xref: /openbmc/linux/mm/filemap.c (revision 732a675a)
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/compiler.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include "internal.h"
37 
38 /*
39  * FIXME: remove all knowledge of the buffer layer from the core VM
40  */
41 #include <linux/buffer_head.h> /* for generic_osync_inode */
42 
43 #include <asm/mman.h>
44 
45 static ssize_t
46 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
47 	loff_t offset, unsigned long nr_segs);
48 
49 /*
50  * Shared mappings implemented 30.11.1994. It's not fully working yet,
51  * though.
52  *
53  * Shared mappings now work. 15.8.1995  Bruno.
54  *
55  * finished 'unifying' the page and buffer cache and SMP-threaded the
56  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
57  *
58  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
59  */
60 
61 /*
62  * Lock ordering:
63  *
64  *  ->i_mmap_lock		(vmtruncate)
65  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
66  *      ->swap_lock		(exclusive_swap_page, others)
67  *        ->mapping->tree_lock
68  *
69  *  ->i_mutex
70  *    ->i_mmap_lock		(truncate->unmap_mapping_range)
71  *
72  *  ->mmap_sem
73  *    ->i_mmap_lock
74  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
75  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
76  *
77  *  ->mmap_sem
78  *    ->lock_page		(access_process_vm)
79  *
80  *  ->i_mutex			(generic_file_buffered_write)
81  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
82  *
83  *  ->i_mutex
84  *    ->i_alloc_sem             (various)
85  *
86  *  ->inode_lock
87  *    ->sb_lock			(fs/fs-writeback.c)
88  *    ->mapping->tree_lock	(__sync_single_inode)
89  *
90  *  ->i_mmap_lock
91  *    ->anon_vma.lock		(vma_adjust)
92  *
93  *  ->anon_vma.lock
94  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
95  *
96  *  ->page_table_lock or pte_lock
97  *    ->swap_lock		(try_to_unmap_one)
98  *    ->private_lock		(try_to_unmap_one)
99  *    ->tree_lock		(try_to_unmap_one)
100  *    ->zone.lru_lock		(follow_page->mark_page_accessed)
101  *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
102  *    ->private_lock		(page_remove_rmap->set_page_dirty)
103  *    ->tree_lock		(page_remove_rmap->set_page_dirty)
104  *    ->inode_lock		(page_remove_rmap->set_page_dirty)
105  *    ->inode_lock		(zap_pte_range->set_page_dirty)
106  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
107  *
108  *  ->task->proc_lock
109  *    ->dcache_lock		(proc_pid_lookup)
110  */
111 
112 /*
113  * Remove a page from the page cache and free it. Caller has to make
114  * sure the page is locked and that nobody else uses it - or that usage
115  * is safe.  The caller must hold a write_lock on the mapping's tree_lock.
116  */
117 void __remove_from_page_cache(struct page *page)
118 {
119 	struct address_space *mapping = page->mapping;
120 
121 	mem_cgroup_uncharge_page(page);
122 	radix_tree_delete(&mapping->page_tree, page->index);
123 	page->mapping = NULL;
124 	mapping->nrpages--;
125 	__dec_zone_page_state(page, NR_FILE_PAGES);
126 	BUG_ON(page_mapped(page));
127 
128 	/*
129 	 * Some filesystems seem to re-dirty the page even after
130 	 * the VM has canceled the dirty bit (eg ext3 journaling).
131 	 *
132 	 * Fix it up by doing a final dirty accounting check after
133 	 * having removed the page entirely.
134 	 */
135 	if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
136 		dec_zone_page_state(page, NR_FILE_DIRTY);
137 		dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
138 	}
139 }
140 
141 void remove_from_page_cache(struct page *page)
142 {
143 	struct address_space *mapping = page->mapping;
144 
145 	BUG_ON(!PageLocked(page));
146 
147 	write_lock_irq(&mapping->tree_lock);
148 	__remove_from_page_cache(page);
149 	write_unlock_irq(&mapping->tree_lock);
150 }
151 
152 static int sync_page(void *word)
153 {
154 	struct address_space *mapping;
155 	struct page *page;
156 
157 	page = container_of((unsigned long *)word, struct page, flags);
158 
159 	/*
160 	 * page_mapping() is being called without PG_locked held.
161 	 * Some knowledge of the state and use of the page is used to
162 	 * reduce the requirements down to a memory barrier.
163 	 * The danger here is of a stale page_mapping() return value
164 	 * indicating a struct address_space different from the one it's
165 	 * associated with when it is associated with one.
166 	 * After smp_mb(), it's either the correct page_mapping() for
167 	 * the page, or an old page_mapping() and the page's own
168 	 * page_mapping() has gone NULL.
169 	 * The ->sync_page() address_space operation must tolerate
170 	 * page_mapping() going NULL. By an amazing coincidence,
171 	 * this comes about because none of the users of the page
172 	 * in the ->sync_page() methods make essential use of the
173 	 * page_mapping(), merely passing the page down to the backing
174 	 * device's unplug functions when it's non-NULL, which in turn
175 	 * ignore it for all cases but swap, where only page_private(page) is
176 	 * of interest. When page_mapping() does go NULL, the entire
177 	 * call stack gracefully ignores the page and returns.
178 	 * -- wli
179 	 */
180 	smp_mb();
181 	mapping = page_mapping(page);
182 	if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
183 		mapping->a_ops->sync_page(page);
184 	io_schedule();
185 	return 0;
186 }
187 
188 static int sync_page_killable(void *word)
189 {
190 	sync_page(word);
191 	return fatal_signal_pending(current) ? -EINTR : 0;
192 }
193 
194 /**
195  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
196  * @mapping:	address space structure to write
197  * @start:	offset in bytes where the range starts
198  * @end:	offset in bytes where the range ends (inclusive)
199  * @sync_mode:	enable synchronous operation
200  *
201  * Start writeback against all of a mapping's dirty pages that lie
202  * within the byte offsets <start, end> inclusive.
203  *
204  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
205  * opposed to a regular memory cleansing writeback.  The difference between
206  * these two operations is that if a dirty page/buffer is encountered, it must
207  * be waited upon, and not just skipped over.
208  */
209 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
210 				loff_t end, int sync_mode)
211 {
212 	int ret;
213 	struct writeback_control wbc = {
214 		.sync_mode = sync_mode,
215 		.nr_to_write = mapping->nrpages * 2,
216 		.range_start = start,
217 		.range_end = end,
218 	};
219 
220 	if (!mapping_cap_writeback_dirty(mapping))
221 		return 0;
222 
223 	ret = do_writepages(mapping, &wbc);
224 	return ret;
225 }
226 
227 static inline int __filemap_fdatawrite(struct address_space *mapping,
228 	int sync_mode)
229 {
230 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
231 }
232 
233 int filemap_fdatawrite(struct address_space *mapping)
234 {
235 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
236 }
237 EXPORT_SYMBOL(filemap_fdatawrite);
238 
239 static int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
240 				loff_t end)
241 {
242 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
243 }
244 
245 /**
246  * filemap_flush - mostly a non-blocking flush
247  * @mapping:	target address_space
248  *
249  * This is a mostly non-blocking flush.  Not suitable for data-integrity
250  * purposes - I/O may not be started against all dirty pages.
251  */
252 int filemap_flush(struct address_space *mapping)
253 {
254 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
255 }
256 EXPORT_SYMBOL(filemap_flush);
257 
258 /**
259  * wait_on_page_writeback_range - wait for writeback to complete
260  * @mapping:	target address_space
261  * @start:	beginning page index
262  * @end:	ending page index
263  *
264  * Wait for writeback to complete against pages indexed by start->end
265  * inclusive
266  */
267 int wait_on_page_writeback_range(struct address_space *mapping,
268 				pgoff_t start, pgoff_t end)
269 {
270 	struct pagevec pvec;
271 	int nr_pages;
272 	int ret = 0;
273 	pgoff_t index;
274 
275 	if (end < start)
276 		return 0;
277 
278 	pagevec_init(&pvec, 0);
279 	index = start;
280 	while ((index <= end) &&
281 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
282 			PAGECACHE_TAG_WRITEBACK,
283 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
284 		unsigned i;
285 
286 		for (i = 0; i < nr_pages; i++) {
287 			struct page *page = pvec.pages[i];
288 
289 			/* until radix tree lookup accepts end_index */
290 			if (page->index > end)
291 				continue;
292 
293 			wait_on_page_writeback(page);
294 			if (PageError(page))
295 				ret = -EIO;
296 		}
297 		pagevec_release(&pvec);
298 		cond_resched();
299 	}
300 
301 	/* Check for outstanding write errors */
302 	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
303 		ret = -ENOSPC;
304 	if (test_and_clear_bit(AS_EIO, &mapping->flags))
305 		ret = -EIO;
306 
307 	return ret;
308 }
309 
310 /**
311  * sync_page_range - write and wait on all pages in the passed range
312  * @inode:	target inode
313  * @mapping:	target address_space
314  * @pos:	beginning offset in pages to write
315  * @count:	number of bytes to write
316  *
317  * Write and wait upon all the pages in the passed range.  This is a "data
318  * integrity" operation.  It waits upon in-flight writeout before starting and
319  * waiting upon new writeout.  If there was an IO error, return it.
320  *
321  * We need to re-take i_mutex during the generic_osync_inode list walk because
322  * it is otherwise livelockable.
323  */
324 int sync_page_range(struct inode *inode, struct address_space *mapping,
325 			loff_t pos, loff_t count)
326 {
327 	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
328 	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
329 	int ret;
330 
331 	if (!mapping_cap_writeback_dirty(mapping) || !count)
332 		return 0;
333 	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
334 	if (ret == 0) {
335 		mutex_lock(&inode->i_mutex);
336 		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
337 		mutex_unlock(&inode->i_mutex);
338 	}
339 	if (ret == 0)
340 		ret = wait_on_page_writeback_range(mapping, start, end);
341 	return ret;
342 }
343 EXPORT_SYMBOL(sync_page_range);
344 
345 /**
346  * sync_page_range_nolock - write & wait on all pages in the passed range without locking
347  * @inode:	target inode
348  * @mapping:	target address_space
349  * @pos:	beginning offset in pages to write
350  * @count:	number of bytes to write
351  *
352  * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
353  * as it forces O_SYNC writers to different parts of the same file
354  * to be serialised right until io completion.
355  */
356 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
357 			   loff_t pos, loff_t count)
358 {
359 	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
360 	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
361 	int ret;
362 
363 	if (!mapping_cap_writeback_dirty(mapping) || !count)
364 		return 0;
365 	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
366 	if (ret == 0)
367 		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
368 	if (ret == 0)
369 		ret = wait_on_page_writeback_range(mapping, start, end);
370 	return ret;
371 }
372 EXPORT_SYMBOL(sync_page_range_nolock);
373 
374 /**
375  * filemap_fdatawait - wait for all under-writeback pages to complete
376  * @mapping: address space structure to wait for
377  *
378  * Walk the list of under-writeback pages of the given address space
379  * and wait for all of them.
