1 /* 2 * linux/mm/filemap.c 3 * 4 * Copyright (C) 1994-1999 Linus Torvalds 5 */ 6 7 /* 8 * This file handles the generic file mmap semantics used by 9 * most "normal" filesystems (but you don't /have/ to use this: 10 * the NFS filesystem used to do this differently, for example) 11 */ 12 #include <linux/export.h> 13 #include <linux/compiler.h> 14 #include <linux/dax.h> 15 #include <linux/fs.h> 16 #include <linux/sched/signal.h> 17 #include <linux/uaccess.h> 18 #include <linux/capability.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/gfp.h> 21 #include <linux/mm.h> 22 #include <linux/swap.h> 23 #include <linux/mman.h> 24 #include <linux/pagemap.h> 25 #include <linux/file.h> 26 #include <linux/uio.h> 27 #include <linux/hash.h> 28 #include <linux/writeback.h> 29 #include <linux/backing-dev.h> 30 #include <linux/pagevec.h> 31 #include <linux/blkdev.h> 32 #include <linux/security.h> 33 #include <linux/cpuset.h> 34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */ 35 #include <linux/hugetlb.h> 36 #include <linux/memcontrol.h> 37 #include <linux/cleancache.h> 38 #include <linux/rmap.h> 39 #include "internal.h" 40 41 #define CREATE_TRACE_POINTS 42 #include <trace/events/filemap.h> 43 44 /* 45 * FIXME: remove all knowledge of the buffer layer from the core VM 46 */ 47 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 48 49 #include <asm/mman.h> 50 51 /* 52 * Shared mappings implemented 30.11.1994. It's not fully working yet, 53 * though. 54 * 55 * Shared mappings now work. 15.8.1995 Bruno. 56 * 57 * finished 'unifying' the page and buffer cache and SMP-threaded the 58 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 59 * 60 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 61 */ 62 63 /* 64 * Lock ordering: 65 * 66 * ->i_mmap_rwsem (truncate_pagecache) 67 * ->private_lock (__free_pte->__set_page_dirty_buffers) 68 * ->swap_lock (exclusive_swap_page, others) 69 * ->mapping->tree_lock 70 * 71 * ->i_mutex 72 * ->i_mmap_rwsem (truncate->unmap_mapping_range) 73 * 74 * ->mmap_sem 75 * ->i_mmap_rwsem 76 * ->page_table_lock or pte_lock (various, mainly in memory.c) 77 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock) 78 * 79 * ->mmap_sem 80 * ->lock_page (access_process_vm) 81 * 82 * ->i_mutex (generic_perform_write) 83 * ->mmap_sem (fault_in_pages_readable->do_page_fault) 84 * 85 * bdi->wb.list_lock 86 * sb_lock (fs/fs-writeback.c) 87 * ->mapping->tree_lock (__sync_single_inode) 88 * 89 * ->i_mmap_rwsem 90 * ->anon_vma.lock (vma_adjust) 91 * 92 * ->anon_vma.lock 93 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 94 * 95 * ->page_table_lock or pte_lock 96 * ->swap_lock (try_to_unmap_one) 97 * ->private_lock (try_to_unmap_one) 98 * ->tree_lock (try_to_unmap_one) 99 * ->zone_lru_lock(zone) (follow_page->mark_page_accessed) 100 * ->zone_lru_lock(zone) (check_pte_range->isolate_lru_page) 101 * ->private_lock (page_remove_rmap->set_page_dirty) 102 * ->tree_lock (page_remove_rmap->set_page_dirty) 103 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty) 104 * ->inode->i_lock (page_remove_rmap->set_page_dirty) 105 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg) 106 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 107 * ->inode->i_lock (zap_pte_range->set_page_dirty) 108 * ->private_lock (zap_pte_range->__set_page_dirty_buffers) 109 * 110 * ->i_mmap_rwsem 111 * ->tasklist_lock (memory_failure, collect_procs_ao) 112 */ 113 114 static int page_cache_tree_insert(struct address_space *mapping, 115 struct page *page, void **shadowp) 116 { 117 struct radix_tree_node *node; 118 void **slot; 119 int error; 120 121 error = __radix_tree_create(&mapping->page_tree, page->index, 0, 122 &node, &slot); 123 if (error) 124 return error; 125 if (*slot) { 126 void *p; 127 128 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock); 129 if (!radix_tree_exceptional_entry(p)) 130 return -EEXIST; 131 132 mapping->nrexceptional--; 133 if (shadowp) 134 *shadowp = p; 135 } 136 __radix_tree_replace(&mapping->page_tree, node, slot, page, 137 workingset_update_node, mapping); 138 mapping->nrpages++; 139 return 0; 140 } 141 142 static void page_cache_tree_delete(struct address_space *mapping, 143 struct page *page, void *shadow) 144 { 145 int i, nr; 146 147 /* hugetlb pages are represented by one entry in the radix tree */ 148 nr = PageHuge(page) ? 1 : hpage_nr_pages(page); 149 150 VM_BUG_ON_PAGE(!PageLocked(page), page); 151 VM_BUG_ON_PAGE(PageTail(page), page); 152 VM_BUG_ON_PAGE(nr != 1 && shadow, page); 153 154 for (i = 0; i < nr; i++) { 155 struct radix_tree_node *node; 156 void **slot; 157 158 __radix_tree_lookup(&mapping->page_tree, page->index + i, 159 &node, &slot); 160 161 VM_BUG_ON_PAGE(!node && nr != 1, page); 162 163 radix_tree_clear_tags(&mapping->page_tree, node, slot); 164 __radix_tree_replace(&mapping->page_tree, node, slot, shadow, 165 workingset_update_node, mapping); 166 } 167 168 if (shadow) { 169 mapping->nrexceptional += nr; 170 /* 171 * Make sure the nrexceptional update is committed before 172 * the nrpages update so that final truncate racing 173 * with reclaim does not see both counters 0 at the 174 * same time and miss a shadow entry. 175 */ 176 smp_wmb(); 177 } 178 mapping->nrpages -= nr; 179 } 180 181 /* 182 * Delete a page from the page cache and free it. Caller has to make 183 * sure the page is locked and that nobody else uses it - or that usage 184 * is safe. The caller must hold the mapping's tree_lock. 185 */ 186 void __delete_from_page_cache(struct page *page, void *shadow) 187 { 188 struct address_space *mapping = page->mapping; 189 int nr = hpage_nr_pages(page); 190 191 trace_mm_filemap_delete_from_page_cache(page); 192 /* 193 * if we're uptodate, flush out into the cleancache, otherwise 194 * invalidate any existing cleancache entries. We can't leave 195 * stale data around in the cleancache once our page is gone 196 */ 197 if (PageUptodate(page) && PageMappedToDisk(page)) 198 cleancache_put_page(page); 199 else 200 cleancache_invalidate_page(mapping, page); 201 202 VM_BUG_ON_PAGE(PageTail(page), page); 203 VM_BUG_ON_PAGE(page_mapped(page), page); 204 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) { 205 int mapcount; 206 207 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n", 208 current->comm, page_to_pfn(page)); 209 dump_page(page, "still mapped when deleted"); 210 dump_stack(); 211 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 212 213 mapcount = page_mapcount(page); 214 if (mapping_exiting(mapping) && 215 page_count(page) >= mapcount + 2) { 216 /* 217 * All vmas have already been torn down, so it's 218 * a good bet that actually the page is unmapped, 219 * and we'd prefer not to leak it: if we're wrong, 220 * some other bad page check should catch it later. 221 */ 222 page_mapcount_reset(page); 223 page_ref_sub(page, mapcount); 224 } 225 } 226 227 page_cache_tree_delete(mapping, page, shadow); 228 229 page->mapping = NULL; 230 /* Leave page->index set: truncation lookup relies upon it */ 231 232 /* hugetlb pages do not participate in page cache accounting. */ 233 if (PageHuge(page)) 234 return; 235 236 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr); 237 if (PageSwapBacked(page)) { 238 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr); 239 if (PageTransHuge(page)) 240 __dec_node_page_state(page, NR_SHMEM_THPS); 241 } else { 242 VM_BUG_ON_PAGE(PageTransHuge(page), page); 243 } 244 245 /* 246 * At this point page must be either written or cleaned by truncate. 247 * Dirty page here signals a bug and loss of unwritten data. 248 * 249 * This fixes dirty accounting after removing the page entirely but 250 * leaves PageDirty set: it has no effect for truncated page and 251 * anyway will be cleared before returning page into buddy allocator. 252 */ 253 if (WARN_ON_ONCE(PageDirty(page))) 254 account_page_cleaned(page, mapping, inode_to_wb(mapping->host)); 255 } 256 257 /** 258 * delete_from_page_cache - delete page from page cache 259 * @page: the page which the kernel is trying to remove from page cache 260 * 261 * This must be called only on pages that have been verified to be in the page 262 * cache and locked. It will never put the page into the free list, the caller 263 * has a reference on the page. 264 */ 265 void delete_from_page_cache(struct page *page) 266 { 267 struct address_space *mapping = page_mapping(page); 268 unsigned long flags; 269 void (*freepage)(struct page *); 270 271 BUG_ON(!PageLocked(page)); 272 273 freepage = mapping->a_ops->freepage; 274 275 spin_lock_irqsave(&mapping->tree_lock, flags); 276 __delete_from_page_cache(page, NULL); 277 spin_unlock_irqrestore(&mapping->tree_lock, flags); 278 279 if (freepage) 280 freepage(page); 281 282 if (PageTransHuge(page) && !PageHuge(page)) { 283 page_ref_sub(page, HPAGE_PMD_NR); 284 VM_BUG_ON_PAGE(page_count(page) <= 0, page); 285 } else { 286 put_page(page); 287 } 288 } 289 EXPORT_SYMBOL(delete_from_page_cache); 290 291 int filemap_check_errors(struct address_space *mapping) 292 { 293 int ret = 0; 294 /* Check for outstanding write errors */ 295 if (test_bit(AS_ENOSPC, &mapping->flags) && 296 test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 297 ret = -ENOSPC; 298 if (test_bit(AS_EIO, &mapping->flags) && 299 test_and_clear_bit(AS_EIO, &mapping->flags)) 300 ret = -EIO; 301 return ret; 302 } 303 EXPORT_SYMBOL(filemap_check_errors); 304 305 static int filemap_check_and_keep_errors(struct address_space *mapping) 306 { 307 /* Check for outstanding write errors */ 308 if (test_bit(AS_EIO, &mapping->flags)) 309 return -EIO; 310 if (test_bit(AS_ENOSPC, &mapping->flags)) 311 return -ENOSPC; 312 return 0; 313 } 314 315 /** 316 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 317 * @mapping: address space structure to write 318 * @start: offset in bytes where the range starts 319 * @end: offset in bytes where the range ends (inclusive) 320 * @sync_mode: enable synchronous operation 321 * 322 * Start writeback against all of a mapping's dirty pages that lie 323 * within the byte offsets <start, end> inclusive. 324 * 325 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 326 * opposed to a regular memory cleansing writeback. The difference between 327 * these two operations is that if a dirty page/buffer is encountered, it must 328 * be waited upon, and not just skipped over. 329 */ 330 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 331 loff_t end, int sync_mode) 332 { 333 int ret; 334 struct writeback_control wbc = { 335 .sync_mode = sync_mode, 336 .nr_to_write = LONG_MAX, 337 .range_start = start, 338 .range_end = end, 339 }; 340 341 if (!mapping_cap_writeback_dirty(mapping)) 342 return 0; 343 344 wbc_attach_fdatawrite_inode(&wbc, mapping->host); 345 ret = do_writepages(mapping, &wbc); 346 wbc_detach_inode(&wbc); 347 return ret; 348 } 349 350 static inline int __filemap_fdatawrite(struct address_space *mapping, 351 int sync_mode) 352 { 353 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 354 } 355 356 int filemap_fdatawrite(struct address_space *mapping) 357 { 358 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 359 } 360 EXPORT_SYMBOL(filemap_fdatawrite); 361 362 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 363 loff_t end) 364 { 365 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 366 } 367 EXPORT_SYMBOL(filemap_fdatawrite_range); 368 369 /** 370 * filemap_flush - mostly a non-blocking flush 371 * @mapping: target address_space 372 * 373 * This is a mostly non-blocking flush. Not suitable for data-integrity 374 * purposes - I/O may not be started against all dirty pages. 375 */ 376 int filemap_flush(struct address_space *mapping) 377 { 378 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 379 } 380 EXPORT_SYMBOL(filemap_flush); 381 382 /** 383 * filemap_range_has_page - check if a page exists in range. 384 * @mapping: address space within which to check 385 * @start_byte: offset in bytes where the range starts 386 * @end_byte: offset in bytes where the range ends (inclusive) 387 * 388 * Find at least one page in the range supplied, usually used to check if 389 * direct writing in this range will trigger a writeback. 