xref: /openbmc/linux/mm/filemap.c (revision 7e035230)
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/memcontrol.h>
35 #include <linux/cleancache.h>
36 #include "internal.h"
37 
38 /*
39  * FIXME: remove all knowledge of the buffer layer from the core VM
40  */
41 #include <linux/buffer_head.h> /* for try_to_free_buffers */
42 
43 #include <asm/mman.h>
44 
45 /*
46  * Shared mappings implemented 30.11.1994. It's not fully working yet,
47  * though.
48  *
49  * Shared mappings now work. 15.8.1995  Bruno.
50  *
51  * finished 'unifying' the page and buffer cache and SMP-threaded the
52  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
53  *
54  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
55  */
56 
57 /*
58  * Lock ordering:
59  *
60  *  ->i_mmap_mutex		(truncate_pagecache)
61  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
62  *      ->swap_lock		(exclusive_swap_page, others)
63  *        ->mapping->tree_lock
64  *
65  *  ->i_mutex
66  *    ->i_mmap_mutex		(truncate->unmap_mapping_range)
67  *
68  *  ->mmap_sem
69  *    ->i_mmap_mutex
70  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
71  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
72  *
73  *  ->mmap_sem
74  *    ->lock_page		(access_process_vm)
75  *
76  *  ->i_mutex			(generic_file_buffered_write)
77  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
78  *
79  *  bdi->wb.list_lock
80  *    sb_lock			(fs/fs-writeback.c)
81  *    ->mapping->tree_lock	(__sync_single_inode)
82  *
83  *  ->i_mmap_mutex
84  *    ->anon_vma.lock		(vma_adjust)
85  *
86  *  ->anon_vma.lock
87  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
88  *
89  *  ->page_table_lock or pte_lock
90  *    ->swap_lock		(try_to_unmap_one)
91  *    ->private_lock		(try_to_unmap_one)
92  *    ->tree_lock		(try_to_unmap_one)
93  *    ->zone.lru_lock		(follow_page->mark_page_accessed)
94  *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
95  *    ->private_lock		(page_remove_rmap->set_page_dirty)
96  *    ->tree_lock		(page_remove_rmap->set_page_dirty)
97  *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
98  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
99  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
100  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
101  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
102  *
103  * ->i_mmap_mutex
104  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
105  */
106 
107 /*
108  * Delete a page from the page cache and free it. Caller has to make
109  * sure the page is locked and that nobody else uses it - or that usage
110  * is safe.  The caller must hold the mapping's tree_lock.
111  */
112 void __delete_from_page_cache(struct page *page)
113 {
114 	struct address_space *mapping = page->mapping;
115 
116 	/*
117 	 * if we're uptodate, flush out into the cleancache, otherwise
118 	 * invalidate any existing cleancache entries.  We can't leave
119 	 * stale data around in the cleancache once our page is gone
120 	 */
121 	if (PageUptodate(page) && PageMappedToDisk(page))
122 		cleancache_put_page(page);
123 	else
124 		cleancache_invalidate_page(mapping, page);
125 
126 	radix_tree_delete(&mapping->page_tree, page->index);
127 	page->mapping = NULL;
128 	/* Leave page->index set: truncation lookup relies upon it */
129 	mapping->nrpages--;
130 	__dec_zone_page_state(page, NR_FILE_PAGES);
131 	if (PageSwapBacked(page))
132 		__dec_zone_page_state(page, NR_SHMEM);
133 	BUG_ON(page_mapped(page));
134 
135 	/*
136 	 * Some filesystems seem to re-dirty the page even after
137 	 * the VM has canceled the dirty bit (eg ext3 journaling).
138 	 *
139 	 * Fix it up by doing a final dirty accounting check after
140 	 * having removed the page entirely.
141 	 */
142 	if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
143 		dec_zone_page_state(page, NR_FILE_DIRTY);
144 		dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
145 	}
146 }
147 
148 /**
149  * delete_from_page_cache - delete page from page cache
150  * @page: the page which the kernel is trying to remove from page cache
151  *
152  * This must be called only on pages that have been verified to be in the page
153  * cache and locked.  It will never put the page into the free list, the caller
154  * has a reference on the page.
155  */
156 void delete_from_page_cache(struct page *page)
157 {
158 	struct address_space *mapping = page->mapping;
159 	void (*freepage)(struct page *);
160 
161 	BUG_ON(!PageLocked(page));
162 
163 	freepage = mapping->a_ops->freepage;
164 	spin_lock_irq(&mapping->tree_lock);
165 	__delete_from_page_cache(page);
166 	spin_unlock_irq(&mapping->tree_lock);
167 	mem_cgroup_uncharge_cache_page(page);
168 
169 	if (freepage)
170 		freepage(page);
171 	page_cache_release(page);
172 }
173 EXPORT_SYMBOL(delete_from_page_cache);
174 
175 static int sleep_on_page(void *word)
176 {
177 	io_schedule();
178 	return 0;
179 }
180 
181 static int sleep_on_page_killable(void *word)
182 {
183 	sleep_on_page(word);
184 	return fatal_signal_pending(current) ? -EINTR : 0;
185 }
186 
187 /**
188  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
189  * @mapping:	address space structure to write
190  * @start:	offset in bytes where the range starts
191  * @end:	offset in bytes where the range ends (inclusive)
192  * @sync_mode:	enable synchronous operation
193  *
194  * Start writeback against all of a mapping's dirty pages that lie
195  * within the byte offsets <start, end> inclusive.
196  *
197  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
198  * opposed to a regular memory cleansing writeback.  The difference between
199  * these two operations is that if a dirty page/buffer is encountered, it must
200  * be waited upon, and not just skipped over.
201  */
202 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
203 				loff_t end, int sync_mode)
204 {
205 	int ret;
206 	struct writeback_control wbc = {
207 		.sync_mode = sync_mode,
208 		.nr_to_write = LONG_MAX,
209 		.range_start = start,
210 		.range_end = end,
211 	};
212 
213 	if (!mapping_cap_writeback_dirty(mapping))
214 		return 0;
215 
216 	ret = do_writepages(mapping, &wbc);
217 	return ret;
218 }
219 
220 static inline int __filemap_fdatawrite(struct address_space *mapping,
221 	int sync_mode)
222 {
223 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
224 }
225 
226 int filemap_fdatawrite(struct address_space *mapping)
227 {
228 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
229 }
230 EXPORT_SYMBOL(filemap_fdatawrite);
231 
232 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
233 				loff_t end)
234 {
235 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
236 }
237 EXPORT_SYMBOL(filemap_fdatawrite_range);
238 
239 /**
240  * filemap_flush - mostly a non-blocking flush
241  * @mapping:	target address_space
242  *
243  * This is a mostly non-blocking flush.  Not suitable for data-integrity
244  * purposes - I/O may not be started against all dirty pages.
245  */
246 int filemap_flush(struct address_space *mapping)
247 {
248 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
249 }
250 EXPORT_SYMBOL(filemap_flush);
251 
252 /**
253  * filemap_fdatawait_range - wait for writeback to complete
254  * @mapping:		address space structure to wait for
255  * @start_byte:		offset in bytes where the range starts
256  * @end_byte:		offset in bytes where the range ends (inclusive)
257  *
258  * Walk the list of under-writeback pages of the given address space
259  * in the given range and wait for all of them.
260  */
261 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
262 			    loff_t end_byte)
263 {
264 	pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
265 	pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
266 	struct pagevec pvec;
267 	int nr_pages;
268 	int ret = 0;
269 
270 	if (end_byte < start_byte)
271 		return 0;
272 
273 	pagevec_init(&pvec, 0);
274 	while ((index <= end) &&
275 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
276 			PAGECACHE_TAG_WRITEBACK,
277 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
278 		unsigned i;
279 
280 		for (i = 0; i < nr_pages; i++) {
281 			struct page *page = pvec.pages[i];
282 
283 			/* until radix tree lookup accepts end_index */
284 			if (page->index > end)
285 				continue;
286 
287 			wait_on_page_writeback(page);
288 			if (TestClearPageError(page))
289 				ret = -EIO;
290 		}
291 		pagevec_release(&pvec);
292 		cond_resched();
293 	}
294 
295 	/* Check for outstanding write errors */
296 	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
297 		ret = -ENOSPC;
298 	if (test_and_clear_bit(AS_EIO, &mapping->flags))
299 		ret = -EIO;
300 
301 	return ret;
302 }
303 EXPORT_SYMBOL(filemap_fdatawait_range);
304 
305 /**
306  * filemap_fdatawait - wait for all under-writeback pages to complete
307  * @mapping: address space structure to wait for
308  *
309  * Walk the list of under-writeback pages of the given address space
310  * and wait for all of them.
311  */
312 int filemap_fdatawait(struct address_space *mapping)
313 {
314 	loff_t i_size = i_size_read(mapping->host);
315 
316 	if (i_size == 0)
317 		return 0;
318 
319 	return filemap_fdatawait_range(mapping, 0, i_size - 1);
320 }
321 EXPORT_SYMBOL(filemap_fdatawait);
322 
323 int filemap_write_and_wait(struct address_space *mapping)
324 {
325 	int err = 0;
326 
327 	if (mapping->nrpages) {
328 		err = filemap_fdatawrite(mapping);
329 		/*
330 		 * Even if the above returned error, the pages may be
331 		 * written partially (e.g. -ENOSPC), so we wait for it.
332 		 * But the -EIO is special case, it may indicate the worst
333 		 * thing (e.g. bug) happened, so we avoid waiting for it.
334 		 */
335 		if (err != -EIO) {
336 			int err2 = filemap_fdatawait(mapping);
337 			if (!err)
338 				err = err2;
339 		}
340 	}
341 	return err;
342 }
343 EXPORT_SYMBOL(filemap_write_and_wait);
344 
345 /**
346  * filemap_write_and_wait_range - write out & wait on a file range
347  * @mapping:	the address_space for the pages
348  * @lstart:	offset in bytes where the range starts
349  * @lend:	offset in bytes where the range ends (inclusive)
350  *
351  * Write out and wait upon file offsets lstart->lend, inclusive.
352  *
353  * Note that `lend' is inclusive (describes the last byte to be written) so
354  * that this function can be used to write to the very end-of-file (end = -1).
