xref: /openbmc/linux/mm/filemap.c (revision 6846d656)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	linux/mm/filemap.c
4  *
5  * Copyright (C) 1994-1999  Linus Torvalds
6  */
7 
8 /*
9  * This file handles the generic file mmap semantics used by
10  * most "normal" filesystems (but you don't /have/ to use this:
11  * the NFS filesystem used to do this differently, for example)
12  */
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
16 #include <linux/fs.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
22 #include <linux/mm.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/mman.h>
26 #include <linux/pagemap.h>
27 #include <linux/file.h>
28 #include <linux/uio.h>
29 #include <linux/error-injection.h>
30 #include <linux/hash.h>
31 #include <linux/writeback.h>
32 #include <linux/backing-dev.h>
33 #include <linux/pagevec.h>
34 #include <linux/security.h>
35 #include <linux/cpuset.h>
36 #include <linux/hugetlb.h>
37 #include <linux/memcontrol.h>
38 #include <linux/shmem_fs.h>
39 #include <linux/rmap.h>
40 #include <linux/delayacct.h>
41 #include <linux/psi.h>
42 #include <linux/ramfs.h>
43 #include <linux/page_idle.h>
44 #include <linux/migrate.h>
45 #include <asm/pgalloc.h>
46 #include <asm/tlbflush.h>
47 #include "internal.h"
48 
49 #define CREATE_TRACE_POINTS
50 #include <trace/events/filemap.h>
51 
52 /*
53  * FIXME: remove all knowledge of the buffer layer from the core VM
54  */
55 #include <linux/buffer_head.h> /* for try_to_free_buffers */
56 
57 #include <asm/mman.h>
58 
59 /*
60  * Shared mappings implemented 30.11.1994. It's not fully working yet,
61  * though.
62  *
63  * Shared mappings now work. 15.8.1995  Bruno.
64  *
65  * finished 'unifying' the page and buffer cache and SMP-threaded the
66  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
67  *
68  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
69  */
70 
71 /*
72  * Lock ordering:
73  *
74  *  ->i_mmap_rwsem		(truncate_pagecache)
75  *    ->private_lock		(__free_pte->block_dirty_folio)
76  *      ->swap_lock		(exclusive_swap_page, others)
77  *        ->i_pages lock
78  *
79  *  ->i_rwsem
80  *    ->invalidate_lock		(acquired by fs in truncate path)
81  *      ->i_mmap_rwsem		(truncate->unmap_mapping_range)
82  *
83  *  ->mmap_lock
84  *    ->i_mmap_rwsem
85  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
86  *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
87  *
88  *  ->mmap_lock
89  *    ->invalidate_lock		(filemap_fault)
90  *      ->lock_page		(filemap_fault, access_process_vm)
91  *
92  *  ->i_rwsem			(generic_perform_write)
93  *    ->mmap_lock		(fault_in_readable->do_page_fault)
94  *
95  *  bdi->wb.list_lock
96  *    sb_lock			(fs/fs-writeback.c)
97  *    ->i_pages lock		(__sync_single_inode)
98  *
99  *  ->i_mmap_rwsem
100  *    ->anon_vma.lock		(vma_adjust)
101  *
102  *  ->anon_vma.lock
103  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
104  *
105  *  ->page_table_lock or pte_lock
106  *    ->swap_lock		(try_to_unmap_one)
107  *    ->private_lock		(try_to_unmap_one)
108  *    ->i_pages lock		(try_to_unmap_one)
109  *    ->lruvec->lru_lock	(follow_page->mark_page_accessed)
110  *    ->lruvec->lru_lock	(check_pte_range->isolate_lru_page)
111  *    ->private_lock		(page_remove_rmap->set_page_dirty)
112  *    ->i_pages lock		(page_remove_rmap->set_page_dirty)
113  *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
114  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
115  *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
116  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
117  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
118  *    ->private_lock		(zap_pte_range->block_dirty_folio)
119  *
120  * ->i_mmap_rwsem
121  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
122  */
123 
124 static void page_cache_delete(struct address_space *mapping,
125 				   struct folio *folio, void *shadow)
126 {
127 	XA_STATE(xas, &mapping->i_pages, folio->index);
128 	long nr = 1;
129 
130 	mapping_set_update(&xas, mapping);
131 
132 	/* hugetlb pages are represented by a single entry in the xarray */
133 	if (!folio_test_hugetlb(folio)) {
134 		xas_set_order(&xas, folio->index, folio_order(folio));
135 		nr = folio_nr_pages(folio);
136 	}
137 
138 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
139 
140 	xas_store(&xas, shadow);
141 	xas_init_marks(&xas);
142 
143 	folio->mapping = NULL;
144 	/* Leave page->index set: truncation lookup relies upon it */
145 	mapping->nrpages -= nr;
146 }
147 
148 static void filemap_unaccount_folio(struct address_space *mapping,
149 		struct folio *folio)
150 {
151 	long nr;
152 
153 	VM_BUG_ON_FOLIO(folio_mapped(folio), folio);
154 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) {
155 		int mapcount;
156 
157 		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
158 			 current->comm, folio_pfn(folio));
159 		dump_page(&folio->page, "still mapped when deleted");
160 		dump_stack();
161 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
162 
163 		mapcount = page_mapcount(&folio->page);
164 		if (mapping_exiting(mapping) &&
165 		    folio_ref_count(folio) >= mapcount + 2) {
166 			/*
167 			 * All vmas have already been torn down, so it's
168 			 * a good bet that actually the folio is unmapped,
169 			 * and we'd prefer not to leak it: if we're wrong,
170 			 * some other bad page check should catch it later.
171 			 */
172 			page_mapcount_reset(&folio->page);
173 			folio_ref_sub(folio, mapcount);
174 		}
175 	}
176 
177 	/* hugetlb folios do not participate in page cache accounting. */
178 	if (folio_test_hugetlb(folio))
179 		return;
180 
181 	nr = folio_nr_pages(folio);
182 
183 	__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
184 	if (folio_test_swapbacked(folio)) {
185 		__lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
186 		if (folio_test_pmd_mappable(folio))
187 			__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr);
188 	} else if (folio_test_pmd_mappable(folio)) {
189 		__lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr);
190 		filemap_nr_thps_dec(mapping);
191 	}
192 
193 	/*
194 	 * At this point folio must be either written or cleaned by
195 	 * truncate.  Dirty folio here signals a bug and loss of
196 	 * unwritten data.
197 	 *
198 	 * This fixes dirty accounting after removing the folio entirely
199 	 * but leaves the dirty flag set: it has no effect for truncated
200 	 * folio and anyway will be cleared before returning folio to
201 	 * buddy allocator.
202 	 */
203 	if (WARN_ON_ONCE(folio_test_dirty(folio)))
204 		folio_account_cleaned(folio, mapping,
205 					inode_to_wb(mapping->host));
206 }
207 
208 /*
209  * Delete a page from the page cache and free it. Caller has to make
210  * sure the page is locked and that nobody else uses it - or that usage
211  * is safe.  The caller must hold the i_pages lock.