390 */ 391 bool filemap_range_has_page(struct address_space *mapping, 392 loff_t start_byte, loff_t end_byte) 393 { 394 pgoff_t index = start_byte >> PAGE_SHIFT; 395 pgoff_t end = end_byte >> PAGE_SHIFT; 396 struct page *page; 397 398 if (end_byte < start_byte) 399 return false; 400 401 if (mapping->nrpages == 0) 402 return false; 403 404 if (!find_get_pages_range(mapping, &index, end, 1, &page)) 405 return false; 406 put_page(page); 407 return true; 408 } 409 EXPORT_SYMBOL(filemap_range_has_page); 410 411 static void __filemap_fdatawait_range(struct address_space *mapping, 412 loff_t start_byte, loff_t end_byte) 413 { 414 pgoff_t index = start_byte >> PAGE_SHIFT; 415 pgoff_t end = end_byte >> PAGE_SHIFT; 416 struct pagevec pvec; 417 int nr_pages; 418 419 if (end_byte < start_byte) 420 return; 421 422 pagevec_init(&pvec, 0); 423 while ((index <= end) && 424 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 425 PAGECACHE_TAG_WRITEBACK, 426 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) { 427 unsigned i; 428 429 for (i = 0; i < nr_pages; i++) { 430 struct page *page = pvec.pages[i]; 431 432 /* until radix tree lookup accepts end_index */ 433 if (page->index > end) 434 continue; 435 436 wait_on_page_writeback(page); 437 ClearPageError(page); 438 } 439 pagevec_release(&pvec); 440 cond_resched(); 441 } 442 } 443 444 /** 445 * filemap_fdatawait_range - wait for writeback to complete 446 * @mapping: address space structure to wait for 447 * @start_byte: offset in bytes where the range starts 448 * @end_byte: offset in bytes where the range ends (inclusive) 449 * 450 * Walk the list of under-writeback pages of the given address space 451 * in the given range and wait for all of them. Check error status of 452 * the address space and return it. 453 * 454 * Since the error status of the address space is cleared by this function, 455 * callers are responsible for checking the return value and handling and/or 456 * reporting the error. 457 */ 458 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 459 loff_t end_byte) 460 { 461 __filemap_fdatawait_range(mapping, start_byte, end_byte); 462 return filemap_check_errors(mapping); 463 } 464 EXPORT_SYMBOL(filemap_fdatawait_range); 465 466 /** 467 * file_fdatawait_range - wait for writeback to complete 468 * @file: file pointing to address space structure to wait for 469 * @start_byte: offset in bytes where the range starts 470 * @end_byte: offset in bytes where the range ends (inclusive) 471 * 472 * Walk the list of under-writeback pages of the address space that file 473 * refers to, in the given range and wait for all of them. Check error 474 * status of the address space vs. the file->f_wb_err cursor and return it. 475 * 476 * Since the error status of the file is advanced by this function, 477 * callers are responsible for checking the return value and handling and/or 478 * reporting the error. 479 */ 480 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte) 481 { 482 struct address_space *mapping = file->f_mapping; 483 484 __filemap_fdatawait_range(mapping, start_byte, end_byte); 485 return file_check_and_advance_wb_err(file); 486 } 487 EXPORT_SYMBOL(file_fdatawait_range); 488 489 /** 490 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors 491 * @mapping: address space structure to wait for 492 * 493 * Walk the list of under-writeback pages of the given address space 494 * and wait for all of them. Unlike filemap_fdatawait(), this function 495 * does not clear error status of the address space. 496 * 497 * Use this function if callers don't handle errors themselves. Expected 498 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 499 * fsfreeze(8) 500 */ 501 int filemap_fdatawait_keep_errors(struct address_space *mapping) 502 { 503 __filemap_fdatawait_range(mapping, 0, LLONG_MAX); 504 return filemap_check_and_keep_errors(mapping); 505 } 506 EXPORT_SYMBOL(filemap_fdatawait_keep_errors); 507 508 static bool mapping_needs_writeback(struct address_space *mapping) 509 { 510 return (!dax_mapping(mapping) && mapping->nrpages) || 511 (dax_mapping(mapping) && mapping->nrexceptional); 512 } 513 514 int filemap_write_and_wait(struct address_space *mapping) 515 { 516 int err = 0; 517 518 if (mapping_needs_writeback(mapping)) { 519 err = filemap_fdatawrite(mapping); 520 /* 521 * Even if the above returned error, the pages may be 522 * written partially (e.g. -ENOSPC), so we wait for it. 523 * But the -EIO is special case, it may indicate the worst 524 * thing (e.g. bug) happened, so we avoid waiting for it. 525 */ 526 if (err != -EIO) { 527 int err2 = filemap_fdatawait(mapping); 528 if (!err) 529 err = err2; 530 } else { 531 /* Clear any previously stored errors */ 532 filemap_check_errors(mapping); 533 } 534 } else { 535 err = filemap_check_errors(mapping); 536 } 537 return err; 538 } 539 EXPORT_SYMBOL(filemap_write_and_wait); 540 541 /** 542 * filemap_write_and_wait_range - write out & wait on a file range 543 * @mapping: the address_space for the pages 544 * @lstart: offset in bytes where the range starts 545 * @lend: offset in bytes where the range ends (inclusive) 546 * 547 * Write out and wait upon file offsets lstart->lend, inclusive. 548 * 549 * Note that @lend is inclusive (describes the last byte to be written) so 550 * that this function can be used to write to the very end-of-file (end = -1). 551 */ 552 int filemap_write_and_wait_range(struct address_space *mapping, 553 loff_t lstart, loff_t lend) 554 { 555 int err = 0; 556 557 if (mapping_needs_writeback(mapping)) { 558 err = __filemap_fdatawrite_range(mapping, lstart, lend, 559 WB_SYNC_ALL); 560 /* See comment of filemap_write_and_wait() */ 561 if (err != -EIO) { 562 int err2 = filemap_fdatawait_range(mapping, 563 lstart, lend); 564 if (!err) 565 err = err2; 566 } else { 567 /* Clear any previously stored errors */ 568 filemap_check_errors(mapping); 569 } 570 } else { 571 err = filemap_check_errors(mapping); 572 } 573 return err; 574 } 575 EXPORT_SYMBOL(filemap_write_and_wait_range); 576 577 void __filemap_set_wb_err(struct address_space *mapping, int err) 578 { 579 errseq_t eseq = errseq_set(&mapping->wb_err, err); 580 581 trace_filemap_set_wb_err(mapping, eseq); 582 } 583 EXPORT_SYMBOL(__filemap_set_wb_err); 584 585 /** 586 * file_check_and_advance_wb_err - report wb error (if any) that was previously 587 * and advance wb_err to current one 588 * @file: struct file on which the error is being reported 589 * 590 * When userland calls fsync (or something like nfsd does the equivalent), we 591 * want to report any writeback errors that occurred since the last fsync (or 592 * since the file was opened if there haven't been any). 593 * 594 * Grab the wb_err from the mapping. If it matches what we have in the file, 595 * then just quickly return 0. The file is all caught up. 596 * 597 * If it doesn't match, then take the mapping value, set the "seen" flag in 598 * it and try to swap it into place. If it works, or another task beat us 599 * to it with the new value, then update the f_wb_err and return the error 600 * portion. The error at this point must be reported via proper channels 601 * (a'la fsync, or NFS COMMIT operation, etc.). 602 * 603 * While we handle mapping->wb_err with atomic operations, the f_wb_err 604 * value is protected by the f_lock since we must ensure that it reflects 605 * the latest value swapped in for this file descriptor. 606 */ 607 int file_check_and_advance_wb_err(struct file *file) 608 { 609 int err = 0; 610 errseq_t old = READ_ONCE(file->f_wb_err); 611 struct address_space *mapping = file->f_mapping; 612 613 /* Locklessly handle the common case where nothing has changed */ 614 if (errseq_check(&mapping->wb_err, old)) { 615 /* Something changed, must use slow path */ 616 spin_lock(&file->f_lock); 617 old = file->f_wb_err; 618 err = errseq_check_and_advance(&mapping->wb_err, 619 &file->f_wb_err); 620 trace_file_check_and_advance_wb_err(file, old); 621 spin_unlock(&file->f_lock); 622 } 623 624 /* 625 * We're mostly using this function as a drop in replacement for 626 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect 627 * that the legacy code would have had on these flags. 628 */ 629 clear_bit(AS_EIO, &mapping->flags); 630 clear_bit(AS_ENOSPC, &mapping->flags); 631 return err; 632 } 633 EXPORT_SYMBOL(file_check_and_advance_wb_err); 634 635 /** 636 * file_write_and_wait_range - write out & wait on a file range 637 * @file: file pointing to address_space with pages 638 * @lstart: offset in bytes where the range starts 639 * @lend: offset in bytes where the range ends (inclusive) 640 * 641 * Write out and wait upon file offsets lstart->lend, inclusive. 642 * 643 * Note that @lend is inclusive (describes the last byte to be written) so 644 * that this function can be used to write to the very end-of-file (end = -1). 645 * 646 * After writing out and waiting on the data, we check and advance the 647 * f_wb_err cursor to the latest value, and return any errors detected there. 648 */ 649 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend) 650 { 651 int err = 0, err2; 652 struct address_space *mapping = file->f_mapping; 653 654 if (mapping_needs_writeback(mapping)) { 655 err = __filemap_fdatawrite_range(mapping, lstart, lend, 656 WB_SYNC_ALL); 657 /* See comment of filemap_write_and_wait() */ 658 if (err != -EIO) 659 __filemap_fdatawait_range(mapping, lstart, lend); 660 } 661 err2 = file_check_and_advance_wb_err(file); 662 if (!err) 663 err = err2; 664 return err; 665 } 666 EXPORT_SYMBOL(file_write_and_wait_range); 667 668 /** 669 * replace_page_cache_page - replace a pagecache page with a new one 670 * @old: page to be replaced 671 * @new: page to replace with 672 * @gfp_mask: allocation mode 673 * 674 * This function replaces a page in the pagecache with a new one. On 675 * success it acquires the pagecache reference for the new page and 676 * drops it for the old page. Both the old and new pages must be 677 * locked. This function does not add the new page to the LRU, the 678 * caller must do that. 679 * 680 * The remove + add is atomic. The only way this function can fail is 681 * memory allocation failure. 682 */ 683 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask) 684 { 685 int error; 686 687 VM_BUG_ON_PAGE(!PageLocked(old), old); 688 VM_BUG_ON_PAGE(!PageLocked(new), new); 689 VM_BUG_ON_PAGE(new->mapping, new); 690 691 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM); 692 if (!error) { 693 struct address_space *mapping = old->mapping; 694 void (*freepage)(struct page *); 695 unsigned long flags; 696 697 pgoff_t offset = old->index; 698 freepage = mapping->a_ops->freepage; 699 700 get_page(new); 701 new->mapping = mapping; 702 new->index = offset; 703 704 spin_lock_irqsave(&mapping->tree_lock, flags); 705 __delete_from_page_cache(old, NULL); 706 error = page_cache_tree_insert(mapping, new, NULL); 707 BUG_ON(error); 708 709 /* 710 * hugetlb pages do not participate in page cache accounting. 711 */ 712 if (!PageHuge(new)) 713 __inc_node_page_state(new, NR_FILE_PAGES); 714 if (PageSwapBacked(new)) 715 __inc_node_page_state(new, NR_SHMEM); 716 spin_unlock_irqrestore(&mapping->tree_lock, flags); 717 mem_cgroup_migrate(old, new); 718 radix_tree_preload_end(); 719 if (freepage) 720 freepage(old); 721 put_page(old); 722 } 723 724 return error; 725 } 726 EXPORT_SYMBOL_GPL(replace_page_cache_page); 727 728 static int __add_to_page_cache_locked(struct page *page, 729 struct address_space *mapping, 730 pgoff_t offset, gfp_t gfp_mask, 731 void **shadowp) 732 { 733 int huge = PageHuge(page); 734 struct mem_cgroup *memcg; 735 int error; 736 737 VM_BUG_ON_PAGE(!PageLocked(page), page); 738 VM_BUG_ON_PAGE(PageSwapBacked(page), page); 739 740 if (!huge) { 741 error = mem_cgroup_try_charge(page, current->mm, 742 gfp_mask, &memcg, false); 743 if (error) 744 return error; 745 } 746 747 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM); 748 if (error) { 749 if (!huge) 750 mem_cgroup_cancel_charge(page, memcg, false); 751 return error; 752 } 753 754 get_page(page); 755 page->mapping = mapping; 756 page->index = offset; 757 758 spin_lock_irq(&mapping->tree_lock); 759 error = page_cache_tree_insert(mapping, page, shadowp); 760 radix_tree_preload_end(); 761 if (unlikely(error)) 762 goto err_insert; 763 764 /* hugetlb pages do not participate in page cache accounting. */ 765 if (!huge) 766 __inc_node_page_state(page, NR_FILE_PAGES); 767 spin_unlock_irq(&mapping->tree_lock); 768 if (!huge) 769 mem_cgroup_commit_charge(page, memcg, false, false); 770 trace_mm_filemap_add_to_page_cache(page); 771 return 0; 772 err_insert: 773 page->mapping = NULL; 774 /* Leave page->index set: truncation relies upon it */ 775 spin_unlock_irq(&mapping->tree_lock); 776 if (!huge) 777 mem_cgroup_cancel_charge(page, memcg, false); 778 put_page(page); 779 return error; 780 } 781 782 /** 783 * add_to_page_cache_locked - add a locked page to the pagecache 784 * @page: page to add 785 * @mapping: the page's address_space 786 * @offset: page index 787 * @gfp_mask: page allocation mode 788 * 789 * This function is used to add a page to the pagecache. It must be locked. 