		if (unlikely(page != *((void **)pages[i]))) {
990 			page_cache_release(page);
991 			goto repeat;
992 		}
993 
994 		pages[ret] = page;
995 		ret++;
996 	}
997 
998 	/*
999 	 * If all entries were removed before we could secure them,
1000 	 * try again, because callers stop trying once 0 is returned.
1001 	 */
1002 	if (unlikely(!ret && nr_found))
1003 		goto restart;
1004 	rcu_read_unlock();
1005 
1006 	if (ret)
1007 		*index = pages[ret - 1]->index + 1;
1008 
1009 	return ret;
1010 }
1011 EXPORT_SYMBOL(find_get_pages_tag);
1012 
1013 /**
1014  * grab_cache_page_nowait - returns locked page at given index in given cache
1015  * @mapping: target address_space
1016  * @index: the page index
1017  *
1018  * Same as grab_cache_page(), but do not wait if the page is unavailable.
1019  * This is intended for speculative data generators, where the data can
1020  * be regenerated if the page couldn't be grabbed.  This routine should
1021  * be safe to call while holding the lock for another page.
1022  *
1023  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
1024  * and deadlock against the caller's locked page.
1025  */
1026 struct page *
1027 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
1028 {
1029 	struct page *page = find_get_page(mapping, index);
1030 
1031 	if (page) {
1032 		if (trylock_page(page))
1033 			return page;
1034 		page_cache_release(page);
1035 		return NULL;
1036 	}
1037 	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
1038 	if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
1039 		page_cache_release(page);
1040 		page = NULL;
1041 	}
1042 	return page;
1043 }
1044 EXPORT_SYMBOL(grab_cache_page_nowait);
1045 
1046 /*
1047  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1048  * a _large_ part of the i/o request. Imagine the worst scenario:
1049  *
1050  *      ---R__________________________________________B__________
1051  *         ^ reading here                             ^ bad block(assume 4k)
1052  *
1053  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1054  * => failing the whole request => read(R) => read(R+1) =>
1055  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1056  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1057  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1058  *
1059  * It is going insane. Fix it by quickly scaling down the readahead size.
1060  */
1061 static void shrink_readahead_size_eio(struct file *filp,
1062 					struct file_ra_state *ra)
1063 {
1064 	ra->ra_pages /= 4;
1065 }
1066 
1067 /**
1068  * do_generic_file_read - generic file read routine
1069  * @filp:	the file to read
1070  * @ppos:	current file position
1071  * @desc:	read_descriptor
1072  * @actor:	read method
1073  *
1074  * This is a generic file read routine, and uses the
1075  * mapping->a_ops->readpage() function for the actual low-level stuff.
1076  *
1077  * This is really ugly. But the goto's actually try to clarify some
1078  * of the logic when it comes to error handling etc.
1079  */
1080 static void do_generic_file_read(struct file *filp, loff_t *ppos,
1081 		read_descriptor_t *desc, read_actor_t actor)
1082 {
1083 	struct address_space *mapping = filp->f_mapping;
1084 	struct inode *inode = mapping->host;
1085 	struct file_ra_state *ra = &filp->f_ra;
1086 	pgoff_t index;
1087 	pgoff_t last_index;
1088 	pgoff_t prev_index;
1089 	unsigned long offset;      /* offset into pagecache page */
1090 	unsigned int prev_offset;
1091 	int error;
1092 
1093 	index = *ppos >> PAGE_CACHE_SHIFT;
1094 	prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1095 	prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1096 	last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1097 	offset = *ppos & ~PAGE_CACHE_MASK;
1098 
1099 	for (;;) {
1100 		struct page *page;
1101 		pgoff_t end_index;
1102 		loff_t isize;
1103 		unsigned long nr, ret;
1104 
1105 		cond_resched();
1106 find_page:
1107 		page = find_get_page(mapping, index);
1108 		if (!page) {
1109 			page_cache_sync_readahead(mapping,
1110 					ra, filp,
1111 					index, last_index - index);
1112 			page = find_get_page(mapping, index);
1113 			if (unlikely(page == NULL))
1114 				goto no_cached_page;
1115 		}
1116 		if (PageReadahead(page)) {
1117 			page_cache_async_readahead(mapping,
1118 					ra, filp, page,
1119 					index, last_index - index);
1120 		}
1121 		if (!PageUptodate(page)) {
1122 			if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1123 					!mapping->a_ops->is_partially_uptodate)
1124 				goto page_not_up_to_date;
1125 			if (!trylock_page(page))
1126 				goto page_not_up_to_date;
1127 			/* Did it get truncated before we got the lock? */
1128 			if (!page->mapping)
1129 				goto page_not_up_to_date_locked;
1130 			if (!mapping->a_ops->is_partially_uptodate(page,
1131 								desc, offset))
1132 				goto page_not_up_to_date_locked;
1133 			unlock_page(page);
1134 		}
1135 page_ok:
1136 		/*
1137 		 * i_size must be checked after we know the page is Uptodate.
1138 		 *
1139 		 * Checking i_size after the check allows us to calculate
1140 		 * the correct value for "nr", which means the zero-filled
1141 		 * part of the page is not copied back to userspace (unless
1142 		 * another truncate extends the file - this is desired though).
1143 		 */
1144 
1145 		isize = i_size_read(inode);
1146 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1147 		if (unlikely(!isize || index > end_index)) {
1148 			page_cache_release(page);
1149 			goto out;
1150 		}
1151 
1152 		/* nr is the maximum number of bytes to copy from this page */
1153 		nr = PAGE_CACHE_SIZE;
1154 		if (index == end_index) {
1155 			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1156 			if (nr <= offset) {
1157 				page_cache_release(page);
1158 				goto out;
1159 			}
1160 		}
1161 		nr = nr - offset;
1162 
1163 		/* If users can be writing to this page using arbitrary
1164 		 * virtual addresses, take care about potential aliasing
1165 		 * before reading the page on the kernel side.
1166 		 */
1167 		if (mapping_writably_mapped(mapping))
1168 			flush_dcache_page(page);
1169 
1170 		/*
1171 		 * When a sequential read accesses a page several times,
1172 		 * only mark it as accessed the first time.
1173 		 */
1174 		if (prev_index != index || offset != prev_offset)
1175 			mark_page_accessed(page);
1176 		prev_index = index;
1177 
1178 		/*
1179 		 * Ok, we have the page, and it's up-to-date, so
1180 		 * now we can copy it to user space...
1181 		 *
1182 		 * The actor routine returns how many bytes were actually used..
1183 		 * NOTE! This may not be the same as how much of a user buffer
1184 		 * we filled up (we may be padding etc), so we can only update
1185 		 * "pos" here (the actor routine has to update the user buffer
1186 		 * pointers and the remaining count).
