1 /* 2 * linux/mm/filemap.c 3 * 4 * Copyright (C) 1994-1999 Linus Torvalds 5 */ 6 7 /* 8 * This file handles the generic file mmap semantics used by 9 * most "normal" filesystems (but you don't /have/ to use this: 10 * the NFS filesystem used to do this differently, for example) 11 */ 12 #include <linux/module.h> 13 #include <linux/compiler.h> 14 #include <linux/fs.h> 15 #include <linux/uaccess.h> 16 #include <linux/aio.h> 17 #include <linux/capability.h> 18 #include <linux/kernel_stat.h> 19 #include <linux/gfp.h> 20 #include <linux/mm.h> 21 #include <linux/swap.h> 22 #include <linux/mman.h> 23 #include <linux/pagemap.h> 24 #include <linux/file.h> 25 #include <linux/uio.h> 26 #include <linux/hash.h> 27 #include <linux/writeback.h> 28 #include <linux/backing-dev.h> 29 #include <linux/pagevec.h> 30 #include <linux/blkdev.h> 31 #include <linux/security.h> 32 #include <linux/syscalls.h> 33 #include <linux/cpuset.h> 34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */ 35 #include <linux/memcontrol.h> 36 #include <linux/mm_inline.h> /* for page_is_file_cache() */ 37 #include <linux/cleancache.h> 38 #include "internal.h" 39 40 /* 41 * FIXME: remove all knowledge of the buffer layer from the core VM 42 */ 43 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 44 45 #include <asm/mman.h> 46 47 /* 48 * Shared mappings implemented 30.11.1994. It's not fully working yet, 49 * though. 50 * 51 * Shared mappings now work. 15.8.1995 Bruno. 52 * 53 * finished 'unifying' the page and buffer cache and SMP-threaded the 54 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 55 * 56 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 57 */ 58 59 /* 60 * Lock ordering: 61 * 62 * ->i_mmap_mutex (truncate_pagecache) 63 * ->private_lock (__free_pte->__set_page_dirty_buffers) 64 * ->swap_lock (exclusive_swap_page, others) 65 * ->mapping->tree_lock 66 * 67 * ->i_mutex 68 * ->i_mmap_mutex (truncate->unmap_mapping_range) 69 * 70 * ->mmap_sem 71 * ->i_mmap_mutex 72 * ->page_table_lock or pte_lock (various, mainly in memory.c) 73 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock) 74 * 75 * ->mmap_sem 76 * ->lock_page (access_process_vm) 77 * 78 * ->i_mutex (generic_file_buffered_write) 79 * ->mmap_sem (fault_in_pages_readable->do_page_fault) 80 * 81 * inode_wb_list_lock 82 * sb_lock (fs/fs-writeback.c) 83 * ->mapping->tree_lock (__sync_single_inode) 84 * 85 * ->i_mmap_mutex 86 * ->anon_vma.lock (vma_adjust) 87 * 88 * ->anon_vma.lock 89 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 90 * 91 * ->page_table_lock or pte_lock 92 * ->swap_lock (try_to_unmap_one) 93 * ->private_lock (try_to_unmap_one) 94 * ->tree_lock (try_to_unmap_one) 95 * ->zone.lru_lock (follow_page->mark_page_accessed) 96 * ->zone.lru_lock (check_pte_range->isolate_lru_page) 97 * ->private_lock (page_remove_rmap->set_page_dirty) 98 * ->tree_lock (page_remove_rmap->set_page_dirty) 99 * inode_wb_list_lock (page_remove_rmap->set_page_dirty) 100 * ->inode->i_lock (page_remove_rmap->set_page_dirty) 101 * inode_wb_list_lock (zap_pte_range->set_page_dirty) 102 * ->inode->i_lock (zap_pte_range->set_page_dirty) 103 * ->private_lock (zap_pte_range->__set_page_dirty_buffers) 104 * 105 * (code doesn't rely on that order, so you could switch it around) 106 * ->tasklist_lock (memory_failure, collect_procs_ao) 107 * ->i_mmap_mutex 108 */ 109 110 /* 111 * Delete a page from the page cache and free it. Caller has to make 112 * sure the page is locked and that nobody else uses it - or that usage 113 * is safe. The caller must hold the mapping's tree_lock. 114 */ 115 void __delete_from_page_cache(struct page *page) 116 { 117 struct address_space *mapping = page->mapping; 118 119 /* 120 * if we're uptodate, flush out into the cleancache, otherwise 121 * invalidate any existing cleancache entries. We can't leave 122 * stale data around in the cleancache once our page is gone 123 */ 124 if (PageUptodate(page) && PageMappedToDisk(page)) 125 cleancache_put_page(page); 126 else 127 cleancache_flush_page(mapping, page); 128 129 radix_tree_delete(&mapping->page_tree, page->index); 130 page->mapping = NULL; 131 mapping->nrpages--; 132 __dec_zone_page_state(page, NR_FILE_PAGES); 133 if (PageSwapBacked(page)) 134 __dec_zone_page_state(page, NR_SHMEM); 135 BUG_ON(page_mapped(page)); 136 137 /* 138 * Some filesystems seem to re-dirty the page even after 139 * the VM has canceled the dirty bit (eg ext3 journaling). 140 * 141 * Fix it up by doing a final dirty accounting check after 142 * having removed the page entirely. 143 */ 144 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) { 145 dec_zone_page_state(page, NR_FILE_DIRTY); 146 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE); 147 } 148 } 149 150 /** 151 * delete_from_page_cache - delete page from page cache 152 * @page: the page which the kernel is trying to remove from page cache 153 * 154 * This must be called only on pages that have been verified to be in the page 155 * cache and locked. It will never put the page into the free list, the caller 156 * has a reference on the page. 157 */ 158 void delete_from_page_cache(struct page *page) 159 { 160 struct address_space *mapping = page->mapping; 161 void (*freepage)(struct page *); 162 163 BUG_ON(!PageLocked(page)); 164 165 freepage = mapping->a_ops->freepage; 166 spin_lock_irq(&mapping->tree_lock); 167 __delete_from_page_cache(page); 168 spin_unlock_irq(&mapping->tree_lock); 169 mem_cgroup_uncharge_cache_page(page); 170 171 if (freepage) 172 freepage(page); 173 page_cache_release(page); 174 } 175 EXPORT_SYMBOL(delete_from_page_cache); 176 177 static int sleep_on_page(void *word) 178 { 179 io_schedule(); 180 return 0; 181 } 182 183 static int sleep_on_page_killable(void *word) 184 { 185 sleep_on_page(word); 186 return fatal_signal_pending(current) ? -EINTR : 0; 187 } 188 189 /** 190 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 191 * @mapping: address space structure to write 192 * @start: offset in bytes where the range starts 193 * @end: offset in bytes where the range ends (inclusive) 194 * @sync_mode: enable synchronous operation 195 * 196 * Start writeback against all of a mapping's dirty pages that lie 197 * within the byte offsets <start, end> inclusive. 198 * 199 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 200 * opposed to a regular memory cleansing writeback. The difference between 201 * these two operations is that if a dirty page/buffer is encountered, it must 202 * be waited upon, and not just skipped over. 203 */ 204 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 205 loff_t end, int sync_mode) 206 { 207 int ret; 208 struct writeback_control wbc = { 209 .sync_mode = sync_mode, 210 .nr_to_write = LONG_MAX, 211 .range_start = start, 212 .range_end = end, 213 }; 214 215 if (!mapping_cap_writeback_dirty(mapping)) 216 return 0; 217 218 ret = do_writepages(mapping, &wbc); 219 return ret; 220 } 221 222 static inline int __filemap_fdatawrite(struct address_space *mapping, 223 int sync_mode) 224 { 225 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 226 } 227 228 int filemap_fdatawrite(struct address_space *mapping) 229 { 230 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 231 } 232 EXPORT_SYMBOL(filemap_fdatawrite); 233 234 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 235 loff_t end) 236 { 237 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 238 } 239 EXPORT_SYMBOL(filemap_fdatawrite_range); 240 241 /** 242 * filemap_flush - mostly a non-blocking flush 243 * @mapping: target address_space 244 * 245 * This is a mostly non-blocking flush. Not suitable for data-integrity 246 * purposes - I/O may not be started against all dirty pages. 247 */ 248 int filemap_flush(struct address_space *mapping) 249 { 250 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 251 } 252 EXPORT_SYMBOL(filemap_flush); 253 254 /** 255 * filemap_fdatawait_range - wait for writeback to complete 256 * @mapping: address space structure to wait for 257 * @start_byte: offset in bytes where the range starts 258 * @end_byte: offset in bytes where the range ends (inclusive) 259 * 260 * Walk the list of under-writeback pages of the given address space 261 * in the given range and wait for all of them. 262 */ 263 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 264 loff_t end_byte) 265 { 266 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT; 267 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT; 268 struct pagevec pvec; 269 int nr_pages; 270 int ret = 0; 271 272 if (end_byte < start_byte) 273 return 0; 274 275 pagevec_init(&pvec, 0); 276 while ((index <= end) && 277 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 278 PAGECACHE_TAG_WRITEBACK, 279 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) { 280 unsigned i; 281 282 for (i = 0; i < nr_pages; i++) { 283 struct page *page = pvec.pages[i]; 284 285 /* until radix tree lookup accepts end_index */ 286 if (page->index > end) 287 continue; 288 289 wait_on_page_writeback(page); 290 if (TestClearPageError(page)) 291 ret = -EIO; 292 } 293 pagevec_release(&pvec); 294 cond_resched(); 295 } 296 297 /* Check for outstanding write errors */ 298 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 299 ret = -ENOSPC; 300 if (test_and_clear_bit(AS_EIO, &mapping->flags)) 301 ret = -EIO; 302 303 return ret; 304 } 305 EXPORT_SYMBOL(filemap_fdatawait_range); 306 307 /** 308 * filemap_fdatawait - wait for all under-writeback pages to complete 309 * @mapping: address space structure to wait for 310 * 311 * Walk the list of under-writeback pages of the given address space 312 * and wait for all of them. 313 */ 314 int filemap_fdatawait(struct address_space *mapping) 315 { 316 loff_t i_size = i_size_read(mapping->host); 317 318 if (i_size == 0) 319 return 0; 320 321 return filemap_fdatawait_range(mapping, 0, i_size - 1); 322 } 323 EXPORT_SYMBOL(filemap_fdatawait); 324 325 int filemap_write_and_wait(struct address_space *mapping) 326 { 327 int err = 0; 328 329 if (mapping->nrpages) { 330 err = filemap_fdatawrite(mapping); 331 /* 332 * Even if the above returned error, the pages may be 333 * written partially (e.g. -ENOSPC), so we wait for it. 334 * But the -EIO is special case, it may indicate the worst 335 * thing (e.g. bug) happened, so we avoid waiting for it. 336 */ 337 if (err != -EIO) { 338 int err2 = filemap_fdatawait(mapping); 339 if (!err) 340 err = err2; 341 } 342 } 343 return err; 344 } 345 EXPORT_SYMBOL(filemap_write_and_wait); 346 347 /** 348 * filemap_write_and_wait_range - write out & wait on a file range 349 * @mapping: the address_space for the pages 350 * @lstart: offset in bytes where the range starts 351 * @lend: offset in bytes where the range ends (inclusive) 352 * 353 * Write out and wait upon file offsets lstart->lend, inclusive. 