xref: /openbmc/linux/mm/filemap.c (revision 6e10e219)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	linux/mm/filemap.c
4  *
5  * Copyright (C) 1994-1999  Linus Torvalds
6  */
7 
8 /*
9  * This file handles the generic file mmap semantics used by
10  * most "normal" filesystems (but you don't /have/ to use this:
11  * the NFS filesystem used to do this differently, for example)
12  */
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
16 #include <linux/fs.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
22 #include <linux/mm.h>
23 #include <linux/swap.h>
24 #include <linux/mman.h>
25 #include <linux/pagemap.h>
26 #include <linux/file.h>
27 #include <linux/uio.h>
28 #include <linux/error-injection.h>
29 #include <linux/hash.h>
30 #include <linux/writeback.h>
31 #include <linux/backing-dev.h>
32 #include <linux/pagevec.h>
33 #include <linux/security.h>
34 #include <linux/cpuset.h>
35 #include <linux/hugetlb.h>
36 #include <linux/memcontrol.h>
37 #include <linux/cleancache.h>
38 #include <linux/shmem_fs.h>
39 #include <linux/rmap.h>
40 #include <linux/delayacct.h>
41 #include <linux/psi.h>
42 #include <linux/ramfs.h>
43 #include <linux/page_idle.h>
44 #include <asm/pgalloc.h>
45 #include <asm/tlbflush.h>
46 #include "internal.h"
47 
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/filemap.h>
50 
51 /*
52  * FIXME: remove all knowledge of the buffer layer from the core VM
53  */
54 #include <linux/buffer_head.h> /* for try_to_free_buffers */
55 
56 #include <asm/mman.h>
57 
58 /*
59  * Shared mappings implemented 30.11.1994. It's not fully working yet,
60  * though.
61  *
62  * Shared mappings now work. 15.8.1995  Bruno.
63  *
64  * finished 'unifying' the page and buffer cache and SMP-threaded the
65  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
66  *
67  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
68  */
69 
70 /*
71  * Lock ordering:
72  *
73  *  ->i_mmap_rwsem		(truncate_pagecache)
74  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
75  *      ->swap_lock		(exclusive_swap_page, others)
76  *        ->i_pages lock
77  *
78  *  ->i_rwsem
79  *    ->invalidate_lock		(acquired by fs in truncate path)
80  *      ->i_mmap_rwsem		(truncate->unmap_mapping_range)
81  *
82  *  ->mmap_lock
83  *    ->i_mmap_rwsem
84  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
85  *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
86  *
87  *  ->mmap_lock
88  *    ->invalidate_lock		(filemap_fault)
89  *      ->lock_page		(filemap_fault, access_process_vm)
90  *
91  *  ->i_rwsem			(generic_perform_write)
92  *    ->mmap_lock		(fault_in_readable->do_page_fault)
93  *
94  *  bdi->wb.list_lock
95  *    sb_lock			(fs/fs-writeback.c)
96  *    ->i_pages lock		(__sync_single_inode)
97  *
98  *  ->i_mmap_rwsem
99  *    ->anon_vma.lock		(vma_adjust)
100  *
101  *  ->anon_vma.lock
102  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
103  *
104  *  ->page_table_lock or pte_lock
105  *    ->swap_lock		(try_to_unmap_one)
106  *    ->private_lock		(try_to_unmap_one)
107  *    ->i_pages lock		(try_to_unmap_one)
108  *    ->lruvec->lru_lock	(follow_page->mark_page_accessed)
109  *    ->lruvec->lru_lock	(check_pte_range->isolate_lru_page)
110  *    ->private_lock		(page_remove_rmap->set_page_dirty)
111  *    ->i_pages lock		(page_remove_rmap->set_page_dirty)
112  *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
113  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
114  *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
115  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
116  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
117  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
118  *
119  * ->i_mmap_rwsem
120  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
121  */
122 
123 static void page_cache_delete(struct address_space *mapping,
124 				   struct folio *folio, void *shadow)
125 {
126 	XA_STATE(xas, &mapping->i_pages, folio->index);
127 	long nr = 1;
128 
129 	mapping_set_update(&xas, mapping);
130 
131 	/* hugetlb pages are represented by a single entry in the xarray */
132 	if (!folio_test_hugetlb(folio)) {
133 		xas_set_order(&xas, folio->index, folio_order(folio));
134 		nr = folio_nr_pages(folio);
135 	}
136 
137 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
138 
139 	xas_store(&xas, shadow);
140 	xas_init_marks(&xas);
141 
142 	folio->mapping = NULL;
143 	/* Leave page->index set: truncation lookup relies upon it */
144 	mapping->nrpages -= nr;
145 }
146 
147 static void filemap_unaccount_folio(struct address_space *mapping,
148 		struct folio *folio)
149 {
150 	long nr;
151 
152 	/*
153 	 * if we're uptodate, flush out into the cleancache, otherwise
154 	 * invalidate any existing cleancache entries.  We can't leave
155 	 * stale data around in the cleancache once our page is gone
156 	 */
157 	if (folio_test_uptodate(folio) && folio_test_mappedtodisk(folio))
158 		cleancache_put_page(&folio->page);
159 	else
160 		cleancache_invalidate_page(mapping, &folio->page);
161 
162 	VM_BUG_ON_FOLIO(folio_mapped(folio), folio);
163 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) {
164 		int mapcount;
165 
166 		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
167 			 current->comm, folio_pfn(folio));
168 		dump_page(&folio->page, "still mapped when deleted");
169 		dump_stack();
170 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
171 
172 		mapcount = page_mapcount(&folio->page);
173 		if (mapping_exiting(mapping) &&
174 		    folio_ref_count(folio) >= mapcount + 2) {
175 			/*
176 			 * All vmas have already been torn down, so it's
177 			 * a good bet that actually the folio is unmapped,
178 			 * and we'd prefer not to leak it: if we're wrong,
179 			 * some other bad page check should catch it later.
180 			 */
181 			page_mapcount_reset(&folio->page);
182 			folio_ref_sub(folio, mapcount);
183 		}
184 	}
185 
186 	/* hugetlb folios do not participate in page cache accounting. */
187 	if (folio_test_hugetlb(folio))
188 		return;
189 
190 	nr = folio_nr_pages(folio);
191 
192 	__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
193 	if (folio_test_swapbacked(folio)) {
194 		__lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
195 		if (folio_test_pmd_mappable(folio))
196 			__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr);
197 	} else if (folio_test_pmd_mappable(folio)) {
198 		__lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr);
199 		filemap_nr_thps_dec(mapping);
200 	}
201 
202 	/*
203 	 * At this point folio must be either written or cleaned by
204 	 * truncate.  Dirty folio here signals a bug and loss of
205 	 * unwritten data.
206 	 *
207 	 * This fixes dirty accounting after removing the folio entirely
208 	 * but leaves the dirty flag set: it has no effect for truncated
209 	 * folio and anyway will be cleared before returning folio to
210 	 * buddy allocator.
211 	 */
212 	if (WARN_ON_ONCE(folio_test_dirty(folio)))
213 		folio_account_cleaned(folio, mapping,
214 					inode_to_wb(mapping->host));
215 }
216 
217 /*
218  * Delete a page from the page cache and free it. Caller has to make
219  * sure the page is locked and that nobody else uses it - or that usage
220  * is safe.  The caller must hold the i_pages lock.
221  */
222 void __filemap_remove_folio(struct folio *folio, void *shadow)
223 {
224 	struct address_space *mapping = folio->mapping;
225 
226 	trace_mm_filemap_delete_from_page_cache(folio);
227 	filemap_unaccount_folio(mapping, folio);
228 	page_cache_delete(mapping, folio, shadow);
229 }
230 
231 void filemap_free_folio(struct address_space *mapping, struct folio *folio)
232 {
233 	void (*freepage)(struct page *);
234 
235 	freepage = mapping->a_ops->freepage;
236 	if (freepage)
237 		freepage(&folio->page);
238 
239 	if (folio_test_large(folio) && !folio_test_hugetlb(folio)) {
240 		folio_ref_sub(folio, folio_nr_pages(folio));
241 		VM_BUG_ON_FOLIO(folio_ref_count(folio) <= 0, folio);
242 	} else {
243 		folio_put(folio);
244 	}
245 }
246 
247 /**
248  * filemap_remove_folio - Remove folio from page cache.
249  * @folio: The folio.
250  *
251  * This must be called only on folios that are locked and have been
252  * verified to be in the page cache.  It will never put the folio into
253  * the free list because the caller has a reference on the page.
254  */
255 void filemap_remove_folio(struct folio *folio)
256 {
257 	struct address_space *mapping = folio->mapping;
258 
259 	BUG_ON(!folio_test_locked(folio));
260 	spin_lock(&mapping->host->i_lock);
261 	xa_lock_irq(&mapping->i_pages);
262 	__filemap_remove_folio(folio, NULL);
263 	xa_unlock_irq(&mapping->i_pages);
264 	if (mapping_shrinkable(mapping))
265 		inode_add_lru(mapping->host);
266 	spin_unlock(&mapping->host->i_lock);
267 
268 	filemap_free_folio(mapping, folio);
269 }
270 
271 /*
272  * page_cache_delete_batch - delete several folios from page cache
273  * @mapping: the mapping to which folios belong
274  * @fbatch: batch of folios to delete
275  *
276  * The function walks over mapping->i_pages and removes folios passed in
277  * @fbatch from the mapping. The function expects @fbatch to be sorted
278  * by page index and is optimised for it to be dense.
279  * It tolerates holes in @fbatch (mapping entries at those indices are not
280  * modified).
281  *
282  * The function expects the i_pages lock to be held.
283  */
284 static void page_cache_delete_batch(struct address_space *mapping,
285 			     struct folio_batch *fbatch)
286 {
287 	XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index);
288 	long total_pages = 0;
289 	int i = 0;
290 	struct folio *folio;
291 
292 	mapping_set_update(&xas, mapping);
293 	xas_for_each(&xas, folio, ULONG_MAX) {
294 		if (i >= folio_batch_count(fbatch))
295 			break;
296 
297 		/* A swap/dax/shadow entry got inserted? Skip it. */
298 		if (xa_is_value(folio))
299 			continue;
300 		/*
301 		 * A page got inserted in our range? Skip it. We have our
302 		 * pages locked so they are protected from being removed.
303 		 * If we see a page whose index is higher than ours, it
304 		 * means our page has been removed, which shouldn't be
305 		 * possible because we're holding the PageLock.
306 		 */
307 		if (folio != fbatch->folios[i]) {
308 			VM_BUG_ON_FOLIO(folio->index >
309 					fbatch->folios[i]->index, folio);
310 			continue;
311 		}
312 
313 		WARN_ON_ONCE(!folio_test_locked(folio));
314 
315 		folio->mapping = NULL;
316 		/* Leave folio->index set: truncation lookup relies on it */
317 
318 		i++;
319 		xas_store(&xas, NULL);
320 		total_pages += folio_nr_pages(folio);
321 	}
322 	mapping->nrpages -= total_pages;
323 }
324 
325 void delete_from_page_cache_batch(struct address_space *mapping,
326 				  struct folio_batch *fbatch)
327 {
328 	int i;
329 
330 	if (!folio_batch_count(fbatch))
331 		return;
332 
333 	spin_lock(&mapping->host->i_lock);
334 	xa_lock_irq(&mapping->i_pages);
335 	for (i = 0; i < folio_batch_count(fbatch); i++) {
336 		struct folio *folio = fbatch->folios[i];
337 
338 		trace_mm_filemap_delete_from_page_cache(folio);
339 		filemap_unaccount_folio(mapping, folio);
340 	}
341 	page_cache_delete_batch(mapping, fbatch);
342 	xa_unlock_irq(&mapping->i_pages);
343 	if (mapping_shrinkable(mapping))
344 		inode_add_lru(mapping->host);
345 	spin_unlock(&mapping->host->i_lock);
346 
347 	for (i = 0; i < folio_batch_count(fbatch); i++)
348 		filemap_free_folio(mapping, fbatch->folios[i]);
349 }
350 
351 int filemap_check_errors(struct address_space *mapping)
352 {
353 	int ret = 0;
354 	/* Check for outstanding write errors */
355 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
356 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
357 		ret = -ENOSPC;
358 	if (test_bit(AS_EIO, &mapping->flags) &&
359 	    test_and_clear_bit(AS_EIO, &mapping->flags))
360 		ret = -EIO;
361 	return ret;
362 }
363 EXPORT_SYMBOL(filemap_check_errors);
364 
365 static int filemap_check_and_keep_errors(struct address_space *mapping)
366 {
367 	/* Check for outstanding write errors */
368 	if (test_bit(AS_EIO, &mapping->flags))
369 		return -EIO;
370 	if (test_bit(AS_ENOSPC, &mapping->flags))
371 		return -ENOSPC;
372 	return 0;
373 }
374 
375 /**
376  * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
377  * @mapping:	address space structure to write
378  * @wbc:	the writeback_control controlling the writeout
379  *
380  * Call writepages on the mapping using the provided wbc to control the
381  * writeout.
382  *
383  * Return: %0 on success, negative error code otherwise.
384  */
385 int filemap_fdatawrite_wbc(struct address_space *mapping,
386 			   struct writeback_control *wbc)
387 {
388 	int ret;
389 
390 	if (!mapping_can_writeback(mapping) ||
391 	    !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
392 		return 0;
393 
394 	wbc_attach_fdatawrite_inode(wbc, mapping->host);
395 	ret = do_writepages(mapping, wbc);
396 	wbc_detach_inode(wbc);
397 	return ret;
398 }
399 EXPORT_SYMBOL(filemap_fdatawrite_wbc);
400 
401 /**
402  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
403  * @mapping:	address space structure to write
404  * @start:	offset in bytes where the range starts
405  * @end:	offset in bytes where the range ends (inclusive)
406  * @sync_mode:	enable synchronous operation
407  *
408  * Start writeback against all of a mapping's dirty pages that lie
409  * within the byte offsets <start, end> inclusive.
410  *
411  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
412  * opposed to a regular memory cleansing writeback.  The difference between
413  * these two operations is that if a dirty page/buffer is encountered, it must
414  * be waited upon, and not just skipped over.
415  *
416  * Return: %0 on success, negative error code otherwise.
417  */
418 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
419 				loff_t end, int sync_mode)
420 {
421 	struct writeback_control wbc = {
422 		.sync_mode = sync_mode,
423 		.nr_to_write = LONG_MAX,
424 		.range_start = start,
425 		.range_end = end,
426 	};
427 
428 	return filemap_fdatawrite_wbc(mapping, &wbc);
429 }
430 
431 static inline int __filemap_fdatawrite(struct address_space *mapping,
432 	int sync_mode)
433 {
434 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
435 }
436 
437 int filemap_fdatawrite(struct address_space *mapping)
438 {
439 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
440 }
441 EXPORT_SYMBOL(filemap_fdatawrite);
442 
443 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
444 				loff_t end)
445 {
446 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
447 }
448 EXPORT_SYMBOL(filemap_fdatawrite_range);
449 
450 /**
451  * filemap_flush - mostly a non-blocking flush
452  * @mapping:	target address_space
453  *
454  * This is a mostly non-blocking flush.  Not suitable for data-integrity
455  * purposes - I/O may not be started against all dirty pages.
456  *
457  * Return: %0 on success, negative error code otherwise.
458  */
459 int filemap_flush(struct address_space *mapping)
460 {
461 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
462 }
463 EXPORT_SYMBOL(filemap_flush);
464 
465 /**
466  * filemap_range_has_page - check if a page exists in range.
467  * @mapping:           address space within which to check
468  * @start_byte:        offset in bytes where the range starts
469  * @end_byte:          offset in bytes where the range ends (inclusive)
470  *
471  * Find at least one page in the range supplied, usually used to check if
472  * direct writing in this range will trigger a writeback.
473  *
474  * Return: %true if at least one page exists in the specified range,
475  * %false otherwise.
476  */
477 bool filemap_range_has_page(struct address_space *mapping,
478 			   loff_t start_byte, loff_t end_byte)
479 {
480 	struct page *page;
481 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
482 	pgoff_t max = end_byte >> PAGE_SHIFT;
483 
484 	if (end_byte < start_byte)
485 		return false;
486 
487 	rcu_read_lock();
488 	for (;;) {
489 		page = xas_find(&xas, max);
490 		if (xas_retry(&xas, page))
491 			continue;
492 		/* Shadow entries don't count */
493 		if (xa_is_value(page))
494 			continue;
495 		/*
496 		 * We don't need to try to pin this page; we're about to
497 		 * release the RCU lock anyway.  It is enough to know that
498 		 * there was a page here recently.