1187 		 */
1188 		ret = actor(desc, page, offset, nr);
1189 		offset += ret;
1190 		index += offset >> PAGE_CACHE_SHIFT;
1191 		offset &= ~PAGE_CACHE_MASK;
1192 		prev_offset = offset;
1193 
1194 		page_cache_release(page);
1195 		if (ret == nr && desc->count)
1196 			continue;
1197 		goto out;
1198 
1199 page_not_up_to_date:
1200 		/* Get exclusive access to the page ... */
1201 		error = lock_page_killable(page);
1202 		if (unlikely(error))
1203 			goto readpage_error;
1204 
1205 page_not_up_to_date_locked:
1206 		/* Did it get truncated before we got the lock? */
1207 		if (!page->mapping) {
1208 			unlock_page(page);
1209 			page_cache_release(page);
1210 			continue;
1211 		}
1212 
1213 		/* Did somebody else fill it already? */
1214 		if (PageUptodate(page)) {
1215 			unlock_page(page);
1216 			goto page_ok;
1217 		}
1218 
1219 readpage:
1220 		/*
1221 		 * A previous I/O error may have been due to temporary
1222 		 * failures, eg. multipath errors.
1223 		 * PG_error will be set again if readpage fails.
1224 		 */
1225 		ClearPageError(page);
1226 		/* Start the actual read. The read will unlock the page. */
1227 		error = mapping->a_ops->readpage(filp, page);
1228 
1229 		if (unlikely(error)) {
1230 			if (error == AOP_TRUNCATED_PAGE) {
1231 				page_cache_release(page);
1232 				goto find_page;
1233 			}
1234 			goto readpage_error;
1235 		}
1236 
1237 		if (!PageUptodate(page)) {
1238 			error = lock_page_killable(page);
1239 			if (unlikely(error))
1240 				goto readpage_error;
1241 			if (!PageUptodate(page)) {
1242 				if (page->mapping == NULL) {
1243 					/*
1244 					 * invalidate_mapping_pages got it
1245 					 */
1246 					unlock_page(page);
1247 					page_cache_release(page);
1248 					goto find_page;
1249 				}
1250 				unlock_page(page);
1251 				shrink_readahead_size_eio(filp, ra);
1252 				error = -EIO;
1253 				goto readpage_error;
1254 			}
1255 			unlock_page(page);
1256 		}
1257 
1258 		goto page_ok;
1259 
1260 readpage_error:
1261 		/* UHHUH! A synchronous read error occurred. Report it */
1262 		desc->error = error;
1263 		page_cache_release(page);
1264 		goto out;
1265 
1266 no_cached_page:
1267 		/*
1268 		 * Ok, it wasn't cached, so we need to create a new
1269 		 * page..
1270 		 */
1271 		page = page_cache_alloc_cold(mapping);
1272 		if (!page) {
1273 			desc->error = -ENOMEM;
1274 			goto out;
1275 		}
1276 		error = add_to_page_cache_lru(page, mapping,
1277 						index, GFP_KERNEL);
1278 		if (error) {
1279 			page_cache_release(page);
1280 			if (error == -EEXIST)
1281 				goto find_page;
1282 			desc->error = error;
1283 			goto out;
1284 		}
1285 		goto readpage;
1286 	}
1287 
1288 out:
1289 	ra->prev_pos = prev_index;
1290 	ra->prev_pos <<= PAGE_CACHE_SHIFT;
1291 	ra->prev_pos |= prev_offset;
1292 
1293 	*ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1294 	file_accessed(filp);
1295 }
1296 
1297 int file_read_actor(read_descriptor_t *desc, struct page *page,
1298 			unsigned long offset, unsigned long size)
1299 {
1300 	char *kaddr;
1301 	unsigned long left, count = desc->count;
1302 
1303 	if (size > count)
1304 		size = count;
1305 
1306 	/*
1307 	 * Faults on the destination of a read are common, so do it before
1308 	 * taking the kmap.
1309 	 */
1310 	if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1311 		kaddr = kmap_atomic(page, KM_USER0);
1312 		left = __copy_to_user_inatomic(desc->arg.buf,
1313 						kaddr + offset, size);
1314 		kunmap_atomic(kaddr, KM_USER0);
1315 		if (left == 0)
1316 			goto success;
1317 	}
1318 
1319 	/* Do it the slow way */
1320 	kaddr = kmap(page);
1321 	left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1322 	kunmap(page);
1323 
1324 	if (left) {
1325 		size -= left;
1326 		desc->error = -EFAULT;
1327 	}
1328 success:
1329 	desc->count = count - size;
1330 	desc->written += size;
1331 	desc->arg.buf += size;
1332 	return size;
1333 }
1334 
1335 /*
1336  * Performs necessary checks before doing a write
1337  * @iov:	io vector request
1338  * @nr_segs:	number of segments in the iovec
1339  * @count:	number of bytes to write
1340  * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1341  *
1342  * Adjust number of segments and amount of bytes to write (nr_segs should be
1343  * properly initialized first). Returns appropriate error code that caller
1344  * should return or zero in case that write should be allowed.
1345  */
1346 int generic_segment_checks(const struct iovec *iov,
1347 			unsigned long *nr_segs, size_t *count, int access_flags)
1348 {
1349 	unsigned long   seg;
1350 	size_t cnt = 0;
1351 	for (seg = 0; seg < *nr_segs; seg++) {
1352 		const struct iovec *iv = &iov[seg];
1353 
1354 		/*
1355 		 * If any segment has a negative length, or the cumulative
1356 		 * length ever wraps negative then return -EINVAL.
1357 		 */
1358 		cnt += iv->iov_len;
1359 		if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1360 			return -EINVAL;
1361 		if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1362 			continue;
1363 		if (seg == 0)
1364 			return -EFAULT;
1365 		*nr_segs = seg;
1366 		cnt -= iv->iov_len;	/* This segment is no good */
1367 		break;
1368 	}
1369 	*count = cnt;
1370 	return 0;
1371 }
1372 EXPORT_SYMBOL(generic_segment_checks);
1373 
1374 /**
1375  * generic_file_aio_read - generic filesystem read routine
1376  * @iocb:	kernel I/O control block
1377  * @iov:	io vector request
1378  * @nr_segs:	number of segments in the iovec
1379  * @pos:	current file position
1380  *
1381  * This is the "read()" routine for all filesystems
1382  * that can use the page cache directly.