790 * This function does not add the page to the LRU. The caller must do that. 791 */ 792 int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 793 pgoff_t offset, gfp_t gfp_mask) 794 { 795 return __add_to_page_cache_locked(page, mapping, offset, 796 gfp_mask, NULL); 797 } 798 EXPORT_SYMBOL(add_to_page_cache_locked); 799 800 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 801 pgoff_t offset, gfp_t gfp_mask) 802 { 803 void *shadow = NULL; 804 int ret; 805 806 __SetPageLocked(page); 807 ret = __add_to_page_cache_locked(page, mapping, offset, 808 gfp_mask, &shadow); 809 if (unlikely(ret)) 810 __ClearPageLocked(page); 811 else { 812 /* 813 * The page might have been evicted from cache only 814 * recently, in which case it should be activated like 815 * any other repeatedly accessed page. 816 * The exception is pages getting rewritten; evicting other 817 * data from the working set, only to cache data that will 818 * get overwritten with something else, is a waste of memory. 819 */ 820 if (!(gfp_mask & __GFP_WRITE) && 821 shadow && workingset_refault(shadow)) { 822 SetPageActive(page); 823 workingset_activation(page); 824 } else 825 ClearPageActive(page); 826 lru_cache_add(page); 827 } 828 return ret; 829 } 830 EXPORT_SYMBOL_GPL(add_to_page_cache_lru); 831 832 #ifdef CONFIG_NUMA 833 struct page *__page_cache_alloc(gfp_t gfp) 834 { 835 int n; 836 struct page *page; 837 838 if (cpuset_do_page_mem_spread()) { 839 unsigned int cpuset_mems_cookie; 840 do { 841 cpuset_mems_cookie = read_mems_allowed_begin(); 842 n = cpuset_mem_spread_node(); 843 page = __alloc_pages_node(n, gfp, 0); 844 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie)); 845 846 return page; 847 } 848 return alloc_pages(gfp, 0); 849 } 850 EXPORT_SYMBOL(__page_cache_alloc); 851 #endif 852 853 /* 854 * In order to wait for pages to become available there must be 855 * waitqueues associated with pages. By using a hash table of 856 * waitqueues where the bucket discipline is to maintain all 857 * waiters on the same queue and wake all when any of the pages 858 * become available, and for the woken contexts to check to be 859 * sure the appropriate page became available, this saves space 860 * at a cost of "thundering herd" phenomena during rare hash 861 * collisions. 862 */ 863 #define PAGE_WAIT_TABLE_BITS 8 864 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS) 865 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned; 866 867 static wait_queue_head_t *page_waitqueue(struct page *page) 868 { 869 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)]; 870 } 871 872 void __init pagecache_init(void) 873 { 874 int i; 875 876 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++) 877 init_waitqueue_head(&page_wait_table[i]); 878 879 page_writeback_init(); 880 } 881 882 /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */ 883 struct wait_page_key { 884 struct page *page; 885 int bit_nr; 886 int page_match; 887 }; 888 889 struct wait_page_queue { 890 struct page *page; 891 int bit_nr; 892 wait_queue_entry_t wait; 893 }; 894 895 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg) 896 { 897 struct wait_page_key *key = arg; 898 struct wait_page_queue *wait_page 899 = container_of(wait, struct wait_page_queue, wait); 900 901 if (wait_page->page != key->page) 902 return 0; 903 key->page_match = 1; 904 905 if (wait_page->bit_nr != key->bit_nr) 906 return 0; 907 908 /* Stop walking if it's locked */ 909 if (test_bit(key->bit_nr, &key->page->flags)) 910 return -1; 911 912 return autoremove_wake_function(wait, mode, sync, key); 913 } 914 915 static void wake_up_page_bit(struct page *page, int bit_nr) 916 { 917 wait_queue_head_t *q = page_waitqueue(page); 918 struct wait_page_key key; 919 unsigned long flags; 920 wait_queue_entry_t bookmark; 921 922 key.page = page; 923 key.bit_nr = bit_nr; 924 key.page_match = 0; 925 926 bookmark.flags = 0; 927 bookmark.private = NULL; 928 bookmark.func = NULL; 929 INIT_LIST_HEAD(&bookmark.entry); 930 931 spin_lock_irqsave(&q->lock, flags); 932 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); 933 934 while (bookmark.flags & WQ_FLAG_BOOKMARK) { 935 /* 936 * Take a breather from holding the lock, 937 * allow pages that finish wake up asynchronously 938 * to acquire the lock and remove themselves 939 * from wait queue 940 */ 941 spin_unlock_irqrestore(&q->lock, flags); 942 cpu_relax(); 943 spin_lock_irqsave(&q->lock, flags); 944 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); 945 } 946 947 /* 948 * It is possible for other pages to have collided on the waitqueue 949 * hash, so in that case check for a page match. That prevents a long- 950 * term waiter 951 * 952 * It is still possible to miss a case here, when we woke page waiters 953 * and removed them from the waitqueue, but there are still other 954 * page waiters. 955 */ 956 if (!waitqueue_active(q) || !key.page_match) { 957 ClearPageWaiters(page); 958 /* 959 * It's possible to miss clearing Waiters here, when we woke 960 * our page waiters, but the hashed waitqueue has waiters for 961 * other pages on it. 962 * 963 * That's okay, it's a rare case. The next waker will clear it. 964 */ 965 } 966 spin_unlock_irqrestore(&q->lock, flags); 967 } 968 969 static void wake_up_page(struct page *page, int bit) 970 { 971 if (!PageWaiters(page)) 972 return; 973 wake_up_page_bit(page, bit); 974 } 975 976 static inline int wait_on_page_bit_common(wait_queue_head_t *q, 977 struct page *page, int bit_nr, int state, bool lock) 978 { 979 struct wait_page_queue wait_page; 980 wait_queue_entry_t *wait = &wait_page.wait; 981 int ret = 0; 982 983 init_wait(wait); 984 wait->flags = lock ? WQ_FLAG_EXCLUSIVE : 0; 985 wait->func = wake_page_function; 986 wait_page.page = page; 987 wait_page.bit_nr = bit_nr; 988 989 for (;;) { 990 spin_lock_irq(&q->lock); 991 992 if (likely(list_empty(&wait->entry))) { 993 __add_wait_queue_entry_tail(q, wait); 994 SetPageWaiters(page); 995 } 996 997 set_current_state(state); 998 999 spin_unlock_irq(&q->lock); 1000 1001 if (likely(test_bit(bit_nr, &page->flags))) { 1002 io_schedule(); 1003 } 1004 1005 if (lock) { 1006 if (!test_and_set_bit_lock(bit_nr, &page->flags)) 1007 break; 1008 } else { 1009 if (!test_bit(bit_nr, &page->flags)) 1010 break; 1011 } 1012 1013 if (unlikely(signal_pending_state(state, current))) { 1014 ret = -EINTR; 1015 break; 1016 } 1017 } 1018 1019 finish_wait(q, wait); 1020 1021 /* 1022 * A signal could leave PageWaiters set. Clearing it here if 1023 * !waitqueue_active would be possible (by open-coding finish_wait), 1024 * but still fail to catch it in the case of wait hash collision. We 1025 * already can fail to clear wait hash collision cases, so don't 1026 * bother with signals either. 1027 */ 1028 1029 return ret; 1030 } 1031 1032 void wait_on_page_bit(struct page *page, int bit_nr) 1033 { 1034 wait_queue_head_t *q = page_waitqueue(page); 1035 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false); 1036 } 1037 EXPORT_SYMBOL(wait_on_page_bit); 1038 1039 int wait_on_page_bit_killable(struct page *page, int bit_nr) 1040 { 1041 wait_queue_head_t *q = page_waitqueue(page); 1042 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false); 1043 } 1044 1045 /** 1046 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue 1047 * @page: Page defining the wait queue of interest 1048 * @waiter: Waiter to add to the queue 1049 * 1050 * Add an arbitrary @waiter to the wait queue for the nominated @page. 1051 */ 1052 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter) 1053 { 1054 wait_queue_head_t *q = page_waitqueue(page); 1055 unsigned long flags; 1056 1057 spin_lock_irqsave(&q->lock, flags); 1058 __add_wait_queue_entry_tail(q, waiter); 1059 SetPageWaiters(page); 1060 spin_unlock_irqrestore(&q->lock, flags); 1061 } 1062 EXPORT_SYMBOL_GPL(add_page_wait_queue); 1063 1064 #ifndef clear_bit_unlock_is_negative_byte 1065 1066 /* 1067 * PG_waiters is the high bit in the same byte as PG_lock. 1068 * 1069 * On x86 (and on many other architectures), we can clear PG_lock and 1070 * test the sign bit at the same time. But if the architecture does 1071 * not support that special operation, we just do this all by hand 1072 * instead. 1073 * 1074 * The read of PG_waiters has to be after (or concurrently with) PG_locked 1075 * being cleared, but a memory barrier should be unneccssary since it is 1076 * in the same byte as PG_locked. 1077 */ 1078 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem) 1079 { 1080 clear_bit_unlock(nr, mem); 1081 /* smp_mb__after_atomic(); */ 1082 return test_bit(PG_waiters, mem); 1083 } 1084 1085 #endif 1086 1087 /** 1088 * unlock_page - unlock a locked page 1089 * @page: the page 1090 * 1091 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). 1092 * Also wakes sleepers in wait_on_page_writeback() because the wakeup 1093 * mechanism between PageLocked pages and PageWriteback pages is shared. 1094 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. 1095 * 1096 * Note that this depends on PG_waiters being the sign bit in the byte 1097 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to 1098 * clear the PG_locked bit and test PG_waiters at the same time fairly 1099 * portably (architectures that do LL/SC can test any bit, while x86 can 1100 * test the sign bit). 1101 */ 1102 void unlock_page(struct page *page) 1103 { 1104 BUILD_BUG_ON(PG_waiters != 7); 1105 page = compound_head(page); 1106 VM_BUG_ON_PAGE(!PageLocked(page), page); 1107 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags)) 1108 wake_up_page_bit(page, PG_locked); 1109 } 1110 EXPORT_SYMBOL(unlock_page); 1111 1112 /** 1113 * end_page_writeback - end writeback against a page 1114 * @page: the page 1115 */ 1116 void end_page_writeback(struct page *page) 1117 { 1118 /* 1119 * TestClearPageReclaim could be used here but it is an atomic 1120 * operation and overkill in this particular case. Failing to 1121 * shuffle a page marked for immediate reclaim is too mild to 1122 * justify taking an atomic operation penalty at the end of 1123 * ever page writeback. 1124 */ 1125 if (PageReclaim(page)) { 1126 ClearPageReclaim(page); 1127 rotate_reclaimable_page(page); 1128 } 1129 1130 if (!test_clear_page_writeback(page)) 1131 BUG(); 1132 1133 smp_mb__after_atomic(); 1134 wake_up_page(page, PG_writeback); 1135 } 1136 EXPORT_SYMBOL(end_page_writeback); 1137 1138 /* 1139 * After completing I/O on a page, call this routine to update the page 1140 * flags appropriately 1141 */ 1142 void page_endio(struct page *page, bool is_write, int err) 1143 { 1144 if (!is_write) { 1145 if (!err) { 1146 SetPageUptodate(page); 1147 } else { 1148 ClearPageUptodate(page); 1149 SetPageError(page); 1150 } 1151 unlock_page(page); 1152 } else { 1153 if (err) { 1154 struct address_space *mapping; 1155 1156 SetPageError(page); 1157 mapping = page_mapping(page); 1158 if (mapping) 1159 mapping_set_error(mapping, err); 1160 } 1161 end_page_writeback(page); 1162 } 1163 } 1164 EXPORT_SYMBOL_GPL(page_endio); 1165 1166 /** 1167 * __lock_page - get a lock on the page, assuming we need to sleep to get it 1168 * @__page: the page to lock 1169 */ 1170 void __lock_page(struct page *__page) 1171 { 1172 struct page *page = compound_head(__page); 1173 wait_queue_head_t *q = page_waitqueue(page); 1174 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true); 1175 } 1176 EXPORT_SYMBOL(__lock_page); 1177 1178 int __lock_page_killable(struct page *__page) 1179 { 1180 struct page *page = compound_head(__page); 1181 wait_queue_head_t *q = page_waitqueue(page); 1182 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true); 1183 } 1184 EXPORT_SYMBOL_GPL(__lock_page_killable); 1185 1186 /* 1187 * Return values: 1188 * 1 - page is locked; mmap_sem is still held. 1189 * 0 - page is not locked. 