1 /* 2 * linux/mm/filemap.c 3 * 4 * Copyright (C) 1994-1999 Linus Torvalds 5 */ 6 7 /* 8 * This file handles the generic file mmap semantics used by 9 * most "normal" filesystems (but you don't /have/ to use this: 10 * the NFS filesystem used to do this differently, for example) 11 */ 12 #include <linux/export.h> 13 #include <linux/compiler.h> 14 #include <linux/dax.h> 15 #include <linux/fs.h> 16 #include <linux/sched/signal.h> 17 #include <linux/uaccess.h> 18 #include <linux/capability.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/gfp.h> 21 #include <linux/mm.h> 22 #include <linux/swap.h> 23 #include <linux/mman.h> 24 #include <linux/pagemap.h> 25 #include <linux/file.h> 26 #include <linux/uio.h> 27 #include <linux/hash.h> 28 #include <linux/writeback.h> 29 #include <linux/backing-dev.h> 30 #include <linux/pagevec.h> 31 #include <linux/blkdev.h> 32 #include <linux/security.h> 33 #include <linux/cpuset.h> 34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */ 35 #include <linux/hugetlb.h> 36 #include <linux/memcontrol.h> 37 #include <linux/cleancache.h> 38 #include <linux/rmap.h> 39 #include "internal.h" 40 41 #define CREATE_TRACE_POINTS 42 #include <trace/events/filemap.h> 43 44 /* 45 * FIXME: remove all knowledge of the buffer layer from the core VM 46 */ 47 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 48 49 #include <asm/mman.h> 50 51 /* 52 * Shared mappings implemented 30.11.1994. It's not fully working yet, 53 * though. 54 * 55 * Shared mappings now work. 15.8.1995 Bruno. 56 * 57 * finished 'unifying' the page and buffer cache and SMP-threaded the 58 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 59 * 60 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 61 */ 62 63 /* 64 * Lock ordering: 65 * 66 * ->i_mmap_rwsem (truncate_pagecache) 67 * ->private_lock (__free_pte->__set_page_dirty_buffers) 68 * ->swap_lock (exclusive_swap_page, others) 69 * ->mapping->tree_lock 70 * 71 * ->i_mutex 72 * ->i_mmap_rwsem (truncate->unmap_mapping_range) 73 * 74 * ->mmap_sem 75 * ->i_mmap_rwsem 76 * ->page_table_lock or pte_lock (various, mainly in memory.c) 77 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock) 78 * 79 * ->mmap_sem 80 * ->lock_page (access_process_vm) 81 * 82 * ->i_mutex (generic_perform_write) 83 * ->mmap_sem (fault_in_pages_readable->do_page_fault) 84 * 85 * bdi->wb.list_lock 86 * sb_lock (fs/fs-writeback.c) 87 * ->mapping->tree_lock (__sync_single_inode) 88 * 89 * ->i_mmap_rwsem 90 * ->anon_vma.lock (vma_adjust) 91 * 92 * ->anon_vma.lock 93 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 94 * 95 * ->page_table_lock or pte_lock 96 * ->swap_lock (try_to_unmap_one) 97 * ->private_lock (try_to_unmap_one) 98 * ->tree_lock (try_to_unmap_one) 99 * ->zone_lru_lock(zone) (follow_page->mark_page_accessed) 100 * ->zone_lru_lock(zone) (check_pte_range->isolate_lru_page) 101 * ->private_lock (page_remove_rmap->set_page_dirty) 102 * ->tree_lock (page_remove_rmap->set_page_dirty) 103 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty) 104 * ->inode->i_lock (page_remove_rmap->set_page_dirty) 105 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg) 106 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 107 * ->inode->i_lock (zap_pte_range->set_page_dirty) 108 * ->private_lock (zap_pte_range->__set_page_dirty_buffers) 109 * 110 * ->i_mmap_rwsem 111 * ->tasklist_lock (memory_failure, collect_procs_ao) 112 */ 113 114 static int page_cache_tree_insert(struct address_space *mapping, 115 struct page *page, void **shadowp) 116 { 117 struct radix_tree_node *node; 118 void **slot; 119 int error; 120 121 error = __radix_tree_create(&mapping->page_tree, page->index, 0, 122 &node, &slot); 123 if (error) 124 return error; 125 if (*slot) { 126 void *p; 127 128 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock); 129 if (!radix_tree_exceptional_entry(p)) 130 return -EEXIST; 131 132 mapping->nrexceptional--; 133 if (shadowp) 134 *shadowp = p; 135 } 136 __radix_tree_replace(&mapping->page_tree, node, slot, page, 137 workingset_update_node, mapping); 138 mapping->nrpages++; 139 return 0; 140 } 141 142 static void page_cache_tree_delete(struct address_space *mapping, 143 struct page *page, void *shadow) 144 { 145 int i, nr; 146 147 /* hugetlb pages are represented by one entry in the radix tree */ 148 nr = PageHuge(page) ? 1 : hpage_nr_pages(page); 149 150 VM_BUG_ON_PAGE(!PageLocked(page), page); 151 VM_BUG_ON_PAGE(PageTail(page), page); 152 VM_BUG_ON_PAGE(nr != 1 && shadow, page); 153 154 for (i = 0; i < nr; i++) { 155 struct radix_tree_node *node; 156 void **slot; 157 158 __radix_tree_lookup(&mapping->page_tree, page->index + i, 159 &node, &slot); 160 161 VM_BUG_ON_PAGE(!node && nr != 1, page); 162 163 radix_tree_clear_tags(&mapping->page_tree, node, slot); 164 __radix_tree_replace(&mapping->page_tree, node, slot, shadow, 165 workingset_update_node, mapping); 166 } 167 168 if (shadow) { 169 mapping->nrexceptional += nr; 170 /* 171 * Make sure the nrexceptional update is committed before 172 * the nrpages update so that final truncate racing 173 * with reclaim does not see both counters 0 at the 174 * same time and miss a shadow entry. 175 */ 176 smp_wmb(); 177 } 178 mapping->nrpages -= nr; 179 } 180 181 /* 182 * Delete a page from the page cache and free it. Caller has to make 183 * sure the page is locked and that nobody else uses it - or that usage 184 * is safe. The caller must hold the mapping's tree_lock. 185 */ 186 void __delete_from_page_cache(struct page *page, void *shadow) 187 { 188 struct address_space *mapping = page->mapping; 189 int nr = hpage_nr_pages(page); 190 191 trace_mm_filemap_delete_from_page_cache(page); 192 /* 193 * if we're uptodate, flush out into the cleancache, otherwise 194 * invalidate any existing cleancache entries. We can't leave 195 * stale data around in the cleancache once our page is gone 196 */ 197 if (PageUptodate(page) && PageMappedToDisk(page)) 198 cleancache_put_page(page); 199 else 200 cleancache_invalidate_page(mapping, page); 201 202 VM_BUG_ON_PAGE(PageTail(page), page); 203 VM_BUG_ON_PAGE(page_mapped(page), page); 204 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) { 205 int mapcount; 206 207 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n", 208 current->comm, page_to_pfn(page)); 209 dump_page(page, "still mapped when deleted"); 210 dump_stack(); 211 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 212 213 mapcount = page_mapcount(page); 214 if (mapping_exiting(mapping) && 215 page_count(page) >= mapcount + 2) { 216 /* 217 * All vmas have already been torn down, so it's 218 * a good bet that actually the page is unmapped, 219 * and we'd prefer not to leak it: if we're wrong, 220 * some other bad page check should catch it later. 221 */ 222 page_mapcount_reset(page); 223 page_ref_sub(page, mapcount); 224 } 225 } 226 227 page_cache_tree_delete(mapping, page, shadow); 228 229 page->mapping = NULL; 230 /* Leave page->index set: truncation lookup relies upon it */ 231 232 /* hugetlb pages do not participate in page cache accounting. */ 233 if (PageHuge(page)) 234 return; 235 236 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr); 237 if (PageSwapBacked(page)) { 238 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr); 239 if (PageTransHuge(page)) 240 __dec_node_page_state(page, NR_SHMEM_THPS); 241 } else { 242 VM_BUG_ON_PAGE(PageTransHuge(page), page); 243 } 244 245 /* 246 * At this point page must be either written or cleaned by truncate. 247 * Dirty page here signals a bug and loss of unwritten data. 248 * 249 * This fixes dirty accounting after removing the page entirely but 250 * leaves PageDirty set: it has no effect for truncated page and 251 * anyway will be cleared before returning page into buddy allocator. 252 */ 253 if (WARN_ON_ONCE(PageDirty(page))) 254 account_page_cleaned(page, mapping, inode_to_wb(mapping->host)); 255 } 256 257 /** 258 * delete_from_page_cache - delete page from page cache 259 * @page: the page which the kernel is trying to remove from page cache 260 * 261 * This must be called only on pages that have been verified to be in the page 262 * cache and locked. It will never put the page into the free list, the caller 263 * has a reference on the page. 264 */ 265 void delete_from_page_cache(struct page *page) 266 { 267 struct address_space *mapping = page_mapping(page); 268 unsigned long flags; 269 void (*freepage)(struct page *); 270 271 BUG_ON(!PageLocked(page)); 272 273 freepage = mapping->a_ops->freepage; 274 275 spin_lock_irqsave(&mapping->tree_lock, flags); 276 __delete_from_page_cache(page, NULL); 277 spin_unlock_irqrestore(&mapping->tree_lock, flags); 278 279 if (freepage) 280 freepage(page); 281 282 if (PageTransHuge(page) && !PageHuge(page)) { 283 page_ref_sub(page, HPAGE_PMD_NR); 284 VM_BUG_ON_PAGE(page_count(page) <= 0, page); 285 } else { 286 put_page(page); 287 } 288 } 289 EXPORT_SYMBOL(delete_from_page_cache); 290 291 int filemap_check_errors(struct address_space *mapping) 292 { 293 int ret = 0; 294 /* Check for outstanding write errors */ 295 if (test_bit(AS_ENOSPC, &mapping->flags) && 296 test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 297 ret = -ENOSPC; 298 if (test_bit(AS_EIO, &mapping->flags) && 299 test_and_clear_bit(AS_EIO, &mapping->flags)) 300 ret = -EIO; 301 return ret; 302 } 303 EXPORT_SYMBOL(filemap_check_errors); 304 305 static int filemap_check_and_keep_errors(struct address_space *mapping) 306 { 307 /* Check for outstanding write errors */ 308 if (test_bit(AS_EIO, &mapping->flags)) 309 return -EIO; 310 if (test_bit(AS_ENOSPC, &mapping->flags)) 311 return -ENOSPC; 312 return 0; 313 } 314 315 /** 316 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 317 * @mapping: address space structure to write 318 * @start: offset in bytes where the range starts 319 * @end: offset in bytes where the range ends (inclusive) 320 * @sync_mode: enable synchronous operation 321 * 322 * Start writeback against all of a mapping's dirty pages that lie 323 * within the byte offsets <start, end> inclusive. 324 * 325 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 326 * opposed to a regular memory cleansing writeback. The difference between 327 * these two operations is that if a dirty page/buffer is encountered, it must 328 * be waited upon, and not just skipped over. 329 */ 330 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 331 loff_t end, int sync_mode) 332 { 333 int ret; 334 struct writeback_control wbc = { 335 .sync_mode = sync_mode, 336 .nr_to_write = LONG_MAX, 337 .range_start = start, 338 .range_end = end, 339 }; 340 341 if (!mapping_cap_writeback_dirty(mapping)) 342 return 0; 343 344 wbc_attach_fdatawrite_inode(&wbc, mapping->host); 345 ret = do_writepages(mapping, &wbc); 346 wbc_detach_inode(&wbc); 347 return ret; 348 } 349 350 static inline int __filemap_fdatawrite(struct address_space *mapping, 351 int sync_mode) 352 { 353 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 354 } 355 356 int filemap_fdatawrite(struct address_space *mapping) 357 { 358 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 359 } 360 EXPORT_SYMBOL(filemap_fdatawrite); 361 362 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 363 loff_t end) 364 { 365 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 366 } 367 EXPORT_SYMBOL(filemap_fdatawrite_range); 368 369 /** 370 * filemap_flush - mostly a non-blocking flush 371 * @mapping: target address_space 372 * 373 * This is a mostly non-blocking flush. Not suitable for data-integrity 374 * purposes - I/O may not be started against all dirty pages. 375 */ 376 int filemap_flush(struct address_space *mapping) 377 { 378 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 379 } 380 EXPORT_SYMBOL(filemap_flush); 381 382 /** 383 * filemap_range_has_page - check if a page exists in range. 384 * @mapping: address space within which to check 385 * @start_byte: offset in bytes where the range starts 386 * @end_byte: offset in bytes where the range ends (inclusive) 387 * 388 * Find at least one page in the range supplied, usually used to check if 389 * direct writing in this range will trigger a writeback. 