1 /* 2 * linux/mm/filemap.c 3 * 4 * Copyright (C) 1994-1999 Linus Torvalds 5 */ 6 7 /* 8 * This file handles the generic file mmap semantics used by 9 * most "normal" filesystems (but you don't /have/ to use this: 10 * the NFS filesystem used to do this differently, for example) 11 */ 12 #include <linux/export.h> 13 #include <linux/compiler.h> 14 #include <linux/dax.h> 15 #include <linux/fs.h> 16 #include <linux/sched/signal.h> 17 #include <linux/uaccess.h> 18 #include <linux/capability.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/gfp.h> 21 #include <linux/mm.h> 22 #include <linux/swap.h> 23 #include <linux/mman.h> 24 #include <linux/pagemap.h> 25 #include <linux/file.h> 26 #include <linux/uio.h> 27 #include <linux/hash.h> 28 #include <linux/writeback.h> 29 #include <linux/backing-dev.h> 30 #include <linux/pagevec.h> 31 #include <linux/blkdev.h> 32 #include <linux/security.h> 33 #include <linux/cpuset.h> 34 #include <linux/hugetlb.h> 35 #include <linux/memcontrol.h> 36 #include <linux/cleancache.h> 37 #include <linux/shmem_fs.h> 38 #include <linux/rmap.h> 39 #include <linux/delayacct.h> 40 #include <linux/psi.h> 41 #include "internal.h" 42 43 #define CREATE_TRACE_POINTS 44 #include <trace/events/filemap.h> 45 46 /* 47 * FIXME: remove all knowledge of the buffer layer from the core VM 48 */ 49 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 50 51 #include <asm/mman.h> 52 53 /* 54 * Shared mappings implemented 30.11.1994. It's not fully working yet, 55 * though. 56 * 57 * Shared mappings now work. 15.8.1995 Bruno. 58 * 59 * finished 'unifying' the page and buffer cache and SMP-threaded the 60 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 61 * 62 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 63 */ 64 65 /* 66 * Lock ordering: 67 * 68 * ->i_mmap_rwsem (truncate_pagecache) 69 * ->private_lock (__free_pte->__set_page_dirty_buffers) 70 * ->swap_lock (exclusive_swap_page, others) 71 * ->i_pages lock 72 * 73 * ->i_mutex 74 * ->i_mmap_rwsem (truncate->unmap_mapping_range) 75 * 76 * ->mmap_sem 77 * ->i_mmap_rwsem 78 * ->page_table_lock or pte_lock (various, mainly in memory.c) 79 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock) 80 * 81 * ->mmap_sem 82 * ->lock_page (access_process_vm) 83 * 84 * ->i_mutex (generic_perform_write) 85 * ->mmap_sem (fault_in_pages_readable->do_page_fault) 86 * 87 * bdi->wb.list_lock 88 * sb_lock (fs/fs-writeback.c) 89 * ->i_pages lock (__sync_single_inode) 90 * 91 * ->i_mmap_rwsem 92 * ->anon_vma.lock (vma_adjust) 93 * 94 * ->anon_vma.lock 95 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 96 * 97 * ->page_table_lock or pte_lock 98 * ->swap_lock (try_to_unmap_one) 99 * ->private_lock (try_to_unmap_one) 100 * ->i_pages lock (try_to_unmap_one) 101 * ->zone_lru_lock(zone) (follow_page->mark_page_accessed) 102 * ->zone_lru_lock(zone) (check_pte_range->isolate_lru_page) 103 * ->private_lock (page_remove_rmap->set_page_dirty) 104 * ->i_pages lock (page_remove_rmap->set_page_dirty) 105 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty) 106 * ->inode->i_lock (page_remove_rmap->set_page_dirty) 107 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg) 108 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 109 * ->inode->i_lock (zap_pte_range->set_page_dirty) 110 * ->private_lock (zap_pte_range->__set_page_dirty_buffers) 111 * 112 * ->i_mmap_rwsem 113 * ->tasklist_lock (memory_failure, collect_procs_ao) 114 */ 115 116 static void page_cache_delete(struct address_space *mapping, 117 struct page *page, void *shadow) 118 { 119 XA_STATE(xas, &mapping->i_pages, page->index); 120 unsigned int nr = 1; 121 122 mapping_set_update(&xas, mapping); 123 124 /* hugetlb pages are represented by a single entry in the xarray */ 125 if (!PageHuge(page)) { 126 xas_set_order(&xas, page->index, compound_order(page)); 127 nr = 1U << compound_order(page); 128 } 129 130 VM_BUG_ON_PAGE(!PageLocked(page), page); 131 VM_BUG_ON_PAGE(PageTail(page), page); 132 VM_BUG_ON_PAGE(nr != 1 && shadow, page); 133 134 xas_store(&xas, shadow); 135 xas_init_marks(&xas); 136 137 page->mapping = NULL; 138 /* Leave page->index set: truncation lookup relies upon it */ 139 140 if (shadow) { 141 mapping->nrexceptional += nr; 142 /* 143 * Make sure the nrexceptional update is committed before 144 * the nrpages update so that final truncate racing 145 * with reclaim does not see both counters 0 at the 146 * same time and miss a shadow entry. 147 */ 148 smp_wmb(); 149 } 150 mapping->nrpages -= nr; 151 } 152 153 static void unaccount_page_cache_page(struct address_space *mapping, 154 struct page *page) 155 { 156 int nr; 157 158 /* 159 * if we're uptodate, flush out into the cleancache, otherwise 160 * invalidate any existing cleancache entries. We can't leave 161 * stale data around in the cleancache once our page is gone 162 */ 163 if (PageUptodate(page) && PageMappedToDisk(page)) 164 cleancache_put_page(page); 165 else 166 cleancache_invalidate_page(mapping, page); 167 168 VM_BUG_ON_PAGE(PageTail(page), page); 169 VM_BUG_ON_PAGE(page_mapped(page), page); 170 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) { 171 int mapcount; 172 173 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n", 174 current->comm, page_to_pfn(page)); 175 dump_page(page, "still mapped when deleted"); 176 dump_stack(); 177 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 178 179 mapcount = page_mapcount(page); 180 if (mapping_exiting(mapping) && 181 page_count(page) >= mapcount + 2) { 182 /* 183 * All vmas have already been torn down, so it's 184 * a good bet that actually the page is unmapped, 185 * and we'd prefer not to leak it: if we're wrong, 186 * some other bad page check should catch it later. 187 */ 188 page_mapcount_reset(page); 189 page_ref_sub(page, mapcount); 190 } 191 } 192 193 /* hugetlb pages do not participate in page cache accounting. */ 194 if (PageHuge(page)) 195 return; 196 197 nr = hpage_nr_pages(page); 198 199 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr); 200 if (PageSwapBacked(page)) { 201 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr); 202 if (PageTransHuge(page)) 203 __dec_node_page_state(page, NR_SHMEM_THPS); 204 } else { 205 VM_BUG_ON_PAGE(PageTransHuge(page), page); 206 } 207 208 /* 209 * At this point page must be either written or cleaned by 210 * truncate. Dirty page here signals a bug and loss of 211 * unwritten data. 212 * 213 * This fixes dirty accounting after removing the page entirely 214 * but leaves PageDirty set: it has no effect for truncated 215 * page and anyway will be cleared before returning page into 216 * buddy allocator. 217 */ 218 if (WARN_ON_ONCE(PageDirty(page))) 219 account_page_cleaned(page, mapping, inode_to_wb(mapping->host)); 220 } 221 222 /* 223 * Delete a page from the page cache and free it. Caller has to make 224 * sure the page is locked and that nobody else uses it - or that usage 225 * is safe. The caller must hold the i_pages lock. 226 */ 227 void __delete_from_page_cache(struct page *page, void *shadow) 228 { 229 struct address_space *mapping = page->mapping; 230 231 trace_mm_filemap_delete_from_page_cache(page); 232 233 unaccount_page_cache_page(mapping, page); 234 page_cache_delete(mapping, page, shadow); 235 } 236 237 static void page_cache_free_page(struct address_space *mapping, 238 struct page *page) 239 { 240 void (*freepage)(struct page *); 241 242 freepage = mapping->a_ops->freepage; 243 if (freepage) 244 freepage(page); 245 246 if (PageTransHuge(page) && !PageHuge(page)) { 247 page_ref_sub(page, HPAGE_PMD_NR); 248 VM_BUG_ON_PAGE(page_count(page) <= 0, page); 249 } else { 250 put_page(page); 251 } 252 } 253 254 /** 255 * delete_from_page_cache - delete page from page cache 256 * @page: the page which the kernel is trying to remove from page cache 257 * 258 * This must be called only on pages that have been verified to be in the page 259 * cache and locked. It will never put the page into the free list, the caller 260 * has a reference on the page. 261 */ 262 void delete_from_page_cache(struct page *page) 263 { 264 struct address_space *mapping = page_mapping(page); 265 unsigned long flags; 266 267 BUG_ON(!PageLocked(page)); 268 xa_lock_irqsave(&mapping->i_pages, flags); 269 __delete_from_page_cache(page, NULL); 270 xa_unlock_irqrestore(&mapping->i_pages, flags); 271 272 page_cache_free_page(mapping, page); 273 } 274 EXPORT_SYMBOL(delete_from_page_cache); 275 276 /* 277 * page_cache_delete_batch - delete several pages from page cache 278 * @mapping: the mapping to which pages belong 279 * @pvec: pagevec with pages to delete 280 * 281 * The function walks over mapping->i_pages and removes pages passed in @pvec 282 * from the mapping. The function expects @pvec to be sorted by page index. 283 * It tolerates holes in @pvec (mapping entries at those indices are not 284 * modified). The function expects only THP head pages to be present in the 285 * @pvec and takes care to delete all corresponding tail pages from the 286 * mapping as well. 287 * 288 * The function expects the i_pages lock to be held. 289 */ 290 static void page_cache_delete_batch(struct address_space *mapping, 291 struct pagevec *pvec) 292 { 293 XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index); 294 int total_pages = 0; 295 int i = 0, tail_pages = 0; 296 struct page *page; 297 298 mapping_set_update(&xas, mapping); 299 xas_for_each(&xas, page, ULONG_MAX) { 300 if (i >= pagevec_count(pvec) && !tail_pages) 301 break; 302 if (xa_is_value(page)) 303 continue; 304 if (!tail_pages) { 305 /* 306 * Some page got inserted in our range? Skip it. We 307 * have our pages locked so they are protected from 308 * being removed. 309 */ 310 if (page != pvec->pages[i]) { 311 VM_BUG_ON_PAGE(page->index > 312 pvec->pages[i]->index, page); 313 continue; 314 } 315 WARN_ON_ONCE(!PageLocked(page)); 316 if (PageTransHuge(page) && !PageHuge(page)) 317 tail_pages = HPAGE_PMD_NR - 1; 318 page->mapping = NULL; 319 /* 320 * Leave page->index set: truncation lookup relies 321 * upon it 322 */ 323 i++; 324 } else { 325 VM_BUG_ON_PAGE(page->index + HPAGE_PMD_NR - tail_pages 326 != pvec->pages[i]->index, page); 327 tail_pages--; 328 } 329 xas_store(&xas, NULL); 330 total_pages++; 331 } 332 mapping->nrpages -= total_pages; 333 } 334 335 void delete_from_page_cache_batch(struct address_space *mapping, 336 struct pagevec *pvec) 337 { 338 int i; 339 unsigned long flags; 340 341 if (!pagevec_count(pvec)) 342 return; 343 344 xa_lock_irqsave(&mapping->i_pages, flags); 345 for (i = 0; i < pagevec_count(pvec); i++) { 346 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]); 347 348 unaccount_page_cache_page(mapping, pvec->pages[i]); 349 } 350 page_cache_delete_batch(mapping, pvec); 351 xa_unlock_irqrestore(&mapping->i_pages, flags); 352 353 for (i = 0; i < pagevec_count(pvec); i++) 354 page_cache_free_page(mapping, pvec->pages[i]); 355 } 356 357 int filemap_check_errors(struct address_space *mapping) 358 { 359 int ret = 0; 360 /* Check for outstanding write errors */ 361 if (test_bit(AS_ENOSPC, &mapping->flags) && 362 test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 363 ret = -ENOSPC; 364 if (test_bit(AS_EIO, &mapping->flags) && 365 test_and_clear_bit(AS_EIO, &mapping->flags)) 366 ret = -EIO; 367 return ret; 368 } 369 EXPORT_SYMBOL(filemap_check_errors); 370 371 static int filemap_check_and_keep_errors(struct address_space *mapping) 372 { 373 /* Check for outstanding write errors */ 374 if (test_bit(AS_EIO, &mapping->flags)) 375 return -EIO; 376 if (test_bit(AS_ENOSPC, &mapping->flags)) 377 return -ENOSPC; 378 return 0; 379 } 380 381 /** 382 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 383 * @mapping: address space structure to write 384 * @start: offset in bytes where the range starts 385 * @end: offset in bytes where the range ends (inclusive) 386 * @sync_mode: enable synchronous operation 387 * 388 * Start writeback against all of a mapping's dirty pages that lie 389 * within the byte offsets <start, end> inclusive. 