499 		 */
500 		break;
501 	}
502 	rcu_read_unlock();
503 
504 	return page != NULL;
505 }
506 EXPORT_SYMBOL(filemap_range_has_page);
507 
508 static void __filemap_fdatawait_range(struct address_space *mapping,
509 				     loff_t start_byte, loff_t end_byte)
510 {
511 	pgoff_t index = start_byte >> PAGE_SHIFT;
512 	pgoff_t end = end_byte >> PAGE_SHIFT;
513 	struct pagevec pvec;
514 	int nr_pages;
515 
516 	if (end_byte < start_byte)
517 		return;
518 
519 	pagevec_init(&pvec);
520 	while (index <= end) {
521 		unsigned i;
522 
523 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
524 				end, PAGECACHE_TAG_WRITEBACK);
525 		if (!nr_pages)
526 			break;
527 
528 		for (i = 0; i < nr_pages; i++) {
529 			struct page *page = pvec.pages[i];
530 
531 			wait_on_page_writeback(page);
532 			ClearPageError(page);
533 		}
534 		pagevec_release(&pvec);
535 		cond_resched();
536 	}
537 }
538 
539 /**
540  * filemap_fdatawait_range - wait for writeback to complete
541  * @mapping:		address space structure to wait for
542  * @start_byte:		offset in bytes where the range starts
543  * @end_byte:		offset in bytes where the range ends (inclusive)
544  *
545  * Walk the list of under-writeback pages of the given address space
546  * in the given range and wait for all of them.  Check error status of
547  * the address space and return it.
548  *
549  * Since the error status of the address space is cleared by this function,
550  * callers are responsible for checking the return value and handling and/or
551  * reporting the error.
552  *
553  * Return: error status of the address space.
554  */
555 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
556 			    loff_t end_byte)
557 {
558 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
559 	return filemap_check_errors(mapping);
560 }
561 EXPORT_SYMBOL(filemap_fdatawait_range);
562 
563 /**
564  * filemap_fdatawait_range_keep_errors - wait for writeback to complete
565  * @mapping:		address space structure to wait for
566  * @start_byte:		offset in bytes where the range starts
567  * @end_byte:		offset in bytes where the range ends (inclusive)
568  *
569  * Walk the list of under-writeback pages of the given address space in the
570  * given range and wait for all of them.  Unlike filemap_fdatawait_range(),
571  * this function does not clear error status of the address space.
572  *
573  * Use this function if callers don't handle errors themselves.  Expected
574  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
575  * fsfreeze(8)
576  */
577 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
578 		loff_t start_byte, loff_t end_byte)
579 {
580 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
581 	return filemap_check_and_keep_errors(mapping);
582 }
583 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
584 
585 /**
586  * file_fdatawait_range - wait for writeback to complete
587  * @file:		file pointing to address space structure to wait for
588  * @start_byte:		offset in bytes where the range starts
589  * @end_byte:		offset in bytes where the range ends (inclusive)
590  *
591  * Walk the list of under-writeback pages of the address space that file
592  * refers to, in the given range and wait for all of them.  Check error
593  * status of the address space vs. the file->f_wb_err cursor and return it.
594  *
595  * Since the error status of the file is advanced by this function,
596  * callers are responsible for checking the return value and handling and/or
597  * reporting the error.
598  *
599  * Return: error status of the address space vs. the file->f_wb_err cursor.
600  */
601 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
602 {
603 	struct address_space *mapping = file->f_mapping;
604 
605 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
606 	return file_check_and_advance_wb_err(file);
607 }
608 EXPORT_SYMBOL(file_fdatawait_range);
609 
610 /**
611  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
612  * @mapping: address space structure to wait for
613  *
614  * Walk the list of under-writeback pages of the given address space
615  * and wait for all of them.  Unlike filemap_fdatawait(), this function
616  * does not clear error status of the address space.
617  *
618  * Use this function if callers don't handle errors themselves.  Expected
619  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
620  * fsfreeze(8)
621  *
622  * Return: error status of the address space.
623  */
624 int filemap_fdatawait_keep_errors(struct address_space *mapping)
625 {
626 	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
627 	return filemap_check_and_keep_errors(mapping);
628 }
629 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
630 
631 /* Returns true if writeback might be needed or already in progress. */
632 static bool mapping_needs_writeback(struct address_space *mapping)
633 {
634 	return mapping->nrpages;
635 }
636 
637 bool filemap_range_has_writeback(struct address_space *mapping,
638 				 loff_t start_byte, loff_t end_byte)
639 {
640 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
641 	pgoff_t max = end_byte >> PAGE_SHIFT;
642 	struct page *page;
643 
644 	if (end_byte < start_byte)
645 		return false;
646 
647 	rcu_read_lock();
648 	xas_for_each(&xas, page, max) {
649 		if (xas_retry(&xas, page))
650 			continue;
651 		if (xa_is_value(page))
652 			continue;
653 		if (PageDirty(page) || PageLocked(page) || PageWriteback(page))
654 			break;
655 	}
656 	rcu_read_unlock();
657 	return page != NULL;
658 }
659 EXPORT_SYMBOL_GPL(filemap_range_has_writeback);
660 
661 /**
662  * filemap_write_and_wait_range - write out & wait on a file range
663  * @mapping:	the address_space for the pages
664  * @lstart:	offset in bytes where the range starts
665  * @lend:	offset in bytes where the range ends (inclusive)
666  *
667  * Write out and wait upon file offsets lstart->lend, inclusive.
668  *
669  * Note that @lend is inclusive (describes the last byte to be written) so
670  * that this function can be used to write to the very end-of-file (end = -1).
671  *
672  * Return: error status of the address space.
673  */
674 int filemap_write_and_wait_range(struct address_space *mapping,
675 				 loff_t lstart, loff_t lend)
676 {
677 	int err = 0;
678 
679 	if (mapping_needs_writeback(mapping)) {
680 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
681 						 WB_SYNC_ALL);
682 		/*
683 		 * Even if the above returned error, the pages may be
684 		 * written partially (e.g. -ENOSPC), so we wait for it.
685 		 * But the -EIO is special case, it may indicate the worst
686 		 * thing (e.g. bug) happened, so we avoid waiting for it.
687 		 */
688 		if (err != -EIO) {
689 			int err2 = filemap_fdatawait_range(mapping,
690 						lstart, lend);
691 			if (!err)
692 				err = err2;
693 		} else {
694 			/* Clear any previously stored errors */
695 			filemap_check_errors(mapping);
696 		}
697 	} else {
698 		err = filemap_check_errors(mapping);
699 	}
700 	return err;
701 }
702 EXPORT_SYMBOL(filemap_write_and_wait_range);
703 
704 void __filemap_set_wb_err(struct address_space *mapping, int err)
705 {
706 	errseq_t eseq = errseq_set(&mapping->wb_err, err);
707 
708 	trace_filemap_set_wb_err(mapping, eseq);
709 }
710 EXPORT_SYMBOL(__filemap_set_wb_err);
711 
712 /**
713  * file_check_and_advance_wb_err - report wb error (if any) that was previously
714  * 				   and advance wb_err to current one
715  * @file: struct file on which the error is being reported
716  *
717  * When userland calls fsync (or something like nfsd does the equivalent), we
718  * want to report any writeback errors that occurred since the last fsync (or
719  * since the file was opened if there haven't been any).
720  *
721  * Grab the wb_err from the mapping. If it matches what we have in the file,
722  * then just quickly return 0. The file is all caught up.
723  *
724  * If it doesn't match, then take the mapping value, set the "seen" flag in
725  * it and try to swap it into place. If it works, or another task beat us
726  * to it with the new value, then update the f_wb_err and return the error
727  * portion. The error at this point must be reported via proper channels
728  * (a'la fsync, or NFS COMMIT operation, etc.).
729  *
730  * While we handle mapping->wb_err with atomic operations, the f_wb_err
731  * value is protected by the f_lock since we must ensure that it reflects
732  * the latest value swapped in for this file descriptor.
733  *
734  * Return: %0 on success, negative error code otherwise.
735  */
736 int file_check_and_advance_wb_err(struct file *file)
737 {
738 	int err = 0;
739 	errseq_t old = READ_ONCE(file->f_wb_err);
740 	struct address_space *mapping = file->f_mapping;
741 
742 	/* Locklessly handle the common case where nothing has changed */
743 	if (errseq_check(&mapping->wb_err, old)) {
744 		/* Something changed, must use slow path */
745 		spin_lock(&file->f_lock);
746 		old = file->f_wb_err;
747 		err = errseq_check_and_advance(&mapping->wb_err,
748 						&file->f_wb_err);
749 		trace_file_check_and_advance_wb_err(file, old);
750 		spin_unlock(&file->f_lock);
751 	}
752 
753 	/*
754 	 * We're mostly using this function as a drop in replacement for
755 	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
756 	 * that the legacy code would have had on these flags.
757 	 */
758 	clear_bit(AS_EIO, &mapping->flags);
759 	clear_bit(AS_ENOSPC, &mapping->flags);
760 	return err;
761 }
762 EXPORT_SYMBOL(file_check_and_advance_wb_err);
763 
764 /**
765  * file_write_and_wait_range - write out & wait on a file range
766  * @file:	file pointing to address_space with pages
767  * @lstart:	offset in bytes where the range starts
768  * @lend:	offset in bytes where the range ends (inclusive)
769  *
770  * Write out and wait upon file offsets lstart->lend, inclusive.
771  *
772  * Note that @lend is inclusive (describes the last byte to be written) so
773  * that this function can be used to write to the very end-of-file (end = -1).
774  *
775  * After writing out and waiting on the data, we check and advance the
776  * f_wb_err cursor to the latest value, and return any errors detected there.
777  *
778  * Return: %0 on success, negative error code otherwise.
779  */
780 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
781 {
782 	int err = 0, err2;
783 	struct address_space *mapping = file->f_mapping;
784 
785 	if (mapping_needs_writeback(mapping)) {
786 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
787 						 WB_SYNC_ALL);
788 		/* See comment of filemap_write_and_wait() */
789 		if (err != -EIO)
790 			__filemap_fdatawait_range(mapping, lstart, lend);
791 	}
792 	err2 = file_check_and_advance_wb_err(file);
793 	if (!err)
794 		err = err2;
795 	return err;
796 }
797 EXPORT_SYMBOL(file_write_and_wait_range);
798 
799 /**
800  * replace_page_cache_page - replace a pagecache page with a new one
801  * @old:	page to be replaced
802  * @new:	page to replace with
803  *
804  * This function replaces a page in the pagecache with a new one.  On
805  * success it acquires the pagecache reference for the new page and
806  * drops it for the old page.  Both the old and new pages must be
807  * locked.  This function does not add the new page to the LRU, the
808  * caller must do that.
809  *
810  * The remove + add is atomic.  This function cannot fail.
811  */
812 void replace_page_cache_page(struct page *old, struct page *new)
813 {
814 	struct folio *fold = page_folio(old);
815 	struct folio *fnew = page_folio(new);
816 	struct address_space *mapping = old->mapping;
817 	void (*freepage)(struct page *) = mapping->a_ops->freepage;
818 	pgoff_t offset = old->index;
819 	XA_STATE(xas, &mapping->i_pages, offset);
820 
821 	VM_BUG_ON_PAGE(!PageLocked(old), old);
822 	VM_BUG_ON_PAGE(!PageLocked(new), new);
823 	VM_BUG_ON_PAGE(new->mapping, new);
824 
825 	get_page(new);
826 	new->mapping = mapping;
827 	new->index = offset;
828 
829 	mem_cgroup_migrate(fold, fnew);
830 
831 	xas_lock_irq(&xas);
832 	xas_store(&xas, new);
833 
834 	old->mapping = NULL;
835 	/* hugetlb pages do not participate in page cache accounting. */
836 	if (!PageHuge(old))
837 		__dec_lruvec_page_state(old, NR_FILE_PAGES);
838 	if (!PageHuge(new))
839 		__inc_lruvec_page_state(new, NR_FILE_PAGES);
840 	if (PageSwapBacked(old))
841 		__dec_lruvec_page_state(old, NR_SHMEM);
842 	if (PageSwapBacked(new))
843 		__inc_lruvec_page_state(new, NR_SHMEM);
844 	xas_unlock_irq(&xas);
845 	if (freepage)
846 		freepage(old);
847 	put_page(old);
848 }
849 EXPORT_SYMBOL_GPL(replace_page_cache_page);
850 
851 noinline int __filemap_add_folio(struct address_space *mapping,
852 		struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
853 {
854 	XA_STATE(xas, &mapping->i_pages, index);
855 	int huge = folio_test_hugetlb(folio);
856 	int error;
857 	bool charged = false;
858 
859 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
860 	VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
861 	mapping_set_update(&xas, mapping);
862 
863 	folio_get(folio);
864 	folio->mapping = mapping;
865 	folio->index = index;
866 
867 	if (!huge) {
868 		error = mem_cgroup_charge(folio, NULL, gfp);
869 		VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
870 		if (error)
871 			goto error;
872 		charged = true;
873 	}
874 
875 	gfp &= GFP_RECLAIM_MASK;
876 
877 	do {
878 		unsigned int order = xa_get_order(xas.xa, xas.xa_index);
879 		void *entry, *old = NULL;
880 
881 		if (order > folio_order(folio))
882 			xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
883 					order, gfp);
884 		xas_lock_irq(&xas);
885 		xas_for_each_conflict(&xas, entry) {
886 			old = entry;
887 			if (!xa_is_value(entry)) {
888 				xas_set_err(&xas, -EEXIST);
889 				goto unlock;
890 			}
891 		}
892 
893 		if (old) {
894 			if (shadowp)
895 				*shadowp = old;
896 			/* entry may have been split before we acquired lock */
897 			order = xa_get_order(xas.xa, xas.xa_index);
898 			if (order > folio_order(folio)) {
899 				xas_split(&xas, old, order);
900 				xas_reset(&xas);
901 			}
902 		}
903 
904 		xas_store(&xas, folio);
905 		if (xas_error(&xas))
906 			goto unlock;
907 
908 		mapping->nrpages++;
909 
910 		/* hugetlb pages do not participate in page cache accounting */
911 		if (!huge)
912 			__lruvec_stat_add_folio(folio, NR_FILE_PAGES);
913 unlock:
914 		xas_unlock_irq(&xas);
915 	} while (xas_nomem(&xas, gfp));
916 
917 	if (xas_error(&xas)) {
918 		error = xas_error(&xas);
919 		if (charged)
920 			mem_cgroup_uncharge(folio);
921 		goto error;
922 	}
923 
924 	trace_mm_filemap_add_to_page_cache(folio);
925 	return 0;
926 error:
927 	folio->mapping = NULL;
928 	/* Leave page->index set: truncation relies upon it */
929 	folio_put(folio);
930 	return error;
931 }
932 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
933 
934 /**
935  * add_to_page_cache_locked - add a locked page to the pagecache
936  * @page:	page to add
937  * @mapping:	the page's address_space
938  * @offset:	page index
939  * @gfp_mask:	page allocation mode
940  *
941  * This function is used to add a page to the pagecache. It must be locked.
942  * This function does not add the page to the LRU.  The caller must do that.
943  *
944  * Return: %0 on success, negative error code otherwise.
945  */
946 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
947 		pgoff_t offset, gfp_t gfp_mask)
948 {
949 	return __filemap_add_folio(mapping, page_folio(page), offset,
950 					  gfp_mask, NULL);
951 }
952 EXPORT_SYMBOL(add_to_page_cache_locked);
953 
954 int filemap_add_folio(struct address_space *mapping, struct folio *folio,
955 				pgoff_t index, gfp_t gfp)
956 {
957 	void *shadow = NULL;
958 	int ret;
959 
960 	__folio_set_locked(folio);
961 	ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
962 	if (unlikely(ret))
963 		__folio_clear_locked(folio);
964 	else {
965 		/*
966 		 * The folio might have been evicted from cache only
967 		 * recently, in which case it should be activated like
968 		 * any other repeatedly accessed folio.
969 		 * The exception is folios getting rewritten; evicting other
970 		 * data from the working set, only to cache data that will
971 		 * get overwritten with something else, is a waste of memory.