390 */ 391 bool filemap_range_has_page(struct address_space *mapping, 392 loff_t start_byte, loff_t end_byte) 393 { 394 pgoff_t index = start_byte >> PAGE_SHIFT; 395 pgoff_t end = end_byte >> PAGE_SHIFT; 396 struct page *page; 397 398 if (end_byte < start_byte) 399 return false; 400 401 if (mapping->nrpages == 0) 402 return false; 403 404 if (!find_get_pages_range(mapping, &index, end, 1, &page)) 405 return false; 406 put_page(page); 407 return true; 408 } 409 EXPORT_SYMBOL(filemap_range_has_page); 410 411 static void __filemap_fdatawait_range(struct address_space *mapping, 412 loff_t start_byte, loff_t end_byte) 413 { 414 pgoff_t index = start_byte >> PAGE_SHIFT; 415 pgoff_t end = end_byte >> PAGE_SHIFT; 416 struct pagevec pvec; 417 int nr_pages; 418 419 if (end_byte < start_byte) 420 return; 421 422 pagevec_init(&pvec, 0); 423 while ((index <= end) && 424 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 425 PAGECACHE_TAG_WRITEBACK, 426 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) { 427 unsigned i; 428 429 for (i = 0; i < nr_pages; i++) { 430 struct page *page = pvec.pages[i]; 431 432 /* until radix tree lookup accepts end_index */ 433 if (page->index > end) 434 continue; 435 436 wait_on_page_writeback(page); 437 ClearPageError(page); 438 } 439 pagevec_release(&pvec); 440 cond_resched(); 441 } 442 } 443 444 /** 445 * filemap_fdatawait_range - wait for writeback to complete 446 * @mapping: address space structure to wait for 447 * @start_byte: offset in bytes where the range starts 448 * @end_byte: offset in bytes where the range ends (inclusive) 449 * 450 * Walk the list of under-writeback pages of the given address space 451 * in the given range and wait for all of them. Check error status of 452 * the address space and return it. 453 * 454 * Since the error status of the address space is cleared by this function, 455 * callers are responsible for checking the return value and handling and/or 456 * reporting the error. 457 */ 458 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 459 loff_t end_byte) 460 { 461 __filemap_fdatawait_range(mapping, start_byte, end_byte); 462 return filemap_check_errors(mapping); 463 } 464 EXPORT_SYMBOL(filemap_fdatawait_range); 465 466 /** 467 * file_fdatawait_range - wait for writeback to complete 468 * @file: file pointing to address space structure to wait for 469 * @start_byte: offset in bytes where the range starts 470 * @end_byte: offset in bytes where the range ends (inclusive) 471 * 472 * Walk the list of under-writeback pages of the address space that file 473 * refers to, in the given range and wait for all of them. Check error 474 * status of the address space vs. the file->f_wb_err cursor and return it. 475 * 476 * Since the error status of the file is advanced by this function, 477 * callers are responsible for checking the return value and handling and/or 478 * reporting the error. 479 */ 480 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte) 481 { 482 struct address_space *mapping = file->f_mapping; 483 484 __filemap_fdatawait_range(mapping, start_byte, end_byte); 485 return file_check_and_advance_wb_err(file); 486 } 487 EXPORT_SYMBOL(file_fdatawait_range); 488 489 /** 490 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors 491 * @mapping: address space structure to wait for 492 * 493 * Walk the list of under-writeback pages of the given address space 494 * and wait for all of them. Unlike filemap_fdatawait(), this function 495 * does not clear error status of the address space. 496 * 497 * Use this function if callers don't handle errors themselves. Expected 498 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 499 * fsfreeze(8) 500 */ 501 int filemap_fdatawait_keep_errors(struct address_space *mapping) 502 { 503 __filemap_fdatawait_range(mapping, 0, LLONG_MAX); 504 return filemap_check_and_keep_errors(mapping); 505 } 506 EXPORT_SYMBOL(filemap_fdatawait_keep_errors); 507 508 static bool mapping_needs_writeback(struct address_space *mapping) 509 { 510 return (!dax_mapping(mapping) && mapping->nrpages) || 511 (dax_mapping(mapping) && mapping->nrexceptional); 512 } 513 514 int filemap_write_and_wait(struct address_space *mapping) 515 { 516 int err = 0; 517 518 if (mapping_needs_writeback(mapping)) { 519 err = filemap_fdatawrite(mapping); 520 /* 521 * Even if the above returned error, the pages may be 522 * written partially (e.g. -ENOSPC), so we wait for it. 523 * But the -EIO is special case, it may indicate the worst 524 * thing (e.g. bug) happened, so we avoid waiting for it. 525 */ 526 if (err != -EIO) { 527 int err2 = filemap_fdatawait(mapping); 528 if (!err) 529 err = err2; 530 } else { 531 /* Clear any previously stored errors */ 532 filemap_check_errors(mapping); 533 } 534 } else { 535 err = filemap_check_errors(mapping); 536 } 537 return err; 538 } 539 EXPORT_SYMBOL(filemap_write_and_wait); 540 541 /** 542 * filemap_write_and_wait_range - write out & wait on a file range 543 * @mapping: the address_space for the pages 544 * @lstart: offset in bytes where the range starts 545 * @lend: offset in bytes where the range ends (inclusive) 546 * 547 * Write out and wait upon file offsets lstart->lend, inclusive. 548 * 549 * Note that @lend is inclusive (describes the last byte to be written) so 550 * that this function can be used to write to the very end-of-file (end = -1). 551 */ 552 int filemap_write_and_wait_range(struct address_space *mapping, 553 loff_t lstart, loff_t lend) 554 { 555 int err = 0; 556 557 if (mapping_needs_writeback(mapping)) { 558 err = __filemap_fdatawrite_range(mapping, lstart, lend, 559 WB_SYNC_ALL); 560 /* See comment of filemap_write_and_wait() */ 561 if (err != -EIO) { 562 int err2 = filemap_fdatawait_range(mapping, 563 lstart, lend); 564 if (!err) 565 err = err2; 566 } else { 567 /* Clear any previously stored errors */ 568 filemap_check_errors(mapping); 569 } 570 } else { 571 err = filemap_check_errors(mapping); 572 } 573 return err; 574 } 575 EXPORT_SYMBOL(filemap_write_and_wait_range); 576 577 void __filemap_set_wb_err(struct address_space *mapping, int err) 578 { 579 errseq_t eseq = errseq_set(&mapping->wb_err, err); 580 581 trace_filemap_set_wb_err(mapping, eseq); 582 } 583 EXPORT_SYMBOL(__filemap_set_wb_err); 584 585 /** 586 * file_check_and_advance_wb_err - report wb error (if any) that was previously 587 * and advance wb_err to current one 588 * @file: struct file on which the error is being reported 589 * 590 * When userland calls fsync (or something like nfsd does the equivalent), we 591 * want to report any writeback errors that occurred since the last fsync (or 592 * since the file was opened if there haven't been any). 593 * 594 * Grab the wb_err from the mapping. If it matches what we have in the file, 595 * then just quickly return 0. The file is all caught up. 596 * 597 * If it doesn't match, then take the mapping value, set the "seen" flag in 598 * it and try to swap it into place. If it works, or another task beat us 599 * to it with the new value, then update the f_wb_err and return the error 600 * portion. The error at this point must be reported via proper channels 601 * (a'la fsync, or NFS COMMIT operation, etc.). 602 * 603 * While we handle mapping->wb_err with atomic operations, the f_wb_err 604 * value is protected by the f_lock since we must ensure that it reflects 605 * the latest value swapped in for this file descriptor. 606 */ 607 int file_check_and_advance_wb_err(struct file *file) 608 { 609 int err = 0; 610 errseq_t old = READ_ONCE(file->f_wb_err); 611 struct address_space *mapping = file->f_mapping; 612 613 /* Locklessly handle the common case where nothing has changed */ 614 if (errseq_check(&mapping->wb_err, old)) { 615 /* Something changed, must use slow path */ 616 spin_lock(&file->f_lock); 617 old = file->f_wb_err; 618 err = errseq_check_and_advance(&mapping->wb_err, 619 &file->f_wb_err); 620 trace_file_check_and_advance_wb_err(file, old); 621 spin_unlock(&file->f_lock); 622 } 623 return err; 624 } 625 EXPORT_SYMBOL(file_check_and_advance_wb_err); 626 627 /** 628 * file_write_and_wait_range - write out & wait on a file range 629 * @file: file pointing to address_space with pages 630 * @lstart: offset in bytes where the range starts 631 * @lend: offset in bytes where the range ends (inclusive) 632 * 633 * Write out and wait upon file offsets lstart->lend, inclusive. 634 * 635 * Note that @lend is inclusive (describes the last byte to be written) so 636 * that this function can be used to write to the very end-of-file (end = -1). 637 * 638 * After writing out and waiting on the data, we check and advance the 639 * f_wb_err cursor to the latest value, and return any errors detected there. 640 */ 641 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend) 642 { 643 int err = 0, err2; 644 struct address_space *mapping = file->f_mapping; 645 646 if (mapping_needs_writeback(mapping)) { 647 err = __filemap_fdatawrite_range(mapping, lstart, lend, 648 WB_SYNC_ALL); 649 /* See comment of filemap_write_and_wait() */ 650 if (err != -EIO) 651 __filemap_fdatawait_range(mapping, lstart, lend); 652 } 653 err2 = file_check_and_advance_wb_err(file); 654 if (!err) 655 err = err2; 656 return err; 657 } 658 EXPORT_SYMBOL(file_write_and_wait_range); 659 660 /** 661 * replace_page_cache_page - replace a pagecache page with a new one 662 * @old: page to be replaced 663 * @new: page to replace with 664 * @gfp_mask: allocation mode 665 * 666 * This function replaces a page in the pagecache with a new one. On 667 * success it acquires the pagecache reference for the new page and 668 * drops it for the old page. Both the old and new pages must be 669 * locked. This function does not add the new page to the LRU, the 670 * caller must do that. 671 * 672 * The remove + add is atomic. The only way this function can fail is 673 * memory allocation failure. 674 */ 675 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask) 676 { 677 int error; 678 679 VM_BUG_ON_PAGE(!PageLocked(old), old); 680 VM_BUG_ON_PAGE(!PageLocked(new), new); 681 VM_BUG_ON_PAGE(new->mapping, new); 682 683 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM); 684 if (!error) { 685 struct address_space *mapping = old->mapping; 686 void (*freepage)(struct page *); 687 unsigned long flags; 688 689 pgoff_t offset = old->index; 690 freepage = mapping->a_ops->freepage; 691 692 get_page(new); 693 new->mapping = mapping; 694 new->index = offset; 695 696 spin_lock_irqsave(&mapping->tree_lock, flags); 697 __delete_from_page_cache(old, NULL); 698 error = page_cache_tree_insert(mapping, new, NULL); 699 BUG_ON(error); 700 701 /* 702 * hugetlb pages do not participate in page cache accounting. 703 */ 704 if (!PageHuge(new)) 705 __inc_node_page_state(new, NR_FILE_PAGES); 706 if (PageSwapBacked(new)) 707 __inc_node_page_state(new, NR_SHMEM); 708 spin_unlock_irqrestore(&mapping->tree_lock, flags); 709 mem_cgroup_migrate(old, new); 710 radix_tree_preload_end(); 711 if (freepage) 712 freepage(old); 713 put_page(old); 714 } 715 716 return error; 717 } 718 EXPORT_SYMBOL_GPL(replace_page_cache_page); 719 720 static int __add_to_page_cache_locked(struct page *page, 721 struct address_space *mapping, 722 pgoff_t offset, gfp_t gfp_mask, 723 void **shadowp) 724 { 725 int huge = PageHuge(page); 726 struct mem_cgroup *memcg; 727 int error; 728 729 VM_BUG_ON_PAGE(!PageLocked(page), page); 730 VM_BUG_ON_PAGE(PageSwapBacked(page), page); 731 732 if (!huge) { 733 error = mem_cgroup_try_charge(page, current->mm, 734 gfp_mask, &memcg, false); 735 if (error) 736 return error; 737 } 738 739 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM); 740 if (error) { 741 if (!huge) 742 mem_cgroup_cancel_charge(page, memcg, false); 743 return error; 744 } 745 746 get_page(page); 747 page->mapping = mapping; 748 page->index = offset; 749 750 spin_lock_irq(&mapping->tree_lock); 751 error = page_cache_tree_insert(mapping, page, shadowp); 752 radix_tree_preload_end(); 753 if (unlikely(error)) 754 goto err_insert; 755 756 /* hugetlb pages do not participate in page cache accounting. */ 757 if (!huge) 758 __inc_node_page_state(page, NR_FILE_PAGES); 759 spin_unlock_irq(&mapping->tree_lock); 760 if (!huge) 761 mem_cgroup_commit_charge(page, memcg, false, false); 762 trace_mm_filemap_add_to_page_cache(page); 763 return 0; 764 err_insert: 765 page->mapping = NULL; 766 /* Leave page->index set: truncation relies upon it */ 767 spin_unlock_irq(&mapping->tree_lock); 768 if (!huge) 769 mem_cgroup_cancel_charge(page, memcg, false); 770 put_page(page); 771 return error; 772 } 773 774 /** 775 * add_to_page_cache_locked - add a locked page to the pagecache 776 * @page: page to add 777 * @mapping: the page's address_space 778 * @offset: page index 779 * @gfp_mask: page allocation mode 780 * 781 * This function is used to add a page to the pagecache. It must be locked. 