355  */
356 int filemap_write_and_wait_range(struct address_space *mapping,
357 				 loff_t lstart, loff_t lend)
358 {
359 	int err = 0;
360 
361 	if (mapping->nrpages) {
362 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
363 						 WB_SYNC_ALL);
364 		/* See comment of filemap_write_and_wait() */
365 		if (err != -EIO) {
366 			int err2 = filemap_fdatawait_range(mapping,
367 						lstart, lend);
368 			if (!err)
369 				err = err2;
370 		}
371 	}
372 	return err;
373 }
374 EXPORT_SYMBOL(filemap_write_and_wait_range);
375 
376 /**
377  * replace_page_cache_page - replace a pagecache page with a new one
378  * @old:	page to be replaced
379  * @new:	page to replace with
380  * @gfp_mask:	allocation mode
381  *
382  * This function replaces a page in the pagecache with a new one.  On
383  * success it acquires the pagecache reference for the new page and
384  * drops it for the old page.  Both the old and new pages must be
385  * locked.  This function does not add the new page to the LRU, the
386  * caller must do that.
387  *
388  * The remove + add is atomic.  The only way this function can fail is
389  * memory allocation failure.
390  */
391 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
392 {
393 	int error;
394 
395 	VM_BUG_ON(!PageLocked(old));
396 	VM_BUG_ON(!PageLocked(new));
397 	VM_BUG_ON(new->mapping);
398 
399 	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
400 	if (!error) {
401 		struct address_space *mapping = old->mapping;
402 		void (*freepage)(struct page *);
403 
404 		pgoff_t offset = old->index;
405 		freepage = mapping->a_ops->freepage;
406 
407 		page_cache_get(new);
408 		new->mapping = mapping;
409 		new->index = offset;
410 
411 		spin_lock_irq(&mapping->tree_lock);
412 		__delete_from_page_cache(old);
413 		error = radix_tree_insert(&mapping->page_tree, offset, new);
414 		BUG_ON(error);
415 		mapping->nrpages++;
416 		__inc_zone_page_state(new, NR_FILE_PAGES);
417 		if (PageSwapBacked(new))
418 			__inc_zone_page_state(new, NR_SHMEM);
419 		spin_unlock_irq(&mapping->tree_lock);
420 		/* mem_cgroup codes must not be called under tree_lock */
421 		mem_cgroup_replace_page_cache(old, new);
422 		radix_tree_preload_end();
423 		if (freepage)
424 			freepage(old);
425 		page_cache_release(old);
426 	}
427 
428 	return error;
429 }
430 EXPORT_SYMBOL_GPL(replace_page_cache_page);
431 
432 /**
433  * add_to_page_cache_locked - add a locked page to the pagecache
434  * @page:	page to add
435  * @mapping:	the page's address_space
436  * @offset:	page index
437  * @gfp_mask:	page allocation mode
438  *
439  * This function is used to add a page to the pagecache. It must be locked.
440  * This function does not add the page to the LRU.  The caller must do that.
441  */
442 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
443 		pgoff_t offset, gfp_t gfp_mask)
444 {
445 	int error;
446 
447 	VM_BUG_ON(!PageLocked(page));
448 	VM_BUG_ON(PageSwapBacked(page));
449 
450 	error = mem_cgroup_cache_charge(page, current->mm,
451 					gfp_mask & GFP_RECLAIM_MASK);
452 	if (error)
453 		goto out;
454 
455 	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
456 	if (error == 0) {
457 		page_cache_get(page);
458 		page->mapping = mapping;
459 		page->index = offset;
460 
461 		spin_lock_irq(&mapping->tree_lock);
462 		error = radix_tree_insert(&mapping->page_tree, offset, page);
463 		if (likely(!error)) {
464 			mapping->nrpages++;
465 			__inc_zone_page_state(page, NR_FILE_PAGES);
466 			spin_unlock_irq(&mapping->tree_lock);
467 		} else {
468 			page->mapping = NULL;
469 			/* Leave page->index set: truncation relies upon it */
470 			spin_unlock_irq(&mapping->tree_lock);
471 			mem_cgroup_uncharge_cache_page(page);
472 			page_cache_release(page);
473 		}
474 		radix_tree_preload_end();
475 	} else
476 		mem_cgroup_uncharge_cache_page(page);
477 out:
478 	return error;
479 }
480 EXPORT_SYMBOL(add_to_page_cache_locked);
481 
482 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
483 				pgoff_t offset, gfp_t gfp_mask)
484 {
485 	int ret;
486 
487 	ret = add_to_page_cache(page, mapping, offset, gfp_mask);
488 	if (ret == 0)
489 		lru_cache_add_file(page);
490 	return ret;
491 }
492 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
493 
494 #ifdef CONFIG_NUMA
495 struct page *__page_cache_alloc(gfp_t gfp)
496 {
497 	int n;
498 	struct page *page;
499 
500 	if (cpuset_do_page_mem_spread()) {
501 		unsigned int cpuset_mems_cookie;
502 		do {
503 			cpuset_mems_cookie = get_mems_allowed();
504 			n = cpuset_mem_spread_node();
505 			page = alloc_pages_exact_node(n, gfp, 0);
506 		} while (!put_mems_allowed(cpuset_mems_cookie) && !page);
507 
508 		return page;
509 	}
510 	return alloc_pages(gfp, 0);
511 }
512 EXPORT_SYMBOL(__page_cache_alloc);
513 #endif
514 
515 /*
516  * In order to wait for pages to become available there must be
517  * waitqueues associated with pages. By using a hash table of
518  * waitqueues where the bucket discipline is to maintain all
519  * waiters on the same queue and wake all when any of the pages
520  * become available, and for the woken contexts to check to be
521  * sure the appropriate page became available, this saves space
522  * at a cost of "thundering herd" phenomena during rare hash
523  * collisions.
524  */
525 static wait_queue_head_t *page_waitqueue(struct page *page)
526 {
527 	const struct zone *zone = page_zone(page);
528 
529 	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
530 }
531 
532 static inline void wake_up_page(struct page *page, int bit)
533 {
534 	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
535 }
536 
537 void wait_on_page_bit(struct page *page, int bit_nr)
538 {
539 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
540 
541 	if (test_bit(bit_nr, &page->flags))
542 		__wait_on_bit(page_waitqueue(page), &wait, sleep_on_page,
543 							TASK_UNINTERRUPTIBLE);
544 }
545 EXPORT_SYMBOL(wait_on_page_bit);
546 
547 int wait_on_page_bit_killable(struct page *page, int bit_nr)
548 {
549 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
550 
551 	if (!test_bit(bit_nr, &page->flags))
552 		return 0;
553 
554 	return __wait_on_bit(page_waitqueue(page), &wait,
555 			     sleep_on_page_killable, TASK_KILLABLE);
556 }
557 
558 /**
559  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
560  * @page: Page defining the wait queue of interest
561  * @waiter: Waiter to add to the queue
562  *
563  * Add an arbitrary @waiter to the wait queue for the nominated @page.
564  */
565 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
566 {
567 	wait_queue_head_t *q = page_waitqueue(page);
568 	unsigned long flags;
569 
570 	spin_lock_irqsave(&q->lock, flags);
571 	__add_wait_queue(q, waiter);
572 	spin_unlock_irqrestore(&q->lock, flags);
573 }
574 EXPORT_SYMBOL_GPL(add_page_wait_queue);
575 
576 /**
577  * unlock_page - unlock a locked page
578  * @page: the page
579  *
580  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
581  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
582  * mechananism between PageLocked pages and PageWriteback pages is shared.
583  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
584  *
585  * The mb is necessary to enforce ordering between the clear_bit and the read
586  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
587  */
588 void unlock_page(struct page *page)
589 {
590 	VM_BUG_ON(!PageLocked(page));
591 	clear_bit_unlock(PG_locked, &page->flags);
592 	smp_mb__after_clear_bit();
593 	wake_up_page(page, PG_locked);
594 }
595 EXPORT_SYMBOL(unlock_page);
596 
597 /**
598  * end_page_writeback - end writeback against a page
599  * @page: the page
600  */
601 void end_page_writeback(struct page *page)
602 {
603 	if (TestClearPageReclaim(page))
604 		rotate_reclaimable_page(page);
605 
606 	if (!test_clear_page_writeback(page))
607 		BUG();
608 
609 	smp_mb__after_clear_bit();
610 	wake_up_page(page, PG_writeback);
611 }
612 EXPORT_SYMBOL(end_page_writeback);
613 
614 /**
615  * __lock_page - get a lock on the page, assuming we need to sleep to get it
616  * @page: the page to lock
617  */
618 void __lock_page(struct page *page)
619 {
620 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
621 
622 	__wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page,
623 							TASK_UNINTERRUPTIBLE);
624 }
625 EXPORT_SYMBOL(__lock_page);
626 
627 int __lock_page_killable(struct page *page)
628 {
629 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
630 
631 	return __wait_on_bit_lock(page_waitqueue(page), &wait,
632 					sleep_on_page_killable, TASK_KILLABLE);
633 }
634 EXPORT_SYMBOL_GPL(__lock_page_killable);
635 
636 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
637 			 unsigned int flags)
638 {
639 	if (flags & FAULT_FLAG_ALLOW_RETRY) {
640 		/*
641 		 * CAUTION! In this case, mmap_sem is not released
642 		 * even though return 0.
643 		 */
644 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
645 			return 0;
646 
647 		up_read(&mm->mmap_sem);
648 		if (flags & FAULT_FLAG_KILLABLE)
649 			wait_on_page_locked_killable(page);
650 		else
651 			wait_on_page_locked(page);
652 		return 0;
653 	} else {
654 		if (flags & FAULT_FLAG_KILLABLE) {
655 			int ret;
656 
657 			ret = __lock_page_killable(page);
658 			if (ret) {
659 				up_read(&mm->mmap_sem);
660 				return 0;
661 			}
662 		} else
663 			__lock_page(page);
664 		return 1;
665 	}
666 }
667 
668 /**
669  * find_get_page - find and get a page reference
670  * @mapping: the address_space to search
671  * @offset: the page index
672  *
673  * Is there a pagecache struct page at the given (mapping, offset) tuple?
674  * If yes, increment its refcount and return it; if no, return NULL.
675  */
676 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
677 {
678 	void **pagep;
679 	struct page *page;
680 
681 	rcu_read_lock();
682 repeat:
683 	page = NULL;
684 	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
685 	if (pagep) {
686 		page = radix_tree_deref_slot(pagep);
687 		if (unlikely(!page))
688 			goto out;
689 		if (radix_tree_exception(page)) {
690 			if (radix_tree_deref_retry(page))
691 				goto repeat;
692 			/*
693 			 * Otherwise, shmem/tmpfs must be storing a swap entry
694 			 * here as an exceptional entry: so return it without
695 			 * attempting to raise page count.