1383  */
1384 ssize_t
1385 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1386 		unsigned long nr_segs, loff_t pos)
1387 {
1388 	struct file *filp = iocb->ki_filp;
1389 	ssize_t retval;
1390 	unsigned long seg = 0;
1391 	size_t count;
1392 	loff_t *ppos = &iocb->ki_pos;
1393 	struct blk_plug plug;
1394 
1395 	count = 0;
1396 	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1397 	if (retval)
1398 		return retval;
1399 
1400 	blk_start_plug(&plug);
1401 
1402 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1403 	if (filp->f_flags & O_DIRECT) {
1404 		loff_t size;
1405 		struct address_space *mapping;
1406 		struct inode *inode;
1407 
1408 		mapping = filp->f_mapping;
1409 		inode = mapping->host;
1410 		if (!count)
1411 			goto out; /* skip atime */
1412 		size = i_size_read(inode);
1413 		if (pos < size) {
1414 			retval = filemap_write_and_wait_range(mapping, pos,
1415 					pos + iov_length(iov, nr_segs) - 1);
1416 			if (!retval) {
1417 				retval = mapping->a_ops->direct_IO(READ, iocb,
1418 							iov, pos, nr_segs);
1419 			}
1420 			if (retval > 0) {
1421 				*ppos = pos + retval;
1422 				count -= retval;
1423 			}
1424 
1425 			/*
1426 			 * Btrfs can have a short DIO read if we encounter
1427 			 * compressed extents, so if there was an error, or if
1428 			 * we've already read everything we wanted to, or if
1429 			 * there was a short read because we hit EOF, go ahead
1430 			 * and return.  Otherwise fallthrough to buffered io for
1431 			 * the rest of the read.
1432 			 */
1433 			if (retval < 0 || !count || *ppos >= size) {
1434 				file_accessed(filp);
1435 				goto out;
1436 			}
1437 		}
1438 	}
1439 
1440 	count = retval;
1441 	for (seg = 0; seg < nr_segs; seg++) {
1442 		read_descriptor_t desc;
1443 		loff_t offset = 0;
1444 
1445 		/*
1446 		 * If we did a short DIO read we need to skip the section of the
1447 		 * iov that we've already read data into.
1448 		 */
1449 		if (count) {
1450 			if (count > iov[seg].iov_len) {
1451 				count -= iov[seg].iov_len;
1452 				continue;
1453 			}
1454 			offset = count;
1455 			count = 0;
1456 		}
1457 
1458 		desc.written = 0;
1459 		desc.arg.buf = iov[seg].iov_base + offset;
1460 		desc.count = iov[seg].iov_len - offset;
1461 		if (desc.count == 0)
1462 			continue;
1463 		desc.error = 0;
1464 		do_generic_file_read(filp, ppos, &desc, file_read_actor);
1465 		retval += desc.written;
1466 		if (desc.error) {
1467 			retval = retval ?: desc.error;
1468 			break;
1469 		}
1470 		if (desc.count > 0)
1471 			break;
1472 	}
1473 out:
1474 	blk_finish_plug(&plug);
1475 	return retval;
1476 }
1477 EXPORT_SYMBOL(generic_file_aio_read);
1478 
1479 static ssize_t
1480 do_readahead(struct address_space *mapping, struct file *filp,
1481 	     pgoff_t index, unsigned long nr)
1482 {
1483 	if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1484 		return -EINVAL;
1485 
1486 	force_page_cache_readahead(mapping, filp, index, nr);
1487 	return 0;
1488 }
1489 
1490 SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1491 {
1492 	ssize_t ret;
1493 	struct file *file;
1494 
1495 	ret = -EBADF;
1496 	file = fget(fd);
1497 	if (file) {
1498 		if (file->f_mode & FMODE_READ) {
1499 			struct address_space *mapping = file->f_mapping;
1500 			pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1501 			pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1502 			unsigned long len = end - start + 1;
1503 			ret = do_readahead(mapping, file, start, len);
1504 		}
1505 		fput(file);
1506 	}
1507 	return ret;
1508 }
1509 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1510 asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1511 {
1512 	return SYSC_readahead((int) fd, offset, (size_t) count);
1513 }
1514 SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1515 #endif
1516 
1517 #ifdef CONFIG_MMU
1518 /**
1519  * page_cache_read - adds requested page to the page cache if not already there
1520  * @file:	file to read
1521  * @offset:	page index
1522  *
1523  * This adds the requested page to the page cache if it isn't already there,
1524  * and schedules an I/O to read in its contents from disk.
1525  */
1526 static int page_cache_read(struct file *file, pgoff_t offset)
1527 {
1528 	struct address_space *mapping = file->f_mapping;
1529 	struct page *page;
1530 	int ret;
1531 
1532 	do {
1533 		page = page_cache_alloc_cold(mapping);
1534 		if (!page)
1535 			return -ENOMEM;
1536 
1537 		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1538 		if (ret == 0)
1539 			ret = mapping->a_ops->readpage(file, page);
1540 		else if (ret == -EEXIST)
1541 			ret = 0; /* losing race to add is OK */
1542 
1543 		page_cache_release(page);
1544 
1545 	} while (ret == AOP_TRUNCATED_PAGE);
1546 
1547 	return ret;
1548 }
1549 
1550 #define MMAP_LOTSAMISS  (100)
1551 
1552 /*
1553  * Synchronous readahead happens when we don't even find
1554  * a page in the page cache at all.
1555  */
1556 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1557 				   struct file_ra_state *ra,
1558 				   struct file *file,
1559 				   pgoff_t offset)
1560 {
1561 	unsigned long ra_pages;
1562 	struct address_space *mapping = file->f_mapping;
1563 
1564 	/* If we don't want any read-ahead, don't bother */
1565 	if (VM_RandomReadHint(vma))
1566 		return;
1567 	if (!ra->ra_pages)
1568 		return;
1569 
1570 	if (VM_SequentialReadHint(vma)) {
1571 		page_cache_sync_readahead(mapping, ra, file, offset,
1572 					  ra->ra_pages);
1573 		return;
1574 	}
1575 
1576 	/* Avoid banging the cache line if not needed */
1577 	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1578 		ra->mmap_miss++;
1579 
1580 	/*
1581 	 * Do we miss much more than hit in this file? If so,
1582 	 * stop bothering with read-ahead. It will only hurt.
1583 	 */
1584 	if (ra->mmap_miss > MMAP_LOTSAMISS)
1585 		return;
1586 
1587 	/*
1588 	 * mmap read-around
1589 	 */
1590 	ra_pages = max_sane_readahead(ra->ra_pages);
1591 	ra->start = max_t(long, 0, offset - ra_pages / 2);
1592 	ra->size = ra_pages;
1593 	ra->async_size = ra_pages / 4;
1594 	ra_submit(ra, mapping, file);
1595 }
1596 
1597 /*
1598  * Asynchronous readahead happens when we find the page and PG_readahead,
1599  * so we want to possibly extend the readahead further..
1600  */
1601 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1602 				    struct file_ra_state *ra,
1603 				    struct file *file,
1604 				    struct page *page,
1605 				    pgoff_t offset)
1606 {
1607 	struct address_space *mapping = file->f_mapping;
1608 
1609 	/* If we don't want any read-ahead, don't bother */
1610 	if (VM_RandomReadHint(vma))
1611 		return;
1612 	if (ra->mmap_miss > 0)
1613 		ra->mmap_miss--;
1614 	if (PageReadahead(page))
1615 		page_cache_async_readahead(mapping, ra, file,
1616 					   page, offset, ra->ra_pages);
1617 }
1618 
1619 /**
1620  * filemap_fault - read in file data for page fault handling
1621  * @vma:	vma in which the fault was taken
1622  * @vmf:	struct vm_fault containing details of the fault
1623  *
1624  * filemap_fault() is invoked via the vma operations vector for a
1625  * mapped memory region to read in file data during a page fault.