390 * 391 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 392 * opposed to a regular memory cleansing writeback. The difference between 393 * these two operations is that if a dirty page/buffer is encountered, it must 394 * be waited upon, and not just skipped over. 395 */ 396 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 397 loff_t end, int sync_mode) 398 { 399 int ret; 400 struct writeback_control wbc = { 401 .sync_mode = sync_mode, 402 .nr_to_write = LONG_MAX, 403 .range_start = start, 404 .range_end = end, 405 }; 406 407 if (!mapping_cap_writeback_dirty(mapping)) 408 return 0; 409 410 wbc_attach_fdatawrite_inode(&wbc, mapping->host); 411 ret = do_writepages(mapping, &wbc); 412 wbc_detach_inode(&wbc); 413 return ret; 414 } 415 416 static inline int __filemap_fdatawrite(struct address_space *mapping, 417 int sync_mode) 418 { 419 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 420 } 421 422 int filemap_fdatawrite(struct address_space *mapping) 423 { 424 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 425 } 426 EXPORT_SYMBOL(filemap_fdatawrite); 427 428 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 429 loff_t end) 430 { 431 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 432 } 433 EXPORT_SYMBOL(filemap_fdatawrite_range); 434 435 /** 436 * filemap_flush - mostly a non-blocking flush 437 * @mapping: target address_space 438 * 439 * This is a mostly non-blocking flush. Not suitable for data-integrity 440 * purposes - I/O may not be started against all dirty pages. 441 */ 442 int filemap_flush(struct address_space *mapping) 443 { 444 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 445 } 446 EXPORT_SYMBOL(filemap_flush); 447 448 /** 449 * filemap_range_has_page - check if a page exists in range. 450 * @mapping: address space within which to check 451 * @start_byte: offset in bytes where the range starts 452 * @end_byte: offset in bytes where the range ends (inclusive) 453 * 454 * Find at least one page in the range supplied, usually used to check if 455 * direct writing in this range will trigger a writeback. 456 */ 457 bool filemap_range_has_page(struct address_space *mapping, 458 loff_t start_byte, loff_t end_byte) 459 { 460 struct page *page; 461 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 462 pgoff_t max = end_byte >> PAGE_SHIFT; 463 464 if (end_byte < start_byte) 465 return false; 466 467 rcu_read_lock(); 468 for (;;) { 469 page = xas_find(&xas, max); 470 if (xas_retry(&xas, page)) 471 continue; 472 /* Shadow entries don't count */ 473 if (xa_is_value(page)) 474 continue; 475 /* 476 * We don't need to try to pin this page; we're about to 477 * release the RCU lock anyway. It is enough to know that 478 * there was a page here recently. 479 */ 480 break; 481 } 482 rcu_read_unlock(); 483 484 return page != NULL; 485 } 486 EXPORT_SYMBOL(filemap_range_has_page); 487 488 static void __filemap_fdatawait_range(struct address_space *mapping, 489 loff_t start_byte, loff_t end_byte) 490 { 491 pgoff_t index = start_byte >> PAGE_SHIFT; 492 pgoff_t end = end_byte >> PAGE_SHIFT; 493 struct pagevec pvec; 494 int nr_pages; 495 496 if (end_byte < start_byte) 497 return; 498 499 pagevec_init(&pvec); 500 while (index <= end) { 501 unsigned i; 502 503 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, 504 end, PAGECACHE_TAG_WRITEBACK); 505 if (!nr_pages) 506 break; 507 508 for (i = 0; i < nr_pages; i++) { 509 struct page *page = pvec.pages[i]; 510 511 wait_on_page_writeback(page); 512 ClearPageError(page); 513 } 514 pagevec_release(&pvec); 515 cond_resched(); 516 } 517 } 518 519 /** 520 * filemap_fdatawait_range - wait for writeback to complete 521 * @mapping: address space structure to wait for 522 * @start_byte: offset in bytes where the range starts 523 * @end_byte: offset in bytes where the range ends (inclusive) 524 * 525 * Walk the list of under-writeback pages of the given address space 526 * in the given range and wait for all of them. Check error status of 527 * the address space and return it. 528 * 529 * Since the error status of the address space is cleared by this function, 530 * callers are responsible for checking the return value and handling and/or 531 * reporting the error. 532 */ 533 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 534 loff_t end_byte) 535 { 536 __filemap_fdatawait_range(mapping, start_byte, end_byte); 537 return filemap_check_errors(mapping); 538 } 539 EXPORT_SYMBOL(filemap_fdatawait_range); 540 541 /** 542 * file_fdatawait_range - wait for writeback to complete 543 * @file: file pointing to address space structure to wait for 544 * @start_byte: offset in bytes where the range starts 545 * @end_byte: offset in bytes where the range ends (inclusive) 546 * 547 * Walk the list of under-writeback pages of the address space that file 548 * refers to, in the given range and wait for all of them. Check error 549 * status of the address space vs. the file->f_wb_err cursor and return it. 550 * 551 * Since the error status of the file is advanced by this function, 552 * callers are responsible for checking the return value and handling and/or 553 * reporting the error. 554 */ 555 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte) 556 { 557 struct address_space *mapping = file->f_mapping; 558 559 __filemap_fdatawait_range(mapping, start_byte, end_byte); 560 return file_check_and_advance_wb_err(file); 561 } 562 EXPORT_SYMBOL(file_fdatawait_range); 563 564 /** 565 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors 566 * @mapping: address space structure to wait for 567 * 568 * Walk the list of under-writeback pages of the given address space 569 * and wait for all of them. Unlike filemap_fdatawait(), this function 570 * does not clear error status of the address space. 571 * 572 * Use this function if callers don't handle errors themselves. Expected 573 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 574 * fsfreeze(8) 575 */ 576 int filemap_fdatawait_keep_errors(struct address_space *mapping) 577 { 578 __filemap_fdatawait_range(mapping, 0, LLONG_MAX); 579 return filemap_check_and_keep_errors(mapping); 580 } 581 EXPORT_SYMBOL(filemap_fdatawait_keep_errors); 582 583 static bool mapping_needs_writeback(struct address_space *mapping) 584 { 585 return (!dax_mapping(mapping) && mapping->nrpages) || 586 (dax_mapping(mapping) && mapping->nrexceptional); 587 } 588 589 int filemap_write_and_wait(struct address_space *mapping) 590 { 591 int err = 0; 592 593 if (mapping_needs_writeback(mapping)) { 594 err = filemap_fdatawrite(mapping); 595 /* 596 * Even if the above returned error, the pages may be 597 * written partially (e.g. -ENOSPC), so we wait for it. 598 * But the -EIO is special case, it may indicate the worst 599 * thing (e.g. bug) happened, so we avoid waiting for it. 600 */ 601 if (err != -EIO) { 602 int err2 = filemap_fdatawait(mapping); 603 if (!err) 604 err = err2; 605 } else { 606 /* Clear any previously stored errors */ 607 filemap_check_errors(mapping); 608 } 609 } else { 610 err = filemap_check_errors(mapping); 611 } 612 return err; 613 } 614 EXPORT_SYMBOL(filemap_write_and_wait); 615 616 /** 617 * filemap_write_and_wait_range - write out & wait on a file range 618 * @mapping: the address_space for the pages 619 * @lstart: offset in bytes where the range starts 620 * @lend: offset in bytes where the range ends (inclusive) 621 * 622 * Write out and wait upon file offsets lstart->lend, inclusive. 623 * 624 * Note that @lend is inclusive (describes the last byte to be written) so 625 * that this function can be used to write to the very end-of-file (end = -1). 626 */ 627 int filemap_write_and_wait_range(struct address_space *mapping, 628 loff_t lstart, loff_t lend) 629 { 630 int err = 0; 631 632 if (mapping_needs_writeback(mapping)) { 633 err = __filemap_fdatawrite_range(mapping, lstart, lend, 634 WB_SYNC_ALL); 635 /* See comment of filemap_write_and_wait() */ 636 if (err != -EIO) { 637 int err2 = filemap_fdatawait_range(mapping, 638 lstart, lend); 639 if (!err) 640 err = err2; 641 } else { 642 /* Clear any previously stored errors */ 643 filemap_check_errors(mapping); 644 } 645 } else { 646 err = filemap_check_errors(mapping); 647 } 648 return err; 649 } 650 EXPORT_SYMBOL(filemap_write_and_wait_range); 651 652 void __filemap_set_wb_err(struct address_space *mapping, int err) 653 { 654 errseq_t eseq = errseq_set(&mapping->wb_err, err); 655 656 trace_filemap_set_wb_err(mapping, eseq); 657 } 658 EXPORT_SYMBOL(__filemap_set_wb_err); 659 660 /** 661 * file_check_and_advance_wb_err - report wb error (if any) that was previously 662 * and advance wb_err to current one 663 * @file: struct file on which the error is being reported 664 * 665 * When userland calls fsync (or something like nfsd does the equivalent), we 666 * want to report any writeback errors that occurred since the last fsync (or 667 * since the file was opened if there haven't been any). 668 * 669 * Grab the wb_err from the mapping. If it matches what we have in the file, 670 * then just quickly return 0. The file is all caught up. 671 * 672 * If it doesn't match, then take the mapping value, set the "seen" flag in 673 * it and try to swap it into place. If it works, or another task beat us 674 * to it with the new value, then update the f_wb_err and return the error 675 * portion. The error at this point must be reported via proper channels 676 * (a'la fsync, or NFS COMMIT operation, etc.). 677 * 678 * While we handle mapping->wb_err with atomic operations, the f_wb_err 679 * value is protected by the f_lock since we must ensure that it reflects 680 * the latest value swapped in for this file descriptor. 681 */ 682 int file_check_and_advance_wb_err(struct file *file) 683 { 684 int err = 0; 685 errseq_t old = READ_ONCE(file->f_wb_err); 686 struct address_space *mapping = file->f_mapping; 687 688 /* Locklessly handle the common case where nothing has changed */ 689 if (errseq_check(&mapping->wb_err, old)) { 690 /* Something changed, must use slow path */ 691 spin_lock(&file->f_lock); 692 old = file->f_wb_err; 693 err = errseq_check_and_advance(&mapping->wb_err, 694 &file->f_wb_err); 695 trace_file_check_and_advance_wb_err(file, old); 696 spin_unlock(&file->f_lock); 697 } 698 699 /* 700 * We're mostly using this function as a drop in replacement for 701 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect 702 * that the legacy code would have had on these flags. 703 */ 704 clear_bit(AS_EIO, &mapping->flags); 705 clear_bit(AS_ENOSPC, &mapping->flags); 706 return err; 707 } 708 EXPORT_SYMBOL(file_check_and_advance_wb_err); 709 710 /** 711 * file_write_and_wait_range - write out & wait on a file range 712 * @file: file pointing to address_space with pages 713 * @lstart: offset in bytes where the range starts 714 * @lend: offset in bytes where the range ends (inclusive) 715 * 716 * Write out and wait upon file offsets lstart->lend, inclusive. 717 * 718 * Note that @lend is inclusive (describes the last byte to be written) so 719 * that this function can be used to write to the very end-of-file (end = -1). 720 * 721 * After writing out and waiting on the data, we check and advance the 722 * f_wb_err cursor to the latest value, and return any errors detected there. 723 */ 724 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend) 725 { 726 int err = 0, err2; 727 struct address_space *mapping = file->f_mapping; 728 729 if (mapping_needs_writeback(mapping)) { 730 err = __filemap_fdatawrite_range(mapping, lstart, lend, 731 WB_SYNC_ALL); 732 /* See comment of filemap_write_and_wait() */ 733 if (err != -EIO) 734 __filemap_fdatawait_range(mapping, lstart, lend); 735 } 736 err2 = file_check_and_advance_wb_err(file); 737 if (!err) 738 err = err2; 739 return err; 740 } 741 EXPORT_SYMBOL(file_write_and_wait_range); 742 743 /** 744 * replace_page_cache_page - replace a pagecache page with a new one 745 * @old: page to be replaced 746 * @new: page to replace with 747 * @gfp_mask: allocation mode 748 * 749 * This function replaces a page in the pagecache with a new one. On 750 * success it acquires the pagecache reference for the new page and 751 * drops it for the old page. Both the old and new pages must be 752 * locked. This function does not add the new page to the LRU, the 753 * caller must do that. 754 * 755 * The remove + add is atomic. This function cannot fail. 756 */ 757 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask) 758 { 759 struct address_space *mapping = old->mapping; 760 void (*freepage)(struct page *) = mapping->a_ops->freepage; 761 pgoff_t offset = old->index; 762 XA_STATE(xas, &mapping->i_pages, offset); 763 unsigned long flags; 764 765 VM_BUG_ON_PAGE(!PageLocked(old), old); 766 VM_BUG_ON_PAGE(!PageLocked(new), new); 767 VM_BUG_ON_PAGE(new->mapping, new); 768 769 get_page(new); 770 new->mapping = mapping; 771 new->index = offset; 772 773 xas_lock_irqsave(&xas, flags); 774 xas_store(&xas, new); 775 776 old->mapping = NULL; 777 /* hugetlb pages do not participate in page cache accounting. */ 778 if (!PageHuge(old)) 779 __dec_node_page_state(new, NR_FILE_PAGES); 780 if (!PageHuge(new)) 781 __inc_node_page_state(new, NR_FILE_PAGES); 782 if (PageSwapBacked(old)) 783 __dec_node_page_state(new, NR_SHMEM); 784 if (PageSwapBacked(new)) 785 __inc_node_page_state(new, NR_SHMEM); 786 xas_unlock_irqrestore(&xas, flags); 787 mem_cgroup_migrate(old, new); 788 if (freepage) 789 freepage(old); 790 put_page(old); 791 792 return 0; 793 } 794 EXPORT_SYMBOL_GPL(replace_page_cache_page); 795 796 static int __add_to_page_cache_locked(struct page *page, 797 struct address_space *mapping, 798 pgoff_t offset, gfp_t gfp_mask, 799 void **shadowp) 800 { 801 XA_STATE(xas, &mapping->i_pages, offset); 802 int huge = PageHuge(page); 803 struct mem_cgroup *memcg; 804 int error; 805 void *old; 806 807 VM_BUG_ON_PAGE(!PageLocked(page), page); 808 VM_BUG_ON_PAGE(PageSwapBacked(page), page); 809 mapping_set_update(&xas, mapping); 810 811 if (!huge) { 812 error = mem_cgroup_try_charge(page, current->mm, 813 gfp_mask, &memcg, false); 814 if (error) 815 return error; 816 } 817 818 get_page(page); 819 page->mapping = mapping; 820 page->index = offset; 821 822 do { 823 xas_lock_irq(&xas); 824 old = xas_load(&xas); 825 if (old && !xa_is_value(old)) 826 xas_set_err(&xas, -EEXIST); 827 xas_store(&xas, page); 828 if (xas_error(&xas)) 829 goto unlock; 830 831 if (xa_is_value(old)) { 832 mapping->nrexceptional--; 833 if (shadowp) 834 *shadowp = old; 835 } 836 mapping->nrpages++; 837 838 /* hugetlb pages do not participate in page cache accounting */ 839 if (!huge) 840 __inc_node_page_state(page, NR_FILE_PAGES); 841 unlock: 842 xas_unlock_irq(&xas); 843 } while (xas_nomem(&xas, gfp_mask & GFP_RECLAIM_MASK)); 844 845 if (xas_error(&xas)) 846 goto error; 847 848 if (!huge) 849 mem_cgroup_commit_charge(page, memcg, false, false); 850 trace_mm_filemap_add_to_page_cache(page); 851 return 0; 852 error: 853 page->mapping = NULL; 854 /* Leave page->index set: truncation relies upon it */ 855 if (!huge) 856 mem_cgroup_cancel_charge(page, memcg, false); 857 put_page(page); 858 return xas_error(&xas); 859 } 860 861 /** 862 * add_to_page_cache_locked - add a locked page to the pagecache 863 * @page: page to add 864 * @mapping: the page's address_space 865 * @offset: page index 866 * @gfp_mask: page allocation mode 867 * 868 * This function is used to add a page to the pagecache. It must be locked. 869 * This function does not add the page to the LRU. The caller must do that. 870 */ 871 int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 872 pgoff_t offset, gfp_t gfp_mask) 873 { 874 return __add_to_page_cache_locked(page, mapping, offset, 875 gfp_mask, NULL); 876 } 877 EXPORT_SYMBOL(add_to_page_cache_locked); 878 879 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 880 pgoff_t offset, gfp_t gfp_mask) 881 { 882 void *shadow = NULL; 883 int ret; 884 885 __SetPageLocked(page); 886 ret = __add_to_page_cache_locked(page, mapping, offset, 887 gfp_mask, &shadow); 888 if (unlikely(ret)) 889 __ClearPageLocked(page); 890 else { 891 /* 892 * The page might have been evicted from cache only 893 * recently, in which case it should be activated like 894 * any other repeatedly accessed page. 895 * The exception is pages getting rewritten; evicting other 896 * data from the working set, only to cache data that will 897 * get overwritten with something else, is a waste of memory. 898 */ 899 WARN_ON_ONCE(PageActive(page)); 900 if (!(gfp_mask & __GFP_WRITE) && shadow) 901 workingset_refault(page, shadow); 902 lru_cache_add(page); 903 } 904 return ret; 905 } 906 EXPORT_SYMBOL_GPL(add_to_page_cache_lru); 907 908 #ifdef CONFIG_NUMA 909 struct page *__page_cache_alloc(gfp_t gfp) 910 { 911 int n; 912 struct page *page; 913 914 if (cpuset_do_page_mem_spread()) { 915 unsigned int cpuset_mems_cookie; 916 do { 917 cpuset_mems_cookie = read_mems_allowed_begin(); 918 n = cpuset_mem_spread_node(); 919 page = __alloc_pages_node(n, gfp, 0); 920 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie)); 921 922 return page; 923 } 924 return alloc_pages(gfp, 0); 925 } 926 EXPORT_SYMBOL(__page_cache_alloc); 927 #endif 928 929 /* 930 * In order to wait for pages to become available there must be 931 * waitqueues associated with pages. By using a hash table of 932 * waitqueues where the bucket discipline is to maintain all 933 * waiters on the same queue and wake all when any of the pages 934 * become available, and for the woken contexts to check to be 935 * sure the appropriate page became available, this saves space 936 * at a cost of "thundering herd" phenomena during rare hash 937 * collisions. 938 */ 939 #define PAGE_WAIT_TABLE_BITS 8 940 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS) 941 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned; 942 943 static wait_queue_head_t *page_waitqueue(struct page *page) 944 { 945 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)]; 946 } 947 948 void __init pagecache_init(void) 949 { 950 int i; 951 952 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++) 953 init_waitqueue_head(&page_wait_table[i]); 954 955 page_writeback_init(); 956 } 957 958 /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */ 959 struct wait_page_key { 960 struct page *page; 961 int bit_nr; 962 int page_match; 963 }; 964 965 struct wait_page_queue { 966 struct page *page; 967 int bit_nr; 968 wait_queue_entry_t wait; 969 }; 970 971 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg) 972 { 973 struct wait_page_key *key = arg; 974 struct wait_page_queue *wait_page 975 = container_of(wait, struct wait_page_queue, wait); 976 977 if (wait_page->page != key->page) 978 return 0; 979 key->page_match = 1; 980 981 if (wait_page->bit_nr != key->bit_nr) 982 return 0; 983 984 /* Stop walking if it's locked */ 985 if (test_bit(key->bit_nr, &key->page->flags)) 986 return -1; 987 988 return autoremove_wake_function(wait, mode, sync, key); 989 } 990 991 static void wake_up_page_bit(struct page *page, int bit_nr) 992 { 993 wait_queue_head_t *q = page_waitqueue(page); 994 struct wait_page_key key; 995 unsigned long flags; 996 wait_queue_entry_t bookmark; 997 998 key.page = page; 999 key.bit_nr = bit_nr; 1000 key.page_match = 0; 1001 1002 bookmark.flags = 0; 1003 bookmark.private = NULL; 1004 bookmark.func = NULL; 1005 INIT_LIST_HEAD(&bookmark.entry); 1006 1007 spin_lock_irqsave(&q->lock, flags); 1008 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); 1009 1010 while (bookmark.flags & WQ_FLAG_BOOKMARK) { 1011 /* 1012 * Take a breather from holding the lock, 1013 * allow pages that finish wake up asynchronously 1014 * to acquire the lock and remove themselves 1015 * from wait queue 1016 */ 1017 spin_unlock_irqrestore(&q->lock, flags); 1018 cpu_relax(); 1019 spin_lock_irqsave(&q->lock, flags); 1020 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); 1021 } 1022 1023 /* 1024 * It is possible for other pages to have collided on the waitqueue 1025 * hash, so in that case check for a page match. That prevents a long- 1026 * term waiter 1027 * 1028 * It is still possible to miss a case here, when we woke page waiters 1029 * and removed them from the waitqueue, but there are still other 1030 * page waiters. 1031 */ 1032 if (!waitqueue_active(q) || !key.page_match) { 1033 ClearPageWaiters(page); 1034 /* 1035 * It's possible to miss clearing Waiters here, when we woke 1036 * our page waiters, but the hashed waitqueue has waiters for 1037 * other pages on it. 1038 * 1039 * That's okay, it's a rare case. The next waker will clear it. 1040 */ 1041 } 1042 spin_unlock_irqrestore(&q->lock, flags); 1043 } 1044 1045 static void wake_up_page(struct page *page, int bit) 1046 { 1047 if (!PageWaiters(page)) 1048 return; 1049 wake_up_page_bit(page, bit); 1050 } 1051 1052 static inline int wait_on_page_bit_common(wait_queue_head_t *q, 1053 struct page *page, int bit_nr, int state, bool lock) 1054 { 1055 struct wait_page_queue wait_page; 1056 wait_queue_entry_t *wait = &wait_page.wait; 1057 bool thrashing = false; 1058 unsigned long pflags; 1059 int ret = 0; 1060 1061 if (bit_nr == PG_locked && 1062 !PageUptodate(page) && PageWorkingset(page)) { 1063 if (!PageSwapBacked(page)) 1064 delayacct_thrashing_start(); 1065 psi_memstall_enter(&pflags); 1066 thrashing = true; 1067 } 1068 1069 init_wait(wait); 1070 wait->flags = lock ? WQ_FLAG_EXCLUSIVE : 0; 1071 wait->func = wake_page_function; 1072 wait_page.page = page; 1073 wait_page.bit_nr = bit_nr; 1074 1075 for (;;) { 1076 spin_lock_irq(&q->lock); 1077 1078 if (likely(list_empty(&wait->entry))) { 1079 __add_wait_queue_entry_tail(q, wait); 1080 SetPageWaiters(page); 1081 } 1082 1083 set_current_state(state); 1084 1085 spin_unlock_irq(&q->lock); 1086 1087 if (likely(test_bit(bit_nr, &page->flags))) { 1088 io_schedule(); 1089 } 1090 1091 if (lock) { 1092 if (!test_and_set_bit_lock(bit_nr, &page->flags)) 1093 break; 1094 } else { 1095 if (!test_bit(bit_nr, &page->flags)) 1096 break; 1097 } 1098 1099 if (unlikely(signal_pending_state(state, current))) { 1100 ret = -EINTR; 1101 break; 1102 } 1103 } 1104 1105 finish_wait(q, wait); 1106 1107 if (thrashing) { 1108 if (!PageSwapBacked(page)) 1109 delayacct_thrashing_end(); 1110 psi_memstall_leave(&pflags); 1111 } 1112 1113 /* 1114 * A signal could leave PageWaiters set. Clearing it here if 1115 * !waitqueue_active would be possible (by open-coding finish_wait), 1116 * but still fail to catch it in the case of wait hash collision. We 1117 * already can fail to clear wait hash collision cases, so don't 1118 * bother with signals either. 1119 */ 1120 1121 return ret; 1122 } 1123 1124 void wait_on_page_bit(struct page *page, int bit_nr) 1125 { 1126 wait_queue_head_t *q = page_waitqueue(page); 1127 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false); 1128 } 1129 EXPORT_SYMBOL(wait_on_page_bit); 1130 1131 int wait_on_page_bit_killable(struct page *page, int bit_nr) 1132 { 1133 wait_queue_head_t *q = page_waitqueue(page); 1134 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false); 1135 } 1136 EXPORT_SYMBOL(wait_on_page_bit_killable); 1137 1138 /** 1139 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue 1140 * @page: Page defining the wait queue of interest 1141 * @waiter: Waiter to add to the queue 1142 * 1143 * Add an arbitrary @waiter to the wait queue for the nominated @page. 1144 */ 1145 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter) 1146 { 1147 wait_queue_head_t *q = page_waitqueue(page); 1148 unsigned long flags; 1149 1150 spin_lock_irqsave(&q->lock, flags); 1151 __add_wait_queue_entry_tail(q, waiter); 1152 SetPageWaiters(page); 1153 spin_unlock_irqrestore(&q->lock, flags); 1154 } 1155 EXPORT_SYMBOL_GPL(add_page_wait_queue); 1156 1157 #ifndef clear_bit_unlock_is_negative_byte 1158 1159 /* 1160 * PG_waiters is the high bit in the same byte as PG_lock. 1161 * 1162 * On x86 (and on many other architectures), we can clear PG_lock and 1163 * test the sign bit at the same time. But if the architecture does 1164 * not support that special operation, we just do this all by hand 1165 * instead. 1166 * 1167 * The read of PG_waiters has to be after (or concurrently with) PG_locked 1168 * being cleared, but a memory barrier should be unneccssary since it is 1169 * in the same byte as PG_locked. 1170 */ 1171 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem) 1172 { 1173 clear_bit_unlock(nr, mem); 1174 /* smp_mb__after_atomic(); */ 1175 return test_bit(PG_waiters, mem); 1176 } 1177 1178 #endif 1179 1180 /** 1181 * unlock_page - unlock a locked page 1182 * @page: the page 1183 * 1184 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). 1185 * Also wakes sleepers in wait_on_page_writeback() because the wakeup 1186 * mechanism between PageLocked pages and PageWriteback pages is shared. 1187 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. 1188 * 1189 * Note that this depends on PG_waiters being the sign bit in the byte 1190 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to 1191 * clear the PG_locked bit and test PG_waiters at the same time fairly 1192 * portably (architectures that do LL/SC can test any bit, while x86 can 1193 * test the sign bit). 1194 */ 1195 void unlock_page(struct page *page) 1196 { 1197 BUILD_BUG_ON(PG_waiters != 7); 1198 page = compound_head(page); 1199 VM_BUG_ON_PAGE(!PageLocked(page), page); 1200 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags)) 1201 wake_up_page_bit(page, PG_locked); 1202 } 1203 EXPORT_SYMBOL(unlock_page); 1204 1205 /** 1206 * end_page_writeback - end writeback against a page 1207 * @page: the page 1208 */ 1209 void end_page_writeback(struct page *page) 1210 { 1211 /* 1212 * TestClearPageReclaim could be used here but it is an atomic 1213 * operation and overkill in this particular case. Failing to 1214 * shuffle a page marked for immediate reclaim is too mild to 1215 * justify taking an atomic operation penalty at the end of 1216 * ever page writeback. 