1 /* 2 * linux/mm/filemap.c 3 * 4 * Copyright (C) 1994-1999 Linus Torvalds 5 */ 6 7 /* 8 * This file handles the generic file mmap semantics used by 9 * most "normal" filesystems (but you don't /have/ to use this: 10 * the NFS filesystem used to do this differently, for example) 11 */ 12 #include <linux/export.h> 13 #include <linux/compiler.h> 14 #include <linux/fs.h> 15 #include <linux/uaccess.h> 16 #include <linux/aio.h> 17 #include <linux/capability.h> 18 #include <linux/kernel_stat.h> 19 #include <linux/gfp.h> 20 #include <linux/mm.h> 21 #include <linux/swap.h> 22 #include <linux/mman.h> 23 #include <linux/pagemap.h> 24 #include <linux/file.h> 25 #include <linux/uio.h> 26 #include <linux/hash.h> 27 #include <linux/writeback.h> 28 #include <linux/backing-dev.h> 29 #include <linux/pagevec.h> 30 #include <linux/blkdev.h> 31 #include <linux/security.h> 32 #include <linux/cpuset.h> 33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */ 34 #include <linux/memcontrol.h> 35 #include <linux/cleancache.h> 36 #include "internal.h" 37 38 #define CREATE_TRACE_POINTS 39 #include <trace/events/filemap.h> 40 41 /* 42 * FIXME: remove all knowledge of the buffer layer from the core VM 43 */ 44 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 45 46 #include <asm/mman.h> 47 48 /* 49 * Shared mappings implemented 30.11.1994. It's not fully working yet, 50 * though. 51 * 52 * Shared mappings now work. 15.8.1995 Bruno. 53 * 54 * finished 'unifying' the page and buffer cache and SMP-threaded the 55 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 56 * 57 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 58 */ 59 60 /* 61 * Lock ordering: 62 * 63 * ->i_mmap_mutex (truncate_pagecache) 64 * ->private_lock (__free_pte->__set_page_dirty_buffers) 65 * ->swap_lock (exclusive_swap_page, others) 66 * ->mapping->tree_lock 67 * 68 * ->i_mutex 69 * ->i_mmap_mutex (truncate->unmap_mapping_range) 70 * 71 * ->mmap_sem 72 * ->i_mmap_mutex 73 * ->page_table_lock or pte_lock (various, mainly in memory.c) 74 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock) 75 * 76 * ->mmap_sem 77 * ->lock_page (access_process_vm) 78 * 79 * ->i_mutex (generic_file_buffered_write) 80 * ->mmap_sem (fault_in_pages_readable->do_page_fault) 81 * 82 * bdi->wb.list_lock 83 * sb_lock (fs/fs-writeback.c) 84 * ->mapping->tree_lock (__sync_single_inode) 85 * 86 * ->i_mmap_mutex 87 * ->anon_vma.lock (vma_adjust) 88 * 89 * ->anon_vma.lock 90 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 91 * 92 * ->page_table_lock or pte_lock 93 * ->swap_lock (try_to_unmap_one) 94 * ->private_lock (try_to_unmap_one) 95 * ->tree_lock (try_to_unmap_one) 96 * ->zone.lru_lock (follow_page->mark_page_accessed) 97 * ->zone.lru_lock (check_pte_range->isolate_lru_page) 98 * ->private_lock (page_remove_rmap->set_page_dirty) 99 * ->tree_lock (page_remove_rmap->set_page_dirty) 100 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty) 101 * ->inode->i_lock (page_remove_rmap->set_page_dirty) 102 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 103 * ->inode->i_lock (zap_pte_range->set_page_dirty) 104 * ->private_lock (zap_pte_range->__set_page_dirty_buffers) 105 * 106 * ->i_mmap_mutex 107 * ->tasklist_lock (memory_failure, collect_procs_ao) 108 */ 109 110 /* 111 * Delete a page from the page cache and free it. Caller has to make 112 * sure the page is locked and that nobody else uses it - or that usage 113 * is safe. The caller must hold the mapping's tree_lock. 114 */ 115 void __delete_from_page_cache(struct page *page) 116 { 117 struct address_space *mapping = page->mapping; 118 119 trace_mm_filemap_delete_from_page_cache(page); 120 /* 121 * if we're uptodate, flush out into the cleancache, otherwise 122 * invalidate any existing cleancache entries. We can't leave 123 * stale data around in the cleancache once our page is gone 124 */ 125 if (PageUptodate(page) && PageMappedToDisk(page)) 126 cleancache_put_page(page); 127 else 128 cleancache_invalidate_page(mapping, page); 129 130 radix_tree_delete(&mapping->page_tree, page->index); 131 page->mapping = NULL; 132 /* Leave page->index set: truncation lookup relies upon it */ 133 mapping->nrpages--; 134 __dec_zone_page_state(page, NR_FILE_PAGES); 135 if (PageSwapBacked(page)) 136 __dec_zone_page_state(page, NR_SHMEM); 137 BUG_ON(page_mapped(page)); 138 139 /* 140 * Some filesystems seem to re-dirty the page even after 141 * the VM has canceled the dirty bit (eg ext3 journaling). 142 * 143 * Fix it up by doing a final dirty accounting check after 144 * having removed the page entirely. 145 */ 146 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) { 147 dec_zone_page_state(page, NR_FILE_DIRTY); 148 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE); 149 } 150 } 151 152 /** 153 * delete_from_page_cache - delete page from page cache 154 * @page: the page which the kernel is trying to remove from page cache 155 * 156 * This must be called only on pages that have been verified to be in the page 157 * cache and locked. It will never put the page into the free list, the caller 158 * has a reference on the page. 159 */ 160 void delete_from_page_cache(struct page *page) 161 { 162 struct address_space *mapping = page->mapping; 163 void (*freepage)(struct page *); 164 165 BUG_ON(!PageLocked(page)); 166 167 freepage = mapping->a_ops->freepage; 168 spin_lock_irq(&mapping->tree_lock); 169 __delete_from_page_cache(page); 170 spin_unlock_irq(&mapping->tree_lock); 171 mem_cgroup_uncharge_cache_page(page); 172 173 if (freepage) 174 freepage(page); 175 page_cache_release(page); 176 } 177 EXPORT_SYMBOL(delete_from_page_cache); 178 179 static int sleep_on_page(void *word) 180 { 181 io_schedule(); 182 return 0; 183 } 184 185 static int sleep_on_page_killable(void *word) 186 { 187 sleep_on_page(word); 188 return fatal_signal_pending(current) ? -EINTR : 0; 189 } 190 191 static int filemap_check_errors(struct address_space *mapping) 192 { 193 int ret = 0; 194 /* Check for outstanding write errors */ 195 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 196 ret = -ENOSPC; 197 if (test_and_clear_bit(AS_EIO, &mapping->flags)) 198 ret = -EIO; 199 return ret; 200 } 201 202 /** 203 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 204 * @mapping: address space structure to write 205 * @start: offset in bytes where the range starts 206 * @end: offset in bytes where the range ends (inclusive) 207 * @sync_mode: enable synchronous operation 208 * 209 * Start writeback against all of a mapping's dirty pages that lie 210 * within the byte offsets <start, end> inclusive. 211 * 212 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 213 * opposed to a regular memory cleansing writeback. The difference between 214 * these two operations is that if a dirty page/buffer is encountered, it must 215 * be waited upon, and not just skipped over. 216 */ 217 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 218 loff_t end, int sync_mode) 219 { 220 int ret; 221 struct writeback_control wbc = { 222 .sync_mode = sync_mode, 223 .nr_to_write = LONG_MAX, 224 .range_start = start, 225 .range_end = end, 226 }; 227 228 if (!mapping_cap_writeback_dirty(mapping)) 229 return 0; 230 231 ret = do_writepages(mapping, &wbc); 232 return ret; 233 } 234 235 static inline int __filemap_fdatawrite(struct address_space *mapping, 236 int sync_mode) 237 { 238 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 239 } 240 241 int filemap_fdatawrite(struct address_space *mapping) 242 { 243 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 244 } 245 EXPORT_SYMBOL(filemap_fdatawrite); 246 247 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 248 loff_t end) 249 { 250 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 251 } 252 EXPORT_SYMBOL(filemap_fdatawrite_range); 253 254 /** 255 * filemap_flush - mostly a non-blocking flush 256 * @mapping: target address_space 257 * 258 * This is a mostly non-blocking flush. Not suitable for data-integrity 259 * purposes - I/O may not be started against all dirty pages. 260 */ 261 int filemap_flush(struct address_space *mapping) 262 { 263 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 264 } 265 EXPORT_SYMBOL(filemap_flush); 266 267 /** 268 * filemap_fdatawait_range - wait for writeback to complete 269 * @mapping: address space structure to wait for 270 * @start_byte: offset in bytes where the range starts 271 * @end_byte: offset in bytes where the range ends (inclusive) 272 * 273 * Walk the list of under-writeback pages of the given address space 274 * in the given range and wait for all of them. 275 */ 276 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 277 loff_t end_byte) 278 { 279 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT; 280 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT; 281 struct pagevec pvec; 282 int nr_pages; 283 int ret2, ret = 0; 284 285 if (end_byte < start_byte) 286 goto out; 287 288 pagevec_init(&pvec, 0); 289 while ((index <= end) && 290 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 291 PAGECACHE_TAG_WRITEBACK, 292 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) { 293 unsigned i; 294 295 for (i = 0; i < nr_pages; i++) { 296 struct page *page = pvec.pages[i]; 297 298 /* until radix tree lookup accepts end_index */ 299 if (page->index > end) 300 continue; 301 302 wait_on_page_writeback(page); 303 if (TestClearPageError(page)) 304 ret = -EIO; 305 } 306 pagevec_release(&pvec); 307 cond_resched(); 308 } 309 out: 310 ret2 = filemap_check_errors(mapping); 311 if (!ret) 312 ret = ret2; 313 314 return ret; 315 } 316 EXPORT_SYMBOL(filemap_fdatawait_range); 317 318 /** 319 * filemap_fdatawait - wait for all under-writeback pages to complete 320 * @mapping: address space structure to wait for 321 * 322 * Walk the list of under-writeback pages of the given address space 323 * and wait for all of them. 324 */ 325 int filemap_fdatawait(struct address_space *mapping) 326 { 327 loff_t i_size = i_size_read(mapping->host); 328 329 if (i_size == 0) 330 return 0; 331 332 return filemap_fdatawait_range(mapping, 0, i_size - 1); 333 } 334 EXPORT_SYMBOL(filemap_fdatawait); 335 336 int filemap_write_and_wait(struct address_space *mapping) 337 { 338 int err = 0; 339 340 if (mapping->nrpages) { 341 err = filemap_fdatawrite(mapping); 342 /* 343 * Even if the above returned error, the pages may be 344 * written partially (e.g. -ENOSPC), so we wait for it. 345 * But the -EIO is special case, it may indicate the worst 346 * thing (e.g. bug) happened, so we avoid waiting for it. 347 */ 348 if (err != -EIO) { 349 int err2 = filemap_fdatawait(mapping); 350 if (!err) 351 err = err2; 352 } 353 } else { 354 err = filemap_check_errors(mapping); 355 } 356 return err; 357 } 358 EXPORT_SYMBOL(filemap_write_and_wait); 359 360 /** 361 * filemap_write_and_wait_range - write out & wait on a file range 362 * @mapping: the address_space for the pages 363 * @lstart: offset in bytes where the range starts 364 * @lend: offset in bytes where the range ends (inclusive) 365 * 366 * Write out and wait upon file offsets lstart->lend, inclusive. 367 * 368 * Note that `lend' is inclusive (describes the last byte to be written) so 369 * that this function can be used to write to the very end-of-file (end = -1). 370 */ 371 int filemap_write_and_wait_range(struct address_space *mapping, 372 loff_t lstart, loff_t lend) 373 { 374 int err = 0; 375 376 if (mapping->nrpages) { 377 err = __filemap_fdatawrite_range(mapping, lstart, lend, 378 WB_SYNC_ALL); 379 /* See comment of filemap_write_and_wait() */ 380 if (err != -EIO) { 381 int err2 = filemap_fdatawait_range(mapping, 382 lstart, lend); 383 if (!err) 384 err = err2; 385 } 386 } else { 387 err = filemap_check_errors(mapping); 388 } 389 return err; 390 } 391 EXPORT_SYMBOL(filemap_write_and_wait_range); 392 393 /** 394 * replace_page_cache_page - replace a pagecache page with a new one 395 * @old: page to be replaced 396 * @new: page to replace with 397 * @gfp_mask: allocation mode 398 * 399 * This function replaces a page in the pagecache with a new one. On 400 * success it acquires the pagecache reference for the new page and 401 * drops it for the old page. Both the old and new pages must be 402 * locked. This function does not add the new page to the LRU, the 403 * caller must do that. 404 * 405 * The remove + add is atomic. The only way this function can fail is 406 * memory allocation failure. 407 */ 408 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask) 409 { 410 int error; 411 412 VM_BUG_ON(!PageLocked(old)); 413 VM_BUG_ON(!PageLocked(new)); 414 VM_BUG_ON(new->mapping); 415 416 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM); 417 if (!error) { 418 struct address_space *mapping = old->mapping; 419 void (*freepage)(struct page *); 420 421 pgoff_t offset = old->index; 422 freepage = mapping->a_ops->freepage; 423 424 page_cache_get(new); 425 new->mapping = mapping; 426 new->index = offset; 427 428 spin_lock_irq(&mapping->tree_lock); 429 __delete_from_page_cache(old); 430 error = radix_tree_insert(&mapping->page_tree, offset, new); 431 BUG_ON(error); 432 mapping->nrpages++; 433 __inc_zone_page_state(new, NR_FILE_PAGES); 434 if (PageSwapBacked(new)) 435 __inc_zone_page_state(new, NR_SHMEM); 436 spin_unlock_irq(&mapping->tree_lock); 437 /* mem_cgroup codes must not be called under tree_lock */ 438 mem_cgroup_replace_page_cache(old, new); 439 radix_tree_preload_end(); 440 if (freepage) 441 freepage(old); 442 page_cache_release(old); 443 } 444 445 return error; 446 } 447 EXPORT_SYMBOL_GPL(replace_page_cache_page); 448 449 /** 450 * add_to_page_cache_locked - add a locked page to the pagecache 451 * @page: page to add 452 * @mapping: the page's address_space 453 * @offset: page index 454 * @gfp_mask: page allocation mode 455 * 456 * This function is used to add a page to the pagecache. It must be locked. 457 * This function does not add the page to the LRU. The caller must do that. 458 */ 459 int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 460 pgoff_t offset, gfp_t gfp_mask) 461 { 462 int error; 463 464 VM_BUG_ON(!PageLocked(page)); 465 VM_BUG_ON(PageSwapBacked(page)); 466 467 error = mem_cgroup_cache_charge(page, current->mm, 468 gfp_mask & GFP_RECLAIM_MASK); 469 if (error) 470 return error; 471 472 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM); 473 if (error) { 474 mem_cgroup_uncharge_cache_page(page); 475 return error; 476 } 477 478 page_cache_get(page); 479 page->mapping = mapping; 480 page->index = offset; 481 482 spin_lock_irq(&mapping->tree_lock); 483 error = radix_tree_insert(&mapping->page_tree, offset, page); 484 radix_tree_preload_end(); 485 if (unlikely(error)) 486 goto err_insert; 487 mapping->nrpages++; 488 __inc_zone_page_state(page, NR_FILE_PAGES); 489 spin_unlock_irq(&mapping->tree_lock); 490 trace_mm_filemap_add_to_page_cache(page); 491 return 0; 492 err_insert: 493 page->mapping = NULL; 494 /* Leave page->index set: truncation relies upon it */ 495 spin_unlock_irq(&mapping->tree_lock); 496 mem_cgroup_uncharge_cache_page(page); 497 page_cache_release(page); 498 return error; 499 } 500 EXPORT_SYMBOL(add_to_page_cache_locked); 501 502 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 503 pgoff_t offset, gfp_t gfp_mask) 504 { 505 int ret; 506 507 ret = add_to_page_cache(page, mapping, offset, gfp_mask); 508 if (ret == 0) 509 lru_cache_add_file(page); 510 return ret; 511 } 512 EXPORT_SYMBOL_GPL(add_to_page_cache_lru); 513 514 #ifdef CONFIG_NUMA 515 struct page *__page_cache_alloc(gfp_t gfp) 516 { 517 int n; 518 struct page *page; 519 520 if (cpuset_do_page_mem_spread()) { 521 unsigned int cpuset_mems_cookie; 522 do { 523 cpuset_mems_cookie = get_mems_allowed(); 524 n = cpuset_mem_spread_node(); 525 page = alloc_pages_exact_node(n, gfp, 0); 526 } while (!put_mems_allowed(cpuset_mems_cookie) && !page); 527 528 return page; 529 } 530 return alloc_pages(gfp, 0); 531 } 532 EXPORT_SYMBOL(__page_cache_alloc); 533 #endif 534 535 /* 536 * In order to wait for pages to become available there must be 537 * waitqueues associated with pages. By using a hash table of 538 * waitqueues where the bucket discipline is to maintain all 539 * waiters on the same queue and wake all when any of the pages 540 * become available, and for the woken contexts to check to be 541 * sure the appropriate page became available, this saves space 542 * at a cost of "thundering herd" phenomena during rare hash 543 * collisions. 544 */ 545 static wait_queue_head_t *page_waitqueue(struct page *page) 546 { 547 const struct zone *zone = page_zone(page); 548 549 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)]; 550 } 551 552 static inline void wake_up_page(struct page *page, int bit) 553 { 554 __wake_up_bit(page_waitqueue(page), &page->flags, bit); 555 } 556 557 void wait_on_page_bit(struct page *page, int bit_nr) 558 { 559 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr); 560 561 if (test_bit(bit_nr, &page->flags)) 562 __wait_on_bit(page_waitqueue(page), &wait, sleep_on_page, 563 TASK_UNINTERRUPTIBLE); 564 } 565 EXPORT_SYMBOL(wait_on_page_bit); 566 567 int wait_on_page_bit_killable(struct page *page, int bit_nr) 568 { 569 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr); 570 571 if (!test_bit(bit_nr, &page->flags)) 572 return 0; 573 574 return __wait_on_bit(page_waitqueue(page), &wait, 575 sleep_on_page_killable, TASK_KILLABLE); 576 } 577 578 /** 579 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue 580 * @page: Page defining the wait queue of interest 581 * @waiter: Waiter to add to the queue 582 * 583 * Add an arbitrary @waiter to the wait queue for the nominated @page. 584 */ 585 void add_page_wait_queue(struct page *page, wait_queue_t *waiter) 586 { 587 wait_queue_head_t *q = page_waitqueue(page); 588 unsigned long flags; 589 590 spin_lock_irqsave(&q->lock, flags); 591 __add_wait_queue(q, waiter); 592 spin_unlock_irqrestore(&q->lock, flags); 593 } 594 EXPORT_SYMBOL_GPL(add_page_wait_queue); 595 596 /** 597 * unlock_page - unlock a locked page 598 * @page: the page 599 * 600 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). 601 * Also wakes sleepers in wait_on_page_writeback() because the wakeup 602 * mechananism between PageLocked pages and PageWriteback pages is shared. 603 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. 604 * 605 * The mb is necessary to enforce ordering between the clear_bit and the read 606 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()). 