696 			 */
697 			goto out;
698 		}
699 		if (!page_cache_get_speculative(page))
700 			goto repeat;
701 
702 		/*
703 		 * Has the page moved?
704 		 * This is part of the lockless pagecache protocol. See
705 		 * include/linux/pagemap.h for details.
706 		 */
707 		if (unlikely(page != *pagep)) {
708 			page_cache_release(page);
709 			goto repeat;
710 		}
711 	}
712 out:
713 	rcu_read_unlock();
714 
715 	return page;
716 }
717 EXPORT_SYMBOL(find_get_page);
718 
719 /**
720  * find_lock_page - locate, pin and lock a pagecache page
721  * @mapping: the address_space to search
722  * @offset: the page index
723  *
724  * Locates the desired pagecache page, locks it, increments its reference
725  * count and returns its address.
726  *
727  * Returns zero if the page was not present. find_lock_page() may sleep.
728  */
729 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
730 {
731 	struct page *page;
732 
733 repeat:
734 	page = find_get_page(mapping, offset);
735 	if (page && !radix_tree_exception(page)) {
736 		lock_page(page);
737 		/* Has the page been truncated? */
738 		if (unlikely(page->mapping != mapping)) {
739 			unlock_page(page);
740 			page_cache_release(page);
741 			goto repeat;
742 		}
743 		VM_BUG_ON(page->index != offset);
744 	}
745 	return page;
746 }
747 EXPORT_SYMBOL(find_lock_page);
748 
749 /**
750  * find_or_create_page - locate or add a pagecache page
751  * @mapping: the page's address_space
752  * @index: the page's index into the mapping
753  * @gfp_mask: page allocation mode
754  *
755  * Locates a page in the pagecache.  If the page is not present, a new page
756  * is allocated using @gfp_mask and is added to the pagecache and to the VM's
757  * LRU list.  The returned page is locked and has its reference count
758  * incremented.
759  *
760  * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
761  * allocation!
762  *
763  * find_or_create_page() returns the desired page's address, or zero on
764  * memory exhaustion.
765  */
766 struct page *find_or_create_page(struct address_space *mapping,
767 		pgoff_t index, gfp_t gfp_mask)
768 {
769 	struct page *page;
770 	int err;
771 repeat:
772 	page = find_lock_page(mapping, index);
773 	if (!page) {
774 		page = __page_cache_alloc(gfp_mask);
775 		if (!page)
776 			return NULL;
777 		/*
778 		 * We want a regular kernel memory (not highmem or DMA etc)
779 		 * allocation for the radix tree nodes, but we need to honour
780 		 * the context-specific requirements the caller has asked for.
781 		 * GFP_RECLAIM_MASK collects those requirements.
782 		 */
783 		err = add_to_page_cache_lru(page, mapping, index,
784 			(gfp_mask & GFP_RECLAIM_MASK));
785 		if (unlikely(err)) {
786 			page_cache_release(page);
787 			page = NULL;
788 			if (err == -EEXIST)
789 				goto repeat;
790 		}
791 	}
792 	return page;
793 }
794 EXPORT_SYMBOL(find_or_create_page);
795 
796 /**
797  * find_get_pages - gang pagecache lookup
798  * @mapping:	The address_space to search
799  * @start:	The starting page index
800  * @nr_pages:	The maximum number of pages
801  * @pages:	Where the resulting pages are placed
802  *
803  * find_get_pages() will search for and return a group of up to
804  * @nr_pages pages in the mapping.  The pages are placed at @pages.
805  * find_get_pages() takes a reference against the returned pages.
806  *
807  * The search returns a group of mapping-contiguous pages with ascending
808  * indexes.  There may be holes in the indices due to not-present pages.
809  *
810  * find_get_pages() returns the number of pages which were found.
811  */
812 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
813 			    unsigned int nr_pages, struct page **pages)
814 {
815 	struct radix_tree_iter iter;
816 	void **slot;
817 	unsigned ret = 0;
818 
819 	if (unlikely(!nr_pages))
820 		return 0;
821 
822 	rcu_read_lock();
823 restart:
824 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
825 		struct page *page;
826 repeat:
827 		page = radix_tree_deref_slot(slot);
828 		if (unlikely(!page))
829 			continue;
830 
831 		if (radix_tree_exception(page)) {
832 			if (radix_tree_deref_retry(page)) {
833 				/*
834 				 * Transient condition which can only trigger
835 				 * when entry at index 0 moves out of or back
836 				 * to root: none yet gotten, safe to restart.
837 				 */
838 				WARN_ON(iter.index);
839 				goto restart;
840 			}
841 			/*
842 			 * Otherwise, shmem/tmpfs must be storing a swap entry
843 			 * here as an exceptional entry: so skip over it -
844 			 * we only reach this from invalidate_mapping_pages().
845 			 */
846 			continue;
847 		}
848 
849 		if (!page_cache_get_speculative(page))
850 			goto repeat;
851 
852 		/* Has the page moved? */
853 		if (unlikely(page != *slot)) {
854 			page_cache_release(page);
855 			goto repeat;
856 		}
857 
858 		pages[ret] = page;
859 		if (++ret == nr_pages)
860 			break;
861 	}
862 
863 	rcu_read_unlock();
864 	return ret;
865 }
866 
867 /**
868  * find_get_pages_contig - gang contiguous pagecache lookup
869  * @mapping:	The address_space to search
870  * @index:	The starting page index
871  * @nr_pages:	The maximum number of pages
872  * @pages:	Where the resulting pages are placed
873  *
874  * find_get_pages_contig() works exactly like find_get_pages(), except
875  * that the returned number of pages are guaranteed to be contiguous.
876  *
877  * find_get_pages_contig() returns the number of pages which were found.
878  */
879 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
880 			       unsigned int nr_pages, struct page **pages)
881 {
882 	struct radix_tree_iter iter;
883 	void **slot;
884 	unsigned int ret = 0;
885 
886 	if (unlikely(!nr_pages))
887 		return 0;
888 
889 	rcu_read_lock();
890 restart:
891 	radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
892 		struct page *page;
893 repeat:
894 		page = radix_tree_deref_slot(slot);
895 		/* The hole, there no reason to continue */
896 		if (unlikely(!page))
897 			break;
898 
899 		if (radix_tree_exception(page)) {
900 			if (radix_tree_deref_retry(page)) {
901 				/*
902 				 * Transient condition which can only trigger
903 				 * when entry at index 0 moves out of or back
904 				 * to root: none yet gotten, safe to restart.
905 				 */
906 				goto restart;
907 			}
908 			/*
909 			 * Otherwise, shmem/tmpfs must be storing a swap entry
910 			 * here as an exceptional entry: so stop looking for
911 			 * contiguous pages.
912 			 */
913 			break;
914 		}
915 
916 		if (!page_cache_get_speculative(page))
917 			goto repeat;
918 
919 		/* Has the page moved? */
920 		if (unlikely(page != *slot)) {
921 			page_cache_release(page);
922 			goto repeat;
923 		}
924 
925 		/*
926 		 * must check mapping and index after taking the ref.
927 		 * otherwise we can get both false positives and false
928 		 * negatives, which is just confusing to the caller.
929 		 */
930 		if (page->mapping == NULL || page->index != iter.index) {
931 			page_cache_release(page);
932 			break;
933 		}
934 
935 		pages[ret] = page;
936 		if (++ret == nr_pages)
937 			break;
938 	}
939 	rcu_read_unlock();
940 	return ret;
941 }
942 EXPORT_SYMBOL(find_get_pages_contig);
943 
944 /**
945  * find_get_pages_tag - find and return pages that match @tag
946  * @mapping:	the address_space to search
947  * @index:	the starting page index
948  * @tag:	the tag index
949  * @nr_pages:	the maximum number of pages
950  * @pages:	where the resulting pages are placed
951  *
952  * Like find_get_pages, except we only return pages which are tagged with
953  * @tag.   We update @index to index the next page for the traversal.
954  */
955 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
956 			int tag, unsigned int nr_pages, struct page **pages)
957 {
958 	struct radix_tree_iter iter;
959 	void **slot;
960 	unsigned ret = 0;
961 
962 	if (unlikely(!nr_pages))
963 		return 0;
964 
965 	rcu_read_lock();
966 restart:
967 	radix_tree_for_each_tagged(slot, &mapping->page_tree,
968 				   &iter, *index, tag) {
969 		struct page *page;
970 repeat:
971 		page = radix_tree_deref_slot(slot);
972 		if (unlikely(!page))
973 			continue;
974 
975 		if (radix_tree_exception(page)) {
976 			if (radix_tree_deref_retry(page)) {
977 				/*
978 				 * Transient condition which can only trigger
979 				 * when entry at index 0 moves out of or back
980 				 * to root: none yet gotten, safe to restart.
981 				 */
982 				goto restart;
983 			}
984 			/*
985 			 * This function is never used on a shmem/tmpfs
986 			 * mapping, so a swap entry won't be found here.
987 			 */
988 			BUG();
989 		}
990 
991 		if (!page_cache_get_speculative(page))
992 			goto repeat;
993 
994 		/* Has the page moved? */
995 		if (unlikely(page != *slot)) {
996 			page_cache_release(page);
997 			goto repeat;
998 		}
999 
1000 		pages[ret] = page;
1001 		if (++ret == nr_pages)
1002 			break;
1003 	}
1004 
1005 	rcu_read_unlock();
1006 
1007 	if (ret)
1008 		*index = pages[ret - 1]->index + 1;
1009 
1010 	return ret;
1011 }
1012 EXPORT_SYMBOL(find_get_pages_tag);
1013 
1014 /**
1015  * grab_cache_page_nowait - returns locked page at given index in given cache
1016  * @mapping: target address_space
1017  * @index: the page index
1018  *
1019  * Same as grab_cache_page(), but do not wait if the page is unavailable.
1020  * This is intended for speculative data generators, where the data can
1021  * be regenerated if the page couldn't be grabbed.  This routine should
1022  * be safe to call while holding the lock for another page.
1023  *
1024  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
1025  * and deadlock against the caller's locked page.