380  */
381 int filemap_fdatawait(struct address_space *mapping)
382 {
383 	loff_t i_size = i_size_read(mapping->host);
384 
385 	if (i_size == 0)
386 		return 0;
387 
388 	return wait_on_page_writeback_range(mapping, 0,
389 				(i_size - 1) >> PAGE_CACHE_SHIFT);
390 }
391 EXPORT_SYMBOL(filemap_fdatawait);
392 
393 int filemap_write_and_wait(struct address_space *mapping)
394 {
395 	int err = 0;
396 
397 	if (mapping->nrpages) {
398 		err = filemap_fdatawrite(mapping);
399 		/*
400 		 * Even if the above returned error, the pages may be
401 		 * written partially (e.g. -ENOSPC), so we wait for it.
402 		 * But the -EIO is special case, it may indicate the worst
403 		 * thing (e.g. bug) happened, so we avoid waiting for it.
404 		 */
405 		if (err != -EIO) {
406 			int err2 = filemap_fdatawait(mapping);
407 			if (!err)
408 				err = err2;
409 		}
410 	}
411 	return err;
412 }
413 EXPORT_SYMBOL(filemap_write_and_wait);
414 
415 /**
416  * filemap_write_and_wait_range - write out & wait on a file range
417  * @mapping:	the address_space for the pages
418  * @lstart:	offset in bytes where the range starts
419  * @lend:	offset in bytes where the range ends (inclusive)
420  *
421  * Write out and wait upon file offsets lstart->lend, inclusive.
422  *
423  * Note that `lend' is inclusive (describes the last byte to be written) so
424  * that this function can be used to write to the very end-of-file (end = -1).
425  */
426 int filemap_write_and_wait_range(struct address_space *mapping,
427 				 loff_t lstart, loff_t lend)
428 {
429 	int err = 0;
430 
431 	if (mapping->nrpages) {
432 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
433 						 WB_SYNC_ALL);
434 		/* See comment of filemap_write_and_wait() */
435 		if (err != -EIO) {
436 			int err2 = wait_on_page_writeback_range(mapping,
437 						lstart >> PAGE_CACHE_SHIFT,
438 						lend >> PAGE_CACHE_SHIFT);
439 			if (!err)
440 				err = err2;
441 		}
442 	}
443 	return err;
444 }
445 
446 /**
447  * add_to_page_cache - add newly allocated pagecache pages
448  * @page:	page to add
449  * @mapping:	the page's address_space
450  * @offset:	page index
451  * @gfp_mask:	page allocation mode
452  *
453  * This function is used to add newly allocated pagecache pages;
454  * the page is new, so we can just run SetPageLocked() against it.
455  * The other page state flags were set by rmqueue().
456  *
457  * This function does not add the page to the LRU.  The caller must do that.
458  */
459 int add_to_page_cache(struct page *page, struct address_space *mapping,
460 		pgoff_t offset, gfp_t gfp_mask)
461 {
462 	int error = mem_cgroup_cache_charge(page, current->mm,
463 					gfp_mask & ~__GFP_HIGHMEM);
464 	if (error)
465 		goto out;
466 
467 	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
468 	if (error == 0) {
469 		write_lock_irq(&mapping->tree_lock);
470 		error = radix_tree_insert(&mapping->page_tree, offset, page);
471 		if (!error) {
472 			page_cache_get(page);
473 			SetPageLocked(page);
474 			page->mapping = mapping;
475 			page->index = offset;
476 			mapping->nrpages++;
477 			__inc_zone_page_state(page, NR_FILE_PAGES);
478 		} else
479 			mem_cgroup_uncharge_page(page);
480 
481 		write_unlock_irq(&mapping->tree_lock);
482 		radix_tree_preload_end();
483 	} else
484 		mem_cgroup_uncharge_page(page);
485 out:
486 	return error;
487 }
488 EXPORT_SYMBOL(add_to_page_cache);
489 
490 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
491 				pgoff_t offset, gfp_t gfp_mask)
492 {
493 	int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
494 	if (ret == 0)
495 		lru_cache_add(page);
496 	return ret;
497 }
498 
499 #ifdef CONFIG_NUMA
500 struct page *__page_cache_alloc(gfp_t gfp)
501 {
502 	if (cpuset_do_page_mem_spread()) {
503 		int n = cpuset_mem_spread_node();
504 		return alloc_pages_node(n, gfp, 0);
505 	}
506 	return alloc_pages(gfp, 0);
507 }
508 EXPORT_SYMBOL(__page_cache_alloc);
509 #endif
510 
511 static int __sleep_on_page_lock(void *word)
512 {
513 	io_schedule();
514 	return 0;
515 }
516 
517 /*
518  * In order to wait for pages to become available there must be
519  * waitqueues associated with pages. By using a hash table of
520  * waitqueues where the bucket discipline is to maintain all
521  * waiters on the same queue and wake all when any of the pages
522  * become available, and for the woken contexts to check to be
523  * sure the appropriate page became available, this saves space
524  * at a cost of "thundering herd" phenomena during rare hash
525  * collisions.
526  */
527 static wait_queue_head_t *page_waitqueue(struct page *page)
528 {
529 	const struct zone *zone = page_zone(page);
530 
531 	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
532 }
533 
534 static inline void wake_up_page(struct page *page, int bit)
535 {
536 	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
537 }
538 
539 void wait_on_page_bit(struct page *page, int bit_nr)
540 {
541 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
542 
543 	if (test_bit(bit_nr, &page->flags))
544 		__wait_on_bit(page_waitqueue(page), &wait, sync_page,
545 							TASK_UNINTERRUPTIBLE);
546 }
547 EXPORT_SYMBOL(wait_on_page_bit);
548 
549 /**
550  * unlock_page - unlock a locked page
551  * @page: the page
552  *
553  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
554  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
555  * mechananism between PageLocked pages and PageWriteback pages is shared.
556  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
557  *
558  * The first mb is necessary to safely close the critical section opened by the
559  * TestSetPageLocked(), the second mb is necessary to enforce ordering between
560  * the clear_bit and the read of the waitqueue (to avoid SMP races with a
561  * parallel wait_on_page_locked()).
562  */
563 void unlock_page(struct page *page)
564 {
565 	smp_mb__before_clear_bit();
566 	if (!TestClearPageLocked(page))
567 		BUG();
568 	smp_mb__after_clear_bit();
569 	wake_up_page(page, PG_locked);
570 }
571 EXPORT_SYMBOL(unlock_page);
572 
573 /**
574  * end_page_writeback - end writeback against a page
575  * @page: the page
576  */
577 void end_page_writeback(struct page *page)
578 {
579 	if (TestClearPageReclaim(page))
580 		rotate_reclaimable_page(page);
581 
582 	if (!test_clear_page_writeback(page))
583 		BUG();
584 
585 	smp_mb__after_clear_bit();
586 	wake_up_page(page, PG_writeback);
587 }
588 EXPORT_SYMBOL(end_page_writeback);
589 
590 /**
591  * __lock_page - get a lock on the page, assuming we need to sleep to get it
592  * @page: the page to lock
593  *
594  * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary.  If some
595  * random driver's requestfn sets TASK_RUNNING, we could busywait.  However
596  * chances are that on the second loop, the block layer's plug list is empty,
597  * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
598  */
599 void __lock_page(struct page *page)
600 {
601 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
602 
603 	__wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
604 							TASK_UNINTERRUPTIBLE);
605 }
606 EXPORT_SYMBOL(__lock_page);
607 
608 int __lock_page_killable(struct page *page)
609 {
610 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
611 
612 	return __wait_on_bit_lock(page_waitqueue(page), &wait,
613 					sync_page_killable, TASK_KILLABLE);
614 }
615 
616 /**
617  * __lock_page_nosync - get a lock on the page, without calling sync_page()
618  * @page: the page to lock
619  *
620  * Variant of lock_page that does not require the caller to hold a reference
621  * on the page's mapping.
622  */
623 void __lock_page_nosync(struct page *page)
624 {
625 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
626 	__wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
627 							TASK_UNINTERRUPTIBLE);
628 }
629 
630 /**
631  * find_get_page - find and get a page reference
632  * @mapping: the address_space to search
633  * @offset: the page index
634  *
635  * Is there a pagecache struct page at the given (mapping, offset) tuple?
636  * If yes, increment its refcount and return it; if no, return NULL.
637  */
638 struct page * find_get_page(struct address_space *mapping, pgoff_t offset)
639 {
640 	struct page *page;
641 
642 	read_lock_irq(&mapping->tree_lock);
643 	page = radix_tree_lookup(&mapping->page_tree, offset);
644 	if (page)
645 		page_cache_get(page);
646 	read_unlock_irq(&mapping->tree_lock);
647 	return page;
648 }
649 EXPORT_SYMBOL(find_get_page);
650 
651 /**
652  * find_lock_page - locate, pin and lock a pagecache page
653  * @mapping: the address_space to search
654  * @offset: the page index
655  *
656  * Locates the desired pagecache page, locks it, increments its reference
657  * count and returns its address.
658  *
659  * Returns zero if the page was not present. find_lock_page() may sleep.
660  */
661 struct page *find_lock_page(struct address_space *mapping,
662 				pgoff_t offset)
663 {
664 	struct page *page;
665 
666 repeat:
667 	read_lock_irq(&mapping->tree_lock);
668 	page = radix_tree_lookup(&mapping->page_tree, offset);
669 	if (page) {
670 		page_cache_get(page);
671 		if (TestSetPageLocked(page)) {
672 			read_unlock_irq(&mapping->tree_lock);
673 			__lock_page(page);
674 
675 			/* Has the page been truncated while we slept? */
676 			if (unlikely(page->mapping != mapping)) {
677 				unlock_page(page);
678 				page_cache_release(page);
679 				goto repeat;
680 			}
681 			VM_BUG_ON(page->index != offset);
682 			goto out;
683 		}
684 	}
685 	read_unlock_irq(&mapping->tree_lock);
686 out:
687 	return page;
688 }
689 EXPORT_SYMBOL(find_lock_page);
690 
691 /**
692  * find_or_create_page - locate or add a pagecache page
693  * @mapping: the page's address_space
694  * @index: the page's index into the mapping
695  * @gfp_mask: page allocation mode
696  *
697  * Locates a page in the pagecache.  If the page is not present, a new page
698  * is allocated using @gfp_mask and is added to the pagecache and to the VM's
699  * LRU list.  The returned page is locked and has its reference count
700  * incremented.