607 */ 608 void unlock_page(struct page *page) 609 { 610 VM_BUG_ON(!PageLocked(page)); 611 clear_bit_unlock(PG_locked, &page->flags); 612 smp_mb__after_clear_bit(); 613 wake_up_page(page, PG_locked); 614 } 615 EXPORT_SYMBOL(unlock_page); 616 617 /** 618 * end_page_writeback - end writeback against a page 619 * @page: the page 620 */ 621 void end_page_writeback(struct page *page) 622 { 623 if (TestClearPageReclaim(page)) 624 rotate_reclaimable_page(page); 625 626 if (!test_clear_page_writeback(page)) 627 BUG(); 628 629 smp_mb__after_clear_bit(); 630 wake_up_page(page, PG_writeback); 631 } 632 EXPORT_SYMBOL(end_page_writeback); 633 634 /** 635 * __lock_page - get a lock on the page, assuming we need to sleep to get it 636 * @page: the page to lock 637 */ 638 void __lock_page(struct page *page) 639 { 640 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 641 642 __wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page, 643 TASK_UNINTERRUPTIBLE); 644 } 645 EXPORT_SYMBOL(__lock_page); 646 647 int __lock_page_killable(struct page *page) 648 { 649 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 650 651 return __wait_on_bit_lock(page_waitqueue(page), &wait, 652 sleep_on_page_killable, TASK_KILLABLE); 653 } 654 EXPORT_SYMBOL_GPL(__lock_page_killable); 655 656 int __lock_page_or_retry(struct page *page, struct mm_struct *mm, 657 unsigned int flags) 658 { 659 if (flags & FAULT_FLAG_ALLOW_RETRY) { 660 /* 661 * CAUTION! In this case, mmap_sem is not released 662 * even though return 0. 663 */ 664 if (flags & FAULT_FLAG_RETRY_NOWAIT) 665 return 0; 666 667 up_read(&mm->mmap_sem); 668 if (flags & FAULT_FLAG_KILLABLE) 669 wait_on_page_locked_killable(page); 670 else 671 wait_on_page_locked(page); 672 return 0; 673 } else { 674 if (flags & FAULT_FLAG_KILLABLE) { 675 int ret; 676 677 ret = __lock_page_killable(page); 678 if (ret) { 679 up_read(&mm->mmap_sem); 680 return 0; 681 } 682 } else 683 __lock_page(page); 684 return 1; 685 } 686 } 687 688 /** 689 * find_get_page - find and get a page reference 690 * @mapping: the address_space to search 691 * @offset: the page index 692 * 693 * Is there a pagecache struct page at the given (mapping, offset) tuple? 694 * If yes, increment its refcount and return it; if no, return NULL. 695 */ 696 struct page *find_get_page(struct address_space *mapping, pgoff_t offset) 697 { 698 void **pagep; 699 struct page *page; 700 701 rcu_read_lock(); 702 repeat: 703 page = NULL; 704 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset); 705 if (pagep) { 706 page = radix_tree_deref_slot(pagep); 707 if (unlikely(!page)) 708 goto out; 709 if (radix_tree_exception(page)) { 710 if (radix_tree_deref_retry(page)) 711 goto repeat; 712 /* 713 * Otherwise, shmem/tmpfs must be storing a swap entry 714 * here as an exceptional entry: so return it without 715 * attempting to raise page count. 716 */ 717 goto out; 718 } 719 if (!page_cache_get_speculative(page)) 720 goto repeat; 721 722 /* 723 * Has the page moved? 724 * This is part of the lockless pagecache protocol. See 725 * include/linux/pagemap.h for details. 726 */ 727 if (unlikely(page != *pagep)) { 728 page_cache_release(page); 729 goto repeat; 730 } 731 } 732 out: 733 rcu_read_unlock(); 734 735 return page; 736 } 737 EXPORT_SYMBOL(find_get_page); 738 739 /** 740 * find_lock_page - locate, pin and lock a pagecache page 741 * @mapping: the address_space to search 742 * @offset: the page index 743 * 744 * Locates the desired pagecache page, locks it, increments its reference 745 * count and returns its address. 746 * 747 * Returns zero if the page was not present. find_lock_page() may sleep. 748 */ 749 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset) 750 { 751 struct page *page; 752 753 repeat: 754 page = find_get_page(mapping, offset); 755 if (page && !radix_tree_exception(page)) { 756 lock_page(page); 757 /* Has the page been truncated? */ 758 if (unlikely(page->mapping != mapping)) { 759 unlock_page(page); 760 page_cache_release(page); 761 goto repeat; 762 } 763 VM_BUG_ON(page->index != offset); 764 } 765 return page; 766 } 767 EXPORT_SYMBOL(find_lock_page); 768 769 /** 770 * find_or_create_page - locate or add a pagecache page 771 * @mapping: the page's address_space 772 * @index: the page's index into the mapping 773 * @gfp_mask: page allocation mode 774 * 775 * Locates a page in the pagecache. If the page is not present, a new page 776 * is allocated using @gfp_mask and is added to the pagecache and to the VM's 777 * LRU list. The returned page is locked and has its reference count 778 * incremented. 779 * 780 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic 781 * allocation! 782 * 783 * find_or_create_page() returns the desired page's address, or zero on 784 * memory exhaustion. 785 */ 786 struct page *find_or_create_page(struct address_space *mapping, 787 pgoff_t index, gfp_t gfp_mask) 788 { 789 struct page *page; 790 int err; 791 repeat: 792 page = find_lock_page(mapping, index); 793 if (!page) { 794 page = __page_cache_alloc(gfp_mask); 795 if (!page) 796 return NULL; 797 /* 798 * We want a regular kernel memory (not highmem or DMA etc) 799 * allocation for the radix tree nodes, but we need to honour 800 * the context-specific requirements the caller has asked for. 801 * GFP_RECLAIM_MASK collects those requirements. 802 */ 803 err = add_to_page_cache_lru(page, mapping, index, 804 (gfp_mask & GFP_RECLAIM_MASK)); 805 if (unlikely(err)) { 806 page_cache_release(page); 807 page = NULL; 808 if (err == -EEXIST) 809 goto repeat; 810 } 811 } 812 return page; 813 } 814 EXPORT_SYMBOL(find_or_create_page); 815 816 /** 817 * find_get_pages - gang pagecache lookup 818 * @mapping: The address_space to search 819 * @start: The starting page index 820 * @nr_pages: The maximum number of pages 821 * @pages: Where the resulting pages are placed 822 * 823 * find_get_pages() will search for and return a group of up to 824 * @nr_pages pages in the mapping. The pages are placed at @pages. 825 * find_get_pages() takes a reference against the returned pages. 826 * 827 * The search returns a group of mapping-contiguous pages with ascending 828 * indexes. There may be holes in the indices due to not-present pages. 829 * 830 * find_get_pages() returns the number of pages which were found. 831 */ 832 unsigned find_get_pages(struct address_space *mapping, pgoff_t start, 833 unsigned int nr_pages, struct page **pages) 834 { 835 struct radix_tree_iter iter; 836 void **slot; 837 unsigned ret = 0; 838 839 if (unlikely(!nr_pages)) 840 return 0; 841 842 rcu_read_lock(); 843 restart: 844 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { 845 struct page *page; 846 repeat: 847 page = radix_tree_deref_slot(slot); 848 if (unlikely(!page)) 849 continue; 850 851 if (radix_tree_exception(page)) { 852 if (radix_tree_deref_retry(page)) { 853 /* 854 * Transient condition which can only trigger 855 * when entry at index 0 moves out of or back 856 * to root: none yet gotten, safe to restart. 857 */ 858 WARN_ON(iter.index); 859 goto restart; 860 } 861 /* 862 * Otherwise, shmem/tmpfs must be storing a swap entry 863 * here as an exceptional entry: so skip over it - 864 * we only reach this from invalidate_mapping_pages(). 865 */ 866 continue; 867 } 868 869 if (!page_cache_get_speculative(page)) 870 goto repeat; 871 872 /* Has the page moved? */ 873 if (unlikely(page != *slot)) { 874 page_cache_release(page); 875 goto repeat; 876 } 877 878 pages[ret] = page; 879 if (++ret == nr_pages) 880 break; 881 } 882 883 rcu_read_unlock(); 884 return ret; 885 } 886 887 /** 888 * find_get_pages_contig - gang contiguous pagecache lookup 889 * @mapping: The address_space to search 890 * @index: The starting page index 891 * @nr_pages: The maximum number of pages 892 * @pages: Where the resulting pages are placed 893 * 894 * find_get_pages_contig() works exactly like find_get_pages(), except 895 * that the returned number of pages are guaranteed to be contiguous. 896 * 897 * find_get_pages_contig() returns the number of pages which were found. 898 */ 899 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, 900 unsigned int nr_pages, struct page **pages) 901 { 902 struct radix_tree_iter iter; 903 void **slot; 904 unsigned int ret = 0; 905 906 if (unlikely(!nr_pages)) 907 return 0; 908 909 rcu_read_lock(); 910 restart: 911 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) { 912 struct page *page; 913 repeat: 914 page = radix_tree_deref_slot(slot); 915 /* The hole, there no reason to continue */ 916 if (unlikely(!page)) 917 break; 918 919 if (radix_tree_exception(page)) { 920 if (radix_tree_deref_retry(page)) { 921 /* 922 * Transient condition which can only trigger 923 * when entry at index 0 moves out of or back 924 * to root: none yet gotten, safe to restart. 925 */ 926 goto restart; 927 } 928 /* 929 * Otherwise, shmem/tmpfs must be storing a swap entry 930 * here as an exceptional entry: so stop looking for 931 * contiguous pages. 932 */ 933 break; 934 } 935 936 if (!page_cache_get_speculative(page)) 937 goto repeat; 938 939 /* Has the page moved? */ 940 if (unlikely(page != *slot)) { 941 page_cache_release(page); 942 goto repeat; 943 } 944 945 /* 946 * must check mapping and index after taking the ref. 947 * otherwise we can get both false positives and false 948 * negatives, which is just confusing to the caller. 949 */ 950 if (page->mapping == NULL || page->index != iter.index) { 951 page_cache_release(page); 952 break; 953 } 954 955 pages[ret] = page; 956 if (++ret == nr_pages) 957 break; 958 } 959 rcu_read_unlock(); 960 return ret; 961 } 962 EXPORT_SYMBOL(find_get_pages_contig); 963 964 /** 965 * find_get_pages_tag - find and return pages that match @tag 966 * @mapping: the address_space to search 967 * @index: the starting page index 968 * @tag: the tag index 969 * @nr_pages: the maximum number of pages 970 * @pages: where the resulting pages are placed 971 * 972 * Like find_get_pages, except we only return pages which are tagged with 973 * @tag. We update @index to index the next page for the traversal. 