1026  */
1027 struct page *
1028 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
1029 {
1030 	struct page *page = find_get_page(mapping, index);
1031 
1032 	if (page) {
1033 		if (trylock_page(page))
1034 			return page;
1035 		page_cache_release(page);
1036 		return NULL;
1037 	}
1038 	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
1039 	if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
1040 		page_cache_release(page);
1041 		page = NULL;
1042 	}
1043 	return page;
1044 }
1045 EXPORT_SYMBOL(grab_cache_page_nowait);
1046 
1047 /*
1048  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1049  * a _large_ part of the i/o request. Imagine the worst scenario:
1050  *
1051  *      ---R__________________________________________B__________
1052  *         ^ reading here                             ^ bad block(assume 4k)
1053  *
1054  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1055  * => failing the whole request => read(R) => read(R+1) =>
1056  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1057  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1058  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1059  *
1060  * It is going insane. Fix it by quickly scaling down the readahead size.
1061  */
1062 static void shrink_readahead_size_eio(struct file *filp,
1063 					struct file_ra_state *ra)
1064 {
1065 	ra->ra_pages /= 4;
1066 }
1067 
1068 /**
1069  * do_generic_file_read - generic file read routine
1070  * @filp:	the file to read
1071  * @ppos:	current file position
1072  * @desc:	read_descriptor
1073  * @actor:	read method
1074  *
1075  * This is a generic file read routine, and uses the
1076  * mapping->a_ops->readpage() function for the actual low-level stuff.
1077  *
1078  * This is really ugly. But the goto's actually try to clarify some
1079  * of the logic when it comes to error handling etc.
1080  */
1081 static void do_generic_file_read(struct file *filp, loff_t *ppos,
1082 		read_descriptor_t *desc, read_actor_t actor)
1083 {
1084 	struct address_space *mapping = filp->f_mapping;
1085 	struct inode *inode = mapping->host;
1086 	struct file_ra_state *ra = &filp->f_ra;
1087 	pgoff_t index;
1088 	pgoff_t last_index;
1089 	pgoff_t prev_index;
1090 	unsigned long offset;      /* offset into pagecache page */
1091 	unsigned int prev_offset;
1092 	int error;
1093 
1094 	index = *ppos >> PAGE_CACHE_SHIFT;
1095 	prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1096 	prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1097 	last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1098 	offset = *ppos & ~PAGE_CACHE_MASK;
1099 
1100 	for (;;) {
1101 		struct page *page;
1102 		pgoff_t end_index;
1103 		loff_t isize;
1104 		unsigned long nr, ret;
1105 
1106 		cond_resched();
1107 find_page:
1108 		page = find_get_page(mapping, index);
1109 		if (!page) {
1110 			page_cache_sync_readahead(mapping,
1111 					ra, filp,
1112 					index, last_index - index);
1113 			page = find_get_page(mapping, index);
1114 			if (unlikely(page == NULL))
1115 				goto no_cached_page;
1116 		}
1117 		if (PageReadahead(page)) {
1118 			page_cache_async_readahead(mapping,
1119 					ra, filp, page,
1120 					index, last_index - index);
1121 		}
1122 		if (!PageUptodate(page)) {
1123 			if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1124 					!mapping->a_ops->is_partially_uptodate)
1125 				goto page_not_up_to_date;
1126 			if (!trylock_page(page))
1127 				goto page_not_up_to_date;
1128 			/* Did it get truncated before we got the lock? */
1129 			if (!page->mapping)
1130 				goto page_not_up_to_date_locked;
1131 			if (!mapping->a_ops->is_partially_uptodate(page,
1132 								desc, offset))
1133 				goto page_not_up_to_date_locked;
1134 			unlock_page(page);
1135 		}
1136 page_ok:
1137 		/*
1138 		 * i_size must be checked after we know the page is Uptodate.
1139 		 *
1140 		 * Checking i_size after the check allows us to calculate
1141 		 * the correct value for "nr", which means the zero-filled
1142 		 * part of the page is not copied back to userspace (unless
1143 		 * another truncate extends the file - this is desired though).
1144 		 */
1145 
1146 		isize = i_size_read(inode);
1147 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1148 		if (unlikely(!isize || index > end_index)) {
1149 			page_cache_release(page);
1150 			goto out;
1151 		}
1152 
1153 		/* nr is the maximum number of bytes to copy from this page */
1154 		nr = PAGE_CACHE_SIZE;
1155 		if (index == end_index) {
1156 			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1157 			if (nr <= offset) {
1158 				page_cache_release(page);
1159 				goto out;
1160 			}
1161 		}
1162 		nr = nr - offset;
1163 
1164 		/* If users can be writing to this page using arbitrary
1165 		 * virtual addresses, take care about potential aliasing
1166 		 * before reading the page on the kernel side.
1167 		 */
1168 		if (mapping_writably_mapped(mapping))
1169 			flush_dcache_page(page);
1170 
1171 		/*
1172 		 * When a sequential read accesses a page several times,
1173 		 * only mark it as accessed the first time.
1174 		 */
1175 		if (prev_index != index || offset != prev_offset)
1176 			mark_page_accessed(page);
1177 		prev_index = index;
1178 
1179 		/*
1180 		 * Ok, we have the page, and it's up-to-date, so
1181 		 * now we can copy it to user space...
1182 		 *
1183 		 * The actor routine returns how many bytes were actually used..
1184 		 * NOTE! This may not be the same as how much of a user buffer
1185 		 * we filled up (we may be padding etc), so we can only update
1186 		 * "pos" here (the actor routine has to update the user buffer
1187 		 * pointers and the remaining count).
1188 		 */
1189 		ret = actor(desc, page, offset, nr);
1190 		offset += ret;
1191 		index += offset >> PAGE_CACHE_SHIFT;
1192 		offset &= ~PAGE_CACHE_MASK;
1193 		prev_offset = offset;
1194 
1195 		page_cache_release(page);
1196 		if (ret == nr && desc->count)
1197 			continue;
1198 		goto out;
1199 
1200 page_not_up_to_date:
1201 		/* Get exclusive access to the page ... */
1202 		error = lock_page_killable(page);
1203 		if (unlikely(error))
1204 			goto readpage_error;
1205 
1206 page_not_up_to_date_locked:
1207 		/* Did it get truncated before we got the lock? */
1208 		if (!page->mapping) {
1209 			unlock_page(page);
1210 			page_cache_release(page);
1211 			continue;
1212 		}
1213 
1214 		/* Did somebody else fill it already? */
1215 		if (PageUptodate(page)) {
1216 			unlock_page(page);
1217 			goto page_ok;
1218 		}
1219 
1220 readpage:
1221 		/*
1222 		 * A previous I/O error may have been due to temporary
1223 		 * failures, eg. multipath errors.
1224 		 * PG_error will be set again if readpage fails.
1225 		 */
1226 		ClearPageError(page);
1227 		/* Start the actual read. The read will unlock the page. */
1228 		error = mapping->a_ops->readpage(filp, page);
1229 
1230 		if (unlikely(error)) {
1231 			if (error == AOP_TRUNCATED_PAGE) {
1232 				page_cache_release(page);
1233 				goto find_page;
1234 			}
1235 			goto readpage_error;
1236 		}
1237 
1238 		if (!PageUptodate(page)) {
1239 			error = lock_page_killable(page);
1240 			if (unlikely(error))
1241 				goto readpage_error;
1242 			if (!PageUptodate(page)) {
1243 				if (page->mapping == NULL) {
1244 					/*
1245 					 * invalidate_mapping_pages got it
1246 					 */
1247 					unlock_page(page);
1248 					page_cache_release(page);
1249 					goto find_page;
1250 				}
1251 				unlock_page(page);
1252 				shrink_readahead_size_eio(filp, ra);
1253 				error = -EIO;
1254 				goto readpage_error;
1255 			}
1256 			unlock_page(page);
1257 		}
1258 
1259 		goto page_ok;
1260 
1261 readpage_error:
1262 		/* UHHUH! A synchronous read error occurred. Report it */
1263 		desc->error = error;
1264 		page_cache_release(page);
1265 		goto out;
1266 
1267 no_cached_page:
1268 		/*
1269 		 * Ok, it wasn't cached, so we need to create a new
1270 		 * page..
1271 		 */
1272 		page = page_cache_alloc_cold(mapping);
1273 		if (!page) {
1274 			desc->error = -ENOMEM;
1275 			goto out;
1276 		}
1277 		error = add_to_page_cache_lru(page, mapping,
1278 						index, GFP_KERNEL);
1279 		if (error) {
1280 			page_cache_release(page);
1281 			if (error == -EEXIST)
1282 				goto find_page;
1283 			desc->error = error;
1284 			goto out;
1285 		}
1286 		goto readpage;
1287 	}
1288 
1289 out:
1290 	ra->prev_pos = prev_index;
1291 	ra->prev_pos <<= PAGE_CACHE_SHIFT;
1292 	ra->prev_pos |= prev_offset;
1293 
1294 	*ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1295 	file_accessed(filp);
1296 }
1297 
1298 int file_read_actor(read_descriptor_t *desc, struct page *page,
1299 			unsigned long offset, unsigned long size)
1300 {
1301 	char *kaddr;
1302 	unsigned long left, count = desc->count;
1303 
1304 	if (size > count)
1305 		size = count;
1306 
1307 	/*
1308 	 * Faults on the destination of a read are common, so do it before
1309 	 * taking the kmap.
1310 	 */
1311 	if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1312 		kaddr = kmap_atomic(page);
1313 		left = __copy_to_user_inatomic(desc->arg.buf,
1314 						kaddr + offset, size);
1315 		kunmap_atomic(kaddr);
1316 		if (left == 0)
1317 			goto success;
1318 	}
1319 
1320 	/* Do it the slow way */
1321 	kaddr = kmap(page);
1322 	left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1323 	kunmap(page);
1324 
1325 	if (left) {
1326 		size -= left;
1327 		desc->error = -EFAULT;
1328 	}
1329 success:
1330 	desc->count = count - size;
1331 	desc->written += size;
1332 	desc->arg.buf += size;
1333 	return size;
1334 }
1335 
1336 /*
1337  * Performs necessary checks before doing a write
1338  * @iov:	io vector request
1339  * @nr_segs:	number of segments in the iovec
1340  * @count:	number of bytes to write
1341  * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1342  *
1343  * Adjust number of segments and amount of bytes to write (nr_segs should be
1344  * properly initialized first). Returns appropriate error code that caller
1345  * should return or zero in case that write should be allowed.