1217 */ 1218 if (PageReclaim(page)) { 1219 ClearPageReclaim(page); 1220 rotate_reclaimable_page(page); 1221 } 1222 1223 if (!test_clear_page_writeback(page)) 1224 BUG(); 1225 1226 smp_mb__after_atomic(); 1227 wake_up_page(page, PG_writeback); 1228 } 1229 EXPORT_SYMBOL(end_page_writeback); 1230 1231 /* 1232 * After completing I/O on a page, call this routine to update the page 1233 * flags appropriately 1234 */ 1235 void page_endio(struct page *page, bool is_write, int err) 1236 { 1237 if (!is_write) { 1238 if (!err) { 1239 SetPageUptodate(page); 1240 } else { 1241 ClearPageUptodate(page); 1242 SetPageError(page); 1243 } 1244 unlock_page(page); 1245 } else { 1246 if (err) { 1247 struct address_space *mapping; 1248 1249 SetPageError(page); 1250 mapping = page_mapping(page); 1251 if (mapping) 1252 mapping_set_error(mapping, err); 1253 } 1254 end_page_writeback(page); 1255 } 1256 } 1257 EXPORT_SYMBOL_GPL(page_endio); 1258 1259 /** 1260 * __lock_page - get a lock on the page, assuming we need to sleep to get it 1261 * @__page: the page to lock 1262 */ 1263 void __lock_page(struct page *__page) 1264 { 1265 struct page *page = compound_head(__page); 1266 wait_queue_head_t *q = page_waitqueue(page); 1267 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true); 1268 } 1269 EXPORT_SYMBOL(__lock_page); 1270 1271 int __lock_page_killable(struct page *__page) 1272 { 1273 struct page *page = compound_head(__page); 1274 wait_queue_head_t *q = page_waitqueue(page); 1275 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true); 1276 } 1277 EXPORT_SYMBOL_GPL(__lock_page_killable); 1278 1279 /* 1280 * Return values: 1281 * 1 - page is locked; mmap_sem is still held. 1282 * 0 - page is not locked. 1283 * mmap_sem has been released (up_read()), unless flags had both 1284 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in 1285 * which case mmap_sem is still held. 1286 * 1287 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1 1288 * with the page locked and the mmap_sem unperturbed. 1289 */ 1290 int __lock_page_or_retry(struct page *page, struct mm_struct *mm, 1291 unsigned int flags) 1292 { 1293 if (flags & FAULT_FLAG_ALLOW_RETRY) { 1294 /* 1295 * CAUTION! In this case, mmap_sem is not released 1296 * even though return 0. 1297 */ 1298 if (flags & FAULT_FLAG_RETRY_NOWAIT) 1299 return 0; 1300 1301 up_read(&mm->mmap_sem); 1302 if (flags & FAULT_FLAG_KILLABLE) 1303 wait_on_page_locked_killable(page); 1304 else 1305 wait_on_page_locked(page); 1306 return 0; 1307 } else { 1308 if (flags & FAULT_FLAG_KILLABLE) { 1309 int ret; 1310 1311 ret = __lock_page_killable(page); 1312 if (ret) { 1313 up_read(&mm->mmap_sem); 1314 return 0; 1315 } 1316 } else 1317 __lock_page(page); 1318 return 1; 1319 } 1320 } 1321 1322 /** 1323 * page_cache_next_miss() - Find the next gap in the page cache. 1324 * @mapping: Mapping. 1325 * @index: Index. 1326 * @max_scan: Maximum range to search. 1327 * 1328 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the 1329 * gap with the lowest index. 1330 * 1331 * This function may be called under the rcu_read_lock. However, this will 1332 * not atomically search a snapshot of the cache at a single point in time. 1333 * For example, if a gap is created at index 5, then subsequently a gap is 1334 * created at index 10, page_cache_next_miss covering both indices may 1335 * return 10 if called under the rcu_read_lock. 1336 * 1337 * Return: The index of the gap if found, otherwise an index outside the 1338 * range specified (in which case 'return - index >= max_scan' will be true). 1339 * In the rare case of index wrap-around, 0 will be returned. 1340 */ 1341 pgoff_t page_cache_next_miss(struct address_space *mapping, 1342 pgoff_t index, unsigned long max_scan) 1343 { 1344 XA_STATE(xas, &mapping->i_pages, index); 1345 1346 while (max_scan--) { 1347 void *entry = xas_next(&xas); 1348 if (!entry || xa_is_value(entry)) 1349 break; 1350 if (xas.xa_index == 0) 1351 break; 1352 } 1353 1354 return xas.xa_index; 1355 } 1356 EXPORT_SYMBOL(page_cache_next_miss); 1357 1358 /** 1359 * page_cache_prev_miss() - Find the next gap in the page cache. 1360 * @mapping: Mapping. 1361 * @index: Index. 1362 * @max_scan: Maximum range to search. 1363 * 1364 * Search the range [max(index - max_scan + 1, 0), index] for the 1365 * gap with the highest index. 1366 * 1367 * This function may be called under the rcu_read_lock. However, this will 1368 * not atomically search a snapshot of the cache at a single point in time. 1369 * For example, if a gap is created at index 10, then subsequently a gap is 1370 * created at index 5, page_cache_prev_miss() covering both indices may 1371 * return 5 if called under the rcu_read_lock. 1372 * 1373 * Return: The index of the gap if found, otherwise an index outside the 1374 * range specified (in which case 'index - return >= max_scan' will be true). 1375 * In the rare case of wrap-around, ULONG_MAX will be returned. 1376 */ 1377 pgoff_t page_cache_prev_miss(struct address_space *mapping, 1378 pgoff_t index, unsigned long max_scan) 1379 { 1380 XA_STATE(xas, &mapping->i_pages, index); 1381 1382 while (max_scan--) { 1383 void *entry = xas_prev(&xas); 1384 if (!entry || xa_is_value(entry)) 1385 break; 1386 if (xas.xa_index == ULONG_MAX) 1387 break; 1388 } 1389 1390 return xas.xa_index; 1391 } 1392 EXPORT_SYMBOL(page_cache_prev_miss); 1393 1394 /** 1395 * find_get_entry - find and get a page cache entry 1396 * @mapping: the address_space to search 1397 * @offset: the page cache index 1398 * 1399 * Looks up the page cache slot at @mapping & @offset. If there is a 1400 * page cache page, it is returned with an increased refcount. 1401 * 1402 * If the slot holds a shadow entry of a previously evicted page, or a 1403 * swap entry from shmem/tmpfs, it is returned. 1404 * 1405 * Otherwise, %NULL is returned. 1406 */ 1407 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset) 1408 { 1409 XA_STATE(xas, &mapping->i_pages, offset); 1410 struct page *head, *page; 1411 1412 rcu_read_lock(); 1413 repeat: 1414 xas_reset(&xas); 1415 page = xas_load(&xas); 1416 if (xas_retry(&xas, page)) 1417 goto repeat; 1418 /* 1419 * A shadow entry of a recently evicted page, or a swap entry from 1420 * shmem/tmpfs. Return it without attempting to raise page count. 1421 */ 1422 if (!page || xa_is_value(page)) 1423 goto out; 1424 1425 head = compound_head(page); 1426 if (!page_cache_get_speculative(head)) 1427 goto repeat; 1428 1429 /* The page was split under us? */ 1430 if (compound_head(page) != head) { 1431 put_page(head); 1432 goto repeat; 1433 } 1434 1435 /* 1436 * Has the page moved? 1437 * This is part of the lockless pagecache protocol. See 1438 * include/linux/pagemap.h for details. 1439 */ 1440 if (unlikely(page != xas_reload(&xas))) { 1441 put_page(head); 1442 goto repeat; 1443 } 1444 out: 1445 rcu_read_unlock(); 1446 1447 return page; 1448 } 1449 EXPORT_SYMBOL(find_get_entry); 1450 1451 /** 1452 * find_lock_entry - locate, pin and lock a page cache entry 1453 * @mapping: the address_space to search 1454 * @offset: the page cache index 1455 * 1456 * Looks up the page cache slot at @mapping & @offset. If there is a 1457 * page cache page, it is returned locked and with an increased 1458 * refcount. 1459 * 1460 * If the slot holds a shadow entry of a previously evicted page, or a 1461 * swap entry from shmem/tmpfs, it is returned. 1462 * 1463 * Otherwise, %NULL is returned. 1464 * 1465 * find_lock_entry() may sleep. 1466 */ 1467 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset) 1468 { 1469 struct page *page; 1470 1471 repeat: 1472 page = find_get_entry(mapping, offset); 1473 if (page && !xa_is_value(page)) { 1474 lock_page(page); 1475 /* Has the page been truncated? */ 1476 if (unlikely(page_mapping(page) != mapping)) { 1477 unlock_page(page); 1478 put_page(page); 1479 goto repeat; 1480 } 1481 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page); 1482 } 1483 return page; 1484 } 1485 EXPORT_SYMBOL(find_lock_entry); 1486 1487 /** 1488 * pagecache_get_page - find and get a page reference 1489 * @mapping: the address_space to search 1490 * @offset: the page index 1491 * @fgp_flags: PCG flags 1492 * @gfp_mask: gfp mask to use for the page cache data page allocation 1493 * 1494 * Looks up the page cache slot at @mapping & @offset. 1495 * 1496 * PCG flags modify how the page is returned. 1497 * 1498 * @fgp_flags can be: 1499 * 1500 * - FGP_ACCESSED: the page will be marked accessed 1501 * - FGP_LOCK: Page is return locked 1502 * - FGP_CREAT: If page is not present then a new page is allocated using 1503 * @gfp_mask and added to the page cache and the VM's LRU 1504 * list. The page is returned locked and with an increased 1505 * refcount. Otherwise, NULL is returned. 1506 * 1507 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even 1508 * if the GFP flags specified for FGP_CREAT are atomic. 1509 * 1510 * If there is a page cache page, it is returned with an increased refcount. 1511 */ 1512 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset, 1513 int fgp_flags, gfp_t gfp_mask) 1514 { 1515 struct page *page; 1516 1517 repeat: 1518 page = find_get_entry(mapping, offset); 1519 if (xa_is_value(page)) 1520 page = NULL; 1521 if (!page) 1522 goto no_page; 1523 1524 if (fgp_flags & FGP_LOCK) { 1525 if (fgp_flags & FGP_NOWAIT) { 1526 if (!trylock_page(page)) { 1527 put_page(page); 1528 return NULL; 1529 } 1530 } else { 1531 lock_page(page); 1532 } 1533 1534 /* Has the page been truncated? */ 1535 if (unlikely(page->mapping != mapping)) { 1536 unlock_page(page); 1537 put_page(page); 1538 goto repeat; 1539 } 1540 VM_BUG_ON_PAGE(page->index != offset, page); 1541 } 1542 1543 if (page && (fgp_flags & FGP_ACCESSED)) 1544 mark_page_accessed(page); 1545 1546 no_page: 1547 if (!page && (fgp_flags & FGP_CREAT)) { 1548 int err; 1549 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping)) 1550 gfp_mask |= __GFP_WRITE; 1551 if (fgp_flags & FGP_NOFS) 1552 gfp_mask &= ~__GFP_FS; 1553 1554 page = __page_cache_alloc(gfp_mask); 1555 if (!page) 1556 return NULL; 1557 1558 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK))) 1559 fgp_flags |= FGP_LOCK; 1560 1561 /* Init accessed so avoid atomic mark_page_accessed later */ 1562 if (fgp_flags & FGP_ACCESSED) 1563 __SetPageReferenced(page); 1564 1565 err = add_to_page_cache_lru(page, mapping, offset, gfp_mask); 1566 if (unlikely(err)) { 1567 put_page(page); 1568 page = NULL; 1569 if (err == -EEXIST) 1570 goto repeat; 1571 } 1572 } 1573 1574 return page; 1575 } 1576 EXPORT_SYMBOL(pagecache_get_page); 1577 1578 /** 1579 * find_get_entries - gang pagecache lookup 1580 * @mapping: The address_space to search 1581 * @start: The starting page cache index 1582 * @nr_entries: The maximum number of entries 1583 * @entries: Where the resulting entries are placed 1584 * @indices: The cache indices corresponding to the entries in @entries 1585 * 1586 * find_get_entries() will search for and return a group of up to 1587 * @nr_entries entries in the mapping. The entries are placed at 1588 * @entries. find_get_entries() takes a reference against any actual 1589 * pages it returns. 1590 * 1591 * The search returns a group of mapping-contiguous page cache entries 1592 * with ascending indexes. There may be holes in the indices due to 1593 * not-present pages. 1594 * 1595 * Any shadow entries of evicted pages, or swap entries from 1596 * shmem/tmpfs, are included in the returned array. 1597 * 1598 * find_get_entries() returns the number of pages and shadow entries 1599 * which were found. 1600 */ 1601 unsigned find_get_entries(struct address_space *mapping, 1602 pgoff_t start, unsigned int nr_entries, 1603 struct page **entries, pgoff_t *indices) 1604 { 1605 XA_STATE(xas, &mapping->i_pages, start); 1606 struct page *page; 1607 unsigned int ret = 0; 1608 1609 if (!nr_entries) 1610 return 0; 1611 1612 rcu_read_lock(); 1613 xas_for_each(&xas, page, ULONG_MAX) { 1614 struct page *head; 1615 if (xas_retry(&xas, page)) 1616 continue; 1617 /* 1618 * A shadow entry of a recently evicted page, a swap 1619 * entry from shmem/tmpfs or a DAX entry. Return it 1620 * without attempting to raise page count. 