974 */ 975 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, 976 int tag, unsigned int nr_pages, struct page **pages) 977 { 978 struct radix_tree_iter iter; 979 void **slot; 980 unsigned ret = 0; 981 982 if (unlikely(!nr_pages)) 983 return 0; 984 985 rcu_read_lock(); 986 restart: 987 radix_tree_for_each_tagged(slot, &mapping->page_tree, 988 &iter, *index, tag) { 989 struct page *page; 990 repeat: 991 page = radix_tree_deref_slot(slot); 992 if (unlikely(!page)) 993 continue; 994 995 if (radix_tree_exception(page)) { 996 if (radix_tree_deref_retry(page)) { 997 /* 998 * Transient condition which can only trigger 999 * when entry at index 0 moves out of or back 1000 * to root: none yet gotten, safe to restart. 1001 */ 1002 goto restart; 1003 } 1004 /* 1005 * This function is never used on a shmem/tmpfs 1006 * mapping, so a swap entry won't be found here. 1007 */ 1008 BUG(); 1009 } 1010 1011 if (!page_cache_get_speculative(page)) 1012 goto repeat; 1013 1014 /* Has the page moved? */ 1015 if (unlikely(page != *slot)) { 1016 page_cache_release(page); 1017 goto repeat; 1018 } 1019 1020 pages[ret] = page; 1021 if (++ret == nr_pages) 1022 break; 1023 } 1024 1025 rcu_read_unlock(); 1026 1027 if (ret) 1028 *index = pages[ret - 1]->index + 1; 1029 1030 return ret; 1031 } 1032 EXPORT_SYMBOL(find_get_pages_tag); 1033 1034 /** 1035 * grab_cache_page_nowait - returns locked page at given index in given cache 1036 * @mapping: target address_space 1037 * @index: the page index 1038 * 1039 * Same as grab_cache_page(), but do not wait if the page is unavailable. 1040 * This is intended for speculative data generators, where the data can 1041 * be regenerated if the page couldn't be grabbed. This routine should 1042 * be safe to call while holding the lock for another page. 1043 * 1044 * Clear __GFP_FS when allocating the page to avoid recursion into the fs 1045 * and deadlock against the caller's locked page. 1046 */ 1047 struct page * 1048 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index) 1049 { 1050 struct page *page = find_get_page(mapping, index); 1051 1052 if (page) { 1053 if (trylock_page(page)) 1054 return page; 1055 page_cache_release(page); 1056 return NULL; 1057 } 1058 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS); 1059 if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) { 1060 page_cache_release(page); 1061 page = NULL; 1062 } 1063 return page; 1064 } 1065 EXPORT_SYMBOL(grab_cache_page_nowait); 1066 1067 /* 1068 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 1069 * a _large_ part of the i/o request. Imagine the worst scenario: 1070 * 1071 * ---R__________________________________________B__________ 1072 * ^ reading here ^ bad block(assume 4k) 1073 * 1074 * read(R) => miss => readahead(R...B) => media error => frustrating retries 1075 * => failing the whole request => read(R) => read(R+1) => 1076 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 1077 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 1078 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 1079 * 1080 * It is going insane. Fix it by quickly scaling down the readahead size. 1081 */ 1082 static void shrink_readahead_size_eio(struct file *filp, 1083 struct file_ra_state *ra) 1084 { 1085 ra->ra_pages /= 4; 1086 } 1087 1088 /** 1089 * do_generic_file_read - generic file read routine 1090 * @filp: the file to read 1091 * @ppos: current file position 1092 * @desc: read_descriptor 1093 * 1094 * This is a generic file read routine, and uses the 1095 * mapping->a_ops->readpage() function for the actual low-level stuff. 1096 * 1097 * This is really ugly. But the goto's actually try to clarify some 1098 * of the logic when it comes to error handling etc. 1099 */ 1100 static void do_generic_file_read(struct file *filp, loff_t *ppos, 1101 read_descriptor_t *desc) 1102 { 1103 struct address_space *mapping = filp->f_mapping; 1104 struct inode *inode = mapping->host; 1105 struct file_ra_state *ra = &filp->f_ra; 1106 pgoff_t index; 1107 pgoff_t last_index; 1108 pgoff_t prev_index; 1109 unsigned long offset; /* offset into pagecache page */ 1110 unsigned int prev_offset; 1111 int error; 1112 1113 index = *ppos >> PAGE_CACHE_SHIFT; 1114 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT; 1115 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1); 1116 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT; 1117 offset = *ppos & ~PAGE_CACHE_MASK; 1118 1119 for (;;) { 1120 struct page *page; 1121 pgoff_t end_index; 1122 loff_t isize; 1123 unsigned long nr, ret; 1124 1125 cond_resched(); 1126 find_page: 1127 page = find_get_page(mapping, index); 1128 if (!page) { 1129 page_cache_sync_readahead(mapping, 1130 ra, filp, 1131 index, last_index - index); 1132 page = find_get_page(mapping, index); 1133 if (unlikely(page == NULL)) 1134 goto no_cached_page; 1135 } 1136 if (PageReadahead(page)) { 1137 page_cache_async_readahead(mapping, 1138 ra, filp, page, 1139 index, last_index - index); 1140 } 1141 if (!PageUptodate(page)) { 1142 if (inode->i_blkbits == PAGE_CACHE_SHIFT || 1143 !mapping->a_ops->is_partially_uptodate) 1144 goto page_not_up_to_date; 1145 if (!trylock_page(page)) 1146 goto page_not_up_to_date; 1147 /* Did it get truncated before we got the lock? */ 1148 if (!page->mapping) 1149 goto page_not_up_to_date_locked; 1150 if (!mapping->a_ops->is_partially_uptodate(page, 1151 desc, offset)) 1152 goto page_not_up_to_date_locked; 1153 unlock_page(page); 1154 } 1155 page_ok: 1156 /* 1157 * i_size must be checked after we know the page is Uptodate. 1158 * 1159 * Checking i_size after the check allows us to calculate 1160 * the correct value for "nr", which means the zero-filled 1161 * part of the page is not copied back to userspace (unless 1162 * another truncate extends the file - this is desired though). 1163 */ 1164 1165 isize = i_size_read(inode); 1166 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 1167 if (unlikely(!isize || index > end_index)) { 1168 page_cache_release(page); 1169 goto out; 1170 } 1171 1172 /* nr is the maximum number of bytes to copy from this page */ 1173 nr = PAGE_CACHE_SIZE; 1174 if (index == end_index) { 1175 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 1176 if (nr <= offset) { 1177 page_cache_release(page); 1178 goto out; 1179 } 1180 } 1181 nr = nr - offset; 1182 1183 /* If users can be writing to this page using arbitrary 1184 * virtual addresses, take care about potential aliasing 1185 * before reading the page on the kernel side. 1186 */ 1187 if (mapping_writably_mapped(mapping)) 1188 flush_dcache_page(page); 1189 1190 /* 1191 * When a sequential read accesses a page several times, 1192 * only mark it as accessed the first time. 1193 */ 1194 if (prev_index != index || offset != prev_offset) 1195 mark_page_accessed(page); 1196 prev_index = index; 1197 1198 /* 1199 * Ok, we have the page, and it's up-to-date, so 1200 * now we can copy it to user space... 1201 * 1202 * The file_read_actor routine returns how many bytes were 1203 * actually used.. 1204 * NOTE! This may not be the same as how much of a user buffer 1205 * we filled up (we may be padding etc), so we can only update 1206 * "pos" here (the actor routine has to update the user buffer 1207 * pointers and the remaining count). 1208 */ 1209 ret = file_read_actor(desc, page, offset, nr); 1210 offset += ret; 1211 index += offset >> PAGE_CACHE_SHIFT; 1212 offset &= ~PAGE_CACHE_MASK; 1213 prev_offset = offset; 1214 1215 page_cache_release(page); 1216 if (ret == nr && desc->count) 1217 continue; 1218 goto out; 1219 1220 page_not_up_to_date: 1221 /* Get exclusive access to the page ... */ 1222 error = lock_page_killable(page); 1223 if (unlikely(error)) 1224 goto readpage_error; 1225 1226 page_not_up_to_date_locked: 1227 /* Did it get truncated before we got the lock? */ 1228 if (!page->mapping) { 1229 unlock_page(page); 1230 page_cache_release(page); 1231 continue; 1232 } 1233 1234 /* Did somebody else fill it already? */ 1235 if (PageUptodate(page)) { 1236 unlock_page(page); 1237 goto page_ok; 1238 } 1239 1240 readpage: 1241 /* 1242 * A previous I/O error may have been due to temporary 1243 * failures, eg. multipath errors. 1244 * PG_error will be set again if readpage fails. 