1346  */
1347 int generic_segment_checks(const struct iovec *iov,
1348 			unsigned long *nr_segs, size_t *count, int access_flags)
1349 {
1350 	unsigned long   seg;
1351 	size_t cnt = 0;
1352 	for (seg = 0; seg < *nr_segs; seg++) {
1353 		const struct iovec *iv = &iov[seg];
1354 
1355 		/*
1356 		 * If any segment has a negative length, or the cumulative
1357 		 * length ever wraps negative then return -EINVAL.
1358 		 */
1359 		cnt += iv->iov_len;
1360 		if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1361 			return -EINVAL;
1362 		if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1363 			continue;
1364 		if (seg == 0)
1365 			return -EFAULT;
1366 		*nr_segs = seg;
1367 		cnt -= iv->iov_len;	/* This segment is no good */
1368 		break;
1369 	}
1370 	*count = cnt;
1371 	return 0;
1372 }
1373 EXPORT_SYMBOL(generic_segment_checks);
1374 
1375 /**
1376  * generic_file_aio_read - generic filesystem read routine
1377  * @iocb:	kernel I/O control block
1378  * @iov:	io vector request
1379  * @nr_segs:	number of segments in the iovec
1380  * @pos:	current file position
1381  *
1382  * This is the "read()" routine for all filesystems
1383  * that can use the page cache directly.
1384  */
1385 ssize_t
1386 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1387 		unsigned long nr_segs, loff_t pos)
1388 {
1389 	struct file *filp = iocb->ki_filp;
1390 	ssize_t retval;
1391 	unsigned long seg = 0;
1392 	size_t count;
1393 	loff_t *ppos = &iocb->ki_pos;
1394 
1395 	count = 0;
1396 	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1397 	if (retval)
1398 		return retval;
1399 
1400 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1401 	if (filp->f_flags & O_DIRECT) {
1402 		loff_t size;
1403 		struct address_space *mapping;
1404 		struct inode *inode;
1405 
1406 		mapping = filp->f_mapping;
1407 		inode = mapping->host;
1408 		if (!count)
1409 			goto out; /* skip atime */
1410 		size = i_size_read(inode);
1411 		if (pos < size) {
1412 			retval = filemap_write_and_wait_range(mapping, pos,
1413 					pos + iov_length(iov, nr_segs) - 1);
1414 			if (!retval) {
1415 				struct blk_plug plug;
1416 
1417 				blk_start_plug(&plug);
1418 				retval = mapping->a_ops->direct_IO(READ, iocb,
1419 							iov, pos, nr_segs);
1420 				blk_finish_plug(&plug);
1421 			}
1422 			if (retval > 0) {
1423 				*ppos = pos + retval;
1424 				count -= retval;
1425 			}
1426 
1427 			/*
1428 			 * Btrfs can have a short DIO read if we encounter
1429 			 * compressed extents, so if there was an error, or if
1430 			 * we've already read everything we wanted to, or if
1431 			 * there was a short read because we hit EOF, go ahead
1432 			 * and return.  Otherwise fallthrough to buffered io for
1433 			 * the rest of the read.
1434 			 */
1435 			if (retval < 0 || !count || *ppos >= size) {
1436 				file_accessed(filp);
1437 				goto out;
1438 			}
1439 		}
1440 	}
1441 
1442 	count = retval;
1443 	for (seg = 0; seg < nr_segs; seg++) {
1444 		read_descriptor_t desc;
1445 		loff_t offset = 0;
1446 
1447 		/*
1448 		 * If we did a short DIO read we need to skip the section of the
1449 		 * iov that we've already read data into.
1450 		 */
1451 		if (count) {
1452 			if (count > iov[seg].iov_len) {
1453 				count -= iov[seg].iov_len;
1454 				continue;
1455 			}
1456 			offset = count;
1457 			count = 0;
1458 		}
1459 
1460 		desc.written = 0;
1461 		desc.arg.buf = iov[seg].iov_base + offset;
1462 		desc.count = iov[seg].iov_len - offset;
1463 		if (desc.count == 0)
1464 			continue;
1465 		desc.error = 0;
1466 		do_generic_file_read(filp, ppos, &desc, file_read_actor);
1467 		retval += desc.written;
1468 		if (desc.error) {
1469 			retval = retval ?: desc.error;
1470 			break;
1471 		}
1472 		if (desc.count > 0)
1473 			break;
1474 	}
1475 out:
1476 	return retval;
1477 }
1478 EXPORT_SYMBOL(generic_file_aio_read);
1479 
1480 #ifdef CONFIG_MMU
1481 /**
1482  * page_cache_read - adds requested page to the page cache if not already there
1483  * @file:	file to read
1484  * @offset:	page index
1485  *
1486  * This adds the requested page to the page cache if it isn't already there,
1487  * and schedules an I/O to read in its contents from disk.
1488  */
1489 static int page_cache_read(struct file *file, pgoff_t offset)
1490 {
1491 	struct address_space *mapping = file->f_mapping;
1492 	struct page *page;
1493 	int ret;
1494 
1495 	do {
1496 		page = page_cache_alloc_cold(mapping);
1497 		if (!page)
1498 			return -ENOMEM;
1499 
1500 		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1501 		if (ret == 0)
1502 			ret = mapping->a_ops->readpage(file, page);
1503 		else if (ret == -EEXIST)
1504 			ret = 0; /* losing race to add is OK */
1505 
1506 		page_cache_release(page);
1507 
1508 	} while (ret == AOP_TRUNCATED_PAGE);
1509 
1510 	return ret;
1511 }
1512 
1513 #define MMAP_LOTSAMISS  (100)
1514 
1515 /*
1516  * Synchronous readahead happens when we don't even find
1517  * a page in the page cache at all.
1518  */
1519 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1520 				   struct file_ra_state *ra,
1521 				   struct file *file,
1522 				   pgoff_t offset)
1523 {
1524 	unsigned long ra_pages;
1525 	struct address_space *mapping = file->f_mapping;
1526 
1527 	/* If we don't want any read-ahead, don't bother */
1528 	if (VM_RandomReadHint(vma))
1529 		return;
1530 	if (!ra->ra_pages)
1531 		return;
1532 
1533 	if (VM_SequentialReadHint(vma)) {
1534 		page_cache_sync_readahead(mapping, ra, file, offset,
1535 					  ra->ra_pages);
1536 		return;
1537 	}
1538 
1539 	/* Avoid banging the cache line if not needed */
1540 	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1541 		ra->mmap_miss++;
1542 
1543 	/*
1544 	 * Do we miss much more than hit in this file? If so,
1545 	 * stop bothering with read-ahead. It will only hurt.
1546 	 */
1547 	if (ra->mmap_miss > MMAP_LOTSAMISS)
1548 		return;
1549 
1550 	/*
1551 	 * mmap read-around
1552 	 */
1553 	ra_pages = max_sane_readahead(ra->ra_pages);
1554 	ra->start = max_t(long, 0, offset - ra_pages / 2);
1555 	ra->size = ra_pages;
1556 	ra->async_size = ra_pages / 4;
1557 	ra_submit(ra, mapping, file);
1558 }
1559 
1560 /*
1561  * Asynchronous readahead happens when we find the page and PG_readahead,
1562  * so we want to possibly extend the readahead further..
1563  */
1564 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1565 				    struct file_ra_state *ra,
1566 				    struct file *file,
1567 				    struct page *page,
1568 				    pgoff_t offset)
1569 {
1570 	struct address_space *mapping = file->f_mapping;
1571 
1572 	/* If we don't want any read-ahead, don't bother */
1573 	if (VM_RandomReadHint(vma))
1574 		return;
1575 	if (ra->mmap_miss > 0)
1576 		ra->mmap_miss--;
1577 	if (PageReadahead(page))
1578 		page_cache_async_readahead(mapping, ra, file,
1579 					   page, offset, ra->ra_pages);
1580 }
1581 
1582 /**
1583  * filemap_fault - read in file data for page fault handling
1584  * @vma:	vma in which the fault was taken
1585  * @vmf:	struct vm_fault containing details of the fault
1586  *
1587  * filemap_fault() is invoked via the vma operations vector for a
1588  * mapped memory region to read in file data during a page fault.
1589  *
1590  * The goto's are kind of ugly, but this streamlines the normal case of having
1591  * it in the page cache, and handles the special cases reasonably without
1592  * having a lot of duplicated code.
1593  */
1594 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1595 {
1596 	int error;
1597 	struct file *file = vma->vm_file;
1598 	struct address_space *mapping = file->f_mapping;
1599 	struct file_ra_state *ra = &file->f_ra;
1600 	struct inode *inode = mapping->host;
1601 	pgoff_t offset = vmf->pgoff;
1602 	struct page *page;
1603 	pgoff_t size;
1604 	int ret = 0;
1605 
1606 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1607 	if (offset >= size)
1608 		return VM_FAULT_SIGBUS;
1609 
1610 	/*
1611 	 * Do we have something in the page cache already?
1612 	 */
1613 	page = find_get_page(mapping, offset);
1614 	if (likely(page)) {
1615 		/*
1616 		 * We found the page, so try async readahead before
1617 		 * waiting for the lock.
1618 		 */
1619 		do_async_mmap_readahead(vma, ra, file, page, offset);
1620 	} else {
1621 		/* No page in the page cache at all */
1622 		do_sync_mmap_readahead(vma, ra, file, offset);
1623 		count_vm_event(PGMAJFAULT);
1624 		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1625 		ret = VM_FAULT_MAJOR;
1626 retry_find:
1627 		page = find_get_page(mapping, offset);
1628 		if (!page)
1629 			goto no_cached_page;
1630 	}
1631 
1632 	if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1633 		page_cache_release(page);
1634 		return ret | VM_FAULT_RETRY;
1635 	}
1636 
1637 	/* Did it get truncated? */
1638 	if (unlikely(page->mapping != mapping)) {
1639 		unlock_page(page);
1640 		put_page(page);
1641 		goto retry_find;
1642 	}
1643 	VM_BUG_ON(page->index != offset);
1644 
1645 	/*
1646 	 * We have a locked page in the page cache, now we need to check
1647 	 * that it's up-to-date. If not, it is going to be due to an error.
1648 	 */
1649 	if (unlikely(!PageUptodate(page)))
1650 		goto page_not_uptodate;
1651 
1652 	/*
1653 	 * Found the page and have a reference on it.
1654 	 * We must recheck i_size under page lock.