782 * This function does not add the page to the LRU. The caller must do that. 783 */ 784 int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 785 pgoff_t offset, gfp_t gfp_mask) 786 { 787 return __add_to_page_cache_locked(page, mapping, offset, 788 gfp_mask, NULL); 789 } 790 EXPORT_SYMBOL(add_to_page_cache_locked); 791 792 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 793 pgoff_t offset, gfp_t gfp_mask) 794 { 795 void *shadow = NULL; 796 int ret; 797 798 __SetPageLocked(page); 799 ret = __add_to_page_cache_locked(page, mapping, offset, 800 gfp_mask, &shadow); 801 if (unlikely(ret)) 802 __ClearPageLocked(page); 803 else { 804 /* 805 * The page might have been evicted from cache only 806 * recently, in which case it should be activated like 807 * any other repeatedly accessed page. 808 * The exception is pages getting rewritten; evicting other 809 * data from the working set, only to cache data that will 810 * get overwritten with something else, is a waste of memory. 811 */ 812 if (!(gfp_mask & __GFP_WRITE) && 813 shadow && workingset_refault(shadow)) { 814 SetPageActive(page); 815 workingset_activation(page); 816 } else 817 ClearPageActive(page); 818 lru_cache_add(page); 819 } 820 return ret; 821 } 822 EXPORT_SYMBOL_GPL(add_to_page_cache_lru); 823 824 #ifdef CONFIG_NUMA 825 struct page *__page_cache_alloc(gfp_t gfp) 826 { 827 int n; 828 struct page *page; 829 830 if (cpuset_do_page_mem_spread()) { 831 unsigned int cpuset_mems_cookie; 832 do { 833 cpuset_mems_cookie = read_mems_allowed_begin(); 834 n = cpuset_mem_spread_node(); 835 page = __alloc_pages_node(n, gfp, 0); 836 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie)); 837 838 return page; 839 } 840 return alloc_pages(gfp, 0); 841 } 842 EXPORT_SYMBOL(__page_cache_alloc); 843 #endif 844 845 /* 846 * In order to wait for pages to become available there must be 847 * waitqueues associated with pages. By using a hash table of 848 * waitqueues where the bucket discipline is to maintain all 849 * waiters on the same queue and wake all when any of the pages 850 * become available, and for the woken contexts to check to be 851 * sure the appropriate page became available, this saves space 852 * at a cost of "thundering herd" phenomena during rare hash 853 * collisions. 854 */ 855 #define PAGE_WAIT_TABLE_BITS 8 856 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS) 857 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned; 858 859 static wait_queue_head_t *page_waitqueue(struct page *page) 860 { 861 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)]; 862 } 863 864 void __init pagecache_init(void) 865 { 866 int i; 867 868 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++) 869 init_waitqueue_head(&page_wait_table[i]); 870 871 page_writeback_init(); 872 } 873 874 /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */ 875 struct wait_page_key { 876 struct page *page; 877 int bit_nr; 878 int page_match; 879 }; 880 881 struct wait_page_queue { 882 struct page *page; 883 int bit_nr; 884 wait_queue_entry_t wait; 885 }; 886 887 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg) 888 { 889 struct wait_page_key *key = arg; 890 struct wait_page_queue *wait_page 891 = container_of(wait, struct wait_page_queue, wait); 892 893 if (wait_page->page != key->page) 894 return 0; 895 key->page_match = 1; 896 897 if (wait_page->bit_nr != key->bit_nr) 898 return 0; 899 900 /* Stop walking if it's locked */ 901 if (test_bit(key->bit_nr, &key->page->flags)) 902 return -1; 903 904 return autoremove_wake_function(wait, mode, sync, key); 905 } 906 907 static void wake_up_page_bit(struct page *page, int bit_nr) 908 { 909 wait_queue_head_t *q = page_waitqueue(page); 910 struct wait_page_key key; 911 unsigned long flags; 912 wait_queue_entry_t bookmark; 913 914 key.page = page; 915 key.bit_nr = bit_nr; 916 key.page_match = 0; 917 918 bookmark.flags = 0; 919 bookmark.private = NULL; 920 bookmark.func = NULL; 921 INIT_LIST_HEAD(&bookmark.entry); 922 923 spin_lock_irqsave(&q->lock, flags); 924 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); 925 926 while (bookmark.flags & WQ_FLAG_BOOKMARK) { 927 /* 928 * Take a breather from holding the lock, 929 * allow pages that finish wake up asynchronously 930 * to acquire the lock and remove themselves 931 * from wait queue 932 */ 933 spin_unlock_irqrestore(&q->lock, flags); 934 cpu_relax(); 935 spin_lock_irqsave(&q->lock, flags); 936 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); 937 } 938 939 /* 940 * It is possible for other pages to have collided on the waitqueue 941 * hash, so in that case check for a page match. That prevents a long- 942 * term waiter 943 * 944 * It is still possible to miss a case here, when we woke page waiters 945 * and removed them from the waitqueue, but there are still other 946 * page waiters. 947 */ 948 if (!waitqueue_active(q) || !key.page_match) { 949 ClearPageWaiters(page); 950 /* 951 * It's possible to miss clearing Waiters here, when we woke 952 * our page waiters, but the hashed waitqueue has waiters for 953 * other pages on it. 954 * 955 * That's okay, it's a rare case. The next waker will clear it. 956 */ 957 } 958 spin_unlock_irqrestore(&q->lock, flags); 959 } 960 961 static void wake_up_page(struct page *page, int bit) 962 { 963 if (!PageWaiters(page)) 964 return; 965 wake_up_page_bit(page, bit); 966 } 967 968 static inline int wait_on_page_bit_common(wait_queue_head_t *q, 969 struct page *page, int bit_nr, int state, bool lock) 970 { 971 struct wait_page_queue wait_page; 972 wait_queue_entry_t *wait = &wait_page.wait; 973 int ret = 0; 974 975 init_wait(wait); 976 wait->flags = lock ? WQ_FLAG_EXCLUSIVE : 0; 977 wait->func = wake_page_function; 978 wait_page.page = page; 979 wait_page.bit_nr = bit_nr; 980 981 for (;;) { 982 spin_lock_irq(&q->lock); 983 984 if (likely(list_empty(&wait->entry))) { 985 __add_wait_queue_entry_tail(q, wait); 986 SetPageWaiters(page); 987 } 988 989 set_current_state(state); 990 991 spin_unlock_irq(&q->lock); 992 993 if (likely(test_bit(bit_nr, &page->flags))) { 994 io_schedule(); 995 } 996 997 if (lock) { 998 if (!test_and_set_bit_lock(bit_nr, &page->flags)) 999 break; 1000 } else { 1001 if (!test_bit(bit_nr, &page->flags)) 1002 break; 1003 } 1004 1005 if (unlikely(signal_pending_state(state, current))) { 1006 ret = -EINTR; 1007 break; 1008 } 1009 } 1010 1011 finish_wait(q, wait); 1012 1013 /* 1014 * A signal could leave PageWaiters set. Clearing it here if 1015 * !waitqueue_active would be possible (by open-coding finish_wait), 1016 * but still fail to catch it in the case of wait hash collision. We 1017 * already can fail to clear wait hash collision cases, so don't 1018 * bother with signals either. 1019 */ 1020 1021 return ret; 1022 } 1023 1024 void wait_on_page_bit(struct page *page, int bit_nr) 1025 { 1026 wait_queue_head_t *q = page_waitqueue(page); 1027 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false); 1028 } 1029 EXPORT_SYMBOL(wait_on_page_bit); 1030 1031 int wait_on_page_bit_killable(struct page *page, int bit_nr) 1032 { 1033 wait_queue_head_t *q = page_waitqueue(page); 1034 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false); 1035 } 1036 1037 /** 1038 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue 1039 * @page: Page defining the wait queue of interest 1040 * @waiter: Waiter to add to the queue 1041 * 1042 * Add an arbitrary @waiter to the wait queue for the nominated @page. 1043 */ 1044 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter) 1045 { 1046 wait_queue_head_t *q = page_waitqueue(page); 1047 unsigned long flags; 1048 1049 spin_lock_irqsave(&q->lock, flags); 1050 __add_wait_queue_entry_tail(q, waiter); 1051 SetPageWaiters(page); 1052 spin_unlock_irqrestore(&q->lock, flags); 1053 } 1054 EXPORT_SYMBOL_GPL(add_page_wait_queue); 1055 1056 #ifndef clear_bit_unlock_is_negative_byte 1057 1058 /* 1059 * PG_waiters is the high bit in the same byte as PG_lock. 1060 * 1061 * On x86 (and on many other architectures), we can clear PG_lock and 1062 * test the sign bit at the same time. But if the architecture does 1063 * not support that special operation, we just do this all by hand 1064 * instead. 1065 * 1066 * The read of PG_waiters has to be after (or concurrently with) PG_locked 1067 * being cleared, but a memory barrier should be unneccssary since it is 1068 * in the same byte as PG_locked. 1069 */ 1070 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem) 1071 { 1072 clear_bit_unlock(nr, mem); 1073 /* smp_mb__after_atomic(); */ 1074 return test_bit(PG_waiters, mem); 1075 } 1076 1077 #endif 1078 1079 /** 1080 * unlock_page - unlock a locked page 1081 * @page: the page 1082 * 1083 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). 1084 * Also wakes sleepers in wait_on_page_writeback() because the wakeup 1085 * mechanism between PageLocked pages and PageWriteback pages is shared. 1086 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. 1087 * 1088 * Note that this depends on PG_waiters being the sign bit in the byte 1089 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to 1090 * clear the PG_locked bit and test PG_waiters at the same time fairly 1091 * portably (architectures that do LL/SC can test any bit, while x86 can 1092 * test the sign bit). 1093 */ 1094 void unlock_page(struct page *page) 1095 { 1096 BUILD_BUG_ON(PG_waiters != 7); 1097 page = compound_head(page); 1098 VM_BUG_ON_PAGE(!PageLocked(page), page); 1099 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags)) 1100 wake_up_page_bit(page, PG_locked); 1101 } 1102 EXPORT_SYMBOL(unlock_page); 1103 1104 /** 1105 * end_page_writeback - end writeback against a page 1106 * @page: the page 1107 */ 1108 void end_page_writeback(struct page *page) 1109 { 1110 /* 1111 * TestClearPageReclaim could be used here but it is an atomic 1112 * operation and overkill in this particular case. Failing to 1113 * shuffle a page marked for immediate reclaim is too mild to 1114 * justify taking an atomic operation penalty at the end of 1115 * ever page writeback. 1116 */ 1117 if (PageReclaim(page)) { 1118 ClearPageReclaim(page); 1119 rotate_reclaimable_page(page); 1120 } 1121 1122 if (!test_clear_page_writeback(page)) 1123 BUG(); 1124 1125 smp_mb__after_atomic(); 1126 wake_up_page(page, PG_writeback); 1127 } 1128 EXPORT_SYMBOL(end_page_writeback); 1129 1130 /* 1131 * After completing I/O on a page, call this routine to update the page 1132 * flags appropriately 1133 */ 1134 void page_endio(struct page *page, bool is_write, int err) 1135 { 1136 if (!is_write) { 1137 if (!err) { 1138 SetPageUptodate(page); 1139 } else { 1140 ClearPageUptodate(page); 1141 SetPageError(page); 1142 } 1143 unlock_page(page); 1144 } else { 1145 if (err) { 1146 struct address_space *mapping; 1147 1148 SetPageError(page); 1149 mapping = page_mapping(page); 1150 if (mapping) 1151 mapping_set_error(mapping, err); 1152 } 1153 end_page_writeback(page); 1154 } 1155 } 1156 EXPORT_SYMBOL_GPL(page_endio); 1157 1158 /** 1159 * __lock_page - get a lock on the page, assuming we need to sleep to get it 1160 * @__page: the page to lock 1161 */ 1162 void __lock_page(struct page *__page) 1163 { 1164 struct page *page = compound_head(__page); 1165 wait_queue_head_t *q = page_waitqueue(page); 1166 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true); 1167 } 1168 EXPORT_SYMBOL(__lock_page); 1169 1170 int __lock_page_killable(struct page *__page) 1171 { 1172 struct page *page = compound_head(__page); 1173 wait_queue_head_t *q = page_waitqueue(page); 1174 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true); 1175 } 1176 EXPORT_SYMBOL_GPL(__lock_page_killable); 1177 1178 /* 1179 * Return values: 1180 * 1 - page is locked; mmap_sem is still held. 1181 * 0 - page is not locked. 