701  *
702  * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
703  * allocation!
704  *
705  * find_or_create_page() returns the desired page's address, or zero on
706  * memory exhaustion.
707  */
708 struct page *find_or_create_page(struct address_space *mapping,
709 		pgoff_t index, gfp_t gfp_mask)
710 {
711 	struct page *page;
712 	int err;
713 repeat:
714 	page = find_lock_page(mapping, index);
715 	if (!page) {
716 		page = __page_cache_alloc(gfp_mask);
717 		if (!page)
718 			return NULL;
719 		err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
720 		if (unlikely(err)) {
721 			page_cache_release(page);
722 			page = NULL;
723 			if (err == -EEXIST)
724 				goto repeat;
725 		}
726 	}
727 	return page;
728 }
729 EXPORT_SYMBOL(find_or_create_page);
730 
731 /**
732  * find_get_pages - gang pagecache lookup
733  * @mapping:	The address_space to search
734  * @start:	The starting page index
735  * @nr_pages:	The maximum number of pages
736  * @pages:	Where the resulting pages are placed
737  *
738  * find_get_pages() will search for and return a group of up to
739  * @nr_pages pages in the mapping.  The pages are placed at @pages.
740  * find_get_pages() takes a reference against the returned pages.
741  *
742  * The search returns a group of mapping-contiguous pages with ascending
743  * indexes.  There may be holes in the indices due to not-present pages.
744  *
745  * find_get_pages() returns the number of pages which were found.
746  */
747 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
748 			    unsigned int nr_pages, struct page **pages)
749 {
750 	unsigned int i;
751 	unsigned int ret;
752 
753 	read_lock_irq(&mapping->tree_lock);
754 	ret = radix_tree_gang_lookup(&mapping->page_tree,
755 				(void **)pages, start, nr_pages);
756 	for (i = 0; i < ret; i++)
757 		page_cache_get(pages[i]);
758 	read_unlock_irq(&mapping->tree_lock);
759 	return ret;
760 }
761 
762 /**
763  * find_get_pages_contig - gang contiguous pagecache lookup
764  * @mapping:	The address_space to search
765  * @index:	The starting page index
766  * @nr_pages:	The maximum number of pages
767  * @pages:	Where the resulting pages are placed
768  *
769  * find_get_pages_contig() works exactly like find_get_pages(), except
770  * that the returned number of pages are guaranteed to be contiguous.
771  *
772  * find_get_pages_contig() returns the number of pages which were found.
773  */
774 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
775 			       unsigned int nr_pages, struct page **pages)
776 {
777 	unsigned int i;
778 	unsigned int ret;
779 
780 	read_lock_irq(&mapping->tree_lock);
781 	ret = radix_tree_gang_lookup(&mapping->page_tree,
782 				(void **)pages, index, nr_pages);
783 	for (i = 0; i < ret; i++) {
784 		if (pages[i]->mapping == NULL || pages[i]->index != index)
785 			break;
786 
787 		page_cache_get(pages[i]);
788 		index++;
789 	}
790 	read_unlock_irq(&mapping->tree_lock);
791 	return i;
792 }
793 EXPORT_SYMBOL(find_get_pages_contig);
794 
795 /**
796  * find_get_pages_tag - find and return pages that match @tag
797  * @mapping:	the address_space to search
798  * @index:	the starting page index
799  * @tag:	the tag index
800  * @nr_pages:	the maximum number of pages
801  * @pages:	where the resulting pages are placed
802  *
803  * Like find_get_pages, except we only return pages which are tagged with
804  * @tag.   We update @index to index the next page for the traversal.
805  */
806 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
807 			int tag, unsigned int nr_pages, struct page **pages)
808 {
809 	unsigned int i;
810 	unsigned int ret;
811 
812 	read_lock_irq(&mapping->tree_lock);
813 	ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
814 				(void **)pages, *index, nr_pages, tag);
815 	for (i = 0; i < ret; i++)
816 		page_cache_get(pages[i]);
817 	if (ret)
818 		*index = pages[ret - 1]->index + 1;
819 	read_unlock_irq(&mapping->tree_lock);
820 	return ret;
821 }
822 EXPORT_SYMBOL(find_get_pages_tag);
823 
824 /**
825  * grab_cache_page_nowait - returns locked page at given index in given cache
826  * @mapping: target address_space
827  * @index: the page index
828  *
829  * Same as grab_cache_page(), but do not wait if the page is unavailable.
830  * This is intended for speculative data generators, where the data can
831  * be regenerated if the page couldn't be grabbed.  This routine should
832  * be safe to call while holding the lock for another page.
833  *
834  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
835  * and deadlock against the caller's locked page.
836  */
837 struct page *
838 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
839 {
840 	struct page *page = find_get_page(mapping, index);
841 
842 	if (page) {
843 		if (!TestSetPageLocked(page))
844 			return page;
845 		page_cache_release(page);
846 		return NULL;
847 	}
848 	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
849 	if (page && add_to_page_cache_lru(page, mapping, index, GFP_KERNEL)) {
850 		page_cache_release(page);
851 		page = NULL;
852 	}
853 	return page;
854 }
855 EXPORT_SYMBOL(grab_cache_page_nowait);
856 
857 /*
858  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
859  * a _large_ part of the i/o request. Imagine the worst scenario:
860  *
861  *      ---R__________________________________________B__________
862  *         ^ reading here                             ^ bad block(assume 4k)
863  *
864  * read(R) => miss => readahead(R...B) => media error => frustrating retries
865  * => failing the whole request => read(R) => read(R+1) =>
866  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
867  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
868  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
869  *
870  * It is going insane. Fix it by quickly scaling down the readahead size.
871  */
872 static void shrink_readahead_size_eio(struct file *filp,
873 					struct file_ra_state *ra)
874 {
875 	if (!ra->ra_pages)
876 		return;
877 
878 	ra->ra_pages /= 4;
879 }
880 
881 /**
882  * do_generic_file_read - generic file read routine
883  * @filp:	the file to read
884  * @ppos:	current file position
885  * @desc:	read_descriptor
886  * @actor:	read method
887  *
888  * This is a generic file read routine, and uses the
889  * mapping->a_ops->readpage() function for the actual low-level stuff.
890  *
891  * This is really ugly. But the goto's actually try to clarify some
892  * of the logic when it comes to error handling etc.
893  */
894 static void do_generic_file_read(struct file *filp, loff_t *ppos,
895 		read_descriptor_t *desc, read_actor_t actor)
896 {
897 	struct address_space *mapping = filp->f_mapping;
898 	struct inode *inode = mapping->host;
899 	struct file_ra_state *ra = &filp->f_ra;
900 	pgoff_t index;
901 	pgoff_t last_index;
902 	pgoff_t prev_index;
903 	unsigned long offset;      /* offset into pagecache page */
904 	unsigned int prev_offset;
905 	int error;
906 
907 	index = *ppos >> PAGE_CACHE_SHIFT;
908 	prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
909 	prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
910 	last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
911 	offset = *ppos & ~PAGE_CACHE_MASK;
912 
913 	for (;;) {
914 		struct page *page;
915 		pgoff_t end_index;
916 		loff_t isize;
917 		unsigned long nr, ret;
918 
919 		cond_resched();
920 find_page:
921 		page = find_get_page(mapping, index);
922 		if (!page) {
923 			page_cache_sync_readahead(mapping,
924 					ra, filp,
925 					index, last_index - index);
926 			page = find_get_page(mapping, index);
927 			if (unlikely(page == NULL))
928 				goto no_cached_page;
929 		}
930 		if (PageReadahead(page)) {
931 			page_cache_async_readahead(mapping,
932 					ra, filp, page,
933 					index, last_index - index);
934 		}
935 		if (!PageUptodate(page))
936 			goto page_not_up_to_date;
937 page_ok:
938 		/*
939 		 * i_size must be checked after we know the page is Uptodate.
940 		 *
941 		 * Checking i_size after the check allows us to calculate
942 		 * the correct value for "nr", which means the zero-filled
943 		 * part of the page is not copied back to userspace (unless
944 		 * another truncate extends the file - this is desired though).
945 		 */
946 
947 		isize = i_size_read(inode);
948 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
949 		if (unlikely(!isize || index > end_index)) {
950 			page_cache_release(page);
951 			goto out;
952 		}
953 
954 		/* nr is the maximum number of bytes to copy from this page */
955 		nr = PAGE_CACHE_SIZE;
956 		if (index == end_index) {
957 			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
958 			if (nr <= offset) {
959 				page_cache_release(page);
960 				goto out;
961 			}
962 		}
963 		nr = nr - offset;
964 
965 		/* If users can be writing to this page using arbitrary
966 		 * virtual addresses, take care about potential aliasing
967 		 * before reading the page on the kernel side.
968 		 */
969 		if (mapping_writably_mapped(mapping))
970 			flush_dcache_page(page);
971 
972 		/*
973 		 * When a sequential read accesses a page several times,
974 		 * only mark it as accessed the first time.
975 		 */
976 		if (prev_index != index || offset != prev_offset)
977 			mark_page_accessed(page);
978 		prev_index = index;
979 
980 		/*
981 		 * Ok, we have the page, and it's up-to-date, so
982 		 * now we can copy it to user space...
983 		 *
984 		 * The actor routine returns how many bytes were actually used..
985 		 * NOTE! This may not be the same as how much of a user buffer
986 		 * we filled up (we may be padding etc), so we can only update
987 		 * "pos" here (the actor routine has to update the user buffer
988 		 * pointers and the remaining count).