1621 */ 1622 if (xa_is_value(page)) 1623 goto export; 1624 1625 head = compound_head(page); 1626 if (!page_cache_get_speculative(head)) 1627 goto retry; 1628 1629 /* The page was split under us? */ 1630 if (compound_head(page) != head) 1631 goto put_page; 1632 1633 /* Has the page moved? */ 1634 if (unlikely(page != xas_reload(&xas))) 1635 goto put_page; 1636 1637 export: 1638 indices[ret] = xas.xa_index; 1639 entries[ret] = page; 1640 if (++ret == nr_entries) 1641 break; 1642 continue; 1643 put_page: 1644 put_page(head); 1645 retry: 1646 xas_reset(&xas); 1647 } 1648 rcu_read_unlock(); 1649 return ret; 1650 } 1651 1652 /** 1653 * find_get_pages_range - gang pagecache lookup 1654 * @mapping: The address_space to search 1655 * @start: The starting page index 1656 * @end: The final page index (inclusive) 1657 * @nr_pages: The maximum number of pages 1658 * @pages: Where the resulting pages are placed 1659 * 1660 * find_get_pages_range() will search for and return a group of up to @nr_pages 1661 * pages in the mapping starting at index @start and up to index @end 1662 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes 1663 * a reference against the returned pages. 1664 * 1665 * The search returns a group of mapping-contiguous pages with ascending 1666 * indexes. There may be holes in the indices due to not-present pages. 1667 * We also update @start to index the next page for the traversal. 1668 * 1669 * find_get_pages_range() returns the number of pages which were found. If this 1670 * number is smaller than @nr_pages, the end of specified range has been 1671 * reached. 1672 */ 1673 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start, 1674 pgoff_t end, unsigned int nr_pages, 1675 struct page **pages) 1676 { 1677 XA_STATE(xas, &mapping->i_pages, *start); 1678 struct page *page; 1679 unsigned ret = 0; 1680 1681 if (unlikely(!nr_pages)) 1682 return 0; 1683 1684 rcu_read_lock(); 1685 xas_for_each(&xas, page, end) { 1686 struct page *head; 1687 if (xas_retry(&xas, page)) 1688 continue; 1689 /* Skip over shadow, swap and DAX entries */ 1690 if (xa_is_value(page)) 1691 continue; 1692 1693 head = compound_head(page); 1694 if (!page_cache_get_speculative(head)) 1695 goto retry; 1696 1697 /* The page was split under us? */ 1698 if (compound_head(page) != head) 1699 goto put_page; 1700 1701 /* Has the page moved? */ 1702 if (unlikely(page != xas_reload(&xas))) 1703 goto put_page; 1704 1705 pages[ret] = page; 1706 if (++ret == nr_pages) { 1707 *start = page->index + 1; 1708 goto out; 1709 } 1710 continue; 1711 put_page: 1712 put_page(head); 1713 retry: 1714 xas_reset(&xas); 1715 } 1716 1717 /* 1718 * We come here when there is no page beyond @end. We take care to not 1719 * overflow the index @start as it confuses some of the callers. This 1720 * breaks the iteration when there is a page at index -1 but that is 1721 * already broken anyway. 1722 */ 1723 if (end == (pgoff_t)-1) 1724 *start = (pgoff_t)-1; 1725 else 1726 *start = end + 1; 1727 out: 1728 rcu_read_unlock(); 1729 1730 return ret; 1731 } 1732 1733 /** 1734 * find_get_pages_contig - gang contiguous pagecache lookup 1735 * @mapping: The address_space to search 1736 * @index: The starting page index 1737 * @nr_pages: The maximum number of pages 1738 * @pages: Where the resulting pages are placed 1739 * 1740 * find_get_pages_contig() works exactly like find_get_pages(), except 1741 * that the returned number of pages are guaranteed to be contiguous. 1742 * 1743 * find_get_pages_contig() returns the number of pages which were found. 1744 */ 1745 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, 1746 unsigned int nr_pages, struct page **pages) 1747 { 1748 XA_STATE(xas, &mapping->i_pages, index); 1749 struct page *page; 1750 unsigned int ret = 0; 1751 1752 if (unlikely(!nr_pages)) 1753 return 0; 1754 1755 rcu_read_lock(); 1756 for (page = xas_load(&xas); page; page = xas_next(&xas)) { 1757 struct page *head; 1758 if (xas_retry(&xas, page)) 1759 continue; 1760 /* 1761 * If the entry has been swapped out, we can stop looking. 1762 * No current caller is looking for DAX entries. 1763 */ 1764 if (xa_is_value(page)) 1765 break; 1766 1767 head = compound_head(page); 1768 if (!page_cache_get_speculative(head)) 1769 goto retry; 1770 1771 /* The page was split under us? */ 1772 if (compound_head(page) != head) 1773 goto put_page; 1774 1775 /* Has the page moved? */ 1776 if (unlikely(page != xas_reload(&xas))) 1777 goto put_page; 1778 1779 /* 1780 * must check mapping and index after taking the ref. 1781 * otherwise we can get both false positives and false 1782 * negatives, which is just confusing to the caller. 1783 */ 1784 if (!page->mapping || page_to_pgoff(page) != xas.xa_index) { 1785 put_page(page); 1786 break; 1787 } 1788 1789 pages[ret] = page; 1790 if (++ret == nr_pages) 1791 break; 1792 continue; 1793 put_page: 1794 put_page(head); 1795 retry: 1796 xas_reset(&xas); 1797 } 1798 rcu_read_unlock(); 1799 return ret; 1800 } 1801 EXPORT_SYMBOL(find_get_pages_contig); 1802 1803 /** 1804 * find_get_pages_range_tag - find and return pages in given range matching @tag 1805 * @mapping: the address_space to search 1806 * @index: the starting page index 1807 * @end: The final page index (inclusive) 1808 * @tag: the tag index 1809 * @nr_pages: the maximum number of pages 1810 * @pages: where the resulting pages are placed 1811 * 1812 * Like find_get_pages, except we only return pages which are tagged with 1813 * @tag. We update @index to index the next page for the traversal. 1814 */ 1815 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index, 1816 pgoff_t end, xa_mark_t tag, unsigned int nr_pages, 1817 struct page **pages) 1818 { 1819 XA_STATE(xas, &mapping->i_pages, *index); 1820 struct page *page; 1821 unsigned ret = 0; 1822 1823 if (unlikely(!nr_pages)) 1824 return 0; 1825 1826 rcu_read_lock(); 1827 xas_for_each_marked(&xas, page, end, tag) { 1828 struct page *head; 1829 if (xas_retry(&xas, page)) 1830 continue; 1831 /* 1832 * Shadow entries should never be tagged, but this iteration 1833 * is lockless so there is a window for page reclaim to evict 1834 * a page we saw tagged. Skip over it. 1835 */ 1836 if (xa_is_value(page)) 1837 continue; 1838 1839 head = compound_head(page); 1840 if (!page_cache_get_speculative(head)) 1841 goto retry; 1842 1843 /* The page was split under us? */ 1844 if (compound_head(page) != head) 1845 goto put_page; 1846 1847 /* Has the page moved? */ 1848 if (unlikely(page != xas_reload(&xas))) 1849 goto put_page; 1850 1851 pages[ret] = page; 1852 if (++ret == nr_pages) { 1853 *index = page->index + 1; 1854 goto out; 1855 } 1856 continue; 1857 put_page: 1858 put_page(head); 1859 retry: 1860 xas_reset(&xas); 1861 } 1862 1863 /* 1864 * We come here when we got to @end. We take care to not overflow the 1865 * index @index as it confuses some of the callers. This breaks the 1866 * iteration when there is a page at index -1 but that is already 1867 * broken anyway. 1868 */ 1869 if (end == (pgoff_t)-1) 1870 *index = (pgoff_t)-1; 1871 else 1872 *index = end + 1; 1873 out: 1874 rcu_read_unlock(); 1875 1876 return ret; 1877 } 1878 EXPORT_SYMBOL(find_get_pages_range_tag); 1879 1880 /** 1881 * find_get_entries_tag - find and return entries that match @tag 1882 * @mapping: the address_space to search 1883 * @start: the starting page cache index 1884 * @tag: the tag index 1885 * @nr_entries: the maximum number of entries 1886 * @entries: where the resulting entries are placed 1887 * @indices: the cache indices corresponding to the entries in @entries 1888 * 1889 * Like find_get_entries, except we only return entries which are tagged with 1890 * @tag. 1891 */ 1892 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start, 1893 xa_mark_t tag, unsigned int nr_entries, 1894 struct page **entries, pgoff_t *indices) 1895 { 1896 XA_STATE(xas, &mapping->i_pages, start); 1897 struct page *page; 1898 unsigned int ret = 0; 1899 1900 if (!nr_entries) 1901 return 0; 1902 1903 rcu_read_lock(); 1904 xas_for_each_marked(&xas, page, ULONG_MAX, tag) { 1905 struct page *head; 1906 if (xas_retry(&xas, page)) 1907 continue; 1908 /* 1909 * A shadow entry of a recently evicted page, a swap 1910 * entry from shmem/tmpfs or a DAX entry. Return it 1911 * without attempting to raise page count. 1912 */ 1913 if (xa_is_value(page)) 1914 goto export; 1915 1916 head = compound_head(page); 1917 if (!page_cache_get_speculative(head)) 1918 goto retry; 1919 1920 /* The page was split under us? */ 1921 if (compound_head(page) != head) 1922 goto put_page; 1923 1924 /* Has the page moved? */ 1925 if (unlikely(page != xas_reload(&xas))) 1926 goto put_page; 1927 1928 export: 1929 indices[ret] = xas.xa_index; 1930 entries[ret] = page; 1931 if (++ret == nr_entries) 1932 break; 1933 continue; 1934 put_page: 1935 put_page(head); 1936 retry: 1937 xas_reset(&xas); 1938 } 1939 rcu_read_unlock(); 1940 return ret; 1941 } 1942 EXPORT_SYMBOL(find_get_entries_tag); 1943 1944 /* 1945 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 1946 * a _large_ part of the i/o request. Imagine the worst scenario: 1947 * 1948 * ---R__________________________________________B__________ 1949 * ^ reading here ^ bad block(assume 4k) 1950 * 1951 * read(R) => miss => readahead(R...B) => media error => frustrating retries 1952 * => failing the whole request => read(R) => read(R+1) => 1953 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 1954 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 1955 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 1956 * 1957 * It is going insane. Fix it by quickly scaling down the readahead size. 1958 */ 1959 static void shrink_readahead_size_eio(struct file *filp, 1960 struct file_ra_state *ra) 1961 { 1962 ra->ra_pages /= 4; 1963 } 1964 1965 /** 1966 * generic_file_buffered_read - generic file read routine 1967 * @iocb: the iocb to read 1968 * @iter: data destination 1969 * @written: already copied 1970 * 1971 * This is a generic file read routine, and uses the 1972 * mapping->a_ops->readpage() function for the actual low-level stuff. 1973 * 1974 * This is really ugly. But the goto's actually try to clarify some 1975 * of the logic when it comes to error handling etc. 1976 */ 1977 static ssize_t generic_file_buffered_read(struct kiocb *iocb, 1978 struct iov_iter *iter, ssize_t written) 1979 { 1980 struct file *filp = iocb->ki_filp; 1981 struct address_space *mapping = filp->f_mapping; 1982 struct inode *inode = mapping->host; 1983 struct file_ra_state *ra = &filp->f_ra; 1984 loff_t *ppos = &iocb->ki_pos; 1985 pgoff_t index; 1986 pgoff_t last_index; 1987 pgoff_t prev_index; 1988 unsigned long offset; /* offset into pagecache page */ 1989 unsigned int prev_offset; 1990 int error = 0; 1991 1992 if (unlikely(*ppos >= inode->i_sb->s_maxbytes)) 1993 return 0; 1994 iov_iter_truncate(iter, inode->i_sb->s_maxbytes); 1995 1996 index = *ppos >> PAGE_SHIFT; 1997 prev_index = ra->prev_pos >> PAGE_SHIFT; 1998 prev_offset = ra->prev_pos & (PAGE_SIZE-1); 1999 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT; 2000 offset = *ppos & ~PAGE_MASK; 2001 2002 for (;;) { 2003 struct page *page; 2004 pgoff_t end_index; 2005 loff_t isize; 2006 unsigned long nr, ret; 2007 2008 cond_resched(); 2009 find_page: 2010 if (fatal_signal_pending(current)) { 2011 error = -EINTR; 2012 goto out; 2013 } 2014 2015 page = find_get_page(mapping, index); 2016 if (!page) { 2017 if (iocb->ki_flags & IOCB_NOWAIT) 2018 goto would_block; 2019 page_cache_sync_readahead(mapping, 2020 ra, filp, 2021 index, last_index - index); 2022 page = find_get_page(mapping, index); 2023 if (unlikely(page == NULL)) 2024 goto no_cached_page; 2025 } 2026 if (PageReadahead(page)) { 2027 page_cache_async_readahead(mapping, 2028 ra, filp, page, 2029 index, last_index - index); 2030 } 2031 if (!PageUptodate(page)) { 2032 if (iocb->ki_flags & IOCB_NOWAIT) { 2033 put_page(page); 2034 goto would_block; 2035 } 2036 2037 /* 2038 * See comment in do_read_cache_page on why 2039 * wait_on_page_locked is used to avoid unnecessarily 2040 * serialisations and why it's safe. 2041 */ 2042 error = wait_on_page_locked_killable(page); 2043 if (unlikely(error)) 2044 goto readpage_error; 2045 if (PageUptodate(page)) 2046 goto page_ok; 2047 2048 if (inode->i_blkbits == PAGE_SHIFT || 2049 !mapping->a_ops->is_partially_uptodate) 2050 goto page_not_up_to_date; 2051 /* pipes can't handle partially uptodate pages */ 2052 if (unlikely(iov_iter_is_pipe(iter))) 2053 goto page_not_up_to_date; 2054 if (!trylock_page(page)) 2055 goto page_not_up_to_date; 2056 /* Did it get truncated before we got the lock? */ 2057 if (!page->mapping) 2058 goto page_not_up_to_date_locked; 2059 if (!mapping->a_ops->is_partially_uptodate(page, 2060 offset, iter->count)) 2061 goto page_not_up_to_date_locked; 2062 unlock_page(page); 2063 } 2064 page_ok: 2065 /* 2066 * i_size must be checked after we know the page is Uptodate. 2067 * 2068 * Checking i_size after the check allows us to calculate 2069 * the correct value for "nr", which means the zero-filled 2070 * part of the page is not copied back to userspace (unless 2071 * another truncate extends the file - this is desired though). 