972 		 */
973 		WARN_ON_ONCE(folio_test_active(folio));
974 		if (!(gfp & __GFP_WRITE) && shadow)
975 			workingset_refault(folio, shadow);
976 		folio_add_lru(folio);
977 	}
978 	return ret;
979 }
980 EXPORT_SYMBOL_GPL(filemap_add_folio);
981 
982 #ifdef CONFIG_NUMA
983 struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order)
984 {
985 	int n;
986 	struct folio *folio;
987 
988 	if (cpuset_do_page_mem_spread()) {
989 		unsigned int cpuset_mems_cookie;
990 		do {
991 			cpuset_mems_cookie = read_mems_allowed_begin();
992 			n = cpuset_mem_spread_node();
993 			folio = __folio_alloc_node(gfp, order, n);
994 		} while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
995 
996 		return folio;
997 	}
998 	return folio_alloc(gfp, order);
999 }
1000 EXPORT_SYMBOL(filemap_alloc_folio);
1001 #endif
1002 
1003 /*
1004  * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
1005  *
1006  * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
1007  *
1008  * @mapping1: the first mapping to lock
1009  * @mapping2: the second mapping to lock
1010  */
1011 void filemap_invalidate_lock_two(struct address_space *mapping1,
1012 				 struct address_space *mapping2)
1013 {
1014 	if (mapping1 > mapping2)
1015 		swap(mapping1, mapping2);
1016 	if (mapping1)
1017 		down_write(&mapping1->invalidate_lock);
1018 	if (mapping2 && mapping1 != mapping2)
1019 		down_write_nested(&mapping2->invalidate_lock, 1);
1020 }
1021 EXPORT_SYMBOL(filemap_invalidate_lock_two);
1022 
1023 /*
1024  * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
1025  *
1026  * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1027  *
1028  * @mapping1: the first mapping to unlock
1029  * @mapping2: the second mapping to unlock
1030  */
1031 void filemap_invalidate_unlock_two(struct address_space *mapping1,
1032 				   struct address_space *mapping2)
1033 {
1034 	if (mapping1)
1035 		up_write(&mapping1->invalidate_lock);
1036 	if (mapping2 && mapping1 != mapping2)
1037 		up_write(&mapping2->invalidate_lock);
1038 }
1039 EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1040 
1041 /*
1042  * In order to wait for pages to become available there must be
1043  * waitqueues associated with pages. By using a hash table of
1044  * waitqueues where the bucket discipline is to maintain all
1045  * waiters on the same queue and wake all when any of the pages
1046  * become available, and for the woken contexts to check to be
1047  * sure the appropriate page became available, this saves space
1048  * at a cost of "thundering herd" phenomena during rare hash
1049  * collisions.
1050  */
1051 #define PAGE_WAIT_TABLE_BITS 8
1052 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1053 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1054 
1055 static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1056 {
1057 	return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
1058 }
1059 
1060 void __init pagecache_init(void)
1061 {
1062 	int i;
1063 
1064 	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1065 		init_waitqueue_head(&folio_wait_table[i]);
1066 
1067 	page_writeback_init();
1068 }
1069 
1070 /*
1071  * The page wait code treats the "wait->flags" somewhat unusually, because
1072  * we have multiple different kinds of waits, not just the usual "exclusive"
1073  * one.
1074  *
1075  * We have:
1076  *
1077  *  (a) no special bits set:
1078  *
1079  *	We're just waiting for the bit to be released, and when a waker
1080  *	calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1081  *	and remove it from the wait queue.
1082  *
1083  *	Simple and straightforward.
1084  *
1085  *  (b) WQ_FLAG_EXCLUSIVE:
1086  *
1087  *	The waiter is waiting to get the lock, and only one waiter should
1088  *	be woken up to avoid any thundering herd behavior. We'll set the
1089  *	WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1090  *
1091  *	This is the traditional exclusive wait.
1092  *
1093  *  (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1094  *
1095  *	The waiter is waiting to get the bit, and additionally wants the
1096  *	lock to be transferred to it for fair lock behavior. If the lock
1097  *	cannot be taken, we stop walking the wait queue without waking
1098  *	the waiter.
1099  *
1100  *	This is the "fair lock handoff" case, and in addition to setting
1101  *	WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1102  *	that it now has the lock.
1103  */
1104 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1105 {
1106 	unsigned int flags;
1107 	struct wait_page_key *key = arg;
1108 	struct wait_page_queue *wait_page
1109 		= container_of(wait, struct wait_page_queue, wait);
1110 
1111 	if (!wake_page_match(wait_page, key))
1112 		return 0;
1113 
1114 	/*
1115 	 * If it's a lock handoff wait, we get the bit for it, and
1116 	 * stop walking (and do not wake it up) if we can't.
1117 	 */
1118 	flags = wait->flags;
1119 	if (flags & WQ_FLAG_EXCLUSIVE) {
1120 		if (test_bit(key->bit_nr, &key->folio->flags))
1121 			return -1;
1122 		if (flags & WQ_FLAG_CUSTOM) {
1123 			if (test_and_set_bit(key->bit_nr, &key->folio->flags))
1124 				return -1;
1125 			flags |= WQ_FLAG_DONE;
1126 		}
1127 	}
1128 
1129 	/*
1130 	 * We are holding the wait-queue lock, but the waiter that
1131 	 * is waiting for this will be checking the flags without
1132 	 * any locking.
1133 	 *
1134 	 * So update the flags atomically, and wake up the waiter
1135 	 * afterwards to avoid any races. This store-release pairs
1136 	 * with the load-acquire in folio_wait_bit_common().
1137 	 */
1138 	smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1139 	wake_up_state(wait->private, mode);
1140 
1141 	/*
1142 	 * Ok, we have successfully done what we're waiting for,
1143 	 * and we can unconditionally remove the wait entry.
1144 	 *
1145 	 * Note that this pairs with the "finish_wait()" in the
1146 	 * waiter, and has to be the absolute last thing we do.
1147 	 * After this list_del_init(&wait->entry) the wait entry
1148 	 * might be de-allocated and the process might even have
1149 	 * exited.
1150 	 */
1151 	list_del_init_careful(&wait->entry);
1152 	return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1153 }
1154 
1155 static void folio_wake_bit(struct folio *folio, int bit_nr)
1156 {
1157 	wait_queue_head_t *q = folio_waitqueue(folio);
1158 	struct wait_page_key key;
1159 	unsigned long flags;
1160 	wait_queue_entry_t bookmark;
1161 
1162 	key.folio = folio;
1163 	key.bit_nr = bit_nr;
1164 	key.page_match = 0;
1165 
1166 	bookmark.flags = 0;
1167 	bookmark.private = NULL;
1168 	bookmark.func = NULL;
1169 	INIT_LIST_HEAD(&bookmark.entry);
1170 
1171 	spin_lock_irqsave(&q->lock, flags);
1172 	__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1173 
1174 	while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1175 		/*
1176 		 * Take a breather from holding the lock,
1177 		 * allow pages that finish wake up asynchronously
1178 		 * to acquire the lock and remove themselves
1179 		 * from wait queue
1180 		 */
1181 		spin_unlock_irqrestore(&q->lock, flags);
1182 		cpu_relax();
1183 		spin_lock_irqsave(&q->lock, flags);
1184 		__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1185 	}
1186 
1187 	/*
1188 	 * It is possible for other pages to have collided on the waitqueue
1189 	 * hash, so in that case check for a page match. That prevents a long-
1190 	 * term waiter
1191 	 *
1192 	 * It is still possible to miss a case here, when we woke page waiters
1193 	 * and removed them from the waitqueue, but there are still other
1194 	 * page waiters.
1195 	 */
1196 	if (!waitqueue_active(q) || !key.page_match) {
1197 		folio_clear_waiters(folio);
1198 		/*
1199 		 * It's possible to miss clearing Waiters here, when we woke
1200 		 * our page waiters, but the hashed waitqueue has waiters for
1201 		 * other pages on it.
1202 		 *
1203 		 * That's okay, it's a rare case. The next waker will clear it.
1204 		 */
1205 	}
1206 	spin_unlock_irqrestore(&q->lock, flags);
1207 }
1208 
1209 static void folio_wake(struct folio *folio, int bit)
1210 {
1211 	if (!folio_test_waiters(folio))
1212 		return;
1213 	folio_wake_bit(folio, bit);
1214 }
1215 
1216 /*
1217  * A choice of three behaviors for folio_wait_bit_common():
1218  */
1219 enum behavior {
1220 	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
1221 			 * __folio_lock() waiting on then setting PG_locked.
1222 			 */
1223 	SHARED,		/* Hold ref to page and check the bit when woken, like
1224 			 * folio_wait_writeback() waiting on PG_writeback.
1225 			 */
1226 	DROP,		/* Drop ref to page before wait, no check when woken,
1227 			 * like folio_put_wait_locked() on PG_locked.
1228 			 */
1229 };
1230 
1231 /*
1232  * Attempt to check (or get) the folio flag, and mark us done
1233  * if successful.
1234  */
1235 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
1236 					struct wait_queue_entry *wait)
1237 {
1238 	if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1239 		if (test_and_set_bit(bit_nr, &folio->flags))
1240 			return false;
1241 	} else if (test_bit(bit_nr, &folio->flags))
1242 		return false;
1243 
1244 	wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1245 	return true;
1246 }
1247 
1248 /* How many times do we accept lock stealing from under a waiter? */
1249 int sysctl_page_lock_unfairness = 5;
1250 
1251 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1252 		int state, enum behavior behavior)
1253 {
1254 	wait_queue_head_t *q = folio_waitqueue(folio);
1255 	int unfairness = sysctl_page_lock_unfairness;
1256 	struct wait_page_queue wait_page;
1257 	wait_queue_entry_t *wait = &wait_page.wait;
1258 	bool thrashing = false;
1259 	bool delayacct = false;
1260 	unsigned long pflags;
1261 
1262 	if (bit_nr == PG_locked &&
1263 	    !folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1264 		if (!folio_test_swapbacked(folio)) {
1265 			delayacct_thrashing_start();
1266 			delayacct = true;
1267 		}
1268 		psi_memstall_enter(&pflags);
1269 		thrashing = true;
1270 	}
1271 
1272 	init_wait(wait);
1273 	wait->func = wake_page_function;
1274 	wait_page.folio = folio;
1275 	wait_page.bit_nr = bit_nr;
1276 
1277 repeat:
1278 	wait->flags = 0;
1279 	if (behavior == EXCLUSIVE) {
1280 		wait->flags = WQ_FLAG_EXCLUSIVE;
1281 		if (--unfairness < 0)
1282 			wait->flags |= WQ_FLAG_CUSTOM;
1283 	}
1284 
1285 	/*
1286 	 * Do one last check whether we can get the
1287 	 * page bit synchronously.
1288 	 *
1289 	 * Do the folio_set_waiters() marking before that
1290 	 * to let any waker we _just_ missed know they
1291 	 * need to wake us up (otherwise they'll never
1292 	 * even go to the slow case that looks at the
1293 	 * page queue), and add ourselves to the wait
1294 	 * queue if we need to sleep.
1295 	 *
1296 	 * This part needs to be done under the queue
1297 	 * lock to avoid races.
1298 	 */
1299 	spin_lock_irq(&q->lock);
1300 	folio_set_waiters(folio);
1301 	if (!folio_trylock_flag(folio, bit_nr, wait))
1302 		__add_wait_queue_entry_tail(q, wait);
1303 	spin_unlock_irq(&q->lock);
1304 
1305 	/*
1306 	 * From now on, all the logic will be based on
1307 	 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1308 	 * see whether the page bit testing has already
1309 	 * been done by the wake function.
1310 	 *
1311 	 * We can drop our reference to the folio.
1312 	 */
1313 	if (behavior == DROP)
1314 		folio_put(folio);
1315 
1316 	/*
1317 	 * Note that until the "finish_wait()", or until
1318 	 * we see the WQ_FLAG_WOKEN flag, we need to
1319 	 * be very careful with the 'wait->flags', because
1320 	 * we may race with a waker that sets them.
1321 	 */
1322 	for (;;) {
1323 		unsigned int flags;
1324 
1325 		set_current_state(state);
1326 
1327 		/* Loop until we've been woken or interrupted */
1328 		flags = smp_load_acquire(&wait->flags);
1329 		if (!(flags & WQ_FLAG_WOKEN)) {
1330 			if (signal_pending_state(state, current))
1331 				break;
1332 
1333 			io_schedule();
1334 			continue;
1335 		}
1336 
1337 		/* If we were non-exclusive, we're done */
1338 		if (behavior != EXCLUSIVE)
1339 			break;
1340 
1341 		/* If the waker got the lock for us, we're done */
1342 		if (flags & WQ_FLAG_DONE)
1343 			break;
1344 
1345 		/*
1346 		 * Otherwise, if we're getting the lock, we need to
1347 		 * try to get it ourselves.
1348 		 *
1349 		 * And if that fails, we'll have to retry this all.
1350 		 */
1351 		if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
1352 			goto repeat;
1353 
1354 		wait->flags |= WQ_FLAG_DONE;
1355 		break;
1356 	}
1357 
1358 	/*
1359 	 * If a signal happened, this 'finish_wait()' may remove the last
1360 	 * waiter from the wait-queues, but the folio waiters bit will remain
1361 	 * set. That's ok. The next wakeup will take care of it, and trying
1362 	 * to do it here would be difficult and prone to races.
1363 	 */
1364 	finish_wait(q, wait);
1365 
1366 	if (thrashing) {
1367 		if (delayacct)
1368 			delayacct_thrashing_end();
1369 		psi_memstall_leave(&pflags);
1370 	}
1371 
1372 	/*
1373 	 * NOTE! The wait->flags weren't stable until we've done the
1374 	 * 'finish_wait()', and we could have exited the loop above due
1375 	 * to a signal, and had a wakeup event happen after the signal
1376 	 * test but before the 'finish_wait()'.
1377 	 *
1378 	 * So only after the finish_wait() can we reliably determine
1379 	 * if we got woken up or not, so we can now figure out the final
1380 	 * return value based on that state without races.
1381 	 *
1382 	 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1383 	 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1384 	 */
1385 	if (behavior == EXCLUSIVE)
1386 		return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1387 
1388 	return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1389 }
1390 
1391 void folio_wait_bit(struct folio *folio, int bit_nr)
1392 {
1393 	folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1394 }
1395 EXPORT_SYMBOL(folio_wait_bit);
1396 
1397 int folio_wait_bit_killable(struct folio *folio, int bit_nr)
1398 {
1399 	return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
1400 }
1401 EXPORT_SYMBOL(folio_wait_bit_killable);
1402 
1403 /**
1404  * folio_put_wait_locked - Drop a reference and wait for it to be unlocked
1405  * @folio: The folio to wait for.
1406  * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1407  *
1408  * The caller should hold a reference on @folio.  They expect the page to
1409  * become unlocked relatively soon, but do not wish to hold up migration
1410  * (for example) by holding the reference while waiting for the folio to
1411  * come unlocked.  After this function returns, the caller should not
1412  * dereference @folio.
1413  *
1414  * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal.
1415  */
1416 int folio_put_wait_locked(struct folio *folio, int state)
1417 {
1418 	return folio_wait_bit_common(folio, PG_locked, state, DROP);
1419 }
1420 
1421 /**
1422  * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue
1423  * @folio: Folio defining the wait queue of interest
1424  * @waiter: Waiter to add to the queue
1425  *
1426  * Add an arbitrary @waiter to the wait queue for the nominated @folio.
1427  */
1428 void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter)
1429 {
1430 	wait_queue_head_t *q = folio_waitqueue(folio);
1431 	unsigned long flags;
1432 
1433 	spin_lock_irqsave(&q->lock, flags);
1434 	__add_wait_queue_entry_tail(q, waiter);
1435 	folio_set_waiters(folio);
1436 	spin_unlock_irqrestore(&q->lock, flags);
1437 }
1438 EXPORT_SYMBOL_GPL(folio_add_wait_queue);
1439 
1440 #ifndef clear_bit_unlock_is_negative_byte
1441 
1442 /*
1443  * PG_waiters is the high bit in the same byte as PG_lock.
1444  *
1445  * On x86 (and on many other architectures), we can clear PG_lock and
1446  * test the sign bit at the same time. But if the architecture does
1447  * not support that special operation, we just do this all by hand
1448  * instead.
1449  *
1450  * The read of PG_waiters has to be after (or concurrently with) PG_locked
1451  * being cleared, but a memory barrier should be unnecessary since it is
1452  * in the same byte as PG_locked.
1453  */
1454 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1455 {
1456 	clear_bit_unlock(nr, mem);
1457 	/* smp_mb__after_atomic(); */
1458 	return test_bit(PG_waiters, mem);
1459 }
1460 
1461 #endif
1462 
1463 /**
1464  * folio_unlock - Unlock a locked folio.
1465  * @folio: The folio.
1466  *
1467  * Unlocks the folio and wakes up any thread sleeping on the page lock.
1468  *
1469  * Context: May be called from interrupt or process context.  May not be
1470  * called from NMI context.
1471  */
1472 void folio_unlock(struct folio *folio)
1473 {
1474 	/* Bit 7 allows x86 to check the byte's sign bit */
1475 	BUILD_BUG_ON(PG_waiters != 7);
1476 	BUILD_BUG_ON(PG_locked > 7);
1477 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1478 	if (clear_bit_unlock_is_negative_byte(PG_locked, folio_flags(folio, 0)))
1479 		folio_wake_bit(folio, PG_locked);
1480 }
1481 EXPORT_SYMBOL(folio_unlock);
1482 
1483 /**
1484  * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1485  * @folio: The folio.
1486  *
1487  * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1488  * it.  The folio reference held for PG_private_2 being set is released.
1489  *
1490  * This is, for example, used when a netfs folio is being written to a local
1491  * disk cache, thereby allowing writes to the cache for the same folio to be
1492  * serialised.