1626  *
1627  * The goto's are kind of ugly, but this streamlines the normal case of having
1628  * it in the page cache, and handles the special cases reasonably without
1629  * having a lot of duplicated code.
1630  */
1631 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1632 {
1633 	int error;
1634 	struct file *file = vma->vm_file;
1635 	struct address_space *mapping = file->f_mapping;
1636 	struct file_ra_state *ra = &file->f_ra;
1637 	struct inode *inode = mapping->host;
1638 	pgoff_t offset = vmf->pgoff;
1639 	struct page *page;
1640 	pgoff_t size;
1641 	int ret = 0;
1642 
1643 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1644 	if (offset >= size)
1645 		return VM_FAULT_SIGBUS;
1646 
1647 	/*
1648 	 * Do we have something in the page cache already?
1649 	 */
1650 	page = find_get_page(mapping, offset);
1651 	if (likely(page)) {
1652 		/*
1653 		 * We found the page, so try async readahead before
1654 		 * waiting for the lock.
1655 		 */
1656 		do_async_mmap_readahead(vma, ra, file, page, offset);
1657 	} else {
1658 		/* No page in the page cache at all */
1659 		do_sync_mmap_readahead(vma, ra, file, offset);
1660 		count_vm_event(PGMAJFAULT);
1661 		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1662 		ret = VM_FAULT_MAJOR;
1663 retry_find:
1664 		page = find_get_page(mapping, offset);
1665 		if (!page)
1666 			goto no_cached_page;
1667 	}
1668 
1669 	if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1670 		page_cache_release(page);
1671 		return ret | VM_FAULT_RETRY;
1672 	}
1673 
1674 	/* Did it get truncated? */
1675 	if (unlikely(page->mapping != mapping)) {
1676 		unlock_page(page);
1677 		put_page(page);
1678 		goto retry_find;
1679 	}
1680 	VM_BUG_ON(page->index != offset);
1681 
1682 	/*
1683 	 * We have a locked page in the page cache, now we need to check
1684 	 * that it's up-to-date. If not, it is going to be due to an error.
1685 	 */
1686 	if (unlikely(!PageUptodate(page)))
1687 		goto page_not_uptodate;
1688 
1689 	/*
1690 	 * Found the page and have a reference on it.
1691 	 * We must recheck i_size under page lock.
1692 	 */
1693 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1694 	if (unlikely(offset >= size)) {
1695 		unlock_page(page);
1696 		page_cache_release(page);
1697 		return VM_FAULT_SIGBUS;
1698 	}
1699 
1700 	vmf->page = page;
1701 	return ret | VM_FAULT_LOCKED;
1702 
1703 no_cached_page:
1704 	/*
1705 	 * We're only likely to ever get here if MADV_RANDOM is in
1706 	 * effect.
1707 	 */
1708 	error = page_cache_read(file, offset);
1709 
1710 	/*
1711 	 * The page we want has now been added to the page cache.
1712 	 * In the unlikely event that someone removed it in the
1713 	 * meantime, we'll just come back here and read it again.
1714 	 */
1715 	if (error >= 0)
1716 		goto retry_find;
1717 
1718 	/*
1719 	 * An error return from page_cache_read can result if the
1720 	 * system is low on memory, or a problem occurs while trying
1721 	 * to schedule I/O.
1722 	 */
1723 	if (error == -ENOMEM)
1724 		return VM_FAULT_OOM;
1725 	return VM_FAULT_SIGBUS;
1726 
1727 page_not_uptodate:
1728 	/*
1729 	 * Umm, take care of errors if the page isn't up-to-date.
1730 	 * Try to re-read it _once_. We do this synchronously,
1731 	 * because there really aren't any performance issues here
1732 	 * and we need to check for errors.
1733 	 */
1734 	ClearPageError(page);
1735 	error = mapping->a_ops->readpage(file, page);
1736 	if (!error) {
1737 		wait_on_page_locked(page);
1738 		if (!PageUptodate(page))
1739 			error = -EIO;
1740 	}
1741 	page_cache_release(page);
1742 
1743 	if (!error || error == AOP_TRUNCATED_PAGE)
1744 		goto retry_find;
1745 
1746 	/* Things didn't work out. Return zero to tell the mm layer so. */
1747 	shrink_readahead_size_eio(file, ra);
1748 	return VM_FAULT_SIGBUS;
1749 }
1750 EXPORT_SYMBOL(filemap_fault);
1751 
1752 const struct vm_operations_struct generic_file_vm_ops = {
1753 	.fault		= filemap_fault,
1754 };
1755 
1756 /* This is used for a general mmap of a disk file */
1757 
1758 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1759 {
1760 	struct address_space *mapping = file->f_mapping;
1761 
1762 	if (!mapping->a_ops->readpage)
1763 		return -ENOEXEC;
1764 	file_accessed(file);
1765 	vma->vm_ops = &generic_file_vm_ops;
1766 	vma->vm_flags |= VM_CAN_NONLINEAR;
1767 	return 0;
1768 }
1769 
1770 /*
1771  * This is for filesystems which do not implement ->writepage.
1772  */
1773 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1774 {
1775 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1776 		return -EINVAL;
1777 	return generic_file_mmap(file, vma);
1778 }
1779 #else
1780 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1781 {
1782 	return -ENOSYS;
1783 }
1784 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1785 {
1786 	return -ENOSYS;
1787 }
1788 #endif /* CONFIG_MMU */
1789 
1790 EXPORT_SYMBOL(generic_file_mmap);
1791 EXPORT_SYMBOL(generic_file_readonly_mmap);
1792 
1793 static struct page *__read_cache_page(struct address_space *mapping,
1794 				pgoff_t index,
1795 				int (*filler)(void *,struct page*),
1796 				void *data,
1797 				gfp_t gfp)
1798 {
1799 	struct page *page;
1800 	int err;
1801 repeat:
1802 	page = find_get_page(mapping, index);
1803 	if (!page) {
1804 		page = __page_cache_alloc(gfp | __GFP_COLD);
1805 		if (!page)
1806 			return ERR_PTR(-ENOMEM);
1807 		err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1808 		if (unlikely(err)) {
1809 			page_cache_release(page);
1810 			if (err == -EEXIST)
1811 				goto repeat;
1812 			/* Presumably ENOMEM for radix tree node */
1813 			return ERR_PTR(err);
1814 		}
1815 		err = filler(data, page);
1816 		if (err < 0) {
1817 			page_cache_release(page);
1818 			page = ERR_PTR(err);
1819 		}
1820 	}
1821 	return page;
1822 }
1823 
1824 static struct page *do_read_cache_page(struct address_space *mapping,
1825 				pgoff_t index,
1826 				int (*filler)(void *,struct page*),
1827 				void *data,
1828 				gfp_t gfp)
1829 
1830 {
1831 	struct page *page;
1832 	int err;
1833 
1834 retry:
1835 	page = __read_cache_page(mapping, index, filler, data, gfp);
1836 	if (IS_ERR(page))
1837 		return page;
1838 	if (PageUptodate(page))
1839 		goto out;
1840 
1841 	lock_page(page);
1842 	if (!page->mapping) {
1843 		unlock_page(page);
1844 		page_cache_release(page);
1845 		goto retry;
1846 	}
1847 	if (PageUptodate(page)) {
1848 		unlock_page(page);
1849 		goto out;
1850 	}
1851 	err = filler(data, page);
1852 	if (err < 0) {
1853 		page_cache_release(page);
1854 		return ERR_PTR(err);
1855 	}
1856 out:
1857 	mark_page_accessed(page);
1858 	return page;
1859 }
1860 
1861 /**
1862  * read_cache_page_async - read into page cache, fill it if needed
1863  * @mapping:	the page's address_space
1864  * @index:	the page index
1865  * @filler:	function to perform the read
1866  * @data:	destination for read data
1867  *
1868  * Same as read_cache_page, but don't wait for page to become unlocked
1869  * after submitting it to the filler.