212  */
213 void __filemap_remove_folio(struct folio *folio, void *shadow)
214 {
215 	struct address_space *mapping = folio->mapping;
216 
217 	trace_mm_filemap_delete_from_page_cache(folio);
218 	filemap_unaccount_folio(mapping, folio);
219 	page_cache_delete(mapping, folio, shadow);
220 }
221 
222 void filemap_free_folio(struct address_space *mapping, struct folio *folio)
223 {
224 	void (*freepage)(struct page *);
225 	int refs = 1;
226 
227 	freepage = mapping->a_ops->freepage;
228 	if (freepage)
229 		freepage(&folio->page);
230 
231 	if (folio_test_large(folio) && !folio_test_hugetlb(folio))
232 		refs = folio_nr_pages(folio);
233 	folio_put_refs(folio, refs);
234 }
235 
236 /**
237  * filemap_remove_folio - Remove folio from page cache.
238  * @folio: The folio.
239  *
240  * This must be called only on folios that are locked and have been
241  * verified to be in the page cache.  It will never put the folio into
242  * the free list because the caller has a reference on the page.
243  */
244 void filemap_remove_folio(struct folio *folio)
245 {
246 	struct address_space *mapping = folio->mapping;
247 
248 	BUG_ON(!folio_test_locked(folio));
249 	spin_lock(&mapping->host->i_lock);
250 	xa_lock_irq(&mapping->i_pages);
251 	__filemap_remove_folio(folio, NULL);
252 	xa_unlock_irq(&mapping->i_pages);
253 	if (mapping_shrinkable(mapping))
254 		inode_add_lru(mapping->host);
255 	spin_unlock(&mapping->host->i_lock);
256 
257 	filemap_free_folio(mapping, folio);
258 }
259 
260 /*
261  * page_cache_delete_batch - delete several folios from page cache
262  * @mapping: the mapping to which folios belong
263  * @fbatch: batch of folios to delete
264  *
265  * The function walks over mapping->i_pages and removes folios passed in
266  * @fbatch from the mapping. The function expects @fbatch to be sorted
267  * by page index and is optimised for it to be dense.
268  * It tolerates holes in @fbatch (mapping entries at those indices are not
269  * modified).
270  *
271  * The function expects the i_pages lock to be held.
272  */
273 static void page_cache_delete_batch(struct address_space *mapping,
274 			     struct folio_batch *fbatch)
275 {
276 	XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index);
277 	long total_pages = 0;
278 	int i = 0;
279 	struct folio *folio;
280 
281 	mapping_set_update(&xas, mapping);
282 	xas_for_each(&xas, folio, ULONG_MAX) {
283 		if (i >= folio_batch_count(fbatch))
284 			break;
285 
286 		/* A swap/dax/shadow entry got inserted? Skip it. */
287 		if (xa_is_value(folio))
288 			continue;
289 		/*
290 		 * A page got inserted in our range? Skip it. We have our
291 		 * pages locked so they are protected from being removed.
292 		 * If we see a page whose index is higher than ours, it
293 		 * means our page has been removed, which shouldn't be
294 		 * possible because we're holding the PageLock.
295 		 */
296 		if (folio != fbatch->folios[i]) {
297 			VM_BUG_ON_FOLIO(folio->index >
298 					fbatch->folios[i]->index, folio);
299 			continue;
300 		}
301 
302 		WARN_ON_ONCE(!folio_test_locked(folio));
303 
304 		folio->mapping = NULL;
305 		/* Leave folio->index set: truncation lookup relies on it */
306 
307 		i++;
308 		xas_store(&xas, NULL);
309 		total_pages += folio_nr_pages(folio);
310 	}
311 	mapping->nrpages -= total_pages;
312 }
313 
314 void delete_from_page_cache_batch(struct address_space *mapping,
315 				  struct folio_batch *fbatch)
316 {
317 	int i;
318 
319 	if (!folio_batch_count(fbatch))
320 		return;
321 
322 	spin_lock(&mapping->host->i_lock);
323 	xa_lock_irq(&mapping->i_pages);
324 	for (i = 0; i < folio_batch_count(fbatch); i++) {
325 		struct folio *folio = fbatch->folios[i];
326 
327 		trace_mm_filemap_delete_from_page_cache(folio);
328 		filemap_unaccount_folio(mapping, folio);
329 	}
330 	page_cache_delete_batch(mapping, fbatch);
331 	xa_unlock_irq(&mapping->i_pages);
332 	if (mapping_shrinkable(mapping))
333 		inode_add_lru(mapping->host);
334 	spin_unlock(&mapping->host->i_lock);
335 
336 	for (i = 0; i < folio_batch_count(fbatch); i++)
337 		filemap_free_folio(mapping, fbatch->folios[i]);
338 }
339 
340 int filemap_check_errors(struct address_space *mapping)
341 {
342 	int ret = 0;
343 	/* Check for outstanding write errors */
344 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
345 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
346 		ret = -ENOSPC;
347 	if (test_bit(AS_EIO, &mapping->flags) &&
348 	    test_and_clear_bit(AS_EIO, &mapping->flags))
349 		ret = -EIO;
350 	return ret;
351 }
352 EXPORT_SYMBOL(filemap_check_errors);
353 
354 static int filemap_check_and_keep_errors(struct address_space *mapping)
355 {
356 	/* Check for outstanding write errors */
357 	if (test_bit(AS_EIO, &mapping->flags))
358 		return -EIO;
359 	if (test_bit(AS_ENOSPC, &mapping->flags))
360 		return -ENOSPC;
361 	return 0;
362 }
363 
364 /**
365  * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
366  * @mapping:	address space structure to write
367  * @wbc:	the writeback_control controlling the writeout
368  *
369  * Call writepages on the mapping using the provided wbc to control the
370  * writeout.
371  *
372  * Return: %0 on success, negative error code otherwise.
373  */
374 int filemap_fdatawrite_wbc(struct address_space *mapping,
375 			   struct writeback_control *wbc)
376 {
377 	int ret;
378 
379 	if (!mapping_can_writeback(mapping) ||
380 	    !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
381 		return 0;
382 
383 	wbc_attach_fdatawrite_inode(wbc, mapping->host);
384 	ret = do_writepages(mapping, wbc);
385 	wbc_detach_inode(wbc);
386 	return ret;
387 }
388 EXPORT_SYMBOL(filemap_fdatawrite_wbc);
389 
390 /**
391  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
392  * @mapping:	address space structure to write
393  * @start:	offset in bytes where the range starts
394  * @end:	offset in bytes where the range ends (inclusive)
395  * @sync_mode:	enable synchronous operation
396  *
397  * Start writeback against all of a mapping's dirty pages that lie
398  * within the byte offsets <start, end> inclusive.
399  *
400  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
401  * opposed to a regular memory cleansing writeback.  The difference between
402  * these two operations is that if a dirty page/buffer is encountered, it must
403  * be waited upon, and not just skipped over.