989 		 */
990 		ret = actor(desc, page, offset, nr);
991 		offset += ret;
992 		index += offset >> PAGE_CACHE_SHIFT;
993 		offset &= ~PAGE_CACHE_MASK;
994 		prev_offset = offset;
995 
996 		page_cache_release(page);
997 		if (ret == nr && desc->count)
998 			continue;
999 		goto out;
1000 
1001 page_not_up_to_date:
1002 		/* Get exclusive access to the page ... */
1003 		if (lock_page_killable(page))
1004 			goto readpage_eio;
1005 
1006 		/* Did it get truncated before we got the lock? */
1007 		if (!page->mapping) {
1008 			unlock_page(page);
1009 			page_cache_release(page);
1010 			continue;
1011 		}
1012 
1013 		/* Did somebody else fill it already? */
1014 		if (PageUptodate(page)) {
1015 			unlock_page(page);
1016 			goto page_ok;
1017 		}
1018 
1019 readpage:
1020 		/* Start the actual read. The read will unlock the page. */
1021 		error = mapping->a_ops->readpage(filp, page);
1022 
1023 		if (unlikely(error)) {
1024 			if (error == AOP_TRUNCATED_PAGE) {
1025 				page_cache_release(page);
1026 				goto find_page;
1027 			}
1028 			goto readpage_error;
1029 		}
1030 
1031 		if (!PageUptodate(page)) {
1032 			if (lock_page_killable(page))
1033 				goto readpage_eio;
1034 			if (!PageUptodate(page)) {
1035 				if (page->mapping == NULL) {
1036 					/*
1037 					 * invalidate_inode_pages got it
1038 					 */
1039 					unlock_page(page);
1040 					page_cache_release(page);
1041 					goto find_page;
1042 				}
1043 				unlock_page(page);
1044 				shrink_readahead_size_eio(filp, ra);
1045 				goto readpage_eio;
1046 			}
1047 			unlock_page(page);
1048 		}
1049 
1050 		goto page_ok;
1051 
1052 readpage_eio:
1053 		error = -EIO;
1054 readpage_error:
1055 		/* UHHUH! A synchronous read error occurred. Report it */
1056 		desc->error = error;
1057 		page_cache_release(page);
1058 		goto out;
1059 
1060 no_cached_page:
1061 		/*
1062 		 * Ok, it wasn't cached, so we need to create a new
1063 		 * page..
1064 		 */
1065 		page = page_cache_alloc_cold(mapping);
1066 		if (!page) {
1067 			desc->error = -ENOMEM;
1068 			goto out;
1069 		}
1070 		error = add_to_page_cache_lru(page, mapping,
1071 						index, GFP_KERNEL);
1072 		if (error) {
1073 			page_cache_release(page);
1074 			if (error == -EEXIST)
1075 				goto find_page;
1076 			desc->error = error;
1077 			goto out;
1078 		}
1079 		goto readpage;
1080 	}
1081 
1082 out:
1083 	ra->prev_pos = prev_index;
1084 	ra->prev_pos <<= PAGE_CACHE_SHIFT;
1085 	ra->prev_pos |= prev_offset;
1086 
1087 	*ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1088 	if (filp)
1089 		file_accessed(filp);
1090 }
1091 
1092 int file_read_actor(read_descriptor_t *desc, struct page *page,
1093 			unsigned long offset, unsigned long size)
1094 {
1095 	char *kaddr;
1096 	unsigned long left, count = desc->count;
1097 
1098 	if (size > count)
1099 		size = count;
1100 
1101 	/*
1102 	 * Faults on the destination of a read are common, so do it before
1103 	 * taking the kmap.
1104 	 */
1105 	if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1106 		kaddr = kmap_atomic(page, KM_USER0);
1107 		left = __copy_to_user_inatomic(desc->arg.buf,
1108 						kaddr + offset, size);
1109 		kunmap_atomic(kaddr, KM_USER0);
1110 		if (left == 0)
1111 			goto success;
1112 	}
1113 
1114 	/* Do it the slow way */
1115 	kaddr = kmap(page);
1116 	left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1117 	kunmap(page);
1118 
1119 	if (left) {
1120 		size -= left;
1121 		desc->error = -EFAULT;
1122 	}
1123 success:
1124 	desc->count = count - size;
1125 	desc->written += size;
1126 	desc->arg.buf += size;
1127 	return size;
1128 }
1129 
1130 /*
1131  * Performs necessary checks before doing a write
1132  * @iov:	io vector request
1133  * @nr_segs:	number of segments in the iovec
1134  * @count:	number of bytes to write
1135  * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1136  *
1137  * Adjust number of segments and amount of bytes to write (nr_segs should be
1138  * properly initialized first). Returns appropriate error code that caller
1139  * should return or zero in case that write should be allowed.
1140  */
1141 int generic_segment_checks(const struct iovec *iov,
1142 			unsigned long *nr_segs, size_t *count, int access_flags)
1143 {
1144 	unsigned long   seg;
1145 	size_t cnt = 0;
1146 	for (seg = 0; seg < *nr_segs; seg++) {
1147 		const struct iovec *iv = &iov[seg];
1148 
1149 		/*
1150 		 * If any segment has a negative length, or the cumulative
1151 		 * length ever wraps negative then return -EINVAL.
1152 		 */
1153 		cnt += iv->iov_len;
1154 		if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1155 			return -EINVAL;
1156 		if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1157 			continue;
1158 		if (seg == 0)
1159 			return -EFAULT;
1160 		*nr_segs = seg;
1161 		cnt -= iv->iov_len;	/* This segment is no good */
1162 		break;
1163 	}
1164 	*count = cnt;
1165 	return 0;
1166 }
1167 EXPORT_SYMBOL(generic_segment_checks);
1168 
1169 /**
1170  * generic_file_aio_read - generic filesystem read routine
1171  * @iocb:	kernel I/O control block
1172  * @iov:	io vector request
1173  * @nr_segs:	number of segments in the iovec
1174  * @pos:	current file position
1175  *
1176  * This is the "read()" routine for all filesystems
1177  * that can use the page cache directly.
1178  */
1179 ssize_t
1180 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1181 		unsigned long nr_segs, loff_t pos)
1182 {
1183 	struct file *filp = iocb->ki_filp;
1184 	ssize_t retval;
1185 	unsigned long seg;
1186 	size_t count;
1187 	loff_t *ppos = &iocb->ki_pos;
1188 
1189 	count = 0;
1190 	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1191 	if (retval)
1192 		return retval;
1193 
1194 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1195 	if (filp->f_flags & O_DIRECT) {
1196 		loff_t size;
1197 		struct address_space *mapping;
1198 		struct inode *inode;
1199 
1200 		mapping = filp->f_mapping;
1201 		inode = mapping->host;
1202 		retval = 0;
1203 		if (!count)
1204 			goto out; /* skip atime */
1205 		size = i_size_read(inode);
1206 		if (pos < size) {
1207 			retval = generic_file_direct_IO(READ, iocb,
1208 						iov, pos, nr_segs);
1209 			if (retval > 0)
1210 				*ppos = pos + retval;
1211 		}
1212 		if (likely(retval != 0)) {
1213 			file_accessed(filp);
1214 			goto out;
1215 		}
1216 	}
1217 
1218 	retval = 0;
1219 	if (count) {
1220 		for (seg = 0; seg < nr_segs; seg++) {
1221 			read_descriptor_t desc;
1222 
1223 			desc.written = 0;
1224 			desc.arg.buf = iov[seg].iov_base;
1225 			desc.count = iov[seg].iov_len;
1226 			if (desc.count == 0)
1227 				continue;
1228 			desc.error = 0;
1229 			do_generic_file_read(filp,ppos,&desc,file_read_actor);
1230 			retval += desc.written;
1231 			if (desc.error) {
1232 				retval = retval ?: desc.error;
1233 				break;
1234 			}
1235 			if (desc.count > 0)
1236 				break;
1237 		}
1238 	}
1239 out:
1240 	return retval;
1241 }
1242 EXPORT_SYMBOL(generic_file_aio_read);
1243 
1244 static ssize_t
1245 do_readahead(struct address_space *mapping, struct file *filp,
1246 	     pgoff_t index, unsigned long nr)
1247 {
1248 	if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1249 		return -EINVAL;
1250 
1251 	force_page_cache_readahead(mapping, filp, index,
1252 					max_sane_readahead(nr));
1253 	return 0;
1254 }
1255 
1256 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1257 {
1258 	ssize_t ret;
1259 	struct file *file;
1260 
1261 	ret = -EBADF;
1262 	file = fget(fd);
1263 	if (file) {
1264 		if (file->f_mode & FMODE_READ) {
1265 			struct address_space *mapping = file->f_mapping;
1266 			pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1267 			pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1268 			unsigned long len = end - start + 1;
1269 			ret = do_readahead(mapping, file, start, len);
1270 		}
1271 		fput(file);
1272 	}
1273 	return ret;
1274 }
1275 
1276 #ifdef CONFIG_MMU
1277 /**
1278  * page_cache_read - adds requested page to the page cache if not already there
1279  * @file:	file to read
1280  * @offset:	page index
1281  *
1282  * This adds the requested page to the page cache if it isn't already there,
1283  * and schedules an I/O to read in its contents from disk.
1284  */
1285 static int page_cache_read(struct file *file, pgoff_t offset)
1286 {
1287 	struct address_space *mapping = file->f_mapping;
1288 	struct page *page;
1289 	int ret;
1290 
1291 	do {
1292 		page = page_cache_alloc_cold(mapping);
1293 		if (!page)
1294 			return -ENOMEM;
1295 
1296 		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1297 		if (ret == 0)
1298 			ret = mapping->a_ops->readpage(file, page);
1299 		else if (ret == -EEXIST)
1300 			ret = 0; /* losing race to add is OK */
1301 
1302 		page_cache_release(page);
1303 
1304 	} while (ret == AOP_TRUNCATED_PAGE);
1305 
1306 	return ret;
1307 }
1308 
1309 #define MMAP_LOTSAMISS  (100)
1310 
1311 /**
1312  * filemap_fault - read in file data for page fault handling
1313  * @vma:	vma in which the fault was taken
1314  * @vmf:	struct vm_fault containing details of the fault
1315  *
1316  * filemap_fault() is invoked via the vma operations vector for a
1317  * mapped memory region to read in file data during a page fault.
1318  *
1319  * The goto's are kind of ugly, but this streamlines the normal case of having
1320  * it in the page cache, and handles the special cases reasonably without
1321  * having a lot of duplicated code.
1322  */
1323 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1324 {
1325 	int error;
1326 	struct file *file = vma->vm_file;
1327 	struct address_space *mapping = file->f_mapping;
1328 	struct file_ra_state *ra = &file->f_ra;
1329 	struct inode *inode = mapping->host;
1330 	struct page *page;
1331 	pgoff_t size;
1332 	int did_readaround = 0;
1333 	int ret = 0;
1334 
1335 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1336 	if (vmf->pgoff >= size)
1337 		return VM_FAULT_SIGBUS;
1338 
1339 	/* If we don't want any read-ahead, don't bother */
1340 	if (VM_RandomReadHint(vma))
1341 		goto no_cached_page;
1342 
1343 	/*
1344 	 * Do we have something in the page cache already?
1345 	 */
1346 retry_find:
1347 	page = find_lock_page(mapping, vmf->pgoff);
1348 	/*
1349 	 * For sequential accesses, we use the generic readahead logic.
1350 	 */
1351 	if (VM_SequentialReadHint(vma)) {
1352 		if (!page) {
1353 			page_cache_sync_readahead(mapping, ra, file,
1354 							   vmf->pgoff, 1);
1355 			page = find_lock_page(mapping, vmf->pgoff);
1356 			if (!page)
1357 				goto no_cached_page;
1358 		}
1359 		if (PageReadahead(page)) {
1360 			page_cache_async_readahead(mapping, ra, file, page,
1361 							   vmf->pgoff, 1);
1362 		}
1363 	}
1364 
1365 	if (!page) {
1366 		unsigned long ra_pages;
1367 
1368 		ra->mmap_miss++;
1369 
1370 		/*
1371 		 * Do we miss much more than hit in this file? If so,
1372 		 * stop bothering with read-ahead. It will only hurt.