2072 */ 2073 2074 isize = i_size_read(inode); 2075 end_index = (isize - 1) >> PAGE_SHIFT; 2076 if (unlikely(!isize || index > end_index)) { 2077 put_page(page); 2078 goto out; 2079 } 2080 2081 /* nr is the maximum number of bytes to copy from this page */ 2082 nr = PAGE_SIZE; 2083 if (index == end_index) { 2084 nr = ((isize - 1) & ~PAGE_MASK) + 1; 2085 if (nr <= offset) { 2086 put_page(page); 2087 goto out; 2088 } 2089 } 2090 nr = nr - offset; 2091 2092 /* If users can be writing to this page using arbitrary 2093 * virtual addresses, take care about potential aliasing 2094 * before reading the page on the kernel side. 2095 */ 2096 if (mapping_writably_mapped(mapping)) 2097 flush_dcache_page(page); 2098 2099 /* 2100 * When a sequential read accesses a page several times, 2101 * only mark it as accessed the first time. 2102 */ 2103 if (prev_index != index || offset != prev_offset) 2104 mark_page_accessed(page); 2105 prev_index = index; 2106 2107 /* 2108 * Ok, we have the page, and it's up-to-date, so 2109 * now we can copy it to user space... 2110 */ 2111 2112 ret = copy_page_to_iter(page, offset, nr, iter); 2113 offset += ret; 2114 index += offset >> PAGE_SHIFT; 2115 offset &= ~PAGE_MASK; 2116 prev_offset = offset; 2117 2118 put_page(page); 2119 written += ret; 2120 if (!iov_iter_count(iter)) 2121 goto out; 2122 if (ret < nr) { 2123 error = -EFAULT; 2124 goto out; 2125 } 2126 continue; 2127 2128 page_not_up_to_date: 2129 /* Get exclusive access to the page ... */ 2130 error = lock_page_killable(page); 2131 if (unlikely(error)) 2132 goto readpage_error; 2133 2134 page_not_up_to_date_locked: 2135 /* Did it get truncated before we got the lock? */ 2136 if (!page->mapping) { 2137 unlock_page(page); 2138 put_page(page); 2139 continue; 2140 } 2141 2142 /* Did somebody else fill it already? */ 2143 if (PageUptodate(page)) { 2144 unlock_page(page); 2145 goto page_ok; 2146 } 2147 2148 readpage: 2149 /* 2150 * A previous I/O error may have been due to temporary 2151 * failures, eg. multipath errors. 2152 * PG_error will be set again if readpage fails. 2153 */ 2154 ClearPageError(page); 2155 /* Start the actual read. The read will unlock the page. */ 2156 error = mapping->a_ops->readpage(filp, page); 2157 2158 if (unlikely(error)) { 2159 if (error == AOP_TRUNCATED_PAGE) { 2160 put_page(page); 2161 error = 0; 2162 goto find_page; 2163 } 2164 goto readpage_error; 2165 } 2166 2167 if (!PageUptodate(page)) { 2168 error = lock_page_killable(page); 2169 if (unlikely(error)) 2170 goto readpage_error; 2171 if (!PageUptodate(page)) { 2172 if (page->mapping == NULL) { 2173 /* 2174 * invalidate_mapping_pages got it 2175 */ 2176 unlock_page(page); 2177 put_page(page); 2178 goto find_page; 2179 } 2180 unlock_page(page); 2181 shrink_readahead_size_eio(filp, ra); 2182 error = -EIO; 2183 goto readpage_error; 2184 } 2185 unlock_page(page); 2186 } 2187 2188 goto page_ok; 2189 2190 readpage_error: 2191 /* UHHUH! A synchronous read error occurred. Report it */ 2192 put_page(page); 2193 goto out; 2194 2195 no_cached_page: 2196 /* 2197 * Ok, it wasn't cached, so we need to create a new 2198 * page.. 2199 */ 2200 page = page_cache_alloc(mapping); 2201 if (!page) { 2202 error = -ENOMEM; 2203 goto out; 2204 } 2205 error = add_to_page_cache_lru(page, mapping, index, 2206 mapping_gfp_constraint(mapping, GFP_KERNEL)); 2207 if (error) { 2208 put_page(page); 2209 if (error == -EEXIST) { 2210 error = 0; 2211 goto find_page; 2212 } 2213 goto out; 2214 } 2215 goto readpage; 2216 } 2217 2218 would_block: 2219 error = -EAGAIN; 2220 out: 2221 ra->prev_pos = prev_index; 2222 ra->prev_pos <<= PAGE_SHIFT; 2223 ra->prev_pos |= prev_offset; 2224 2225 *ppos = ((loff_t)index << PAGE_SHIFT) + offset; 2226 file_accessed(filp); 2227 return written ? written : error; 2228 } 2229 2230 /** 2231 * generic_file_read_iter - generic filesystem read routine 2232 * @iocb: kernel I/O control block 2233 * @iter: destination for the data read 2234 * 2235 * This is the "read_iter()" routine for all filesystems 2236 * that can use the page cache directly. 2237 */ 2238 ssize_t 2239 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 2240 { 2241 size_t count = iov_iter_count(iter); 2242 ssize_t retval = 0; 2243 2244 if (!count) 2245 goto out; /* skip atime */ 2246 2247 if (iocb->ki_flags & IOCB_DIRECT) { 2248 struct file *file = iocb->ki_filp; 2249 struct address_space *mapping = file->f_mapping; 2250 struct inode *inode = mapping->host; 2251 loff_t size; 2252 2253 size = i_size_read(inode); 2254 if (iocb->ki_flags & IOCB_NOWAIT) { 2255 if (filemap_range_has_page(mapping, iocb->ki_pos, 2256 iocb->ki_pos + count - 1)) 2257 return -EAGAIN; 2258 } else { 2259 retval = filemap_write_and_wait_range(mapping, 2260 iocb->ki_pos, 2261 iocb->ki_pos + count - 1); 2262 if (retval < 0) 2263 goto out; 2264 } 2265 2266 file_accessed(file); 2267 2268 retval = mapping->a_ops->direct_IO(iocb, iter); 2269 if (retval >= 0) { 2270 iocb->ki_pos += retval; 2271 count -= retval; 2272 } 2273 iov_iter_revert(iter, count - iov_iter_count(iter)); 2274 2275 /* 2276 * Btrfs can have a short DIO read if we encounter 2277 * compressed extents, so if there was an error, or if 2278 * we've already read everything we wanted to, or if 2279 * there was a short read because we hit EOF, go ahead 2280 * and return. Otherwise fallthrough to buffered io for 2281 * the rest of the read. Buffered reads will not work for 2282 * DAX files, so don't bother trying. 2283 */ 2284 if (retval < 0 || !count || iocb->ki_pos >= size || 2285 IS_DAX(inode)) 2286 goto out; 2287 } 2288 2289 retval = generic_file_buffered_read(iocb, iter, retval); 2290 out: 2291 return retval; 2292 } 2293 EXPORT_SYMBOL(generic_file_read_iter); 2294 2295 #ifdef CONFIG_MMU 2296 /** 2297 * page_cache_read - adds requested page to the page cache if not already there 2298 * @file: file to read 2299 * @offset: page index 2300 * @gfp_mask: memory allocation flags 2301 * 2302 * This adds the requested page to the page cache if it isn't already there, 2303 * and schedules an I/O to read in its contents from disk. 2304 */ 2305 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask) 2306 { 2307 struct address_space *mapping = file->f_mapping; 2308 struct page *page; 2309 int ret; 2310 2311 do { 2312 page = __page_cache_alloc(gfp_mask); 2313 if (!page) 2314 return -ENOMEM; 2315 2316 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask); 2317 if (ret == 0) 2318 ret = mapping->a_ops->readpage(file, page); 2319 else if (ret == -EEXIST) 2320 ret = 0; /* losing race to add is OK */ 2321 2322 put_page(page); 2323 2324 } while (ret == AOP_TRUNCATED_PAGE); 2325 2326 return ret; 2327 } 2328 2329 #define MMAP_LOTSAMISS (100) 2330 2331 /* 2332 * Synchronous readahead happens when we don't even find 2333 * a page in the page cache at all. 2334 */ 2335 static void do_sync_mmap_readahead(struct vm_area_struct *vma, 2336 struct file_ra_state *ra, 2337 struct file *file, 2338 pgoff_t offset) 2339 { 2340 struct address_space *mapping = file->f_mapping; 2341 2342 /* If we don't want any read-ahead, don't bother */ 2343 if (vma->vm_flags & VM_RAND_READ) 2344 return; 2345 if (!ra->ra_pages) 2346 return; 2347 2348 if (vma->vm_flags & VM_SEQ_READ) { 2349 page_cache_sync_readahead(mapping, ra, file, offset, 2350 ra->ra_pages); 2351 return; 2352 } 2353 2354 /* Avoid banging the cache line if not needed */ 2355 if (ra->mmap_miss < MMAP_LOTSAMISS * 10) 2356 ra->mmap_miss++; 2357 2358 /* 2359 * Do we miss much more than hit in this file? If so, 2360 * stop bothering with read-ahead. It will only hurt. 2361 */ 2362 if (ra->mmap_miss > MMAP_LOTSAMISS) 2363 return; 2364 2365 /* 2366 * mmap read-around 2367 */ 2368 ra->start = max_t(long, 0, offset - ra->ra_pages / 2); 2369 ra->size = ra->ra_pages; 2370 ra->async_size = ra->ra_pages / 4; 2371 ra_submit(ra, mapping, file); 2372 } 2373 2374 /* 2375 * Asynchronous readahead happens when we find the page and PG_readahead, 2376 * so we want to possibly extend the readahead further.. 2377 */ 2378 static void do_async_mmap_readahead(struct vm_area_struct *vma, 2379 struct file_ra_state *ra, 2380 struct file *file, 2381 struct page *page, 2382 pgoff_t offset) 2383 { 2384 struct address_space *mapping = file->f_mapping; 2385 2386 /* If we don't want any read-ahead, don't bother */ 2387 if (vma->vm_flags & VM_RAND_READ) 2388 return; 2389 if (ra->mmap_miss > 0) 2390 ra->mmap_miss--; 2391 if (PageReadahead(page)) 2392 page_cache_async_readahead(mapping, ra, file, 2393 page, offset, ra->ra_pages); 2394 } 2395 2396 /** 2397 * filemap_fault - read in file data for page fault handling 2398 * @vmf: struct vm_fault containing details of the fault 2399 * 2400 * filemap_fault() is invoked via the vma operations vector for a 2401 * mapped memory region to read in file data during a page fault. 2402 * 2403 * The goto's are kind of ugly, but this streamlines the normal case of having 2404 * it in the page cache, and handles the special cases reasonably without 2405 * having a lot of duplicated code. 2406 * 2407 * vma->vm_mm->mmap_sem must be held on entry. 2408 * 2409 * If our return value has VM_FAULT_RETRY set, it's because 2410 * lock_page_or_retry() returned 0. 2411 * The mmap_sem has usually been released in this case. 2412 * See __lock_page_or_retry() for the exception. 2413 * 2414 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem 2415 * has not been released. 2416 * 2417 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. 2418 */ 2419 vm_fault_t filemap_fault(struct vm_fault *vmf) 2420 { 2421 int error; 2422 struct file *file = vmf->vma->vm_file; 2423 struct address_space *mapping = file->f_mapping; 2424 struct file_ra_state *ra = &file->f_ra; 2425 struct inode *inode = mapping->host; 2426 pgoff_t offset = vmf->pgoff; 2427 pgoff_t max_off; 2428 struct page *page; 2429 vm_fault_t ret = 0; 2430 2431 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2432 if (unlikely(offset >= max_off)) 2433 return VM_FAULT_SIGBUS; 2434 2435 /* 2436 * Do we have something in the page cache already? 2437 */ 2438 page = find_get_page(mapping, offset); 2439 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) { 2440 /* 2441 * We found the page, so try async readahead before 2442 * waiting for the lock. 2443 */ 2444 do_async_mmap_readahead(vmf->vma, ra, file, page, offset); 2445 } else if (!page) { 2446 /* No page in the page cache at all */ 2447 do_sync_mmap_readahead(vmf->vma, ra, file, offset); 2448 count_vm_event(PGMAJFAULT); 2449 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); 2450 ret = VM_FAULT_MAJOR; 2451 retry_find: 2452 page = find_get_page(mapping, offset); 2453 if (!page) 2454 goto no_cached_page; 2455 } 2456 2457 if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) { 2458 put_page(page); 2459 return ret | VM_FAULT_RETRY; 2460 } 2461 2462 /* Did it get truncated? */ 2463 if (unlikely(page->mapping != mapping)) { 2464 unlock_page(page); 2465 put_page(page); 2466 goto retry_find; 2467 } 2468 VM_BUG_ON_PAGE(page->index != offset, page); 2469 2470 /* 2471 * We have a locked page in the page cache, now we need to check 2472 * that it's up-to-date. If not, it is going to be due to an error. 2473 */ 2474 if (unlikely(!PageUptodate(page))) 2475 goto page_not_uptodate; 2476 2477 /* 2478 * Found the page and have a reference on it. 2479 * We must recheck i_size under page lock. 2480 */ 2481 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2482 if (unlikely(offset >= max_off)) { 2483 unlock_page(page); 2484 put_page(page); 2485 return VM_FAULT_SIGBUS; 2486 } 2487 2488 vmf->page = page; 2489 return ret | VM_FAULT_LOCKED; 2490 2491 no_cached_page: 2492 /* 2493 * We're only likely to ever get here if MADV_RANDOM is in 2494 * effect. 2495 */ 2496 error = page_cache_read(file, offset, vmf->gfp_mask); 2497 2498 /* 2499 * The page we want has now been added to the page cache. 2500 * In the unlikely event that someone removed it in the 2501 * meantime, we'll just come back here and read it again. 2502 */ 2503 if (error >= 0) 2504 goto retry_find; 2505 2506 /* 2507 * An error return from page_cache_read can result if the 2508 * system is low on memory, or a problem occurs while trying 2509 * to schedule I/O. 2510 */ 2511 return vmf_error(error); 2512 2513 page_not_uptodate: 2514 /* 2515 * Umm, take care of errors if the page isn't up-to-date. 2516 * Try to re-read it _once_. We do this synchronously, 2517 * because there really aren't any performance issues here 2518 * and we need to check for errors. 