1182 * mmap_sem has been released (up_read()), unless flags had both 1183 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in 1184 * which case mmap_sem is still held. 1185 * 1186 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1 1187 * with the page locked and the mmap_sem unperturbed. 1188 */ 1189 int __lock_page_or_retry(struct page *page, struct mm_struct *mm, 1190 unsigned int flags) 1191 { 1192 if (flags & FAULT_FLAG_ALLOW_RETRY) { 1193 /* 1194 * CAUTION! In this case, mmap_sem is not released 1195 * even though return 0. 1196 */ 1197 if (flags & FAULT_FLAG_RETRY_NOWAIT) 1198 return 0; 1199 1200 up_read(&mm->mmap_sem); 1201 if (flags & FAULT_FLAG_KILLABLE) 1202 wait_on_page_locked_killable(page); 1203 else 1204 wait_on_page_locked(page); 1205 return 0; 1206 } else { 1207 if (flags & FAULT_FLAG_KILLABLE) { 1208 int ret; 1209 1210 ret = __lock_page_killable(page); 1211 if (ret) { 1212 up_read(&mm->mmap_sem); 1213 return 0; 1214 } 1215 } else 1216 __lock_page(page); 1217 return 1; 1218 } 1219 } 1220 1221 /** 1222 * page_cache_next_hole - find the next hole (not-present entry) 1223 * @mapping: mapping 1224 * @index: index 1225 * @max_scan: maximum range to search 1226 * 1227 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the 1228 * lowest indexed hole. 1229 * 1230 * Returns: the index of the hole if found, otherwise returns an index 1231 * outside of the set specified (in which case 'return - index >= 1232 * max_scan' will be true). In rare cases of index wrap-around, 0 will 1233 * be returned. 1234 * 1235 * page_cache_next_hole may be called under rcu_read_lock. However, 1236 * like radix_tree_gang_lookup, this will not atomically search a 1237 * snapshot of the tree at a single point in time. For example, if a 1238 * hole is created at index 5, then subsequently a hole is created at 1239 * index 10, page_cache_next_hole covering both indexes may return 10 1240 * if called under rcu_read_lock. 1241 */ 1242 pgoff_t page_cache_next_hole(struct address_space *mapping, 1243 pgoff_t index, unsigned long max_scan) 1244 { 1245 unsigned long i; 1246 1247 for (i = 0; i < max_scan; i++) { 1248 struct page *page; 1249 1250 page = radix_tree_lookup(&mapping->page_tree, index); 1251 if (!page || radix_tree_exceptional_entry(page)) 1252 break; 1253 index++; 1254 if (index == 0) 1255 break; 1256 } 1257 1258 return index; 1259 } 1260 EXPORT_SYMBOL(page_cache_next_hole); 1261 1262 /** 1263 * page_cache_prev_hole - find the prev hole (not-present entry) 1264 * @mapping: mapping 1265 * @index: index 1266 * @max_scan: maximum range to search 1267 * 1268 * Search backwards in the range [max(index-max_scan+1, 0), index] for 1269 * the first hole. 1270 * 1271 * Returns: the index of the hole if found, otherwise returns an index 1272 * outside of the set specified (in which case 'index - return >= 1273 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX 1274 * will be returned. 1275 * 1276 * page_cache_prev_hole may be called under rcu_read_lock. However, 1277 * like radix_tree_gang_lookup, this will not atomically search a 1278 * snapshot of the tree at a single point in time. For example, if a 1279 * hole is created at index 10, then subsequently a hole is created at 1280 * index 5, page_cache_prev_hole covering both indexes may return 5 if 1281 * called under rcu_read_lock. 1282 */ 1283 pgoff_t page_cache_prev_hole(struct address_space *mapping, 1284 pgoff_t index, unsigned long max_scan) 1285 { 1286 unsigned long i; 1287 1288 for (i = 0; i < max_scan; i++) { 1289 struct page *page; 1290 1291 page = radix_tree_lookup(&mapping->page_tree, index); 1292 if (!page || radix_tree_exceptional_entry(page)) 1293 break; 1294 index--; 1295 if (index == ULONG_MAX) 1296 break; 1297 } 1298 1299 return index; 1300 } 1301 EXPORT_SYMBOL(page_cache_prev_hole); 1302 1303 /** 1304 * find_get_entry - find and get a page cache entry 1305 * @mapping: the address_space to search 1306 * @offset: the page cache index 1307 * 1308 * Looks up the page cache slot at @mapping & @offset. If there is a 1309 * page cache page, it is returned with an increased refcount. 1310 * 1311 * If the slot holds a shadow entry of a previously evicted page, or a 1312 * swap entry from shmem/tmpfs, it is returned. 1313 * 1314 * Otherwise, %NULL is returned. 1315 */ 1316 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset) 1317 { 1318 void **pagep; 1319 struct page *head, *page; 1320 1321 rcu_read_lock(); 1322 repeat: 1323 page = NULL; 1324 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset); 1325 if (pagep) { 1326 page = radix_tree_deref_slot(pagep); 1327 if (unlikely(!page)) 1328 goto out; 1329 if (radix_tree_exception(page)) { 1330 if (radix_tree_deref_retry(page)) 1331 goto repeat; 1332 /* 1333 * A shadow entry of a recently evicted page, 1334 * or a swap entry from shmem/tmpfs. Return 1335 * it without attempting to raise page count. 1336 */ 1337 goto out; 1338 } 1339 1340 head = compound_head(page); 1341 if (!page_cache_get_speculative(head)) 1342 goto repeat; 1343 1344 /* The page was split under us? */ 1345 if (compound_head(page) != head) { 1346 put_page(head); 1347 goto repeat; 1348 } 1349 1350 /* 1351 * Has the page moved? 1352 * This is part of the lockless pagecache protocol. See 1353 * include/linux/pagemap.h for details. 1354 */ 1355 if (unlikely(page != *pagep)) { 1356 put_page(head); 1357 goto repeat; 1358 } 1359 } 1360 out: 1361 rcu_read_unlock(); 1362 1363 return page; 1364 } 1365 EXPORT_SYMBOL(find_get_entry); 1366 1367 /** 1368 * find_lock_entry - locate, pin and lock a page cache entry 1369 * @mapping: the address_space to search 1370 * @offset: the page cache index 1371 * 1372 * Looks up the page cache slot at @mapping & @offset. If there is a 1373 * page cache page, it is returned locked and with an increased 1374 * refcount. 1375 * 1376 * If the slot holds a shadow entry of a previously evicted page, or a 1377 * swap entry from shmem/tmpfs, it is returned. 1378 * 1379 * Otherwise, %NULL is returned. 1380 * 1381 * find_lock_entry() may sleep. 1382 */ 1383 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset) 1384 { 1385 struct page *page; 1386 1387 repeat: 1388 page = find_get_entry(mapping, offset); 1389 if (page && !radix_tree_exception(page)) { 1390 lock_page(page); 1391 /* Has the page been truncated? */ 1392 if (unlikely(page_mapping(page) != mapping)) { 1393 unlock_page(page); 1394 put_page(page); 1395 goto repeat; 1396 } 1397 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page); 1398 } 1399 return page; 1400 } 1401 EXPORT_SYMBOL(find_lock_entry); 1402 1403 /** 1404 * pagecache_get_page - find and get a page reference 1405 * @mapping: the address_space to search 1406 * @offset: the page index 1407 * @fgp_flags: PCG flags 1408 * @gfp_mask: gfp mask to use for the page cache data page allocation 1409 * 1410 * Looks up the page cache slot at @mapping & @offset. 1411 * 1412 * PCG flags modify how the page is returned. 1413 * 1414 * @fgp_flags can be: 1415 * 1416 * - FGP_ACCESSED: the page will be marked accessed 1417 * - FGP_LOCK: Page is return locked 1418 * - FGP_CREAT: If page is not present then a new page is allocated using 1419 * @gfp_mask and added to the page cache and the VM's LRU 1420 * list. The page is returned locked and with an increased 1421 * refcount. Otherwise, NULL is returned. 1422 * 1423 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even 1424 * if the GFP flags specified for FGP_CREAT are atomic. 1425 * 1426 * If there is a page cache page, it is returned with an increased refcount. 1427 */ 1428 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset, 1429 int fgp_flags, gfp_t gfp_mask) 1430 { 1431 struct page *page; 1432 1433 repeat: 1434 page = find_get_entry(mapping, offset); 1435 if (radix_tree_exceptional_entry(page)) 1436 page = NULL; 1437 if (!page) 1438 goto no_page; 1439 1440 if (fgp_flags & FGP_LOCK) { 1441 if (fgp_flags & FGP_NOWAIT) { 1442 if (!trylock_page(page)) { 1443 put_page(page); 1444 return NULL; 1445 } 1446 } else { 1447 lock_page(page); 1448 } 1449 1450 /* Has the page been truncated? */ 1451 if (unlikely(page->mapping != mapping)) { 1452 unlock_page(page); 1453 put_page(page); 1454 goto repeat; 1455 } 1456 VM_BUG_ON_PAGE(page->index != offset, page); 1457 } 1458 1459 if (page && (fgp_flags & FGP_ACCESSED)) 1460 mark_page_accessed(page); 1461 1462 no_page: 1463 if (!page && (fgp_flags & FGP_CREAT)) { 1464 int err; 1465 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping)) 1466 gfp_mask |= __GFP_WRITE; 1467 if (fgp_flags & FGP_NOFS) 1468 gfp_mask &= ~__GFP_FS; 1469 1470 page = __page_cache_alloc(gfp_mask); 1471 if (!page) 1472 return NULL; 1473 1474 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK))) 1475 fgp_flags |= FGP_LOCK; 1476 1477 /* Init accessed so avoid atomic mark_page_accessed later */ 1478 if (fgp_flags & FGP_ACCESSED) 1479 __SetPageReferenced(page); 1480 1481 err = add_to_page_cache_lru(page, mapping, offset, 1482 gfp_mask & GFP_RECLAIM_MASK); 1483 if (unlikely(err)) { 1484 put_page(page); 1485 page = NULL; 1486 if (err == -EEXIST) 1487 goto repeat; 1488 } 1489 } 1490 1491 return page; 1492 } 1493 EXPORT_SYMBOL(pagecache_get_page); 1494 1495 /** 1496 * find_get_entries - gang pagecache lookup 1497 * @mapping: The address_space to search 1498 * @start: The starting page cache index 1499 * @nr_entries: The maximum number of entries 1500 * @entries: Where the resulting entries are placed 1501 * @indices: The cache indices corresponding to the entries in @entries 1502 * 1503 * find_get_entries() will search for and return a group of up to 1504 * @nr_entries entries in the mapping. The entries are placed at 1505 * @entries. find_get_entries() takes a reference against any actual 1506 * pages it returns. 1507 * 1508 * The search returns a group of mapping-contiguous page cache entries 1509 * with ascending indexes. There may be holes in the indices due to 1510 * not-present pages. 1511 * 1512 * Any shadow entries of evicted pages, or swap entries from 1513 * shmem/tmpfs, are included in the returned array. 1514 * 1515 * find_get_entries() returns the number of pages and shadow entries 1516 * which were found. 1517 */ 1518 unsigned find_get_entries(struct address_space *mapping, 1519 pgoff_t start, unsigned int nr_entries, 1520 struct page **entries, pgoff_t *indices) 1521 { 1522 void **slot; 1523 unsigned int ret = 0; 1524 struct radix_tree_iter iter; 1525 1526 if (!nr_entries) 1527 return 0; 1528 1529 rcu_read_lock(); 1530 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { 1531 struct page *head, *page; 1532 repeat: 1533 page = radix_tree_deref_slot(slot); 1534 if (unlikely(!page)) 1535 continue; 1536 if (radix_tree_exception(page)) { 1537 if (radix_tree_deref_retry(page)) { 1538 slot = radix_tree_iter_retry(&iter); 1539 continue; 1540 } 1541 /* 1542 * A shadow entry of a recently evicted page, a swap 1543 * entry from shmem/tmpfs or a DAX entry. Return it 1544 * without attempting to raise page count. 