1190 * mmap_sem has been released (up_read()), unless flags had both 1191 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in 1192 * which case mmap_sem is still held. 1193 * 1194 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1 1195 * with the page locked and the mmap_sem unperturbed. 1196 */ 1197 int __lock_page_or_retry(struct page *page, struct mm_struct *mm, 1198 unsigned int flags) 1199 { 1200 if (flags & FAULT_FLAG_ALLOW_RETRY) { 1201 /* 1202 * CAUTION! In this case, mmap_sem is not released 1203 * even though return 0. 1204 */ 1205 if (flags & FAULT_FLAG_RETRY_NOWAIT) 1206 return 0; 1207 1208 up_read(&mm->mmap_sem); 1209 if (flags & FAULT_FLAG_KILLABLE) 1210 wait_on_page_locked_killable(page); 1211 else 1212 wait_on_page_locked(page); 1213 return 0; 1214 } else { 1215 if (flags & FAULT_FLAG_KILLABLE) { 1216 int ret; 1217 1218 ret = __lock_page_killable(page); 1219 if (ret) { 1220 up_read(&mm->mmap_sem); 1221 return 0; 1222 } 1223 } else 1224 __lock_page(page); 1225 return 1; 1226 } 1227 } 1228 1229 /** 1230 * page_cache_next_hole - find the next hole (not-present entry) 1231 * @mapping: mapping 1232 * @index: index 1233 * @max_scan: maximum range to search 1234 * 1235 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the 1236 * lowest indexed hole. 1237 * 1238 * Returns: the index of the hole if found, otherwise returns an index 1239 * outside of the set specified (in which case 'return - index >= 1240 * max_scan' will be true). In rare cases of index wrap-around, 0 will 1241 * be returned. 1242 * 1243 * page_cache_next_hole may be called under rcu_read_lock. However, 1244 * like radix_tree_gang_lookup, this will not atomically search a 1245 * snapshot of the tree at a single point in time. For example, if a 1246 * hole is created at index 5, then subsequently a hole is created at 1247 * index 10, page_cache_next_hole covering both indexes may return 10 1248 * if called under rcu_read_lock. 1249 */ 1250 pgoff_t page_cache_next_hole(struct address_space *mapping, 1251 pgoff_t index, unsigned long max_scan) 1252 { 1253 unsigned long i; 1254 1255 for (i = 0; i < max_scan; i++) { 1256 struct page *page; 1257 1258 page = radix_tree_lookup(&mapping->page_tree, index); 1259 if (!page || radix_tree_exceptional_entry(page)) 1260 break; 1261 index++; 1262 if (index == 0) 1263 break; 1264 } 1265 1266 return index; 1267 } 1268 EXPORT_SYMBOL(page_cache_next_hole); 1269 1270 /** 1271 * page_cache_prev_hole - find the prev hole (not-present entry) 1272 * @mapping: mapping 1273 * @index: index 1274 * @max_scan: maximum range to search 1275 * 1276 * Search backwards in the range [max(index-max_scan+1, 0), index] for 1277 * the first hole. 1278 * 1279 * Returns: the index of the hole if found, otherwise returns an index 1280 * outside of the set specified (in which case 'index - return >= 1281 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX 1282 * will be returned. 1283 * 1284 * page_cache_prev_hole may be called under rcu_read_lock. However, 1285 * like radix_tree_gang_lookup, this will not atomically search a 1286 * snapshot of the tree at a single point in time. For example, if a 1287 * hole is created at index 10, then subsequently a hole is created at 1288 * index 5, page_cache_prev_hole covering both indexes may return 5 if 1289 * called under rcu_read_lock. 1290 */ 1291 pgoff_t page_cache_prev_hole(struct address_space *mapping, 1292 pgoff_t index, unsigned long max_scan) 1293 { 1294 unsigned long i; 1295 1296 for (i = 0; i < max_scan; i++) { 1297 struct page *page; 1298 1299 page = radix_tree_lookup(&mapping->page_tree, index); 1300 if (!page || radix_tree_exceptional_entry(page)) 1301 break; 1302 index--; 1303 if (index == ULONG_MAX) 1304 break; 1305 } 1306 1307 return index; 1308 } 1309 EXPORT_SYMBOL(page_cache_prev_hole); 1310 1311 /** 1312 * find_get_entry - find and get a page cache entry 1313 * @mapping: the address_space to search 1314 * @offset: the page cache index 1315 * 1316 * Looks up the page cache slot at @mapping & @offset. If there is a 1317 * page cache page, it is returned with an increased refcount. 1318 * 1319 * If the slot holds a shadow entry of a previously evicted page, or a 1320 * swap entry from shmem/tmpfs, it is returned. 1321 * 1322 * Otherwise, %NULL is returned. 1323 */ 1324 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset) 1325 { 1326 void **pagep; 1327 struct page *head, *page; 1328 1329 rcu_read_lock(); 1330 repeat: 1331 page = NULL; 1332 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset); 1333 if (pagep) { 1334 page = radix_tree_deref_slot(pagep); 1335 if (unlikely(!page)) 1336 goto out; 1337 if (radix_tree_exception(page)) { 1338 if (radix_tree_deref_retry(page)) 1339 goto repeat; 1340 /* 1341 * A shadow entry of a recently evicted page, 1342 * or a swap entry from shmem/tmpfs. Return 1343 * it without attempting to raise page count. 1344 */ 1345 goto out; 1346 } 1347 1348 head = compound_head(page); 1349 if (!page_cache_get_speculative(head)) 1350 goto repeat; 1351 1352 /* The page was split under us? */ 1353 if (compound_head(page) != head) { 1354 put_page(head); 1355 goto repeat; 1356 } 1357 1358 /* 1359 * Has the page moved? 1360 * This is part of the lockless pagecache protocol. See 1361 * include/linux/pagemap.h for details. 1362 */ 1363 if (unlikely(page != *pagep)) { 1364 put_page(head); 1365 goto repeat; 1366 } 1367 } 1368 out: 1369 rcu_read_unlock(); 1370 1371 return page; 1372 } 1373 EXPORT_SYMBOL(find_get_entry); 1374 1375 /** 1376 * find_lock_entry - locate, pin and lock a page cache entry 1377 * @mapping: the address_space to search 1378 * @offset: the page cache index 1379 * 1380 * Looks up the page cache slot at @mapping & @offset. If there is a 1381 * page cache page, it is returned locked and with an increased 1382 * refcount. 1383 * 1384 * If the slot holds a shadow entry of a previously evicted page, or a 1385 * swap entry from shmem/tmpfs, it is returned. 1386 * 1387 * Otherwise, %NULL is returned. 1388 * 1389 * find_lock_entry() may sleep. 1390 */ 1391 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset) 1392 { 1393 struct page *page; 1394 1395 repeat: 1396 page = find_get_entry(mapping, offset); 1397 if (page && !radix_tree_exception(page)) { 1398 lock_page(page); 1399 /* Has the page been truncated? */ 1400 if (unlikely(page_mapping(page) != mapping)) { 1401 unlock_page(page); 1402 put_page(page); 1403 goto repeat; 1404 } 1405 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page); 1406 } 1407 return page; 1408 } 1409 EXPORT_SYMBOL(find_lock_entry); 1410 1411 /** 1412 * pagecache_get_page - find and get a page reference 1413 * @mapping: the address_space to search 1414 * @offset: the page index 1415 * @fgp_flags: PCG flags 1416 * @gfp_mask: gfp mask to use for the page cache data page allocation 1417 * 1418 * Looks up the page cache slot at @mapping & @offset. 1419 * 1420 * PCG flags modify how the page is returned. 1421 * 1422 * @fgp_flags can be: 1423 * 1424 * - FGP_ACCESSED: the page will be marked accessed 1425 * - FGP_LOCK: Page is return locked 1426 * - FGP_CREAT: If page is not present then a new page is allocated using 1427 * @gfp_mask and added to the page cache and the VM's LRU 1428 * list. The page is returned locked and with an increased 1429 * refcount. Otherwise, NULL is returned. 1430 * 1431 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even 1432 * if the GFP flags specified for FGP_CREAT are atomic. 1433 * 1434 * If there is a page cache page, it is returned with an increased refcount. 1435 */ 1436 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset, 1437 int fgp_flags, gfp_t gfp_mask) 1438 { 1439 struct page *page; 1440 1441 repeat: 1442 page = find_get_entry(mapping, offset); 1443 if (radix_tree_exceptional_entry(page)) 1444 page = NULL; 1445 if (!page) 1446 goto no_page; 1447 1448 if (fgp_flags & FGP_LOCK) { 1449 if (fgp_flags & FGP_NOWAIT) { 1450 if (!trylock_page(page)) { 1451 put_page(page); 1452 return NULL; 1453 } 1454 } else { 1455 lock_page(page); 1456 } 1457 1458 /* Has the page been truncated? */ 1459 if (unlikely(page->mapping != mapping)) { 1460 unlock_page(page); 1461 put_page(page); 1462 goto repeat; 1463 } 1464 VM_BUG_ON_PAGE(page->index != offset, page); 1465 } 1466 1467 if (page && (fgp_flags & FGP_ACCESSED)) 1468 mark_page_accessed(page); 1469 1470 no_page: 1471 if (!page && (fgp_flags & FGP_CREAT)) { 1472 int err; 1473 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping)) 1474 gfp_mask |= __GFP_WRITE; 1475 if (fgp_flags & FGP_NOFS) 1476 gfp_mask &= ~__GFP_FS; 1477 1478 page = __page_cache_alloc(gfp_mask); 1479 if (!page) 1480 return NULL; 1481 1482 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK))) 1483 fgp_flags |= FGP_LOCK; 1484 1485 /* Init accessed so avoid atomic mark_page_accessed later */ 1486 if (fgp_flags & FGP_ACCESSED) 1487 __SetPageReferenced(page); 1488 1489 err = add_to_page_cache_lru(page, mapping, offset, 1490 gfp_mask & GFP_RECLAIM_MASK); 1491 if (unlikely(err)) { 1492 put_page(page); 1493 page = NULL; 1494 if (err == -EEXIST) 1495 goto repeat; 1496 } 1497 } 1498 1499 return page; 1500 } 1501 EXPORT_SYMBOL(pagecache_get_page); 1502 1503 /** 1504 * find_get_entries - gang pagecache lookup 1505 * @mapping: The address_space to search 1506 * @start: The starting page cache index 1507 * @nr_entries: The maximum number of entries 1508 * @entries: Where the resulting entries are placed 1509 * @indices: The cache indices corresponding to the entries in @entries 1510 * 1511 * find_get_entries() will search for and return a group of up to 1512 * @nr_entries entries in the mapping. The entries are placed at 1513 * @entries. find_get_entries() takes a reference against any actual 1514 * pages it returns. 1515 * 1516 * The search returns a group of mapping-contiguous page cache entries 1517 * with ascending indexes. There may be holes in the indices due to 1518 * not-present pages. 1519 * 1520 * Any shadow entries of evicted pages, or swap entries from 1521 * shmem/tmpfs, are included in the returned array. 1522 * 1523 * find_get_entries() returns the number of pages and shadow entries 1524 * which were found. 1525 */ 1526 unsigned find_get_entries(struct address_space *mapping, 1527 pgoff_t start, unsigned int nr_entries, 1528 struct page **entries, pgoff_t *indices) 1529 { 1530 void **slot; 1531 unsigned int ret = 0; 1532 struct radix_tree_iter iter; 1533 1534 if (!nr_entries) 1535 return 0; 1536 1537 rcu_read_lock(); 1538 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { 1539 struct page *head, *page; 1540 repeat: 1541 page = radix_tree_deref_slot(slot); 1542 if (unlikely(!page)) 1543 continue; 1544 if (radix_tree_exception(page)) { 1545 if (radix_tree_deref_retry(page)) { 1546 slot = radix_tree_iter_retry(&iter); 1547 continue; 1548 } 1549 /* 1550 * A shadow entry of a recently evicted page, a swap 1551 * entry from shmem/tmpfs or a DAX entry. Return it 1552 * without attempting to raise page count. 