1245 */ 1246 ClearPageError(page); 1247 /* Start the actual read. The read will unlock the page. */ 1248 error = mapping->a_ops->readpage(filp, page); 1249 1250 if (unlikely(error)) { 1251 if (error == AOP_TRUNCATED_PAGE) { 1252 page_cache_release(page); 1253 goto find_page; 1254 } 1255 goto readpage_error; 1256 } 1257 1258 if (!PageUptodate(page)) { 1259 error = lock_page_killable(page); 1260 if (unlikely(error)) 1261 goto readpage_error; 1262 if (!PageUptodate(page)) { 1263 if (page->mapping == NULL) { 1264 /* 1265 * invalidate_mapping_pages got it 1266 */ 1267 unlock_page(page); 1268 page_cache_release(page); 1269 goto find_page; 1270 } 1271 unlock_page(page); 1272 shrink_readahead_size_eio(filp, ra); 1273 error = -EIO; 1274 goto readpage_error; 1275 } 1276 unlock_page(page); 1277 } 1278 1279 goto page_ok; 1280 1281 readpage_error: 1282 /* UHHUH! A synchronous read error occurred. Report it */ 1283 desc->error = error; 1284 page_cache_release(page); 1285 goto out; 1286 1287 no_cached_page: 1288 /* 1289 * Ok, it wasn't cached, so we need to create a new 1290 * page.. 1291 */ 1292 page = page_cache_alloc_cold(mapping); 1293 if (!page) { 1294 desc->error = -ENOMEM; 1295 goto out; 1296 } 1297 error = add_to_page_cache_lru(page, mapping, 1298 index, GFP_KERNEL); 1299 if (error) { 1300 page_cache_release(page); 1301 if (error == -EEXIST) 1302 goto find_page; 1303 desc->error = error; 1304 goto out; 1305 } 1306 goto readpage; 1307 } 1308 1309 out: 1310 ra->prev_pos = prev_index; 1311 ra->prev_pos <<= PAGE_CACHE_SHIFT; 1312 ra->prev_pos |= prev_offset; 1313 1314 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset; 1315 file_accessed(filp); 1316 } 1317 1318 int file_read_actor(read_descriptor_t *desc, struct page *page, 1319 unsigned long offset, unsigned long size) 1320 { 1321 char *kaddr; 1322 unsigned long left, count = desc->count; 1323 1324 if (size > count) 1325 size = count; 1326 1327 /* 1328 * Faults on the destination of a read are common, so do it before 1329 * taking the kmap. 1330 */ 1331 if (!fault_in_pages_writeable(desc->arg.buf, size)) { 1332 kaddr = kmap_atomic(page); 1333 left = __copy_to_user_inatomic(desc->arg.buf, 1334 kaddr + offset, size); 1335 kunmap_atomic(kaddr); 1336 if (left == 0) 1337 goto success; 1338 } 1339 1340 /* Do it the slow way */ 1341 kaddr = kmap(page); 1342 left = __copy_to_user(desc->arg.buf, kaddr + offset, size); 1343 kunmap(page); 1344 1345 if (left) { 1346 size -= left; 1347 desc->error = -EFAULT; 1348 } 1349 success: 1350 desc->count = count - size; 1351 desc->written += size; 1352 desc->arg.buf += size; 1353 return size; 1354 } 1355 1356 /* 1357 * Performs necessary checks before doing a write 1358 * @iov: io vector request 1359 * @nr_segs: number of segments in the iovec 1360 * @count: number of bytes to write 1361 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE 1362 * 1363 * Adjust number of segments and amount of bytes to write (nr_segs should be 1364 * properly initialized first). Returns appropriate error code that caller 1365 * should return or zero in case that write should be allowed. 1366 */ 1367 int generic_segment_checks(const struct iovec *iov, 1368 unsigned long *nr_segs, size_t *count, int access_flags) 1369 { 1370 unsigned long seg; 1371 size_t cnt = 0; 1372 for (seg = 0; seg < *nr_segs; seg++) { 1373 const struct iovec *iv = &iov[seg]; 1374 1375 /* 1376 * If any segment has a negative length, or the cumulative 1377 * length ever wraps negative then return -EINVAL. 1378 */ 1379 cnt += iv->iov_len; 1380 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0)) 1381 return -EINVAL; 1382 if (access_ok(access_flags, iv->iov_base, iv->iov_len)) 1383 continue; 1384 if (seg == 0) 1385 return -EFAULT; 1386 *nr_segs = seg; 1387 cnt -= iv->iov_len; /* This segment is no good */ 1388 break; 1389 } 1390 *count = cnt; 1391 return 0; 1392 } 1393 EXPORT_SYMBOL(generic_segment_checks); 1394 1395 /** 1396 * generic_file_aio_read - generic filesystem read routine 1397 * @iocb: kernel I/O control block 1398 * @iov: io vector request 1399 * @nr_segs: number of segments in the iovec 1400 * @pos: current file position 1401 * 1402 * This is the "read()" routine for all filesystems 1403 * that can use the page cache directly. 1404 */ 1405 ssize_t 1406 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov, 1407 unsigned long nr_segs, loff_t pos) 1408 { 1409 struct file *filp = iocb->ki_filp; 1410 ssize_t retval; 1411 unsigned long seg = 0; 1412 size_t count; 1413 loff_t *ppos = &iocb->ki_pos; 1414 1415 count = 0; 1416 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE); 1417 if (retval) 1418 return retval; 1419 1420 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ 1421 if (filp->f_flags & O_DIRECT) { 1422 loff_t size; 1423 struct address_space *mapping; 1424 struct inode *inode; 1425 1426 mapping = filp->f_mapping; 1427 inode = mapping->host; 1428 if (!count) 1429 goto out; /* skip atime */ 1430 size = i_size_read(inode); 1431 if (pos < size) { 1432 retval = filemap_write_and_wait_range(mapping, pos, 1433 pos + iov_length(iov, nr_segs) - 1); 1434 if (!retval) { 1435 retval = mapping->a_ops->direct_IO(READ, iocb, 1436 iov, pos, nr_segs); 1437 } 1438 if (retval > 0) { 1439 *ppos = pos + retval; 1440 count -= retval; 1441 } 1442 1443 /* 1444 * Btrfs can have a short DIO read if we encounter 1445 * compressed extents, so if there was an error, or if 1446 * we've already read everything we wanted to, or if 1447 * there was a short read because we hit EOF, go ahead 1448 * and return. Otherwise fallthrough to buffered io for 1449 * the rest of the read. 1450 */ 1451 if (retval < 0 || !count || *ppos >= size) { 1452 file_accessed(filp); 1453 goto out; 1454 } 1455 } 1456 } 1457 1458 count = retval; 1459 for (seg = 0; seg < nr_segs; seg++) { 1460 read_descriptor_t desc; 1461 loff_t offset = 0; 1462 1463 /* 1464 * If we did a short DIO read we need to skip the section of the 1465 * iov that we've already read data into. 1466 */ 1467 if (count) { 1468 if (count > iov[seg].iov_len) { 1469 count -= iov[seg].iov_len; 1470 continue; 1471 } 1472 offset = count; 1473 count = 0; 1474 } 1475 1476 desc.written = 0; 1477 desc.arg.buf = iov[seg].iov_base + offset; 1478 desc.count = iov[seg].iov_len - offset; 1479 if (desc.count == 0) 1480 continue; 1481 desc.error = 0; 1482 do_generic_file_read(filp, ppos, &desc); 1483 retval += desc.written; 1484 if (desc.error) { 1485 retval = retval ?: desc.error; 1486 break; 1487 } 1488 if (desc.count > 0) 1489 break; 1490 } 1491 out: 1492 return retval; 1493 } 1494 EXPORT_SYMBOL(generic_file_aio_read); 1495 1496 #ifdef CONFIG_MMU 1497 /** 1498 * page_cache_read - adds requested page to the page cache if not already there 1499 * @file: file to read 1500 * @offset: page index 1501 * 1502 * This adds the requested page to the page cache if it isn't already there, 1503 * and schedules an I/O to read in its contents from disk. 1504 */ 1505 static int page_cache_read(struct file *file, pgoff_t offset) 1506 { 1507 struct address_space *mapping = file->f_mapping; 1508 struct page *page; 1509 int ret; 1510 1511 do { 1512 page = page_cache_alloc_cold(mapping); 1513 if (!page) 1514 return -ENOMEM; 1515 1516 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL); 1517 if (ret == 0) 1518 ret = mapping->a_ops->readpage(file, page); 1519 else if (ret == -EEXIST) 1520 ret = 0; /* losing race to add is OK */ 1521 1522 page_cache_release(page); 1523 1524 } while (ret == AOP_TRUNCATED_PAGE); 1525 1526 return ret; 1527 } 1528 1529 #define MMAP_LOTSAMISS (100) 1530 1531 /* 1532 * Synchronous readahead happens when we don't even find 1533 * a page in the page cache at all. 1534 */ 1535 static void do_sync_mmap_readahead(struct vm_area_struct *vma, 1536 struct file_ra_state *ra, 1537 struct file *file, 1538 pgoff_t offset) 1539 { 1540 unsigned long ra_pages; 1541 struct address_space *mapping = file->f_mapping; 1542 1543 /* If we don't want any read-ahead, don't bother */ 1544 if (vma->vm_flags & VM_RAND_READ) 1545 return; 1546 if (!ra->ra_pages) 1547 return; 1548 1549 if (vma->vm_flags & VM_SEQ_READ) { 1550 page_cache_sync_readahead(mapping, ra, file, offset, 1551 ra->ra_pages); 1552 return; 1553 } 1554 1555 /* Avoid banging the cache line if not needed */ 1556 if (ra->mmap_miss < MMAP_LOTSAMISS * 10) 1557 ra->mmap_miss++; 1558 1559 /* 1560 * Do we miss much more than hit in this file? If so, 1561 * stop bothering with read-ahead. It will only hurt. 1562 */ 1563 if (ra->mmap_miss > MMAP_LOTSAMISS) 1564 return; 1565 1566 /* 1567 * mmap read-around 1568 */ 1569 ra_pages = max_sane_readahead(ra->ra_pages); 1570 ra->start = max_t(long, 0, offset - ra_pages / 2); 1571 ra->size = ra_pages; 1572 ra->async_size = ra_pages / 4; 1573 ra_submit(ra, mapping, file); 1574 } 1575 1576 /* 1577 * Asynchronous readahead happens when we find the page and PG_readahead, 1578 * so we want to possibly extend the readahead further.. 1579 */ 1580 static void do_async_mmap_readahead(struct vm_area_struct *vma, 1581 struct file_ra_state *ra, 1582 struct file *file, 1583 struct page *page, 1584 pgoff_t offset) 1585 { 1586 struct address_space *mapping = file->f_mapping; 1587 1588 /* If we don't want any read-ahead, don't bother */ 1589 if (vma->vm_flags & VM_RAND_READ) 1590 return; 1591 if (ra->mmap_miss > 0) 1592 ra->mmap_miss--; 1593 if (PageReadahead(page)) 1594 page_cache_async_readahead(mapping, ra, file, 1595 page, offset, ra->ra_pages); 1596 } 1597 1598 /** 1599 * filemap_fault - read in file data for page fault handling 1600 * @vma: vma in which the fault was taken 1601 * @vmf: struct vm_fault containing details of the fault 1602 * 1603 * filemap_fault() is invoked via the vma operations vector for a 1604 * mapped memory region to read in file data during a page fault. 1605 * 1606 * The goto's are kind of ugly, but this streamlines the normal case of having 1607 * it in the page cache, and handles the special cases reasonably without 1608 * having a lot of duplicated code. 1609 */ 1610 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1611 { 1612 int error; 1613 struct file *file = vma->vm_file; 1614 struct address_space *mapping = file->f_mapping; 1615 struct file_ra_state *ra = &file->f_ra; 1616 struct inode *inode = mapping->host; 1617 pgoff_t offset = vmf->pgoff; 1618 struct page *page; 1619 pgoff_t size; 1620 int ret = 0; 1621 1622 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1623 if (offset >= size) 1624 return VM_FAULT_SIGBUS; 1625 1626 /* 1627 * Do we have something in the page cache already? 