354 * 355 * Note that `lend' is inclusive (describes the last byte to be written) so 356 * that this function can be used to write to the very end-of-file (end = -1). 357 */ 358 int filemap_write_and_wait_range(struct address_space *mapping, 359 loff_t lstart, loff_t lend) 360 { 361 int err = 0; 362 363 if (mapping->nrpages) { 364 err = __filemap_fdatawrite_range(mapping, lstart, lend, 365 WB_SYNC_ALL); 366 /* See comment of filemap_write_and_wait() */ 367 if (err != -EIO) { 368 int err2 = filemap_fdatawait_range(mapping, 369 lstart, lend); 370 if (!err) 371 err = err2; 372 } 373 } 374 return err; 375 } 376 EXPORT_SYMBOL(filemap_write_and_wait_range); 377 378 /** 379 * replace_page_cache_page - replace a pagecache page with a new one 380 * @old: page to be replaced 381 * @new: page to replace with 382 * @gfp_mask: allocation mode 383 * 384 * This function replaces a page in the pagecache with a new one. On 385 * success it acquires the pagecache reference for the new page and 386 * drops it for the old page. Both the old and new pages must be 387 * locked. This function does not add the new page to the LRU, the 388 * caller must do that. 389 * 390 * The remove + add is atomic. The only way this function can fail is 391 * memory allocation failure. 392 */ 393 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask) 394 { 395 int error; 396 struct mem_cgroup *memcg = NULL; 397 398 VM_BUG_ON(!PageLocked(old)); 399 VM_BUG_ON(!PageLocked(new)); 400 VM_BUG_ON(new->mapping); 401 402 /* 403 * This is not page migration, but prepare_migration and 404 * end_migration does enough work for charge replacement. 405 * 406 * In the longer term we probably want a specialized function 407 * for moving the charge from old to new in a more efficient 408 * manner. 409 */ 410 error = mem_cgroup_prepare_migration(old, new, &memcg, gfp_mask); 411 if (error) 412 return error; 413 414 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM); 415 if (!error) { 416 struct address_space *mapping = old->mapping; 417 void (*freepage)(struct page *); 418 419 pgoff_t offset = old->index; 420 freepage = mapping->a_ops->freepage; 421 422 page_cache_get(new); 423 new->mapping = mapping; 424 new->index = offset; 425 426 spin_lock_irq(&mapping->tree_lock); 427 __delete_from_page_cache(old); 428 error = radix_tree_insert(&mapping->page_tree, offset, new); 429 BUG_ON(error); 430 mapping->nrpages++; 431 __inc_zone_page_state(new, NR_FILE_PAGES); 432 if (PageSwapBacked(new)) 433 __inc_zone_page_state(new, NR_SHMEM); 434 spin_unlock_irq(&mapping->tree_lock); 435 radix_tree_preload_end(); 436 if (freepage) 437 freepage(old); 438 page_cache_release(old); 439 mem_cgroup_end_migration(memcg, old, new, true); 440 } else { 441 mem_cgroup_end_migration(memcg, old, new, false); 442 } 443 444 return error; 445 } 446 EXPORT_SYMBOL_GPL(replace_page_cache_page); 447 448 /** 449 * add_to_page_cache_locked - add a locked page to the pagecache 450 * @page: page to add 451 * @mapping: the page's address_space 452 * @offset: page index 453 * @gfp_mask: page allocation mode 454 * 455 * This function is used to add a page to the pagecache. It must be locked. 456 * This function does not add the page to the LRU. The caller must do that. 457 */ 458 int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 459 pgoff_t offset, gfp_t gfp_mask) 460 { 461 int error; 462 463 VM_BUG_ON(!PageLocked(page)); 464 465 error = mem_cgroup_cache_charge(page, current->mm, 466 gfp_mask & GFP_RECLAIM_MASK); 467 if (error) 468 goto out; 469 470 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM); 471 if (error == 0) { 472 page_cache_get(page); 473 page->mapping = mapping; 474 page->index = offset; 475 476 spin_lock_irq(&mapping->tree_lock); 477 error = radix_tree_insert(&mapping->page_tree, offset, page); 478 if (likely(!error)) { 479 mapping->nrpages++; 480 __inc_zone_page_state(page, NR_FILE_PAGES); 481 if (PageSwapBacked(page)) 482 __inc_zone_page_state(page, NR_SHMEM); 483 spin_unlock_irq(&mapping->tree_lock); 484 } else { 485 page->mapping = NULL; 486 spin_unlock_irq(&mapping->tree_lock); 487 mem_cgroup_uncharge_cache_page(page); 488 page_cache_release(page); 489 } 490 radix_tree_preload_end(); 491 } else 492 mem_cgroup_uncharge_cache_page(page); 493 out: 494 return error; 495 } 496 EXPORT_SYMBOL(add_to_page_cache_locked); 497 498 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 499 pgoff_t offset, gfp_t gfp_mask) 500 { 501 int ret; 502 503 /* 504 * Splice_read and readahead add shmem/tmpfs pages into the page cache 505 * before shmem_readpage has a chance to mark them as SwapBacked: they 506 * need to go on the anon lru below, and mem_cgroup_cache_charge 507 * (called in add_to_page_cache) needs to know where they're going too. 508 */ 509 if (mapping_cap_swap_backed(mapping)) 510 SetPageSwapBacked(page); 511 512 ret = add_to_page_cache(page, mapping, offset, gfp_mask); 513 if (ret == 0) { 514 if (page_is_file_cache(page)) 515 lru_cache_add_file(page); 516 else 517 lru_cache_add_anon(page); 518 } 519 return ret; 520 } 521 EXPORT_SYMBOL_GPL(add_to_page_cache_lru); 522 523 #ifdef CONFIG_NUMA 524 struct page *__page_cache_alloc(gfp_t gfp) 525 { 526 int n; 527 struct page *page; 528 529 if (cpuset_do_page_mem_spread()) { 530 get_mems_allowed(); 531 n = cpuset_mem_spread_node(); 532 page = alloc_pages_exact_node(n, gfp, 0); 533 put_mems_allowed(); 534 return page; 535 } 536 return alloc_pages(gfp, 0); 537 } 538 EXPORT_SYMBOL(__page_cache_alloc); 539 #endif 540 541 /* 542 * In order to wait for pages to become available there must be 543 * waitqueues associated with pages. By using a hash table of 544 * waitqueues where the bucket discipline is to maintain all 545 * waiters on the same queue and wake all when any of the pages 546 * become available, and for the woken contexts to check to be 547 * sure the appropriate page became available, this saves space 548 * at a cost of "thundering herd" phenomena during rare hash 549 * collisions. 550 */ 551 static wait_queue_head_t *page_waitqueue(struct page *page) 552 { 553 const struct zone *zone = page_zone(page); 554 555 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)]; 556 } 557 558 static inline void wake_up_page(struct page *page, int bit) 559 { 560 __wake_up_bit(page_waitqueue(page), &page->flags, bit); 561 } 562 563 void wait_on_page_bit(struct page *page, int bit_nr) 564 { 565 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr); 566 567 if (test_bit(bit_nr, &page->flags)) 568 __wait_on_bit(page_waitqueue(page), &wait, sleep_on_page, 569 TASK_UNINTERRUPTIBLE); 570 } 571 EXPORT_SYMBOL(wait_on_page_bit); 572 573 int wait_on_page_bit_killable(struct page *page, int bit_nr) 574 { 575 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr); 576 577 if (!test_bit(bit_nr, &page->flags)) 578 return 0; 579 580 return __wait_on_bit(page_waitqueue(page), &wait, 581 sleep_on_page_killable, TASK_KILLABLE); 582 } 583 584 /** 585 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue 586 * @page: Page defining the wait queue of interest 587 * @waiter: Waiter to add to the queue 588 * 589 * Add an arbitrary @waiter to the wait queue for the nominated @page. 590 */ 591 void add_page_wait_queue(struct page *page, wait_queue_t *waiter) 592 { 593 wait_queue_head_t *q = page_waitqueue(page); 594 unsigned long flags; 595 596 spin_lock_irqsave(&q->lock, flags); 597 __add_wait_queue(q, waiter); 598 spin_unlock_irqrestore(&q->lock, flags); 599 } 600 EXPORT_SYMBOL_GPL(add_page_wait_queue); 601 602 /** 603 * unlock_page - unlock a locked page 604 * @page: the page 605 * 606 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). 607 * Also wakes sleepers in wait_on_page_writeback() because the wakeup 608 * mechananism between PageLocked pages and PageWriteback pages is shared. 609 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. 610 * 611 * The mb is necessary to enforce ordering between the clear_bit and the read 612 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()). 