1870  *
1871  * Read into the page cache. If a page already exists, and PageUptodate() is
1872  * not set, try to fill the page but don't wait for it to become unlocked.
1873  *
1874  * If the page does not get brought uptodate, return -EIO.
1875  */
1876 struct page *read_cache_page_async(struct address_space *mapping,
1877 				pgoff_t index,
1878 				int (*filler)(void *,struct page*),
1879 				void *data)
1880 {
1881 	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
1882 }
1883 EXPORT_SYMBOL(read_cache_page_async);
1884 
1885 static struct page *wait_on_page_read(struct page *page)
1886 {
1887 	if (!IS_ERR(page)) {
1888 		wait_on_page_locked(page);
1889 		if (!PageUptodate(page)) {
1890 			page_cache_release(page);
1891 			page = ERR_PTR(-EIO);
1892 		}
1893 	}
1894 	return page;
1895 }
1896 
1897 /**
1898  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1899  * @mapping:	the page's address_space
1900  * @index:	the page index
1901  * @gfp:	the page allocator flags to use if allocating
1902  *
1903  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1904  * any new page allocations done using the specified allocation flags. Note
1905  * that the Radix tree operations will still use GFP_KERNEL, so you can't
1906  * expect to do this atomically or anything like that - but you can pass in
1907  * other page requirements.
1908  *
1909  * If the page does not get brought uptodate, return -EIO.
1910  */
1911 struct page *read_cache_page_gfp(struct address_space *mapping,
1912 				pgoff_t index,
1913 				gfp_t gfp)
1914 {
1915 	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
1916 
1917 	return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
1918 }
1919 EXPORT_SYMBOL(read_cache_page_gfp);
1920 
1921 /**
1922  * read_cache_page - read into page cache, fill it if needed
1923  * @mapping:	the page's address_space
1924  * @index:	the page index
1925  * @filler:	function to perform the read
1926  * @data:	destination for read data
1927  *
1928  * Read into the page cache. If a page already exists, and PageUptodate() is
1929  * not set, try to fill the page then wait for it to become unlocked.
1930  *
1931  * If the page does not get brought uptodate, return -EIO.
1932  */
1933 struct page *read_cache_page(struct address_space *mapping,
1934 				pgoff_t index,
1935 				int (*filler)(void *,struct page*),
1936 				void *data)
1937 {
1938 	return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1939 }
1940 EXPORT_SYMBOL(read_cache_page);
1941 
1942 /*
1943  * The logic we want is
1944  *
1945  *	if suid or (sgid and xgrp)
1946  *		remove privs
1947  */
1948 int should_remove_suid(struct dentry *dentry)
1949 {
1950 	mode_t mode = dentry->d_inode->i_mode;
1951 	int kill = 0;
1952 
1953 	/* suid always must be killed */
1954 	if (unlikely(mode & S_ISUID))
1955 		kill = ATTR_KILL_SUID;
1956 
1957 	/*
1958 	 * sgid without any exec bits is just a mandatory locking mark; leave
1959 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1960 	 */
1961 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1962 		kill |= ATTR_KILL_SGID;
1963 
1964 	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1965 		return kill;
1966 
1967 	return 0;
1968 }
1969 EXPORT_SYMBOL(should_remove_suid);
1970 
1971 static int __remove_suid(struct dentry *dentry, int kill)
1972 {
1973 	struct iattr newattrs;
1974 
1975 	newattrs.ia_valid = ATTR_FORCE | kill;
1976 	return notify_change(dentry, &newattrs);
1977 }
1978 
1979 int file_remove_suid(struct file *file)
1980 {
1981 	struct dentry *dentry = file->f_path.dentry;
1982 	struct inode *inode = dentry->d_inode;
1983 	int killsuid;
1984 	int killpriv;
1985 	int error = 0;
1986 
1987 	/* Fast path for nothing security related */
1988 	if (IS_NOSEC(inode))
1989 		return 0;
1990 
1991 	killsuid = should_remove_suid(dentry);
1992 	killpriv = security_inode_need_killpriv(dentry);
1993 
1994 	if (killpriv < 0)
1995 		return killpriv;
1996 	if (killpriv)
1997 		error = security_inode_killpriv(dentry);
1998 	if (!error && killsuid)
1999 		error = __remove_suid(dentry, killsuid);
2000 	if (!error && (inode->i_sb->s_flags & MS_NOSEC))
2001 		inode->i_flags |= S_NOSEC;
2002 
2003 	return error;
2004 }
2005 EXPORT_SYMBOL(file_remove_suid);
2006 
2007 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
2008 			const struct iovec *iov, size_t base, size_t bytes)
2009 {
2010 	size_t copied = 0, left = 0;
2011 
2012 	while (bytes) {
2013 		char __user *buf = iov->iov_base + base;
2014 		int copy = min(bytes, iov->iov_len - base);
2015 
2016 		base = 0;
2017 		left = __copy_from_user_inatomic(vaddr, buf, copy);
2018 		copied += copy;
2019 		bytes -= copy;
2020 		vaddr += copy;
2021 		iov++;
2022 
2023 		if (unlikely(left))
2024 			break;
2025 	}
2026 	return copied - left;
2027 }
2028 
2029 /*
2030  * Copy as much as we can into the page and return the number of bytes which
2031  * were successfully copied.  If a fault is encountered then return the number of
2032  * bytes which were copied.