1493  */
1494 void folio_end_private_2(struct folio *folio)
1495 {
1496 	VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1497 	clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
1498 	folio_wake_bit(folio, PG_private_2);
1499 	folio_put(folio);
1500 }
1501 EXPORT_SYMBOL(folio_end_private_2);
1502 
1503 /**
1504  * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1505  * @folio: The folio to wait on.
1506  *
1507  * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio.
1508  */
1509 void folio_wait_private_2(struct folio *folio)
1510 {
1511 	while (folio_test_private_2(folio))
1512 		folio_wait_bit(folio, PG_private_2);
1513 }
1514 EXPORT_SYMBOL(folio_wait_private_2);
1515 
1516 /**
1517  * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1518  * @folio: The folio to wait on.
1519  *
1520  * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio or until a
1521  * fatal signal is received by the calling task.
1522  *
1523  * Return:
1524  * - 0 if successful.
1525  * - -EINTR if a fatal signal was encountered.
1526  */
1527 int folio_wait_private_2_killable(struct folio *folio)
1528 {
1529 	int ret = 0;
1530 
1531 	while (folio_test_private_2(folio)) {
1532 		ret = folio_wait_bit_killable(folio, PG_private_2);
1533 		if (ret < 0)
1534 			break;
1535 	}
1536 
1537 	return ret;
1538 }
1539 EXPORT_SYMBOL(folio_wait_private_2_killable);
1540 
1541 /**
1542  * folio_end_writeback - End writeback against a folio.
1543  * @folio: The folio.
1544  */
1545 void folio_end_writeback(struct folio *folio)
1546 {
1547 	/*
1548 	 * folio_test_clear_reclaim() could be used here but it is an
1549 	 * atomic operation and overkill in this particular case. Failing
1550 	 * to shuffle a folio marked for immediate reclaim is too mild
1551 	 * a gain to justify taking an atomic operation penalty at the
1552 	 * end of every folio writeback.
1553 	 */
1554 	if (folio_test_reclaim(folio)) {
1555 		folio_clear_reclaim(folio);
1556 		folio_rotate_reclaimable(folio);
1557 	}
1558 
1559 	/*
1560 	 * Writeback does not hold a folio reference of its own, relying
1561 	 * on truncation to wait for the clearing of PG_writeback.
1562 	 * But here we must make sure that the folio is not freed and
1563 	 * reused before the folio_wake().
1564 	 */
1565 	folio_get(folio);
1566 	if (!__folio_end_writeback(folio))
1567 		BUG();
1568 
1569 	smp_mb__after_atomic();
1570 	folio_wake(folio, PG_writeback);
1571 	acct_reclaim_writeback(folio);
1572 	folio_put(folio);
1573 }
1574 EXPORT_SYMBOL(folio_end_writeback);
1575 
1576 /*
1577  * After completing I/O on a page, call this routine to update the page
1578  * flags appropriately
1579  */
1580 void page_endio(struct page *page, bool is_write, int err)
1581 {
1582 	if (!is_write) {
1583 		if (!err) {
1584 			SetPageUptodate(page);
1585 		} else {
1586 			ClearPageUptodate(page);
1587 			SetPageError(page);
1588 		}
1589 		unlock_page(page);
1590 	} else {
1591 		if (err) {
1592 			struct address_space *mapping;
1593 
1594 			SetPageError(page);
1595 			mapping = page_mapping(page);
1596 			if (mapping)
1597 				mapping_set_error(mapping, err);
1598 		}
1599 		end_page_writeback(page);
1600 	}
1601 }
1602 EXPORT_SYMBOL_GPL(page_endio);
1603 
1604 /**
1605  * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1606  * @folio: The folio to lock
1607  */
1608 void __folio_lock(struct folio *folio)
1609 {
1610 	folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
1611 				EXCLUSIVE);
1612 }
1613 EXPORT_SYMBOL(__folio_lock);
1614 
1615 int __folio_lock_killable(struct folio *folio)
1616 {
1617 	return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
1618 					EXCLUSIVE);
1619 }
1620 EXPORT_SYMBOL_GPL(__folio_lock_killable);
1621 
1622 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
1623 {
1624 	struct wait_queue_head *q = folio_waitqueue(folio);
1625 	int ret = 0;
1626 
1627 	wait->folio = folio;
1628 	wait->bit_nr = PG_locked;
1629 
1630 	spin_lock_irq(&q->lock);
1631 	__add_wait_queue_entry_tail(q, &wait->wait);
1632 	folio_set_waiters(folio);
1633 	ret = !folio_trylock(folio);
1634 	/*
1635 	 * If we were successful now, we know we're still on the
1636 	 * waitqueue as we're still under the lock. This means it's
1637 	 * safe to remove and return success, we know the callback
1638 	 * isn't going to trigger.
1639 	 */
1640 	if (!ret)
1641 		__remove_wait_queue(q, &wait->wait);
1642 	else
1643 		ret = -EIOCBQUEUED;
1644 	spin_unlock_irq(&q->lock);
1645 	return ret;
1646 }
1647 
1648 /*
1649  * Return values:
1650  * true - folio is locked; mmap_lock is still held.
1651  * false - folio is not locked.
1652  *     mmap_lock has been released (mmap_read_unlock(), unless flags had both
1653  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1654  *     which case mmap_lock is still held.
1655  *
1656  * If neither ALLOW_RETRY nor KILLABLE are set, will always return true
1657  * with the folio locked and the mmap_lock unperturbed.
1658  */
1659 bool __folio_lock_or_retry(struct folio *folio, struct mm_struct *mm,
1660 			 unsigned int flags)
1661 {
1662 	if (fault_flag_allow_retry_first(flags)) {
1663 		/*
1664 		 * CAUTION! In this case, mmap_lock is not released
1665 		 * even though return 0.
1666 		 */
1667 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1668 			return false;
1669 
1670 		mmap_read_unlock(mm);
1671 		if (flags & FAULT_FLAG_KILLABLE)
1672 			folio_wait_locked_killable(folio);
1673 		else
1674 			folio_wait_locked(folio);
1675 		return false;
1676 	}
1677 	if (flags & FAULT_FLAG_KILLABLE) {
1678 		bool ret;
1679 
1680 		ret = __folio_lock_killable(folio);
1681 		if (ret) {
1682 			mmap_read_unlock(mm);
1683 			return false;
1684 		}
1685 	} else {
1686 		__folio_lock(folio);
1687 	}
1688 
1689 	return true;
1690 }
1691 
1692 /**
1693  * page_cache_next_miss() - Find the next gap in the page cache.
1694  * @mapping: Mapping.
1695  * @index: Index.
1696  * @max_scan: Maximum range to search.
1697  *
1698  * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1699  * gap with the lowest index.
1700  *
1701  * This function may be called under the rcu_read_lock.  However, this will
1702  * not atomically search a snapshot of the cache at a single point in time.
1703  * For example, if a gap is created at index 5, then subsequently a gap is
1704  * created at index 10, page_cache_next_miss covering both indices may
1705  * return 10 if called under the rcu_read_lock.
1706  *
1707  * Return: The index of the gap if found, otherwise an index outside the
1708  * range specified (in which case 'return - index >= max_scan' will be true).
1709  * In the rare case of index wrap-around, 0 will be returned.
1710  */
1711 pgoff_t page_cache_next_miss(struct address_space *mapping,
1712 			     pgoff_t index, unsigned long max_scan)
1713 {
1714 	XA_STATE(xas, &mapping->i_pages, index);
1715 
1716 	while (max_scan--) {
1717 		void *entry = xas_next(&xas);
1718 		if (!entry || xa_is_value(entry))
1719 			break;
1720 		if (xas.xa_index == 0)
1721 			break;
1722 	}
1723 
1724 	return xas.xa_index;
1725 }
1726 EXPORT_SYMBOL(page_cache_next_miss);
1727 
1728 /**
1729  * page_cache_prev_miss() - Find the previous gap in the page cache.
1730  * @mapping: Mapping.
1731  * @index: Index.
1732  * @max_scan: Maximum range to search.
1733  *
1734  * Search the range [max(index - max_scan + 1, 0), index] for the
1735  * gap with the highest index.
1736  *
1737  * This function may be called under the rcu_read_lock.  However, this will
1738  * not atomically search a snapshot of the cache at a single point in time.
1739  * For example, if a gap is created at index 10, then subsequently a gap is
1740  * created at index 5, page_cache_prev_miss() covering both indices may
1741  * return 5 if called under the rcu_read_lock.
1742  *
1743  * Return: The index of the gap if found, otherwise an index outside the
1744  * range specified (in which case 'index - return >= max_scan' will be true).
1745  * In the rare case of wrap-around, ULONG_MAX will be returned.
1746  */
1747 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1748 			     pgoff_t index, unsigned long max_scan)
1749 {
1750 	XA_STATE(xas, &mapping->i_pages, index);
1751 
1752 	while (max_scan--) {
1753 		void *entry = xas_prev(&xas);
1754 		if (!entry || xa_is_value(entry))
1755 			break;
1756 		if (xas.xa_index == ULONG_MAX)
1757 			break;
1758 	}
1759 
1760 	return xas.xa_index;
1761 }
1762 EXPORT_SYMBOL(page_cache_prev_miss);
1763 
1764 /*
1765  * Lockless page cache protocol:
1766  * On the lookup side:
1767  * 1. Load the folio from i_pages
1768  * 2. Increment the refcount if it's not zero
1769  * 3. If the folio is not found by xas_reload(), put the refcount and retry
1770  *
1771  * On the removal side:
1772  * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1773  * B. Remove the page from i_pages
1774  * C. Return the page to the page allocator
1775  *
1776  * This means that any page may have its reference count temporarily
1777  * increased by a speculative page cache (or fast GUP) lookup as it can
1778  * be allocated by another user before the RCU grace period expires.
1779  * Because the refcount temporarily acquired here may end up being the
1780  * last refcount on the page, any page allocation must be freeable by
1781  * folio_put().
1782  */
1783 
1784 /*
1785  * mapping_get_entry - Get a page cache entry.
1786  * @mapping: the address_space to search
1787  * @index: The page cache index.
1788  *
1789  * Looks up the page cache entry at @mapping & @index.  If it is a folio,
1790  * it is returned with an increased refcount.  If it is a shadow entry
1791  * of a previously evicted folio, or a swap entry from shmem/tmpfs,
1792  * it is returned without further action.
1793  *
1794  * Return: The folio, swap or shadow entry, %NULL if nothing is found.
1795  */
1796 static void *mapping_get_entry(struct address_space *mapping, pgoff_t index)
1797 {
1798 	XA_STATE(xas, &mapping->i_pages, index);
1799 	struct folio *folio;
1800 
1801 	rcu_read_lock();
1802 repeat:
1803 	xas_reset(&xas);
1804 	folio = xas_load(&xas);
1805 	if (xas_retry(&xas, folio))
1806 		goto repeat;
1807 	/*
1808 	 * A shadow entry of a recently evicted page, or a swap entry from
1809 	 * shmem/tmpfs.  Return it without attempting to raise page count.
1810 	 */
1811 	if (!folio || xa_is_value(folio))
1812 		goto out;
1813 
1814 	if (!folio_try_get_rcu(folio))
1815 		goto repeat;
1816 
1817 	if (unlikely(folio != xas_reload(&xas))) {
1818 		folio_put(folio);
1819 		goto repeat;
1820 	}
1821 out:
1822 	rcu_read_unlock();
1823 
1824 	return folio;
1825 }
1826 
1827 /**
1828  * __filemap_get_folio - Find and get a reference to a folio.
1829  * @mapping: The address_space to search.
1830  * @index: The page index.
1831  * @fgp_flags: %FGP flags modify how the folio is returned.
1832  * @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
1833  *
1834  * Looks up the page cache entry at @mapping & @index.
1835  *
1836  * @fgp_flags can be zero or more of these flags:
1837  *
1838  * * %FGP_ACCESSED - The folio will be marked accessed.
1839  * * %FGP_LOCK - The folio is returned locked.
1840  * * %FGP_ENTRY - If there is a shadow / swap / DAX entry, return it
1841  *   instead of allocating a new folio to replace it.
1842  * * %FGP_CREAT - If no page is present then a new page is allocated using
1843  *   @gfp and added to the page cache and the VM's LRU list.
1844  *   The page is returned locked and with an increased refcount.
1845  * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1846  *   page is already in cache.  If the page was allocated, unlock it before
1847  *   returning so the caller can do the same dance.
1848  * * %FGP_WRITE - The page will be written to by the caller.
1849  * * %FGP_NOFS - __GFP_FS will get cleared in gfp.
1850  * * %FGP_NOWAIT - Don't get blocked by page lock.
1851  * * %FGP_STABLE - Wait for the folio to be stable (finished writeback)
1852  *
1853  * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1854  * if the %GFP flags specified for %FGP_CREAT are atomic.
1855  *
1856  * If there is a page cache page, it is returned with an increased refcount.
1857  *
1858  * Return: The found folio or %NULL otherwise.
1859  */
1860 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
1861 		int fgp_flags, gfp_t gfp)
1862 {
1863 	struct folio *folio;
1864 
1865 repeat:
1866 	folio = mapping_get_entry(mapping, index);
1867 	if (xa_is_value(folio)) {
1868 		if (fgp_flags & FGP_ENTRY)
1869 			return folio;
1870 		folio = NULL;
1871 	}
1872 	if (!folio)
1873 		goto no_page;
1874 
1875 	if (fgp_flags & FGP_LOCK) {
1876 		if (fgp_flags & FGP_NOWAIT) {
1877 			if (!folio_trylock(folio)) {
1878 				folio_put(folio);
1879 				return NULL;
1880 			}
1881 		} else {
1882 			folio_lock(folio);
1883 		}
1884 
1885 		/* Has the page been truncated? */
1886 		if (unlikely(folio->mapping != mapping)) {
1887 			folio_unlock(folio);
1888 			folio_put(folio);
1889 			goto repeat;
1890 		}
1891 		VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
1892 	}
1893 
1894 	if (fgp_flags & FGP_ACCESSED)
1895 		folio_mark_accessed(folio);
1896 	else if (fgp_flags & FGP_WRITE) {
1897 		/* Clear idle flag for buffer write */
1898 		if (folio_test_idle(folio))
1899 			folio_clear_idle(folio);
1900 	}
1901 
1902 	if (fgp_flags & FGP_STABLE)
1903 		folio_wait_stable(folio);
1904 no_page:
1905 	if (!folio && (fgp_flags & FGP_CREAT)) {
1906 		int err;
1907 		if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1908 			gfp |= __GFP_WRITE;
1909 		if (fgp_flags & FGP_NOFS)
1910 			gfp &= ~__GFP_FS;
1911 
1912 		folio = filemap_alloc_folio(gfp, 0);
1913 		if (!folio)
1914 			return NULL;
1915 
1916 		if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1917 			fgp_flags |= FGP_LOCK;
1918 
1919 		/* Init accessed so avoid atomic mark_page_accessed later */
1920 		if (fgp_flags & FGP_ACCESSED)
1921 			__folio_set_referenced(folio);
1922 
1923 		err = filemap_add_folio(mapping, folio, index, gfp);
1924 		if (unlikely(err)) {
1925 			folio_put(folio);
1926 			folio = NULL;
1927 			if (err == -EEXIST)
1928 				goto repeat;
1929 		}
1930 
1931 		/*
1932 		 * filemap_add_folio locks the page, and for mmap
1933 		 * we expect an unlocked page.
1934 		 */
1935 		if (folio && (fgp_flags & FGP_FOR_MMAP))
1936 			folio_unlock(folio);
1937 	}
1938 
1939 	return folio;
1940 }
1941 EXPORT_SYMBOL(__filemap_get_folio);
1942 
1943 static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max,
1944 		xa_mark_t mark)
1945 {
1946 	struct folio *folio;
1947 
1948 retry:
1949 	if (mark == XA_PRESENT)
1950 		folio = xas_find(xas, max);
1951 	else
1952 		folio = xas_find_marked(xas, max, mark);
1953 
1954 	if (xas_retry(xas, folio))
1955 		goto retry;
1956 	/*
1957 	 * A shadow entry of a recently evicted page, a swap
1958 	 * entry from shmem/tmpfs or a DAX entry.  Return it
1959 	 * without attempting to raise page count.
1960 	 */
1961 	if (!folio || xa_is_value(folio))
1962 		return folio;
1963 
1964 	if (!folio_try_get_rcu(folio))
1965 		goto reset;
1966 
1967 	if (unlikely(folio != xas_reload(xas))) {
1968 		folio_put(folio);
1969 		goto reset;
1970 	}
1971 
1972 	return folio;
1973 reset:
1974 	xas_reset(xas);
1975 	goto retry;
1976 }
1977 
1978 /**
1979  * find_get_entries - gang pagecache lookup
1980  * @mapping:	The address_space to search
1981  * @start:	The starting page cache index
1982  * @end:	The final page index (inclusive).
1983  * @fbatch:	Where the resulting entries are placed.