1553 */ 1554 goto export; 1555 } 1556 1557 head = compound_head(page); 1558 if (!page_cache_get_speculative(head)) 1559 goto repeat; 1560 1561 /* The page was split under us? */ 1562 if (compound_head(page) != head) { 1563 put_page(head); 1564 goto repeat; 1565 } 1566 1567 /* Has the page moved? */ 1568 if (unlikely(page != *slot)) { 1569 put_page(head); 1570 goto repeat; 1571 } 1572 export: 1573 indices[ret] = iter.index; 1574 entries[ret] = page; 1575 if (++ret == nr_entries) 1576 break; 1577 } 1578 rcu_read_unlock(); 1579 return ret; 1580 } 1581 1582 /** 1583 * find_get_pages_range - gang pagecache lookup 1584 * @mapping: The address_space to search 1585 * @start: The starting page index 1586 * @end: The final page index (inclusive) 1587 * @nr_pages: The maximum number of pages 1588 * @pages: Where the resulting pages are placed 1589 * 1590 * find_get_pages_range() will search for and return a group of up to @nr_pages 1591 * pages in the mapping starting at index @start and up to index @end 1592 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes 1593 * a reference against the returned pages. 1594 * 1595 * The search returns a group of mapping-contiguous pages with ascending 1596 * indexes. There may be holes in the indices due to not-present pages. 1597 * We also update @start to index the next page for the traversal. 1598 * 1599 * find_get_pages_range() returns the number of pages which were found. If this 1600 * number is smaller than @nr_pages, the end of specified range has been 1601 * reached. 1602 */ 1603 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start, 1604 pgoff_t end, unsigned int nr_pages, 1605 struct page **pages) 1606 { 1607 struct radix_tree_iter iter; 1608 void **slot; 1609 unsigned ret = 0; 1610 1611 if (unlikely(!nr_pages)) 1612 return 0; 1613 1614 rcu_read_lock(); 1615 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, *start) { 1616 struct page *head, *page; 1617 1618 if (iter.index > end) 1619 break; 1620 repeat: 1621 page = radix_tree_deref_slot(slot); 1622 if (unlikely(!page)) 1623 continue; 1624 1625 if (radix_tree_exception(page)) { 1626 if (radix_tree_deref_retry(page)) { 1627 slot = radix_tree_iter_retry(&iter); 1628 continue; 1629 } 1630 /* 1631 * A shadow entry of a recently evicted page, 1632 * or a swap entry from shmem/tmpfs. Skip 1633 * over it. 1634 */ 1635 continue; 1636 } 1637 1638 head = compound_head(page); 1639 if (!page_cache_get_speculative(head)) 1640 goto repeat; 1641 1642 /* The page was split under us? */ 1643 if (compound_head(page) != head) { 1644 put_page(head); 1645 goto repeat; 1646 } 1647 1648 /* Has the page moved? */ 1649 if (unlikely(page != *slot)) { 1650 put_page(head); 1651 goto repeat; 1652 } 1653 1654 pages[ret] = page; 1655 if (++ret == nr_pages) { 1656 *start = pages[ret - 1]->index + 1; 1657 goto out; 1658 } 1659 } 1660 1661 /* 1662 * We come here when there is no page beyond @end. We take care to not 1663 * overflow the index @start as it confuses some of the callers. This 1664 * breaks the iteration when there is page at index -1 but that is 1665 * already broken anyway. 1666 */ 1667 if (end == (pgoff_t)-1) 1668 *start = (pgoff_t)-1; 1669 else 1670 *start = end + 1; 1671 out: 1672 rcu_read_unlock(); 1673 1674 return ret; 1675 } 1676 1677 /** 1678 * find_get_pages_contig - gang contiguous pagecache lookup 1679 * @mapping: The address_space to search 1680 * @index: The starting page index 1681 * @nr_pages: The maximum number of pages 1682 * @pages: Where the resulting pages are placed 1683 * 1684 * find_get_pages_contig() works exactly like find_get_pages(), except 1685 * that the returned number of pages are guaranteed to be contiguous. 1686 * 1687 * find_get_pages_contig() returns the number of pages which were found. 1688 */ 1689 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, 1690 unsigned int nr_pages, struct page **pages) 1691 { 1692 struct radix_tree_iter iter; 1693 void **slot; 1694 unsigned int ret = 0; 1695 1696 if (unlikely(!nr_pages)) 1697 return 0; 1698 1699 rcu_read_lock(); 1700 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) { 1701 struct page *head, *page; 1702 repeat: 1703 page = radix_tree_deref_slot(slot); 1704 /* The hole, there no reason to continue */ 1705 if (unlikely(!page)) 1706 break; 1707 1708 if (radix_tree_exception(page)) { 1709 if (radix_tree_deref_retry(page)) { 1710 slot = radix_tree_iter_retry(&iter); 1711 continue; 1712 } 1713 /* 1714 * A shadow entry of a recently evicted page, 1715 * or a swap entry from shmem/tmpfs. Stop 1716 * looking for contiguous pages. 1717 */ 1718 break; 1719 } 1720 1721 head = compound_head(page); 1722 if (!page_cache_get_speculative(head)) 1723 goto repeat; 1724 1725 /* The page was split under us? */ 1726 if (compound_head(page) != head) { 1727 put_page(head); 1728 goto repeat; 1729 } 1730 1731 /* Has the page moved? */ 1732 if (unlikely(page != *slot)) { 1733 put_page(head); 1734 goto repeat; 1735 } 1736 1737 /* 1738 * must check mapping and index after taking the ref. 1739 * otherwise we can get both false positives and false 1740 * negatives, which is just confusing to the caller. 1741 */ 1742 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) { 1743 put_page(page); 1744 break; 1745 } 1746 1747 pages[ret] = page; 1748 if (++ret == nr_pages) 1749 break; 1750 } 1751 rcu_read_unlock(); 1752 return ret; 1753 } 1754 EXPORT_SYMBOL(find_get_pages_contig); 1755 1756 /** 1757 * find_get_pages_tag - find and return pages that match @tag 1758 * @mapping: the address_space to search 1759 * @index: the starting page index 1760 * @tag: the tag index 1761 * @nr_pages: the maximum number of pages 1762 * @pages: where the resulting pages are placed 1763 * 1764 * Like find_get_pages, except we only return pages which are tagged with 1765 * @tag. We update @index to index the next page for the traversal. 1766 */ 1767 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, 1768 int tag, unsigned int nr_pages, struct page **pages) 1769 { 1770 struct radix_tree_iter iter; 1771 void **slot; 1772 unsigned ret = 0; 1773 1774 if (unlikely(!nr_pages)) 1775 return 0; 1776 1777 rcu_read_lock(); 1778 radix_tree_for_each_tagged(slot, &mapping->page_tree, 1779 &iter, *index, tag) { 1780 struct page *head, *page; 1781 repeat: 1782 page = radix_tree_deref_slot(slot); 1783 if (unlikely(!page)) 1784 continue; 1785 1786 if (radix_tree_exception(page)) { 1787 if (radix_tree_deref_retry(page)) { 1788 slot = radix_tree_iter_retry(&iter); 1789 continue; 1790 } 1791 /* 1792 * A shadow entry of a recently evicted page. 1793 * 1794 * Those entries should never be tagged, but 1795 * this tree walk is lockless and the tags are 1796 * looked up in bulk, one radix tree node at a 1797 * time, so there is a sizable window for page 1798 * reclaim to evict a page we saw tagged. 1799 * 1800 * Skip over it. 1801 */ 1802 continue; 1803 } 1804 1805 head = compound_head(page); 1806 if (!page_cache_get_speculative(head)) 1807 goto repeat; 1808 1809 /* The page was split under us? */ 1810 if (compound_head(page) != head) { 1811 put_page(head); 1812 goto repeat; 1813 } 1814 1815 /* Has the page moved? */ 1816 if (unlikely(page != *slot)) { 1817 put_page(head); 1818 goto repeat; 1819 } 1820 1821 pages[ret] = page; 1822 if (++ret == nr_pages) 1823 break; 1824 } 1825 1826 rcu_read_unlock(); 1827 1828 if (ret) 1829 *index = pages[ret - 1]->index + 1; 1830 1831 return ret; 1832 } 1833 EXPORT_SYMBOL(find_get_pages_tag); 1834 1835 /** 1836 * find_get_entries_tag - find and return entries that match @tag 1837 * @mapping: the address_space to search 1838 * @start: the starting page cache index 1839 * @tag: the tag index 1840 * @nr_entries: the maximum number of entries 1841 * @entries: where the resulting entries are placed 1842 * @indices: the cache indices corresponding to the entries in @entries 1843 * 1844 * Like find_get_entries, except we only return entries which are tagged with 1845 * @tag. 1846 */ 1847 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start, 1848 int tag, unsigned int nr_entries, 1849 struct page **entries, pgoff_t *indices) 1850 { 1851 void **slot; 1852 unsigned int ret = 0; 1853 struct radix_tree_iter iter; 1854 1855 if (!nr_entries) 1856 return 0; 1857 1858 rcu_read_lock(); 1859 radix_tree_for_each_tagged(slot, &mapping->page_tree, 1860 &iter, start, tag) { 1861 struct page *head, *page; 1862 repeat: 1863 page = radix_tree_deref_slot(slot); 1864 if (unlikely(!page)) 1865 continue; 1866 if (radix_tree_exception(page)) { 1867 if (radix_tree_deref_retry(page)) { 1868 slot = radix_tree_iter_retry(&iter); 1869 continue; 1870 } 1871 1872 /* 1873 * A shadow entry of a recently evicted page, a swap 1874 * entry from shmem/tmpfs or a DAX entry. Return it 1875 * without attempting to raise page count. 1876 */ 1877 goto export; 1878 } 1879 1880 head = compound_head(page); 1881 if (!page_cache_get_speculative(head)) 1882 goto repeat; 1883 1884 /* The page was split under us? */ 1885 if (compound_head(page) != head) { 1886 put_page(head); 1887 goto repeat; 1888 } 1889 1890 /* Has the page moved? */ 1891 if (unlikely(page != *slot)) { 1892 put_page(head); 1893 goto repeat; 1894 } 1895 export: 1896 indices[ret] = iter.index; 1897 entries[ret] = page; 1898 if (++ret == nr_entries) 1899 break; 1900 } 1901 rcu_read_unlock(); 1902 return ret; 1903 } 1904 EXPORT_SYMBOL(find_get_entries_tag); 1905 1906 /* 1907 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 1908 * a _large_ part of the i/o request. Imagine the worst scenario: 1909 * 1910 * ---R__________________________________________B__________ 1911 * ^ reading here ^ bad block(assume 4k) 1912 * 1913 * read(R) => miss => readahead(R...B) => media error => frustrating retries 1914 * => failing the whole request => read(R) => read(R+1) => 1915 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 1916 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 1917 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 1918 * 1919 * It is going insane. Fix it by quickly scaling down the readahead size. 1920 */ 1921 static void shrink_readahead_size_eio(struct file *filp, 1922 struct file_ra_state *ra) 1923 { 1924 ra->ra_pages /= 4; 1925 } 1926 1927 /** 1928 * generic_file_buffered_read - generic file read routine 1929 * @iocb: the iocb to read 1930 * @iter: data destination 1931 * @written: already copied 1932 * 1933 * This is a generic file read routine, and uses the 1934 * mapping->a_ops->readpage() function for the actual low-level stuff. 1935 * 1936 * This is really ugly. But the goto's actually try to clarify some 1937 * of the logic when it comes to error handling etc. 1938 */ 1939 static ssize_t generic_file_buffered_read(struct kiocb *iocb, 1940 struct iov_iter *iter, ssize_t written) 1941 { 1942 struct file *filp = iocb->ki_filp; 1943 struct address_space *mapping = filp->f_mapping; 1944 struct inode *inode = mapping->host; 1945 struct file_ra_state *ra = &filp->f_ra; 1946 loff_t *ppos = &iocb->ki_pos; 1947 pgoff_t index; 1948 pgoff_t last_index; 1949 pgoff_t prev_index; 1950 unsigned long offset; /* offset into pagecache page */ 1951 unsigned int prev_offset; 1952 int error = 0; 1953 1954 if (unlikely(*ppos >= inode->i_sb->s_maxbytes)) 1955 return 0; 1956 iov_iter_truncate(iter, inode->i_sb->s_maxbytes); 1957 1958 index = *ppos >> PAGE_SHIFT; 1959 prev_index = ra->prev_pos >> PAGE_SHIFT; 1960 prev_offset = ra->prev_pos & (PAGE_SIZE-1); 1961 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT; 1962 offset = *ppos & ~PAGE_MASK; 1963 1964 for (;;) { 1965 struct page *page; 1966 pgoff_t end_index; 1967 loff_t isize; 1968 unsigned long nr, ret; 1969 1970 cond_resched(); 1971 find_page: 1972 if (fatal_signal_pending(current)) { 1973 error = -EINTR; 1974 goto out; 1975 } 1976 1977 page = find_get_page(mapping, index); 1978 if (!page) { 1979 if (iocb->ki_flags & IOCB_NOWAIT) 1980 goto would_block; 1981 page_cache_sync_readahead(mapping, 1982 ra, filp, 1983 index, last_index - index); 1984 page = find_get_page(mapping, index); 1985 if (unlikely(page == NULL)) 1986 goto no_cached_page; 1987 } 1988 if (PageReadahead(page)) { 1989 page_cache_async_readahead(mapping, 1990 ra, filp, page, 1991 index, last_index - index); 1992 } 1993 if (!PageUptodate(page)) { 1994 if (iocb->ki_flags & IOCB_NOWAIT) { 1995 put_page(page); 1996 goto would_block; 1997 } 1998 1999 /* 2000 * See comment in do_read_cache_page on why 2001 * wait_on_page_locked is used to avoid unnecessarily 2002 * serialisations and why it's safe. 2003 */ 2004 error = wait_on_page_locked_killable(page); 2005 if (unlikely(error)) 2006 goto readpage_error; 2007 if (PageUptodate(page)) 2008 goto page_ok; 2009 2010 if (inode->i_blkbits == PAGE_SHIFT || 2011 !mapping->a_ops->is_partially_uptodate) 2012 goto page_not_up_to_date; 2013 /* pipes can't handle partially uptodate pages */ 2014 if (unlikely(iter->type & ITER_PIPE)) 2015 goto page_not_up_to_date; 2016 if (!trylock_page(page)) 2017 goto page_not_up_to_date; 2018 /* Did it get truncated before we got the lock? */ 2019 if (!page->mapping) 2020 goto page_not_up_to_date_locked; 2021 if (!mapping->a_ops->is_partially_uptodate(page, 2022 offset, iter->count)) 2023 goto page_not_up_to_date_locked; 2024 unlock_page(page); 2025 } 2026 page_ok: 2027 /* 2028 * i_size must be checked after we know the page is Uptodate. 