1545 */ 1546 goto export; 1547 } 1548 1549 head = compound_head(page); 1550 if (!page_cache_get_speculative(head)) 1551 goto repeat; 1552 1553 /* The page was split under us? */ 1554 if (compound_head(page) != head) { 1555 put_page(head); 1556 goto repeat; 1557 } 1558 1559 /* Has the page moved? */ 1560 if (unlikely(page != *slot)) { 1561 put_page(head); 1562 goto repeat; 1563 } 1564 export: 1565 indices[ret] = iter.index; 1566 entries[ret] = page; 1567 if (++ret == nr_entries) 1568 break; 1569 } 1570 rcu_read_unlock(); 1571 return ret; 1572 } 1573 1574 /** 1575 * find_get_pages_range - gang pagecache lookup 1576 * @mapping: The address_space to search 1577 * @start: The starting page index 1578 * @end: The final page index (inclusive) 1579 * @nr_pages: The maximum number of pages 1580 * @pages: Where the resulting pages are placed 1581 * 1582 * find_get_pages_range() will search for and return a group of up to @nr_pages 1583 * pages in the mapping starting at index @start and up to index @end 1584 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes 1585 * a reference against the returned pages. 1586 * 1587 * The search returns a group of mapping-contiguous pages with ascending 1588 * indexes. There may be holes in the indices due to not-present pages. 1589 * We also update @start to index the next page for the traversal. 1590 * 1591 * find_get_pages_range() returns the number of pages which were found. If this 1592 * number is smaller than @nr_pages, the end of specified range has been 1593 * reached. 1594 */ 1595 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start, 1596 pgoff_t end, unsigned int nr_pages, 1597 struct page **pages) 1598 { 1599 struct radix_tree_iter iter; 1600 void **slot; 1601 unsigned ret = 0; 1602 1603 if (unlikely(!nr_pages)) 1604 return 0; 1605 1606 rcu_read_lock(); 1607 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, *start) { 1608 struct page *head, *page; 1609 1610 if (iter.index > end) 1611 break; 1612 repeat: 1613 page = radix_tree_deref_slot(slot); 1614 if (unlikely(!page)) 1615 continue; 1616 1617 if (radix_tree_exception(page)) { 1618 if (radix_tree_deref_retry(page)) { 1619 slot = radix_tree_iter_retry(&iter); 1620 continue; 1621 } 1622 /* 1623 * A shadow entry of a recently evicted page, 1624 * or a swap entry from shmem/tmpfs. Skip 1625 * over it. 1626 */ 1627 continue; 1628 } 1629 1630 head = compound_head(page); 1631 if (!page_cache_get_speculative(head)) 1632 goto repeat; 1633 1634 /* The page was split under us? */ 1635 if (compound_head(page) != head) { 1636 put_page(head); 1637 goto repeat; 1638 } 1639 1640 /* Has the page moved? */ 1641 if (unlikely(page != *slot)) { 1642 put_page(head); 1643 goto repeat; 1644 } 1645 1646 pages[ret] = page; 1647 if (++ret == nr_pages) { 1648 *start = pages[ret - 1]->index + 1; 1649 goto out; 1650 } 1651 } 1652 1653 /* 1654 * We come here when there is no page beyond @end. We take care to not 1655 * overflow the index @start as it confuses some of the callers. This 1656 * breaks the iteration when there is page at index -1 but that is 1657 * already broken anyway. 1658 */ 1659 if (end == (pgoff_t)-1) 1660 *start = (pgoff_t)-1; 1661 else 1662 *start = end + 1; 1663 out: 1664 rcu_read_unlock(); 1665 1666 return ret; 1667 } 1668 1669 /** 1670 * find_get_pages_contig - gang contiguous pagecache lookup 1671 * @mapping: The address_space to search 1672 * @index: The starting page index 1673 * @nr_pages: The maximum number of pages 1674 * @pages: Where the resulting pages are placed 1675 * 1676 * find_get_pages_contig() works exactly like find_get_pages(), except 1677 * that the returned number of pages are guaranteed to be contiguous. 1678 * 1679 * find_get_pages_contig() returns the number of pages which were found. 1680 */ 1681 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, 1682 unsigned int nr_pages, struct page **pages) 1683 { 1684 struct radix_tree_iter iter; 1685 void **slot; 1686 unsigned int ret = 0; 1687 1688 if (unlikely(!nr_pages)) 1689 return 0; 1690 1691 rcu_read_lock(); 1692 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) { 1693 struct page *head, *page; 1694 repeat: 1695 page = radix_tree_deref_slot(slot); 1696 /* The hole, there no reason to continue */ 1697 if (unlikely(!page)) 1698 break; 1699 1700 if (radix_tree_exception(page)) { 1701 if (radix_tree_deref_retry(page)) { 1702 slot = radix_tree_iter_retry(&iter); 1703 continue; 1704 } 1705 /* 1706 * A shadow entry of a recently evicted page, 1707 * or a swap entry from shmem/tmpfs. Stop 1708 * looking for contiguous pages. 1709 */ 1710 break; 1711 } 1712 1713 head = compound_head(page); 1714 if (!page_cache_get_speculative(head)) 1715 goto repeat; 1716 1717 /* The page was split under us? */ 1718 if (compound_head(page) != head) { 1719 put_page(head); 1720 goto repeat; 1721 } 1722 1723 /* Has the page moved? */ 1724 if (unlikely(page != *slot)) { 1725 put_page(head); 1726 goto repeat; 1727 } 1728 1729 /* 1730 * must check mapping and index after taking the ref. 1731 * otherwise we can get both false positives and false 1732 * negatives, which is just confusing to the caller. 1733 */ 1734 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) { 1735 put_page(page); 1736 break; 1737 } 1738 1739 pages[ret] = page; 1740 if (++ret == nr_pages) 1741 break; 1742 } 1743 rcu_read_unlock(); 1744 return ret; 1745 } 1746 EXPORT_SYMBOL(find_get_pages_contig); 1747 1748 /** 1749 * find_get_pages_tag - find and return pages that match @tag 1750 * @mapping: the address_space to search 1751 * @index: the starting page index 1752 * @tag: the tag index 1753 * @nr_pages: the maximum number of pages 1754 * @pages: where the resulting pages are placed 1755 * 1756 * Like find_get_pages, except we only return pages which are tagged with 1757 * @tag. We update @index to index the next page for the traversal. 1758 */ 1759 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, 1760 int tag, unsigned int nr_pages, struct page **pages) 1761 { 1762 struct radix_tree_iter iter; 1763 void **slot; 1764 unsigned ret = 0; 1765 1766 if (unlikely(!nr_pages)) 1767 return 0; 1768 1769 rcu_read_lock(); 1770 radix_tree_for_each_tagged(slot, &mapping->page_tree, 1771 &iter, *index, tag) { 1772 struct page *head, *page; 1773 repeat: 1774 page = radix_tree_deref_slot(slot); 1775 if (unlikely(!page)) 1776 continue; 1777 1778 if (radix_tree_exception(page)) { 1779 if (radix_tree_deref_retry(page)) { 1780 slot = radix_tree_iter_retry(&iter); 1781 continue; 1782 } 1783 /* 1784 * A shadow entry of a recently evicted page. 1785 * 1786 * Those entries should never be tagged, but 1787 * this tree walk is lockless and the tags are 1788 * looked up in bulk, one radix tree node at a 1789 * time, so there is a sizable window for page 1790 * reclaim to evict a page we saw tagged. 1791 * 1792 * Skip over it. 1793 */ 1794 continue; 1795 } 1796 1797 head = compound_head(page); 1798 if (!page_cache_get_speculative(head)) 1799 goto repeat; 1800 1801 /* The page was split under us? */ 1802 if (compound_head(page) != head) { 1803 put_page(head); 1804 goto repeat; 1805 } 1806 1807 /* Has the page moved? */ 1808 if (unlikely(page != *slot)) { 1809 put_page(head); 1810 goto repeat; 1811 } 1812 1813 pages[ret] = page; 1814 if (++ret == nr_pages) 1815 break; 1816 } 1817 1818 rcu_read_unlock(); 1819 1820 if (ret) 1821 *index = pages[ret - 1]->index + 1; 1822 1823 return ret; 1824 } 1825 EXPORT_SYMBOL(find_get_pages_tag); 1826 1827 /** 1828 * find_get_entries_tag - find and return entries that match @tag 1829 * @mapping: the address_space to search 1830 * @start: the starting page cache index 1831 * @tag: the tag index 1832 * @nr_entries: the maximum number of entries 1833 * @entries: where the resulting entries are placed 1834 * @indices: the cache indices corresponding to the entries in @entries 1835 * 1836 * Like find_get_entries, except we only return entries which are tagged with 1837 * @tag. 1838 */ 1839 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start, 1840 int tag, unsigned int nr_entries, 1841 struct page **entries, pgoff_t *indices) 1842 { 1843 void **slot; 1844 unsigned int ret = 0; 1845 struct radix_tree_iter iter; 1846 1847 if (!nr_entries) 1848 return 0; 1849 1850 rcu_read_lock(); 1851 radix_tree_for_each_tagged(slot, &mapping->page_tree, 1852 &iter, start, tag) { 1853 struct page *head, *page; 1854 repeat: 1855 page = radix_tree_deref_slot(slot); 1856 if (unlikely(!page)) 1857 continue; 1858 if (radix_tree_exception(page)) { 1859 if (radix_tree_deref_retry(page)) { 1860 slot = radix_tree_iter_retry(&iter); 1861 continue; 1862 } 1863 1864 /* 1865 * A shadow entry of a recently evicted page, a swap 1866 * entry from shmem/tmpfs or a DAX entry. Return it 1867 * without attempting to raise page count. 1868 */ 1869 goto export; 1870 } 1871 1872 head = compound_head(page); 1873 if (!page_cache_get_speculative(head)) 1874 goto repeat; 1875 1876 /* The page was split under us? */ 1877 if (compound_head(page) != head) { 1878 put_page(head); 1879 goto repeat; 1880 } 1881 1882 /* Has the page moved? */ 1883 if (unlikely(page != *slot)) { 1884 put_page(head); 1885 goto repeat; 1886 } 1887 export: 1888 indices[ret] = iter.index; 1889 entries[ret] = page; 1890 if (++ret == nr_entries) 1891 break; 1892 } 1893 rcu_read_unlock(); 1894 return ret; 1895 } 1896 EXPORT_SYMBOL(find_get_entries_tag); 1897 1898 /* 1899 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 1900 * a _large_ part of the i/o request. Imagine the worst scenario: 1901 * 1902 * ---R__________________________________________B__________ 1903 * ^ reading here ^ bad block(assume 4k) 1904 * 1905 * read(R) => miss => readahead(R...B) => media error => frustrating retries 1906 * => failing the whole request => read(R) => read(R+1) => 1907 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 1908 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 1909 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 1910 * 1911 * It is going insane. Fix it by quickly scaling down the readahead size. 1912 */ 1913 static void shrink_readahead_size_eio(struct file *filp, 1914 struct file_ra_state *ra) 1915 { 1916 ra->ra_pages /= 4; 1917 } 1918 1919 /** 1920 * generic_file_buffered_read - generic file read routine 1921 * @iocb: the iocb to read 1922 * @iter: data destination 1923 * @written: already copied 1924 * 1925 * This is a generic file read routine, and uses the 1926 * mapping->a_ops->readpage() function for the actual low-level stuff. 1927 * 1928 * This is really ugly. But the goto's actually try to clarify some 1929 * of the logic when it comes to error handling etc. 1930 */ 1931 static ssize_t generic_file_buffered_read(struct kiocb *iocb, 1932 struct iov_iter *iter, ssize_t written) 1933 { 1934 struct file *filp = iocb->ki_filp; 1935 struct address_space *mapping = filp->f_mapping; 1936 struct inode *inode = mapping->host; 1937 struct file_ra_state *ra = &filp->f_ra; 1938 loff_t *ppos = &iocb->ki_pos; 1939 pgoff_t index; 1940 pgoff_t last_index; 1941 pgoff_t prev_index; 1942 unsigned long offset; /* offset into pagecache page */ 1943 unsigned int prev_offset; 1944 int error = 0; 1945 1946 if (unlikely(*ppos >= inode->i_sb->s_maxbytes)) 1947 return 0; 1948 iov_iter_truncate(iter, inode->i_sb->s_maxbytes); 1949 1950 index = *ppos >> PAGE_SHIFT; 1951 prev_index = ra->prev_pos >> PAGE_SHIFT; 1952 prev_offset = ra->prev_pos & (PAGE_SIZE-1); 1953 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT; 1954 offset = *ppos & ~PAGE_MASK; 1955 1956 for (;;) { 1957 struct page *page; 1958 pgoff_t end_index; 1959 loff_t isize; 1960 unsigned long nr, ret; 1961 1962 cond_resched(); 1963 find_page: 1964 if (fatal_signal_pending(current)) { 1965 error = -EINTR; 1966 goto out; 1967 } 1968 1969 page = find_get_page(mapping, index); 1970 if (!page) { 1971 if (iocb->ki_flags & IOCB_NOWAIT) 1972 goto would_block; 1973 page_cache_sync_readahead(mapping, 1974 ra, filp, 1975 index, last_index - index); 1976 page = find_get_page(mapping, index); 1977 if (unlikely(page == NULL)) 1978 goto no_cached_page; 1979 } 1980 if (PageReadahead(page)) { 1981 page_cache_async_readahead(mapping, 1982 ra, filp, page, 1983 index, last_index - index); 1984 } 1985 if (!PageUptodate(page)) { 1986 if (iocb->ki_flags & IOCB_NOWAIT) { 1987 put_page(page); 1988 goto would_block; 1989 } 1990 1991 /* 1992 * See comment in do_read_cache_page on why 1993 * wait_on_page_locked is used to avoid unnecessarily 1994 * serialisations and why it's safe. 1995 */ 1996 error = wait_on_page_locked_killable(page); 1997 if (unlikely(error)) 1998 goto readpage_error; 1999 if (PageUptodate(page)) 2000 goto page_ok; 2001 2002 if (inode->i_blkbits == PAGE_SHIFT || 2003 !mapping->a_ops->is_partially_uptodate) 2004 goto page_not_up_to_date; 2005 /* pipes can't handle partially uptodate pages */ 2006 if (unlikely(iter->type & ITER_PIPE)) 2007 goto page_not_up_to_date; 2008 if (!trylock_page(page)) 2009 goto page_not_up_to_date; 2010 /* Did it get truncated before we got the lock? */ 2011 if (!page->mapping) 2012 goto page_not_up_to_date_locked; 2013 if (!mapping->a_ops->is_partially_uptodate(page, 2014 offset, iter->count)) 2015 goto page_not_up_to_date_locked; 2016 unlock_page(page); 2017 } 2018 page_ok: 2019 /* 2020 * i_size must be checked after we know the page is Uptodate. 