1628 */ 1629 page = find_get_page(mapping, offset); 1630 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) { 1631 /* 1632 * We found the page, so try async readahead before 1633 * waiting for the lock. 1634 */ 1635 do_async_mmap_readahead(vma, ra, file, page, offset); 1636 } else if (!page) { 1637 /* No page in the page cache at all */ 1638 do_sync_mmap_readahead(vma, ra, file, offset); 1639 count_vm_event(PGMAJFAULT); 1640 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT); 1641 ret = VM_FAULT_MAJOR; 1642 retry_find: 1643 page = find_get_page(mapping, offset); 1644 if (!page) 1645 goto no_cached_page; 1646 } 1647 1648 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) { 1649 page_cache_release(page); 1650 return ret | VM_FAULT_RETRY; 1651 } 1652 1653 /* Did it get truncated? */ 1654 if (unlikely(page->mapping != mapping)) { 1655 unlock_page(page); 1656 put_page(page); 1657 goto retry_find; 1658 } 1659 VM_BUG_ON(page->index != offset); 1660 1661 /* 1662 * We have a locked page in the page cache, now we need to check 1663 * that it's up-to-date. If not, it is going to be due to an error. 1664 */ 1665 if (unlikely(!PageUptodate(page))) 1666 goto page_not_uptodate; 1667 1668 /* 1669 * Found the page and have a reference on it. 1670 * We must recheck i_size under page lock. 1671 */ 1672 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1673 if (unlikely(offset >= size)) { 1674 unlock_page(page); 1675 page_cache_release(page); 1676 return VM_FAULT_SIGBUS; 1677 } 1678 1679 vmf->page = page; 1680 return ret | VM_FAULT_LOCKED; 1681 1682 no_cached_page: 1683 /* 1684 * We're only likely to ever get here if MADV_RANDOM is in 1685 * effect. 1686 */ 1687 error = page_cache_read(file, offset); 1688 1689 /* 1690 * The page we want has now been added to the page cache. 1691 * In the unlikely event that someone removed it in the 1692 * meantime, we'll just come back here and read it again. 1693 */ 1694 if (error >= 0) 1695 goto retry_find; 1696 1697 /* 1698 * An error return from page_cache_read can result if the 1699 * system is low on memory, or a problem occurs while trying 1700 * to schedule I/O. 1701 */ 1702 if (error == -ENOMEM) 1703 return VM_FAULT_OOM; 1704 return VM_FAULT_SIGBUS; 1705 1706 page_not_uptodate: 1707 /* 1708 * Umm, take care of errors if the page isn't up-to-date. 1709 * Try to re-read it _once_. We do this synchronously, 1710 * because there really aren't any performance issues here 1711 * and we need to check for errors. 1712 */ 1713 ClearPageError(page); 1714 error = mapping->a_ops->readpage(file, page); 1715 if (!error) { 1716 wait_on_page_locked(page); 1717 if (!PageUptodate(page)) 1718 error = -EIO; 1719 } 1720 page_cache_release(page); 1721 1722 if (!error || error == AOP_TRUNCATED_PAGE) 1723 goto retry_find; 1724 1725 /* Things didn't work out. Return zero to tell the mm layer so. */ 1726 shrink_readahead_size_eio(file, ra); 1727 return VM_FAULT_SIGBUS; 1728 } 1729 EXPORT_SYMBOL(filemap_fault); 1730 1731 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 1732 { 1733 struct page *page = vmf->page; 1734 struct inode *inode = file_inode(vma->vm_file); 1735 int ret = VM_FAULT_LOCKED; 1736 1737 sb_start_pagefault(inode->i_sb); 1738 file_update_time(vma->vm_file); 1739 lock_page(page); 1740 if (page->mapping != inode->i_mapping) { 1741 unlock_page(page); 1742 ret = VM_FAULT_NOPAGE; 1743 goto out; 1744 } 1745 /* 1746 * We mark the page dirty already here so that when freeze is in 1747 * progress, we are guaranteed that writeback during freezing will 1748 * see the dirty page and writeprotect it again. 1749 */ 1750 set_page_dirty(page); 1751 wait_for_stable_page(page); 1752 out: 1753 sb_end_pagefault(inode->i_sb); 1754 return ret; 1755 } 1756 EXPORT_SYMBOL(filemap_page_mkwrite); 1757 1758 const struct vm_operations_struct generic_file_vm_ops = { 1759 .fault = filemap_fault, 1760 .page_mkwrite = filemap_page_mkwrite, 1761 .remap_pages = generic_file_remap_pages, 1762 }; 1763 1764 /* This is used for a general mmap of a disk file */ 1765 1766 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 1767 { 1768 struct address_space *mapping = file->f_mapping; 1769 1770 if (!mapping->a_ops->readpage) 1771 return -ENOEXEC; 1772 file_accessed(file); 1773 vma->vm_ops = &generic_file_vm_ops; 1774 return 0; 1775 } 1776 1777 /* 1778 * This is for filesystems which do not implement ->writepage. 1779 */ 1780 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 1781 { 1782 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 1783 return -EINVAL; 1784 return generic_file_mmap(file, vma); 1785 } 1786 #else 1787 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 1788 { 1789 return -ENOSYS; 1790 } 1791 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) 1792 { 1793 return -ENOSYS; 1794 } 1795 #endif /* CONFIG_MMU */ 1796 1797 EXPORT_SYMBOL(generic_file_mmap); 1798 EXPORT_SYMBOL(generic_file_readonly_mmap); 1799 1800 static struct page *__read_cache_page(struct address_space *mapping, 1801 pgoff_t index, 1802 int (*filler)(void *, struct page *), 1803 void *data, 1804 gfp_t gfp) 1805 { 1806 struct page *page; 1807 int err; 1808 repeat: 1809 page = find_get_page(mapping, index); 1810 if (!page) { 1811 page = __page_cache_alloc(gfp | __GFP_COLD); 1812 if (!page) 1813 return ERR_PTR(-ENOMEM); 1814 err = add_to_page_cache_lru(page, mapping, index, gfp); 1815 if (unlikely(err)) { 1816 page_cache_release(page); 1817 if (err == -EEXIST) 1818 goto repeat; 1819 /* Presumably ENOMEM for radix tree node */ 1820 return ERR_PTR(err); 1821 } 1822 err = filler(data, page); 1823 if (err < 0) { 1824 page_cache_release(page); 1825 page = ERR_PTR(err); 1826 } 1827 } 1828 return page; 1829 } 1830 1831 static struct page *do_read_cache_page(struct address_space *mapping, 1832 pgoff_t index, 1833 int (*filler)(void *, struct page *), 1834 void *data, 1835 gfp_t gfp) 1836 1837 { 1838 struct page *page; 1839 int err; 1840 1841 retry: 1842 page = __read_cache_page(mapping, index, filler, data, gfp); 1843 if (IS_ERR(page)) 1844 return page; 1845 if (PageUptodate(page)) 1846 goto out; 1847 1848 lock_page(page); 1849 if (!page->mapping) { 1850 unlock_page(page); 1851 page_cache_release(page); 1852 goto retry; 1853 } 1854 if (PageUptodate(page)) { 1855 unlock_page(page); 1856 goto out; 1857 } 1858 err = filler(data, page); 1859 if (err < 0) { 1860 page_cache_release(page); 1861 return ERR_PTR(err); 1862 } 1863 out: 1864 mark_page_accessed(page); 1865 return page; 1866 } 1867 1868 /** 1869 * read_cache_page_async - read into page cache, fill it if needed 1870 * @mapping: the page's address_space 1871 * @index: the page index 1872 * @filler: function to perform the read 1873 * @data: first arg to filler(data, page) function, often left as NULL 1874 * 1875 * Same as read_cache_page, but don't wait for page to become unlocked 1876 * after submitting it to the filler. 1877 * 1878 * Read into the page cache. If a page already exists, and PageUptodate() is 1879 * not set, try to fill the page but don't wait for it to become unlocked. 1880 * 1881 * If the page does not get brought uptodate, return -EIO. 1882 */ 1883 struct page *read_cache_page_async(struct address_space *mapping, 1884 pgoff_t index, 1885 int (*filler)(void *, struct page *), 1886 void *data) 1887 { 1888 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping)); 1889 } 1890 EXPORT_SYMBOL(read_cache_page_async); 1891 1892 static struct page *wait_on_page_read(struct page *page) 1893 { 1894 if (!IS_ERR(page)) { 1895 wait_on_page_locked(page); 1896 if (!PageUptodate(page)) { 1897 page_cache_release(page); 1898 page = ERR_PTR(-EIO); 1899 } 1900 } 1901 return page; 1902 } 1903 1904 /** 1905 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 1906 * @mapping: the page's address_space 1907 * @index: the page index 1908 * @gfp: the page allocator flags to use if allocating 1909 * 1910 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 1911 * any new page allocations done using the specified allocation flags. 1912 * 1913 * If the page does not get brought uptodate, return -EIO. 1914 */ 1915 struct page *read_cache_page_gfp(struct address_space *mapping, 1916 pgoff_t index, 1917 gfp_t gfp) 1918 { 1919 filler_t *filler = (filler_t *)mapping->a_ops->readpage; 1920 1921 return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp)); 1922 } 1923 EXPORT_SYMBOL(read_cache_page_gfp); 1924 1925 /** 1926 * read_cache_page - read into page cache, fill it if needed 1927 * @mapping: the page's address_space 1928 * @index: the page index 1929 * @filler: function to perform the read 1930 * @data: first arg to filler(data, page) function, often left as NULL 1931 * 1932 * Read into the page cache. If a page already exists, and PageUptodate() is 1933 * not set, try to fill the page then wait for it to become unlocked. 1934 * 1935 * If the page does not get brought uptodate, return -EIO. 1936 */ 1937 struct page *read_cache_page(struct address_space *mapping, 1938 pgoff_t index, 1939 int (*filler)(void *, struct page *), 1940 void *data) 1941 { 1942 return wait_on_page_read(read_cache_page_async(mapping, index, filler, data)); 1943 } 1944 EXPORT_SYMBOL(read_cache_page); 1945 1946 static size_t __iovec_copy_from_user_inatomic(char *vaddr, 1947 const struct iovec *iov, size_t base, size_t bytes) 1948 { 1949 size_t copied = 0, left = 0; 1950 1951 while (bytes) { 1952 char __user *buf = iov->iov_base + base; 1953 int copy = min(bytes, iov->iov_len - base); 1954 1955 base = 0; 1956 left = __copy_from_user_inatomic(vaddr, buf, copy); 1957 copied += copy; 1958 bytes -= copy; 1959 vaddr += copy; 1960 iov++; 1961 1962 if (unlikely(left)) 1963 break; 1964 } 1965 return copied - left; 1966 } 1967 1968 /* 1969 * Copy as much as we can into the page and return the number of bytes which 1970 * were successfully copied. If a fault is encountered then return the number of 1971 * bytes which were copied. 