2029 * 2030 * Checking i_size after the check allows us to calculate 2031 * the correct value for "nr", which means the zero-filled 2032 * part of the page is not copied back to userspace (unless 2033 * another truncate extends the file - this is desired though). 2034 */ 2035 2036 isize = i_size_read(inode); 2037 end_index = (isize - 1) >> PAGE_SHIFT; 2038 if (unlikely(!isize || index > end_index)) { 2039 put_page(page); 2040 goto out; 2041 } 2042 2043 /* nr is the maximum number of bytes to copy from this page */ 2044 nr = PAGE_SIZE; 2045 if (index == end_index) { 2046 nr = ((isize - 1) & ~PAGE_MASK) + 1; 2047 if (nr <= offset) { 2048 put_page(page); 2049 goto out; 2050 } 2051 } 2052 nr = nr - offset; 2053 2054 /* If users can be writing to this page using arbitrary 2055 * virtual addresses, take care about potential aliasing 2056 * before reading the page on the kernel side. 2057 */ 2058 if (mapping_writably_mapped(mapping)) 2059 flush_dcache_page(page); 2060 2061 /* 2062 * When a sequential read accesses a page several times, 2063 * only mark it as accessed the first time. 2064 */ 2065 if (prev_index != index || offset != prev_offset) 2066 mark_page_accessed(page); 2067 prev_index = index; 2068 2069 /* 2070 * Ok, we have the page, and it's up-to-date, so 2071 * now we can copy it to user space... 2072 */ 2073 2074 ret = copy_page_to_iter(page, offset, nr, iter); 2075 offset += ret; 2076 index += offset >> PAGE_SHIFT; 2077 offset &= ~PAGE_MASK; 2078 prev_offset = offset; 2079 2080 put_page(page); 2081 written += ret; 2082 if (!iov_iter_count(iter)) 2083 goto out; 2084 if (ret < nr) { 2085 error = -EFAULT; 2086 goto out; 2087 } 2088 continue; 2089 2090 page_not_up_to_date: 2091 /* Get exclusive access to the page ... */ 2092 error = lock_page_killable(page); 2093 if (unlikely(error)) 2094 goto readpage_error; 2095 2096 page_not_up_to_date_locked: 2097 /* Did it get truncated before we got the lock? */ 2098 if (!page->mapping) { 2099 unlock_page(page); 2100 put_page(page); 2101 continue; 2102 } 2103 2104 /* Did somebody else fill it already? */ 2105 if (PageUptodate(page)) { 2106 unlock_page(page); 2107 goto page_ok; 2108 } 2109 2110 readpage: 2111 /* 2112 * A previous I/O error may have been due to temporary 2113 * failures, eg. multipath errors. 2114 * PG_error will be set again if readpage fails. 2115 */ 2116 ClearPageError(page); 2117 /* Start the actual read. The read will unlock the page. */ 2118 error = mapping->a_ops->readpage(filp, page); 2119 2120 if (unlikely(error)) { 2121 if (error == AOP_TRUNCATED_PAGE) { 2122 put_page(page); 2123 error = 0; 2124 goto find_page; 2125 } 2126 goto readpage_error; 2127 } 2128 2129 if (!PageUptodate(page)) { 2130 error = lock_page_killable(page); 2131 if (unlikely(error)) 2132 goto readpage_error; 2133 if (!PageUptodate(page)) { 2134 if (page->mapping == NULL) { 2135 /* 2136 * invalidate_mapping_pages got it 2137 */ 2138 unlock_page(page); 2139 put_page(page); 2140 goto find_page; 2141 } 2142 unlock_page(page); 2143 shrink_readahead_size_eio(filp, ra); 2144 error = -EIO; 2145 goto readpage_error; 2146 } 2147 unlock_page(page); 2148 } 2149 2150 goto page_ok; 2151 2152 readpage_error: 2153 /* UHHUH! A synchronous read error occurred. Report it */ 2154 put_page(page); 2155 goto out; 2156 2157 no_cached_page: 2158 /* 2159 * Ok, it wasn't cached, so we need to create a new 2160 * page.. 2161 */ 2162 page = page_cache_alloc_cold(mapping); 2163 if (!page) { 2164 error = -ENOMEM; 2165 goto out; 2166 } 2167 error = add_to_page_cache_lru(page, mapping, index, 2168 mapping_gfp_constraint(mapping, GFP_KERNEL)); 2169 if (error) { 2170 put_page(page); 2171 if (error == -EEXIST) { 2172 error = 0; 2173 goto find_page; 2174 } 2175 goto out; 2176 } 2177 goto readpage; 2178 } 2179 2180 would_block: 2181 error = -EAGAIN; 2182 out: 2183 ra->prev_pos = prev_index; 2184 ra->prev_pos <<= PAGE_SHIFT; 2185 ra->prev_pos |= prev_offset; 2186 2187 *ppos = ((loff_t)index << PAGE_SHIFT) + offset; 2188 file_accessed(filp); 2189 return written ? written : error; 2190 } 2191 2192 /** 2193 * generic_file_read_iter - generic filesystem read routine 2194 * @iocb: kernel I/O control block 2195 * @iter: destination for the data read 2196 * 2197 * This is the "read_iter()" routine for all filesystems 2198 * that can use the page cache directly. 2199 */ 2200 ssize_t 2201 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 2202 { 2203 size_t count = iov_iter_count(iter); 2204 ssize_t retval = 0; 2205 2206 if (!count) 2207 goto out; /* skip atime */ 2208 2209 if (iocb->ki_flags & IOCB_DIRECT) { 2210 struct file *file = iocb->ki_filp; 2211 struct address_space *mapping = file->f_mapping; 2212 struct inode *inode = mapping->host; 2213 loff_t size; 2214 2215 size = i_size_read(inode); 2216 if (iocb->ki_flags & IOCB_NOWAIT) { 2217 if (filemap_range_has_page(mapping, iocb->ki_pos, 2218 iocb->ki_pos + count - 1)) 2219 return -EAGAIN; 2220 } else { 2221 retval = filemap_write_and_wait_range(mapping, 2222 iocb->ki_pos, 2223 iocb->ki_pos + count - 1); 2224 if (retval < 0) 2225 goto out; 2226 } 2227 2228 file_accessed(file); 2229 2230 retval = mapping->a_ops->direct_IO(iocb, iter); 2231 if (retval >= 0) { 2232 iocb->ki_pos += retval; 2233 count -= retval; 2234 } 2235 iov_iter_revert(iter, count - iov_iter_count(iter)); 2236 2237 /* 2238 * Btrfs can have a short DIO read if we encounter 2239 * compressed extents, so if there was an error, or if 2240 * we've already read everything we wanted to, or if 2241 * there was a short read because we hit EOF, go ahead 2242 * and return. Otherwise fallthrough to buffered io for 2243 * the rest of the read. Buffered reads will not work for 2244 * DAX files, so don't bother trying. 2245 */ 2246 if (retval < 0 || !count || iocb->ki_pos >= size || 2247 IS_DAX(inode)) 2248 goto out; 2249 } 2250 2251 retval = generic_file_buffered_read(iocb, iter, retval); 2252 out: 2253 return retval; 2254 } 2255 EXPORT_SYMBOL(generic_file_read_iter); 2256 2257 #ifdef CONFIG_MMU 2258 /** 2259 * page_cache_read - adds requested page to the page cache if not already there 2260 * @file: file to read 2261 * @offset: page index 2262 * @gfp_mask: memory allocation flags 2263 * 2264 * This adds the requested page to the page cache if it isn't already there, 2265 * and schedules an I/O to read in its contents from disk. 2266 */ 2267 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask) 2268 { 2269 struct address_space *mapping = file->f_mapping; 2270 struct page *page; 2271 int ret; 2272 2273 do { 2274 page = __page_cache_alloc(gfp_mask|__GFP_COLD); 2275 if (!page) 2276 return -ENOMEM; 2277 2278 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL); 2279 if (ret == 0) 2280 ret = mapping->a_ops->readpage(file, page); 2281 else if (ret == -EEXIST) 2282 ret = 0; /* losing race to add is OK */ 2283 2284 put_page(page); 2285 2286 } while (ret == AOP_TRUNCATED_PAGE); 2287 2288 return ret; 2289 } 2290 2291 #define MMAP_LOTSAMISS (100) 2292 2293 /* 2294 * Synchronous readahead happens when we don't even find 2295 * a page in the page cache at all. 2296 */ 2297 static void do_sync_mmap_readahead(struct vm_area_struct *vma, 2298 struct file_ra_state *ra, 2299 struct file *file, 2300 pgoff_t offset) 2301 { 2302 struct address_space *mapping = file->f_mapping; 2303 2304 /* If we don't want any read-ahead, don't bother */ 2305 if (vma->vm_flags & VM_RAND_READ) 2306 return; 2307 if (!ra->ra_pages) 2308 return; 2309 2310 if (vma->vm_flags & VM_SEQ_READ) { 2311 page_cache_sync_readahead(mapping, ra, file, offset, 2312 ra->ra_pages); 2313 return; 2314 } 2315 2316 /* Avoid banging the cache line if not needed */ 2317 if (ra->mmap_miss < MMAP_LOTSAMISS * 10) 2318 ra->mmap_miss++; 2319 2320 /* 2321 * Do we miss much more than hit in this file? If so, 2322 * stop bothering with read-ahead. It will only hurt. 2323 */ 2324 if (ra->mmap_miss > MMAP_LOTSAMISS) 2325 return; 2326 2327 /* 2328 * mmap read-around 2329 */ 2330 ra->start = max_t(long, 0, offset - ra->ra_pages / 2); 2331 ra->size = ra->ra_pages; 2332 ra->async_size = ra->ra_pages / 4; 2333 ra_submit(ra, mapping, file); 2334 } 2335 2336 /* 2337 * Asynchronous readahead happens when we find the page and PG_readahead, 2338 * so we want to possibly extend the readahead further.. 2339 */ 2340 static void do_async_mmap_readahead(struct vm_area_struct *vma, 2341 struct file_ra_state *ra, 2342 struct file *file, 2343 struct page *page, 2344 pgoff_t offset) 2345 { 2346 struct address_space *mapping = file->f_mapping; 2347 2348 /* If we don't want any read-ahead, don't bother */ 2349 if (vma->vm_flags & VM_RAND_READ) 2350 return; 2351 if (ra->mmap_miss > 0) 2352 ra->mmap_miss--; 2353 if (PageReadahead(page)) 2354 page_cache_async_readahead(mapping, ra, file, 2355 page, offset, ra->ra_pages); 2356 } 2357 2358 /** 2359 * filemap_fault - read in file data for page fault handling 2360 * @vmf: struct vm_fault containing details of the fault 2361 * 2362 * filemap_fault() is invoked via the vma operations vector for a 2363 * mapped memory region to read in file data during a page fault. 2364 * 2365 * The goto's are kind of ugly, but this streamlines the normal case of having 2366 * it in the page cache, and handles the special cases reasonably without 2367 * having a lot of duplicated code. 2368 * 2369 * vma->vm_mm->mmap_sem must be held on entry. 2370 * 2371 * If our return value has VM_FAULT_RETRY set, it's because 2372 * lock_page_or_retry() returned 0. 2373 * The mmap_sem has usually been released in this case. 2374 * See __lock_page_or_retry() for the exception. 2375 * 2376 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem 2377 * has not been released. 2378 * 2379 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. 2380 */ 2381 int filemap_fault(struct vm_fault *vmf) 2382 { 2383 int error; 2384 struct file *file = vmf->vma->vm_file; 2385 struct address_space *mapping = file->f_mapping; 2386 struct file_ra_state *ra = &file->f_ra; 2387 struct inode *inode = mapping->host; 2388 pgoff_t offset = vmf->pgoff; 2389 pgoff_t max_off; 2390 struct page *page; 2391 int ret = 0; 2392 2393 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2394 if (unlikely(offset >= max_off)) 2395 return VM_FAULT_SIGBUS; 2396 2397 /* 2398 * Do we have something in the page cache already? 2399 */ 2400 page = find_get_page(mapping, offset); 2401 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) { 2402 /* 2403 * We found the page, so try async readahead before 2404 * waiting for the lock. 2405 */ 2406 do_async_mmap_readahead(vmf->vma, ra, file, page, offset); 2407 } else if (!page) { 2408 /* No page in the page cache at all */ 2409 do_sync_mmap_readahead(vmf->vma, ra, file, offset); 2410 count_vm_event(PGMAJFAULT); 2411 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); 2412 ret = VM_FAULT_MAJOR; 2413 retry_find: 2414 page = find_get_page(mapping, offset); 2415 if (!page) 2416 goto no_cached_page; 2417 } 2418 2419 if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) { 2420 put_page(page); 2421 return ret | VM_FAULT_RETRY; 2422 } 2423 2424 /* Did it get truncated? */ 2425 if (unlikely(page->mapping != mapping)) { 2426 unlock_page(page); 2427 put_page(page); 2428 goto retry_find; 2429 } 2430 VM_BUG_ON_PAGE(page->index != offset, page); 2431 2432 /* 2433 * We have a locked page in the page cache, now we need to check 2434 * that it's up-to-date. If not, it is going to be due to an error. 