404  *
405  * Return: %0 on success, negative error code otherwise.
406  */
407 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
408 				loff_t end, int sync_mode)
409 {
410 	struct writeback_control wbc = {
411 		.sync_mode = sync_mode,
412 		.nr_to_write = LONG_MAX,
413 		.range_start = start,
414 		.range_end = end,
415 	};
416 
417 	return filemap_fdatawrite_wbc(mapping, &wbc);
418 }
419 
420 static inline int __filemap_fdatawrite(struct address_space *mapping,
421 	int sync_mode)
422 {
423 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
424 }
425 
426 int filemap_fdatawrite(struct address_space *mapping)
427 {
428 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
429 }
430 EXPORT_SYMBOL(filemap_fdatawrite);
431 
432 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
433 				loff_t end)
434 {
435 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
436 }
437 EXPORT_SYMBOL(filemap_fdatawrite_range);
438 
439 /**
440  * filemap_flush - mostly a non-blocking flush
441  * @mapping:	target address_space
442  *
443  * This is a mostly non-blocking flush.  Not suitable for data-integrity
444  * purposes - I/O may not be started against all dirty pages.
445  *
446  * Return: %0 on success, negative error code otherwise.
447  */
448 int filemap_flush(struct address_space *mapping)
449 {
450 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
451 }
452 EXPORT_SYMBOL(filemap_flush);
453 
454 /**
455  * filemap_range_has_page - check if a page exists in range.
456  * @mapping:           address space within which to check
457  * @start_byte:        offset in bytes where the range starts
458  * @end_byte:          offset in bytes where the range ends (inclusive)
459  *
460  * Find at least one page in the range supplied, usually used to check if
461  * direct writing in this range will trigger a writeback.
462  *
463  * Return: %true if at least one page exists in the specified range,
464  * %false otherwise.
465  */
466 bool filemap_range_has_page(struct address_space *mapping,
467 			   loff_t start_byte, loff_t end_byte)
468 {
469 	struct page *page;
470 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
471 	pgoff_t max = end_byte >> PAGE_SHIFT;
472 
473 	if (end_byte < start_byte)
474 		return false;
475 
476 	rcu_read_lock();
477 	for (;;) {
478 		page = xas_find(&xas, max);
479 		if (xas_retry(&xas, page))
480 			continue;
481 		/* Shadow entries don't count */
482 		if (xa_is_value(page))
483 			continue;
484 		/*
485 		 * We don't need to try to pin this page; we're about to
486 		 * release the RCU lock anyway.  It is enough to know that
487 		 * there was a page here recently.
488 		 */
489 		break;
490 	}
491 	rcu_read_unlock();
492 
493 	return page != NULL;
494 }
495 EXPORT_SYMBOL(filemap_range_has_page);
496 
497 static void __filemap_fdatawait_range(struct address_space *mapping,
498 				     loff_t start_byte, loff_t end_byte)
499 {
500 	pgoff_t index = start_byte >> PAGE_SHIFT;
501 	pgoff_t end = end_byte >> PAGE_SHIFT;
502 	struct pagevec pvec;
503 	int nr_pages;
504 
505 	if (end_byte < start_byte)
506 		return;
507 
508 	pagevec_init(&pvec);
509 	while (index <= end) {
510 		unsigned i;
511 
512 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
513 				end, PAGECACHE_TAG_WRITEBACK);
514 		if (!nr_pages)
515 			break;
516 
517 		for (i = 0; i < nr_pages; i++) {
518 			struct page *page = pvec.pages[i];
519 
520 			wait_on_page_writeback(page);
521 			ClearPageError(page);
522 		}
523 		pagevec_release(&pvec);
524 		cond_resched();
525 	}
526 }
527 
528 /**
529  * filemap_fdatawait_range - wait for writeback to complete
530  * @mapping:		address space structure to wait for
531  * @start_byte:		offset in bytes where the range starts
532  * @end_byte:		offset in bytes where the range ends (inclusive)
533  *
534  * Walk the list of under-writeback pages of the given address space
535  * in the given range and wait for all of them.  Check error status of
536  * the address space and return it.
537  *
538  * Since the error status of the address space is cleared by this function,
539  * callers are responsible for checking the return value and handling and/or
540  * reporting the error.
541  *
542  * Return: error status of the address space.
543  */
544 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
545 			    loff_t end_byte)
546 {
547 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
548 	return filemap_check_errors(mapping);
549 }
550 EXPORT_SYMBOL(filemap_fdatawait_range);
551 
552 /**
553  * filemap_fdatawait_range_keep_errors - wait for writeback to complete
554  * @mapping:		address space structure to wait for
555  * @start_byte:		offset in bytes where the range starts
556  * @end_byte:		offset in bytes where the range ends (inclusive)
557  *
558  * Walk the list of under-writeback pages of the given address space in the
559  * given range and wait for all of them.  Unlike filemap_fdatawait_range(),
560  * this function does not clear error status of the address space.
561  *
562  * Use this function if callers don't handle errors themselves.  Expected
563  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
564  * fsfreeze(8)
565  */
566 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
567 		loff_t start_byte, loff_t end_byte)
568 {
569 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
570 	return filemap_check_and_keep_errors(mapping);
571 }
572 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
573 
574 /**
575  * file_fdatawait_range - wait for writeback to complete
576  * @file:		file pointing to address space structure to wait for
577  * @start_byte:		offset in bytes where the range starts
578  * @end_byte:		offset in bytes where the range ends (inclusive)
579  *
580  * Walk the list of under-writeback pages of the address space that file
581  * refers to, in the given range and wait for all of them.  Check error
582  * status of the address space vs. the file->f_wb_err cursor and return it.
583  *
584  * Since the error status of the file is advanced by this function,
585  * callers are responsible for checking the return value and handling and/or
586  * reporting the error.
587  *
588  * Return: error status of the address space vs. the file->f_wb_err cursor.
589  */
590 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
591 {
592 	struct address_space *mapping = file->f_mapping;
593 
594 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
595 	return file_check_and_advance_wb_err(file);
596 }
597 EXPORT_SYMBOL(file_fdatawait_range);
598 
599 /**
600  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
601  * @mapping: address space structure to wait for
602  *
603  * Walk the list of under-writeback pages of the given address space
604  * and wait for all of them.  Unlike filemap_fdatawait(), this function
605  * does not clear error status of the address space.
606  *
607  * Use this function if callers don't handle errors themselves.  Expected
608  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
609  * fsfreeze(8)
610  *
611  * Return: error status of the address space.