2033  */
2034 size_t iov_iter_copy_from_user_atomic(struct page *page,
2035 		struct iov_iter *i, unsigned long offset, size_t bytes)
2036 {
2037 	char *kaddr;
2038 	size_t copied;
2039 
2040 	BUG_ON(!in_atomic());
2041 	kaddr = kmap_atomic(page, KM_USER0);
2042 	if (likely(i->nr_segs == 1)) {
2043 		int left;
2044 		char __user *buf = i->iov->iov_base + i->iov_offset;
2045 		left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
2046 		copied = bytes - left;
2047 	} else {
2048 		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2049 						i->iov, i->iov_offset, bytes);
2050 	}
2051 	kunmap_atomic(kaddr, KM_USER0);
2052 
2053 	return copied;
2054 }
2055 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
2056 
2057 /*
2058  * This has the same sideeffects and return value as
2059  * iov_iter_copy_from_user_atomic().
2060  * The difference is that it attempts to resolve faults.
2061  * Page must not be locked.
2062  */
2063 size_t iov_iter_copy_from_user(struct page *page,
2064 		struct iov_iter *i, unsigned long offset, size_t bytes)
2065 {
2066 	char *kaddr;
2067 	size_t copied;
2068 
2069 	kaddr = kmap(page);
2070 	if (likely(i->nr_segs == 1)) {
2071 		int left;
2072 		char __user *buf = i->iov->iov_base + i->iov_offset;
2073 		left = __copy_from_user(kaddr + offset, buf, bytes);
2074 		copied = bytes - left;
2075 	} else {
2076 		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2077 						i->iov, i->iov_offset, bytes);
2078 	}
2079 	kunmap(page);
2080 	return copied;
2081 }
2082 EXPORT_SYMBOL(iov_iter_copy_from_user);
2083 
2084 void iov_iter_advance(struct iov_iter *i, size_t bytes)
2085 {
2086 	BUG_ON(i->count < bytes);
2087 
2088 	if (likely(i->nr_segs == 1)) {
2089 		i->iov_offset += bytes;
2090 		i->count -= bytes;
2091 	} else {
2092 		const struct iovec *iov = i->iov;
2093 		size_t base = i->iov_offset;
2094 
2095 		/*
2096 		 * The !iov->iov_len check ensures we skip over unlikely
2097 		 * zero-length segments (without overruning the iovec).
2098 		 */
2099 		while (bytes || unlikely(i->count && !iov->iov_len)) {
2100 			int copy;
2101 
2102 			copy = min(bytes, iov->iov_len - base);
2103 			BUG_ON(!i->count || i->count < copy);
2104 			i->count -= copy;
2105 			bytes -= copy;
2106 			base += copy;
2107 			if (iov->iov_len == base) {
2108 				iov++;
2109 				base = 0;
2110 			}
2111 		}
2112 		i->iov = iov;
2113 		i->iov_offset = base;
2114 	}
2115 }
2116 EXPORT_SYMBOL(iov_iter_advance);
2117 
2118 /*
2119  * Fault in the first iovec of the given iov_iter, to a maximum length
2120  * of bytes. Returns 0 on success, or non-zero if the memory could not be
2121  * accessed (ie. because it is an invalid address).
2122  *
2123  * writev-intensive code may want this to prefault several iovecs -- that
2124  * would be possible (callers must not rely on the fact that _only_ the
2125  * first iovec will be faulted with the current implementation).
2126  */
2127 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2128 {
2129 	char __user *buf = i->iov->iov_base + i->iov_offset;
2130 	bytes = min(bytes, i->iov->iov_len - i->iov_offset);
2131 	return fault_in_pages_readable(buf, bytes);
2132 }
2133 EXPORT_SYMBOL(iov_iter_fault_in_readable);
2134 
2135 /*
2136  * Return the count of just the current iov_iter segment.
2137  */
2138 size_t iov_iter_single_seg_count(struct iov_iter *i)
2139 {
2140 	const struct iovec *iov = i->iov;
2141 	if (i->nr_segs == 1)
2142 		return i->count;
2143 	else
2144 		return min(i->count, iov->iov_len - i->iov_offset);
2145 }
2146 EXPORT_SYMBOL(iov_iter_single_seg_count);
2147 
2148 /*
2149  * Performs necessary checks before doing a write
2150  *
2151  * Can adjust writing position or amount of bytes to write.
2152  * Returns appropriate error code that caller should return or
2153  * zero in case that write should be allowed.
2154  */
2155 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2156 {
2157 	struct inode *inode = file->f_mapping->host;
2158 	unsigned long limit = rlimit(RLIMIT_FSIZE);
2159 
2160         if (unlikely(*pos < 0))
2161                 return -EINVAL;
2162 
2163 	if (!isblk) {
2164 		/* FIXME: this is for backwards compatibility with 2.4 */
2165 		if (file->f_flags & O_APPEND)
2166                         *pos = i_size_read(inode);
2167 
2168 		if (limit != RLIM_INFINITY) {
2169 			if (*pos >= limit) {
2170 				send_sig(SIGXFSZ, current, 0);
2171 				return -EFBIG;
2172 			}
2173 			if (*count > limit - (typeof(limit))*pos) {
2174 				*count = limit - (typeof(limit))*pos;
2175 			}
2176 		}
2177 	}
2178 
2179 	/*
2180 	 * LFS rule
2181 	 */
2182 	if (unlikely(*pos + *count > MAX_NON_LFS &&
2183 				!(file->f_flags & O_LARGEFILE))) {
2184 		if (*pos >= MAX_NON_LFS) {
2185 			return -EFBIG;
2186 		}
2187 		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2188 			*count = MAX_NON_LFS - (unsigned long)*pos;
2189 		}
2190 	}
2191 
2192 	/*
2193 	 * Are we about to exceed the fs block limit ?
2194 	 *
2195 	 * If we have written data it becomes a short write.  If we have
2196 	 * exceeded without writing data we send a signal and return EFBIG.
2197 	 * Linus frestrict idea will clean these up nicely..