1655 	 */
1656 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1657 	if (unlikely(offset >= size)) {
1658 		unlock_page(page);
1659 		page_cache_release(page);
1660 		return VM_FAULT_SIGBUS;
1661 	}
1662 
1663 	vmf->page = page;
1664 	return ret | VM_FAULT_LOCKED;
1665 
1666 no_cached_page:
1667 	/*
1668 	 * We're only likely to ever get here if MADV_RANDOM is in
1669 	 * effect.
1670 	 */
1671 	error = page_cache_read(file, offset);
1672 
1673 	/*
1674 	 * The page we want has now been added to the page cache.
1675 	 * In the unlikely event that someone removed it in the
1676 	 * meantime, we'll just come back here and read it again.
1677 	 */
1678 	if (error >= 0)
1679 		goto retry_find;
1680 
1681 	/*
1682 	 * An error return from page_cache_read can result if the
1683 	 * system is low on memory, or a problem occurs while trying
1684 	 * to schedule I/O.
1685 	 */
1686 	if (error == -ENOMEM)
1687 		return VM_FAULT_OOM;
1688 	return VM_FAULT_SIGBUS;
1689 
1690 page_not_uptodate:
1691 	/*
1692 	 * Umm, take care of errors if the page isn't up-to-date.
1693 	 * Try to re-read it _once_. We do this synchronously,
1694 	 * because there really aren't any performance issues here
1695 	 * and we need to check for errors.
1696 	 */
1697 	ClearPageError(page);
1698 	error = mapping->a_ops->readpage(file, page);
1699 	if (!error) {
1700 		wait_on_page_locked(page);
1701 		if (!PageUptodate(page))
1702 			error = -EIO;
1703 	}
1704 	page_cache_release(page);
1705 
1706 	if (!error || error == AOP_TRUNCATED_PAGE)
1707 		goto retry_find;
1708 
1709 	/* Things didn't work out. Return zero to tell the mm layer so. */
1710 	shrink_readahead_size_eio(file, ra);
1711 	return VM_FAULT_SIGBUS;
1712 }
1713 EXPORT_SYMBOL(filemap_fault);
1714 
1715 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
1716 {
1717 	struct page *page = vmf->page;
1718 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1719 	int ret = VM_FAULT_LOCKED;
1720 
1721 	sb_start_pagefault(inode->i_sb);
1722 	file_update_time(vma->vm_file);
1723 	lock_page(page);
1724 	if (page->mapping != inode->i_mapping) {
1725 		unlock_page(page);
1726 		ret = VM_FAULT_NOPAGE;
1727 		goto out;
1728 	}
1729 	/*
1730 	 * We mark the page dirty already here so that when freeze is in
1731 	 * progress, we are guaranteed that writeback during freezing will
1732 	 * see the dirty page and writeprotect it again.
1733 	 */
1734 	set_page_dirty(page);
1735 out:
1736 	sb_end_pagefault(inode->i_sb);
1737 	return ret;
1738 }
1739 EXPORT_SYMBOL(filemap_page_mkwrite);
1740 
1741 const struct vm_operations_struct generic_file_vm_ops = {
1742 	.fault		= filemap_fault,
1743 	.page_mkwrite	= filemap_page_mkwrite,
1744 };
1745 
1746 /* This is used for a general mmap of a disk file */
1747 
1748 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1749 {
1750 	struct address_space *mapping = file->f_mapping;
1751 
1752 	if (!mapping->a_ops->readpage)
1753 		return -ENOEXEC;
1754 	file_accessed(file);
1755 	vma->vm_ops = &generic_file_vm_ops;
1756 	vma->vm_flags |= VM_CAN_NONLINEAR;
1757 	return 0;
1758 }
1759 
1760 /*
1761  * This is for filesystems which do not implement ->writepage.
1762  */
1763 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1764 {
1765 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1766 		return -EINVAL;
1767 	return generic_file_mmap(file, vma);
1768 }
1769 #else
1770 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1771 {
1772 	return -ENOSYS;
1773 }
1774 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1775 {
1776 	return -ENOSYS;
1777 }
1778 #endif /* CONFIG_MMU */
1779 
1780 EXPORT_SYMBOL(generic_file_mmap);
1781 EXPORT_SYMBOL(generic_file_readonly_mmap);
1782 
1783 static struct page *__read_cache_page(struct address_space *mapping,
1784 				pgoff_t index,
1785 				int (*filler)(void *, struct page *),
1786 				void *data,
1787 				gfp_t gfp)
1788 {
1789 	struct page *page;
1790 	int err;
1791 repeat:
1792 	page = find_get_page(mapping, index);
1793 	if (!page) {
1794 		page = __page_cache_alloc(gfp | __GFP_COLD);
1795 		if (!page)
1796 			return ERR_PTR(-ENOMEM);
1797 		err = add_to_page_cache_lru(page, mapping, index, gfp);
1798 		if (unlikely(err)) {
1799 			page_cache_release(page);
1800 			if (err == -EEXIST)
1801 				goto repeat;
1802 			/* Presumably ENOMEM for radix tree node */
1803 			return ERR_PTR(err);
1804 		}
1805 		err = filler(data, page);
1806 		if (err < 0) {
1807 			page_cache_release(page);
1808 			page = ERR_PTR(err);
1809 		}
1810 	}
1811 	return page;
1812 }
1813 
1814 static struct page *do_read_cache_page(struct address_space *mapping,
1815 				pgoff_t index,
1816 				int (*filler)(void *, struct page *),
1817 				void *data,
1818 				gfp_t gfp)
1819 
1820 {
1821 	struct page *page;
1822 	int err;
1823 
1824 retry:
1825 	page = __read_cache_page(mapping, index, filler, data, gfp);
1826 	if (IS_ERR(page))
1827 		return page;
1828 	if (PageUptodate(page))
1829 		goto out;
1830 
1831 	lock_page(page);
1832 	if (!page->mapping) {
1833 		unlock_page(page);
1834 		page_cache_release(page);
1835 		goto retry;
1836 	}
1837 	if (PageUptodate(page)) {
1838 		unlock_page(page);
1839 		goto out;
1840 	}
1841 	err = filler(data, page);
1842 	if (err < 0) {
1843 		page_cache_release(page);
1844 		return ERR_PTR(err);
1845 	}
1846 out:
1847 	mark_page_accessed(page);
1848 	return page;
1849 }
1850 
1851 /**
1852  * read_cache_page_async - read into page cache, fill it if needed
1853  * @mapping:	the page's address_space
1854  * @index:	the page index
1855  * @filler:	function to perform the read
1856  * @data:	first arg to filler(data, page) function, often left as NULL
1857  *
1858  * Same as read_cache_page, but don't wait for page to become unlocked
1859  * after submitting it to the filler.
1860  *
1861  * Read into the page cache. If a page already exists, and PageUptodate() is
1862  * not set, try to fill the page but don't wait for it to become unlocked.
1863  *
1864  * If the page does not get brought uptodate, return -EIO.
1865  */
1866 struct page *read_cache_page_async(struct address_space *mapping,
1867 				pgoff_t index,
1868 				int (*filler)(void *, struct page *),
1869 				void *data)
1870 {
1871 	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
1872 }
1873 EXPORT_SYMBOL(read_cache_page_async);
1874 
1875 static struct page *wait_on_page_read(struct page *page)
1876 {
1877 	if (!IS_ERR(page)) {
1878 		wait_on_page_locked(page);
1879 		if (!PageUptodate(page)) {
1880 			page_cache_release(page);
1881 			page = ERR_PTR(-EIO);
1882 		}
1883 	}
1884 	return page;
1885 }
1886 
1887 /**
1888  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1889  * @mapping:	the page's address_space
1890  * @index:	the page index
1891  * @gfp:	the page allocator flags to use if allocating
1892  *
1893  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1894  * any new page allocations done using the specified allocation flags.
1895  *
1896  * If the page does not get brought uptodate, return -EIO.
1897  */
1898 struct page *read_cache_page_gfp(struct address_space *mapping,
1899 				pgoff_t index,
1900 				gfp_t gfp)
1901 {
1902 	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
1903 
1904 	return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
1905 }
1906 EXPORT_SYMBOL(read_cache_page_gfp);
1907 
1908 /**
1909  * read_cache_page - read into page cache, fill it if needed
1910  * @mapping:	the page's address_space
1911  * @index:	the page index
1912  * @filler:	function to perform the read
1913  * @data:	first arg to filler(data, page) function, often left as NULL
1914  *
1915  * Read into the page cache. If a page already exists, and PageUptodate() is
1916  * not set, try to fill the page then wait for it to become unlocked.
1917  *
1918  * If the page does not get brought uptodate, return -EIO.
1919  */
1920 struct page *read_cache_page(struct address_space *mapping,
1921 				pgoff_t index,
1922 				int (*filler)(void *, struct page *),
1923 				void *data)
1924 {
1925 	return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1926 }
1927 EXPORT_SYMBOL(read_cache_page);
1928 
1929 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1930 			const struct iovec *iov, size_t base, size_t bytes)
1931 {
1932 	size_t copied = 0, left = 0;
1933 
1934 	while (bytes) {
1935 		char __user *buf = iov->iov_base + base;
1936 		int copy = min(bytes, iov->iov_len - base);
1937 
1938 		base = 0;
1939 		left = __copy_from_user_inatomic(vaddr, buf, copy);
1940 		copied += copy;
1941 		bytes -= copy;
1942 		vaddr += copy;
1943 		iov++;
1944 
1945 		if (unlikely(left))
1946 			break;
1947 	}
1948 	return copied - left;
1949 }
1950 
1951 /*
1952  * Copy as much as we can into the page and return the number of bytes which
1953  * were successfully copied.  If a fault is encountered then return the number of
1954  * bytes which were copied.
1955  */
1956 size_t iov_iter_copy_from_user_atomic(struct page *page,
1957 		struct iov_iter *i, unsigned long offset, size_t bytes)
1958 {
1959 	char *kaddr;
1960 	size_t copied;
1961 
1962 	BUG_ON(!in_atomic());
1963 	kaddr = kmap_atomic(page);
1964 	if (likely(i->nr_segs == 1)) {
1965 		int left;
1966 		char __user *buf = i->iov->iov_base + i->iov_offset;
1967 		left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
1968 		copied = bytes - left;
1969 	} else {
1970 		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1971 						i->iov, i->iov_offset, bytes);
1972 	}
1973 	kunmap_atomic(kaddr);
1974 
1975 	return copied;
1976 }
1977 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1978 
1979 /*
1980  * This has the same sideeffects and return value as
1981  * iov_iter_copy_from_user_atomic().