1972 */ 1973 size_t iov_iter_copy_from_user_atomic(struct page *page, 1974 struct iov_iter *i, unsigned long offset, size_t bytes) 1975 { 1976 char *kaddr; 1977 size_t copied; 1978 1979 BUG_ON(!in_atomic()); 1980 kaddr = kmap_atomic(page); 1981 if (likely(i->nr_segs == 1)) { 1982 int left; 1983 char __user *buf = i->iov->iov_base + i->iov_offset; 1984 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes); 1985 copied = bytes - left; 1986 } else { 1987 copied = __iovec_copy_from_user_inatomic(kaddr + offset, 1988 i->iov, i->iov_offset, bytes); 1989 } 1990 kunmap_atomic(kaddr); 1991 1992 return copied; 1993 } 1994 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic); 1995 1996 /* 1997 * This has the same sideeffects and return value as 1998 * iov_iter_copy_from_user_atomic(). 1999 * The difference is that it attempts to resolve faults. 2000 * Page must not be locked. 2001 */ 2002 size_t iov_iter_copy_from_user(struct page *page, 2003 struct iov_iter *i, unsigned long offset, size_t bytes) 2004 { 2005 char *kaddr; 2006 size_t copied; 2007 2008 kaddr = kmap(page); 2009 if (likely(i->nr_segs == 1)) { 2010 int left; 2011 char __user *buf = i->iov->iov_base + i->iov_offset; 2012 left = __copy_from_user(kaddr + offset, buf, bytes); 2013 copied = bytes - left; 2014 } else { 2015 copied = __iovec_copy_from_user_inatomic(kaddr + offset, 2016 i->iov, i->iov_offset, bytes); 2017 } 2018 kunmap(page); 2019 return copied; 2020 } 2021 EXPORT_SYMBOL(iov_iter_copy_from_user); 2022 2023 void iov_iter_advance(struct iov_iter *i, size_t bytes) 2024 { 2025 BUG_ON(i->count < bytes); 2026 2027 if (likely(i->nr_segs == 1)) { 2028 i->iov_offset += bytes; 2029 i->count -= bytes; 2030 } else { 2031 const struct iovec *iov = i->iov; 2032 size_t base = i->iov_offset; 2033 unsigned long nr_segs = i->nr_segs; 2034 2035 /* 2036 * The !iov->iov_len check ensures we skip over unlikely 2037 * zero-length segments (without overruning the iovec). 2038 */ 2039 while (bytes || unlikely(i->count && !iov->iov_len)) { 2040 int copy; 2041 2042 copy = min(bytes, iov->iov_len - base); 2043 BUG_ON(!i->count || i->count < copy); 2044 i->count -= copy; 2045 bytes -= copy; 2046 base += copy; 2047 if (iov->iov_len == base) { 2048 iov++; 2049 nr_segs--; 2050 base = 0; 2051 } 2052 } 2053 i->iov = iov; 2054 i->iov_offset = base; 2055 i->nr_segs = nr_segs; 2056 } 2057 } 2058 EXPORT_SYMBOL(iov_iter_advance); 2059 2060 /* 2061 * Fault in the first iovec of the given iov_iter, to a maximum length 2062 * of bytes. Returns 0 on success, or non-zero if the memory could not be 2063 * accessed (ie. because it is an invalid address). 2064 * 2065 * writev-intensive code may want this to prefault several iovecs -- that 2066 * would be possible (callers must not rely on the fact that _only_ the 2067 * first iovec will be faulted with the current implementation). 2068 */ 2069 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes) 2070 { 2071 char __user *buf = i->iov->iov_base + i->iov_offset; 2072 bytes = min(bytes, i->iov->iov_len - i->iov_offset); 2073 return fault_in_pages_readable(buf, bytes); 2074 } 2075 EXPORT_SYMBOL(iov_iter_fault_in_readable); 2076 2077 /* 2078 * Return the count of just the current iov_iter segment. 2079 */ 2080 size_t iov_iter_single_seg_count(const struct iov_iter *i) 2081 { 2082 const struct iovec *iov = i->iov; 2083 if (i->nr_segs == 1) 2084 return i->count; 2085 else 2086 return min(i->count, iov->iov_len - i->iov_offset); 2087 } 2088 EXPORT_SYMBOL(iov_iter_single_seg_count); 2089 2090 /* 2091 * Performs necessary checks before doing a write 2092 * 2093 * Can adjust writing position or amount of bytes to write. 2094 * Returns appropriate error code that caller should return or 2095 * zero in case that write should be allowed. 2096 */ 2097 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk) 2098 { 2099 struct inode *inode = file->f_mapping->host; 2100 unsigned long limit = rlimit(RLIMIT_FSIZE); 2101 2102 if (unlikely(*pos < 0)) 2103 return -EINVAL; 2104 2105 if (!isblk) { 2106 /* FIXME: this is for backwards compatibility with 2.4 */ 2107 if (file->f_flags & O_APPEND) 2108 *pos = i_size_read(inode); 2109 2110 if (limit != RLIM_INFINITY) { 2111 if (*pos >= limit) { 2112 send_sig(SIGXFSZ, current, 0); 2113 return -EFBIG; 2114 } 2115 if (*count > limit - (typeof(limit))*pos) { 2116 *count = limit - (typeof(limit))*pos; 2117 } 2118 } 2119 } 2120 2121 /* 2122 * LFS rule 2123 */ 2124 if (unlikely(*pos + *count > MAX_NON_LFS && 2125 !(file->f_flags & O_LARGEFILE))) { 2126 if (*pos >= MAX_NON_LFS) { 2127 return -EFBIG; 2128 } 2129 if (*count > MAX_NON_LFS - (unsigned long)*pos) { 2130 *count = MAX_NON_LFS - (unsigned long)*pos; 2131 } 2132 } 2133 2134 /* 2135 * Are we about to exceed the fs block limit ? 2136 * 2137 * If we have written data it becomes a short write. If we have 2138 * exceeded without writing data we send a signal and return EFBIG. 2139 * Linus frestrict idea will clean these up nicely.. 2140 */ 2141 if (likely(!isblk)) { 2142 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) { 2143 if (*count || *pos > inode->i_sb->s_maxbytes) { 2144 return -EFBIG; 2145 } 2146 /* zero-length writes at ->s_maxbytes are OK */ 2147 } 2148 2149 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes)) 2150 *count = inode->i_sb->s_maxbytes - *pos; 2151 } else { 2152 #ifdef CONFIG_BLOCK 2153 loff_t isize; 2154 if (bdev_read_only(I_BDEV(inode))) 2155 return -EPERM; 2156 isize = i_size_read(inode); 2157 if (*pos >= isize) { 2158 if (*count || *pos > isize) 2159 return -ENOSPC; 2160 } 2161 2162 if (*pos + *count > isize) 2163 *count = isize - *pos; 2164 #else 2165 return -EPERM; 2166 #endif 2167 } 2168 return 0; 2169 } 2170 EXPORT_SYMBOL(generic_write_checks); 2171 2172 int pagecache_write_begin(struct file *file, struct address_space *mapping, 2173 loff_t pos, unsigned len, unsigned flags, 2174 struct page **pagep, void **fsdata) 2175 { 2176 const struct address_space_operations *aops = mapping->a_ops; 2177 2178 return aops->write_begin(file, mapping, pos, len, flags, 2179 pagep, fsdata); 2180 } 2181 EXPORT_SYMBOL(pagecache_write_begin); 2182 2183 int pagecache_write_end(struct file *file, struct address_space *mapping, 2184 loff_t pos, unsigned len, unsigned copied, 2185 struct page *page, void *fsdata) 2186 { 2187 const struct address_space_operations *aops = mapping->a_ops; 2188 2189 mark_page_accessed(page); 2190 return aops->write_end(file, mapping, pos, len, copied, page, fsdata); 2191 } 2192 EXPORT_SYMBOL(pagecache_write_end); 2193 2194 ssize_t 2195 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov, 2196 unsigned long *nr_segs, loff_t pos, loff_t *ppos, 2197 size_t count, size_t ocount) 2198 { 2199 struct file *file = iocb->ki_filp; 2200 struct address_space *mapping = file->f_mapping; 2201 struct inode *inode = mapping->host; 2202 ssize_t written; 2203 size_t write_len; 2204 pgoff_t end; 2205 2206 if (count != ocount) 2207 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count); 2208 2209 write_len = iov_length(iov, *nr_segs); 2210 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT; 2211 2212 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1); 2213 if (written) 2214 goto out; 2215 2216 /* 2217 * After a write we want buffered reads to be sure to go to disk to get 2218 * the new data. We invalidate clean cached page from the region we're 2219 * about to write. We do this *before* the write so that we can return 2220 * without clobbering -EIOCBQUEUED from ->direct_IO(). 2221 */ 2222 if (mapping->nrpages) { 2223 written = invalidate_inode_pages2_range(mapping, 2224 pos >> PAGE_CACHE_SHIFT, end); 2225 /* 2226 * If a page can not be invalidated, return 0 to fall back 2227 * to buffered write. 2228 */ 2229 if (written) { 2230 if (written == -EBUSY) 2231 return 0; 2232 goto out; 2233 } 2234 } 2235 2236 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs); 2237 2238 /* 2239 * Finally, try again to invalidate clean pages which might have been 2240 * cached by non-direct readahead, or faulted in by get_user_pages() 2241 * if the source of the write was an mmap'ed region of the file 2242 * we're writing. Either one is a pretty crazy thing to do, 2243 * so we don't support it 100%. If this invalidation 2244 * fails, tough, the write still worked... 2245 */ 2246 if (mapping->nrpages) { 2247 invalidate_inode_pages2_range(mapping, 2248 pos >> PAGE_CACHE_SHIFT, end); 2249 } 2250 2251 if (written > 0) { 2252 pos += written; 2253 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 2254 i_size_write(inode, pos); 2255 mark_inode_dirty(inode); 2256 } 2257 *ppos = pos; 2258 } 2259 out: 2260 return written; 2261 } 2262 EXPORT_SYMBOL(generic_file_direct_write); 2263 2264 /* 2265 * Find or create a page at the given pagecache position. Return the locked 2266 * page. This function is specifically for buffered writes. 