2198 	 */
2199 	if (likely(!isblk)) {
2200 		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2201 			if (*count || *pos > inode->i_sb->s_maxbytes) {
2202 				return -EFBIG;
2203 			}
2204 			/* zero-length writes at ->s_maxbytes are OK */
2205 		}
2206 
2207 		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2208 			*count = inode->i_sb->s_maxbytes - *pos;
2209 	} else {
2210 #ifdef CONFIG_BLOCK
2211 		loff_t isize;
2212 		if (bdev_read_only(I_BDEV(inode)))
2213 			return -EPERM;
2214 		isize = i_size_read(inode);
2215 		if (*pos >= isize) {
2216 			if (*count || *pos > isize)
2217 				return -ENOSPC;
2218 		}
2219 
2220 		if (*pos + *count > isize)
2221 			*count = isize - *pos;
2222 #else
2223 		return -EPERM;
2224 #endif
2225 	}
2226 	return 0;
2227 }
2228 EXPORT_SYMBOL(generic_write_checks);
2229 
2230 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2231 				loff_t pos, unsigned len, unsigned flags,
2232 				struct page **pagep, void **fsdata)
2233 {
2234 	const struct address_space_operations *aops = mapping->a_ops;
2235 
2236 	return aops->write_begin(file, mapping, pos, len, flags,
2237 							pagep, fsdata);
2238 }
2239 EXPORT_SYMBOL(pagecache_write_begin);
2240 
2241 int pagecache_write_end(struct file *file, struct address_space *mapping,
2242 				loff_t pos, unsigned len, unsigned copied,
2243 				struct page *page, void *fsdata)
2244 {
2245 	const struct address_space_operations *aops = mapping->a_ops;
2246 
2247 	mark_page_accessed(page);
2248 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2249 }
2250 EXPORT_SYMBOL(pagecache_write_end);
2251 
2252 ssize_t
2253 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2254 		unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2255 		size_t count, size_t ocount)
2256 {
2257 	struct file	*file = iocb->ki_filp;
2258 	struct address_space *mapping = file->f_mapping;
2259 	struct inode	*inode = mapping->host;
2260 	ssize_t		written;
2261 	size_t		write_len;
2262 	pgoff_t		end;
2263 
2264 	if (count != ocount)
2265 		*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2266 
2267 	write_len = iov_length(iov, *nr_segs);
2268 	end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2269 
2270 	written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2271 	if (written)
2272 		goto out;
2273 
2274 	/*
2275 	 * After a write we want buffered reads to be sure to go to disk to get
2276 	 * the new data.  We invalidate clean cached page from the region we're
2277 	 * about to write.  We do this *before* the write so that we can return
2278 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2279 	 */
2280 	if (mapping->nrpages) {
2281 		written = invalidate_inode_pages2_range(mapping,
2282 					pos >> PAGE_CACHE_SHIFT, end);
2283 		/*
2284 		 * If a page can not be invalidated, return 0 to fall back
2285 		 * to buffered write.
2286 		 */
2287 		if (written) {
2288 			if (written == -EBUSY)
2289 				return 0;
2290 			goto out;
2291 		}
2292 	}
2293 
2294 	written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2295 
2296 	/*
2297 	 * Finally, try again to invalidate clean pages which might have been
2298 	 * cached by non-direct readahead, or faulted in by get_user_pages()
2299 	 * if the source of the write was an mmap'ed region of the file
2300 	 * we're writing.  Either one is a pretty crazy thing to do,
2301 	 * so we don't support it 100%.  If this invalidation
2302 	 * fails, tough, the write still worked...
2303 	 */
2304 	if (mapping->nrpages) {
2305 		invalidate_inode_pages2_range(mapping,
2306 					      pos >> PAGE_CACHE_SHIFT, end);
2307 	}
2308 
2309 	if (written > 0) {
2310 		pos += written;
2311 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2312 			i_size_write(inode, pos);
2313 			mark_inode_dirty(inode);
2314 		}
2315 		*ppos = pos;
2316 	}
2317 out:
2318 	return written;
2319 }
2320 EXPORT_SYMBOL(generic_file_direct_write);
2321 
2322 /*
2323  * Find or create a page at the given pagecache position. Return the locked
2324  * page. This function is specifically for buffered writes.
2325  */
2326 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2327 					pgoff_t index, unsigned flags)
2328 {
2329 	int status;
2330 	struct page *page;
2331 	gfp_t gfp_notmask = 0;
2332 	if (flags & AOP_FLAG_NOFS)
2333 		gfp_notmask = __GFP_FS;
2334 repeat:
2335 	page = find_lock_page(mapping, index);
2336 	if (page)
2337 		goto found;
2338 
2339 	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
2340 	if (!page)
2341 		return NULL;
2342 	status = add_to_page_cache_lru(page, mapping, index,
2343 						GFP_KERNEL & ~gfp_notmask);
2344 	if (unlikely(status)) {
2345 		page_cache_release(page);
2346 		if (status == -EEXIST)
2347 			goto repeat;
2348 		return NULL;
2349 	}
2350 found:
2351 	wait_on_page_writeback(page);
2352 	return page;
2353 }
2354 EXPORT_SYMBOL(grab_cache_page_write_begin);
2355 
2356 static ssize_t generic_perform_write(struct file *file,
2357 				struct iov_iter *i, loff_t pos)
2358 {
2359 	struct address_space *mapping = file->f_mapping;
2360 	const struct address_space_operations *a_ops = mapping->a_ops;
2361 	long status = 0;
2362 	ssize_t written = 0;
2363 	unsigned int flags = 0;
2364 
2365 	/*
2366 	 * Copies from kernel address space cannot fail (NFSD is a big user).
2367 	 */
2368 	if (segment_eq(get_fs(), KERNEL_DS))
2369 		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2370 
2371 	do {
2372 		struct page *page;
2373 		unsigned long offset;	/* Offset into pagecache page */
2374 		unsigned long bytes;	/* Bytes to write to page */
2375 		size_t copied;		/* Bytes copied from user */
2376 		void *fsdata;
2377 
2378 		offset = (pos & (PAGE_CACHE_SIZE - 1));
2379 		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2380 						iov_iter_count(i));
2381 
2382 again:
2383 
2384 		/*
2385 		 * Bring in the user page that we will copy from _first_.
2386 		 * Otherwise there's a nasty deadlock on copying from the
2387 		 * same page as we're writing to, without it being marked
2388 		 * up-to-date.
2389 		 *
2390 		 * Not only is this an optimisation, but it is also required
2391 		 * to check that the address is actually valid, when atomic
2392 		 * usercopies are used, below.
2393 		 */
2394 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2395 			status = -EFAULT;
2396 			break;
2397 		}
2398 
2399 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2400 						&page, &fsdata);
2401 		if (unlikely(status))
2402 			break;
2403 
2404 		if (mapping_writably_mapped(mapping))
2405 			flush_dcache_page(page);
2406 
2407 		pagefault_disable();
2408 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2409 		pagefault_enable();
2410 		flush_dcache_page(page);
2411 
2412 		mark_page_accessed(page);
2413 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2414 						page, fsdata);
2415 		if (unlikely(status < 0))
2416 			break;
2417 		copied = status;
2418 
2419 		cond_resched();
2420 
2421 		iov_iter_advance(i, copied);
2422 		if (unlikely(copied == 0)) {
2423 			/*
2424 			 * If we were unable to copy any data at all, we must
2425 			 * fall back to a single segment length write.
2426 			 *
2427 			 * If we didn't fallback here, we could livelock
2428 			 * because not all segments in the iov can be copied at
2429 			 * once without a pagefault.