1984  * @indices:	The cache indices corresponding to the entries in @entries
1985  *
1986  * find_get_entries() will search for and return a batch of entries in
1987  * the mapping.  The entries are placed in @fbatch.  find_get_entries()
1988  * takes a reference on any actual folios it returns.
1989  *
1990  * The entries have ascending indexes.  The indices may not be consecutive
1991  * due to not-present entries or large folios.
1992  *
1993  * Any shadow entries of evicted folios, or swap entries from
1994  * shmem/tmpfs, are included in the returned array.
1995  *
1996  * Return: The number of entries which were found.
1997  */
1998 unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
1999 		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2000 {
2001 	XA_STATE(xas, &mapping->i_pages, start);
2002 	struct folio *folio;
2003 
2004 	rcu_read_lock();
2005 	while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2006 		indices[fbatch->nr] = xas.xa_index;
2007 		if (!folio_batch_add(fbatch, folio))
2008 			break;
2009 	}
2010 	rcu_read_unlock();
2011 
2012 	return folio_batch_count(fbatch);
2013 }
2014 
2015 /**
2016  * find_lock_entries - Find a batch of pagecache entries.
2017  * @mapping:	The address_space to search.
2018  * @start:	The starting page cache index.
2019  * @end:	The final page index (inclusive).
2020  * @fbatch:	Where the resulting entries are placed.
2021  * @indices:	The cache indices of the entries in @fbatch.
2022  *
2023  * find_lock_entries() will return a batch of entries from @mapping.
2024  * Swap, shadow and DAX entries are included.  Folios are returned
2025  * locked and with an incremented refcount.  Folios which are locked
2026  * by somebody else or under writeback are skipped.  Folios which are
2027  * partially outside the range are not returned.
2028  *
2029  * The entries have ascending indexes.  The indices may not be consecutive
2030  * due to not-present entries, large folios, folios which could not be
2031  * locked or folios under writeback.
2032  *
2033  * Return: The number of entries which were found.
2034  */
2035 unsigned find_lock_entries(struct address_space *mapping, pgoff_t start,
2036 		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2037 {
2038 	XA_STATE(xas, &mapping->i_pages, start);
2039 	struct folio *folio;
2040 
2041 	rcu_read_lock();
2042 	while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2043 		if (!xa_is_value(folio)) {
2044 			if (folio->index < start)
2045 				goto put;
2046 			if (folio->index + folio_nr_pages(folio) - 1 > end)
2047 				goto put;
2048 			if (!folio_trylock(folio))
2049 				goto put;
2050 			if (folio->mapping != mapping ||
2051 			    folio_test_writeback(folio))
2052 				goto unlock;
2053 			VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index),
2054 					folio);
2055 		}
2056 		indices[fbatch->nr] = xas.xa_index;
2057 		if (!folio_batch_add(fbatch, folio))
2058 			break;
2059 		continue;
2060 unlock:
2061 		folio_unlock(folio);
2062 put:
2063 		folio_put(folio);
2064 	}
2065 	rcu_read_unlock();
2066 
2067 	return folio_batch_count(fbatch);
2068 }
2069 
2070 static inline
2071 bool folio_more_pages(struct folio *folio, pgoff_t index, pgoff_t max)
2072 {
2073 	if (!folio_test_large(folio) || folio_test_hugetlb(folio))
2074 		return false;
2075 	if (index >= max)
2076 		return false;
2077 	return index < folio->index + folio_nr_pages(folio) - 1;
2078 }
2079 
2080 /**
2081  * find_get_pages_range - gang pagecache lookup
2082  * @mapping:	The address_space to search
2083  * @start:	The starting page index
2084  * @end:	The final page index (inclusive)
2085  * @nr_pages:	The maximum number of pages
2086  * @pages:	Where the resulting pages are placed
2087  *
2088  * find_get_pages_range() will search for and return a group of up to @nr_pages
2089  * pages in the mapping starting at index @start and up to index @end
2090  * (inclusive).  The pages are placed at @pages.  find_get_pages_range() takes
2091  * a reference against the returned pages.
2092  *
2093  * The search returns a group of mapping-contiguous pages with ascending
2094  * indexes.  There may be holes in the indices due to not-present pages.
2095  * We also update @start to index the next page for the traversal.
2096  *
2097  * Return: the number of pages which were found. If this number is
2098  * smaller than @nr_pages, the end of specified range has been
2099  * reached.
2100  */
2101 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
2102 			      pgoff_t end, unsigned int nr_pages,
2103 			      struct page **pages)
2104 {
2105 	XA_STATE(xas, &mapping->i_pages, *start);
2106 	struct folio *folio;
2107 	unsigned ret = 0;
2108 
2109 	if (unlikely(!nr_pages))
2110 		return 0;
2111 
2112 	rcu_read_lock();
2113 	while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2114 		/* Skip over shadow, swap and DAX entries */
2115 		if (xa_is_value(folio))
2116 			continue;
2117 
2118 again:
2119 		pages[ret] = folio_file_page(folio, xas.xa_index);
2120 		if (++ret == nr_pages) {
2121 			*start = xas.xa_index + 1;
2122 			goto out;
2123 		}
2124 		if (folio_more_pages(folio, xas.xa_index, end)) {
2125 			xas.xa_index++;
2126 			folio_ref_inc(folio);
2127 			goto again;
2128 		}
2129 	}
2130 
2131 	/*
2132 	 * We come here when there is no page beyond @end. We take care to not
2133 	 * overflow the index @start as it confuses some of the callers. This
2134 	 * breaks the iteration when there is a page at index -1 but that is
2135 	 * already broken anyway.
2136 	 */
2137 	if (end == (pgoff_t)-1)
2138 		*start = (pgoff_t)-1;
2139 	else
2140 		*start = end + 1;
2141 out:
2142 	rcu_read_unlock();
2143 
2144 	return ret;
2145 }
2146 
2147 /**
2148  * find_get_pages_contig - gang contiguous pagecache lookup
2149  * @mapping:	The address_space to search
2150  * @index:	The starting page index
2151  * @nr_pages:	The maximum number of pages
2152  * @pages:	Where the resulting pages are placed
2153  *
2154  * find_get_pages_contig() works exactly like find_get_pages(), except
2155  * that the returned number of pages are guaranteed to be contiguous.
2156  *
2157  * Return: the number of pages which were found.
2158  */
2159 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
2160 			       unsigned int nr_pages, struct page **pages)
2161 {
2162 	XA_STATE(xas, &mapping->i_pages, index);
2163 	struct folio *folio;
2164 	unsigned int ret = 0;
2165 
2166 	if (unlikely(!nr_pages))
2167 		return 0;
2168 
2169 	rcu_read_lock();
2170 	for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2171 		if (xas_retry(&xas, folio))
2172 			continue;
2173 		/*
2174 		 * If the entry has been swapped out, we can stop looking.
2175 		 * No current caller is looking for DAX entries.
2176 		 */
2177 		if (xa_is_value(folio))
2178 			break;
2179 
2180 		if (!folio_try_get_rcu(folio))
2181 			goto retry;
2182 
2183 		if (unlikely(folio != xas_reload(&xas)))
2184 			goto put_page;
2185 
2186 again:
2187 		pages[ret] = folio_file_page(folio, xas.xa_index);
2188 		if (++ret == nr_pages)
2189 			break;
2190 		if (folio_more_pages(folio, xas.xa_index, ULONG_MAX)) {
2191 			xas.xa_index++;
2192 			folio_ref_inc(folio);
2193 			goto again;
2194 		}
2195 		continue;
2196 put_page:
2197 		folio_put(folio);
2198 retry:
2199 		xas_reset(&xas);
2200 	}
2201 	rcu_read_unlock();
2202 	return ret;
2203 }
2204 EXPORT_SYMBOL(find_get_pages_contig);
2205 
2206 /**
2207  * find_get_pages_range_tag - Find and return head pages matching @tag.
2208  * @mapping:	the address_space to search
2209  * @index:	the starting page index
2210  * @end:	The final page index (inclusive)
2211  * @tag:	the tag index
2212  * @nr_pages:	the maximum number of pages
2213  * @pages:	where the resulting pages are placed
2214  *
2215  * Like find_get_pages(), except we only return head pages which are tagged
2216  * with @tag.  @index is updated to the index immediately after the last
2217  * page we return, ready for the next iteration.
2218  *
2219  * Return: the number of pages which were found.
2220  */
2221 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
2222 			pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
2223 			struct page **pages)
2224 {
2225 	XA_STATE(xas, &mapping->i_pages, *index);
2226 	struct folio *folio;
2227 	unsigned ret = 0;
2228 
2229 	if (unlikely(!nr_pages))
2230 		return 0;
2231 
2232 	rcu_read_lock();
2233 	while ((folio = find_get_entry(&xas, end, tag))) {
2234 		/*
2235 		 * Shadow entries should never be tagged, but this iteration
2236 		 * is lockless so there is a window for page reclaim to evict
2237 		 * a page we saw tagged.  Skip over it.
2238 		 */
2239 		if (xa_is_value(folio))
2240 			continue;
2241 
2242 		pages[ret] = &folio->page;
2243 		if (++ret == nr_pages) {
2244 			*index = folio->index + folio_nr_pages(folio);
2245 			goto out;
2246 		}
2247 	}
2248 
2249 	/*
2250 	 * We come here when we got to @end. We take care to not overflow the
2251 	 * index @index as it confuses some of the callers. This breaks the
2252 	 * iteration when there is a page at index -1 but that is already
2253 	 * broken anyway.
2254 	 */
2255 	if (end == (pgoff_t)-1)
2256 		*index = (pgoff_t)-1;
2257 	else
2258 		*index = end + 1;
2259 out:
2260 	rcu_read_unlock();
2261 
2262 	return ret;
2263 }
2264 EXPORT_SYMBOL(find_get_pages_range_tag);
2265 
2266 /*
2267  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2268  * a _large_ part of the i/o request. Imagine the worst scenario:
2269  *
2270  *      ---R__________________________________________B__________
2271  *         ^ reading here                             ^ bad block(assume 4k)
2272  *
2273  * read(R) => miss => readahead(R...B) => media error => frustrating retries
2274  * => failing the whole request => read(R) => read(R+1) =>
2275  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2276  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2277  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2278  *
2279  * It is going insane. Fix it by quickly scaling down the readahead size.
2280  */
2281 static void shrink_readahead_size_eio(struct file_ra_state *ra)
2282 {
2283 	ra->ra_pages /= 4;
2284 }
2285 
2286 /*
2287  * filemap_get_read_batch - Get a batch of folios for read
2288  *
2289  * Get a batch of folios which represent a contiguous range of bytes in
2290  * the file.  No exceptional entries will be returned.  If @index is in
2291  * the middle of a folio, the entire folio will be returned.  The last
2292  * folio in the batch may have the readahead flag set or the uptodate flag
2293  * clear so that the caller can take the appropriate action.
2294  */
2295 static void filemap_get_read_batch(struct address_space *mapping,
2296 		pgoff_t index, pgoff_t max, struct folio_batch *fbatch)
2297 {
2298 	XA_STATE(xas, &mapping->i_pages, index);
2299 	struct folio *folio;
2300 
2301 	rcu_read_lock();
2302 	for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2303 		if (xas_retry(&xas, folio))
2304 			continue;
2305 		if (xas.xa_index > max || xa_is_value(folio))
2306 			break;
2307 		if (!folio_try_get_rcu(folio))
2308 			goto retry;
2309 
2310 		if (unlikely(folio != xas_reload(&xas)))
2311 			goto put_folio;
2312 
2313 		if (!folio_batch_add(fbatch, folio))
2314 			break;
2315 		if (!folio_test_uptodate(folio))
2316 			break;
2317 		if (folio_test_readahead(folio))
2318 			break;
2319 		xas_advance(&xas, folio->index + folio_nr_pages(folio) - 1);
2320 		continue;
2321 put_folio:
2322 		folio_put(folio);
2323 retry:
2324 		xas_reset(&xas);
2325 	}
2326 	rcu_read_unlock();
2327 }
2328 
2329 static int filemap_read_folio(struct file *file, struct address_space *mapping,
2330 		struct folio *folio)
2331 {
2332 	int error;
2333 
2334 	/*
2335 	 * A previous I/O error may have been due to temporary failures,
2336 	 * eg. multipath errors.  PG_error will be set again if readpage
2337 	 * fails.
2338 	 */
2339 	folio_clear_error(folio);
2340 	/* Start the actual read. The read will unlock the page. */
2341 	error = mapping->a_ops->readpage(file, &folio->page);
2342 	if (error)
2343 		return error;
2344 
2345 	error = folio_wait_locked_killable(folio);
2346 	if (error)
2347 		return error;
2348 	if (folio_test_uptodate(folio))
2349 		return 0;
2350 	shrink_readahead_size_eio(&file->f_ra);
2351 	return -EIO;
2352 }
2353 
2354 static bool filemap_range_uptodate(struct address_space *mapping,
2355 		loff_t pos, struct iov_iter *iter, struct folio *folio)
2356 {
2357 	int count;
2358 
2359 	if (folio_test_uptodate(folio))
2360 		return true;
2361 	/* pipes can't handle partially uptodate pages */
2362 	if (iov_iter_is_pipe(iter))
2363 		return false;
2364 	if (!mapping->a_ops->is_partially_uptodate)
2365 		return false;
2366 	if (mapping->host->i_blkbits >= folio_shift(folio))
2367 		return false;
2368 
2369 	count = iter->count;
2370 	if (folio_pos(folio) > pos) {
2371 		count -= folio_pos(folio) - pos;
2372 		pos = 0;
2373 	} else {
2374 		pos -= folio_pos(folio);
2375 	}
2376 
2377 	return mapping->a_ops->is_partially_uptodate(&folio->page, pos, count);
2378 }
2379 
2380 static int filemap_update_page(struct kiocb *iocb,
2381 		struct address_space *mapping, struct iov_iter *iter,
2382 		struct folio *folio)
2383 {
2384 	int error;
2385 
2386 	if (iocb->ki_flags & IOCB_NOWAIT) {
2387 		if (!filemap_invalidate_trylock_shared(mapping))
2388 			return -EAGAIN;
2389 	} else {
2390 		filemap_invalidate_lock_shared(mapping);
2391 	}
2392 
2393 	if (!folio_trylock(folio)) {
2394 		error = -EAGAIN;
2395 		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2396 			goto unlock_mapping;
2397 		if (!(iocb->ki_flags & IOCB_WAITQ)) {
2398 			filemap_invalidate_unlock_shared(mapping);
2399 			/*
2400 			 * This is where we usually end up waiting for a
2401 			 * previously submitted readahead to finish.
2402 			 */
2403 			folio_put_wait_locked(folio, TASK_KILLABLE);
2404 			return AOP_TRUNCATED_PAGE;
2405 		}
2406 		error = __folio_lock_async(folio, iocb->ki_waitq);
2407 		if (error)
2408 			goto unlock_mapping;
2409 	}
2410 
2411 	error = AOP_TRUNCATED_PAGE;
2412 	if (!folio->mapping)
2413 		goto unlock;
2414 
2415 	error = 0;
2416 	if (filemap_range_uptodate(mapping, iocb->ki_pos, iter, folio))
2417 		goto unlock;
2418 
2419 	error = -EAGAIN;
2420 	if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2421 		goto unlock;
2422 
2423 	error = filemap_read_folio(iocb->ki_filp, mapping, folio);
2424 	goto unlock_mapping;
2425 unlock:
2426 	folio_unlock(folio);
2427 unlock_mapping:
2428 	filemap_invalidate_unlock_shared(mapping);
2429 	if (error == AOP_TRUNCATED_PAGE)
2430 		folio_put(folio);
2431 	return error;
2432 }
2433 
2434 static int filemap_create_folio(struct file *file,
2435 		struct address_space *mapping, pgoff_t index,
2436 		struct folio_batch *fbatch)
2437 {
2438 	struct folio *folio;
2439 	int error;
2440 
2441 	folio = filemap_alloc_folio(mapping_gfp_mask(mapping), 0);
2442 	if (!folio)
2443 		return -ENOMEM;
2444 
2445 	/*
2446 	 * Protect against truncate / hole punch. Grabbing invalidate_lock
2447 	 * here assures we cannot instantiate and bring uptodate new
2448 	 * pagecache folios after evicting page cache during truncate
2449 	 * and before actually freeing blocks.	Note that we could
2450 	 * release invalidate_lock after inserting the folio into
2451 	 * the page cache as the locked folio would then be enough to
2452 	 * synchronize with hole punching. But there are code paths
2453 	 * such as filemap_update_page() filling in partially uptodate
2454 	 * pages or ->readpages() that need to hold invalidate_lock
2455 	 * while mapping blocks for IO so let's hold the lock here as
2456 	 * well to keep locking rules simple.