2519 */ 2520 ClearPageError(page); 2521 error = mapping->a_ops->readpage(file, page); 2522 if (!error) { 2523 wait_on_page_locked(page); 2524 if (!PageUptodate(page)) 2525 error = -EIO; 2526 } 2527 put_page(page); 2528 2529 if (!error || error == AOP_TRUNCATED_PAGE) 2530 goto retry_find; 2531 2532 /* Things didn't work out. Return zero to tell the mm layer so. */ 2533 shrink_readahead_size_eio(file, ra); 2534 return VM_FAULT_SIGBUS; 2535 } 2536 EXPORT_SYMBOL(filemap_fault); 2537 2538 void filemap_map_pages(struct vm_fault *vmf, 2539 pgoff_t start_pgoff, pgoff_t end_pgoff) 2540 { 2541 struct file *file = vmf->vma->vm_file; 2542 struct address_space *mapping = file->f_mapping; 2543 pgoff_t last_pgoff = start_pgoff; 2544 unsigned long max_idx; 2545 XA_STATE(xas, &mapping->i_pages, start_pgoff); 2546 struct page *head, *page; 2547 2548 rcu_read_lock(); 2549 xas_for_each(&xas, page, end_pgoff) { 2550 if (xas_retry(&xas, page)) 2551 continue; 2552 if (xa_is_value(page)) 2553 goto next; 2554 2555 head = compound_head(page); 2556 if (!page_cache_get_speculative(head)) 2557 goto next; 2558 2559 /* The page was split under us? */ 2560 if (compound_head(page) != head) 2561 goto skip; 2562 2563 /* Has the page moved? */ 2564 if (unlikely(page != xas_reload(&xas))) 2565 goto skip; 2566 2567 if (!PageUptodate(page) || 2568 PageReadahead(page) || 2569 PageHWPoison(page)) 2570 goto skip; 2571 if (!trylock_page(page)) 2572 goto skip; 2573 2574 if (page->mapping != mapping || !PageUptodate(page)) 2575 goto unlock; 2576 2577 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 2578 if (page->index >= max_idx) 2579 goto unlock; 2580 2581 if (file->f_ra.mmap_miss > 0) 2582 file->f_ra.mmap_miss--; 2583 2584 vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT; 2585 if (vmf->pte) 2586 vmf->pte += xas.xa_index - last_pgoff; 2587 last_pgoff = xas.xa_index; 2588 if (alloc_set_pte(vmf, NULL, page)) 2589 goto unlock; 2590 unlock_page(page); 2591 goto next; 2592 unlock: 2593 unlock_page(page); 2594 skip: 2595 put_page(page); 2596 next: 2597 /* Huge page is mapped? No need to proceed. */ 2598 if (pmd_trans_huge(*vmf->pmd)) 2599 break; 2600 } 2601 rcu_read_unlock(); 2602 } 2603 EXPORT_SYMBOL(filemap_map_pages); 2604 2605 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 2606 { 2607 struct page *page = vmf->page; 2608 struct inode *inode = file_inode(vmf->vma->vm_file); 2609 vm_fault_t ret = VM_FAULT_LOCKED; 2610 2611 sb_start_pagefault(inode->i_sb); 2612 file_update_time(vmf->vma->vm_file); 2613 lock_page(page); 2614 if (page->mapping != inode->i_mapping) { 2615 unlock_page(page); 2616 ret = VM_FAULT_NOPAGE; 2617 goto out; 2618 } 2619 /* 2620 * We mark the page dirty already here so that when freeze is in 2621 * progress, we are guaranteed that writeback during freezing will 2622 * see the dirty page and writeprotect it again. 2623 */ 2624 set_page_dirty(page); 2625 wait_for_stable_page(page); 2626 out: 2627 sb_end_pagefault(inode->i_sb); 2628 return ret; 2629 } 2630 2631 const struct vm_operations_struct generic_file_vm_ops = { 2632 .fault = filemap_fault, 2633 .map_pages = filemap_map_pages, 2634 .page_mkwrite = filemap_page_mkwrite, 2635 }; 2636 2637 /* This is used for a general mmap of a disk file */ 2638 2639 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 2640 { 2641 struct address_space *mapping = file->f_mapping; 2642 2643 if (!mapping->a_ops->readpage) 2644 return -ENOEXEC; 2645 file_accessed(file); 2646 vma->vm_ops = &generic_file_vm_ops; 2647 return 0; 2648 } 2649 2650 /* 2651 * This is for filesystems which do not implement ->writepage. 2652 */ 2653 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 2654 { 2655 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 2656 return -EINVAL; 2657 return generic_file_mmap(file, vma); 2658 } 2659 #else 2660 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 2661 { 2662 return VM_FAULT_SIGBUS; 2663 } 2664 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 2665 { 2666 return -ENOSYS; 2667 } 2668 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) 2669 { 2670 return -ENOSYS; 2671 } 2672 #endif /* CONFIG_MMU */ 2673 2674 EXPORT_SYMBOL(filemap_page_mkwrite); 2675 EXPORT_SYMBOL(generic_file_mmap); 2676 EXPORT_SYMBOL(generic_file_readonly_mmap); 2677 2678 static struct page *wait_on_page_read(struct page *page) 2679 { 2680 if (!IS_ERR(page)) { 2681 wait_on_page_locked(page); 2682 if (!PageUptodate(page)) { 2683 put_page(page); 2684 page = ERR_PTR(-EIO); 2685 } 2686 } 2687 return page; 2688 } 2689 2690 static struct page *do_read_cache_page(struct address_space *mapping, 2691 pgoff_t index, 2692 int (*filler)(void *, struct page *), 2693 void *data, 2694 gfp_t gfp) 2695 { 2696 struct page *page; 2697 int err; 2698 repeat: 2699 page = find_get_page(mapping, index); 2700 if (!page) { 2701 page = __page_cache_alloc(gfp); 2702 if (!page) 2703 return ERR_PTR(-ENOMEM); 2704 err = add_to_page_cache_lru(page, mapping, index, gfp); 2705 if (unlikely(err)) { 2706 put_page(page); 2707 if (err == -EEXIST) 2708 goto repeat; 2709 /* Presumably ENOMEM for xarray node */ 2710 return ERR_PTR(err); 2711 } 2712 2713 filler: 2714 err = filler(data, page); 2715 if (err < 0) { 2716 put_page(page); 2717 return ERR_PTR(err); 2718 } 2719 2720 page = wait_on_page_read(page); 2721 if (IS_ERR(page)) 2722 return page; 2723 goto out; 2724 } 2725 if (PageUptodate(page)) 2726 goto out; 2727 2728 /* 2729 * Page is not up to date and may be locked due one of the following 2730 * case a: Page is being filled and the page lock is held 2731 * case b: Read/write error clearing the page uptodate status 2732 * case c: Truncation in progress (page locked) 2733 * case d: Reclaim in progress 2734 * 2735 * Case a, the page will be up to date when the page is unlocked. 2736 * There is no need to serialise on the page lock here as the page 2737 * is pinned so the lock gives no additional protection. Even if the 2738 * the page is truncated, the data is still valid if PageUptodate as 2739 * it's a race vs truncate race. 2740 * Case b, the page will not be up to date 2741 * Case c, the page may be truncated but in itself, the data may still 2742 * be valid after IO completes as it's a read vs truncate race. The 2743 * operation must restart if the page is not uptodate on unlock but 2744 * otherwise serialising on page lock to stabilise the mapping gives 2745 * no additional guarantees to the caller as the page lock is 2746 * released before return. 2747 * Case d, similar to truncation. If reclaim holds the page lock, it 2748 * will be a race with remove_mapping that determines if the mapping 2749 * is valid on unlock but otherwise the data is valid and there is 2750 * no need to serialise with page lock. 2751 * 2752 * As the page lock gives no additional guarantee, we optimistically 2753 * wait on the page to be unlocked and check if it's up to date and 2754 * use the page if it is. Otherwise, the page lock is required to 2755 * distinguish between the different cases. The motivation is that we 2756 * avoid spurious serialisations and wakeups when multiple processes 2757 * wait on the same page for IO to complete. 2758 */ 2759 wait_on_page_locked(page); 2760 if (PageUptodate(page)) 2761 goto out; 2762 2763 /* Distinguish between all the cases under the safety of the lock */ 2764 lock_page(page); 2765 2766 /* Case c or d, restart the operation */ 2767 if (!page->mapping) { 2768 unlock_page(page); 2769 put_page(page); 2770 goto repeat; 2771 } 2772 2773 /* Someone else locked and filled the page in a very small window */ 2774 if (PageUptodate(page)) { 2775 unlock_page(page); 2776 goto out; 2777 } 2778 goto filler; 2779 2780 out: 2781 mark_page_accessed(page); 2782 return page; 2783 } 2784 2785 /** 2786 * read_cache_page - read into page cache, fill it if needed 2787 * @mapping: the page's address_space 2788 * @index: the page index 2789 * @filler: function to perform the read 2790 * @data: first arg to filler(data, page) function, often left as NULL 2791 * 2792 * Read into the page cache. If a page already exists, and PageUptodate() is 2793 * not set, try to fill the page and wait for it to become unlocked. 2794 * 2795 * If the page does not get brought uptodate, return -EIO. 2796 */ 2797 struct page *read_cache_page(struct address_space *mapping, 2798 pgoff_t index, 2799 int (*filler)(void *, struct page *), 2800 void *data) 2801 { 2802 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping)); 2803 } 2804 EXPORT_SYMBOL(read_cache_page); 2805 2806 /** 2807 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 2808 * @mapping: the page's address_space 2809 * @index: the page index 2810 * @gfp: the page allocator flags to use if allocating 2811 * 2812 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 2813 * any new page allocations done using the specified allocation flags. 2814 * 2815 * If the page does not get brought uptodate, return -EIO. 2816 */ 2817 struct page *read_cache_page_gfp(struct address_space *mapping, 2818 pgoff_t index, 2819 gfp_t gfp) 2820 { 2821 filler_t *filler = (filler_t *)mapping->a_ops->readpage; 2822 2823 return do_read_cache_page(mapping, index, filler, NULL, gfp); 2824 } 2825 EXPORT_SYMBOL(read_cache_page_gfp); 2826 2827 /* 2828 * Don't operate on ranges the page cache doesn't support, and don't exceed the 2829 * LFS limits. If pos is under the limit it becomes a short access. If it 2830 * exceeds the limit we return -EFBIG. 2831 */ 2832 static int generic_access_check_limits(struct file *file, loff_t pos, 2833 loff_t *count) 2834 { 2835 struct inode *inode = file->f_mapping->host; 2836 loff_t max_size = inode->i_sb->s_maxbytes; 2837 2838 if (!(file->f_flags & O_LARGEFILE)) 2839 max_size = MAX_NON_LFS; 2840 2841 if (unlikely(pos >= max_size)) 2842 return -EFBIG; 2843 *count = min(*count, max_size - pos); 2844 return 0; 2845 } 2846 2847 static int generic_write_check_limits(struct file *file, loff_t pos, 2848 loff_t *count) 2849 { 2850 loff_t limit = rlimit(RLIMIT_FSIZE); 2851 2852 if (limit != RLIM_INFINITY) { 2853 if (pos >= limit) { 2854 send_sig(SIGXFSZ, current, 0); 2855 return -EFBIG; 2856 } 2857 *count = min(*count, limit - pos); 2858 } 2859 2860 return generic_access_check_limits(file, pos, count); 2861 } 2862 2863 /* 2864 * Performs necessary checks before doing a write 2865 * 2866 * Can adjust writing position or amount of bytes to write. 2867 * Returns appropriate error code that caller should return or 2868 * zero in case that write should be allowed. 2869 */ 2870 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from) 2871 { 2872 struct file *file = iocb->ki_filp; 2873 struct inode *inode = file->f_mapping->host; 2874 loff_t count; 2875 int ret; 2876 2877 if (!iov_iter_count(from)) 2878 return 0; 2879 2880 /* FIXME: this is for backwards compatibility with 2.4 */ 2881 if (iocb->ki_flags & IOCB_APPEND) 2882 iocb->ki_pos = i_size_read(inode); 2883 2884 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT)) 2885 return -EINVAL; 2886 2887 count = iov_iter_count(from); 2888 ret = generic_write_check_limits(file, iocb->ki_pos, &count); 2889 if (ret) 2890 return ret; 2891 2892 iov_iter_truncate(from, count); 2893 return iov_iter_count(from); 2894 } 2895 EXPORT_SYMBOL(generic_write_checks); 2896 2897 /* 2898 * Performs necessary checks before doing a clone. 2899 * 2900 * Can adjust amount of bytes to clone. 2901 * Returns appropriate error code that caller should return or 2902 * zero in case the clone should be allowed. 2903 */ 2904 int generic_remap_checks(struct file *file_in, loff_t pos_in, 2905 struct file *file_out, loff_t pos_out, 2906 loff_t *req_count, unsigned int remap_flags) 2907 { 2908 struct inode *inode_in = file_in->f_mapping->host; 2909 struct inode *inode_out = file_out->f_mapping->host; 2910 uint64_t count = *req_count; 2911 uint64_t bcount; 2912 loff_t size_in, size_out; 2913 loff_t bs = inode_out->i_sb->s_blocksize; 2914 int ret; 2915 2916 /* The start of both ranges must be aligned to an fs block. */ 2917 if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_out, bs)) 2918 return -EINVAL; 2919 2920 /* Ensure offsets don't wrap. */ 2921 if (pos_in + count < pos_in || pos_out + count < pos_out) 2922 return -EINVAL; 2923 2924 size_in = i_size_read(inode_in); 2925 size_out = i_size_read(inode_out); 2926 2927 /* Dedupe requires both ranges to be within EOF. */ 2928 if ((remap_flags & REMAP_FILE_DEDUP) && 2929 (pos_in >= size_in || pos_in + count > size_in || 2930 pos_out >= size_out || pos_out + count > size_out)) 2931 return -EINVAL; 2932 2933 /* Ensure the infile range is within the infile. */ 2934 if (pos_in >= size_in) 2935 return -EINVAL; 2936 count = min(count, size_in - (uint64_t)pos_in); 2937 2938 ret = generic_access_check_limits(file_in, pos_in, &count); 2939 if (ret) 2940 return ret; 2941 2942 ret = generic_write_check_limits(file_out, pos_out, &count); 2943 if (ret) 2944 return ret; 2945 2946 /* 2947 * If the user wanted us to link to the infile's EOF, round up to the 2948 * next block boundary for this check. 