612  */
613 int filemap_fdatawait_keep_errors(struct address_space *mapping)
614 {
615 	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
616 	return filemap_check_and_keep_errors(mapping);
617 }
618 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
619 
620 /* Returns true if writeback might be needed or already in progress. */
621 static bool mapping_needs_writeback(struct address_space *mapping)
622 {
623 	return mapping->nrpages;
624 }
625 
626 bool filemap_range_has_writeback(struct address_space *mapping,
627 				 loff_t start_byte, loff_t end_byte)
628 {
629 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
630 	pgoff_t max = end_byte >> PAGE_SHIFT;
631 	struct page *page;
632 
633 	if (end_byte < start_byte)
634 		return false;
635 
636 	rcu_read_lock();
637 	xas_for_each(&xas, page, max) {
638 		if (xas_retry(&xas, page))
639 			continue;
640 		if (xa_is_value(page))
641 			continue;
642 		if (PageDirty(page) || PageLocked(page) || PageWriteback(page))
643 			break;
644 	}
645 	rcu_read_unlock();
646 	return page != NULL;
647 }
648 EXPORT_SYMBOL_GPL(filemap_range_has_writeback);
649 
650 /**
651  * filemap_write_and_wait_range - write out & wait on a file range
652  * @mapping:	the address_space for the pages
653  * @lstart:	offset in bytes where the range starts
654  * @lend:	offset in bytes where the range ends (inclusive)
655  *
656  * Write out and wait upon file offsets lstart->lend, inclusive.
657  *
658  * Note that @lend is inclusive (describes the last byte to be written) so
659  * that this function can be used to write to the very end-of-file (end = -1).
660  *
661  * Return: error status of the address space.
662  */
663 int filemap_write_and_wait_range(struct address_space *mapping,
664 				 loff_t lstart, loff_t lend)
665 {
666 	int err = 0;
667 
668 	if (mapping_needs_writeback(mapping)) {
669 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
670 						 WB_SYNC_ALL);
671 		/*
672 		 * Even if the above returned error, the pages may be
673 		 * written partially (e.g. -ENOSPC), so we wait for it.
674 		 * But the -EIO is special case, it may indicate the worst
675 		 * thing (e.g. bug) happened, so we avoid waiting for it.
676 		 */
677 		if (err != -EIO) {
678 			int err2 = filemap_fdatawait_range(mapping,
679 						lstart, lend);
680 			if (!err)
681 				err = err2;
682 		} else {
683 			/* Clear any previously stored errors */
684 			filemap_check_errors(mapping);
685 		}
686 	} else {
687 		err = filemap_check_errors(mapping);
688 	}
689 	return err;
690 }
691 EXPORT_SYMBOL(filemap_write_and_wait_range);
692 
693 void __filemap_set_wb_err(struct address_space *mapping, int err)
694 {
695 	errseq_t eseq = errseq_set(&mapping->wb_err, err);
696 
697 	trace_filemap_set_wb_err(mapping, eseq);
698 }
699 EXPORT_SYMBOL(__filemap_set_wb_err);
700 
701 /**
702  * file_check_and_advance_wb_err - report wb error (if any) that was previously
703  * 				   and advance wb_err to current one
704  * @file: struct file on which the error is being reported
705  *
706  * When userland calls fsync (or something like nfsd does the equivalent), we
707  * want to report any writeback errors that occurred since the last fsync (or
708  * since the file was opened if there haven't been any).
709  *
710  * Grab the wb_err from the mapping. If it matches what we have in the file,
711  * then just quickly return 0. The file is all caught up.
712  *
713  * If it doesn't match, then take the mapping value, set the "seen" flag in
714  * it and try to swap it into place. If it works, or another task beat us
715  * to it with the new value, then update the f_wb_err and return the error
716  * portion. The error at this point must be reported via proper channels
717  * (a'la fsync, or NFS COMMIT operation, etc.).
718  *
719  * While we handle mapping->wb_err with atomic operations, the f_wb_err
720  * value is protected by the f_lock since we must ensure that it reflects
721  * the latest value swapped in for this file descriptor.
722  *
723  * Return: %0 on success, negative error code otherwise.
724  */
725 int file_check_and_advance_wb_err(struct file *file)
726 {
727 	int err = 0;
728 	errseq_t old = READ_ONCE(file->f_wb_err);
729 	struct address_space *mapping = file->f_mapping;
730 
731 	/* Locklessly handle the common case where nothing has changed */
732 	if (errseq_check(&mapping->wb_err, old)) {
733 		/* Something changed, must use slow path */
734 		spin_lock(&file->f_lock);
735 		old = file->f_wb_err;
736 		err = errseq_check_and_advance(&mapping->wb_err,
737 						&file->f_wb_err);
738 		trace_file_check_and_advance_wb_err(file, old);
739 		spin_unlock(&file->f_lock);
740 	}
741 
742 	/*
743 	 * We're mostly using this function as a drop in replacement for
744 	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
745 	 * that the legacy code would have had on these flags.
746 	 */
747 	clear_bit(AS_EIO, &mapping->flags);
748 	clear_bit(AS_ENOSPC, &mapping->flags);
749 	return err;
750 }
751 EXPORT_SYMBOL(file_check_and_advance_wb_err);
752 
753 /**
754  * file_write_and_wait_range - write out & wait on a file range
755  * @file:	file pointing to address_space with pages
756  * @lstart:	offset in bytes where the range starts
757  * @lend:	offset in bytes where the range ends (inclusive)
758  *
759  * Write out and wait upon file offsets lstart->lend, inclusive.
760  *
761  * Note that @lend is inclusive (describes the last byte to be written) so
762  * that this function can be used to write to the very end-of-file (end = -1).
763  *
764  * After writing out and waiting on the data, we check and advance the
765  * f_wb_err cursor to the latest value, and return any errors detected there.
766  *
767  * Return: %0 on success, negative error code otherwise.
768  */
769 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
770 {
771 	int err = 0, err2;
772 	struct address_space *mapping = file->f_mapping;
773 
774 	if (mapping_needs_writeback(mapping)) {
775 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
776 						 WB_SYNC_ALL);
777 		/* See comment of filemap_write_and_wait() */
778 		if (err != -EIO)
779 			__filemap_fdatawait_range(mapping, lstart, lend);
780 	}
781 	err2 = file_check_and_advance_wb_err(file);
782 	if (!err)
783 		err = err2;
784 	return err;
785 }
786 EXPORT_SYMBOL(file_write_and_wait_range);
787 
788 /**
789  * replace_page_cache_page - replace a pagecache page with a new one
790  * @old:	page to be replaced
791  * @new:	page to replace with
792  *
793  * This function replaces a page in the pagecache with a new one.  On
794  * success it acquires the pagecache reference for the new page and
795  * drops it for the old page.  Both the old and new pages must be
796  * locked.  This function does not add the new page to the LRU, the
797  * caller must do that.
798  *
799  * The remove + add is atomic.  This function cannot fail.