613 */ 614 void unlock_page(struct page *page) 615 { 616 VM_BUG_ON(!PageLocked(page)); 617 clear_bit_unlock(PG_locked, &page->flags); 618 smp_mb__after_clear_bit(); 619 wake_up_page(page, PG_locked); 620 } 621 EXPORT_SYMBOL(unlock_page); 622 623 /** 624 * end_page_writeback - end writeback against a page 625 * @page: the page 626 */ 627 void end_page_writeback(struct page *page) 628 { 629 if (TestClearPageReclaim(page)) 630 rotate_reclaimable_page(page); 631 632 if (!test_clear_page_writeback(page)) 633 BUG(); 634 635 smp_mb__after_clear_bit(); 636 wake_up_page(page, PG_writeback); 637 } 638 EXPORT_SYMBOL(end_page_writeback); 639 640 /** 641 * __lock_page - get a lock on the page, assuming we need to sleep to get it 642 * @page: the page to lock 643 */ 644 void __lock_page(struct page *page) 645 { 646 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 647 648 __wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page, 649 TASK_UNINTERRUPTIBLE); 650 } 651 EXPORT_SYMBOL(__lock_page); 652 653 int __lock_page_killable(struct page *page) 654 { 655 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 656 657 return __wait_on_bit_lock(page_waitqueue(page), &wait, 658 sleep_on_page_killable, TASK_KILLABLE); 659 } 660 EXPORT_SYMBOL_GPL(__lock_page_killable); 661 662 int __lock_page_or_retry(struct page *page, struct mm_struct *mm, 663 unsigned int flags) 664 { 665 if (flags & FAULT_FLAG_ALLOW_RETRY) { 666 /* 667 * CAUTION! In this case, mmap_sem is not released 668 * even though return 0. 669 */ 670 if (flags & FAULT_FLAG_RETRY_NOWAIT) 671 return 0; 672 673 up_read(&mm->mmap_sem); 674 if (flags & FAULT_FLAG_KILLABLE) 675 wait_on_page_locked_killable(page); 676 else 677 wait_on_page_locked(page); 678 return 0; 679 } else { 680 if (flags & FAULT_FLAG_KILLABLE) { 681 int ret; 682 683 ret = __lock_page_killable(page); 684 if (ret) { 685 up_read(&mm->mmap_sem); 686 return 0; 687 } 688 } else 689 __lock_page(page); 690 return 1; 691 } 692 } 693 694 /** 695 * find_get_page - find and get a page reference 696 * @mapping: the address_space to search 697 * @offset: the page index 698 * 699 * Is there a pagecache struct page at the given (mapping, offset) tuple? 700 * If yes, increment its refcount and return it; if no, return NULL. 701 */ 702 struct page *find_get_page(struct address_space *mapping, pgoff_t offset) 703 { 704 void **pagep; 705 struct page *page; 706 707 rcu_read_lock(); 708 repeat: 709 page = NULL; 710 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset); 711 if (pagep) { 712 page = radix_tree_deref_slot(pagep); 713 if (unlikely(!page)) 714 goto out; 715 if (radix_tree_deref_retry(page)) 716 goto repeat; 717 718 if (!page_cache_get_speculative(page)) 719 goto repeat; 720 721 /* 722 * Has the page moved? 723 * This is part of the lockless pagecache protocol. See 724 * include/linux/pagemap.h for details. 725 */ 726 if (unlikely(page != *pagep)) { 727 page_cache_release(page); 728 goto repeat; 729 } 730 } 731 out: 732 rcu_read_unlock(); 733 734 return page; 735 } 736 EXPORT_SYMBOL(find_get_page); 737 738 /** 739 * find_lock_page - locate, pin and lock a pagecache page 740 * @mapping: the address_space to search 741 * @offset: the page index 742 * 743 * Locates the desired pagecache page, locks it, increments its reference 744 * count and returns its address. 745 * 746 * Returns zero if the page was not present. find_lock_page() may sleep. 747 */ 748 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset) 749 { 750 struct page *page; 751 752 repeat: 753 page = find_get_page(mapping, offset); 754 if (page) { 755 lock_page(page); 756 /* Has the page been truncated? */ 757 if (unlikely(page->mapping != mapping)) { 758 unlock_page(page); 759 page_cache_release(page); 760 goto repeat; 761 } 762 VM_BUG_ON(page->index != offset); 763 } 764 return page; 765 } 766 EXPORT_SYMBOL(find_lock_page); 767 768 /** 769 * find_or_create_page - locate or add a pagecache page 770 * @mapping: the page's address_space 771 * @index: the page's index into the mapping 772 * @gfp_mask: page allocation mode 773 * 774 * Locates a page in the pagecache. If the page is not present, a new page 775 * is allocated using @gfp_mask and is added to the pagecache and to the VM's 776 * LRU list. The returned page is locked and has its reference count 777 * incremented. 778 * 779 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic 780 * allocation! 781 * 782 * find_or_create_page() returns the desired page's address, or zero on 783 * memory exhaustion. 784 */ 785 struct page *find_or_create_page(struct address_space *mapping, 786 pgoff_t index, gfp_t gfp_mask) 787 { 788 struct page *page; 789 int err; 790 repeat: 791 page = find_lock_page(mapping, index); 792 if (!page) { 793 page = __page_cache_alloc(gfp_mask); 794 if (!page) 795 return NULL; 796 /* 797 * We want a regular kernel memory (not highmem or DMA etc) 798 * allocation for the radix tree nodes, but we need to honour 799 * the context-specific requirements the caller has asked for. 800 * GFP_RECLAIM_MASK collects those requirements. 801 */ 802 err = add_to_page_cache_lru(page, mapping, index, 803 (gfp_mask & GFP_RECLAIM_MASK)); 804 if (unlikely(err)) { 805 page_cache_release(page); 806 page = NULL; 807 if (err == -EEXIST) 808 goto repeat; 809 } 810 } 811 return page; 812 } 813 EXPORT_SYMBOL(find_or_create_page); 814 815 /** 816 * find_get_pages - gang pagecache lookup 817 * @mapping: The address_space to search 818 * @start: The starting page index 819 * @nr_pages: The maximum number of pages 820 * @pages: Where the resulting pages are placed 821 * 822 * find_get_pages() will search for and return a group of up to 823 * @nr_pages pages in the mapping. The pages are placed at @pages. 824 * find_get_pages() takes a reference against the returned pages. 825 * 826 * The search returns a group of mapping-contiguous pages with ascending 827 * indexes. There may be holes in the indices due to not-present pages. 828 * 829 * find_get_pages() returns the number of pages which were found. 830 */ 831 unsigned find_get_pages(struct address_space *mapping, pgoff_t start, 832 unsigned int nr_pages, struct page **pages) 833 { 834 unsigned int i; 835 unsigned int ret; 836 unsigned int nr_found; 837 838 rcu_read_lock(); 839 restart: 840 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree, 841 (void ***)pages, start, nr_pages); 842 ret = 0; 843 for (i = 0; i < nr_found; i++) { 844 struct page *page; 845 repeat: 846 page = radix_tree_deref_slot((void **)pages[i]); 847 if (unlikely(!page)) 848 continue; 849 850 /* 851 * This can only trigger when the entry at index 0 moves out 852 * of or back to the root: none yet gotten, safe to restart. 853 */ 854 if (radix_tree_deref_retry(page)) { 855 WARN_ON(start | i); 856 goto restart; 857 } 858 859 if (!page_cache_get_speculative(page)) 860 goto repeat; 861 862 /* Has the page moved? */ 863 if (unlikely(page != *((void **)pages[i]))) { 864 page_cache_release(page); 865 goto repeat; 866 } 867 868 pages[ret] = page; 869 ret++; 870 } 871 872 /* 873 * If all entries were removed before we could secure them, 874 * try again, because callers stop trying once 0 is returned. 875 */ 876 if (unlikely(!ret && nr_found)) 877 goto restart; 878 rcu_read_unlock(); 879 return ret; 880 } 881 882 /** 883 * find_get_pages_contig - gang contiguous pagecache lookup 884 * @mapping: The address_space to search 885 * @index: The starting page index 886 * @nr_pages: The maximum number of pages 887 * @pages: Where the resulting pages are placed 888 * 889 * find_get_pages_contig() works exactly like find_get_pages(), except 890 * that the returned number of pages are guaranteed to be contiguous. 891 * 892 * find_get_pages_contig() returns the number of pages which were found. 893 */ 894 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, 895 unsigned int nr_pages, struct page **pages) 896 { 897 unsigned int i; 898 unsigned int ret; 899 unsigned int nr_found; 900 901 rcu_read_lock(); 902 restart: 903 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree, 904 (void ***)pages, index, nr_pages); 905 ret = 0; 906 for (i = 0; i < nr_found; i++) { 907 struct page *page; 908 repeat: 909 page = radix_tree_deref_slot((void **)pages[i]); 910 if (unlikely(!page)) 911 continue; 912 913 /* 914 * This can only trigger when the entry at index 0 moves out 915 * of or back to the root: none yet gotten, safe to restart. 916 */ 917 if (radix_tree_deref_retry(page)) 918 goto restart; 919 920 if (!page_cache_get_speculative(page)) 921 goto repeat; 922 923 /* Has the page moved? */ 924 if (unlikely(page != *((void **)pages[i]))) { 925 page_cache_release(page); 926 goto repeat; 927 } 928 929 /* 930 * must check mapping and index after taking the ref. 931 * otherwise we can get both false positives and false 932 * negatives, which is just confusing to the caller. 933 */ 934 if (page->mapping == NULL || page->index != index) { 935 page_cache_release(page); 936 break; 937 } 938 939 pages[ret] = page; 940 ret++; 941 index++; 942 } 943 rcu_read_unlock(); 944 return ret; 945 } 946 EXPORT_SYMBOL(find_get_pages_contig); 947 948 /** 949 * find_get_pages_tag - find and return pages that match @tag 950 * @mapping: the address_space to search 951 * @index: the starting page index 952 * @tag: the tag index 953 * @nr_pages: the maximum number of pages 954 * @pages: where the resulting pages are placed 955 * 956 * Like find_get_pages, except we only return pages which are tagged with 957 * @tag. We update @index to index the next page for the traversal. 958 */ 959 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, 960 int tag, unsigned int nr_pages, struct page **pages) 961 { 962 unsigned int i; 963 unsigned int ret; 964 unsigned int nr_found; 965 966 rcu_read_lock(); 967 restart: 968 nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree, 969 (void ***)pages, *index, nr_pages, tag); 970 ret = 0; 971 for (i = 0; i < nr_found; i++) { 972 struct page *page; 973 repeat: 974 page = radix_tree_deref_slot((void **)pages[i]); 975 if (unlikely(!page)) 976 continue; 977 978 /* 979 * This can only trigger when the entry at index 0 moves out 980 * of or back to the root: none yet gotten, safe to restart. 981 */ 982 if (radix_tree_deref_retry(page)) 983 goto restart; 984 985 if (!page_cache_get_speculative(page)) 986 goto repeat; 987 988 /* Has the page moved? */ 989 if (unlikely(page != *((void **)pages[i]))) { 990 page_cache_release(page); 991 goto repeat; 992 } 993 994 pages[ret] = page; 995 ret++; 996 } 997 998 /* 999 * If all entries were removed before we could secure them, 1000 * try again, because callers stop trying once 0 is returned. 