2430 			 */
2431 			bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2432 						iov_iter_single_seg_count(i));
2433 			goto again;
2434 		}
2435 		pos += copied;
2436 		written += copied;
2437 
2438 		balance_dirty_pages_ratelimited(mapping);
2439 
2440 	} while (iov_iter_count(i));
2441 
2442 	return written ? written : status;
2443 }
2444 
2445 ssize_t
2446 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2447 		unsigned long nr_segs, loff_t pos, loff_t *ppos,
2448 		size_t count, ssize_t written)
2449 {
2450 	struct file *file = iocb->ki_filp;
2451 	ssize_t status;
2452 	struct iov_iter i;
2453 
2454 	iov_iter_init(&i, iov, nr_segs, count, written);
2455 	status = generic_perform_write(file, &i, pos);
2456 
2457 	if (likely(status >= 0)) {
2458 		written += status;
2459 		*ppos = pos + status;
2460   	}
2461 
2462 	return written ? written : status;
2463 }
2464 EXPORT_SYMBOL(generic_file_buffered_write);
2465 
2466 /**
2467  * __generic_file_aio_write - write data to a file
2468  * @iocb:	IO state structure (file, offset, etc.)
2469  * @iov:	vector with data to write
2470  * @nr_segs:	number of segments in the vector
2471  * @ppos:	position where to write
2472  *
2473  * This function does all the work needed for actually writing data to a
2474  * file. It does all basic checks, removes SUID from the file, updates
2475  * modification times and calls proper subroutines depending on whether we
2476  * do direct IO or a standard buffered write.
2477  *
2478  * It expects i_mutex to be grabbed unless we work on a block device or similar
2479  * object which does not need locking at all.
2480  *
2481  * This function does *not* take care of syncing data in case of O_SYNC write.
2482  * A caller has to handle it. This is mainly due to the fact that we want to
2483  * avoid syncing under i_mutex.
2484  */
2485 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2486 				 unsigned long nr_segs, loff_t *ppos)
2487 {
2488 	struct file *file = iocb->ki_filp;
2489 	struct address_space * mapping = file->f_mapping;
2490 	size_t ocount;		/* original count */
2491 	size_t count;		/* after file limit checks */
2492 	struct inode 	*inode = mapping->host;
2493 	loff_t		pos;
2494 	ssize_t		written;
2495 	ssize_t		err;
2496 
2497 	ocount = 0;
2498 	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2499 	if (err)
2500 		return err;
2501 
2502 	count = ocount;
2503 	pos = *ppos;
2504 
2505 	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2506 
2507 	/* We can write back this queue in page reclaim */
2508 	current->backing_dev_info = mapping->backing_dev_info;
2509 	written = 0;
2510 
2511 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2512 	if (err)
2513 		goto out;
2514 
2515 	if (count == 0)
2516 		goto out;
2517 
2518 	err = file_remove_suid(file);
2519 	if (err)
2520 		goto out;
2521 
2522 	file_update_time(file);
2523 
2524 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2525 	if (unlikely(file->f_flags & O_DIRECT)) {
2526 		loff_t endbyte;
2527 		ssize_t written_buffered;
2528 
2529 		written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2530 							ppos, count, ocount);
2531 		if (written < 0 || written == count)
2532 			goto out;
2533 		/*
2534 		 * direct-io write to a hole: fall through to buffered I/O
2535 		 * for completing the rest of the request.
2536 		 */
2537 		pos += written;
2538 		count -= written;
2539 		written_buffered = generic_file_buffered_write(iocb, iov,
2540 						nr_segs, pos, ppos, count,
2541 						written);
2542 		/*
2543 		 * If generic_file_buffered_write() retuned a synchronous error
2544 		 * then we want to return the number of bytes which were
2545 		 * direct-written, or the error code if that was zero.  Note
2546 		 * that this differs from normal direct-io semantics, which
2547 		 * will return -EFOO even if some bytes were written.
2548 		 */
2549 		if (written_buffered < 0) {
2550 			err = written_buffered;
2551 			goto out;
2552 		}
2553 
2554 		/*
2555 		 * We need to ensure that the page cache pages are written to
2556 		 * disk and invalidated to preserve the expected O_DIRECT
2557 		 * semantics.
2558 		 */
2559 		endbyte = pos + written_buffered - written - 1;
2560 		err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2561 		if (err == 0) {
2562 			written = written_buffered;
2563 			invalidate_mapping_pages(mapping,
2564 						 pos >> PAGE_CACHE_SHIFT,
2565 						 endbyte >> PAGE_CACHE_SHIFT);
2566 		} else {
2567 			/*
2568 			 * We don't know how much we wrote, so just return
2569 			 * the number of bytes which were direct-written
2570 			 */
2571 		}
2572 	} else {
2573 		written = generic_file_buffered_write(iocb, iov, nr_segs,
2574 				pos, ppos, count, written);
2575 	}
2576 out:
2577 	current->backing_dev_info = NULL;
2578 	return written ? written : err;
2579 }
2580 EXPORT_SYMBOL(__generic_file_aio_write);
2581 
2582 /**
2583  * generic_file_aio_write - write data to a file
2584  * @iocb:	IO state structure
2585  * @iov:	vector with data to write
2586  * @nr_segs:	number of segments in the vector
2587  * @pos:	position in file where to write
2588  *
2589  * This is a wrapper around __generic_file_aio_write() to be used by most
2590  * filesystems. It takes care of syncing the file in case of O_SYNC file
2591  * and acquires i_mutex as needed.
2592  */
2593 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2594 		unsigned long nr_segs, loff_t pos)
2595 {
2596 	struct file *file = iocb->ki_filp;
2597 	struct inode *inode = file->f_mapping->host;
2598 	struct blk_plug plug;
2599 	ssize_t ret;
2600 
2601 	BUG_ON(iocb->ki_pos != pos);
2602 
2603 	mutex_lock(&inode->i_mutex);
2604 	blk_start_plug(&plug);
2605 	ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
2606 	mutex_unlock(&inode->i_mutex);
2607 
2608 	if (ret > 0 || ret == -EIOCBQUEUED) {
2609 		ssize_t err;
2610 
2611 		err = generic_write_sync(file, pos, ret);
2612 		if (err < 0 && ret > 0)
2613 			ret = err;
2614 	}
2615 	blk_finish_plug(&plug);
2616 	return ret;
2617 }
2618 EXPORT_SYMBOL(generic_file_aio_write);
2619 
2620 /**
2621  * try_to_release_page() - release old fs-specific metadata on a page
2622  *
2623  * @page: the page which the kernel is trying to free
2624  * @gfp_mask: memory allocation flags (and I/O mode)
2625  *
2626  * The address_space is to try to release any data against the page
2627  * (presumably at page->private).  If the release was successful, return `1'.
2628  * Otherwise return zero.
2629  *
2630  * This may also be called if PG_fscache is set on a page, indicating that the
2631  * page is known to the local caching routines.
2632  *
2633  * The @gfp_mask argument specifies whether I/O may be performed to release
2634  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2635  *
2636  */
2637 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2638 {
2639 	struct address_space * const mapping = page->mapping;
2640 
2641 	BUG_ON(!PageLocked(page));
2642 	if (PageWriteback(page))
2643 		return 0;
2644 
2645 	if (mapping && mapping->a_ops->releasepage)
2646 		return mapping->a_ops->releasepage(page, gfp_mask);
2647 	return try_to_free_buffers(page);
2648 }
2649 
2650 EXPORT_SYMBOL(try_to_release_page);
2651