800  */
801 void replace_page_cache_page(struct page *old, struct page *new)
802 {
803 	struct folio *fold = page_folio(old);
804 	struct folio *fnew = page_folio(new);
805 	struct address_space *mapping = old->mapping;
806 	void (*freepage)(struct page *) = mapping->a_ops->freepage;
807 	pgoff_t offset = old->index;
808 	XA_STATE(xas, &mapping->i_pages, offset);
809 
810 	VM_BUG_ON_PAGE(!PageLocked(old), old);
811 	VM_BUG_ON_PAGE(!PageLocked(new), new);
812 	VM_BUG_ON_PAGE(new->mapping, new);
813 
814 	get_page(new);
815 	new->mapping = mapping;
816 	new->index = offset;
817 
818 	mem_cgroup_migrate(fold, fnew);
819 
820 	xas_lock_irq(&xas);
821 	xas_store(&xas, new);
822 
823 	old->mapping = NULL;
824 	/* hugetlb pages do not participate in page cache accounting. */
825 	if (!PageHuge(old))
826 		__dec_lruvec_page_state(old, NR_FILE_PAGES);
827 	if (!PageHuge(new))
828 		__inc_lruvec_page_state(new, NR_FILE_PAGES);
829 	if (PageSwapBacked(old))
830 		__dec_lruvec_page_state(old, NR_SHMEM);
831 	if (PageSwapBacked(new))
832 		__inc_lruvec_page_state(new, NR_SHMEM);
833 	xas_unlock_irq(&xas);
834 	if (freepage)
835 		freepage(old);
836 	put_page(old);
837 }
838 EXPORT_SYMBOL_GPL(replace_page_cache_page);
839 
840 noinline int __filemap_add_folio(struct address_space *mapping,
841 		struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
842 {
843 	XA_STATE(xas, &mapping->i_pages, index);
844 	int huge = folio_test_hugetlb(folio);
845 	bool charged = false;
846 	long nr = 1;
847 
848 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
849 	VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
850 	mapping_set_update(&xas, mapping);
851 
852 	if (!huge) {
853 		int error = mem_cgroup_charge(folio, NULL, gfp);
854 		VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
855 		if (error)
856 			return error;
857 		charged = true;
858 		xas_set_order(&xas, index, folio_order(folio));
859 		nr = folio_nr_pages(folio);
860 	}
861 
862 	gfp &= GFP_RECLAIM_MASK;
863 	folio_ref_add(folio, nr);
864 	folio->mapping = mapping;
865 	folio->index = xas.xa_index;
866 
867 	do {
868 		unsigned int order = xa_get_order(xas.xa, xas.xa_index);
869 		void *entry, *old = NULL;
870 
871 		if (order > folio_order(folio))
872 			xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
873 					order, gfp);
874 		xas_lock_irq(&xas);
875 		xas_for_each_conflict(&xas, entry) {
876 			old = entry;
877 			if (!xa_is_value(entry)) {
878 				xas_set_err(&xas, -EEXIST);
879 				goto unlock;
880 			}
881 		}
882 
883 		if (old) {
884 			if (shadowp)
885 				*shadowp = old;
886 			/* entry may have been split before we acquired lock */
887 			order = xa_get_order(xas.xa, xas.xa_index);
888 			if (order > folio_order(folio)) {
889 				/* How to handle large swap entries? */
890 				BUG_ON(shmem_mapping(mapping));
891 				xas_split(&xas, old, order);
892 				xas_reset(&xas);
893 			}
894 		}
895 
896 		xas_store(&xas, folio);
897 		if (xas_error(&xas))
898 			goto unlock;
899 
900 		mapping->nrpages += nr;
901 
902 		/* hugetlb pages do not participate in page cache accounting */
903 		if (!huge) {
904 			__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
905 			if (folio_test_pmd_mappable(folio))
906 				__lruvec_stat_mod_folio(folio,
907 						NR_FILE_THPS, nr);
908 		}
909 unlock:
910 		xas_unlock_irq(&xas);
911 	} while (xas_nomem(&xas, gfp));
912 
913 	if (xas_error(&xas))
914 		goto error;
915 
916 	trace_mm_filemap_add_to_page_cache(folio);
917 	return 0;
918 error:
919 	if (charged)
920 		mem_cgroup_uncharge(folio);
921 	folio->mapping = NULL;
922 	/* Leave page->index set: truncation relies upon it */
923 	folio_put_refs(folio, nr);
924 	return xas_error(&xas);
925 }
926 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
927 
928 /**
929  * add_to_page_cache_locked - add a locked page to the pagecache
930  * @page:	page to add
931  * @mapping:	the page's address_space
932  * @offset:	page index
933  * @gfp_mask:	page allocation mode
934  *
935  * This function is used to add a page to the pagecache. It must be locked.
936  * This function does not add the page to the LRU.  The caller must do that.
937  *
938  * Return: %0 on success, negative error code otherwise.
939  */
940 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
941 		pgoff_t offset, gfp_t gfp_mask)
942 {
943 	return __filemap_add_folio(mapping, page_folio(page), offset,
944 					  gfp_mask, NULL);
945 }
946 EXPORT_SYMBOL(add_to_page_cache_locked);
947 
948 int filemap_add_folio(struct address_space *mapping, struct folio *folio,
949 				pgoff_t index, gfp_t gfp)
950 {
951 	void *shadow = NULL;
952 	int ret;
953 
954 	__folio_set_locked(folio);
955 	ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
956 	if (unlikely(ret))
957 		__folio_clear_locked(folio);
958 	else {
959 		/*
960 		 * The folio might have been evicted from cache only
961 		 * recently, in which case it should be activated like
962 		 * any other repeatedly accessed folio.
963 		 * The exception is folios getting rewritten; evicting other
964 		 * data from the working set, only to cache data that will
965 		 * get overwritten with something else, is a waste of memory.
966 		 */
967 		WARN_ON_ONCE(folio_test_active(folio));
968 		if (!(gfp & __GFP_WRITE) && shadow)
969 			workingset_refault(folio, shadow);
970 		folio_add_lru(folio);
971 	}
972 	return ret;
973 }
974 EXPORT_SYMBOL_GPL(filemap_add_folio);
975 
976 #ifdef CONFIG_NUMA
977 struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order)
978 {
979 	int n;
980 	struct folio *folio;
981 
982 	if (cpuset_do_page_mem_spread()) {
983 		unsigned int cpuset_mems_cookie;
984 		do {
985 			cpuset_mems_cookie = read_mems_allowed_begin();
986 			n = cpuset_mem_spread_node();
987 			folio = __folio_alloc_node(gfp, order, n);
988 		} while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
989 
990 		return folio;
991 	}
992 	return folio_alloc(gfp, order);
993 }
994 EXPORT_SYMBOL(filemap_alloc_folio);
995 #endif
996 
997 /*
998  * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
999  *
1000  * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
1001  *
1002  * @mapping1: the first mapping to lock
1003  * @mapping2: the second mapping to lock
1004  */
1005 void filemap_invalidate_lock_two(struct address_space *mapping1,
1006 				 struct address_space *mapping2)
1007 {
1008 	if (mapping1 > mapping2)
1009 		swap(mapping1, mapping2);
1010 	if (mapping1)
1011 		down_write(&mapping1->invalidate_lock);
1012 	if (mapping2 && mapping1 != mapping2)
1013 		down_write_nested(&mapping2->invalidate_lock, 1);
1014 }
1015 EXPORT_SYMBOL(filemap_invalidate_lock_two);
1016 
1017 /*
1018  * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
1019  *
1020  * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1021  *
1022  * @mapping1: the first mapping to unlock
1023  * @mapping2: the second mapping to unlock
1024  */
1025 void filemap_invalidate_unlock_two(struct address_space *mapping1,
1026 				   struct address_space *mapping2)
1027 {
1028 	if (mapping1)
1029 		up_write(&mapping1->invalidate_lock);
1030 	if (mapping2 && mapping1 != mapping2)
1031 		up_write(&mapping2->invalidate_lock);
1032 }
1033 EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1034 
1035 /*
1036  * In order to wait for pages to become available there must be
1037  * waitqueues associated with pages. By using a hash table of
1038  * waitqueues where the bucket discipline is to maintain all
1039  * waiters on the same queue and wake all when any of the pages
1040  * become available, and for the woken contexts to check to be
1041  * sure the appropriate page became available, this saves space
1042  * at a cost of "thundering herd" phenomena during rare hash
1043  * collisions.