2457 	 */
2458 	filemap_invalidate_lock_shared(mapping);
2459 	error = filemap_add_folio(mapping, folio, index,
2460 			mapping_gfp_constraint(mapping, GFP_KERNEL));
2461 	if (error == -EEXIST)
2462 		error = AOP_TRUNCATED_PAGE;
2463 	if (error)
2464 		goto error;
2465 
2466 	error = filemap_read_folio(file, mapping, folio);
2467 	if (error)
2468 		goto error;
2469 
2470 	filemap_invalidate_unlock_shared(mapping);
2471 	folio_batch_add(fbatch, folio);
2472 	return 0;
2473 error:
2474 	filemap_invalidate_unlock_shared(mapping);
2475 	folio_put(folio);
2476 	return error;
2477 }
2478 
2479 static int filemap_readahead(struct kiocb *iocb, struct file *file,
2480 		struct address_space *mapping, struct folio *folio,
2481 		pgoff_t last_index)
2482 {
2483 	DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index);
2484 
2485 	if (iocb->ki_flags & IOCB_NOIO)
2486 		return -EAGAIN;
2487 	page_cache_async_ra(&ractl, folio, last_index - folio->index);
2488 	return 0;
2489 }
2490 
2491 static int filemap_get_pages(struct kiocb *iocb, struct iov_iter *iter,
2492 		struct folio_batch *fbatch)
2493 {
2494 	struct file *filp = iocb->ki_filp;
2495 	struct address_space *mapping = filp->f_mapping;
2496 	struct file_ra_state *ra = &filp->f_ra;
2497 	pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2498 	pgoff_t last_index;
2499 	struct folio *folio;
2500 	int err = 0;
2501 
2502 	last_index = DIV_ROUND_UP(iocb->ki_pos + iter->count, PAGE_SIZE);
2503 retry:
2504 	if (fatal_signal_pending(current))
2505 		return -EINTR;
2506 
2507 	filemap_get_read_batch(mapping, index, last_index, fbatch);
2508 	if (!folio_batch_count(fbatch)) {
2509 		if (iocb->ki_flags & IOCB_NOIO)
2510 			return -EAGAIN;
2511 		page_cache_sync_readahead(mapping, ra, filp, index,
2512 				last_index - index);
2513 		filemap_get_read_batch(mapping, index, last_index, fbatch);
2514 	}
2515 	if (!folio_batch_count(fbatch)) {
2516 		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2517 			return -EAGAIN;
2518 		err = filemap_create_folio(filp, mapping,
2519 				iocb->ki_pos >> PAGE_SHIFT, fbatch);
2520 		if (err == AOP_TRUNCATED_PAGE)
2521 			goto retry;
2522 		return err;
2523 	}
2524 
2525 	folio = fbatch->folios[folio_batch_count(fbatch) - 1];
2526 	if (folio_test_readahead(folio)) {
2527 		err = filemap_readahead(iocb, filp, mapping, folio, last_index);
2528 		if (err)
2529 			goto err;
2530 	}
2531 	if (!folio_test_uptodate(folio)) {
2532 		if ((iocb->ki_flags & IOCB_WAITQ) &&
2533 		    folio_batch_count(fbatch) > 1)
2534 			iocb->ki_flags |= IOCB_NOWAIT;
2535 		err = filemap_update_page(iocb, mapping, iter, folio);
2536 		if (err)
2537 			goto err;
2538 	}
2539 
2540 	return 0;
2541 err:
2542 	if (err < 0)
2543 		folio_put(folio);
2544 	if (likely(--fbatch->nr))
2545 		return 0;
2546 	if (err == AOP_TRUNCATED_PAGE)
2547 		goto retry;
2548 	return err;
2549 }
2550 
2551 /**
2552  * filemap_read - Read data from the page cache.
2553  * @iocb: The iocb to read.
2554  * @iter: Destination for the data.
2555  * @already_read: Number of bytes already read by the caller.
2556  *
2557  * Copies data from the page cache.  If the data is not currently present,
2558  * uses the readahead and readpage address_space operations to fetch it.
2559  *
2560  * Return: Total number of bytes copied, including those already read by
2561  * the caller.  If an error happens before any bytes are copied, returns
2562  * a negative error number.
2563  */
2564 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2565 		ssize_t already_read)
2566 {
2567 	struct file *filp = iocb->ki_filp;
2568 	struct file_ra_state *ra = &filp->f_ra;
2569 	struct address_space *mapping = filp->f_mapping;
2570 	struct inode *inode = mapping->host;
2571 	struct folio_batch fbatch;
2572 	int i, error = 0;
2573 	bool writably_mapped;
2574 	loff_t isize, end_offset;
2575 
2576 	if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2577 		return 0;
2578 	if (unlikely(!iov_iter_count(iter)))
2579 		return 0;
2580 
2581 	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2582 	folio_batch_init(&fbatch);
2583 
2584 	do {
2585 		cond_resched();
2586 
2587 		/*
2588 		 * If we've already successfully copied some data, then we
2589 		 * can no longer safely return -EIOCBQUEUED. Hence mark
2590 		 * an async read NOWAIT at that point.
2591 		 */
2592 		if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2593 			iocb->ki_flags |= IOCB_NOWAIT;
2594 
2595 		if (unlikely(iocb->ki_pos >= i_size_read(inode)))
2596 			break;
2597 
2598 		error = filemap_get_pages(iocb, iter, &fbatch);
2599 		if (error < 0)
2600 			break;
2601 
2602 		/*
2603 		 * i_size must be checked after we know the pages are Uptodate.
2604 		 *
2605 		 * Checking i_size after the check allows us to calculate
2606 		 * the correct value for "nr", which means the zero-filled
2607 		 * part of the page is not copied back to userspace (unless
2608 		 * another truncate extends the file - this is desired though).
2609 		 */
2610 		isize = i_size_read(inode);
2611 		if (unlikely(iocb->ki_pos >= isize))
2612 			goto put_folios;
2613 		end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2614 
2615 		/*
2616 		 * Once we start copying data, we don't want to be touching any
2617 		 * cachelines that might be contended:
2618 		 */
2619 		writably_mapped = mapping_writably_mapped(mapping);
2620 
2621 		/*
2622 		 * When a sequential read accesses a page several times, only
2623 		 * mark it as accessed the first time.
2624 		 */
2625 		if (iocb->ki_pos >> PAGE_SHIFT !=
2626 		    ra->prev_pos >> PAGE_SHIFT)
2627 			folio_mark_accessed(fbatch.folios[0]);
2628 
2629 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
2630 			struct folio *folio = fbatch.folios[i];
2631 			size_t fsize = folio_size(folio);
2632 			size_t offset = iocb->ki_pos & (fsize - 1);
2633 			size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2634 					     fsize - offset);
2635 			size_t copied;
2636 
2637 			if (end_offset < folio_pos(folio))
2638 				break;
2639 			if (i > 0)
2640 				folio_mark_accessed(folio);
2641 			/*
2642 			 * If users can be writing to this folio using arbitrary
2643 			 * virtual addresses, take care of potential aliasing
2644 			 * before reading the folio on the kernel side.
2645 			 */
2646 			if (writably_mapped)
2647 				flush_dcache_folio(folio);
2648 
2649 			copied = copy_folio_to_iter(folio, offset, bytes, iter);
2650 
2651 			already_read += copied;
2652 			iocb->ki_pos += copied;
2653 			ra->prev_pos = iocb->ki_pos;
2654 
2655 			if (copied < bytes) {
2656 				error = -EFAULT;
2657 				break;
2658 			}
2659 		}
2660 put_folios:
2661 		for (i = 0; i < folio_batch_count(&fbatch); i++)
2662 			folio_put(fbatch.folios[i]);
2663 		folio_batch_init(&fbatch);
2664 	} while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2665 
2666 	file_accessed(filp);
2667 
2668 	return already_read ? already_read : error;
2669 }
2670 EXPORT_SYMBOL_GPL(filemap_read);
2671 
2672 /**
2673  * generic_file_read_iter - generic filesystem read routine
2674  * @iocb:	kernel I/O control block
2675  * @iter:	destination for the data read
2676  *
2677  * This is the "read_iter()" routine for all filesystems
2678  * that can use the page cache directly.
2679  *
2680  * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2681  * be returned when no data can be read without waiting for I/O requests
2682  * to complete; it doesn't prevent readahead.
2683  *
2684  * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2685  * requests shall be made for the read or for readahead.  When no data
2686  * can be read, -EAGAIN shall be returned.  When readahead would be
2687  * triggered, a partial, possibly empty read shall be returned.
2688  *
2689  * Return:
2690  * * number of bytes copied, even for partial reads
2691  * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2692  */
2693 ssize_t
2694 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2695 {
2696 	size_t count = iov_iter_count(iter);
2697 	ssize_t retval = 0;
2698 
2699 	if (!count)
2700 		return 0; /* skip atime */
2701 
2702 	if (iocb->ki_flags & IOCB_DIRECT) {
2703 		struct file *file = iocb->ki_filp;
2704 		struct address_space *mapping = file->f_mapping;
2705 		struct inode *inode = mapping->host;
2706 
2707 		if (iocb->ki_flags & IOCB_NOWAIT) {
2708 			if (filemap_range_needs_writeback(mapping, iocb->ki_pos,
2709 						iocb->ki_pos + count - 1))
2710 				return -EAGAIN;
2711 		} else {
2712 			retval = filemap_write_and_wait_range(mapping,
2713 						iocb->ki_pos,
2714 					        iocb->ki_pos + count - 1);
2715 			if (retval < 0)
2716 				return retval;
2717 		}
2718 
2719 		file_accessed(file);
2720 
2721 		retval = mapping->a_ops->direct_IO(iocb, iter);
2722 		if (retval >= 0) {
2723 			iocb->ki_pos += retval;
2724 			count -= retval;
2725 		}
2726 		if (retval != -EIOCBQUEUED)
2727 			iov_iter_revert(iter, count - iov_iter_count(iter));
2728 
2729 		/*
2730 		 * Btrfs can have a short DIO read if we encounter
2731 		 * compressed extents, so if there was an error, or if
2732 		 * we've already read everything we wanted to, or if
2733 		 * there was a short read because we hit EOF, go ahead
2734 		 * and return.  Otherwise fallthrough to buffered io for
2735 		 * the rest of the read.  Buffered reads will not work for
2736 		 * DAX files, so don't bother trying.
2737 		 */
2738 		if (retval < 0 || !count || IS_DAX(inode))
2739 			return retval;
2740 		if (iocb->ki_pos >= i_size_read(inode))
2741 			return retval;
2742 	}
2743 
2744 	return filemap_read(iocb, iter, retval);
2745 }
2746 EXPORT_SYMBOL(generic_file_read_iter);
2747 
2748 static inline loff_t folio_seek_hole_data(struct xa_state *xas,
2749 		struct address_space *mapping, struct folio *folio,
2750 		loff_t start, loff_t end, bool seek_data)
2751 {
2752 	const struct address_space_operations *ops = mapping->a_ops;
2753 	size_t offset, bsz = i_blocksize(mapping->host);
2754 
2755 	if (xa_is_value(folio) || folio_test_uptodate(folio))
2756 		return seek_data ? start : end;
2757 	if (!ops->is_partially_uptodate)
2758 		return seek_data ? end : start;
2759 
2760 	xas_pause(xas);
2761 	rcu_read_unlock();
2762 	folio_lock(folio);
2763 	if (unlikely(folio->mapping != mapping))
2764 		goto unlock;
2765 
2766 	offset = offset_in_folio(folio, start) & ~(bsz - 1);
2767 
2768 	do {
2769 		if (ops->is_partially_uptodate(&folio->page, offset, bsz) ==
2770 							seek_data)
2771 			break;
2772 		start = (start + bsz) & ~(bsz - 1);
2773 		offset += bsz;
2774 	} while (offset < folio_size(folio));
2775 unlock:
2776 	folio_unlock(folio);
2777 	rcu_read_lock();
2778 	return start;
2779 }
2780 
2781 static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio)
2782 {
2783 	if (xa_is_value(folio))
2784 		return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
2785 	return folio_size(folio);
2786 }
2787 
2788 /**
2789  * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
2790  * @mapping: Address space to search.
2791  * @start: First byte to consider.
2792  * @end: Limit of search (exclusive).
2793  * @whence: Either SEEK_HOLE or SEEK_DATA.
2794  *
2795  * If the page cache knows which blocks contain holes and which blocks
2796  * contain data, your filesystem can use this function to implement
2797  * SEEK_HOLE and SEEK_DATA.  This is useful for filesystems which are
2798  * entirely memory-based such as tmpfs, and filesystems which support
2799  * unwritten extents.
2800  *
2801  * Return: The requested offset on success, or -ENXIO if @whence specifies
2802  * SEEK_DATA and there is no data after @start.  There is an implicit hole
2803  * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
2804  * and @end contain data.
2805  */
2806 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
2807 		loff_t end, int whence)
2808 {
2809 	XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
2810 	pgoff_t max = (end - 1) >> PAGE_SHIFT;
2811 	bool seek_data = (whence == SEEK_DATA);
2812 	struct folio *folio;
2813 
2814 	if (end <= start)
2815 		return -ENXIO;
2816 
2817 	rcu_read_lock();
2818 	while ((folio = find_get_entry(&xas, max, XA_PRESENT))) {
2819 		loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
2820 		size_t seek_size;
2821 
2822 		if (start < pos) {
2823 			if (!seek_data)
2824 				goto unlock;
2825 			start = pos;
2826 		}
2827 
2828 		seek_size = seek_folio_size(&xas, folio);
2829 		pos = round_up((u64)pos + 1, seek_size);
2830 		start = folio_seek_hole_data(&xas, mapping, folio, start, pos,
2831 				seek_data);
2832 		if (start < pos)
2833 			goto unlock;
2834 		if (start >= end)
2835 			break;
2836 		if (seek_size > PAGE_SIZE)
2837 			xas_set(&xas, pos >> PAGE_SHIFT);
2838 		if (!xa_is_value(folio))
2839 			folio_put(folio);
2840 	}
2841 	if (seek_data)
2842 		start = -ENXIO;
2843 unlock:
2844 	rcu_read_unlock();
2845 	if (folio && !xa_is_value(folio))
2846 		folio_put(folio);
2847 	if (start > end)
2848 		return end;
2849 	return start;
2850 }
2851 
2852 #ifdef CONFIG_MMU
2853 #define MMAP_LOTSAMISS  (100)
2854 /*
2855  * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
2856  * @vmf - the vm_fault for this fault.
2857  * @folio - the folio to lock.
2858  * @fpin - the pointer to the file we may pin (or is already pinned).
2859  *
2860  * This works similar to lock_folio_or_retry in that it can drop the
2861  * mmap_lock.  It differs in that it actually returns the folio locked
2862  * if it returns 1 and 0 if it couldn't lock the folio.  If we did have
2863  * to drop the mmap_lock then fpin will point to the pinned file and
2864  * needs to be fput()'ed at a later point.
2865  */
2866 static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio,
2867 				     struct file **fpin)
2868 {
2869 	if (folio_trylock(folio))
2870 		return 1;
2871 
2872 	/*
2873 	 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2874 	 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
2875 	 * is supposed to work. We have way too many special cases..
2876 	 */
2877 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2878 		return 0;
2879 
2880 	*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2881 	if (vmf->flags & FAULT_FLAG_KILLABLE) {
2882 		if (__folio_lock_killable(folio)) {
2883 			/*
2884 			 * We didn't have the right flags to drop the mmap_lock,
2885 			 * but all fault_handlers only check for fatal signals
2886 			 * if we return VM_FAULT_RETRY, so we need to drop the
2887 			 * mmap_lock here and return 0 if we don't have a fpin.
2888 			 */
2889 			if (*fpin == NULL)
2890 				mmap_read_unlock(vmf->vma->vm_mm);
2891 			return 0;
2892 		}
2893 	} else
2894 		__folio_lock(folio);
2895 
2896 	return 1;
2897 }
2898 
2899 /*
2900  * Synchronous readahead happens when we don't even find a page in the page
2901  * cache at all.  We don't want to perform IO under the mmap sem, so if we have
2902  * to drop the mmap sem we return the file that was pinned in order for us to do
2903  * that.  If we didn't pin a file then we return NULL.  The file that is
2904  * returned needs to be fput()'ed when we're done with it.
2905  */
2906 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
2907 {
2908 	struct file *file = vmf->vma->vm_file;
2909 	struct file_ra_state *ra = &file->f_ra;
2910 	struct address_space *mapping = file->f_mapping;
2911 	DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
2912 	struct file *fpin = NULL;
2913 	unsigned int mmap_miss;
2914 
2915 	/* If we don't want any read-ahead, don't bother */
2916 	if (vmf->vma->vm_flags & VM_RAND_READ)
2917 		return fpin;
2918 	if (!ra->ra_pages)
2919 		return fpin;
2920 
2921 	if (vmf->vma->vm_flags & VM_SEQ_READ) {
2922 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2923 		page_cache_sync_ra(&ractl, ra->ra_pages);
2924 		return fpin;
2925 	}
2926 
2927 	/* Avoid banging the cache line if not needed */
2928 	mmap_miss = READ_ONCE(ra->mmap_miss);
2929 	if (mmap_miss < MMAP_LOTSAMISS * 10)
2930 		WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
2931 
2932 	/*
2933 	 * Do we miss much more than hit in this file? If so,
2934 	 * stop bothering with read-ahead. It will only hurt.