2021 * 2022 * Checking i_size after the check allows us to calculate 2023 * the correct value for "nr", which means the zero-filled 2024 * part of the page is not copied back to userspace (unless 2025 * another truncate extends the file - this is desired though). 2026 */ 2027 2028 isize = i_size_read(inode); 2029 end_index = (isize - 1) >> PAGE_SHIFT; 2030 if (unlikely(!isize || index > end_index)) { 2031 put_page(page); 2032 goto out; 2033 } 2034 2035 /* nr is the maximum number of bytes to copy from this page */ 2036 nr = PAGE_SIZE; 2037 if (index == end_index) { 2038 nr = ((isize - 1) & ~PAGE_MASK) + 1; 2039 if (nr <= offset) { 2040 put_page(page); 2041 goto out; 2042 } 2043 } 2044 nr = nr - offset; 2045 2046 /* If users can be writing to this page using arbitrary 2047 * virtual addresses, take care about potential aliasing 2048 * before reading the page on the kernel side. 2049 */ 2050 if (mapping_writably_mapped(mapping)) 2051 flush_dcache_page(page); 2052 2053 /* 2054 * When a sequential read accesses a page several times, 2055 * only mark it as accessed the first time. 2056 */ 2057 if (prev_index != index || offset != prev_offset) 2058 mark_page_accessed(page); 2059 prev_index = index; 2060 2061 /* 2062 * Ok, we have the page, and it's up-to-date, so 2063 * now we can copy it to user space... 2064 */ 2065 2066 ret = copy_page_to_iter(page, offset, nr, iter); 2067 offset += ret; 2068 index += offset >> PAGE_SHIFT; 2069 offset &= ~PAGE_MASK; 2070 prev_offset = offset; 2071 2072 put_page(page); 2073 written += ret; 2074 if (!iov_iter_count(iter)) 2075 goto out; 2076 if (ret < nr) { 2077 error = -EFAULT; 2078 goto out; 2079 } 2080 continue; 2081 2082 page_not_up_to_date: 2083 /* Get exclusive access to the page ... */ 2084 error = lock_page_killable(page); 2085 if (unlikely(error)) 2086 goto readpage_error; 2087 2088 page_not_up_to_date_locked: 2089 /* Did it get truncated before we got the lock? */ 2090 if (!page->mapping) { 2091 unlock_page(page); 2092 put_page(page); 2093 continue; 2094 } 2095 2096 /* Did somebody else fill it already? */ 2097 if (PageUptodate(page)) { 2098 unlock_page(page); 2099 goto page_ok; 2100 } 2101 2102 readpage: 2103 /* 2104 * A previous I/O error may have been due to temporary 2105 * failures, eg. multipath errors. 2106 * PG_error will be set again if readpage fails. 2107 */ 2108 ClearPageError(page); 2109 /* Start the actual read. The read will unlock the page. */ 2110 error = mapping->a_ops->readpage(filp, page); 2111 2112 if (unlikely(error)) { 2113 if (error == AOP_TRUNCATED_PAGE) { 2114 put_page(page); 2115 error = 0; 2116 goto find_page; 2117 } 2118 goto readpage_error; 2119 } 2120 2121 if (!PageUptodate(page)) { 2122 error = lock_page_killable(page); 2123 if (unlikely(error)) 2124 goto readpage_error; 2125 if (!PageUptodate(page)) { 2126 if (page->mapping == NULL) { 2127 /* 2128 * invalidate_mapping_pages got it 2129 */ 2130 unlock_page(page); 2131 put_page(page); 2132 goto find_page; 2133 } 2134 unlock_page(page); 2135 shrink_readahead_size_eio(filp, ra); 2136 error = -EIO; 2137 goto readpage_error; 2138 } 2139 unlock_page(page); 2140 } 2141 2142 goto page_ok; 2143 2144 readpage_error: 2145 /* UHHUH! A synchronous read error occurred. Report it */ 2146 put_page(page); 2147 goto out; 2148 2149 no_cached_page: 2150 /* 2151 * Ok, it wasn't cached, so we need to create a new 2152 * page.. 2153 */ 2154 page = page_cache_alloc_cold(mapping); 2155 if (!page) { 2156 error = -ENOMEM; 2157 goto out; 2158 } 2159 error = add_to_page_cache_lru(page, mapping, index, 2160 mapping_gfp_constraint(mapping, GFP_KERNEL)); 2161 if (error) { 2162 put_page(page); 2163 if (error == -EEXIST) { 2164 error = 0; 2165 goto find_page; 2166 } 2167 goto out; 2168 } 2169 goto readpage; 2170 } 2171 2172 would_block: 2173 error = -EAGAIN; 2174 out: 2175 ra->prev_pos = prev_index; 2176 ra->prev_pos <<= PAGE_SHIFT; 2177 ra->prev_pos |= prev_offset; 2178 2179 *ppos = ((loff_t)index << PAGE_SHIFT) + offset; 2180 file_accessed(filp); 2181 return written ? written : error; 2182 } 2183 2184 /** 2185 * generic_file_read_iter - generic filesystem read routine 2186 * @iocb: kernel I/O control block 2187 * @iter: destination for the data read 2188 * 2189 * This is the "read_iter()" routine for all filesystems 2190 * that can use the page cache directly. 2191 */ 2192 ssize_t 2193 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 2194 { 2195 size_t count = iov_iter_count(iter); 2196 ssize_t retval = 0; 2197 2198 if (!count) 2199 goto out; /* skip atime */ 2200 2201 if (iocb->ki_flags & IOCB_DIRECT) { 2202 struct file *file = iocb->ki_filp; 2203 struct address_space *mapping = file->f_mapping; 2204 struct inode *inode = mapping->host; 2205 loff_t size; 2206 2207 size = i_size_read(inode); 2208 if (iocb->ki_flags & IOCB_NOWAIT) { 2209 if (filemap_range_has_page(mapping, iocb->ki_pos, 2210 iocb->ki_pos + count - 1)) 2211 return -EAGAIN; 2212 } else { 2213 retval = filemap_write_and_wait_range(mapping, 2214 iocb->ki_pos, 2215 iocb->ki_pos + count - 1); 2216 if (retval < 0) 2217 goto out; 2218 } 2219 2220 file_accessed(file); 2221 2222 retval = mapping->a_ops->direct_IO(iocb, iter); 2223 if (retval >= 0) { 2224 iocb->ki_pos += retval; 2225 count -= retval; 2226 } 2227 iov_iter_revert(iter, count - iov_iter_count(iter)); 2228 2229 /* 2230 * Btrfs can have a short DIO read if we encounter 2231 * compressed extents, so if there was an error, or if 2232 * we've already read everything we wanted to, or if 2233 * there was a short read because we hit EOF, go ahead 2234 * and return. Otherwise fallthrough to buffered io for 2235 * the rest of the read. Buffered reads will not work for 2236 * DAX files, so don't bother trying. 2237 */ 2238 if (retval < 0 || !count || iocb->ki_pos >= size || 2239 IS_DAX(inode)) 2240 goto out; 2241 } 2242 2243 retval = generic_file_buffered_read(iocb, iter, retval); 2244 out: 2245 return retval; 2246 } 2247 EXPORT_SYMBOL(generic_file_read_iter); 2248 2249 #ifdef CONFIG_MMU 2250 /** 2251 * page_cache_read - adds requested page to the page cache if not already there 2252 * @file: file to read 2253 * @offset: page index 2254 * @gfp_mask: memory allocation flags 2255 * 2256 * This adds the requested page to the page cache if it isn't already there, 2257 * and schedules an I/O to read in its contents from disk. 2258 */ 2259 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask) 2260 { 2261 struct address_space *mapping = file->f_mapping; 2262 struct page *page; 2263 int ret; 2264 2265 do { 2266 page = __page_cache_alloc(gfp_mask|__GFP_COLD); 2267 if (!page) 2268 return -ENOMEM; 2269 2270 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL); 2271 if (ret == 0) 2272 ret = mapping->a_ops->readpage(file, page); 2273 else if (ret == -EEXIST) 2274 ret = 0; /* losing race to add is OK */ 2275 2276 put_page(page); 2277 2278 } while (ret == AOP_TRUNCATED_PAGE); 2279 2280 return ret; 2281 } 2282 2283 #define MMAP_LOTSAMISS (100) 2284 2285 /* 2286 * Synchronous readahead happens when we don't even find 2287 * a page in the page cache at all. 2288 */ 2289 static void do_sync_mmap_readahead(struct vm_area_struct *vma, 2290 struct file_ra_state *ra, 2291 struct file *file, 2292 pgoff_t offset) 2293 { 2294 struct address_space *mapping = file->f_mapping; 2295 2296 /* If we don't want any read-ahead, don't bother */ 2297 if (vma->vm_flags & VM_RAND_READ) 2298 return; 2299 if (!ra->ra_pages) 2300 return; 2301 2302 if (vma->vm_flags & VM_SEQ_READ) { 2303 page_cache_sync_readahead(mapping, ra, file, offset, 2304 ra->ra_pages); 2305 return; 2306 } 2307 2308 /* Avoid banging the cache line if not needed */ 2309 if (ra->mmap_miss < MMAP_LOTSAMISS * 10) 2310 ra->mmap_miss++; 2311 2312 /* 2313 * Do we miss much more than hit in this file? If so, 2314 * stop bothering with read-ahead. It will only hurt. 2315 */ 2316 if (ra->mmap_miss > MMAP_LOTSAMISS) 2317 return; 2318 2319 /* 2320 * mmap read-around 2321 */ 2322 ra->start = max_t(long, 0, offset - ra->ra_pages / 2); 2323 ra->size = ra->ra_pages; 2324 ra->async_size = ra->ra_pages / 4; 2325 ra_submit(ra, mapping, file); 2326 } 2327 2328 /* 2329 * Asynchronous readahead happens when we find the page and PG_readahead, 2330 * so we want to possibly extend the readahead further.. 2331 */ 2332 static void do_async_mmap_readahead(struct vm_area_struct *vma, 2333 struct file_ra_state *ra, 2334 struct file *file, 2335 struct page *page, 2336 pgoff_t offset) 2337 { 2338 struct address_space *mapping = file->f_mapping; 2339 2340 /* If we don't want any read-ahead, don't bother */ 2341 if (vma->vm_flags & VM_RAND_READ) 2342 return; 2343 if (ra->mmap_miss > 0) 2344 ra->mmap_miss--; 2345 if (PageReadahead(page)) 2346 page_cache_async_readahead(mapping, ra, file, 2347 page, offset, ra->ra_pages); 2348 } 2349 2350 /** 2351 * filemap_fault - read in file data for page fault handling 2352 * @vmf: struct vm_fault containing details of the fault 2353 * 2354 * filemap_fault() is invoked via the vma operations vector for a 2355 * mapped memory region to read in file data during a page fault. 2356 * 2357 * The goto's are kind of ugly, but this streamlines the normal case of having 2358 * it in the page cache, and handles the special cases reasonably without 2359 * having a lot of duplicated code. 2360 * 2361 * vma->vm_mm->mmap_sem must be held on entry. 2362 * 2363 * If our return value has VM_FAULT_RETRY set, it's because 2364 * lock_page_or_retry() returned 0. 2365 * The mmap_sem has usually been released in this case. 2366 * See __lock_page_or_retry() for the exception. 2367 * 2368 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem 2369 * has not been released. 2370 * 2371 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. 2372 */ 2373 int filemap_fault(struct vm_fault *vmf) 2374 { 2375 int error; 2376 struct file *file = vmf->vma->vm_file; 2377 struct address_space *mapping = file->f_mapping; 2378 struct file_ra_state *ra = &file->f_ra; 2379 struct inode *inode = mapping->host; 2380 pgoff_t offset = vmf->pgoff; 2381 pgoff_t max_off; 2382 struct page *page; 2383 int ret = 0; 2384 2385 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2386 if (unlikely(offset >= max_off)) 2387 return VM_FAULT_SIGBUS; 2388 2389 /* 2390 * Do we have something in the page cache already? 2391 */ 2392 page = find_get_page(mapping, offset); 2393 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) { 2394 /* 2395 * We found the page, so try async readahead before 2396 * waiting for the lock. 2397 */ 2398 do_async_mmap_readahead(vmf->vma, ra, file, page, offset); 2399 } else if (!page) { 2400 /* No page in the page cache at all */ 2401 do_sync_mmap_readahead(vmf->vma, ra, file, offset); 2402 count_vm_event(PGMAJFAULT); 2403 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); 2404 ret = VM_FAULT_MAJOR; 2405 retry_find: 2406 page = find_get_page(mapping, offset); 2407 if (!page) 2408 goto no_cached_page; 2409 } 2410 2411 if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) { 2412 put_page(page); 2413 return ret | VM_FAULT_RETRY; 2414 } 2415 2416 /* Did it get truncated? */ 2417 if (unlikely(page->mapping != mapping)) { 2418 unlock_page(page); 2419 put_page(page); 2420 goto retry_find; 2421 } 2422 VM_BUG_ON_PAGE(page->index != offset, page); 2423 2424 /* 2425 * We have a locked page in the page cache, now we need to check 2426 * that it's up-to-date. If not, it is going to be due to an error. 