1373 		 */
1374 		if (ra->mmap_miss > MMAP_LOTSAMISS)
1375 			goto no_cached_page;
1376 
1377 		/*
1378 		 * To keep the pgmajfault counter straight, we need to
1379 		 * check did_readaround, as this is an inner loop.
1380 		 */
1381 		if (!did_readaround) {
1382 			ret = VM_FAULT_MAJOR;
1383 			count_vm_event(PGMAJFAULT);
1384 		}
1385 		did_readaround = 1;
1386 		ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1387 		if (ra_pages) {
1388 			pgoff_t start = 0;
1389 
1390 			if (vmf->pgoff > ra_pages / 2)
1391 				start = vmf->pgoff - ra_pages / 2;
1392 			do_page_cache_readahead(mapping, file, start, ra_pages);
1393 		}
1394 		page = find_lock_page(mapping, vmf->pgoff);
1395 		if (!page)
1396 			goto no_cached_page;
1397 	}
1398 
1399 	if (!did_readaround)
1400 		ra->mmap_miss--;
1401 
1402 	/*
1403 	 * We have a locked page in the page cache, now we need to check
1404 	 * that it's up-to-date. If not, it is going to be due to an error.
1405 	 */
1406 	if (unlikely(!PageUptodate(page)))
1407 		goto page_not_uptodate;
1408 
1409 	/* Must recheck i_size under page lock */
1410 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1411 	if (unlikely(vmf->pgoff >= size)) {
1412 		unlock_page(page);
1413 		page_cache_release(page);
1414 		return VM_FAULT_SIGBUS;
1415 	}
1416 
1417 	/*
1418 	 * Found the page and have a reference on it.
1419 	 */
1420 	mark_page_accessed(page);
1421 	ra->prev_pos = (loff_t)page->index << PAGE_CACHE_SHIFT;
1422 	vmf->page = page;
1423 	return ret | VM_FAULT_LOCKED;
1424 
1425 no_cached_page:
1426 	/*
1427 	 * We're only likely to ever get here if MADV_RANDOM is in
1428 	 * effect.
1429 	 */
1430 	error = page_cache_read(file, vmf->pgoff);
1431 
1432 	/*
1433 	 * The page we want has now been added to the page cache.
1434 	 * In the unlikely event that someone removed it in the
1435 	 * meantime, we'll just come back here and read it again.
1436 	 */
1437 	if (error >= 0)
1438 		goto retry_find;
1439 
1440 	/*
1441 	 * An error return from page_cache_read can result if the
1442 	 * system is low on memory, or a problem occurs while trying
1443 	 * to schedule I/O.
1444 	 */
1445 	if (error == -ENOMEM)
1446 		return VM_FAULT_OOM;
1447 	return VM_FAULT_SIGBUS;
1448 
1449 page_not_uptodate:
1450 	/* IO error path */
1451 	if (!did_readaround) {
1452 		ret = VM_FAULT_MAJOR;
1453 		count_vm_event(PGMAJFAULT);
1454 	}
1455 
1456 	/*
1457 	 * Umm, take care of errors if the page isn't up-to-date.
1458 	 * Try to re-read it _once_. We do this synchronously,
1459 	 * because there really aren't any performance issues here
1460 	 * and we need to check for errors.
1461 	 */
1462 	ClearPageError(page);
1463 	error = mapping->a_ops->readpage(file, page);
1464 	if (!error) {
1465 		wait_on_page_locked(page);
1466 		if (!PageUptodate(page))
1467 			error = -EIO;
1468 	}
1469 	page_cache_release(page);
1470 
1471 	if (!error || error == AOP_TRUNCATED_PAGE)
1472 		goto retry_find;
1473 
1474 	/* Things didn't work out. Return zero to tell the mm layer so. */
1475 	shrink_readahead_size_eio(file, ra);
1476 	return VM_FAULT_SIGBUS;
1477 }
1478 EXPORT_SYMBOL(filemap_fault);
1479 
1480 struct vm_operations_struct generic_file_vm_ops = {
1481 	.fault		= filemap_fault,
1482 };
1483 
1484 /* This is used for a general mmap of a disk file */
1485 
1486 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1487 {
1488 	struct address_space *mapping = file->f_mapping;
1489 
1490 	if (!mapping->a_ops->readpage)
1491 		return -ENOEXEC;
1492 	file_accessed(file);
1493 	vma->vm_ops = &generic_file_vm_ops;
1494 	vma->vm_flags |= VM_CAN_NONLINEAR;
1495 	return 0;
1496 }
1497 
1498 /*
1499  * This is for filesystems which do not implement ->writepage.
1500  */
1501 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1502 {
1503 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1504 		return -EINVAL;
1505 	return generic_file_mmap(file, vma);
1506 }
1507 #else
1508 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1509 {
1510 	return -ENOSYS;
1511 }
1512 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1513 {
1514 	return -ENOSYS;
1515 }
1516 #endif /* CONFIG_MMU */
1517 
1518 EXPORT_SYMBOL(generic_file_mmap);
1519 EXPORT_SYMBOL(generic_file_readonly_mmap);
1520 
1521 static struct page *__read_cache_page(struct address_space *mapping,
1522 				pgoff_t index,
1523 				int (*filler)(void *,struct page*),
1524 				void *data)
1525 {
1526 	struct page *page;
1527 	int err;
1528 repeat:
1529 	page = find_get_page(mapping, index);
1530 	if (!page) {
1531 		page = page_cache_alloc_cold(mapping);
1532 		if (!page)
1533 			return ERR_PTR(-ENOMEM);
1534 		err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1535 		if (unlikely(err)) {
1536 			page_cache_release(page);
1537 			if (err == -EEXIST)
1538 				goto repeat;
1539 			/* Presumably ENOMEM for radix tree node */
1540 			return ERR_PTR(err);
1541 		}
1542 		err = filler(data, page);
1543 		if (err < 0) {
1544 			page_cache_release(page);
1545 			page = ERR_PTR(err);
1546 		}
1547 	}
1548 	return page;
1549 }
1550 
1551 /**
1552  * read_cache_page_async - read into page cache, fill it if needed
1553  * @mapping:	the page's address_space
1554  * @index:	the page index
1555  * @filler:	function to perform the read
1556  * @data:	destination for read data
1557  *
1558  * Same as read_cache_page, but don't wait for page to become unlocked
1559  * after submitting it to the filler.
1560  *
1561  * Read into the page cache. If a page already exists, and PageUptodate() is
1562  * not set, try to fill the page but don't wait for it to become unlocked.
1563  *
1564  * If the page does not get brought uptodate, return -EIO.
1565  */
1566 struct page *read_cache_page_async(struct address_space *mapping,
1567 				pgoff_t index,
1568 				int (*filler)(void *,struct page*),
1569 				void *data)
1570 {
1571 	struct page *page;
1572 	int err;
1573 
1574 retry:
1575 	page = __read_cache_page(mapping, index, filler, data);
1576 	if (IS_ERR(page))
1577 		return page;
1578 	if (PageUptodate(page))
1579 		goto out;
1580 
1581 	lock_page(page);
1582 	if (!page->mapping) {
1583 		unlock_page(page);
1584 		page_cache_release(page);
1585 		goto retry;
1586 	}
1587 	if (PageUptodate(page)) {
1588 		unlock_page(page);
1589 		goto out;
1590 	}
1591 	err = filler(data, page);
1592 	if (err < 0) {
1593 		page_cache_release(page);
1594 		return ERR_PTR(err);
1595 	}
1596 out:
1597 	mark_page_accessed(page);
1598 	return page;
1599 }
1600 EXPORT_SYMBOL(read_cache_page_async);
1601 
1602 /**
1603  * read_cache_page - read into page cache, fill it if needed
1604  * @mapping:	the page's address_space
1605  * @index:	the page index
1606  * @filler:	function to perform the read
1607  * @data:	destination for read data
1608  *
1609  * Read into the page cache. If a page already exists, and PageUptodate() is
1610  * not set, try to fill the page then wait for it to become unlocked.
1611  *
1612  * If the page does not get brought uptodate, return -EIO.
1613  */
1614 struct page *read_cache_page(struct address_space *mapping,
1615 				pgoff_t index,
1616 				int (*filler)(void *,struct page*),
1617 				void *data)
1618 {
1619 	struct page *page;
1620 
1621 	page = read_cache_page_async(mapping, index, filler, data);
1622 	if (IS_ERR(page))
1623 		goto out;
1624 	wait_on_page_locked(page);
1625 	if (!PageUptodate(page)) {
1626 		page_cache_release(page);
1627 		page = ERR_PTR(-EIO);
1628 	}
1629  out:
1630 	return page;
1631 }
1632 EXPORT_SYMBOL(read_cache_page);
1633 
1634 /*
1635  * The logic we want is
1636  *
1637  *	if suid or (sgid and xgrp)
1638  *		remove privs
1639  */
1640 int should_remove_suid(struct dentry *dentry)
1641 {
1642 	mode_t mode = dentry->d_inode->i_mode;
1643 	int kill = 0;
1644 
1645 	/* suid always must be killed */
1646 	if (unlikely(mode & S_ISUID))
1647 		kill = ATTR_KILL_SUID;
1648 
1649 	/*
1650 	 * sgid without any exec bits is just a mandatory locking mark; leave
1651 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1652 	 */
1653 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1654 		kill |= ATTR_KILL_SGID;
1655 
1656 	if (unlikely(kill && !capable(CAP_FSETID)))
1657 		return kill;
1658 
1659 	return 0;
1660 }
1661 EXPORT_SYMBOL(should_remove_suid);
1662 
1663 static int __remove_suid(struct dentry *dentry, int kill)
1664 {
1665 	struct iattr newattrs;
1666 
1667 	newattrs.ia_valid = ATTR_FORCE | kill;
1668 	return notify_change(dentry, &newattrs);
1669 }
1670 
1671 int remove_suid(struct dentry *dentry)
1672 {
1673 	int killsuid = should_remove_suid(dentry);
1674 	int killpriv = security_inode_need_killpriv(dentry);
1675 	int error = 0;
1676 
1677 	if (killpriv < 0)
1678 		return killpriv;
1679 	if (killpriv)
1680 		error = security_inode_killpriv(dentry);
1681 	if (!error && killsuid)
1682 		error = __remove_suid(dentry, killsuid);
1683 
1684 	return error;
1685 }
1686 EXPORT_SYMBOL(remove_suid);
1687 
1688 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1689 			const struct iovec *iov, size_t base, size_t bytes)
1690 {
1691 	size_t copied = 0, left = 0;
1692 
1693 	while (bytes) {
1694 		char __user *buf = iov->iov_base + base;
1695 		int copy = min(bytes, iov->iov_len - base);
1696 
1697 		base = 0;
1698 		left = __copy_from_user_inatomic_nocache(vaddr, buf, copy);
1699 		copied += copy;
1700 		bytes -= copy;
1701 		vaddr += copy;
1702 		iov++;
1703 
1704 		if (unlikely(left))
1705 			break;
1706 	}
1707 	return copied - left;
1708 }
1709 
1710 /*
1711  * Copy as much as we can into the page and return the number of bytes which
1712  * were sucessfully copied.  If a fault is encountered then return the number of
1713  * bytes which were copied.