1982  * The difference is that it attempts to resolve faults.
1983  * Page must not be locked.
1984  */
1985 size_t iov_iter_copy_from_user(struct page *page,
1986 		struct iov_iter *i, unsigned long offset, size_t bytes)
1987 {
1988 	char *kaddr;
1989 	size_t copied;
1990 
1991 	kaddr = kmap(page);
1992 	if (likely(i->nr_segs == 1)) {
1993 		int left;
1994 		char __user *buf = i->iov->iov_base + i->iov_offset;
1995 		left = __copy_from_user(kaddr + offset, buf, bytes);
1996 		copied = bytes - left;
1997 	} else {
1998 		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1999 						i->iov, i->iov_offset, bytes);
2000 	}
2001 	kunmap(page);
2002 	return copied;
2003 }
2004 EXPORT_SYMBOL(iov_iter_copy_from_user);
2005 
2006 void iov_iter_advance(struct iov_iter *i, size_t bytes)
2007 {
2008 	BUG_ON(i->count < bytes);
2009 
2010 	if (likely(i->nr_segs == 1)) {
2011 		i->iov_offset += bytes;
2012 		i->count -= bytes;
2013 	} else {
2014 		const struct iovec *iov = i->iov;
2015 		size_t base = i->iov_offset;
2016 		unsigned long nr_segs = i->nr_segs;
2017 
2018 		/*
2019 		 * The !iov->iov_len check ensures we skip over unlikely
2020 		 * zero-length segments (without overruning the iovec).
2021 		 */
2022 		while (bytes || unlikely(i->count && !iov->iov_len)) {
2023 			int copy;
2024 
2025 			copy = min(bytes, iov->iov_len - base);
2026 			BUG_ON(!i->count || i->count < copy);
2027 			i->count -= copy;
2028 			bytes -= copy;
2029 			base += copy;
2030 			if (iov->iov_len == base) {
2031 				iov++;
2032 				nr_segs--;
2033 				base = 0;
2034 			}
2035 		}
2036 		i->iov = iov;
2037 		i->iov_offset = base;
2038 		i->nr_segs = nr_segs;
2039 	}
2040 }
2041 EXPORT_SYMBOL(iov_iter_advance);
2042 
2043 /*
2044  * Fault in the first iovec of the given iov_iter, to a maximum length
2045  * of bytes. Returns 0 on success, or non-zero if the memory could not be
2046  * accessed (ie. because it is an invalid address).
2047  *
2048  * writev-intensive code may want this to prefault several iovecs -- that
2049  * would be possible (callers must not rely on the fact that _only_ the
2050  * first iovec will be faulted with the current implementation).
2051  */
2052 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2053 {
2054 	char __user *buf = i->iov->iov_base + i->iov_offset;
2055 	bytes = min(bytes, i->iov->iov_len - i->iov_offset);
2056 	return fault_in_pages_readable(buf, bytes);
2057 }
2058 EXPORT_SYMBOL(iov_iter_fault_in_readable);
2059 
2060 /*
2061  * Return the count of just the current iov_iter segment.
2062  */
2063 size_t iov_iter_single_seg_count(struct iov_iter *i)
2064 {
2065 	const struct iovec *iov = i->iov;
2066 	if (i->nr_segs == 1)
2067 		return i->count;
2068 	else
2069 		return min(i->count, iov->iov_len - i->iov_offset);
2070 }
2071 EXPORT_SYMBOL(iov_iter_single_seg_count);
2072 
2073 /*
2074  * Performs necessary checks before doing a write
2075  *
2076  * Can adjust writing position or amount of bytes to write.
2077  * Returns appropriate error code that caller should return or
2078  * zero in case that write should be allowed.
2079  */
2080 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2081 {
2082 	struct inode *inode = file->f_mapping->host;
2083 	unsigned long limit = rlimit(RLIMIT_FSIZE);
2084 
2085         if (unlikely(*pos < 0))
2086                 return -EINVAL;
2087 
2088 	if (!isblk) {
2089 		/* FIXME: this is for backwards compatibility with 2.4 */
2090 		if (file->f_flags & O_APPEND)
2091                         *pos = i_size_read(inode);
2092 
2093 		if (limit != RLIM_INFINITY) {
2094 			if (*pos >= limit) {
2095 				send_sig(SIGXFSZ, current, 0);
2096 				return -EFBIG;
2097 			}
2098 			if (*count > limit - (typeof(limit))*pos) {
2099 				*count = limit - (typeof(limit))*pos;
2100 			}
2101 		}
2102 	}
2103 
2104 	/*
2105 	 * LFS rule
2106 	 */
2107 	if (unlikely(*pos + *count > MAX_NON_LFS &&
2108 				!(file->f_flags & O_LARGEFILE))) {
2109 		if (*pos >= MAX_NON_LFS) {
2110 			return -EFBIG;
2111 		}
2112 		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2113 			*count = MAX_NON_LFS - (unsigned long)*pos;
2114 		}
2115 	}
2116 
2117 	/*
2118 	 * Are we about to exceed the fs block limit ?
2119 	 *
2120 	 * If we have written data it becomes a short write.  If we have
2121 	 * exceeded without writing data we send a signal and return EFBIG.
2122 	 * Linus frestrict idea will clean these up nicely..
2123 	 */
2124 	if (likely(!isblk)) {
2125 		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2126 			if (*count || *pos > inode->i_sb->s_maxbytes) {
2127 				return -EFBIG;
2128 			}
2129 			/* zero-length writes at ->s_maxbytes are OK */
2130 		}
2131 
2132 		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2133 			*count = inode->i_sb->s_maxbytes - *pos;
2134 	} else {
2135 #ifdef CONFIG_BLOCK
2136 		loff_t isize;
2137 		if (bdev_read_only(I_BDEV(inode)))
2138 			return -EPERM;
2139 		isize = i_size_read(inode);
2140 		if (*pos >= isize) {
2141 			if (*count || *pos > isize)
2142 				return -ENOSPC;
2143 		}
2144 
2145 		if (*pos + *count > isize)
2146 			*count = isize - *pos;
2147 #else
2148 		return -EPERM;
2149 #endif
2150 	}
2151 	return 0;
2152 }
2153 EXPORT_SYMBOL(generic_write_checks);
2154 
2155 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2156 				loff_t pos, unsigned len, unsigned flags,
2157 				struct page **pagep, void **fsdata)
2158 {
2159 	const struct address_space_operations *aops = mapping->a_ops;
2160 
2161 	return aops->write_begin(file, mapping, pos, len, flags,
2162 							pagep, fsdata);
2163 }
2164 EXPORT_SYMBOL(pagecache_write_begin);
2165 
2166 int pagecache_write_end(struct file *file, struct address_space *mapping,
2167 				loff_t pos, unsigned len, unsigned copied,
2168 				struct page *page, void *fsdata)
2169 {
2170 	const struct address_space_operations *aops = mapping->a_ops;
2171 
2172 	mark_page_accessed(page);
2173 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2174 }
2175 EXPORT_SYMBOL(pagecache_write_end);
2176 
2177 ssize_t
2178 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2179 		unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2180 		size_t count, size_t ocount)
2181 {
2182 	struct file	*file = iocb->ki_filp;
2183 	struct address_space *mapping = file->f_mapping;
2184 	struct inode	*inode = mapping->host;
2185 	ssize_t		written;
2186 	size_t		write_len;
2187 	pgoff_t		end;
2188 
2189 	if (count != ocount)
2190 		*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2191 
2192 	write_len = iov_length(iov, *nr_segs);
2193 	end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2194 
2195 	written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2196 	if (written)
2197 		goto out;
2198 
2199 	/*
2200 	 * After a write we want buffered reads to be sure to go to disk to get
2201 	 * the new data.  We invalidate clean cached page from the region we're
2202 	 * about to write.  We do this *before* the write so that we can return
2203 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2204 	 */
2205 	if (mapping->nrpages) {
2206 		written = invalidate_inode_pages2_range(mapping,
2207 					pos >> PAGE_CACHE_SHIFT, end);
2208 		/*
2209 		 * If a page can not be invalidated, return 0 to fall back
2210 		 * to buffered write.
2211 		 */
2212 		if (written) {
2213 			if (written == -EBUSY)
2214 				return 0;
2215 			goto out;
2216 		}
2217 	}
2218 
2219 	written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2220 
2221 	/*
2222 	 * Finally, try again to invalidate clean pages which might have been
2223 	 * cached by non-direct readahead, or faulted in by get_user_pages()
2224 	 * if the source of the write was an mmap'ed region of the file
2225 	 * we're writing.  Either one is a pretty crazy thing to do,
2226 	 * so we don't support it 100%.  If this invalidation
2227 	 * fails, tough, the write still worked...
2228 	 */
2229 	if (mapping->nrpages) {
2230 		invalidate_inode_pages2_range(mapping,
2231 					      pos >> PAGE_CACHE_SHIFT, end);
2232 	}
2233 
2234 	if (written > 0) {
2235 		pos += written;
2236 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2237 			i_size_write(inode, pos);
2238 			mark_inode_dirty(inode);
2239 		}
2240 		*ppos = pos;
2241 	}
2242 out:
2243 	return written;
2244 }
2245 EXPORT_SYMBOL(generic_file_direct_write);
2246 
2247 /*
2248  * Find or create a page at the given pagecache position. Return the locked
2249  * page. This function is specifically for buffered writes.
2250  */
2251 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2252 					pgoff_t index, unsigned flags)
2253 {
2254 	int status;
2255 	gfp_t gfp_mask;
2256 	struct page *page;
2257 	gfp_t gfp_notmask = 0;
2258 
2259 	gfp_mask = mapping_gfp_mask(mapping);
2260 	if (mapping_cap_account_dirty(mapping))
2261 		gfp_mask |= __GFP_WRITE;
2262 	if (flags & AOP_FLAG_NOFS)
2263 		gfp_notmask = __GFP_FS;
2264 repeat:
2265 	page = find_lock_page(mapping, index);
2266 	if (page)
2267 		goto found;
2268 
2269 	page = __page_cache_alloc(gfp_mask & ~gfp_notmask);
2270 	if (!page)
2271 		return NULL;
2272 	status = add_to_page_cache_lru(page, mapping, index,
2273 						GFP_KERNEL & ~gfp_notmask);
2274 	if (unlikely(status)) {
2275 		page_cache_release(page);
2276 		if (status == -EEXIST)
2277 			goto repeat;
2278 		return NULL;
2279 	}
2280 found:
2281 	wait_on_page_writeback(page);
2282 	return page;
2283 }
2284 EXPORT_SYMBOL(grab_cache_page_write_begin);
2285 
2286 static ssize_t generic_perform_write(struct file *file,
2287 				struct iov_iter *i, loff_t pos)
2288 {
2289 	struct address_space *mapping = file->f_mapping;
2290 	const struct address_space_operations *a_ops = mapping->a_ops;
2291 	long status = 0;
2292 	ssize_t written = 0;
2293 	unsigned int flags = 0;
2294 
2295 	/*
2296 	 * Copies from kernel address space cannot fail (NFSD is a big user).