2427 */ 2428 if (unlikely(!PageUptodate(page))) 2429 goto page_not_uptodate; 2430 2431 /* 2432 * Found the page and have a reference on it. 2433 * We must recheck i_size under page lock. 2434 */ 2435 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2436 if (unlikely(offset >= max_off)) { 2437 unlock_page(page); 2438 put_page(page); 2439 return VM_FAULT_SIGBUS; 2440 } 2441 2442 vmf->page = page; 2443 return ret | VM_FAULT_LOCKED; 2444 2445 no_cached_page: 2446 /* 2447 * We're only likely to ever get here if MADV_RANDOM is in 2448 * effect. 2449 */ 2450 error = page_cache_read(file, offset, vmf->gfp_mask); 2451 2452 /* 2453 * The page we want has now been added to the page cache. 2454 * In the unlikely event that someone removed it in the 2455 * meantime, we'll just come back here and read it again. 2456 */ 2457 if (error >= 0) 2458 goto retry_find; 2459 2460 /* 2461 * An error return from page_cache_read can result if the 2462 * system is low on memory, or a problem occurs while trying 2463 * to schedule I/O. 2464 */ 2465 if (error == -ENOMEM) 2466 return VM_FAULT_OOM; 2467 return VM_FAULT_SIGBUS; 2468 2469 page_not_uptodate: 2470 /* 2471 * Umm, take care of errors if the page isn't up-to-date. 2472 * Try to re-read it _once_. We do this synchronously, 2473 * because there really aren't any performance issues here 2474 * and we need to check for errors. 2475 */ 2476 ClearPageError(page); 2477 error = mapping->a_ops->readpage(file, page); 2478 if (!error) { 2479 wait_on_page_locked(page); 2480 if (!PageUptodate(page)) 2481 error = -EIO; 2482 } 2483 put_page(page); 2484 2485 if (!error || error == AOP_TRUNCATED_PAGE) 2486 goto retry_find; 2487 2488 /* Things didn't work out. Return zero to tell the mm layer so. */ 2489 shrink_readahead_size_eio(file, ra); 2490 return VM_FAULT_SIGBUS; 2491 } 2492 EXPORT_SYMBOL(filemap_fault); 2493 2494 void filemap_map_pages(struct vm_fault *vmf, 2495 pgoff_t start_pgoff, pgoff_t end_pgoff) 2496 { 2497 struct radix_tree_iter iter; 2498 void **slot; 2499 struct file *file = vmf->vma->vm_file; 2500 struct address_space *mapping = file->f_mapping; 2501 pgoff_t last_pgoff = start_pgoff; 2502 unsigned long max_idx; 2503 struct page *head, *page; 2504 2505 rcu_read_lock(); 2506 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, 2507 start_pgoff) { 2508 if (iter.index > end_pgoff) 2509 break; 2510 repeat: 2511 page = radix_tree_deref_slot(slot); 2512 if (unlikely(!page)) 2513 goto next; 2514 if (radix_tree_exception(page)) { 2515 if (radix_tree_deref_retry(page)) { 2516 slot = radix_tree_iter_retry(&iter); 2517 continue; 2518 } 2519 goto next; 2520 } 2521 2522 head = compound_head(page); 2523 if (!page_cache_get_speculative(head)) 2524 goto repeat; 2525 2526 /* The page was split under us? */ 2527 if (compound_head(page) != head) { 2528 put_page(head); 2529 goto repeat; 2530 } 2531 2532 /* Has the page moved? */ 2533 if (unlikely(page != *slot)) { 2534 put_page(head); 2535 goto repeat; 2536 } 2537 2538 if (!PageUptodate(page) || 2539 PageReadahead(page) || 2540 PageHWPoison(page)) 2541 goto skip; 2542 if (!trylock_page(page)) 2543 goto skip; 2544 2545 if (page->mapping != mapping || !PageUptodate(page)) 2546 goto unlock; 2547 2548 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 2549 if (page->index >= max_idx) 2550 goto unlock; 2551 2552 if (file->f_ra.mmap_miss > 0) 2553 file->f_ra.mmap_miss--; 2554 2555 vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT; 2556 if (vmf->pte) 2557 vmf->pte += iter.index - last_pgoff; 2558 last_pgoff = iter.index; 2559 if (alloc_set_pte(vmf, NULL, page)) 2560 goto unlock; 2561 unlock_page(page); 2562 goto next; 2563 unlock: 2564 unlock_page(page); 2565 skip: 2566 put_page(page); 2567 next: 2568 /* Huge page is mapped? No need to proceed. */ 2569 if (pmd_trans_huge(*vmf->pmd)) 2570 break; 2571 if (iter.index == end_pgoff) 2572 break; 2573 } 2574 rcu_read_unlock(); 2575 } 2576 EXPORT_SYMBOL(filemap_map_pages); 2577 2578 int filemap_page_mkwrite(struct vm_fault *vmf) 2579 { 2580 struct page *page = vmf->page; 2581 struct inode *inode = file_inode(vmf->vma->vm_file); 2582 int ret = VM_FAULT_LOCKED; 2583 2584 sb_start_pagefault(inode->i_sb); 2585 file_update_time(vmf->vma->vm_file); 2586 lock_page(page); 2587 if (page->mapping != inode->i_mapping) { 2588 unlock_page(page); 2589 ret = VM_FAULT_NOPAGE; 2590 goto out; 2591 } 2592 /* 2593 * We mark the page dirty already here so that when freeze is in 2594 * progress, we are guaranteed that writeback during freezing will 2595 * see the dirty page and writeprotect it again. 2596 */ 2597 set_page_dirty(page); 2598 wait_for_stable_page(page); 2599 out: 2600 sb_end_pagefault(inode->i_sb); 2601 return ret; 2602 } 2603 EXPORT_SYMBOL(filemap_page_mkwrite); 2604 2605 const struct vm_operations_struct generic_file_vm_ops = { 2606 .fault = filemap_fault, 2607 .map_pages = filemap_map_pages, 2608 .page_mkwrite = filemap_page_mkwrite, 2609 }; 2610 2611 /* This is used for a general mmap of a disk file */ 2612 2613 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 2614 { 2615 struct address_space *mapping = file->f_mapping; 2616 2617 if (!mapping->a_ops->readpage) 2618 return -ENOEXEC; 2619 file_accessed(file); 2620 vma->vm_ops = &generic_file_vm_ops; 2621 return 0; 2622 } 2623 2624 /* 2625 * This is for filesystems which do not implement ->writepage. 2626 */ 2627 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 2628 { 2629 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 2630 return -EINVAL; 2631 return generic_file_mmap(file, vma); 2632 } 2633 #else 2634 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 2635 { 2636 return -ENOSYS; 2637 } 2638 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) 2639 { 2640 return -ENOSYS; 2641 } 2642 #endif /* CONFIG_MMU */ 2643 2644 EXPORT_SYMBOL(generic_file_mmap); 2645 EXPORT_SYMBOL(generic_file_readonly_mmap); 2646 2647 static struct page *wait_on_page_read(struct page *page) 2648 { 2649 if (!IS_ERR(page)) { 2650 wait_on_page_locked(page); 2651 if (!PageUptodate(page)) { 2652 put_page(page); 2653 page = ERR_PTR(-EIO); 2654 } 2655 } 2656 return page; 2657 } 2658 2659 static struct page *do_read_cache_page(struct address_space *mapping, 2660 pgoff_t index, 2661 int (*filler)(void *, struct page *), 2662 void *data, 2663 gfp_t gfp) 2664 { 2665 struct page *page; 2666 int err; 2667 repeat: 2668 page = find_get_page(mapping, index); 2669 if (!page) { 2670 page = __page_cache_alloc(gfp | __GFP_COLD); 2671 if (!page) 2672 return ERR_PTR(-ENOMEM); 2673 err = add_to_page_cache_lru(page, mapping, index, gfp); 2674 if (unlikely(err)) { 2675 put_page(page); 2676 if (err == -EEXIST) 2677 goto repeat; 2678 /* Presumably ENOMEM for radix tree node */ 2679 return ERR_PTR(err); 2680 } 2681 2682 filler: 2683 err = filler(data, page); 2684 if (err < 0) { 2685 put_page(page); 2686 return ERR_PTR(err); 2687 } 2688 2689 page = wait_on_page_read(page); 2690 if (IS_ERR(page)) 2691 return page; 2692 goto out; 2693 } 2694 if (PageUptodate(page)) 2695 goto out; 2696 2697 /* 2698 * Page is not up to date and may be locked due one of the following 2699 * case a: Page is being filled and the page lock is held 2700 * case b: Read/write error clearing the page uptodate status 2701 * case c: Truncation in progress (page locked) 2702 * case d: Reclaim in progress 2703 * 2704 * Case a, the page will be up to date when the page is unlocked. 2705 * There is no need to serialise on the page lock here as the page 2706 * is pinned so the lock gives no additional protection. Even if the 2707 * the page is truncated, the data is still valid if PageUptodate as 2708 * it's a race vs truncate race. 2709 * Case b, the page will not be up to date 2710 * Case c, the page may be truncated but in itself, the data may still 2711 * be valid after IO completes as it's a read vs truncate race. The 2712 * operation must restart if the page is not uptodate on unlock but 2713 * otherwise serialising on page lock to stabilise the mapping gives 2714 * no additional guarantees to the caller as the page lock is 2715 * released before return. 2716 * Case d, similar to truncation. If reclaim holds the page lock, it 2717 * will be a race with remove_mapping that determines if the mapping 2718 * is valid on unlock but otherwise the data is valid and there is 2719 * no need to serialise with page lock. 2720 * 2721 * As the page lock gives no additional guarantee, we optimistically 2722 * wait on the page to be unlocked and check if it's up to date and 2723 * use the page if it is. Otherwise, the page lock is required to 2724 * distinguish between the different cases. The motivation is that we 2725 * avoid spurious serialisations and wakeups when multiple processes 2726 * wait on the same page for IO to complete. 2727 */ 2728 wait_on_page_locked(page); 2729 if (PageUptodate(page)) 2730 goto out; 2731 2732 /* Distinguish between all the cases under the safety of the lock */ 2733 lock_page(page); 2734 2735 /* Case c or d, restart the operation */ 2736 if (!page->mapping) { 2737 unlock_page(page); 2738 put_page(page); 2739 goto repeat; 2740 } 2741 2742 /* Someone else locked and filled the page in a very small window */ 2743 if (PageUptodate(page)) { 2744 unlock_page(page); 2745 goto out; 2746 } 2747 goto filler; 2748 2749 out: 2750 mark_page_accessed(page); 2751 return page; 2752 } 2753 2754 /** 2755 * read_cache_page - read into page cache, fill it if needed 2756 * @mapping: the page's address_space 2757 * @index: the page index 2758 * @filler: function to perform the read 2759 * @data: first arg to filler(data, page) function, often left as NULL 2760 * 2761 * Read into the page cache. If a page already exists, and PageUptodate() is 2762 * not set, try to fill the page and wait for it to become unlocked. 2763 * 2764 * If the page does not get brought uptodate, return -EIO. 2765 */ 2766 struct page *read_cache_page(struct address_space *mapping, 2767 pgoff_t index, 2768 int (*filler)(void *, struct page *), 2769 void *data) 2770 { 2771 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping)); 2772 } 2773 EXPORT_SYMBOL(read_cache_page); 2774 2775 /** 2776 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 2777 * @mapping: the page's address_space 2778 * @index: the page index 2779 * @gfp: the page allocator flags to use if allocating 2780 * 2781 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 2782 * any new page allocations done using the specified allocation flags. 2783 * 2784 * If the page does not get brought uptodate, return -EIO. 2785 */ 2786 struct page *read_cache_page_gfp(struct address_space *mapping, 2787 pgoff_t index, 2788 gfp_t gfp) 2789 { 2790 filler_t *filler = (filler_t *)mapping->a_ops->readpage; 2791 2792 return do_read_cache_page(mapping, index, filler, NULL, gfp); 2793 } 2794 EXPORT_SYMBOL(read_cache_page_gfp); 2795 2796 /* 2797 * Performs necessary checks before doing a write 2798 * 2799 * Can adjust writing position or amount of bytes to write. 2800 * Returns appropriate error code that caller should return or 2801 * zero in case that write should be allowed. 2802 */ 2803 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from) 2804 { 2805 struct file *file = iocb->ki_filp; 2806 struct inode *inode = file->f_mapping->host; 2807 unsigned long limit = rlimit(RLIMIT_FSIZE); 2808 loff_t pos; 2809 2810 if (!iov_iter_count(from)) 2811 return 0; 2812 2813 /* FIXME: this is for backwards compatibility with 2.4 */ 2814 if (iocb->ki_flags & IOCB_APPEND) 2815 iocb->ki_pos = i_size_read(inode); 2816 2817 pos = iocb->ki_pos; 2818 2819 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT)) 2820 return -EINVAL; 2821 2822 if (limit != RLIM_INFINITY) { 2823 if (iocb->ki_pos >= limit) { 2824 send_sig(SIGXFSZ, current, 0); 2825 return -EFBIG; 2826 } 2827 iov_iter_truncate(from, limit - (unsigned long)pos); 2828 } 2829 2830 /* 2831 * LFS rule 2832 */ 2833 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS && 2834 !