1001 */ 1002 if (unlikely(!ret && nr_found)) 1003 goto restart; 1004 rcu_read_unlock(); 1005 1006 if (ret) 1007 *index = pages[ret - 1]->index + 1; 1008 1009 return ret; 1010 } 1011 EXPORT_SYMBOL(find_get_pages_tag); 1012 1013 /** 1014 * grab_cache_page_nowait - returns locked page at given index in given cache 1015 * @mapping: target address_space 1016 * @index: the page index 1017 * 1018 * Same as grab_cache_page(), but do not wait if the page is unavailable. 1019 * This is intended for speculative data generators, where the data can 1020 * be regenerated if the page couldn't be grabbed. This routine should 1021 * be safe to call while holding the lock for another page. 1022 * 1023 * Clear __GFP_FS when allocating the page to avoid recursion into the fs 1024 * and deadlock against the caller's locked page. 1025 */ 1026 struct page * 1027 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index) 1028 { 1029 struct page *page = find_get_page(mapping, index); 1030 1031 if (page) { 1032 if (trylock_page(page)) 1033 return page; 1034 page_cache_release(page); 1035 return NULL; 1036 } 1037 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS); 1038 if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) { 1039 page_cache_release(page); 1040 page = NULL; 1041 } 1042 return page; 1043 } 1044 EXPORT_SYMBOL(grab_cache_page_nowait); 1045 1046 /* 1047 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 1048 * a _large_ part of the i/o request. Imagine the worst scenario: 1049 * 1050 * ---R__________________________________________B__________ 1051 * ^ reading here ^ bad block(assume 4k) 1052 * 1053 * read(R) => miss => readahead(R...B) => media error => frustrating retries 1054 * => failing the whole request => read(R) => read(R+1) => 1055 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 1056 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 1057 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 1058 * 1059 * It is going insane. Fix it by quickly scaling down the readahead size. 1060 */ 1061 static void shrink_readahead_size_eio(struct file *filp, 1062 struct file_ra_state *ra) 1063 { 1064 ra->ra_pages /= 4; 1065 } 1066 1067 /** 1068 * do_generic_file_read - generic file read routine 1069 * @filp: the file to read 1070 * @ppos: current file position 1071 * @desc: read_descriptor 1072 * @actor: read method 1073 * 1074 * This is a generic file read routine, and uses the 1075 * mapping->a_ops->readpage() function for the actual low-level stuff. 1076 * 1077 * This is really ugly. But the goto's actually try to clarify some 1078 * of the logic when it comes to error handling etc. 1079 */ 1080 static void do_generic_file_read(struct file *filp, loff_t *ppos, 1081 read_descriptor_t *desc, read_actor_t actor) 1082 { 1083 struct address_space *mapping = filp->f_mapping; 1084 struct inode *inode = mapping->host; 1085 struct file_ra_state *ra = &filp->f_ra; 1086 pgoff_t index; 1087 pgoff_t last_index; 1088 pgoff_t prev_index; 1089 unsigned long offset; /* offset into pagecache page */ 1090 unsigned int prev_offset; 1091 int error; 1092 1093 index = *ppos >> PAGE_CACHE_SHIFT; 1094 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT; 1095 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1); 1096 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT; 1097 offset = *ppos & ~PAGE_CACHE_MASK; 1098 1099 for (;;) { 1100 struct page *page; 1101 pgoff_t end_index; 1102 loff_t isize; 1103 unsigned long nr, ret; 1104 1105 cond_resched(); 1106 find_page: 1107 page = find_get_page(mapping, index); 1108 if (!page) { 1109 page_cache_sync_readahead(mapping, 1110 ra, filp, 1111 index, last_index - index); 1112 page = find_get_page(mapping, index); 1113 if (unlikely(page == NULL)) 1114 goto no_cached_page; 1115 } 1116 if (PageReadahead(page)) { 1117 page_cache_async_readahead(mapping, 1118 ra, filp, page, 1119 index, last_index - index); 1120 } 1121 if (!PageUptodate(page)) { 1122 if (inode->i_blkbits == PAGE_CACHE_SHIFT || 1123 !mapping->a_ops->is_partially_uptodate) 1124 goto page_not_up_to_date; 1125 if (!trylock_page(page)) 1126 goto page_not_up_to_date; 1127 /* Did it get truncated before we got the lock? */ 1128 if (!page->mapping) 1129 goto page_not_up_to_date_locked; 1130 if (!mapping->a_ops->is_partially_uptodate(page, 1131 desc, offset)) 1132 goto page_not_up_to_date_locked; 1133 unlock_page(page); 1134 } 1135 page_ok: 1136 /* 1137 * i_size must be checked after we know the page is Uptodate. 1138 * 1139 * Checking i_size after the check allows us to calculate 1140 * the correct value for "nr", which means the zero-filled 1141 * part of the page is not copied back to userspace (unless 1142 * another truncate extends the file - this is desired though). 1143 */ 1144 1145 isize = i_size_read(inode); 1146 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 1147 if (unlikely(!isize || index > end_index)) { 1148 page_cache_release(page); 1149 goto out; 1150 } 1151 1152 /* nr is the maximum number of bytes to copy from this page */ 1153 nr = PAGE_CACHE_SIZE; 1154 if (index == end_index) { 1155 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 1156 if (nr <= offset) { 1157 page_cache_release(page); 1158 goto out; 1159 } 1160 } 1161 nr = nr - offset; 1162 1163 /* If users can be writing to this page using arbitrary 1164 * virtual addresses, take care about potential aliasing 1165 * before reading the page on the kernel side. 1166 */ 1167 if (mapping_writably_mapped(mapping)) 1168 flush_dcache_page(page); 1169 1170 /* 1171 * When a sequential read accesses a page several times, 1172 * only mark it as accessed the first time. 1173 */ 1174 if (prev_index != index || offset != prev_offset) 1175 mark_page_accessed(page); 1176 prev_index = index; 1177 1178 /* 1179 * Ok, we have the page, and it's up-to-date, so 1180 * now we can copy it to user space... 1181 * 1182 * The actor routine returns how many bytes were actually used.. 1183 * NOTE! This may not be the same as how much of a user buffer 1184 * we filled up (we may be padding etc), so we can only update 1185 * "pos" here (the actor routine has to update the user buffer 1186 * pointers and the remaining count). 1187 */ 1188 ret = actor(desc, page, offset, nr); 1189 offset += ret; 1190 index += offset >> PAGE_CACHE_SHIFT; 1191 offset &= ~PAGE_CACHE_MASK; 1192 prev_offset = offset; 1193 1194 page_cache_release(page); 1195 if (ret == nr && desc->count) 1196 continue; 1197 goto out; 1198 1199 page_not_up_to_date: 1200 /* Get exclusive access to the page ... */ 1201 error = lock_page_killable(page); 1202 if (unlikely(error)) 1203 goto readpage_error; 1204 1205 page_not_up_to_date_locked: 1206 /* Did it get truncated before we got the lock? */ 1207 if (!page->mapping) { 1208 unlock_page(page); 1209 page_cache_release(page); 1210 continue; 1211 } 1212 1213 /* Did somebody else fill it already? */ 1214 if (PageUptodate(page)) { 1215 unlock_page(page); 1216 goto page_ok; 1217 } 1218 1219 readpage: 1220 /* 1221 * A previous I/O error may have been due to temporary 1222 * failures, eg. multipath errors. 1223 * PG_error will be set again if readpage fails. 1224 */ 1225 ClearPageError(page); 1226 /* Start the actual read. The read will unlock the page. */ 1227 error = mapping->a_ops->readpage(filp, page); 1228 1229 if (unlikely(error)) { 1230 if (error == AOP_TRUNCATED_PAGE) { 1231 page_cache_release(page); 1232 goto find_page; 1233 } 1234 goto readpage_error; 1235 } 1236 1237 if (!PageUptodate(page)) { 1238 error = lock_page_killable(page); 1239 if (unlikely(error)) 1240 goto readpage_error; 1241 if (!PageUptodate(page)) { 1242 if (page->mapping == NULL) { 1243 /* 1244 * invalidate_mapping_pages got it 1245 */ 1246 unlock_page(page); 1247 page_cache_release(page); 1248 goto find_page; 1249 } 1250 unlock_page(page); 1251 shrink_readahead_size_eio(filp, ra); 1252 error = -EIO; 1253 goto readpage_error; 1254 } 1255 unlock_page(page); 1256 } 1257 1258 goto page_ok; 1259 1260 readpage_error: 1261 /* UHHUH! A synchronous read error occurred. Report it */ 1262 desc->error = error; 1263 page_cache_release(page); 1264 goto out; 1265 1266 no_cached_page: 1267 /* 1268 * Ok, it wasn't cached, so we need to create a new 1269 * page.. 1270 */ 1271 page = page_cache_alloc_cold(mapping); 1272 if (!page) { 1273 desc->error = -ENOMEM; 1274 goto out; 1275 } 1276 error = add_to_page_cache_lru(page, mapping, 1277 index, GFP_KERNEL); 1278 if (error) { 1279 page_cache_release(page); 1280 if (error == -EEXIST) 1281 goto find_page; 1282 desc->error = error; 1283 goto out; 1284 } 1285 goto readpage; 1286 } 1287 1288 out: 1289 ra->prev_pos = prev_index; 1290 ra->prev_pos <<= PAGE_CACHE_SHIFT; 1291 ra->prev_pos |= prev_offset; 1292 1293 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset; 1294 file_accessed(filp); 1295 } 1296 1297 int file_read_actor(read_descriptor_t *desc, struct page *page, 1298 unsigned long offset, unsigned long size) 1299 { 1300 char *kaddr; 1301 unsigned long left, count = desc->count; 1302 1303 if (size > count) 1304 size = count; 1305 1306 /* 1307 * Faults on the destination of a read are common, so do it before 1308 * taking the kmap. 1309 */ 1310 if (!fault_in_pages_writeable(desc->arg.buf, size)) { 1311 kaddr = kmap_atomic(page, KM_USER0); 1312 left = __copy_to_user_inatomic(desc->arg.buf, 1313 kaddr + offset, size); 1314 kunmap_atomic(kaddr, KM_USER0); 1315 if (left == 0) 1316 goto success; 1317 } 1318 1319 /* Do it the slow way */ 1320 kaddr = kmap(page); 1321 left = __copy_to_user(desc->arg.buf, kaddr + offset, size); 1322 kunmap(page); 1323 1324 if (left) { 1325 size -= left; 1326 desc->error = -EFAULT; 1327 } 1328 success: 1329 desc->count = count - size; 1330 desc->written += size; 1331 desc->arg.buf += size; 1332 return size; 1333 } 1334 1335 /* 1336 * Performs necessary checks before doing a write 1337 * @iov: io vector request 1338 * @nr_segs: number of segments in the iovec 1339 * @count: number of bytes to write 1340 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE 1341 * 1342 * Adjust number of segments and amount of bytes to write (nr_segs should be 1343 * properly initialized first). Returns appropriate error code that caller 1344 * should return or zero in case that write should be allowed. 