1044  */
1045 #define PAGE_WAIT_TABLE_BITS 8
1046 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1047 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1048 
1049 static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1050 {
1051 	return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
1052 }
1053 
1054 void __init pagecache_init(void)
1055 {
1056 	int i;
1057 
1058 	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1059 		init_waitqueue_head(&folio_wait_table[i]);
1060 
1061 	page_writeback_init();
1062 
1063 	/*
1064 	 * tmpfs uses the ZERO_PAGE for reading holes: it is up-to-date,
1065 	 * and splice's page_cache_pipe_buf_confirm() needs to see that.
1066 	 */
1067 	SetPageUptodate(ZERO_PAGE(0));
1068 }
1069 
1070 /*
1071  * The page wait code treats the "wait->flags" somewhat unusually, because
1072  * we have multiple different kinds of waits, not just the usual "exclusive"
1073  * one.
1074  *
1075  * We have:
1076  *
1077  *  (a) no special bits set:
1078  *
1079  *	We're just waiting for the bit to be released, and when a waker
1080  *	calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1081  *	and remove it from the wait queue.
1082  *
1083  *	Simple and straightforward.
1084  *
1085  *  (b) WQ_FLAG_EXCLUSIVE:
1086  *
1087  *	The waiter is waiting to get the lock, and only one waiter should
1088  *	be woken up to avoid any thundering herd behavior. We'll set the
1089  *	WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1090  *
1091  *	This is the traditional exclusive wait.
1092  *
1093  *  (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1094  *
1095  *	The waiter is waiting to get the bit, and additionally wants the
1096  *	lock to be transferred to it for fair lock behavior. If the lock
1097  *	cannot be taken, we stop walking the wait queue without waking
1098  *	the waiter.
1099  *
1100  *	This is the "fair lock handoff" case, and in addition to setting
1101  *	WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1102  *	that it now has the lock.
1103  */
1104 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1105 {
1106 	unsigned int flags;
1107 	struct wait_page_key *key = arg;
1108 	struct wait_page_queue *wait_page
1109 		= container_of(wait, struct wait_page_queue, wait);
1110 
1111 	if (!wake_page_match(wait_page, key))
1112 		return 0;
1113 
1114 	/*
1115 	 * If it's a lock handoff wait, we get the bit for it, and
1116 	 * stop walking (and do not wake it up) if we can't.
1117 	 */
1118 	flags = wait->flags;
1119 	if (flags & WQ_FLAG_EXCLUSIVE) {
1120 		if (test_bit(key->bit_nr, &key->folio->flags))
1121 			return -1;
1122 		if (flags & WQ_FLAG_CUSTOM) {
1123 			if (test_and_set_bit(key->bit_nr, &key->folio->flags))
1124 				return -1;
1125 			flags |= WQ_FLAG_DONE;
1126 		}
1127 	}
1128 
1129 	/*
1130 	 * We are holding the wait-queue lock, but the waiter that
1131 	 * is waiting for this will be checking the flags without
1132 	 * any locking.
1133 	 *
1134 	 * So update the flags atomically, and wake up the waiter
1135 	 * afterwards to avoid any races. This store-release pairs
1136 	 * with the load-acquire in folio_wait_bit_common().
1137 	 */
1138 	smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1139 	wake_up_state(wait->private, mode);
1140 
1141 	/*
1142 	 * Ok, we have successfully done what we're waiting for,
1143 	 * and we can unconditionally remove the wait entry.
1144 	 *
1145 	 * Note that this pairs with the "finish_wait()" in the
1146 	 * waiter, and has to be the absolute last thing we do.
1147 	 * After this list_del_init(&wait->entry) the wait entry
1148 	 * might be de-allocated and the process might even have
1149 	 * exited.
1150 	 */
1151 	list_del_init_careful(&wait->entry);
1152 	return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1153 }
1154 
1155 static void folio_wake_bit(struct folio *folio, int bit_nr)
1156 {
1157 	wait_queue_head_t *q = folio_waitqueue(folio);
1158 	struct wait_page_key key;
1159 	unsigned long flags;
1160 	wait_queue_entry_t bookmark;
1161 
1162 	key.folio = folio;
1163 	key.bit_nr = bit_nr;
1164 	key.page_match = 0;
1165 
1166 	bookmark.flags = 0;
1167 	bookmark.private = NULL;
1168 	bookmark.func = NULL;
1169 	INIT_LIST_HEAD(&bookmark.entry);
1170 
1171 	spin_lock_irqsave(&q->lock, flags);
1172 	__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1173 
1174 	while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1175 		/*
1176 		 * Take a breather from holding the lock,
1177 		 * allow pages that finish wake up asynchronously
1178 		 * to acquire the lock and remove themselves
1179 		 * from wait queue
1180 		 */
1181 		spin_unlock_irqrestore(&q->lock, flags);
1182 		cpu_relax();
1183 		spin_lock_irqsave(&q->lock, flags);
1184 		__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1185 	}
1186 
1187 	/*
1188 	 * It is possible for other pages to have collided on the waitqueue
1189 	 * hash, so in that case check for a page match. That prevents a long-
1190 	 * term waiter
1191 	 *
1192 	 * It is still possible to miss a case here, when we woke page waiters
1193 	 * and removed them from the waitqueue, but there are still other
1194 	 * page waiters.
1195 	 */
1196 	if (!waitqueue_active(q) || !key.page_match) {
1197 		folio_clear_waiters(folio);
1198 		/*
1199 		 * It's possible to miss clearing Waiters here, when we woke
1200 		 * our page waiters, but the hashed waitqueue has waiters for
1201 		 * other pages on it.
1202 		 *
1203 		 * That's okay, it's a rare case. The next waker will clear it.
1204 		 */
1205 	}
1206 	spin_unlock_irqrestore(&q->lock, flags);
1207 }
1208 
1209 static void folio_wake(struct folio *folio, int bit)
1210 {
1211 	if (!folio_test_waiters(folio))
1212 		return;
1213 	folio_wake_bit(folio, bit);
1214 }
1215 
1216 /*
1217  * A choice of three behaviors for folio_wait_bit_common():
1218  */
1219 enum behavior {
1220 	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
1221 			 * __folio_lock() waiting on then setting PG_locked.