1714  */
1715 size_t iov_iter_copy_from_user_atomic(struct page *page,
1716 		struct iov_iter *i, unsigned long offset, size_t bytes)
1717 {
1718 	char *kaddr;
1719 	size_t copied;
1720 
1721 	BUG_ON(!in_atomic());
1722 	kaddr = kmap_atomic(page, KM_USER0);
1723 	if (likely(i->nr_segs == 1)) {
1724 		int left;
1725 		char __user *buf = i->iov->iov_base + i->iov_offset;
1726 		left = __copy_from_user_inatomic_nocache(kaddr + offset,
1727 							buf, bytes);
1728 		copied = bytes - left;
1729 	} else {
1730 		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1731 						i->iov, i->iov_offset, bytes);
1732 	}
1733 	kunmap_atomic(kaddr, KM_USER0);
1734 
1735 	return copied;
1736 }
1737 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1738 
1739 /*
1740  * This has the same sideeffects and return value as
1741  * iov_iter_copy_from_user_atomic().
1742  * The difference is that it attempts to resolve faults.
1743  * Page must not be locked.
1744  */
1745 size_t iov_iter_copy_from_user(struct page *page,
1746 		struct iov_iter *i, unsigned long offset, size_t bytes)
1747 {
1748 	char *kaddr;
1749 	size_t copied;
1750 
1751 	kaddr = kmap(page);
1752 	if (likely(i->nr_segs == 1)) {
1753 		int left;
1754 		char __user *buf = i->iov->iov_base + i->iov_offset;
1755 		left = __copy_from_user_nocache(kaddr + offset, buf, bytes);
1756 		copied = bytes - left;
1757 	} else {
1758 		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1759 						i->iov, i->iov_offset, bytes);
1760 	}
1761 	kunmap(page);
1762 	return copied;
1763 }
1764 EXPORT_SYMBOL(iov_iter_copy_from_user);
1765 
1766 void iov_iter_advance(struct iov_iter *i, size_t bytes)
1767 {
1768 	BUG_ON(i->count < bytes);
1769 
1770 	if (likely(i->nr_segs == 1)) {
1771 		i->iov_offset += bytes;
1772 		i->count -= bytes;
1773 	} else {
1774 		const struct iovec *iov = i->iov;
1775 		size_t base = i->iov_offset;
1776 
1777 		/*
1778 		 * The !iov->iov_len check ensures we skip over unlikely
1779 		 * zero-length segments (without overruning the iovec).
1780 		 */
1781 		while (bytes || unlikely(!iov->iov_len && i->count)) {
1782 			int copy;
1783 
1784 			copy = min(bytes, iov->iov_len - base);
1785 			BUG_ON(!i->count || i->count < copy);
1786 			i->count -= copy;
1787 			bytes -= copy;
1788 			base += copy;
1789 			if (iov->iov_len == base) {
1790 				iov++;
1791 				base = 0;
1792 			}
1793 		}
1794 		i->iov = iov;
1795 		i->iov_offset = base;
1796 	}
1797 }
1798 EXPORT_SYMBOL(iov_iter_advance);
1799 
1800 /*
1801  * Fault in the first iovec of the given iov_iter, to a maximum length
1802  * of bytes. Returns 0 on success, or non-zero if the memory could not be
1803  * accessed (ie. because it is an invalid address).
1804  *
1805  * writev-intensive code may want this to prefault several iovecs -- that
1806  * would be possible (callers must not rely on the fact that _only_ the
1807  * first iovec will be faulted with the current implementation).
1808  */
1809 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
1810 {
1811 	char __user *buf = i->iov->iov_base + i->iov_offset;
1812 	bytes = min(bytes, i->iov->iov_len - i->iov_offset);
1813 	return fault_in_pages_readable(buf, bytes);
1814 }
1815 EXPORT_SYMBOL(iov_iter_fault_in_readable);
1816 
1817 /*
1818  * Return the count of just the current iov_iter segment.
1819  */
1820 size_t iov_iter_single_seg_count(struct iov_iter *i)
1821 {
1822 	const struct iovec *iov = i->iov;
1823 	if (i->nr_segs == 1)
1824 		return i->count;
1825 	else
1826 		return min(i->count, iov->iov_len - i->iov_offset);
1827 }
1828 EXPORT_SYMBOL(iov_iter_single_seg_count);
1829 
1830 /*
1831  * Performs necessary checks before doing a write
1832  *
1833  * Can adjust writing position or amount of bytes to write.
1834  * Returns appropriate error code that caller should return or
1835  * zero in case that write should be allowed.
1836  */
1837 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1838 {
1839 	struct inode *inode = file->f_mapping->host;
1840 	unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1841 
1842         if (unlikely(*pos < 0))
1843                 return -EINVAL;
1844 
1845 	if (!isblk) {
1846 		/* FIXME: this is for backwards compatibility with 2.4 */
1847 		if (file->f_flags & O_APPEND)
1848                         *pos = i_size_read(inode);
1849 
1850 		if (limit != RLIM_INFINITY) {
1851 			if (*pos >= limit) {
1852 				send_sig(SIGXFSZ, current, 0);
1853 				return -EFBIG;
1854 			}
1855 			if (*count > limit - (typeof(limit))*pos) {
1856 				*count = limit - (typeof(limit))*pos;
1857 			}
1858 		}
1859 	}
1860 
1861 	/*
1862 	 * LFS rule
1863 	 */
1864 	if (unlikely(*pos + *count > MAX_NON_LFS &&
1865 				!(file->f_flags & O_LARGEFILE))) {
1866 		if (*pos >= MAX_NON_LFS) {
1867 			return -EFBIG;
1868 		}
1869 		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1870 			*count = MAX_NON_LFS - (unsigned long)*pos;
1871 		}
1872 	}
1873 
1874 	/*
1875 	 * Are we about to exceed the fs block limit ?
1876 	 *
1877 	 * If we have written data it becomes a short write.  If we have
1878 	 * exceeded without writing data we send a signal and return EFBIG.
1879 	 * Linus frestrict idea will clean these up nicely..
1880 	 */
1881 	if (likely(!isblk)) {
1882 		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
1883 			if (*count || *pos > inode->i_sb->s_maxbytes) {
1884 				return -EFBIG;
1885 			}
1886 			/* zero-length writes at ->s_maxbytes are OK */
1887 		}
1888 
1889 		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
1890 			*count = inode->i_sb->s_maxbytes - *pos;
1891 	} else {
1892 #ifdef CONFIG_BLOCK
1893 		loff_t isize;
1894 		if (bdev_read_only(I_BDEV(inode)))
1895 			return -EPERM;
1896 		isize = i_size_read(inode);
1897 		if (*pos >= isize) {
1898 			if (*count || *pos > isize)
1899 				return -ENOSPC;
1900 		}
1901 
1902 		if (*pos + *count > isize)
1903 			*count = isize - *pos;
1904 #else
1905 		return -EPERM;
1906 #endif
1907 	}
1908 	return 0;
1909 }
1910 EXPORT_SYMBOL(generic_write_checks);
1911 
1912 int pagecache_write_begin(struct file *file, struct address_space *mapping,
1913 				loff_t pos, unsigned len, unsigned flags,
1914 				struct page **pagep, void **fsdata)
1915 {
1916 	const struct address_space_operations *aops = mapping->a_ops;
1917 
1918 	if (aops->write_begin) {
1919 		return aops->write_begin(file, mapping, pos, len, flags,
1920 							pagep, fsdata);
1921 	} else {
1922 		int ret;
1923 		pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1924 		unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
1925 		struct inode *inode = mapping->host;
1926 		struct page *page;
1927 again:
1928 		page = __grab_cache_page(mapping, index);
1929 		*pagep = page;
1930 		if (!page)
1931 			return -ENOMEM;
1932 
1933 		if (flags & AOP_FLAG_UNINTERRUPTIBLE && !PageUptodate(page)) {
1934 			/*
1935 			 * There is no way to resolve a short write situation
1936 			 * for a !Uptodate page (except by double copying in
1937 			 * the caller done by generic_perform_write_2copy).
1938 			 *
1939 			 * Instead, we have to bring it uptodate here.
1940 			 */
1941 			ret = aops->readpage(file, page);
1942 			page_cache_release(page);
1943 			if (ret) {
1944 				if (ret == AOP_TRUNCATED_PAGE)
1945 					goto again;
1946 				return ret;
1947 			}
1948 			goto again;
1949 		}
1950 
1951 		ret = aops->prepare_write(file, page, offset, offset+len);
1952 		if (ret) {
1953 			unlock_page(page);
1954 			page_cache_release(page);
1955 			if (pos + len > inode->i_size)
1956 				vmtruncate(inode, inode->i_size);
1957 		}
1958 		return ret;
1959 	}
1960 }
1961 EXPORT_SYMBOL(pagecache_write_begin);
1962 
1963 int pagecache_write_end(struct file *file, struct address_space *mapping,
1964 				loff_t pos, unsigned len, unsigned copied,
1965 				struct page *page, void *fsdata)
1966 {
1967 	const struct address_space_operations *aops = mapping->a_ops;
1968 	int ret;
1969 
1970 	if (aops->write_end) {
1971 		mark_page_accessed(page);
1972 		ret = aops->write_end(file, mapping, pos, len, copied,
1973 							page, fsdata);
1974 	} else {
1975 		unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
1976 		struct inode *inode = mapping->host;
1977 
1978 		flush_dcache_page(page);
1979 		ret = aops->commit_write(file, page, offset, offset+len);
1980 		unlock_page(page);
1981 		mark_page_accessed(page);
1982 		page_cache_release(page);
1983 
1984 		if (ret < 0) {
1985 			if (pos + len > inode->i_size)
1986 				vmtruncate(inode, inode->i_size);
1987 		} else if (ret > 0)
1988 			ret = min_t(size_t, copied, ret);
1989 		else
1990 			ret = copied;
1991 	}
1992 
1993 	return ret;
1994 }
1995 EXPORT_SYMBOL(pagecache_write_end);
1996 
1997 ssize_t
1998 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
1999 		unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2000 		size_t count, size_t ocount)
2001 {
2002 	struct file	*file = iocb->ki_filp;
2003 	struct address_space *mapping = file->f_mapping;
2004 	struct inode	*inode = mapping->host;
2005 	ssize_t		written;
2006 
2007 	if (count != ocount)
2008 		*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2009 
2010 	written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2011 	if (written > 0) {
2012 		loff_t end = pos + written;
2013 		if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2014 			i_size_write(inode,  end);
2015 			mark_inode_dirty(inode);
2016 		}
2017 		*ppos = end;
2018 	}
2019 
2020 	/*
2021 	 * Sync the fs metadata but not the minor inode changes and
2022 	 * of course not the data as we did direct DMA for the IO.