1345 */ 1346 int generic_segment_checks(const struct iovec *iov, 1347 unsigned long *nr_segs, size_t *count, int access_flags) 1348 { 1349 unsigned long seg; 1350 size_t cnt = 0; 1351 for (seg = 0; seg < *nr_segs; seg++) { 1352 const struct iovec *iv = &iov[seg]; 1353 1354 /* 1355 * If any segment has a negative length, or the cumulative 1356 * length ever wraps negative then return -EINVAL. 1357 */ 1358 cnt += iv->iov_len; 1359 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0)) 1360 return -EINVAL; 1361 if (access_ok(access_flags, iv->iov_base, iv->iov_len)) 1362 continue; 1363 if (seg == 0) 1364 return -EFAULT; 1365 *nr_segs = seg; 1366 cnt -= iv->iov_len; /* This segment is no good */ 1367 break; 1368 } 1369 *count = cnt; 1370 return 0; 1371 } 1372 EXPORT_SYMBOL(generic_segment_checks); 1373 1374 /** 1375 * generic_file_aio_read - generic filesystem read routine 1376 * @iocb: kernel I/O control block 1377 * @iov: io vector request 1378 * @nr_segs: number of segments in the iovec 1379 * @pos: current file position 1380 * 1381 * This is the "read()" routine for all filesystems 1382 * that can use the page cache directly. 1383 */ 1384 ssize_t 1385 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov, 1386 unsigned long nr_segs, loff_t pos) 1387 { 1388 struct file *filp = iocb->ki_filp; 1389 ssize_t retval; 1390 unsigned long seg = 0; 1391 size_t count; 1392 loff_t *ppos = &iocb->ki_pos; 1393 struct blk_plug plug; 1394 1395 count = 0; 1396 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE); 1397 if (retval) 1398 return retval; 1399 1400 blk_start_plug(&plug); 1401 1402 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ 1403 if (filp->f_flags & O_DIRECT) { 1404 loff_t size; 1405 struct address_space *mapping; 1406 struct inode *inode; 1407 1408 mapping = filp->f_mapping; 1409 inode = mapping->host; 1410 if (!count) 1411 goto out; /* skip atime */ 1412 size = i_size_read(inode); 1413 if (pos < size) { 1414 retval = filemap_write_and_wait_range(mapping, pos, 1415 pos + iov_length(iov, nr_segs) - 1); 1416 if (!retval) { 1417 retval = mapping->a_ops->direct_IO(READ, iocb, 1418 iov, pos, nr_segs); 1419 } 1420 if (retval > 0) { 1421 *ppos = pos + retval; 1422 count -= retval; 1423 } 1424 1425 /* 1426 * Btrfs can have a short DIO read if we encounter 1427 * compressed extents, so if there was an error, or if 1428 * we've already read everything we wanted to, or if 1429 * there was a short read because we hit EOF, go ahead 1430 * and return. Otherwise fallthrough to buffered io for 1431 * the rest of the read. 1432 */ 1433 if (retval < 0 || !count || *ppos >= size) { 1434 file_accessed(filp); 1435 goto out; 1436 } 1437 } 1438 } 1439 1440 count = retval; 1441 for (seg = 0; seg < nr_segs; seg++) { 1442 read_descriptor_t desc; 1443 loff_t offset = 0; 1444 1445 /* 1446 * If we did a short DIO read we need to skip the section of the 1447 * iov that we've already read data into. 1448 */ 1449 if (count) { 1450 if (count > iov[seg].iov_len) { 1451 count -= iov[seg].iov_len; 1452 continue; 1453 } 1454 offset = count; 1455 count = 0; 1456 } 1457 1458 desc.written = 0; 1459 desc.arg.buf = iov[seg].iov_base + offset; 1460 desc.count = iov[seg].iov_len - offset; 1461 if (desc.count == 0) 1462 continue; 1463 desc.error = 0; 1464 do_generic_file_read(filp, ppos, &desc, file_read_actor); 1465 retval += desc.written; 1466 if (desc.error) { 1467 retval = retval ?: desc.error; 1468 break; 1469 } 1470 if (desc.count > 0) 1471 break; 1472 } 1473 out: 1474 blk_finish_plug(&plug); 1475 return retval; 1476 } 1477 EXPORT_SYMBOL(generic_file_aio_read); 1478 1479 static ssize_t 1480 do_readahead(struct address_space *mapping, struct file *filp, 1481 pgoff_t index, unsigned long nr) 1482 { 1483 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage) 1484 return -EINVAL; 1485 1486 force_page_cache_readahead(mapping, filp, index, nr); 1487 return 0; 1488 } 1489 1490 SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count) 1491 { 1492 ssize_t ret; 1493 struct file *file; 1494 1495 ret = -EBADF; 1496 file = fget(fd); 1497 if (file) { 1498 if (file->f_mode & FMODE_READ) { 1499 struct address_space *mapping = file->f_mapping; 1500 pgoff_t start = offset >> PAGE_CACHE_SHIFT; 1501 pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT; 1502 unsigned long len = end - start + 1; 1503 ret = do_readahead(mapping, file, start, len); 1504 } 1505 fput(file); 1506 } 1507 return ret; 1508 } 1509 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS 1510 asmlinkage long SyS_readahead(long fd, loff_t offset, long count) 1511 { 1512 return SYSC_readahead((int) fd, offset, (size_t) count); 1513 } 1514 SYSCALL_ALIAS(sys_readahead, SyS_readahead); 1515 #endif 1516 1517 #ifdef CONFIG_MMU 1518 /** 1519 * page_cache_read - adds requested page to the page cache if not already there 1520 * @file: file to read 1521 * @offset: page index 1522 * 1523 * This adds the requested page to the page cache if it isn't already there, 1524 * and schedules an I/O to read in its contents from disk. 1525 */ 1526 static int page_cache_read(struct file *file, pgoff_t offset) 1527 { 1528 struct address_space *mapping = file->f_mapping; 1529 struct page *page; 1530 int ret; 1531 1532 do { 1533 page = page_cache_alloc_cold(mapping); 1534 if (!page) 1535 return -ENOMEM; 1536 1537 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL); 1538 if (ret == 0) 1539 ret = mapping->a_ops->readpage(file, page); 1540 else if (ret == -EEXIST) 1541 ret = 0; /* losing race to add is OK */ 1542 1543 page_cache_release(page); 1544 1545 } while (ret == AOP_TRUNCATED_PAGE); 1546 1547 return ret; 1548 } 1549 1550 #define MMAP_LOTSAMISS (100) 1551 1552 /* 1553 * Synchronous readahead happens when we don't even find 1554 * a page in the page cache at all. 1555 */ 1556 static void do_sync_mmap_readahead(struct vm_area_struct *vma, 1557 struct file_ra_state *ra, 1558 struct file *file, 1559 pgoff_t offset) 1560 { 1561 unsigned long ra_pages; 1562 struct address_space *mapping = file->f_mapping; 1563 1564 /* If we don't want any read-ahead, don't bother */ 1565 if (VM_RandomReadHint(vma)) 1566 return; 1567 if (!ra->ra_pages) 1568 return; 1569 1570 if (VM_SequentialReadHint(vma)) { 1571 page_cache_sync_readahead(mapping, ra, file, offset, 1572 ra->ra_pages); 1573 return; 1574 } 1575 1576 /* Avoid banging the cache line if not needed */ 1577 if (ra->mmap_miss < MMAP_LOTSAMISS * 10) 1578 ra->mmap_miss++; 1579 1580 /* 1581 * Do we miss much more than hit in this file? If so, 1582 * stop bothering with read-ahead. It will only hurt. 1583 */ 1584 if (ra->mmap_miss > MMAP_LOTSAMISS) 1585 return; 1586 1587 /* 1588 * mmap read-around 1589 */ 1590 ra_pages = max_sane_readahead(ra->ra_pages); 1591 ra->start = max_t(long, 0, offset - ra_pages / 2); 1592 ra->size = ra_pages; 1593 ra->async_size = ra_pages / 4; 1594 ra_submit(ra, mapping, file); 1595 } 1596 1597 /* 1598 * Asynchronous readahead happens when we find the page and PG_readahead, 1599 * so we want to possibly extend the readahead further.. 1600 */ 1601 static void do_async_mmap_readahead(struct vm_area_struct *vma, 1602 struct file_ra_state *ra, 1603 struct file *file, 1604 struct page *page, 1605 pgoff_t offset) 1606 { 1607 struct address_space *mapping = file->f_mapping; 1608 1609 /* If we don't want any read-ahead, don't bother */ 1610 if (VM_RandomReadHint(vma)) 1611 return; 1612 if (ra->mmap_miss > 0) 1613 ra->mmap_miss--; 1614 if (PageReadahead(page)) 1615 page_cache_async_readahead(mapping, ra, file, 1616 page, offset, ra->ra_pages); 1617 } 1618 1619 /** 1620 * filemap_fault - read in file data for page fault handling 1621 * @vma: vma in which the fault was taken 1622 * @vmf: struct vm_fault containing details of the fault 1623 * 1624 * filemap_fault() is invoked via the vma operations vector for a 1625 * mapped memory region to read in file data during a page fault. 1626 * 1627 * The goto's are kind of ugly, but this streamlines the normal case of having 1628 * it in the page cache, and handles the special cases reasonably without 1629 * having a lot of duplicated code. 1630 */ 1631 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1632 { 1633 int error; 1634 struct file *file = vma->vm_file; 1635 struct address_space *mapping = file->f_mapping; 1636 struct file_ra_state *ra = &file->f_ra; 1637 struct inode *inode = mapping->host; 1638 pgoff_t offset = vmf->pgoff; 1639 struct page *page; 1640 pgoff_t size; 1641 int ret = 0; 1642 1643 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1644 if (offset >= size) 1645 return VM_FAULT_SIGBUS; 1646 1647 /* 1648 * Do we have something in the page cache already? 