2435 */ 2436 if (unlikely(!PageUptodate(page))) 2437 goto page_not_uptodate; 2438 2439 /* 2440 * Found the page and have a reference on it. 2441 * We must recheck i_size under page lock. 2442 */ 2443 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2444 if (unlikely(offset >= max_off)) { 2445 unlock_page(page); 2446 put_page(page); 2447 return VM_FAULT_SIGBUS; 2448 } 2449 2450 vmf->page = page; 2451 return ret | VM_FAULT_LOCKED; 2452 2453 no_cached_page: 2454 /* 2455 * We're only likely to ever get here if MADV_RANDOM is in 2456 * effect. 2457 */ 2458 error = page_cache_read(file, offset, vmf->gfp_mask); 2459 2460 /* 2461 * The page we want has now been added to the page cache. 2462 * In the unlikely event that someone removed it in the 2463 * meantime, we'll just come back here and read it again. 2464 */ 2465 if (error >= 0) 2466 goto retry_find; 2467 2468 /* 2469 * An error return from page_cache_read can result if the 2470 * system is low on memory, or a problem occurs while trying 2471 * to schedule I/O. 2472 */ 2473 if (error == -ENOMEM) 2474 return VM_FAULT_OOM; 2475 return VM_FAULT_SIGBUS; 2476 2477 page_not_uptodate: 2478 /* 2479 * Umm, take care of errors if the page isn't up-to-date. 2480 * Try to re-read it _once_. We do this synchronously, 2481 * because there really aren't any performance issues here 2482 * and we need to check for errors. 2483 */ 2484 ClearPageError(page); 2485 error = mapping->a_ops->readpage(file, page); 2486 if (!error) { 2487 wait_on_page_locked(page); 2488 if (!PageUptodate(page)) 2489 error = -EIO; 2490 } 2491 put_page(page); 2492 2493 if (!error || error == AOP_TRUNCATED_PAGE) 2494 goto retry_find; 2495 2496 /* Things didn't work out. Return zero to tell the mm layer so. */ 2497 shrink_readahead_size_eio(file, ra); 2498 return VM_FAULT_SIGBUS; 2499 } 2500 EXPORT_SYMBOL(filemap_fault); 2501 2502 void filemap_map_pages(struct vm_fault *vmf, 2503 pgoff_t start_pgoff, pgoff_t end_pgoff) 2504 { 2505 struct radix_tree_iter iter; 2506 void **slot; 2507 struct file *file = vmf->vma->vm_file; 2508 struct address_space *mapping = file->f_mapping; 2509 pgoff_t last_pgoff = start_pgoff; 2510 unsigned long max_idx; 2511 struct page *head, *page; 2512 2513 rcu_read_lock(); 2514 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, 2515 start_pgoff) { 2516 if (iter.index > end_pgoff) 2517 break; 2518 repeat: 2519 page = radix_tree_deref_slot(slot); 2520 if (unlikely(!page)) 2521 goto next; 2522 if (radix_tree_exception(page)) { 2523 if (radix_tree_deref_retry(page)) { 2524 slot = radix_tree_iter_retry(&iter); 2525 continue; 2526 } 2527 goto next; 2528 } 2529 2530 head = compound_head(page); 2531 if (!page_cache_get_speculative(head)) 2532 goto repeat; 2533 2534 /* The page was split under us? */ 2535 if (compound_head(page) != head) { 2536 put_page(head); 2537 goto repeat; 2538 } 2539 2540 /* Has the page moved? */ 2541 if (unlikely(page != *slot)) { 2542 put_page(head); 2543 goto repeat; 2544 } 2545 2546 if (!PageUptodate(page) || 2547 PageReadahead(page) || 2548 PageHWPoison(page)) 2549 goto skip; 2550 if (!trylock_page(page)) 2551 goto skip; 2552 2553 if (page->mapping != mapping || !PageUptodate(page)) 2554 goto unlock; 2555 2556 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 2557 if (page->index >= max_idx) 2558 goto unlock; 2559 2560 if (file->f_ra.mmap_miss > 0) 2561 file->f_ra.mmap_miss--; 2562 2563 vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT; 2564 if (vmf->pte) 2565 vmf->pte += iter.index - last_pgoff; 2566 last_pgoff = iter.index; 2567 if (alloc_set_pte(vmf, NULL, page)) 2568 goto unlock; 2569 unlock_page(page); 2570 goto next; 2571 unlock: 2572 unlock_page(page); 2573 skip: 2574 put_page(page); 2575 next: 2576 /* Huge page is mapped? No need to proceed. */ 2577 if (pmd_trans_huge(*vmf->pmd)) 2578 break; 2579 if (iter.index == end_pgoff) 2580 break; 2581 } 2582 rcu_read_unlock(); 2583 } 2584 EXPORT_SYMBOL(filemap_map_pages); 2585 2586 int filemap_page_mkwrite(struct vm_fault *vmf) 2587 { 2588 struct page *page = vmf->page; 2589 struct inode *inode = file_inode(vmf->vma->vm_file); 2590 int ret = VM_FAULT_LOCKED; 2591 2592 sb_start_pagefault(inode->i_sb); 2593 file_update_time(vmf->vma->vm_file); 2594 lock_page(page); 2595 if (page->mapping != inode->i_mapping) { 2596 unlock_page(page); 2597 ret = VM_FAULT_NOPAGE; 2598 goto out; 2599 } 2600 /* 2601 * We mark the page dirty already here so that when freeze is in 2602 * progress, we are guaranteed that writeback during freezing will 2603 * see the dirty page and writeprotect it again. 2604 */ 2605 set_page_dirty(page); 2606 wait_for_stable_page(page); 2607 out: 2608 sb_end_pagefault(inode->i_sb); 2609 return ret; 2610 } 2611 EXPORT_SYMBOL(filemap_page_mkwrite); 2612 2613 const struct vm_operations_struct generic_file_vm_ops = { 2614 .fault = filemap_fault, 2615 .map_pages = filemap_map_pages, 2616 .page_mkwrite = filemap_page_mkwrite, 2617 }; 2618 2619 /* This is used for a general mmap of a disk file */ 2620 2621 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 2622 { 2623 struct address_space *mapping = file->f_mapping; 2624 2625 if (!mapping->a_ops->readpage) 2626 return -ENOEXEC; 2627 file_accessed(file); 2628 vma->vm_ops = &generic_file_vm_ops; 2629 return 0; 2630 } 2631 2632 /* 2633 * This is for filesystems which do not implement ->writepage. 2634 */ 2635 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 2636 { 2637 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 2638 return -EINVAL; 2639 return generic_file_mmap(file, vma); 2640 } 2641 #else 2642 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 2643 { 2644 return -ENOSYS; 2645 } 2646 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) 2647 { 2648 return -ENOSYS; 2649 } 2650 #endif /* CONFIG_MMU */ 2651 2652 EXPORT_SYMBOL(generic_file_mmap); 2653 EXPORT_SYMBOL(generic_file_readonly_mmap); 2654 2655 static struct page *wait_on_page_read(struct page *page) 2656 { 2657 if (!IS_ERR(page)) { 2658 wait_on_page_locked(page); 2659 if (!PageUptodate(page)) { 2660 put_page(page); 2661 page = ERR_PTR(-EIO); 2662 } 2663 } 2664 return page; 2665 } 2666 2667 static struct page *do_read_cache_page(struct address_space *mapping, 2668 pgoff_t index, 2669 int (*filler)(void *, struct page *), 2670 void *data, 2671 gfp_t gfp) 2672 { 2673 struct page *page; 2674 int err; 2675 repeat: 2676 page = find_get_page(mapping, index); 2677 if (!page) { 2678 page = __page_cache_alloc(gfp | __GFP_COLD); 2679 if (!page) 2680 return ERR_PTR(-ENOMEM); 2681 err = add_to_page_cache_lru(page, mapping, index, gfp); 2682 if (unlikely(err)) { 2683 put_page(page); 2684 if (err == -EEXIST) 2685 goto repeat; 2686 /* Presumably ENOMEM for radix tree node */ 2687 return ERR_PTR(err); 2688 } 2689 2690 filler: 2691 err = filler(data, page); 2692 if (err < 0) { 2693 put_page(page); 2694 return ERR_PTR(err); 2695 } 2696 2697 page = wait_on_page_read(page); 2698 if (IS_ERR(page)) 2699 return page; 2700 goto out; 2701 } 2702 if (PageUptodate(page)) 2703 goto out; 2704 2705 /* 2706 * Page is not up to date and may be locked due one of the following 2707 * case a: Page is being filled and the page lock is held 2708 * case b: Read/write error clearing the page uptodate status 2709 * case c: Truncation in progress (page locked) 2710 * case d: Reclaim in progress 2711 * 2712 * Case a, the page will be up to date when the page is unlocked. 2713 * There is no need to serialise on the page lock here as the page 2714 * is pinned so the lock gives no additional protection. Even if the 2715 * the page is truncated, the data is still valid if PageUptodate as 2716 * it's a race vs truncate race. 2717 * Case b, the page will not be up to date 2718 * Case c, the page may be truncated but in itself, the data may still 2719 * be valid after IO completes as it's a read vs truncate race. The 2720 * operation must restart if the page is not uptodate on unlock but 2721 * otherwise serialising on page lock to stabilise the mapping gives 2722 * no additional guarantees to the caller as the page lock is 2723 * released before return. 2724 * Case d, similar to truncation. If reclaim holds the page lock, it 2725 * will be a race with remove_mapping that determines if the mapping 2726 * is valid on unlock but otherwise the data is valid and there is 2727 * no need to serialise with page lock. 2728 * 2729 * As the page lock gives no additional guarantee, we optimistically 2730 * wait on the page to be unlocked and check if it's up to date and 2731 * use the page if it is. Otherwise, the page lock is required to 2732 * distinguish between the different cases. The motivation is that we 2733 * avoid spurious serialisations and wakeups when multiple processes 2734 * wait on the same page for IO to complete. 2735 */ 2736 wait_on_page_locked(page); 2737 if (PageUptodate(page)) 2738 goto out; 2739 2740 /* Distinguish between all the cases under the safety of the lock */ 2741 lock_page(page); 2742 2743 /* Case c or d, restart the operation */ 2744 if (!page->mapping) { 2745 unlock_page(page); 2746 put_page(page); 2747 goto repeat; 2748 } 2749 2750 /* Someone else locked and filled the page in a very small window */ 2751 if (PageUptodate(page)) { 2752 unlock_page(page); 2753 goto out; 2754 } 2755 goto filler; 2756 2757 out: 2758 mark_page_accessed(page); 2759 return page; 2760 } 2761 2762 /** 2763 * read_cache_page - read into page cache, fill it if needed 2764 * @mapping: the page's address_space 2765 * @index: the page index 2766 * @filler: function to perform the read 2767 * @data: first arg to filler(data, page) function, often left as NULL 2768 * 2769 * Read into the page cache. If a page already exists, and PageUptodate() is 2770 * not set, try to fill the page and wait for it to become unlocked. 2771 * 2772 * If the page does not get brought uptodate, return -EIO. 2773 */ 2774 struct page *read_cache_page(struct address_space *mapping, 2775 pgoff_t index, 2776 int (*filler)(void *, struct page *), 2777 void *data) 2778 { 2779 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping)); 2780 } 2781 EXPORT_SYMBOL(read_cache_page); 2782 2783 /** 2784 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 2785 * @mapping: the page's address_space 2786 * @index: the page index 2787 * @gfp: the page allocator flags to use if allocating 2788 * 2789 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 2790 * any new page allocations done using the specified allocation flags. 2791 * 2792 * If the page does not get brought uptodate, return -EIO. 2793 */ 2794 struct page *read_cache_page_gfp(struct address_space *mapping, 2795 pgoff_t index, 2796 gfp_t gfp) 2797 { 2798 filler_t *filler = (filler_t *)mapping->a_ops->readpage; 2799 2800 return do_read_cache_page(mapping, index, filler, NULL, gfp); 2801 } 2802 EXPORT_SYMBOL(read_cache_page_gfp); 2803 2804 /* 2805 * Performs necessary checks before doing a write 2806 * 2807 * Can adjust writing position or amount of bytes to write. 2808 * Returns appropriate error code that caller should return or 2809 * zero in case that write should be allowed. 2810 */ 2811 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from) 2812 { 2813 struct file *file = iocb->ki_filp; 2814 struct inode *inode = file->f_mapping->host; 2815 unsigned long limit = rlimit(RLIMIT_FSIZE); 2816 loff_t pos; 2817 2818 if (!iov_iter_count(from)) 2819 return 0; 2820 2821 /* FIXME: this is for backwards compatibility with 2.4 */ 2822 if (iocb->ki_flags & IOCB_APPEND) 2823 iocb->ki_pos = i_size_read(inode); 2824 2825 pos = iocb->ki_pos; 2826 2827 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT)) 2828 return -EINVAL; 2829 2830 if (limit != RLIM_INFINITY) { 2831 if (iocb->ki_pos >= limit) { 2832 send_sig(SIGXFSZ, current, 0); 2833 return -EFBIG; 2834 } 2835 iov_iter_truncate(from, limit - (unsigned long)pos); 2836 } 2837 2838 /* 2839 * LFS rule 2840 */ 2841 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS && 2842 !