1222 			 */
1223 	SHARED,		/* Hold ref to page and check the bit when woken, like
1224 			 * folio_wait_writeback() waiting on PG_writeback.
1225 			 */
1226 	DROP,		/* Drop ref to page before wait, no check when woken,
1227 			 * like folio_put_wait_locked() on PG_locked.
1228 			 */
1229 };
1230 
1231 /*
1232  * Attempt to check (or get) the folio flag, and mark us done
1233  * if successful.
1234  */
1235 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
1236 					struct wait_queue_entry *wait)
1237 {
1238 	if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1239 		if (test_and_set_bit(bit_nr, &folio->flags))
1240 			return false;
1241 	} else if (test_bit(bit_nr, &folio->flags))
1242 		return false;
1243 
1244 	wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1245 	return true;
1246 }
1247 
1248 /* How many times do we accept lock stealing from under a waiter? */
1249 int sysctl_page_lock_unfairness = 5;
1250 
1251 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1252 		int state, enum behavior behavior)
1253 {
1254 	wait_queue_head_t *q = folio_waitqueue(folio);
1255 	int unfairness = sysctl_page_lock_unfairness;
1256 	struct wait_page_queue wait_page;
1257 	wait_queue_entry_t *wait = &wait_page.wait;
1258 	bool thrashing = false;
1259 	bool delayacct = false;
1260 	unsigned long pflags;
1261 
1262 	if (bit_nr == PG_locked &&
1263 	    !folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1264 		if (!folio_test_swapbacked(folio)) {
1265 			delayacct_thrashing_start();
1266 			delayacct = true;
1267 		}
1268 		psi_memstall_enter(&pflags);
1269 		thrashing = true;
1270 	}
1271 
1272 	init_wait(wait);
1273 	wait->func = wake_page_function;
1274 	wait_page.folio = folio;
1275 	wait_page.bit_nr = bit_nr;
1276 
1277 repeat:
1278 	wait->flags = 0;
1279 	if (behavior == EXCLUSIVE) {
1280 		wait->flags = WQ_FLAG_EXCLUSIVE;
1281 		if (--unfairness < 0)
1282 			wait->flags |= WQ_FLAG_CUSTOM;
1283 	}
1284 
1285 	/*
1286 	 * Do one last check whether we can get the
1287 	 * page bit synchronously.
1288 	 *
1289 	 * Do the folio_set_waiters() marking before that
1290 	 * to let any waker we _just_ missed know they
1291 	 * need to wake us up (otherwise they'll never
1292 	 * even go to the slow case that looks at the
1293 	 * page queue), and add ourselves to the wait
1294 	 * queue if we need to sleep.
1295 	 *
1296 	 * This part needs to be done under the queue
1297 	 * lock to avoid races.
1298 	 */
1299 	spin_lock_irq(&q->lock);
1300 	folio_set_waiters(folio);
1301 	if (!folio_trylock_flag(folio, bit_nr, wait))
1302 		__add_wait_queue_entry_tail(q, wait);
1303 	spin_unlock_irq(&q->lock);
1304 
1305 	/*
1306 	 * From now on, all the logic will be based on
1307 	 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1308 	 * see whether the page bit testing has already
1309 	 * been done by the wake function.
1310 	 *
1311 	 * We can drop our reference to the folio.
1312 	 */
1313 	if (behavior == DROP)
1314 		folio_put(folio);
1315 
1316 	/*
1317 	 * Note that until the "finish_wait()", or until
1318 	 * we see the WQ_FLAG_WOKEN flag, we need to
1319 	 * be very careful with the 'wait->flags', because
1320 	 * we may race with a waker that sets them.
1321 	 */
1322 	for (;;) {
1323 		unsigned int flags;
1324 
1325 		set_current_state(state);
1326 
1327 		/* Loop until we've been woken or interrupted */
1328 		flags = smp_load_acquire(&wait->flags);
1329 		if (!(flags & WQ_FLAG_WOKEN)) {
1330 			if (signal_pending_state(state, current))
1331 				break;
1332 
1333 			io_schedule();
1334 			continue;
1335 		}
1336 
1337 		/* If we were non-exclusive, we're done */
1338 		if (behavior != EXCLUSIVE)
1339 			break;
1340 
1341 		/* If the waker got the lock for us, we're done */
1342 		if (flags & WQ_FLAG_DONE)
1343 			break;
1344 
1345 		/*
1346 		 * Otherwise, if we're getting the lock, we need to
1347 		 * try to get it ourselves.
1348 		 *
1349 		 * And if that fails, we'll have to retry this all.
1350 		 */
1351 		if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
1352 			goto repeat;
1353 
1354 		wait->flags |= WQ_FLAG_DONE;
1355 		break;
1356 	}
1357 
1358 	/*
1359 	 * If a signal happened, this 'finish_wait()' may remove the last
1360 	 * waiter from the wait-queues, but the folio waiters bit will remain
1361 	 * set. That's ok. The next wakeup will take care of it, and trying
1362 	 * to do it here would be difficult and prone to races.
1363 	 */
1364 	finish_wait(q, wait);
1365 
1366 	if (thrashing) {
1367 		if (delayacct)
1368 			delayacct_thrashing_end();
1369 		psi_memstall_leave(&pflags);
1370 	}
1371 
1372 	/*
1373 	 * NOTE! The wait->flags weren't stable until we've done the
1374 	 * 'finish_wait()', and we could have exited the loop above due
1375 	 * to a signal, and had a wakeup event happen after the signal
1376 	 * test but before the 'finish_wait()'.
1377 	 *
1378 	 * So only after the finish_wait() can we reliably determine
1379 	 * if we got woken up or not, so we can now figure out the final
1380 	 * return value based on that state without races.
1381 	 *
1382 	 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1383 	 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1384 	 */
1385 	if (behavior == EXCLUSIVE)
1386 		return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1387 
1388 	return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1389 }
1390 
1391 #ifdef CONFIG_MIGRATION
1392 /**
1393  * migration_entry_wait_on_locked - Wait for a migration entry to be removed
1394  * @entry: migration swap entry.
1395  * @ptep: mapped pte pointer. Will return with the ptep unmapped. Only required
1396  *        for pte entries, pass NULL for pmd entries.
1397  * @ptl: already locked ptl. This function will drop the lock.
1398  *
1399  * Wait for a migration entry referencing the given page to be removed. This is
1400  * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except
1401  * this can be called without taking a reference on the page. Instead this
1402  * should be called while holding the ptl for the migration entry referencing
1403  * the page.
1404  *
1405  * Returns after unmapping and unlocking the pte/ptl with pte_unmap_unlock().
1406  *
1407  * This follows the same logic as folio_wait_bit_common() so see the comments
1408  * there.