1649 */ 1650 page = find_get_page(mapping, offset); 1651 if (likely(page)) { 1652 /* 1653 * We found the page, so try async readahead before 1654 * waiting for the lock. 1655 */ 1656 do_async_mmap_readahead(vma, ra, file, page, offset); 1657 } else { 1658 /* No page in the page cache at all */ 1659 do_sync_mmap_readahead(vma, ra, file, offset); 1660 count_vm_event(PGMAJFAULT); 1661 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT); 1662 ret = VM_FAULT_MAJOR; 1663 retry_find: 1664 page = find_get_page(mapping, offset); 1665 if (!page) 1666 goto no_cached_page; 1667 } 1668 1669 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) { 1670 page_cache_release(page); 1671 return ret | VM_FAULT_RETRY; 1672 } 1673 1674 /* Did it get truncated? */ 1675 if (unlikely(page->mapping != mapping)) { 1676 unlock_page(page); 1677 put_page(page); 1678 goto retry_find; 1679 } 1680 VM_BUG_ON(page->index != offset); 1681 1682 /* 1683 * We have a locked page in the page cache, now we need to check 1684 * that it's up-to-date. If not, it is going to be due to an error. 1685 */ 1686 if (unlikely(!PageUptodate(page))) 1687 goto page_not_uptodate; 1688 1689 /* 1690 * Found the page and have a reference on it. 1691 * We must recheck i_size under page lock. 1692 */ 1693 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1694 if (unlikely(offset >= size)) { 1695 unlock_page(page); 1696 page_cache_release(page); 1697 return VM_FAULT_SIGBUS; 1698 } 1699 1700 vmf->page = page; 1701 return ret | VM_FAULT_LOCKED; 1702 1703 no_cached_page: 1704 /* 1705 * We're only likely to ever get here if MADV_RANDOM is in 1706 * effect. 1707 */ 1708 error = page_cache_read(file, offset); 1709 1710 /* 1711 * The page we want has now been added to the page cache. 1712 * In the unlikely event that someone removed it in the 1713 * meantime, we'll just come back here and read it again. 1714 */ 1715 if (error >= 0) 1716 goto retry_find; 1717 1718 /* 1719 * An error return from page_cache_read can result if the 1720 * system is low on memory, or a problem occurs while trying 1721 * to schedule I/O. 1722 */ 1723 if (error == -ENOMEM) 1724 return VM_FAULT_OOM; 1725 return VM_FAULT_SIGBUS; 1726 1727 page_not_uptodate: 1728 /* 1729 * Umm, take care of errors if the page isn't up-to-date. 1730 * Try to re-read it _once_. We do this synchronously, 1731 * because there really aren't any performance issues here 1732 * and we need to check for errors. 1733 */ 1734 ClearPageError(page); 1735 error = mapping->a_ops->readpage(file, page); 1736 if (!error) { 1737 wait_on_page_locked(page); 1738 if (!PageUptodate(page)) 1739 error = -EIO; 1740 } 1741 page_cache_release(page); 1742 1743 if (!error || error == AOP_TRUNCATED_PAGE) 1744 goto retry_find; 1745 1746 /* Things didn't work out. Return zero to tell the mm layer so. */ 1747 shrink_readahead_size_eio(file, ra); 1748 return VM_FAULT_SIGBUS; 1749 } 1750 EXPORT_SYMBOL(filemap_fault); 1751 1752 const struct vm_operations_struct generic_file_vm_ops = { 1753 .fault = filemap_fault, 1754 }; 1755 1756 /* This is used for a general mmap of a disk file */ 1757 1758 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 1759 { 1760 struct address_space *mapping = file->f_mapping; 1761 1762 if (!mapping->a_ops->readpage) 1763 return -ENOEXEC; 1764 file_accessed(file); 1765 vma->vm_ops = &generic_file_vm_ops; 1766 vma->vm_flags |= VM_CAN_NONLINEAR; 1767 return 0; 1768 } 1769 1770 /* 1771 * This is for filesystems which do not implement ->writepage. 1772 */ 1773 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 1774 { 1775 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 1776 return -EINVAL; 1777 return generic_file_mmap(file, vma); 1778 } 1779 #else 1780 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 1781 { 1782 return -ENOSYS; 1783 } 1784 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) 1785 { 1786 return -ENOSYS; 1787 } 1788 #endif /* CONFIG_MMU */ 1789 1790 EXPORT_SYMBOL(generic_file_mmap); 1791 EXPORT_SYMBOL(generic_file_readonly_mmap); 1792 1793 static struct page *__read_cache_page(struct address_space *mapping, 1794 pgoff_t index, 1795 int (*filler)(void *,struct page*), 1796 void *data, 1797 gfp_t gfp) 1798 { 1799 struct page *page; 1800 int err; 1801 repeat: 1802 page = find_get_page(mapping, index); 1803 if (!page) { 1804 page = __page_cache_alloc(gfp | __GFP_COLD); 1805 if (!page) 1806 return ERR_PTR(-ENOMEM); 1807 err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL); 1808 if (unlikely(err)) { 1809 page_cache_release(page); 1810 if (err == -EEXIST) 1811 goto repeat; 1812 /* Presumably ENOMEM for radix tree node */ 1813 return ERR_PTR(err); 1814 } 1815 err = filler(data, page); 1816 if (err < 0) { 1817 page_cache_release(page); 1818 page = ERR_PTR(err); 1819 } 1820 } 1821 return page; 1822 } 1823 1824 static struct page *do_read_cache_page(struct address_space *mapping, 1825 pgoff_t index, 1826 int (*filler)(void *,struct page*), 1827 void *data, 1828 gfp_t gfp) 1829 1830 { 1831 struct page *page; 1832 int err; 1833 1834 retry: 1835 page = __read_cache_page(mapping, index, filler, data, gfp); 1836 if (IS_ERR(page)) 1837 return page; 1838 if (PageUptodate(page)) 1839 goto out; 1840 1841 lock_page(page); 1842 if (!page->mapping) { 1843 unlock_page(page); 1844 page_cache_release(page); 1845 goto retry; 1846 } 1847 if (PageUptodate(page)) { 1848 unlock_page(page); 1849 goto out; 1850 } 1851 err = filler(data, page); 1852 if (err < 0) { 1853 page_cache_release(page); 1854 return ERR_PTR(err); 1855 } 1856 out: 1857 mark_page_accessed(page); 1858 return page; 1859 } 1860 1861 /** 1862 * read_cache_page_async - read into page cache, fill it if needed 1863 * @mapping: the page's address_space 1864 * @index: the page index 1865 * @filler: function to perform the read 1866 * @data: destination for read data 1867 * 1868 * Same as read_cache_page, but don't wait for page to become unlocked 1869 * after submitting it to the filler. 1870 * 1871 * Read into the page cache. If a page already exists, and PageUptodate() is 1872 * not set, try to fill the page but don't wait for it to become unlocked. 1873 * 1874 * If the page does not get brought uptodate, return -EIO. 1875 */ 1876 struct page *read_cache_page_async(struct address_space *mapping, 1877 pgoff_t index, 1878 int (*filler)(void *,struct page*), 1879 void *data) 1880 { 1881 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping)); 1882 } 1883 EXPORT_SYMBOL(read_cache_page_async); 1884 1885 static struct page *wait_on_page_read(struct page *page) 1886 { 1887 if (!IS_ERR(page)) { 1888 wait_on_page_locked(page); 1889 if (!PageUptodate(page)) { 1890 page_cache_release(page); 1891 page = ERR_PTR(-EIO); 1892 } 1893 } 1894 return page; 1895 } 1896 1897 /** 1898 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 1899 * @mapping: the page's address_space 1900 * @index: the page index 1901 * @gfp: the page allocator flags to use if allocating 1902 * 1903 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 1904 * any new page allocations done using the specified allocation flags. Note 1905 * that the Radix tree operations will still use GFP_KERNEL, so you can't 1906 * expect to do this atomically or anything like that - but you can pass in 1907 * other page requirements. 1908 * 1909 * If the page does not get brought uptodate, return -EIO. 1910 */ 1911 struct page *read_cache_page_gfp(struct address_space *mapping, 1912 pgoff_t index, 1913 gfp_t gfp) 1914 { 1915 filler_t *filler = (filler_t *)mapping->a_ops->readpage; 1916 1917 return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp)); 1918 } 1919 EXPORT_SYMBOL(read_cache_page_gfp); 1920 1921 /** 1922 * read_cache_page - read into page cache, fill it if needed 1923 * @mapping: the page's address_space 1924 * @index: the page index 1925 * @filler: function to perform the read 1926 * @data: destination for read data 1927 * 1928 * Read into the page cache. If a page already exists, and PageUptodate() is 1929 * not set, try to fill the page then wait for it to become unlocked. 1930 * 1931 * If the page does not get brought uptodate, return -EIO. 1932 */ 1933 struct page *read_cache_page(struct address_space *mapping, 1934 pgoff_t index, 1935 int (*filler)(void *,struct page*), 1936 void *data) 1937 { 1938 return wait_on_page_read(read_cache_page_async(mapping, index, filler, data)); 1939 } 1940 EXPORT_SYMBOL(read_cache_page); 1941 1942 /* 1943 * The logic we want is 1944 * 1945 * if suid or (sgid and xgrp) 1946 * remove privs 1947 */ 1948 int should_remove_suid(struct dentry *dentry) 1949 { 1950 mode_t mode = dentry->d_inode->i_mode; 1951 int kill = 0; 1952 1953 /* suid always must be killed */ 1954 if (unlikely(mode & S_ISUID)) 1955 kill = ATTR_KILL_SUID; 1956 1957 /* 1958 * sgid without any exec bits is just a mandatory locking mark; leave 1959 * it alone. If some exec bits are set, it's a real sgid; kill it. 1960 */ 1961 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP))) 1962 kill |= ATTR_KILL_SGID; 1963 1964 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode))) 1965 return kill; 1966 1967 return 0; 1968 } 1969 EXPORT_SYMBOL(should_remove_suid); 1970 1971 static int __remove_suid(struct dentry *dentry, int kill) 1972 { 1973 struct iattr newattrs; 1974 1975 newattrs.ia_valid = ATTR_FORCE | kill; 1976 return notify_change(dentry, &newattrs); 1977 } 1978 1979 int file_remove_suid(struct file *file) 1980 { 1981 struct dentry *dentry = file->f_path.dentry; 1982 struct inode *inode = dentry->d_inode; 1983 int killsuid; 1984 int killpriv; 1985 int error = 0; 1986 1987 /* Fast path for nothing security related */ 1988 if (IS_NOSEC(inode)) 1989 return 0; 1990 1991 killsuid = should_remove_suid(dentry); 1992 killpriv = security_inode_need_killpriv(dentry); 1993 1994 if (killpriv < 0) 1995 return killpriv; 1996 if (killpriv) 1997 error = security_inode_killpriv(dentry); 1998 if (!error && killsuid) 1999 error = __remove_suid(dentry, killsuid); 2000 if (!error && (inode->i_sb->s_flags & MS_NOSEC)) 2001 inode->i_flags |= S_NOSEC; 2002 2003 return error; 2004 } 2005 EXPORT_SYMBOL(file_remove_suid); 2006 2007 static size_t __iovec_copy_from_user_inatomic(char *vaddr, 2008 const struct iovec *iov, size_t base, size_t bytes) 2009 { 2010 size_t copied = 0, left = 0; 2011 2012 while (bytes) { 2013 char __user *buf = iov->iov_base + base; 2014 int copy = min(bytes, iov->iov_len - base); 2015 2016 base = 0; 2017 left = __copy_from_user_inatomic(vaddr, buf, copy); 2018 copied += copy; 2019 bytes -= copy; 2020 vaddr += copy; 2021 iov++; 2022 2023 if (unlikely(left)) 2024 break; 2025 } 2026 return copied - left; 2027 } 2028 2029 /* 2030 * Copy as much as we can into the page and return the number of bytes which 2031 * were successfully copied. If a fault is encountered then return the number of 2032 * bytes which were copied. 