2949 * 2950 * Otherwise, make sure the count is also block-aligned, having 2951 * already confirmed the starting offsets' block alignment. 2952 */ 2953 if (pos_in + count == size_in) { 2954 bcount = ALIGN(size_in, bs) - pos_in; 2955 } else { 2956 if (!IS_ALIGNED(count, bs)) 2957 count = ALIGN_DOWN(count, bs); 2958 bcount = count; 2959 } 2960 2961 /* Don't allow overlapped cloning within the same file. */ 2962 if (inode_in == inode_out && 2963 pos_out + bcount > pos_in && 2964 pos_out < pos_in + bcount) 2965 return -EINVAL; 2966 2967 /* 2968 * We shortened the request but the caller can't deal with that, so 2969 * bounce the request back to userspace. 2970 */ 2971 if (*req_count != count && !(remap_flags & REMAP_FILE_CAN_SHORTEN)) 2972 return -EINVAL; 2973 2974 *req_count = count; 2975 return 0; 2976 } 2977 2978 int pagecache_write_begin(struct file *file, struct address_space *mapping, 2979 loff_t pos, unsigned len, unsigned flags, 2980 struct page **pagep, void **fsdata) 2981 { 2982 const struct address_space_operations *aops = mapping->a_ops; 2983 2984 return aops->write_begin(file, mapping, pos, len, flags, 2985 pagep, fsdata); 2986 } 2987 EXPORT_SYMBOL(pagecache_write_begin); 2988 2989 int pagecache_write_end(struct file *file, struct address_space *mapping, 2990 loff_t pos, unsigned len, unsigned copied, 2991 struct page *page, void *fsdata) 2992 { 2993 const struct address_space_operations *aops = mapping->a_ops; 2994 2995 return aops->write_end(file, mapping, pos, len, copied, page, fsdata); 2996 } 2997 EXPORT_SYMBOL(pagecache_write_end); 2998 2999 ssize_t 3000 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) 3001 { 3002 struct file *file = iocb->ki_filp; 3003 struct address_space *mapping = file->f_mapping; 3004 struct inode *inode = mapping->host; 3005 loff_t pos = iocb->ki_pos; 3006 ssize_t written; 3007 size_t write_len; 3008 pgoff_t end; 3009 3010 write_len = iov_iter_count(from); 3011 end = (pos + write_len - 1) >> PAGE_SHIFT; 3012 3013 if (iocb->ki_flags & IOCB_NOWAIT) { 3014 /* If there are pages to writeback, return */ 3015 if (filemap_range_has_page(inode->i_mapping, pos, 3016 pos + write_len)) 3017 return -EAGAIN; 3018 } else { 3019 written = filemap_write_and_wait_range(mapping, pos, 3020 pos + write_len - 1); 3021 if (written) 3022 goto out; 3023 } 3024 3025 /* 3026 * After a write we want buffered reads to be sure to go to disk to get 3027 * the new data. We invalidate clean cached page from the region we're 3028 * about to write. We do this *before* the write so that we can return 3029 * without clobbering -EIOCBQUEUED from ->direct_IO(). 3030 */ 3031 written = invalidate_inode_pages2_range(mapping, 3032 pos >> PAGE_SHIFT, end); 3033 /* 3034 * If a page can not be invalidated, return 0 to fall back 3035 * to buffered write. 3036 */ 3037 if (written) { 3038 if (written == -EBUSY) 3039 return 0; 3040 goto out; 3041 } 3042 3043 written = mapping->a_ops->direct_IO(iocb, from); 3044 3045 /* 3046 * Finally, try again to invalidate clean pages which might have been 3047 * cached by non-direct readahead, or faulted in by get_user_pages() 3048 * if the source of the write was an mmap'ed region of the file 3049 * we're writing. Either one is a pretty crazy thing to do, 3050 * so we don't support it 100%. If this invalidation 3051 * fails, tough, the write still worked... 3052 * 3053 * Most of the time we do not need this since dio_complete() will do 3054 * the invalidation for us. However there are some file systems that 3055 * do not end up with dio_complete() being called, so let's not break 3056 * them by removing it completely 3057 */ 3058 if (mapping->nrpages) 3059 invalidate_inode_pages2_range(mapping, 3060 pos >> PAGE_SHIFT, end); 3061 3062 if (written > 0) { 3063 pos += written; 3064 write_len -= written; 3065 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 3066 i_size_write(inode, pos); 3067 mark_inode_dirty(inode); 3068 } 3069 iocb->ki_pos = pos; 3070 } 3071 iov_iter_revert(from, write_len - iov_iter_count(from)); 3072 out: 3073 return written; 3074 } 3075 EXPORT_SYMBOL(generic_file_direct_write); 3076 3077 /* 3078 * Find or create a page at the given pagecache position. Return the locked 3079 * page. This function is specifically for buffered writes. 3080 */ 3081 struct page *grab_cache_page_write_begin(struct address_space *mapping, 3082 pgoff_t index, unsigned flags) 3083 { 3084 struct page *page; 3085 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT; 3086 3087 if (flags & AOP_FLAG_NOFS) 3088 fgp_flags |= FGP_NOFS; 3089 3090 page = pagecache_get_page(mapping, index, fgp_flags, 3091 mapping_gfp_mask(mapping)); 3092 if (page) 3093 wait_for_stable_page(page); 3094 3095 return page; 3096 } 3097 EXPORT_SYMBOL(grab_cache_page_write_begin); 3098 3099 ssize_t generic_perform_write(struct file *file, 3100 struct iov_iter *i, loff_t pos) 3101 { 3102 struct address_space *mapping = file->f_mapping; 3103 const struct address_space_operations *a_ops = mapping->a_ops; 3104 long status = 0; 3105 ssize_t written = 0; 3106 unsigned int flags = 0; 3107 3108 do { 3109 struct page *page; 3110 unsigned long offset; /* Offset into pagecache page */ 3111 unsigned long bytes; /* Bytes to write to page */ 3112 size_t copied; /* Bytes copied from user */ 3113 void *fsdata; 3114 3115 offset = (pos & (PAGE_SIZE - 1)); 3116 bytes = min_t(unsigned long, PAGE_SIZE - offset, 3117 iov_iter_count(i)); 3118 3119 again: 3120 /* 3121 * Bring in the user page that we will copy from _first_. 3122 * Otherwise there's a nasty deadlock on copying from the 3123 * same page as we're writing to, without it being marked 3124 * up-to-date. 3125 * 3126 * Not only is this an optimisation, but it is also required 3127 * to check that the address is actually valid, when atomic 3128 * usercopies are used, below. 3129 */ 3130 if (unlikely(iov_iter_fault_in_readable(i, bytes))) { 3131 status = -EFAULT; 3132 break; 3133 } 3134 3135 if (fatal_signal_pending(current)) { 3136 status = -EINTR; 3137 break; 3138 } 3139 3140 status = a_ops->write_begin(file, mapping, pos, bytes, flags, 3141 &page, &fsdata); 3142 if (unlikely(status < 0)) 3143 break; 3144 3145 if (mapping_writably_mapped(mapping)) 3146 flush_dcache_page(page); 3147 3148 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); 3149 flush_dcache_page(page); 3150 3151 status = a_ops->write_end(file, mapping, pos, bytes, copied, 3152 page, fsdata); 3153 if (unlikely(status < 0)) 3154 break; 3155 copied = status; 3156 3157 cond_resched(); 3158 3159 iov_iter_advance(i, copied); 3160 if (unlikely(copied == 0)) { 3161 /* 3162 * If we were unable to copy any data at all, we must 3163 * fall back to a single segment length write. 3164 * 3165 * If we didn't fallback here, we could livelock 3166 * because not all segments in the iov can be copied at 3167 * once without a pagefault. 3168 */ 3169 bytes = min_t(unsigned long, PAGE_SIZE - offset, 3170 iov_iter_single_seg_count(i)); 3171 goto again; 3172 } 3173 pos += copied; 3174 written += copied; 3175 3176 balance_dirty_pages_ratelimited(mapping); 3177 } while (iov_iter_count(i)); 3178 3179 return written ? written : status; 3180 } 3181 EXPORT_SYMBOL(generic_perform_write); 3182 3183 /** 3184 * __generic_file_write_iter - write data to a file 3185 * @iocb: IO state structure (file, offset, etc.) 3186 * @from: iov_iter with data to write 3187 * 3188 * This function does all the work needed for actually writing data to a 3189 * file. It does all basic checks, removes SUID from the file, updates 3190 * modification times and calls proper subroutines depending on whether we 3191 * do direct IO or a standard buffered write. 3192 * 3193 * It expects i_mutex to be grabbed unless we work on a block device or similar 3194 * object which does not need locking at all. 3195 * 3196 * This function does *not* take care of syncing data in case of O_SYNC write. 3197 * A caller has to handle it. This is mainly due to the fact that we want to 3198 * avoid syncing under i_mutex. 3199 */ 3200 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3201 { 3202 struct file *file = iocb->ki_filp; 3203 struct address_space * mapping = file->f_mapping; 3204 struct inode *inode = mapping->host; 3205 ssize_t written = 0; 3206 ssize_t err; 3207 ssize_t status; 3208 3209 /* We can write back this queue in page reclaim */ 3210 current->backing_dev_info = inode_to_bdi(inode); 3211 err = file_remove_privs(file); 3212 if (err) 3213 goto out; 3214 3215 err = file_update_time(file); 3216 if (err) 3217 goto out; 3218 3219 if (iocb->ki_flags & IOCB_DIRECT) { 3220 loff_t pos, endbyte; 3221 3222 written = generic_file_direct_write(iocb, from); 3223 /* 3224 * If the write stopped short of completing, fall back to 3225 * buffered writes. Some filesystems do this for writes to 3226 * holes, for example. For DAX files, a buffered write will 3227 * not succeed (even if it did, DAX does not handle dirty 3228 * page-cache pages correctly). 3229 */ 3230 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode)) 3231 goto out; 3232 3233 status = generic_perform_write(file, from, pos = iocb->ki_pos); 3234 /* 3235 * If generic_perform_write() returned a synchronous error 3236 * then we want to return the number of bytes which were 3237 * direct-written, or the error code if that was zero. Note 3238 * that this differs from normal direct-io semantics, which 3239 * will return -EFOO even if some bytes were written. 3240 */ 3241 if (unlikely(status < 0)) { 3242 err = status; 3243 goto out; 3244 } 3245 /* 3246 * We need to ensure that the page cache pages are written to 3247 * disk and invalidated to preserve the expected O_DIRECT 3248 * semantics. 3249 */ 3250 endbyte = pos + status - 1; 3251 err = filemap_write_and_wait_range(mapping, pos, endbyte); 3252 if (err == 0) { 3253 iocb->ki_pos = endbyte + 1; 3254 written += status; 3255 invalidate_mapping_pages(mapping, 3256 pos >> PAGE_SHIFT, 3257 endbyte >> PAGE_SHIFT); 3258 } else { 3259 /* 3260 * We don't know how much we wrote, so just return 3261 * the number of bytes which were direct-written 3262 */ 3263 } 3264 } else { 3265 written = generic_perform_write(file, from, iocb->ki_pos); 3266 if (likely(written > 0)) 3267 iocb->ki_pos += written; 3268 } 3269 out: 3270 current->backing_dev_info = NULL; 3271 return written ? written : err; 3272 } 3273 EXPORT_SYMBOL(__generic_file_write_iter); 3274 3275 /** 3276 * generic_file_write_iter - write data to a file 3277 * @iocb: IO state structure 3278 * @from: iov_iter with data to write 3279 * 3280 * This is a wrapper around __generic_file_write_iter() to be used by most 3281 * filesystems. It takes care of syncing the file in case of O_SYNC file 3282 * and acquires i_mutex as needed. 3283 */ 3284 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3285 { 3286 struct file *file = iocb->ki_filp; 3287 struct inode *inode = file->f_mapping->host; 3288 ssize_t ret; 3289 3290 inode_lock(inode); 3291 ret = generic_write_checks(iocb, from); 3292 if (ret > 0) 3293 ret = __generic_file_write_iter(iocb, from); 3294 inode_unlock(inode); 3295 3296 if (ret > 0) 3297 ret = generic_write_sync(iocb, ret); 3298 return ret; 3299 } 3300 EXPORT_SYMBOL(generic_file_write_iter); 3301 3302 /** 3303 * try_to_release_page() - release old fs-specific metadata on a page 3304 * 3305 * @page: the page which the kernel is trying to free 3306 * @gfp_mask: memory allocation flags (and I/O mode) 3307 * 3308 * The address_space is to try to release any data against the page 3309 * (presumably at page->private). If the release was successful, return '1'. 3310 * Otherwise return zero. 3311 * 3312 * This may also be called if PG_fscache is set on a page, indicating that the 3313 * page is known to the local caching routines. 3314 * 3315 * The @gfp_mask argument specifies whether I/O may be performed to release 3316 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS). 3317 * 3318 */ 3319 int try_to_release_page(struct page *page, gfp_t gfp_mask) 3320 { 3321 struct address_space * const mapping = page->mapping; 3322 3323 BUG_ON(!PageLocked(page)); 3324 if (PageWriteback(page)) 3325 return 0; 3326 3327 if (mapping && mapping->a_ops->releasepage) 3328 return mapping->a_ops->releasepage(page, gfp_mask); 3329 return try_to_free_buffers(page); 3330 } 3331 3332 EXPORT_SYMBOL(try_to_release_page); 3333