2935 	 */
2936 	if (mmap_miss > MMAP_LOTSAMISS)
2937 		return fpin;
2938 
2939 	/*
2940 	 * mmap read-around
2941 	 */
2942 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2943 	ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
2944 	ra->size = ra->ra_pages;
2945 	ra->async_size = ra->ra_pages / 4;
2946 	ractl._index = ra->start;
2947 	do_page_cache_ra(&ractl, ra->size, ra->async_size);
2948 	return fpin;
2949 }
2950 
2951 /*
2952  * Asynchronous readahead happens when we find the page and PG_readahead,
2953  * so we want to possibly extend the readahead further.  We return the file that
2954  * was pinned if we have to drop the mmap_lock in order to do IO.
2955  */
2956 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
2957 					    struct folio *folio)
2958 {
2959 	struct file *file = vmf->vma->vm_file;
2960 	struct file_ra_state *ra = &file->f_ra;
2961 	DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff);
2962 	struct file *fpin = NULL;
2963 	unsigned int mmap_miss;
2964 
2965 	/* If we don't want any read-ahead, don't bother */
2966 	if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
2967 		return fpin;
2968 
2969 	mmap_miss = READ_ONCE(ra->mmap_miss);
2970 	if (mmap_miss)
2971 		WRITE_ONCE(ra->mmap_miss, --mmap_miss);
2972 
2973 	if (folio_test_readahead(folio)) {
2974 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2975 		page_cache_async_ra(&ractl, folio, ra->ra_pages);
2976 	}
2977 	return fpin;
2978 }
2979 
2980 /**
2981  * filemap_fault - read in file data for page fault handling
2982  * @vmf:	struct vm_fault containing details of the fault
2983  *
2984  * filemap_fault() is invoked via the vma operations vector for a
2985  * mapped memory region to read in file data during a page fault.
2986  *
2987  * The goto's are kind of ugly, but this streamlines the normal case of having
2988  * it in the page cache, and handles the special cases reasonably without
2989  * having a lot of duplicated code.
2990  *
2991  * vma->vm_mm->mmap_lock must be held on entry.
2992  *
2993  * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
2994  * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap().
2995  *
2996  * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
2997  * has not been released.
2998  *
2999  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
3000  *
3001  * Return: bitwise-OR of %VM_FAULT_ codes.
3002  */
3003 vm_fault_t filemap_fault(struct vm_fault *vmf)
3004 {
3005 	int error;
3006 	struct file *file = vmf->vma->vm_file;
3007 	struct file *fpin = NULL;
3008 	struct address_space *mapping = file->f_mapping;
3009 	struct inode *inode = mapping->host;
3010 	pgoff_t max_idx, index = vmf->pgoff;
3011 	struct folio *folio;
3012 	vm_fault_t ret = 0;
3013 	bool mapping_locked = false;
3014 
3015 	max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3016 	if (unlikely(index >= max_idx))
3017 		return VM_FAULT_SIGBUS;
3018 
3019 	/*
3020 	 * Do we have something in the page cache already?
3021 	 */
3022 	folio = filemap_get_folio(mapping, index);
3023 	if (likely(folio)) {
3024 		/*
3025 		 * We found the page, so try async readahead before waiting for
3026 		 * the lock.
3027 		 */
3028 		if (!(vmf->flags & FAULT_FLAG_TRIED))
3029 			fpin = do_async_mmap_readahead(vmf, folio);
3030 		if (unlikely(!folio_test_uptodate(folio))) {
3031 			filemap_invalidate_lock_shared(mapping);
3032 			mapping_locked = true;
3033 		}
3034 	} else {
3035 		/* No page in the page cache at all */
3036 		count_vm_event(PGMAJFAULT);
3037 		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
3038 		ret = VM_FAULT_MAJOR;
3039 		fpin = do_sync_mmap_readahead(vmf);
3040 retry_find:
3041 		/*
3042 		 * See comment in filemap_create_folio() why we need
3043 		 * invalidate_lock
3044 		 */
3045 		if (!mapping_locked) {
3046 			filemap_invalidate_lock_shared(mapping);
3047 			mapping_locked = true;
3048 		}
3049 		folio = __filemap_get_folio(mapping, index,
3050 					  FGP_CREAT|FGP_FOR_MMAP,
3051 					  vmf->gfp_mask);
3052 		if (!folio) {
3053 			if (fpin)
3054 				goto out_retry;
3055 			filemap_invalidate_unlock_shared(mapping);
3056 			return VM_FAULT_OOM;
3057 		}
3058 	}
3059 
3060 	if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin))
3061 		goto out_retry;
3062 
3063 	/* Did it get truncated? */
3064 	if (unlikely(folio->mapping != mapping)) {
3065 		folio_unlock(folio);
3066 		folio_put(folio);
3067 		goto retry_find;
3068 	}
3069 	VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
3070 
3071 	/*
3072 	 * We have a locked page in the page cache, now we need to check
3073 	 * that it's up-to-date. If not, it is going to be due to an error.
3074 	 */
3075 	if (unlikely(!folio_test_uptodate(folio))) {
3076 		/*
3077 		 * The page was in cache and uptodate and now it is not.
3078 		 * Strange but possible since we didn't hold the page lock all
3079 		 * the time. Let's drop everything get the invalidate lock and
3080 		 * try again.
3081 		 */
3082 		if (!mapping_locked) {
3083 			folio_unlock(folio);
3084 			folio_put(folio);
3085 			goto retry_find;
3086 		}
3087 		goto page_not_uptodate;
3088 	}
3089 
3090 	/*
3091 	 * We've made it this far and we had to drop our mmap_lock, now is the
3092 	 * time to return to the upper layer and have it re-find the vma and
3093 	 * redo the fault.
3094 	 */
3095 	if (fpin) {
3096 		folio_unlock(folio);
3097 		goto out_retry;
3098 	}
3099 	if (mapping_locked)
3100 		filemap_invalidate_unlock_shared(mapping);
3101 
3102 	/*
3103 	 * Found the page and have a reference on it.
3104 	 * We must recheck i_size under page lock.
3105 	 */
3106 	max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3107 	if (unlikely(index >= max_idx)) {
3108 		folio_unlock(folio);
3109 		folio_put(folio);
3110 		return VM_FAULT_SIGBUS;
3111 	}
3112 
3113 	vmf->page = folio_file_page(folio, index);
3114 	return ret | VM_FAULT_LOCKED;
3115 
3116 page_not_uptodate:
3117 	/*
3118 	 * Umm, take care of errors if the page isn't up-to-date.
3119 	 * Try to re-read it _once_. We do this synchronously,
3120 	 * because there really aren't any performance issues here
3121 	 * and we need to check for errors.
3122 	 */
3123 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3124 	error = filemap_read_folio(file, mapping, folio);
3125 	if (fpin)
3126 		goto out_retry;
3127 	folio_put(folio);
3128 
3129 	if (!error || error == AOP_TRUNCATED_PAGE)
3130 		goto retry_find;
3131 	filemap_invalidate_unlock_shared(mapping);
3132 
3133 	return VM_FAULT_SIGBUS;
3134 
3135 out_retry:
3136 	/*
3137 	 * We dropped the mmap_lock, we need to return to the fault handler to
3138 	 * re-find the vma and come back and find our hopefully still populated
3139 	 * page.
3140 	 */
3141 	if (folio)
3142 		folio_put(folio);
3143 	if (mapping_locked)
3144 		filemap_invalidate_unlock_shared(mapping);
3145 	if (fpin)
3146 		fput(fpin);
3147 	return ret | VM_FAULT_RETRY;
3148 }
3149 EXPORT_SYMBOL(filemap_fault);
3150 
3151 static bool filemap_map_pmd(struct vm_fault *vmf, struct page *page)
3152 {
3153 	struct mm_struct *mm = vmf->vma->vm_mm;
3154 
3155 	/* Huge page is mapped? No need to proceed. */
3156 	if (pmd_trans_huge(*vmf->pmd)) {
3157 		unlock_page(page);
3158 		put_page(page);
3159 		return true;
3160 	}
3161 
3162 	if (pmd_none(*vmf->pmd) && PageTransHuge(page)) {
3163 		vm_fault_t ret = do_set_pmd(vmf, page);
3164 		if (!ret) {
3165 			/* The page is mapped successfully, reference consumed. */
3166 			unlock_page(page);
3167 			return true;
3168 		}
3169 	}
3170 
3171 	if (pmd_none(*vmf->pmd))
3172 		pmd_install(mm, vmf->pmd, &vmf->prealloc_pte);
3173 
3174 	/* See comment in handle_pte_fault() */
3175 	if (pmd_devmap_trans_unstable(vmf->pmd)) {
3176 		unlock_page(page);
3177 		put_page(page);
3178 		return true;
3179 	}
3180 
3181 	return false;
3182 }
3183 
3184 static struct folio *next_uptodate_page(struct folio *folio,
3185 				       struct address_space *mapping,
3186 				       struct xa_state *xas, pgoff_t end_pgoff)
3187 {
3188 	unsigned long max_idx;
3189 
3190 	do {
3191 		if (!folio)
3192 			return NULL;
3193 		if (xas_retry(xas, folio))
3194 			continue;
3195 		if (xa_is_value(folio))
3196 			continue;
3197 		if (folio_test_locked(folio))
3198 			continue;
3199 		if (!folio_try_get_rcu(folio))
3200 			continue;
3201 		/* Has the page moved or been split? */
3202 		if (unlikely(folio != xas_reload(xas)))
3203 			goto skip;
3204 		if (!folio_test_uptodate(folio) || folio_test_readahead(folio))
3205 			goto skip;
3206 		if (!folio_trylock(folio))
3207 			goto skip;
3208 		if (folio->mapping != mapping)
3209 			goto unlock;
3210 		if (!folio_test_uptodate(folio))
3211 			goto unlock;
3212 		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3213 		if (xas->xa_index >= max_idx)
3214 			goto unlock;
3215 		return folio;
3216 unlock:
3217 		folio_unlock(folio);
3218 skip:
3219 		folio_put(folio);
3220 	} while ((folio = xas_next_entry(xas, end_pgoff)) != NULL);
3221 
3222 	return NULL;
3223 }
3224 
3225 static inline struct folio *first_map_page(struct address_space *mapping,
3226 					  struct xa_state *xas,
3227 					  pgoff_t end_pgoff)
3228 {
3229 	return next_uptodate_page(xas_find(xas, end_pgoff),
3230 				  mapping, xas, end_pgoff);
3231 }
3232 
3233 static inline struct folio *next_map_page(struct address_space *mapping,
3234 					 struct xa_state *xas,
3235 					 pgoff_t end_pgoff)
3236 {
3237 	return next_uptodate_page(xas_next_entry(xas, end_pgoff),
3238 				  mapping, xas, end_pgoff);
3239 }
3240 
3241 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3242 			     pgoff_t start_pgoff, pgoff_t end_pgoff)
3243 {
3244 	struct vm_area_struct *vma = vmf->vma;
3245 	struct file *file = vma->vm_file;
3246 	struct address_space *mapping = file->f_mapping;
3247 	pgoff_t last_pgoff = start_pgoff;
3248 	unsigned long addr;
3249 	XA_STATE(xas, &mapping->i_pages, start_pgoff);
3250 	struct folio *folio;
3251 	struct page *page;
3252 	unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss);
3253 	vm_fault_t ret = 0;
3254 
3255 	rcu_read_lock();
3256 	folio = first_map_page(mapping, &xas, end_pgoff);
3257 	if (!folio)
3258 		goto out;
3259 
3260 	if (filemap_map_pmd(vmf, &folio->page)) {
3261 		ret = VM_FAULT_NOPAGE;
3262 		goto out;
3263 	}
3264 
3265 	addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3266 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3267 	do {
3268 again:
3269 		page = folio_file_page(folio, xas.xa_index);
3270 		if (PageHWPoison(page))
3271 			goto unlock;
3272 
3273 		if (mmap_miss > 0)
3274 			mmap_miss--;
3275 
3276 		addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3277 		vmf->pte += xas.xa_index - last_pgoff;
3278 		last_pgoff = xas.xa_index;
3279 
3280 		if (!pte_none(*vmf->pte))
3281 			goto unlock;
3282 
3283 		/* We're about to handle the fault */
3284 		if (vmf->address == addr)
3285 			ret = VM_FAULT_NOPAGE;
3286 
3287 		do_set_pte(vmf, page, addr);
3288 		/* no need to invalidate: a not-present page won't be cached */
3289 		update_mmu_cache(vma, addr, vmf->pte);
3290 		if (folio_more_pages(folio, xas.xa_index, end_pgoff)) {
3291 			xas.xa_index++;
3292 			folio_ref_inc(folio);
3293 			goto again;
3294 		}
3295 		folio_unlock(folio);
3296 		continue;
3297 unlock:
3298 		if (folio_more_pages(folio, xas.xa_index, end_pgoff)) {
3299 			xas.xa_index++;
3300 			goto again;
3301 		}
3302 		folio_unlock(folio);
3303 		folio_put(folio);
3304 	} while ((folio = next_map_page(mapping, &xas, end_pgoff)) != NULL);
3305 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3306 out:
3307 	rcu_read_unlock();
3308 	WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss);
3309 	return ret;
3310 }
3311 EXPORT_SYMBOL(filemap_map_pages);
3312 
3313 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3314 {
3315 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3316 	struct folio *folio = page_folio(vmf->page);
3317 	vm_fault_t ret = VM_FAULT_LOCKED;
3318 
3319 	sb_start_pagefault(mapping->host->i_sb);
3320 	file_update_time(vmf->vma->vm_file);
3321 	folio_lock(folio);
3322 	if (folio->mapping != mapping) {
3323 		folio_unlock(folio);
3324 		ret = VM_FAULT_NOPAGE;
3325 		goto out;
3326 	}
3327 	/*
3328 	 * We mark the folio dirty already here so that when freeze is in
3329 	 * progress, we are guaranteed that writeback during freezing will
3330 	 * see the dirty folio and writeprotect it again.
3331 	 */
3332 	folio_mark_dirty(folio);
3333 	folio_wait_stable(folio);
3334 out:
3335 	sb_end_pagefault(mapping->host->i_sb);
3336 	return ret;
3337 }
3338 
3339 const struct vm_operations_struct generic_file_vm_ops = {
3340 	.fault		= filemap_fault,
3341 	.map_pages	= filemap_map_pages,
3342 	.page_mkwrite	= filemap_page_mkwrite,
3343 };
3344 
3345 /* This is used for a general mmap of a disk file */
3346 
3347 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3348 {
3349 	struct address_space *mapping = file->f_mapping;
3350 
3351 	if (!mapping->a_ops->readpage)
3352 		return -ENOEXEC;
3353 	file_accessed(file);
3354 	vma->vm_ops = &generic_file_vm_ops;
3355 	return 0;
3356 }
3357 
3358 /*
3359  * This is for filesystems which do not implement ->writepage.
3360  */
3361 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3362 {
3363 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
3364 		return -EINVAL;
3365 	return generic_file_mmap(file, vma);
3366 }
3367 #else
3368 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3369 {
3370 	return VM_FAULT_SIGBUS;
3371 }
3372 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3373 {
3374 	return -ENOSYS;
3375 }
3376 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3377 {
3378 	return -ENOSYS;
3379 }
3380 #endif /* CONFIG_MMU */
3381 
3382 EXPORT_SYMBOL(filemap_page_mkwrite);
3383 EXPORT_SYMBOL(generic_file_mmap);
3384 EXPORT_SYMBOL(generic_file_readonly_mmap);
3385 
3386 static struct folio *do_read_cache_folio(struct address_space *mapping,
3387 		pgoff_t index, filler_t filler, void *data, gfp_t gfp)
3388 {
3389 	struct folio *folio;
3390 	int err;
3391 repeat:
3392 	folio = filemap_get_folio(mapping, index);
3393 	if (!folio) {
3394 		folio = filemap_alloc_folio(gfp, 0);
3395 		if (!folio)
3396 			return ERR_PTR(-ENOMEM);
3397 		err = filemap_add_folio(mapping, folio, index, gfp);
3398 		if (unlikely(err)) {
3399 			folio_put(folio);
3400 			if (err == -EEXIST)
3401 				goto repeat;
3402 			/* Presumably ENOMEM for xarray node */
3403 			return ERR_PTR(err);
3404 		}
3405 
3406 filler:
3407 		if (filler)
3408 			err = filler(data, &folio->page);
3409 		else
3410 			err = mapping->a_ops->readpage(data, &folio->page);
3411 
3412 		if (err < 0) {
3413 			folio_put(folio);
3414 			return ERR_PTR(err);
3415 		}
3416 
3417 		folio_wait_locked(folio);
3418 		if (!folio_test_uptodate(folio)) {
3419 			folio_put(folio);
3420 			return ERR_PTR(-EIO);
3421 		}
3422 
3423 		goto out;
3424 	}
3425 	if (folio_test_uptodate(folio))
3426 		goto out;
3427 
3428 	if (!folio_trylock(folio)) {
3429 		folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE);
3430 		goto repeat;
3431 	}
3432 
3433 	/* Folio was truncated from mapping */
3434 	if (!folio->mapping) {
3435 		folio_unlock(folio);
3436 		folio_put(folio);
3437 		goto repeat;
3438 	}
3439 
3440 	/* Someone else locked and filled the page in a very small window */
3441 	if (folio_test_uptodate(folio)) {
3442 		folio_unlock(folio);
3443 		goto out;
3444 	}
3445 
3446 	/*
3447 	 * A previous I/O error may have been due to temporary
3448 	 * failures.