(file->f_flags & O_LARGEFILE))) { 2843 if (pos >= MAX_NON_LFS) 2844 return -EFBIG; 2845 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos); 2846 } 2847 2848 /* 2849 * Are we about to exceed the fs block limit ? 2850 * 2851 * If we have written data it becomes a short write. If we have 2852 * exceeded without writing data we send a signal and return EFBIG. 2853 * Linus frestrict idea will clean these up nicely.. 2854 */ 2855 if (unlikely(pos >= inode->i_sb->s_maxbytes)) 2856 return -EFBIG; 2857 2858 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos); 2859 return iov_iter_count(from); 2860 } 2861 EXPORT_SYMBOL(generic_write_checks); 2862 2863 int pagecache_write_begin(struct file *file, struct address_space *mapping, 2864 loff_t pos, unsigned len, unsigned flags, 2865 struct page **pagep, void **fsdata) 2866 { 2867 const struct address_space_operations *aops = mapping->a_ops; 2868 2869 return aops->write_begin(file, mapping, pos, len, flags, 2870 pagep, fsdata); 2871 } 2872 EXPORT_SYMBOL(pagecache_write_begin); 2873 2874 int pagecache_write_end(struct file *file, struct address_space *mapping, 2875 loff_t pos, unsigned len, unsigned copied, 2876 struct page *page, void *fsdata) 2877 { 2878 const struct address_space_operations *aops = mapping->a_ops; 2879 2880 return aops->write_end(file, mapping, pos, len, copied, page, fsdata); 2881 } 2882 EXPORT_SYMBOL(pagecache_write_end); 2883 2884 ssize_t 2885 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) 2886 { 2887 struct file *file = iocb->ki_filp; 2888 struct address_space *mapping = file->f_mapping; 2889 struct inode *inode = mapping->host; 2890 loff_t pos = iocb->ki_pos; 2891 ssize_t written; 2892 size_t write_len; 2893 pgoff_t end; 2894 2895 write_len = iov_iter_count(from); 2896 end = (pos + write_len - 1) >> PAGE_SHIFT; 2897 2898 if (iocb->ki_flags & IOCB_NOWAIT) { 2899 /* If there are pages to writeback, return */ 2900 if (filemap_range_has_page(inode->i_mapping, pos, 2901 pos + iov_iter_count(from))) 2902 return -EAGAIN; 2903 } else { 2904 written = filemap_write_and_wait_range(mapping, pos, 2905 pos + write_len - 1); 2906 if (written) 2907 goto out; 2908 } 2909 2910 /* 2911 * After a write we want buffered reads to be sure to go to disk to get 2912 * the new data. We invalidate clean cached page from the region we're 2913 * about to write. We do this *before* the write so that we can return 2914 * without clobbering -EIOCBQUEUED from ->direct_IO(). 2915 */ 2916 written = invalidate_inode_pages2_range(mapping, 2917 pos >> PAGE_SHIFT, end); 2918 /* 2919 * If a page can not be invalidated, return 0 to fall back 2920 * to buffered write. 2921 */ 2922 if (written) { 2923 if (written == -EBUSY) 2924 return 0; 2925 goto out; 2926 } 2927 2928 written = mapping->a_ops->direct_IO(iocb, from); 2929 2930 /* 2931 * Finally, try again to invalidate clean pages which might have been 2932 * cached by non-direct readahead, or faulted in by get_user_pages() 2933 * if the source of the write was an mmap'ed region of the file 2934 * we're writing. Either one is a pretty crazy thing to do, 2935 * so we don't support it 100%. If this invalidation 2936 * fails, tough, the write still worked... 2937 * 2938 * Most of the time we do not need this since dio_complete() will do 2939 * the invalidation for us. However there are some file systems that 2940 * do not end up with dio_complete() being called, so let's not break 2941 * them by removing it completely 2942 */ 2943 if (mapping->nrpages) 2944 invalidate_inode_pages2_range(mapping, 2945 pos >> PAGE_SHIFT, end); 2946 2947 if (written > 0) { 2948 pos += written; 2949 write_len -= written; 2950 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 2951 i_size_write(inode, pos); 2952 mark_inode_dirty(inode); 2953 } 2954 iocb->ki_pos = pos; 2955 } 2956 iov_iter_revert(from, write_len - iov_iter_count(from)); 2957 out: 2958 return written; 2959 } 2960 EXPORT_SYMBOL(generic_file_direct_write); 2961 2962 /* 2963 * Find or create a page at the given pagecache position. Return the locked 2964 * page. This function is specifically for buffered writes. 2965 */ 2966 struct page *grab_cache_page_write_begin(struct address_space *mapping, 2967 pgoff_t index, unsigned flags) 2968 { 2969 struct page *page; 2970 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT; 2971 2972 if (flags & AOP_FLAG_NOFS) 2973 fgp_flags |= FGP_NOFS; 2974 2975 page = pagecache_get_page(mapping, index, fgp_flags, 2976 mapping_gfp_mask(mapping)); 2977 if (page) 2978 wait_for_stable_page(page); 2979 2980 return page; 2981 } 2982 EXPORT_SYMBOL(grab_cache_page_write_begin); 2983 2984 ssize_t generic_perform_write(struct file *file, 2985 struct iov_iter *i, loff_t pos) 2986 { 2987 struct address_space *mapping = file->f_mapping; 2988 const struct address_space_operations *a_ops = mapping->a_ops; 2989 long status = 0; 2990 ssize_t written = 0; 2991 unsigned int flags = 0; 2992 2993 do { 2994 struct page *page; 2995 unsigned long offset; /* Offset into pagecache page */ 2996 unsigned long bytes; /* Bytes to write to page */ 2997 size_t copied; /* Bytes copied from user */ 2998 void *fsdata; 2999 3000 offset = (pos & (PAGE_SIZE - 1)); 3001 bytes = min_t(unsigned long, PAGE_SIZE - offset, 3002 iov_iter_count(i)); 3003 3004 again: 3005 /* 3006 * Bring in the user page that we will copy from _first_. 3007 * Otherwise there's a nasty deadlock on copying from the 3008 * same page as we're writing to, without it being marked 3009 * up-to-date. 3010 * 3011 * Not only is this an optimisation, but it is also required 3012 * to check that the address is actually valid, when atomic 3013 * usercopies are used, below. 3014 */ 3015 if (unlikely(iov_iter_fault_in_readable(i, bytes))) { 3016 status = -EFAULT; 3017 break; 3018 } 3019 3020 if (fatal_signal_pending(current)) { 3021 status = -EINTR; 3022 break; 3023 } 3024 3025 status = a_ops->write_begin(file, mapping, pos, bytes, flags, 3026 &page, &fsdata); 3027 if (unlikely(status < 0)) 3028 break; 3029 3030 if (mapping_writably_mapped(mapping)) 3031 flush_dcache_page(page); 3032 3033 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); 3034 flush_dcache_page(page); 3035 3036 status = a_ops->write_end(file, mapping, pos, bytes, copied, 3037 page, fsdata); 3038 if (unlikely(status < 0)) 3039 break; 3040 copied = status; 3041 3042 cond_resched(); 3043 3044 iov_iter_advance(i, copied); 3045 if (unlikely(copied == 0)) { 3046 /* 3047 * If we were unable to copy any data at all, we must 3048 * fall back to a single segment length write. 3049 * 3050 * If we didn't fallback here, we could livelock 3051 * because not all segments in the iov can be copied at 3052 * once without a pagefault. 3053 */ 3054 bytes = min_t(unsigned long, PAGE_SIZE - offset, 3055 iov_iter_single_seg_count(i)); 3056 goto again; 3057 } 3058 pos += copied; 3059 written += copied; 3060 3061 balance_dirty_pages_ratelimited(mapping); 3062 } while (iov_iter_count(i)); 3063 3064 return written ? written : status; 3065 } 3066 EXPORT_SYMBOL(generic_perform_write); 3067 3068 /** 3069 * __generic_file_write_iter - write data to a file 3070 * @iocb: IO state structure (file, offset, etc.) 3071 * @from: iov_iter with data to write 3072 * 3073 * This function does all the work needed for actually writing data to a 3074 * file. It does all basic checks, removes SUID from the file, updates 3075 * modification times and calls proper subroutines depending on whether we 3076 * do direct IO or a standard buffered write. 3077 * 3078 * It expects i_mutex to be grabbed unless we work on a block device or similar 3079 * object which does not need locking at all. 3080 * 3081 * This function does *not* take care of syncing data in case of O_SYNC write. 3082 * A caller has to handle it. This is mainly due to the fact that we want to 3083 * avoid syncing under i_mutex. 3084 */ 3085 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3086 { 3087 struct file *file = iocb->ki_filp; 3088 struct address_space * mapping = file->f_mapping; 3089 struct inode *inode = mapping->host; 3090 ssize_t written = 0; 3091 ssize_t err; 3092 ssize_t status; 3093 3094 /* We can write back this queue in page reclaim */ 3095 current->backing_dev_info = inode_to_bdi(inode); 3096 err = file_remove_privs(file); 3097 if (err) 3098 goto out; 3099 3100 err = file_update_time(file); 3101 if (err) 3102 goto out; 3103 3104 if (iocb->ki_flags & IOCB_DIRECT) { 3105 loff_t pos, endbyte; 3106 3107 written = generic_file_direct_write(iocb, from); 3108 /* 3109 * If the write stopped short of completing, fall back to 3110 * buffered writes. Some filesystems do this for writes to 3111 * holes, for example. For DAX files, a buffered write will 3112 * not succeed (even if it did, DAX does not handle dirty 3113 * page-cache pages correctly). 3114 */ 3115 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode)) 3116 goto out; 3117 3118 status = generic_perform_write(file, from, pos = iocb->ki_pos); 3119 /* 3120 * If generic_perform_write() returned a synchronous error 3121 * then we want to return the number of bytes which were 3122 * direct-written, or the error code if that was zero. Note 3123 * that this differs from normal direct-io semantics, which 3124 * will return -EFOO even if some bytes were written. 3125 */ 3126 if (unlikely(status < 0)) { 3127 err = status; 3128 goto out; 3129 } 3130 /* 3131 * We need to ensure that the page cache pages are written to 3132 * disk and invalidated to preserve the expected O_DIRECT 3133 * semantics. 3134 */ 3135 endbyte = pos + status - 1; 3136 err = filemap_write_and_wait_range(mapping, pos, endbyte); 3137 if (err == 0) { 3138 iocb->ki_pos = endbyte + 1; 3139 written += status; 3140 invalidate_mapping_pages(mapping, 3141 pos >> PAGE_SHIFT, 3142 endbyte >> PAGE_SHIFT); 3143 } else { 3144 /* 3145 * We don't know how much we wrote, so just return 3146 * the number of bytes which were direct-written 3147 */ 3148 } 3149 } else { 3150 written = generic_perform_write(file, from, iocb->ki_pos); 3151 if (likely(written > 0)) 3152 iocb->ki_pos += written; 3153 } 3154 out: 3155 current->backing_dev_info = NULL; 3156 return written ? written : err; 3157 } 3158 EXPORT_SYMBOL(__generic_file_write_iter); 3159 3160 /** 3161 * generic_file_write_iter - write data to a file 3162 * @iocb: IO state structure 3163 * @from: iov_iter with data to write 3164 * 3165 * This is a wrapper around __generic_file_write_iter() to be used by most 3166 * filesystems. It takes care of syncing the file in case of O_SYNC file 3167 * and acquires i_mutex as needed. 3168 */ 3169 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3170 { 3171 struct file *file = iocb->ki_filp; 3172 struct inode *inode = file->f_mapping->host; 3173 ssize_t ret; 3174 3175 inode_lock(inode); 3176 ret = generic_write_checks(iocb, from); 3177 if (ret > 0) 3178 ret = __generic_file_write_iter(iocb, from); 3179 inode_unlock(inode); 3180 3181 if (ret > 0) 3182 ret = generic_write_sync(iocb, ret); 3183 return ret; 3184 } 3185 EXPORT_SYMBOL(generic_file_write_iter); 3186 3187 /** 3188 * try_to_release_page() - release old fs-specific metadata on a page 3189 * 3190 * @page: the page which the kernel is trying to free 3191 * @gfp_mask: memory allocation flags (and I/O mode) 3192 * 3193 * The address_space is to try to release any data against the page 3194 * (presumably at page->private). If the release was successful, return '1'. 3195 * Otherwise return zero. 3196 * 3197 * This may also be called if PG_fscache is set on a page, indicating that the 3198 * page is known to the local caching routines. 3199 * 3200 * The @gfp_mask argument specifies whether I/O may be performed to release 3201 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS). 3202 * 3203 */ 3204 int try_to_release_page(struct page *page, gfp_t gfp_mask) 3205 { 3206 struct address_space * const mapping = page->mapping; 3207 3208 BUG_ON(!PageLocked(page)); 3209 if (PageWriteback(page)) 3210 return 0; 3211 3212 if (mapping && mapping->a_ops->releasepage) 3213 return mapping->a_ops->releasepage(page, gfp_mask); 3214 return try_to_free_buffers(page); 3215 } 3216 3217 EXPORT_SYMBOL(try_to_release_page); 3218