2297 	 */
2298 	if (segment_eq(get_fs(), KERNEL_DS))
2299 		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2300 
2301 	do {
2302 		struct page *page;
2303 		unsigned long offset;	/* Offset into pagecache page */
2304 		unsigned long bytes;	/* Bytes to write to page */
2305 		size_t copied;		/* Bytes copied from user */
2306 		void *fsdata;
2307 
2308 		offset = (pos & (PAGE_CACHE_SIZE - 1));
2309 		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2310 						iov_iter_count(i));
2311 
2312 again:
2313 		/*
2314 		 * Bring in the user page that we will copy from _first_.
2315 		 * Otherwise there's a nasty deadlock on copying from the
2316 		 * same page as we're writing to, without it being marked
2317 		 * up-to-date.
2318 		 *
2319 		 * Not only is this an optimisation, but it is also required
2320 		 * to check that the address is actually valid, when atomic
2321 		 * usercopies are used, below.
2322 		 */
2323 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2324 			status = -EFAULT;
2325 			break;
2326 		}
2327 
2328 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2329 						&page, &fsdata);
2330 		if (unlikely(status))
2331 			break;
2332 
2333 		if (mapping_writably_mapped(mapping))
2334 			flush_dcache_page(page);
2335 
2336 		pagefault_disable();
2337 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2338 		pagefault_enable();
2339 		flush_dcache_page(page);
2340 
2341 		mark_page_accessed(page);
2342 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2343 						page, fsdata);
2344 		if (unlikely(status < 0))
2345 			break;
2346 		copied = status;
2347 
2348 		cond_resched();
2349 
2350 		iov_iter_advance(i, copied);
2351 		if (unlikely(copied == 0)) {
2352 			/*
2353 			 * If we were unable to copy any data at all, we must
2354 			 * fall back to a single segment length write.
2355 			 *
2356 			 * If we didn't fallback here, we could livelock
2357 			 * because not all segments in the iov can be copied at
2358 			 * once without a pagefault.
2359 			 */
2360 			bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2361 						iov_iter_single_seg_count(i));
2362 			goto again;
2363 		}
2364 		pos += copied;
2365 		written += copied;
2366 
2367 		balance_dirty_pages_ratelimited(mapping);
2368 		if (fatal_signal_pending(current)) {
2369 			status = -EINTR;
2370 			break;
2371 		}
2372 	} while (iov_iter_count(i));
2373 
2374 	return written ? written : status;
2375 }
2376 
2377 ssize_t
2378 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2379 		unsigned long nr_segs, loff_t pos, loff_t *ppos,
2380 		size_t count, ssize_t written)
2381 {
2382 	struct file *file = iocb->ki_filp;
2383 	ssize_t status;
2384 	struct iov_iter i;
2385 
2386 	iov_iter_init(&i, iov, nr_segs, count, written);
2387 	status = generic_perform_write(file, &i, pos);
2388 
2389 	if (likely(status >= 0)) {
2390 		written += status;
2391 		*ppos = pos + status;
2392   	}
2393 
2394 	return written ? written : status;
2395 }
2396 EXPORT_SYMBOL(generic_file_buffered_write);
2397 
2398 /**
2399  * __generic_file_aio_write - write data to a file
2400  * @iocb:	IO state structure (file, offset, etc.)
2401  * @iov:	vector with data to write
2402  * @nr_segs:	number of segments in the vector
2403  * @ppos:	position where to write
2404  *
2405  * This function does all the work needed for actually writing data to a
2406  * file. It does all basic checks, removes SUID from the file, updates
2407  * modification times and calls proper subroutines depending on whether we
2408  * do direct IO or a standard buffered write.
2409  *
2410  * It expects i_mutex to be grabbed unless we work on a block device or similar
2411  * object which does not need locking at all.
2412  *
2413  * This function does *not* take care of syncing data in case of O_SYNC write.
2414  * A caller has to handle it. This is mainly due to the fact that we want to
2415  * avoid syncing under i_mutex.
2416  */
2417 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2418 				 unsigned long nr_segs, loff_t *ppos)
2419 {
2420 	struct file *file = iocb->ki_filp;
2421 	struct address_space * mapping = file->f_mapping;
2422 	size_t ocount;		/* original count */
2423 	size_t count;		/* after file limit checks */
2424 	struct inode 	*inode = mapping->host;
2425 	loff_t		pos;
2426 	ssize_t		written;
2427 	ssize_t		err;
2428 
2429 	ocount = 0;
2430 	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2431 	if (err)
2432 		return err;
2433 
2434 	count = ocount;
2435 	pos = *ppos;
2436 
2437 	/* We can write back this queue in page reclaim */
2438 	current->backing_dev_info = mapping->backing_dev_info;
2439 	written = 0;
2440 
2441 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2442 	if (err)
2443 		goto out;
2444 
2445 	if (count == 0)
2446 		goto out;
2447 
2448 	err = file_remove_suid(file);
2449 	if (err)
2450 		goto out;
2451 
2452 	err = file_update_time(file);
2453 	if (err)
2454 		goto out;
2455 
2456 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2457 	if (unlikely(file->f_flags & O_DIRECT)) {
2458 		loff_t endbyte;
2459 		ssize_t written_buffered;
2460 
2461 		written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2462 							ppos, count, ocount);
2463 		if (written < 0 || written == count)
2464 			goto out;
2465 		/*
2466 		 * direct-io write to a hole: fall through to buffered I/O
2467 		 * for completing the rest of the request.
2468 		 */
2469 		pos += written;
2470 		count -= written;
2471 		written_buffered = generic_file_buffered_write(iocb, iov,
2472 						nr_segs, pos, ppos, count,
2473 						written);
2474 		/*
2475 		 * If generic_file_buffered_write() retuned a synchronous error
2476 		 * then we want to return the number of bytes which were
2477 		 * direct-written, or the error code if that was zero.  Note
2478 		 * that this differs from normal direct-io semantics, which
2479 		 * will return -EFOO even if some bytes were written.
2480 		 */
2481 		if (written_buffered < 0) {
2482 			err = written_buffered;
2483 			goto out;
2484 		}
2485 
2486 		/*
2487 		 * We need to ensure that the page cache pages are written to
2488 		 * disk and invalidated to preserve the expected O_DIRECT
2489 		 * semantics.
2490 		 */
2491 		endbyte = pos + written_buffered - written - 1;
2492 		err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2493 		if (err == 0) {
2494 			written = written_buffered;
2495 			invalidate_mapping_pages(mapping,
2496 						 pos >> PAGE_CACHE_SHIFT,
2497 						 endbyte >> PAGE_CACHE_SHIFT);
2498 		} else {
2499 			/*
2500 			 * We don't know how much we wrote, so just return
2501 			 * the number of bytes which were direct-written
2502 			 */
2503 		}
2504 	} else {
2505 		written = generic_file_buffered_write(iocb, iov, nr_segs,
2506 				pos, ppos, count, written);
2507 	}
2508 out:
2509 	current->backing_dev_info = NULL;
2510 	return written ? written : err;
2511 }
2512 EXPORT_SYMBOL(__generic_file_aio_write);
2513 
2514 /**
2515  * generic_file_aio_write - write data to a file
2516  * @iocb:	IO state structure
2517  * @iov:	vector with data to write
2518  * @nr_segs:	number of segments in the vector
2519  * @pos:	position in file where to write
2520  *
2521  * This is a wrapper around __generic_file_aio_write() to be used by most
2522  * filesystems. It takes care of syncing the file in case of O_SYNC file
2523  * and acquires i_mutex as needed.
2524  */
2525 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2526 		unsigned long nr_segs, loff_t pos)
2527 {
2528 	struct file *file = iocb->ki_filp;
2529 	struct inode *inode = file->f_mapping->host;
2530 	struct blk_plug plug;
2531 	ssize_t ret;
2532 
2533 	BUG_ON(iocb->ki_pos != pos);
2534 
2535 	sb_start_write(inode->i_sb);
2536 	mutex_lock(&inode->i_mutex);
2537 	blk_start_plug(&plug);
2538 	ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
2539 	mutex_unlock(&inode->i_mutex);
2540 
2541 	if (ret > 0 || ret == -EIOCBQUEUED) {
2542 		ssize_t err;
2543 
2544 		err = generic_write_sync(file, pos, ret);
2545 		if (err < 0 && ret > 0)
2546 			ret = err;
2547 	}
2548 	blk_finish_plug(&plug);
2549 	sb_end_write(inode->i_sb);
2550 	return ret;
2551 }
2552 EXPORT_SYMBOL(generic_file_aio_write);
2553 
2554 /**
2555  * try_to_release_page() - release old fs-specific metadata on a page
2556  *
2557  * @page: the page which the kernel is trying to free
2558  * @gfp_mask: memory allocation flags (and I/O mode)
2559  *
2560  * The address_space is to try to release any data against the page
2561  * (presumably at page->private).  If the release was successful, return `1'.
2562  * Otherwise return zero.
2563  *
2564  * This may also be called if PG_fscache is set on a page, indicating that the
2565  * page is known to the local caching routines.
2566  *
2567  * The @gfp_mask argument specifies whether I/O may be performed to release
2568  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2569  *
2570  */
2571 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2572 {
2573 	struct address_space * const mapping = page->mapping;
2574 
2575 	BUG_ON(!PageLocked(page));
2576 	if (PageWriteback(page))
2577 		return 0;
2578 
2579 	if (mapping && mapping->a_ops->releasepage)
2580 		return mapping->a_ops->releasepage(page, gfp_mask);
2581 	return try_to_free_buffers(page);
2582 }
2583 
2584 EXPORT_SYMBOL(try_to_release_page);
2585