2033 */ 2034 size_t iov_iter_copy_from_user_atomic(struct page *page, 2035 struct iov_iter *i, unsigned long offset, size_t bytes) 2036 { 2037 char *kaddr; 2038 size_t copied; 2039 2040 BUG_ON(!in_atomic()); 2041 kaddr = kmap_atomic(page, KM_USER0); 2042 if (likely(i->nr_segs == 1)) { 2043 int left; 2044 char __user *buf = i->iov->iov_base + i->iov_offset; 2045 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes); 2046 copied = bytes - left; 2047 } else { 2048 copied = __iovec_copy_from_user_inatomic(kaddr + offset, 2049 i->iov, i->iov_offset, bytes); 2050 } 2051 kunmap_atomic(kaddr, KM_USER0); 2052 2053 return copied; 2054 } 2055 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic); 2056 2057 /* 2058 * This has the same sideeffects and return value as 2059 * iov_iter_copy_from_user_atomic(). 2060 * The difference is that it attempts to resolve faults. 2061 * Page must not be locked. 2062 */ 2063 size_t iov_iter_copy_from_user(struct page *page, 2064 struct iov_iter *i, unsigned long offset, size_t bytes) 2065 { 2066 char *kaddr; 2067 size_t copied; 2068 2069 kaddr = kmap(page); 2070 if (likely(i->nr_segs == 1)) { 2071 int left; 2072 char __user *buf = i->iov->iov_base + i->iov_offset; 2073 left = __copy_from_user(kaddr + offset, buf, bytes); 2074 copied = bytes - left; 2075 } else { 2076 copied = __iovec_copy_from_user_inatomic(kaddr + offset, 2077 i->iov, i->iov_offset, bytes); 2078 } 2079 kunmap(page); 2080 return copied; 2081 } 2082 EXPORT_SYMBOL(iov_iter_copy_from_user); 2083 2084 void iov_iter_advance(struct iov_iter *i, size_t bytes) 2085 { 2086 BUG_ON(i->count < bytes); 2087 2088 if (likely(i->nr_segs == 1)) { 2089 i->iov_offset += bytes; 2090 i->count -= bytes; 2091 } else { 2092 const struct iovec *iov = i->iov; 2093 size_t base = i->iov_offset; 2094 2095 /* 2096 * The !iov->iov_len check ensures we skip over unlikely 2097 * zero-length segments (without overruning the iovec). 2098 */ 2099 while (bytes || unlikely(i->count && !iov->iov_len)) { 2100 int copy; 2101 2102 copy = min(bytes, iov->iov_len - base); 2103 BUG_ON(!i->count || i->count < copy); 2104 i->count -= copy; 2105 bytes -= copy; 2106 base += copy; 2107 if (iov->iov_len == base) { 2108 iov++; 2109 base = 0; 2110 } 2111 } 2112 i->iov = iov; 2113 i->iov_offset = base; 2114 } 2115 } 2116 EXPORT_SYMBOL(iov_iter_advance); 2117 2118 /* 2119 * Fault in the first iovec of the given iov_iter, to a maximum length 2120 * of bytes. Returns 0 on success, or non-zero if the memory could not be 2121 * accessed (ie. because it is an invalid address). 2122 * 2123 * writev-intensive code may want this to prefault several iovecs -- that 2124 * would be possible (callers must not rely on the fact that _only_ the 2125 * first iovec will be faulted with the current implementation). 2126 */ 2127 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes) 2128 { 2129 char __user *buf = i->iov->iov_base + i->iov_offset; 2130 bytes = min(bytes, i->iov->iov_len - i->iov_offset); 2131 return fault_in_pages_readable(buf, bytes); 2132 } 2133 EXPORT_SYMBOL(iov_iter_fault_in_readable); 2134 2135 /* 2136 * Return the count of just the current iov_iter segment. 2137 */ 2138 size_t iov_iter_single_seg_count(struct iov_iter *i) 2139 { 2140 const struct iovec *iov = i->iov; 2141 if (i->nr_segs == 1) 2142 return i->count; 2143 else 2144 return min(i->count, iov->iov_len - i->iov_offset); 2145 } 2146 EXPORT_SYMBOL(iov_iter_single_seg_count); 2147 2148 /* 2149 * Performs necessary checks before doing a write 2150 * 2151 * Can adjust writing position or amount of bytes to write. 2152 * Returns appropriate error code that caller should return or 2153 * zero in case that write should be allowed. 2154 */ 2155 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk) 2156 { 2157 struct inode *inode = file->f_mapping->host; 2158 unsigned long limit = rlimit(RLIMIT_FSIZE); 2159 2160 if (unlikely(*pos < 0)) 2161 return -EINVAL; 2162 2163 if (!isblk) { 2164 /* FIXME: this is for backwards compatibility with 2.4 */ 2165 if (file->f_flags & O_APPEND) 2166 *pos = i_size_read(inode); 2167 2168 if (limit != RLIM_INFINITY) { 2169 if (*pos >= limit) { 2170 send_sig(SIGXFSZ, current, 0); 2171 return -EFBIG; 2172 } 2173 if (*count > limit - (typeof(limit))*pos) { 2174 *count = limit - (typeof(limit))*pos; 2175 } 2176 } 2177 } 2178 2179 /* 2180 * LFS rule 2181 */ 2182 if (unlikely(*pos + *count > MAX_NON_LFS && 2183 !(file->f_flags & O_LARGEFILE))) { 2184 if (*pos >= MAX_NON_LFS) { 2185 return -EFBIG; 2186 } 2187 if (*count > MAX_NON_LFS - (unsigned long)*pos) { 2188 *count = MAX_NON_LFS - (unsigned long)*pos; 2189 } 2190 } 2191 2192 /* 2193 * Are we about to exceed the fs block limit ? 2194 * 2195 * If we have written data it becomes a short write. If we have 2196 * exceeded without writing data we send a signal and return EFBIG. 2197 * Linus frestrict idea will clean these up nicely.. 2198 */ 2199 if (likely(!isblk)) { 2200 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) { 2201 if (*count || *pos > inode->i_sb->s_maxbytes) { 2202 return -EFBIG; 2203 } 2204 /* zero-length writes at ->s_maxbytes are OK */ 2205 } 2206 2207 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes)) 2208 *count = inode->i_sb->s_maxbytes - *pos; 2209 } else { 2210 #ifdef CONFIG_BLOCK 2211 loff_t isize; 2212 if (bdev_read_only(I_BDEV(inode))) 2213 return -EPERM; 2214 isize = i_size_read(inode); 2215 if (*pos >= isize) { 2216 if (*count || *pos > isize) 2217 return -ENOSPC; 2218 } 2219 2220 if (*pos + *count > isize) 2221 *count = isize - *pos; 2222 #else 2223 return -EPERM; 2224 #endif 2225 } 2226 return 0; 2227 } 2228 EXPORT_SYMBOL(generic_write_checks); 2229 2230 int pagecache_write_begin(struct file *file, struct address_space *mapping, 2231 loff_t pos, unsigned len, unsigned flags, 2232 struct page **pagep, void **fsdata) 2233 { 2234 const struct address_space_operations *aops = mapping->a_ops; 2235 2236 return aops->write_begin(file, mapping, pos, len, flags, 2237 pagep, fsdata); 2238 } 2239 EXPORT_SYMBOL(pagecache_write_begin); 2240 2241 int pagecache_write_end(struct file *file, struct address_space *mapping, 2242 loff_t pos, unsigned len, unsigned copied, 2243 struct page *page, void *fsdata) 2244 { 2245 const struct address_space_operations *aops = mapping->a_ops; 2246 2247 mark_page_accessed(page); 2248 return aops->write_end(file, mapping, pos, len, copied, page, fsdata); 2249 } 2250 EXPORT_SYMBOL(pagecache_write_end); 2251 2252 ssize_t 2253 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov, 2254 unsigned long *nr_segs, loff_t pos, loff_t *ppos, 2255 size_t count, size_t ocount) 2256 { 2257 struct file *file = iocb->ki_filp; 2258 struct address_space *mapping = file->f_mapping; 2259 struct inode *inode = mapping->host; 2260 ssize_t written; 2261 size_t write_len; 2262 pgoff_t end; 2263 2264 if (count != ocount) 2265 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count); 2266 2267 write_len = iov_length(iov, *nr_segs); 2268 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT; 2269 2270 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1); 2271 if (written) 2272 goto out; 2273 2274 /* 2275 * After a write we want buffered reads to be sure to go to disk to get 2276 * the new data. We invalidate clean cached page from the region we're 2277 * about to write. We do this *before* the write so that we can return 2278 * without clobbering -EIOCBQUEUED from ->direct_IO(). 2279 */ 2280 if (mapping->nrpages) { 2281 written = invalidate_inode_pages2_range(mapping, 2282 pos >> PAGE_CACHE_SHIFT, end); 2283 /* 2284 * If a page can not be invalidated, return 0 to fall back 2285 * to buffered write. 2286 */ 2287 if (written) { 2288 if (written == -EBUSY) 2289 return 0; 2290 goto out; 2291 } 2292 } 2293 2294 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs); 2295 2296 /* 2297 * Finally, try again to invalidate clean pages which might have been 2298 * cached by non-direct readahead, or faulted in by get_user_pages() 2299 * if the source of the write was an mmap'ed region of the file 2300 * we're writing. Either one is a pretty crazy thing to do, 2301 * so we don't support it 100%. If this invalidation 2302 * fails, tough, the write still worked... 2303 */ 2304 if (mapping->nrpages) { 2305 invalidate_inode_pages2_range(mapping, 2306 pos >> PAGE_CACHE_SHIFT, end); 2307 } 2308 2309 if (written > 0) { 2310 pos += written; 2311 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 2312 i_size_write(inode, pos); 2313 mark_inode_dirty(inode); 2314 } 2315 *ppos = pos; 2316 } 2317 out: 2318 return written; 2319 } 2320 EXPORT_SYMBOL(generic_file_direct_write); 2321 2322 /* 2323 * Find or create a page at the given pagecache position. Return the locked 2324 * page. This function is specifically for buffered writes. 