3449 	 * Clear page error before actual read, PG_error will be
3450 	 * set again if read page fails.
3451 	 */
3452 	folio_clear_error(folio);
3453 	goto filler;
3454 
3455 out:
3456 	folio_mark_accessed(folio);
3457 	return folio;
3458 }
3459 
3460 /**
3461  * read_cache_folio - read into page cache, fill it if needed
3462  * @mapping:	the page's address_space
3463  * @index:	the page index
3464  * @filler:	function to perform the read
3465  * @data:	first arg to filler(data, page) function, often left as NULL
3466  *
3467  * Read into the page cache. If a page already exists, and PageUptodate() is
3468  * not set, try to fill the page and wait for it to become unlocked.
3469  *
3470  * If the page does not get brought uptodate, return -EIO.
3471  *
3472  * The function expects mapping->invalidate_lock to be already held.
3473  *
3474  * Return: up to date page on success, ERR_PTR() on failure.
3475  */
3476 struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index,
3477 		filler_t filler, void *data)
3478 {
3479 	return do_read_cache_folio(mapping, index, filler, data,
3480 			mapping_gfp_mask(mapping));
3481 }
3482 EXPORT_SYMBOL(read_cache_folio);
3483 
3484 static struct page *do_read_cache_page(struct address_space *mapping,
3485 		pgoff_t index, filler_t *filler, void *data, gfp_t gfp)
3486 {
3487 	struct folio *folio;
3488 
3489 	folio = do_read_cache_folio(mapping, index, filler, data, gfp);
3490 	if (IS_ERR(folio))
3491 		return &folio->page;
3492 	return folio_file_page(folio, index);
3493 }
3494 
3495 struct page *read_cache_page(struct address_space *mapping,
3496 				pgoff_t index, filler_t *filler, void *data)
3497 {
3498 	return do_read_cache_page(mapping, index, filler, data,
3499 			mapping_gfp_mask(mapping));
3500 }
3501 EXPORT_SYMBOL(read_cache_page);
3502 
3503 /**
3504  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3505  * @mapping:	the page's address_space
3506  * @index:	the page index
3507  * @gfp:	the page allocator flags to use if allocating
3508  *
3509  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3510  * any new page allocations done using the specified allocation flags.
3511  *
3512  * If the page does not get brought uptodate, return -EIO.
3513  *
3514  * The function expects mapping->invalidate_lock to be already held.
3515  *
3516  * Return: up to date page on success, ERR_PTR() on failure.
3517  */
3518 struct page *read_cache_page_gfp(struct address_space *mapping,
3519 				pgoff_t index,
3520 				gfp_t gfp)
3521 {
3522 	return do_read_cache_page(mapping, index, NULL, NULL, gfp);
3523 }
3524 EXPORT_SYMBOL(read_cache_page_gfp);
3525 
3526 int pagecache_write_begin(struct file *file, struct address_space *mapping,
3527 				loff_t pos, unsigned len, unsigned flags,
3528 				struct page **pagep, void **fsdata)
3529 {
3530 	const struct address_space_operations *aops = mapping->a_ops;
3531 
3532 	return aops->write_begin(file, mapping, pos, len, flags,
3533 							pagep, fsdata);
3534 }
3535 EXPORT_SYMBOL(pagecache_write_begin);
3536 
3537 int pagecache_write_end(struct file *file, struct address_space *mapping,
3538 				loff_t pos, unsigned len, unsigned copied,
3539 				struct page *page, void *fsdata)
3540 {
3541 	const struct address_space_operations *aops = mapping->a_ops;
3542 
3543 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3544 }
3545 EXPORT_SYMBOL(pagecache_write_end);
3546 
3547 /*
3548  * Warn about a page cache invalidation failure during a direct I/O write.
3549  */
3550 void dio_warn_stale_pagecache(struct file *filp)
3551 {
3552 	static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3553 	char pathname[128];
3554 	char *path;
3555 
3556 	errseq_set(&filp->f_mapping->wb_err, -EIO);
3557 	if (__ratelimit(&_rs)) {
3558 		path = file_path(filp, pathname, sizeof(pathname));
3559 		if (IS_ERR(path))
3560 			path = "(unknown)";
3561 		pr_crit("Page cache invalidation failure on direct I/O.  Possible data corruption due to collision with buffered I/O!\n");
3562 		pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3563 			current->comm);
3564 	}
3565 }
3566 
3567 ssize_t
3568 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3569 {
3570 	struct file	*file = iocb->ki_filp;
3571 	struct address_space *mapping = file->f_mapping;
3572 	struct inode	*inode = mapping->host;
3573 	loff_t		pos = iocb->ki_pos;
3574 	ssize_t		written;
3575 	size_t		write_len;
3576 	pgoff_t		end;
3577 
3578 	write_len = iov_iter_count(from);
3579 	end = (pos + write_len - 1) >> PAGE_SHIFT;
3580 
3581 	if (iocb->ki_flags & IOCB_NOWAIT) {
3582 		/* If there are pages to writeback, return */
3583 		if (filemap_range_has_page(file->f_mapping, pos,
3584 					   pos + write_len - 1))
3585 			return -EAGAIN;
3586 	} else {
3587 		written = filemap_write_and_wait_range(mapping, pos,
3588 							pos + write_len - 1);
3589 		if (written)
3590 			goto out;
3591 	}
3592 
3593 	/*
3594 	 * After a write we want buffered reads to be sure to go to disk to get
3595 	 * the new data.  We invalidate clean cached page from the region we're
3596 	 * about to write.  We do this *before* the write so that we can return
3597 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
3598 	 */
3599 	written = invalidate_inode_pages2_range(mapping,
3600 					pos >> PAGE_SHIFT, end);
3601 	/*
3602 	 * If a page can not be invalidated, return 0 to fall back
3603 	 * to buffered write.
3604 	 */
3605 	if (written) {
3606 		if (written == -EBUSY)
3607 			return 0;
3608 		goto out;
3609 	}
3610 
3611 	written = mapping->a_ops->direct_IO(iocb, from);
3612 
3613 	/*
3614 	 * Finally, try again to invalidate clean pages which might have been
3615 	 * cached by non-direct readahead, or faulted in by get_user_pages()
3616 	 * if the source of the write was an mmap'ed region of the file
3617 	 * we're writing.  Either one is a pretty crazy thing to do,
3618 	 * so we don't support it 100%.  If this invalidation
3619 	 * fails, tough, the write still worked...
3620 	 *
3621 	 * Most of the time we do not need this since dio_complete() will do
3622 	 * the invalidation for us. However there are some file systems that
3623 	 * do not end up with dio_complete() being called, so let's not break
3624 	 * them by removing it completely.
3625 	 *
3626 	 * Noticeable example is a blkdev_direct_IO().
3627 	 *
3628 	 * Skip invalidation for async writes or if mapping has no pages.
3629 	 */
3630 	if (written > 0 && mapping->nrpages &&
3631 	    invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3632 		dio_warn_stale_pagecache(file);
3633 
3634 	if (written > 0) {
3635 		pos += written;
3636 		write_len -= written;
3637 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3638 			i_size_write(inode, pos);
3639 			mark_inode_dirty(inode);
3640 		}
3641 		iocb->ki_pos = pos;
3642 	}
3643 	if (written != -EIOCBQUEUED)
3644 		iov_iter_revert(from, write_len - iov_iter_count(from));
3645 out:
3646 	return written;
3647 }
3648 EXPORT_SYMBOL(generic_file_direct_write);
3649 
3650 ssize_t generic_perform_write(struct file *file,
3651 				struct iov_iter *i, loff_t pos)
3652 {
3653 	struct address_space *mapping = file->f_mapping;
3654 	const struct address_space_operations *a_ops = mapping->a_ops;
3655 	long status = 0;
3656 	ssize_t written = 0;
3657 	unsigned int flags = 0;
3658 
3659 	do {
3660 		struct page *page;
3661 		unsigned long offset;	/* Offset into pagecache page */
3662 		unsigned long bytes;	/* Bytes to write to page */
3663 		size_t copied;		/* Bytes copied from user */
3664 		void *fsdata;
3665 
3666 		offset = (pos & (PAGE_SIZE - 1));
3667 		bytes = min_t(unsigned long, PAGE_SIZE - offset,
3668 						iov_iter_count(i));
3669 
3670 again:
3671 		/*
3672 		 * Bring in the user page that we will copy from _first_.
3673 		 * Otherwise there's a nasty deadlock on copying from the
3674 		 * same page as we're writing to, without it being marked
3675 		 * up-to-date.
3676 		 */
3677 		if (unlikely(fault_in_iov_iter_readable(i, bytes))) {
3678 			status = -EFAULT;
3679 			break;
3680 		}
3681 
3682 		if (fatal_signal_pending(current)) {
3683 			status = -EINTR;
3684 			break;
3685 		}
3686 
3687 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3688 						&page, &fsdata);
3689 		if (unlikely(status < 0))
3690 			break;
3691 
3692 		if (mapping_writably_mapped(mapping))
3693 			flush_dcache_page(page);
3694 
3695 		copied = copy_page_from_iter_atomic(page, offset, bytes, i);
3696 		flush_dcache_page(page);
3697 
3698 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
3699 						page, fsdata);
3700 		if (unlikely(status != copied)) {
3701 			iov_iter_revert(i, copied - max(status, 0L));
3702 			if (unlikely(status < 0))
3703 				break;
3704 		}
3705 		cond_resched();
3706 
3707 		if (unlikely(status == 0)) {
3708 			/*
3709 			 * A short copy made ->write_end() reject the
3710 			 * thing entirely.  Might be memory poisoning
3711 			 * halfway through, might be a race with munmap,
3712 			 * might be severe memory pressure.
3713 			 */
3714 			if (copied)
3715 				bytes = copied;
3716 			goto again;
3717 		}
3718 		pos += status;
3719 		written += status;
3720 
3721 		balance_dirty_pages_ratelimited(mapping);
3722 	} while (iov_iter_count(i));
3723 
3724 	return written ? written : status;
3725 }
3726 EXPORT_SYMBOL(generic_perform_write);
3727 
3728 /**
3729  * __generic_file_write_iter - write data to a file
3730  * @iocb:	IO state structure (file, offset, etc.)
3731  * @from:	iov_iter with data to write
3732  *
3733  * This function does all the work needed for actually writing data to a
3734  * file. It does all basic checks, removes SUID from the file, updates
3735  * modification times and calls proper subroutines depending on whether we
3736  * do direct IO or a standard buffered write.
3737  *
3738  * It expects i_rwsem to be grabbed unless we work on a block device or similar
3739  * object which does not need locking at all.
3740  *
3741  * This function does *not* take care of syncing data in case of O_SYNC write.
3742  * A caller has to handle it. This is mainly due to the fact that we want to
3743  * avoid syncing under i_rwsem.
3744  *
3745  * Return:
3746  * * number of bytes written, even for truncated writes
3747  * * negative error code if no data has been written at all
3748  */
3749 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3750 {
3751 	struct file *file = iocb->ki_filp;
3752 	struct address_space *mapping = file->f_mapping;
3753 	struct inode 	*inode = mapping->host;
3754 	ssize_t		written = 0;
3755 	ssize_t		err;
3756 	ssize_t		status;
3757 
3758 	/* We can write back this queue in page reclaim */
3759 	current->backing_dev_info = inode_to_bdi(inode);
3760 	err = file_remove_privs(file);
3761 	if (err)
3762 		goto out;
3763 
3764 	err = file_update_time(file);
3765 	if (err)
3766 		goto out;
3767 
3768 	if (iocb->ki_flags & IOCB_DIRECT) {
3769 		loff_t pos, endbyte;
3770 
3771 		written = generic_file_direct_write(iocb, from);
3772 		/*
3773 		 * If the write stopped short of completing, fall back to
3774 		 * buffered writes.  Some filesystems do this for writes to
3775 		 * holes, for example.  For DAX files, a buffered write will
3776 		 * not succeed (even if it did, DAX does not handle dirty
3777 		 * page-cache pages correctly).
3778 		 */
3779 		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3780 			goto out;
3781 
3782 		status = generic_perform_write(file, from, pos = iocb->ki_pos);
3783 		/*
3784 		 * If generic_perform_write() returned a synchronous error
3785 		 * then we want to return the number of bytes which were
3786 		 * direct-written, or the error code if that was zero.  Note
3787 		 * that this differs from normal direct-io semantics, which
3788 		 * will return -EFOO even if some bytes were written.
3789 		 */
3790 		if (unlikely(status < 0)) {
3791 			err = status;
3792 			goto out;
3793 		}
3794 		/*
3795 		 * We need to ensure that the page cache pages are written to
3796 		 * disk and invalidated to preserve the expected O_DIRECT
3797 		 * semantics.
3798 		 */
3799 		endbyte = pos + status - 1;
3800 		err = filemap_write_and_wait_range(mapping, pos, endbyte);
3801 		if (err == 0) {
3802 			iocb->ki_pos = endbyte + 1;
3803 			written += status;
3804 			invalidate_mapping_pages(mapping,
3805 						 pos >> PAGE_SHIFT,
3806 						 endbyte >> PAGE_SHIFT);
3807 		} else {
3808 			/*
3809 			 * We don't know how much we wrote, so just return
3810 			 * the number of bytes which were direct-written
3811 			 */
3812 		}
3813 	} else {
3814 		written = generic_perform_write(file, from, iocb->ki_pos);
3815 		if (likely(written > 0))
3816 			iocb->ki_pos += written;
3817 	}
3818 out:
3819 	current->backing_dev_info = NULL;
3820 	return written ? written : err;
3821 }
3822 EXPORT_SYMBOL(__generic_file_write_iter);
3823 
3824 /**
3825  * generic_file_write_iter - write data to a file
3826  * @iocb:	IO state structure
3827  * @from:	iov_iter with data to write
3828  *
3829  * This is a wrapper around __generic_file_write_iter() to be used by most
3830  * filesystems. It takes care of syncing the file in case of O_SYNC file
3831  * and acquires i_rwsem as needed.
3832  * Return:
3833  * * negative error code if no data has been written at all of
3834  *   vfs_fsync_range() failed for a synchronous write
3835  * * number of bytes written, even for truncated writes
3836  */
3837 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3838 {
3839 	struct file *file = iocb->ki_filp;
3840 	struct inode *inode = file->f_mapping->host;
3841 	ssize_t ret;
3842 
3843 	inode_lock(inode);
3844 	ret = generic_write_checks(iocb, from);
3845 	if (ret > 0)
3846 		ret = __generic_file_write_iter(iocb, from);
3847 	inode_unlock(inode);
3848 
3849 	if (ret > 0)
3850 		ret = generic_write_sync(iocb, ret);
3851 	return ret;
3852 }
3853 EXPORT_SYMBOL(generic_file_write_iter);
3854 
3855 /**
3856  * filemap_release_folio() - Release fs-specific metadata on a folio.
3857  * @folio: The folio which the kernel is trying to free.
3858  * @gfp: Memory allocation flags (and I/O mode).
3859  *
3860  * The address_space is trying to release any data attached to a folio
3861  * (presumably at folio->private).
3862  *
3863  * This will also be called if the private_2 flag is set on a page,
3864  * indicating that the folio has other metadata associated with it.
3865  *
3866  * The @gfp argument specifies whether I/O may be performed to release
3867  * this page (__GFP_IO), and whether the call may block
3868  * (__GFP_RECLAIM & __GFP_FS).
3869  *
3870  * Return: %true if the release was successful, otherwise %false.
3871  */
3872 bool filemap_release_folio(struct folio *folio, gfp_t gfp)
3873 {
3874 	struct address_space * const mapping = folio->mapping;
3875 
3876 	BUG_ON(!folio_test_locked(folio));
3877 	if (folio_test_writeback(folio))
3878 		return false;
3879 
3880 	if (mapping && mapping->a_ops->releasepage)
3881 		return mapping->a_ops->releasepage(&folio->page, gfp);
3882 	return try_to_free_buffers(&folio->page);
3883 }
3884 EXPORT_SYMBOL(filemap_release_folio);
3885