2023 	 * i_mutex is held, which protects generic_osync_inode() from
2024 	 * livelocking.  AIO O_DIRECT ops attempt to sync metadata here.
2025 	 */
2026 	if ((written >= 0 || written == -EIOCBQUEUED) &&
2027 	    ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2028 		int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
2029 		if (err < 0)
2030 			written = err;
2031 	}
2032 	return written;
2033 }
2034 EXPORT_SYMBOL(generic_file_direct_write);
2035 
2036 /*
2037  * Find or create a page at the given pagecache position. Return the locked
2038  * page. This function is specifically for buffered writes.
2039  */
2040 struct page *__grab_cache_page(struct address_space *mapping, pgoff_t index)
2041 {
2042 	int status;
2043 	struct page *page;
2044 repeat:
2045 	page = find_lock_page(mapping, index);
2046 	if (likely(page))
2047 		return page;
2048 
2049 	page = page_cache_alloc(mapping);
2050 	if (!page)
2051 		return NULL;
2052 	status = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
2053 	if (unlikely(status)) {
2054 		page_cache_release(page);
2055 		if (status == -EEXIST)
2056 			goto repeat;
2057 		return NULL;
2058 	}
2059 	return page;
2060 }
2061 EXPORT_SYMBOL(__grab_cache_page);
2062 
2063 static ssize_t generic_perform_write_2copy(struct file *file,
2064 				struct iov_iter *i, loff_t pos)
2065 {
2066 	struct address_space *mapping = file->f_mapping;
2067 	const struct address_space_operations *a_ops = mapping->a_ops;
2068 	struct inode *inode = mapping->host;
2069 	long status = 0;
2070 	ssize_t written = 0;
2071 
2072 	do {
2073 		struct page *src_page;
2074 		struct page *page;
2075 		pgoff_t index;		/* Pagecache index for current page */
2076 		unsigned long offset;	/* Offset into pagecache page */
2077 		unsigned long bytes;	/* Bytes to write to page */
2078 		size_t copied;		/* Bytes copied from user */
2079 
2080 		offset = (pos & (PAGE_CACHE_SIZE - 1));
2081 		index = pos >> PAGE_CACHE_SHIFT;
2082 		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2083 						iov_iter_count(i));
2084 
2085 		/*
2086 		 * a non-NULL src_page indicates that we're doing the
2087 		 * copy via get_user_pages and kmap.
2088 		 */
2089 		src_page = NULL;
2090 
2091 		/*
2092 		 * Bring in the user page that we will copy from _first_.
2093 		 * Otherwise there's a nasty deadlock on copying from the
2094 		 * same page as we're writing to, without it being marked
2095 		 * up-to-date.
2096 		 *
2097 		 * Not only is this an optimisation, but it is also required
2098 		 * to check that the address is actually valid, when atomic
2099 		 * usercopies are used, below.
2100 		 */
2101 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2102 			status = -EFAULT;
2103 			break;
2104 		}
2105 
2106 		page = __grab_cache_page(mapping, index);
2107 		if (!page) {
2108 			status = -ENOMEM;
2109 			break;
2110 		}
2111 
2112 		/*
2113 		 * non-uptodate pages cannot cope with short copies, and we
2114 		 * cannot take a pagefault with the destination page locked.
2115 		 * So pin the source page to copy it.
2116 		 */
2117 		if (!PageUptodate(page) && !segment_eq(get_fs(), KERNEL_DS)) {
2118 			unlock_page(page);
2119 
2120 			src_page = alloc_page(GFP_KERNEL);
2121 			if (!src_page) {
2122 				page_cache_release(page);
2123 				status = -ENOMEM;
2124 				break;
2125 			}
2126 
2127 			/*
2128 			 * Cannot get_user_pages with a page locked for the
2129 			 * same reason as we can't take a page fault with a
2130 			 * page locked (as explained below).
2131 			 */
2132 			copied = iov_iter_copy_from_user(src_page, i,
2133 								offset, bytes);
2134 			if (unlikely(copied == 0)) {
2135 				status = -EFAULT;
2136 				page_cache_release(page);
2137 				page_cache_release(src_page);
2138 				break;
2139 			}
2140 			bytes = copied;
2141 
2142 			lock_page(page);
2143 			/*
2144 			 * Can't handle the page going uptodate here, because
2145 			 * that means we would use non-atomic usercopies, which
2146 			 * zero out the tail of the page, which can cause
2147 			 * zeroes to become transiently visible. We could just
2148 			 * use a non-zeroing copy, but the APIs aren't too
2149 			 * consistent.
2150 			 */
2151 			if (unlikely(!page->mapping || PageUptodate(page))) {
2152 				unlock_page(page);
2153 				page_cache_release(page);
2154 				page_cache_release(src_page);
2155 				continue;
2156 			}
2157 		}
2158 
2159 		status = a_ops->prepare_write(file, page, offset, offset+bytes);
2160 		if (unlikely(status))
2161 			goto fs_write_aop_error;
2162 
2163 		if (!src_page) {
2164 			/*
2165 			 * Must not enter the pagefault handler here, because
2166 			 * we hold the page lock, so we might recursively
2167 			 * deadlock on the same lock, or get an ABBA deadlock
2168 			 * against a different lock, or against the mmap_sem
2169 			 * (which nests outside the page lock).  So increment
2170 			 * preempt count, and use _atomic usercopies.
2171 			 *
2172 			 * The page is uptodate so we are OK to encounter a
2173 			 * short copy: if unmodified parts of the page are
2174 			 * marked dirty and written out to disk, it doesn't
2175 			 * really matter.
2176 			 */
2177 			pagefault_disable();
2178 			copied = iov_iter_copy_from_user_atomic(page, i,
2179 								offset, bytes);
2180 			pagefault_enable();
2181 		} else {
2182 			void *src, *dst;
2183 			src = kmap_atomic(src_page, KM_USER0);
2184 			dst = kmap_atomic(page, KM_USER1);
2185 			memcpy(dst + offset, src + offset, bytes);
2186 			kunmap_atomic(dst, KM_USER1);
2187 			kunmap_atomic(src, KM_USER0);
2188 			copied = bytes;
2189 		}
2190 		flush_dcache_page(page);
2191 
2192 		status = a_ops->commit_write(file, page, offset, offset+bytes);
2193 		if (unlikely(status < 0))
2194 			goto fs_write_aop_error;
2195 		if (unlikely(status > 0)) /* filesystem did partial write */
2196 			copied = min_t(size_t, copied, status);
2197 
2198 		unlock_page(page);
2199 		mark_page_accessed(page);
2200 		page_cache_release(page);
2201 		if (src_page)
2202 			page_cache_release(src_page);
2203 
2204 		iov_iter_advance(i, copied);
2205 		pos += copied;
2206 		written += copied;
2207 
2208 		balance_dirty_pages_ratelimited(mapping);
2209 		cond_resched();
2210 		continue;
2211 
2212 fs_write_aop_error:
2213 		unlock_page(page);
2214 		page_cache_release(page);
2215 		if (src_page)
2216 			page_cache_release(src_page);
2217 
2218 		/*
2219 		 * prepare_write() may have instantiated a few blocks
2220 		 * outside i_size.  Trim these off again. Don't need
2221 		 * i_size_read because we hold i_mutex.
2222 		 */
2223 		if (pos + bytes > inode->i_size)
2224 			vmtruncate(inode, inode->i_size);
2225 		break;
2226 	} while (iov_iter_count(i));
2227 
2228 	return written ? written : status;
2229 }
2230 
2231 static ssize_t generic_perform_write(struct file *file,
2232 				struct iov_iter *i, loff_t pos)
2233 {
2234 	struct address_space *mapping = file->f_mapping;
2235 	const struct address_space_operations *a_ops = mapping->a_ops;
2236 	long status = 0;
2237 	ssize_t written = 0;
2238 	unsigned int flags = 0;
2239 
2240 	/*
2241 	 * Copies from kernel address space cannot fail (NFSD is a big user).
2242 	 */
2243 	if (segment_eq(get_fs(), KERNEL_DS))
2244 		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2245 
2246 	do {
2247 		struct page *page;
2248 		pgoff_t index;		/* Pagecache index for current page */
2249 		unsigned long offset;	/* Offset into pagecache page */
2250 		unsigned long bytes;	/* Bytes to write to page */
2251 		size_t copied;		/* Bytes copied from user */
2252 		void *fsdata;
2253 
2254 		offset = (pos & (PAGE_CACHE_SIZE - 1));
2255 		index = pos >> PAGE_CACHE_SHIFT;
2256 		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2257 						iov_iter_count(i));
2258 
2259 again:
2260 
2261 		/*
2262 		 * Bring in the user page that we will copy from _first_.
2263 		 * Otherwise there's a nasty deadlock on copying from the
2264 		 * same page as we're writing to, without it being marked
2265 		 * up-to-date.
2266 		 *
2267 		 * Not only is this an optimisation, but it is also required
2268 		 * to check that the address is actually valid, when atomic
2269 		 * usercopies are used, below.
2270 		 */
2271 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2272 			status = -EFAULT;
2273 			break;
2274 		}
2275 
2276 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2277 						&page, &fsdata);
2278 		if (unlikely(status))
2279 			break;
2280 
2281 		pagefault_disable();
2282 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2283 		pagefault_enable();
2284 		flush_dcache_page(page);
2285 
2286 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2287 						page, fsdata);
2288 		if (unlikely(status < 0))
2289 			break;
2290 		copied = status;
2291 
2292 		cond_resched();
2293 
2294 		iov_iter_advance(i, copied);
2295 		if (unlikely(copied == 0)) {
2296 			/*
2297 			 * If we were unable to copy any data at all, we must
2298 			 * fall back to a single segment length write.