2325 */ 2326 struct page *grab_cache_page_write_begin(struct address_space *mapping, 2327 pgoff_t index, unsigned flags) 2328 { 2329 int status; 2330 struct page *page; 2331 gfp_t gfp_notmask = 0; 2332 if (flags & AOP_FLAG_NOFS) 2333 gfp_notmask = __GFP_FS; 2334 repeat: 2335 page = find_lock_page(mapping, index); 2336 if (page) 2337 goto found; 2338 2339 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask); 2340 if (!page) 2341 return NULL; 2342 status = add_to_page_cache_lru(page, mapping, index, 2343 GFP_KERNEL & ~gfp_notmask); 2344 if (unlikely(status)) { 2345 page_cache_release(page); 2346 if (status == -EEXIST) 2347 goto repeat; 2348 return NULL; 2349 } 2350 found: 2351 wait_on_page_writeback(page); 2352 return page; 2353 } 2354 EXPORT_SYMBOL(grab_cache_page_write_begin); 2355 2356 static ssize_t generic_perform_write(struct file *file, 2357 struct iov_iter *i, loff_t pos) 2358 { 2359 struct address_space *mapping = file->f_mapping; 2360 const struct address_space_operations *a_ops = mapping->a_ops; 2361 long status = 0; 2362 ssize_t written = 0; 2363 unsigned int flags = 0; 2364 2365 /* 2366 * Copies from kernel address space cannot fail (NFSD is a big user). 2367 */ 2368 if (segment_eq(get_fs(), KERNEL_DS)) 2369 flags |= AOP_FLAG_UNINTERRUPTIBLE; 2370 2371 do { 2372 struct page *page; 2373 unsigned long offset; /* Offset into pagecache page */ 2374 unsigned long bytes; /* Bytes to write to page */ 2375 size_t copied; /* Bytes copied from user */ 2376 void *fsdata; 2377 2378 offset = (pos & (PAGE_CACHE_SIZE - 1)); 2379 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset, 2380 iov_iter_count(i)); 2381 2382 again: 2383 2384 /* 2385 * Bring in the user page that we will copy from _first_. 2386 * Otherwise there's a nasty deadlock on copying from the 2387 * same page as we're writing to, without it being marked 2388 * up-to-date. 2389 * 2390 * Not only is this an optimisation, but it is also required 2391 * to check that the address is actually valid, when atomic 2392 * usercopies are used, below. 2393 */ 2394 if (unlikely(iov_iter_fault_in_readable(i, bytes))) { 2395 status = -EFAULT; 2396 break; 2397 } 2398 2399 status = a_ops->write_begin(file, mapping, pos, bytes, flags, 2400 &page, &fsdata); 2401 if (unlikely(status)) 2402 break; 2403 2404 if (mapping_writably_mapped(mapping)) 2405 flush_dcache_page(page); 2406 2407 pagefault_disable(); 2408 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); 2409 pagefault_enable(); 2410 flush_dcache_page(page); 2411 2412 mark_page_accessed(page); 2413 status = a_ops->write_end(file, mapping, pos, bytes, copied, 2414 page, fsdata); 2415 if (unlikely(status < 0)) 2416 break; 2417 copied = status; 2418 2419 cond_resched(); 2420 2421 iov_iter_advance(i, copied); 2422 if (unlikely(copied == 0)) { 2423 /* 2424 * If we were unable to copy any data at all, we must 2425 * fall back to a single segment length write. 2426 * 2427 * If we didn't fallback here, we could livelock 2428 * because not all segments in the iov can be copied at 2429 * once without a pagefault. 2430 */ 2431 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset, 2432 iov_iter_single_seg_count(i)); 2433 goto again; 2434 } 2435 pos += copied; 2436 written += copied; 2437 2438 balance_dirty_pages_ratelimited(mapping); 2439 2440 } while (iov_iter_count(i)); 2441 2442 return written ? written : status; 2443 } 2444 2445 ssize_t 2446 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov, 2447 unsigned long nr_segs, loff_t pos, loff_t *ppos, 2448 size_t count, ssize_t written) 2449 { 2450 struct file *file = iocb->ki_filp; 2451 ssize_t status; 2452 struct iov_iter i; 2453 2454 iov_iter_init(&i, iov, nr_segs, count, written); 2455 status = generic_perform_write(file, &i, pos); 2456 2457 if (likely(status >= 0)) { 2458 written += status; 2459 *ppos = pos + status; 2460 } 2461 2462 return written ? written : status; 2463 } 2464 EXPORT_SYMBOL(generic_file_buffered_write); 2465 2466 /** 2467 * __generic_file_aio_write - write data to a file 2468 * @iocb: IO state structure (file, offset, etc.) 2469 * @iov: vector with data to write 2470 * @nr_segs: number of segments in the vector 2471 * @ppos: position where to write 2472 * 2473 * This function does all the work needed for actually writing data to a 2474 * file. It does all basic checks, removes SUID from the file, updates 2475 * modification times and calls proper subroutines depending on whether we 2476 * do direct IO or a standard buffered write. 2477 * 2478 * It expects i_mutex to be grabbed unless we work on a block device or similar 2479 * object which does not need locking at all. 2480 * 2481 * This function does *not* take care of syncing data in case of O_SYNC write. 2482 * A caller has to handle it. This is mainly due to the fact that we want to 2483 * avoid syncing under i_mutex. 2484 */ 2485 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov, 2486 unsigned long nr_segs, loff_t *ppos) 2487 { 2488 struct file *file = iocb->ki_filp; 2489 struct address_space * mapping = file->f_mapping; 2490 size_t ocount; /* original count */ 2491 size_t count; /* after file limit checks */ 2492 struct inode *inode = mapping->host; 2493 loff_t pos; 2494 ssize_t written; 2495 ssize_t err; 2496 2497 ocount = 0; 2498 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ); 2499 if (err) 2500 return err; 2501 2502 count = ocount; 2503 pos = *ppos; 2504 2505 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE); 2506 2507 /* We can write back this queue in page reclaim */ 2508 current->backing_dev_info = mapping->backing_dev_info; 2509 written = 0; 2510 2511 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode)); 2512 if (err) 2513 goto out; 2514 2515 if (count == 0) 2516 goto out; 2517 2518 err = file_remove_suid(file); 2519 if (err) 2520 goto out; 2521 2522 file_update_time(file); 2523 2524 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ 2525 if (unlikely(file->f_flags & O_DIRECT)) { 2526 loff_t endbyte; 2527 ssize_t written_buffered; 2528 2529 written = generic_file_direct_write(iocb, iov, &nr_segs, pos, 2530 ppos, count, ocount); 2531 if (written < 0 || written == count) 2532 goto out; 2533 /* 2534 * direct-io write to a hole: fall through to buffered I/O 2535 * for completing the rest of the request. 2536 */ 2537 pos += written; 2538 count -= written; 2539 written_buffered = generic_file_buffered_write(iocb, iov, 2540 nr_segs, pos, ppos, count, 2541 written); 2542 /* 2543 * If generic_file_buffered_write() retuned a synchronous error 2544 * then we want to return the number of bytes which were 2545 * direct-written, or the error code if that was zero. Note 2546 * that this differs from normal direct-io semantics, which 2547 * will return -EFOO even if some bytes were written. 2548 */ 2549 if (written_buffered < 0) { 2550 err = written_buffered; 2551 goto out; 2552 } 2553 2554 /* 2555 * We need to ensure that the page cache pages are written to 2556 * disk and invalidated to preserve the expected O_DIRECT 2557 * semantics. 2558 */ 2559 endbyte = pos + written_buffered - written - 1; 2560 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte); 2561 if (err == 0) { 2562 written = written_buffered; 2563 invalidate_mapping_pages(mapping, 2564 pos >> PAGE_CACHE_SHIFT, 2565 endbyte >> PAGE_CACHE_SHIFT); 2566 } else { 2567 /* 2568 * We don't know how much we wrote, so just return 2569 * the number of bytes which were direct-written 2570 */ 2571 } 2572 } else { 2573 written = generic_file_buffered_write(iocb, iov, nr_segs, 2574 pos, ppos, count, written); 2575 } 2576 out: 2577 current->backing_dev_info = NULL; 2578 return written ? written : err; 2579 } 2580 EXPORT_SYMBOL(__generic_file_aio_write); 2581 2582 /** 2583 * generic_file_aio_write - write data to a file 2584 * @iocb: IO state structure 2585 * @iov: vector with data to write 2586 * @nr_segs: number of segments in the vector 2587 * @pos: position in file where to write 2588 * 2589 * This is a wrapper around __generic_file_aio_write() to be used by most 2590 * filesystems. It takes care of syncing the file in case of O_SYNC file 2591 * and acquires i_mutex as needed. 2592 */ 2593 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov, 2594 unsigned long nr_segs, loff_t pos) 2595 { 2596 struct file *file = iocb->ki_filp; 2597 struct inode *inode = file->f_mapping->host; 2598 struct blk_plug plug; 2599 ssize_t ret; 2600 2601 BUG_ON(iocb->ki_pos != pos); 2602 2603 mutex_lock(&inode->i_mutex); 2604 blk_start_plug(&plug); 2605 ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos); 2606 mutex_unlock(&inode->i_mutex); 2607 2608 if (ret > 0 || ret == -EIOCBQUEUED) { 2609 ssize_t err; 2610 2611 err = generic_write_sync(file, pos, ret); 2612 if (err < 0 && ret > 0) 2613 ret = err; 2614 } 2615 blk_finish_plug(&plug); 2616 return ret; 2617 } 2618 EXPORT_SYMBOL(generic_file_aio_write); 2619 2620 /** 2621 * try_to_release_page() - release old fs-specific metadata on a page 2622 * 2623 * @page: the page which the kernel is trying to free 2624 * @gfp_mask: memory allocation flags (and I/O mode) 2625 * 2626 * The address_space is to try to release any data against the page 2627 * (presumably at page->private). If the release was successful, return `1'. 2628 * Otherwise return zero. 2629 * 2630 * This may also be called if PG_fscache is set on a page, indicating that the 2631 * page is known to the local caching routines. 2632 * 2633 * The @gfp_mask argument specifies whether I/O may be performed to release 2634 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS). 2635 * 2636 */ 2637 int try_to_release_page(struct page *page, gfp_t gfp_mask) 2638 { 2639 struct address_space * const mapping = page->mapping; 2640 2641 BUG_ON(!PageLocked(page)); 2642 if (PageWriteback(page)) 2643 return 0; 2644 2645 if (mapping && mapping->a_ops->releasepage) 2646 return mapping->a_ops->releasepage(page, gfp_mask); 2647 return try_to_free_buffers(page); 2648 } 2649 2650 EXPORT_SYMBOL(try_to_release_page); 2651