(file->f_flags & O_LARGEFILE))) { 2835 if (pos >= MAX_NON_LFS) 2836 return -EFBIG; 2837 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos); 2838 } 2839 2840 /* 2841 * Are we about to exceed the fs block limit ? 2842 * 2843 * If we have written data it becomes a short write. If we have 2844 * exceeded without writing data we send a signal and return EFBIG. 2845 * Linus frestrict idea will clean these up nicely.. 2846 */ 2847 if (unlikely(pos >= inode->i_sb->s_maxbytes)) 2848 return -EFBIG; 2849 2850 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos); 2851 return iov_iter_count(from); 2852 } 2853 EXPORT_SYMBOL(generic_write_checks); 2854 2855 int pagecache_write_begin(struct file *file, struct address_space *mapping, 2856 loff_t pos, unsigned len, unsigned flags, 2857 struct page **pagep, void **fsdata) 2858 { 2859 const struct address_space_operations *aops = mapping->a_ops; 2860 2861 return aops->write_begin(file, mapping, pos, len, flags, 2862 pagep, fsdata); 2863 } 2864 EXPORT_SYMBOL(pagecache_write_begin); 2865 2866 int pagecache_write_end(struct file *file, struct address_space *mapping, 2867 loff_t pos, unsigned len, unsigned copied, 2868 struct page *page, void *fsdata) 2869 { 2870 const struct address_space_operations *aops = mapping->a_ops; 2871 2872 return aops->write_end(file, mapping, pos, len, copied, page, fsdata); 2873 } 2874 EXPORT_SYMBOL(pagecache_write_end); 2875 2876 ssize_t 2877 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) 2878 { 2879 struct file *file = iocb->ki_filp; 2880 struct address_space *mapping = file->f_mapping; 2881 struct inode *inode = mapping->host; 2882 loff_t pos = iocb->ki_pos; 2883 ssize_t written; 2884 size_t write_len; 2885 pgoff_t end; 2886 2887 write_len = iov_iter_count(from); 2888 end = (pos + write_len - 1) >> PAGE_SHIFT; 2889 2890 if (iocb->ki_flags & IOCB_NOWAIT) { 2891 /* If there are pages to writeback, return */ 2892 if (filemap_range_has_page(inode->i_mapping, pos, 2893 pos + iov_iter_count(from))) 2894 return -EAGAIN; 2895 } else { 2896 written = filemap_write_and_wait_range(mapping, pos, 2897 pos + write_len - 1); 2898 if (written) 2899 goto out; 2900 } 2901 2902 /* 2903 * After a write we want buffered reads to be sure to go to disk to get 2904 * the new data. We invalidate clean cached page from the region we're 2905 * about to write. We do this *before* the write so that we can return 2906 * without clobbering -EIOCBQUEUED from ->direct_IO(). 2907 */ 2908 written = invalidate_inode_pages2_range(mapping, 2909 pos >> PAGE_SHIFT, end); 2910 /* 2911 * If a page can not be invalidated, return 0 to fall back 2912 * to buffered write. 2913 */ 2914 if (written) { 2915 if (written == -EBUSY) 2916 return 0; 2917 goto out; 2918 } 2919 2920 written = mapping->a_ops->direct_IO(iocb, from); 2921 2922 /* 2923 * Finally, try again to invalidate clean pages which might have been 2924 * cached by non-direct readahead, or faulted in by get_user_pages() 2925 * if the source of the write was an mmap'ed region of the file 2926 * we're writing. Either one is a pretty crazy thing to do, 2927 * so we don't support it 100%. If this invalidation 2928 * fails, tough, the write still worked... 2929 */ 2930 invalidate_inode_pages2_range(mapping, 2931 pos >> PAGE_SHIFT, end); 2932 2933 if (written > 0) { 2934 pos += written; 2935 write_len -= written; 2936 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 2937 i_size_write(inode, pos); 2938 mark_inode_dirty(inode); 2939 } 2940 iocb->ki_pos = pos; 2941 } 2942 iov_iter_revert(from, write_len - iov_iter_count(from)); 2943 out: 2944 return written; 2945 } 2946 EXPORT_SYMBOL(generic_file_direct_write); 2947 2948 /* 2949 * Find or create a page at the given pagecache position. Return the locked 2950 * page. This function is specifically for buffered writes. 2951 */ 2952 struct page *grab_cache_page_write_begin(struct address_space *mapping, 2953 pgoff_t index, unsigned flags) 2954 { 2955 struct page *page; 2956 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT; 2957 2958 if (flags & AOP_FLAG_NOFS) 2959 fgp_flags |= FGP_NOFS; 2960 2961 page = pagecache_get_page(mapping, index, fgp_flags, 2962 mapping_gfp_mask(mapping)); 2963 if (page) 2964 wait_for_stable_page(page); 2965 2966 return page; 2967 } 2968 EXPORT_SYMBOL(grab_cache_page_write_begin); 2969 2970 ssize_t generic_perform_write(struct file *file, 2971 struct iov_iter *i, loff_t pos) 2972 { 2973 struct address_space *mapping = file->f_mapping; 2974 const struct address_space_operations *a_ops = mapping->a_ops; 2975 long status = 0; 2976 ssize_t written = 0; 2977 unsigned int flags = 0; 2978 2979 do { 2980 struct page *page; 2981 unsigned long offset; /* Offset into pagecache page */ 2982 unsigned long bytes; /* Bytes to write to page */ 2983 size_t copied; /* Bytes copied from user */ 2984 void *fsdata; 2985 2986 offset = (pos & (PAGE_SIZE - 1)); 2987 bytes = min_t(unsigned long, PAGE_SIZE - offset, 2988 iov_iter_count(i)); 2989 2990 again: 2991 /* 2992 * Bring in the user page that we will copy from _first_. 2993 * Otherwise there's a nasty deadlock on copying from the 2994 * same page as we're writing to, without it being marked 2995 * up-to-date. 2996 * 2997 * Not only is this an optimisation, but it is also required 2998 * to check that the address is actually valid, when atomic 2999 * usercopies are used, below. 3000 */ 3001 if (unlikely(iov_iter_fault_in_readable(i, bytes))) { 3002 status = -EFAULT; 3003 break; 3004 } 3005 3006 if (fatal_signal_pending(current)) { 3007 status = -EINTR; 3008 break; 3009 } 3010 3011 status = a_ops->write_begin(file, mapping, pos, bytes, flags, 3012 &page, &fsdata); 3013 if (unlikely(status < 0)) 3014 break; 3015 3016 if (mapping_writably_mapped(mapping)) 3017 flush_dcache_page(page); 3018 3019 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); 3020 flush_dcache_page(page); 3021 3022 status = a_ops->write_end(file, mapping, pos, bytes, copied, 3023 page, fsdata); 3024 if (unlikely(status < 0)) 3025 break; 3026 copied = status; 3027 3028 cond_resched(); 3029 3030 iov_iter_advance(i, copied); 3031 if (unlikely(copied == 0)) { 3032 /* 3033 * If we were unable to copy any data at all, we must 3034 * fall back to a single segment length write. 3035 * 3036 * If we didn't fallback here, we could livelock 3037 * because not all segments in the iov can be copied at 3038 * once without a pagefault. 3039 */ 3040 bytes = min_t(unsigned long, PAGE_SIZE - offset, 3041 iov_iter_single_seg_count(i)); 3042 goto again; 3043 } 3044 pos += copied; 3045 written += copied; 3046 3047 balance_dirty_pages_ratelimited(mapping); 3048 } while (iov_iter_count(i)); 3049 3050 return written ? written : status; 3051 } 3052 EXPORT_SYMBOL(generic_perform_write); 3053 3054 /** 3055 * __generic_file_write_iter - write data to a file 3056 * @iocb: IO state structure (file, offset, etc.) 3057 * @from: iov_iter with data to write 3058 * 3059 * This function does all the work needed for actually writing data to a 3060 * file. It does all basic checks, removes SUID from the file, updates 3061 * modification times and calls proper subroutines depending on whether we 3062 * do direct IO or a standard buffered write. 3063 * 3064 * It expects i_mutex to be grabbed unless we work on a block device or similar 3065 * object which does not need locking at all. 3066 * 3067 * This function does *not* take care of syncing data in case of O_SYNC write. 3068 * A caller has to handle it. This is mainly due to the fact that we want to 3069 * avoid syncing under i_mutex. 3070 */ 3071 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3072 { 3073 struct file *file = iocb->ki_filp; 3074 struct address_space * mapping = file->f_mapping; 3075 struct inode *inode = mapping->host; 3076 ssize_t written = 0; 3077 ssize_t err; 3078 ssize_t status; 3079 3080 /* We can write back this queue in page reclaim */ 3081 current->backing_dev_info = inode_to_bdi(inode); 3082 err = file_remove_privs(file); 3083 if (err) 3084 goto out; 3085 3086 err = file_update_time(file); 3087 if (err) 3088 goto out; 3089 3090 if (iocb->ki_flags & IOCB_DIRECT) { 3091 loff_t pos, endbyte; 3092 3093 written = generic_file_direct_write(iocb, from); 3094 /* 3095 * If the write stopped short of completing, fall back to 3096 * buffered writes. Some filesystems do this for writes to 3097 * holes, for example. For DAX files, a buffered write will 3098 * not succeed (even if it did, DAX does not handle dirty 3099 * page-cache pages correctly). 3100 */ 3101 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode)) 3102 goto out; 3103 3104 status = generic_perform_write(file, from, pos = iocb->ki_pos); 3105 /* 3106 * If generic_perform_write() returned a synchronous error 3107 * then we want to return the number of bytes which were 3108 * direct-written, or the error code if that was zero. Note 3109 * that this differs from normal direct-io semantics, which 3110 * will return -EFOO even if some bytes were written. 3111 */ 3112 if (unlikely(status < 0)) { 3113 err = status; 3114 goto out; 3115 } 3116 /* 3117 * We need to ensure that the page cache pages are written to 3118 * disk and invalidated to preserve the expected O_DIRECT 3119 * semantics. 3120 */ 3121 endbyte = pos + status - 1; 3122 err = filemap_write_and_wait_range(mapping, pos, endbyte); 3123 if (err == 0) { 3124 iocb->ki_pos = endbyte + 1; 3125 written += status; 3126 invalidate_mapping_pages(mapping, 3127 pos >> PAGE_SHIFT, 3128 endbyte >> PAGE_SHIFT); 3129 } else { 3130 /* 3131 * We don't know how much we wrote, so just return 3132 * the number of bytes which were direct-written 3133 */ 3134 } 3135 } else { 3136 written = generic_perform_write(file, from, iocb->ki_pos); 3137 if (likely(written > 0)) 3138 iocb->ki_pos += written; 3139 } 3140 out: 3141 current->backing_dev_info = NULL; 3142 return written ? written : err; 3143 } 3144 EXPORT_SYMBOL(__generic_file_write_iter); 3145 3146 /** 3147 * generic_file_write_iter - write data to a file 3148 * @iocb: IO state structure 3149 * @from: iov_iter with data to write 3150 * 3151 * This is a wrapper around __generic_file_write_iter() to be used by most 3152 * filesystems. It takes care of syncing the file in case of O_SYNC file 3153 * and acquires i_mutex as needed. 3154 */ 3155 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3156 { 3157 struct file *file = iocb->ki_filp; 3158 struct inode *inode = file->f_mapping->host; 3159 ssize_t ret; 3160 3161 inode_lock(inode); 3162 ret = generic_write_checks(iocb, from); 3163 if (ret > 0) 3164 ret = __generic_file_write_iter(iocb, from); 3165 inode_unlock(inode); 3166 3167 if (ret > 0) 3168 ret = generic_write_sync(iocb, ret); 3169 return ret; 3170 } 3171 EXPORT_SYMBOL(generic_file_write_iter); 3172 3173 /** 3174 * try_to_release_page() - release old fs-specific metadata on a page 3175 * 3176 * @page: the page which the kernel is trying to free 3177 * @gfp_mask: memory allocation flags (and I/O mode) 3178 * 3179 * The address_space is to try to release any data against the page 3180 * (presumably at page->private). If the release was successful, return '1'. 3181 * Otherwise return zero. 3182 * 3183 * This may also be called if PG_fscache is set on a page, indicating that the 3184 * page is known to the local caching routines. 3185 * 3186 * The @gfp_mask argument specifies whether I/O may be performed to release 3187 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS). 3188 * 3189 */ 3190 int try_to_release_page(struct page *page, gfp_t gfp_mask) 3191 { 3192 struct address_space * const mapping = page->mapping; 3193 3194 BUG_ON(!PageLocked(page)); 3195 if (PageWriteback(page)) 3196 return 0; 3197 3198 if (mapping && mapping->a_ops->releasepage) 3199 return mapping->a_ops->releasepage(page, gfp_mask); 3200 return try_to_free_buffers(page); 3201 } 3202 3203 EXPORT_SYMBOL(try_to_release_page); 3204