2299 			 *
2300 			 * If we didn't fallback here, we could livelock
2301 			 * because not all segments in the iov can be copied at
2302 			 * once without a pagefault.
2303 			 */
2304 			bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2305 						iov_iter_single_seg_count(i));
2306 			goto again;
2307 		}
2308 		pos += copied;
2309 		written += copied;
2310 
2311 		balance_dirty_pages_ratelimited(mapping);
2312 
2313 	} while (iov_iter_count(i));
2314 
2315 	return written ? written : status;
2316 }
2317 
2318 ssize_t
2319 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2320 		unsigned long nr_segs, loff_t pos, loff_t *ppos,
2321 		size_t count, ssize_t written)
2322 {
2323 	struct file *file = iocb->ki_filp;
2324 	struct address_space *mapping = file->f_mapping;
2325 	const struct address_space_operations *a_ops = mapping->a_ops;
2326 	struct inode *inode = mapping->host;
2327 	ssize_t status;
2328 	struct iov_iter i;
2329 
2330 	iov_iter_init(&i, iov, nr_segs, count, written);
2331 	if (a_ops->write_begin)
2332 		status = generic_perform_write(file, &i, pos);
2333 	else
2334 		status = generic_perform_write_2copy(file, &i, pos);
2335 
2336 	if (likely(status >= 0)) {
2337 		written += status;
2338 		*ppos = pos + status;
2339 
2340 		/*
2341 		 * For now, when the user asks for O_SYNC, we'll actually give
2342 		 * O_DSYNC
2343 		 */
2344 		if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2345 			if (!a_ops->writepage || !is_sync_kiocb(iocb))
2346 				status = generic_osync_inode(inode, mapping,
2347 						OSYNC_METADATA|OSYNC_DATA);
2348 		}
2349   	}
2350 
2351 	/*
2352 	 * If we get here for O_DIRECT writes then we must have fallen through
2353 	 * to buffered writes (block instantiation inside i_size).  So we sync
2354 	 * the file data here, to try to honour O_DIRECT expectations.
2355 	 */
2356 	if (unlikely(file->f_flags & O_DIRECT) && written)
2357 		status = filemap_write_and_wait(mapping);
2358 
2359 	return written ? written : status;
2360 }
2361 EXPORT_SYMBOL(generic_file_buffered_write);
2362 
2363 static ssize_t
2364 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2365 				unsigned long nr_segs, loff_t *ppos)
2366 {
2367 	struct file *file = iocb->ki_filp;
2368 	struct address_space * mapping = file->f_mapping;
2369 	size_t ocount;		/* original count */
2370 	size_t count;		/* after file limit checks */
2371 	struct inode 	*inode = mapping->host;
2372 	loff_t		pos;
2373 	ssize_t		written;
2374 	ssize_t		err;
2375 
2376 	ocount = 0;
2377 	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2378 	if (err)
2379 		return err;
2380 
2381 	count = ocount;
2382 	pos = *ppos;
2383 
2384 	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2385 
2386 	/* We can write back this queue in page reclaim */
2387 	current->backing_dev_info = mapping->backing_dev_info;
2388 	written = 0;
2389 
2390 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2391 	if (err)
2392 		goto out;
2393 
2394 	if (count == 0)
2395 		goto out;
2396 
2397 	err = remove_suid(file->f_path.dentry);
2398 	if (err)
2399 		goto out;
2400 
2401 	file_update_time(file);
2402 
2403 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2404 	if (unlikely(file->f_flags & O_DIRECT)) {
2405 		loff_t endbyte;
2406 		ssize_t written_buffered;
2407 
2408 		written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2409 							ppos, count, ocount);
2410 		if (written < 0 || written == count)
2411 			goto out;
2412 		/*
2413 		 * direct-io write to a hole: fall through to buffered I/O
2414 		 * for completing the rest of the request.
2415 		 */
2416 		pos += written;
2417 		count -= written;
2418 		written_buffered = generic_file_buffered_write(iocb, iov,
2419 						nr_segs, pos, ppos, count,
2420 						written);
2421 		/*
2422 		 * If generic_file_buffered_write() retuned a synchronous error
2423 		 * then we want to return the number of bytes which were
2424 		 * direct-written, or the error code if that was zero.  Note
2425 		 * that this differs from normal direct-io semantics, which
2426 		 * will return -EFOO even if some bytes were written.
2427 		 */
2428 		if (written_buffered < 0) {
2429 			err = written_buffered;
2430 			goto out;
2431 		}
2432 
2433 		/*
2434 		 * We need to ensure that the page cache pages are written to
2435 		 * disk and invalidated to preserve the expected O_DIRECT
2436 		 * semantics.
2437 		 */
2438 		endbyte = pos + written_buffered - written - 1;
2439 		err = do_sync_mapping_range(file->f_mapping, pos, endbyte,
2440 					    SYNC_FILE_RANGE_WAIT_BEFORE|
2441 					    SYNC_FILE_RANGE_WRITE|
2442 					    SYNC_FILE_RANGE_WAIT_AFTER);
2443 		if (err == 0) {
2444 			written = written_buffered;
2445 			invalidate_mapping_pages(mapping,
2446 						 pos >> PAGE_CACHE_SHIFT,
2447 						 endbyte >> PAGE_CACHE_SHIFT);
2448 		} else {
2449 			/*
2450 			 * We don't know how much we wrote, so just return
2451 			 * the number of bytes which were direct-written
2452 			 */
2453 		}
2454 	} else {
2455 		written = generic_file_buffered_write(iocb, iov, nr_segs,
2456 				pos, ppos, count, written);
2457 	}
2458 out:
2459 	current->backing_dev_info = NULL;
2460 	return written ? written : err;
2461 }
2462 
2463 ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
2464 		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
2465 {
2466 	struct file *file = iocb->ki_filp;
2467 	struct address_space *mapping = file->f_mapping;
2468 	struct inode *inode = mapping->host;
2469 	ssize_t ret;
2470 
2471 	BUG_ON(iocb->ki_pos != pos);
2472 
2473 	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2474 			&iocb->ki_pos);
2475 
2476 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2477 		ssize_t err;
2478 
2479 		err = sync_page_range_nolock(inode, mapping, pos, ret);
2480 		if (err < 0)
2481 			ret = err;
2482 	}
2483 	return ret;
2484 }
2485 EXPORT_SYMBOL(generic_file_aio_write_nolock);
2486 
2487 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2488 		unsigned long nr_segs, loff_t pos)
2489 {
2490 	struct file *file = iocb->ki_filp;
2491 	struct address_space *mapping = file->f_mapping;
2492 	struct inode *inode = mapping->host;
2493 	ssize_t ret;
2494 
2495 	BUG_ON(iocb->ki_pos != pos);
2496 
2497 	mutex_lock(&inode->i_mutex);
2498 	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2499 			&iocb->ki_pos);
2500 	mutex_unlock(&inode->i_mutex);
2501 
2502 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2503 		ssize_t err;
2504 
2505 		err = sync_page_range(inode, mapping, pos, ret);
2506 		if (err < 0)
2507 			ret = err;
2508 	}
2509 	return ret;
2510 }
2511 EXPORT_SYMBOL(generic_file_aio_write);
2512 
2513 /*
2514  * Called under i_mutex for writes to S_ISREG files.   Returns -EIO if something
2515  * went wrong during pagecache shootdown.
2516  */
2517 static ssize_t
2518 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
2519 	loff_t offset, unsigned long nr_segs)
2520 {
2521 	struct file *file = iocb->ki_filp;
2522 	struct address_space *mapping = file->f_mapping;
2523 	ssize_t retval;
2524 	size_t write_len;
2525 	pgoff_t end = 0; /* silence gcc */
2526 
2527 	/*
2528 	 * If it's a write, unmap all mmappings of the file up-front.  This
2529 	 * will cause any pte dirty bits to be propagated into the pageframes
2530 	 * for the subsequent filemap_write_and_wait().
2531 	 */
2532 	if (rw == WRITE) {
2533 		write_len = iov_length(iov, nr_segs);
2534 		end = (offset + write_len - 1) >> PAGE_CACHE_SHIFT;
2535 	       	if (mapping_mapped(mapping))
2536 			unmap_mapping_range(mapping, offset, write_len, 0);
2537 	}
2538 
2539 	retval = filemap_write_and_wait(mapping);
2540 	if (retval)
2541 		goto out;
2542 
2543 	/*
2544 	 * After a write we want buffered reads to be sure to go to disk to get
2545 	 * the new data.  We invalidate clean cached page from the region we're
2546 	 * about to write.  We do this *before* the write so that we can return
2547 	 * -EIO without clobbering -EIOCBQUEUED from ->direct_IO().
2548 	 */
2549 	if (rw == WRITE && mapping->nrpages) {
2550 		retval = invalidate_inode_pages2_range(mapping,
2551 					offset >> PAGE_CACHE_SHIFT, end);
2552 		if (retval)
2553 			goto out;
2554 	}
2555 
2556 	retval = mapping->a_ops->direct_IO(rw, iocb, iov, offset, nr_segs);
2557 
2558 	/*
2559 	 * Finally, try again to invalidate clean pages which might have been
2560 	 * cached by non-direct readahead, or faulted in by get_user_pages()
2561 	 * if the source of the write was an mmap'ed region of the file
2562 	 * we're writing.  Either one is a pretty crazy thing to do,
2563 	 * so we don't support it 100%.  If this invalidation
2564 	 * fails, tough, the write still worked...
2565 	 */
2566 	if (rw == WRITE && mapping->nrpages) {
2567 		invalidate_inode_pages2_range(mapping, offset >> PAGE_CACHE_SHIFT, end);
2568 	}
2569 out:
2570 	return retval;
2571 }
2572 
2573 /**
2574  * try_to_release_page() - release old fs-specific metadata on a page
2575  *
2576  * @page: the page which the kernel is trying to free
2577  * @gfp_mask: memory allocation flags (and I/O mode)
2578  *
2579  * The address_space is to try to release any data against the page
2580  * (presumably at page->private).  If the release was successful, return `1'.
2581  * Otherwise return zero.
2582  *
2583  * The @gfp_mask argument specifies whether I/O may be performed to release
2584  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
2585  *
2586  * NOTE: @gfp_mask may go away, and this function may become non-blocking.
2587  */
2588 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2589 {
2590 	struct address_space * const mapping = page->mapping;
2591 
2592 	BUG_ON(!PageLocked(page));
2593 	if (PageWriteback(page))
2594 		return 0;
2595 
2596 	if (mapping && mapping->a_ops->releasepage)
2597 		return mapping->a_ops->releasepage(page, gfp_mask);
2598 	return try_to_free_buffers(page);
2599 }
2600 
2601 EXPORT_SYMBOL(try_to_release_page);
2602