2267 */ 2268 struct page *grab_cache_page_write_begin(struct address_space *mapping, 2269 pgoff_t index, unsigned flags) 2270 { 2271 int status; 2272 gfp_t gfp_mask; 2273 struct page *page; 2274 gfp_t gfp_notmask = 0; 2275 2276 gfp_mask = mapping_gfp_mask(mapping); 2277 if (mapping_cap_account_dirty(mapping)) 2278 gfp_mask |= __GFP_WRITE; 2279 if (flags & AOP_FLAG_NOFS) 2280 gfp_notmask = __GFP_FS; 2281 repeat: 2282 page = find_lock_page(mapping, index); 2283 if (page) 2284 goto found; 2285 2286 page = __page_cache_alloc(gfp_mask & ~gfp_notmask); 2287 if (!page) 2288 return NULL; 2289 status = add_to_page_cache_lru(page, mapping, index, 2290 GFP_KERNEL & ~gfp_notmask); 2291 if (unlikely(status)) { 2292 page_cache_release(page); 2293 if (status == -EEXIST) 2294 goto repeat; 2295 return NULL; 2296 } 2297 found: 2298 wait_for_stable_page(page); 2299 return page; 2300 } 2301 EXPORT_SYMBOL(grab_cache_page_write_begin); 2302 2303 static ssize_t generic_perform_write(struct file *file, 2304 struct iov_iter *i, loff_t pos) 2305 { 2306 struct address_space *mapping = file->f_mapping; 2307 const struct address_space_operations *a_ops = mapping->a_ops; 2308 long status = 0; 2309 ssize_t written = 0; 2310 unsigned int flags = 0; 2311 2312 /* 2313 * Copies from kernel address space cannot fail (NFSD is a big user). 2314 */ 2315 if (segment_eq(get_fs(), KERNEL_DS)) 2316 flags |= AOP_FLAG_UNINTERRUPTIBLE; 2317 2318 do { 2319 struct page *page; 2320 unsigned long offset; /* Offset into pagecache page */ 2321 unsigned long bytes; /* Bytes to write to page */ 2322 size_t copied; /* Bytes copied from user */ 2323 void *fsdata; 2324 2325 offset = (pos & (PAGE_CACHE_SIZE - 1)); 2326 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset, 2327 iov_iter_count(i)); 2328 2329 again: 2330 /* 2331 * Bring in the user page that we will copy from _first_. 2332 * Otherwise there's a nasty deadlock on copying from the 2333 * same page as we're writing to, without it being marked 2334 * up-to-date. 2335 * 2336 * Not only is this an optimisation, but it is also required 2337 * to check that the address is actually valid, when atomic 2338 * usercopies are used, below. 2339 */ 2340 if (unlikely(iov_iter_fault_in_readable(i, bytes))) { 2341 status = -EFAULT; 2342 break; 2343 } 2344 2345 status = a_ops->write_begin(file, mapping, pos, bytes, flags, 2346 &page, &fsdata); 2347 if (unlikely(status)) 2348 break; 2349 2350 if (mapping_writably_mapped(mapping)) 2351 flush_dcache_page(page); 2352 2353 pagefault_disable(); 2354 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); 2355 pagefault_enable(); 2356 flush_dcache_page(page); 2357 2358 mark_page_accessed(page); 2359 status = a_ops->write_end(file, mapping, pos, bytes, copied, 2360 page, fsdata); 2361 if (unlikely(status < 0)) 2362 break; 2363 copied = status; 2364 2365 cond_resched(); 2366 2367 iov_iter_advance(i, copied); 2368 if (unlikely(copied == 0)) { 2369 /* 2370 * If we were unable to copy any data at all, we must 2371 * fall back to a single segment length write. 2372 * 2373 * If we didn't fallback here, we could livelock 2374 * because not all segments in the iov can be copied at 2375 * once without a pagefault. 2376 */ 2377 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset, 2378 iov_iter_single_seg_count(i)); 2379 goto again; 2380 } 2381 pos += copied; 2382 written += copied; 2383 2384 balance_dirty_pages_ratelimited(mapping); 2385 if (fatal_signal_pending(current)) { 2386 status = -EINTR; 2387 break; 2388 } 2389 } while (iov_iter_count(i)); 2390 2391 return written ? written : status; 2392 } 2393 2394 ssize_t 2395 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov, 2396 unsigned long nr_segs, loff_t pos, loff_t *ppos, 2397 size_t count, ssize_t written) 2398 { 2399 struct file *file = iocb->ki_filp; 2400 ssize_t status; 2401 struct iov_iter i; 2402 2403 iov_iter_init(&i, iov, nr_segs, count, written); 2404 status = generic_perform_write(file, &i, pos); 2405 2406 if (likely(status >= 0)) { 2407 written += status; 2408 *ppos = pos + status; 2409 } 2410 2411 return written ? written : status; 2412 } 2413 EXPORT_SYMBOL(generic_file_buffered_write); 2414 2415 /** 2416 * __generic_file_aio_write - write data to a file 2417 * @iocb: IO state structure (file, offset, etc.) 2418 * @iov: vector with data to write 2419 * @nr_segs: number of segments in the vector 2420 * @ppos: position where to write 2421 * 2422 * This function does all the work needed for actually writing data to a 2423 * file. It does all basic checks, removes SUID from the file, updates 2424 * modification times and calls proper subroutines depending on whether we 2425 * do direct IO or a standard buffered write. 2426 * 2427 * It expects i_mutex to be grabbed unless we work on a block device or similar 2428 * object which does not need locking at all. 2429 * 2430 * This function does *not* take care of syncing data in case of O_SYNC write. 2431 * A caller has to handle it. This is mainly due to the fact that we want to 2432 * avoid syncing under i_mutex. 2433 */ 2434 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov, 2435 unsigned long nr_segs, loff_t *ppos) 2436 { 2437 struct file *file = iocb->ki_filp; 2438 struct address_space * mapping = file->f_mapping; 2439 size_t ocount; /* original count */ 2440 size_t count; /* after file limit checks */ 2441 struct inode *inode = mapping->host; 2442 loff_t pos; 2443 ssize_t written; 2444 ssize_t err; 2445 2446 ocount = 0; 2447 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ); 2448 if (err) 2449 return err; 2450 2451 count = ocount; 2452 pos = *ppos; 2453 2454 /* We can write back this queue in page reclaim */ 2455 current->backing_dev_info = mapping->backing_dev_info; 2456 written = 0; 2457 2458 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode)); 2459 if (err) 2460 goto out; 2461 2462 if (count == 0) 2463 goto out; 2464 2465 err = file_remove_suid(file); 2466 if (err) 2467 goto out; 2468 2469 err = file_update_time(file); 2470 if (err) 2471 goto out; 2472 2473 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ 2474 if (unlikely(file->f_flags & O_DIRECT)) { 2475 loff_t endbyte; 2476 ssize_t written_buffered; 2477 2478 written = generic_file_direct_write(iocb, iov, &nr_segs, pos, 2479 ppos, count, ocount); 2480 if (written < 0 || written == count) 2481 goto out; 2482 /* 2483 * direct-io write to a hole: fall through to buffered I/O 2484 * for completing the rest of the request. 2485 */ 2486 pos += written; 2487 count -= written; 2488 written_buffered = generic_file_buffered_write(iocb, iov, 2489 nr_segs, pos, ppos, count, 2490 written); 2491 /* 2492 * If generic_file_buffered_write() retuned a synchronous error 2493 * then we want to return the number of bytes which were 2494 * direct-written, or the error code if that was zero. Note 2495 * that this differs from normal direct-io semantics, which 2496 * will return -EFOO even if some bytes were written. 2497 */ 2498 if (written_buffered < 0) { 2499 err = written_buffered; 2500 goto out; 2501 } 2502 2503 /* 2504 * We need to ensure that the page cache pages are written to 2505 * disk and invalidated to preserve the expected O_DIRECT 2506 * semantics. 2507 */ 2508 endbyte = pos + written_buffered - written - 1; 2509 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte); 2510 if (err == 0) { 2511 written = written_buffered; 2512 invalidate_mapping_pages(mapping, 2513 pos >> PAGE_CACHE_SHIFT, 2514 endbyte >> PAGE_CACHE_SHIFT); 2515 } else { 2516 /* 2517 * We don't know how much we wrote, so just return 2518 * the number of bytes which were direct-written 2519 */ 2520 } 2521 } else { 2522 written = generic_file_buffered_write(iocb, iov, nr_segs, 2523 pos, ppos, count, written); 2524 } 2525 out: 2526 current->backing_dev_info = NULL; 2527 return written ? written : err; 2528 } 2529 EXPORT_SYMBOL(__generic_file_aio_write); 2530 2531 /** 2532 * generic_file_aio_write - write data to a file 2533 * @iocb: IO state structure 2534 * @iov: vector with data to write 2535 * @nr_segs: number of segments in the vector 2536 * @pos: position in file where to write 2537 * 2538 * This is a wrapper around __generic_file_aio_write() to be used by most 2539 * filesystems. It takes care of syncing the file in case of O_SYNC file 2540 * and acquires i_mutex as needed. 2541 */ 2542 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov, 2543 unsigned long nr_segs, loff_t pos) 2544 { 2545 struct file *file = iocb->ki_filp; 2546 struct inode *inode = file->f_mapping->host; 2547 ssize_t ret; 2548 2549 BUG_ON(iocb->ki_pos != pos); 2550 2551 mutex_lock(&inode->i_mutex); 2552 ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos); 2553 mutex_unlock(&inode->i_mutex); 2554 2555 if (ret > 0) { 2556 ssize_t err; 2557 2558 err = generic_write_sync(file, pos, ret); 2559 if (err < 0 && ret > 0) 2560 ret = err; 2561 } 2562 return ret; 2563 } 2564 EXPORT_SYMBOL(generic_file_aio_write); 2565 2566 /** 2567 * try_to_release_page() - release old fs-specific metadata on a page 2568 * 2569 * @page: the page which the kernel is trying to free 2570 * @gfp_mask: memory allocation flags (and I/O mode) 2571 * 2572 * The address_space is to try to release any data against the page 2573 * (presumably at page->private). If the release was successful, return `1'. 2574 * Otherwise return zero. 2575 * 2576 * This may also be called if PG_fscache is set on a page, indicating that the 2577 * page is known to the local caching routines. 2578 * 2579 * The @gfp_mask argument specifies whether I/O may be performed to release 2580 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS). 2581 * 2582 */ 2583 int try_to_release_page(struct page *page, gfp_t gfp_mask) 2584 { 2585 struct address_space * const mapping = page->mapping; 2586 2587 BUG_ON(!PageLocked(page)); 2588 if (PageWriteback(page)) 2589 return 0; 2590 2591 if (mapping && mapping->a_ops->releasepage) 2592 return mapping->a_ops->releasepage(page, gfp_mask); 2593 return try_to_free_buffers(page); 2594 } 2595 2596 EXPORT_SYMBOL(try_to_release_page); 2597