1409  */
1410 void migration_entry_wait_on_locked(swp_entry_t entry, pte_t *ptep,
1411 				spinlock_t *ptl)
1412 {
1413 	struct wait_page_queue wait_page;
1414 	wait_queue_entry_t *wait = &wait_page.wait;
1415 	bool thrashing = false;
1416 	bool delayacct = false;
1417 	unsigned long pflags;
1418 	wait_queue_head_t *q;
1419 	struct folio *folio = page_folio(pfn_swap_entry_to_page(entry));
1420 
1421 	q = folio_waitqueue(folio);
1422 	if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1423 		if (!folio_test_swapbacked(folio)) {
1424 			delayacct_thrashing_start();
1425 			delayacct = true;
1426 		}
1427 		psi_memstall_enter(&pflags);
1428 		thrashing = true;
1429 	}
1430 
1431 	init_wait(wait);
1432 	wait->func = wake_page_function;
1433 	wait_page.folio = folio;
1434 	wait_page.bit_nr = PG_locked;
1435 	wait->flags = 0;
1436 
1437 	spin_lock_irq(&q->lock);
1438 	folio_set_waiters(folio);
1439 	if (!folio_trylock_flag(folio, PG_locked, wait))
1440 		__add_wait_queue_entry_tail(q, wait);
1441 	spin_unlock_irq(&q->lock);
1442 
1443 	/*
1444 	 * If a migration entry exists for the page the migration path must hold
1445 	 * a valid reference to the page, and it must take the ptl to remove the
1446 	 * migration entry. So the page is valid until the ptl is dropped.
1447 	 */
1448 	if (ptep)
1449 		pte_unmap_unlock(ptep, ptl);
1450 	else
1451 		spin_unlock(ptl);
1452 
1453 	for (;;) {
1454 		unsigned int flags;
1455 
1456 		set_current_state(TASK_UNINTERRUPTIBLE);
1457 
1458 		/* Loop until we've been woken or interrupted */
1459 		flags = smp_load_acquire(&wait->flags);
1460 		if (!(flags & WQ_FLAG_WOKEN)) {
1461 			if (signal_pending_state(TASK_UNINTERRUPTIBLE, current))
1462 				break;
1463 
1464 			io_schedule();
1465 			continue;
1466 		}
1467 		break;
1468 	}
1469 
1470 	finish_wait(q, wait);
1471 
1472 	if (thrashing) {
1473 		if (delayacct)
1474 			delayacct_thrashing_end();
1475 		psi_memstall_leave(&pflags);
1476 	}
1477 }
1478 #endif
1479 
1480 void folio_wait_bit(struct folio *folio, int bit_nr)
1481 {
1482 	folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1483 }
1484 EXPORT_SYMBOL(folio_wait_bit);
1485 
1486 int folio_wait_bit_killable(struct folio *folio, int bit_nr)
1487 {
1488 	return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
1489 }
1490 EXPORT_SYMBOL(folio_wait_bit_killable);
1491 
1492 /**
1493  * folio_put_wait_locked - Drop a reference and wait for it to be unlocked
1494  * @folio: The folio to wait for.
1495  * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1496  *
1497  * The caller should hold a reference on @folio.  They expect the page to
1498  * become unlocked relatively soon, but do not wish to hold up migration
1499  * (for example) by holding the reference while waiting for the folio to
1500  * come unlocked.  After this function returns, the caller should not
1501  * dereference @folio.
1502  *
1503  * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal.
1504  */
1505 int folio_put_wait_locked(struct folio *folio, int state)
1506 {
1507 	return folio_wait_bit_common(folio, PG_locked, state, DROP);
1508 }
1509 
1510 /**
1511  * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue
1512  * @folio: Folio defining the wait queue of interest
1513  * @waiter: Waiter to add to the queue
1514  *
1515  * Add an arbitrary @waiter to the wait queue for the nominated @folio.
1516  */
1517 void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter)
1518 {
1519 	wait_queue_head_t *q = folio_waitqueue(folio);
1520 	unsigned long flags;
1521 
1522 	spin_lock_irqsave(&q->lock, flags);
1523 	__add_wait_queue_entry_tail(q, waiter);
1524 	folio_set_waiters(folio);
1525 	spin_unlock_irqrestore(&q->lock, flags);
1526 }
1527 EXPORT_SYMBOL_GPL(folio_add_wait_queue);
1528 
1529 #ifndef clear_bit_unlock_is_negative_byte
1530 
1531 /*
1532  * PG_waiters is the high bit in the same byte as PG_lock.
1533  *
1534  * On x86 (and on many other architectures), we can clear PG_lock and
1535  * test the sign bit at the same time. But if the architecture does
1536  * not support that special operation, we just do this all by hand
1537  * instead.
1538  *
1539  * The read of PG_waiters has to be after (or concurrently with) PG_locked
1540  * being cleared, but a memory barrier should be unnecessary since it is
1541  * in the same byte as PG_locked.
1542  */
1543 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1544 {
1545 	clear_bit_unlock(nr, mem);
1546 	/* smp_mb__after_atomic(); */
1547 	return test_bit(PG_waiters, mem);
1548 }
1549 
1550 #endif
1551 
1552 /**
1553  * folio_unlock - Unlock a locked folio.
1554  * @folio: The folio.
1555  *
1556  * Unlocks the folio and wakes up any thread sleeping on the page lock.
1557  *
1558  * Context: May be called from interrupt or process context.  May not be
1559  * called from NMI context.
1560  */
1561 void folio_unlock(struct folio *folio)
1562 {
1563 	/* Bit 7 allows x86 to check the byte's sign bit */
1564 	BUILD_BUG_ON(PG_waiters != 7);
1565 	BUILD_BUG_ON(PG_locked > 7);
1566 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1567 	if (clear_bit_unlock_is_negative_byte(PG_locked, folio_flags(folio, 0)))
1568 		folio_wake_bit(folio, PG_locked);
1569 }
1570 EXPORT_SYMBOL(folio_unlock);
1571 
1572 /**
1573  * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1574  * @folio: The folio.
1575  *
1576  * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1577  * it.  The folio reference held for PG_private_2 being set is released.
1578  *
1579  * This is, for example, used when a netfs folio is being written to a local
1580  * disk cache, thereby allowing writes to the cache for the same folio to be
1581  * serialised.
1582  */
1583 void folio_end_private_2(struct folio *folio)
1584 {
1585 	VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1586 	clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
1587 	folio_wake_bit(folio, PG_private_2);
1588 	folio_put(folio);
1589 }
1590 EXPORT_SYMBOL(folio_end_private_2);
1591 
1592 /**
1593  * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1594  * @folio: The folio to wait on.
1595  *
1596  * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio.
1597  */
1598 void folio_wait_private_2(struct folio *folio)
1599 {
1600 	while (folio_test_private_2(folio))
1601 		folio_wait_bit(folio, PG_private_2);
1602 }
1603 EXPORT_SYMBOL(folio_wait_private_2);
1604 
1605 /**
1606  * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1607  * @folio: The folio to wait on.
1608  *
1609  * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio or until a
1610  * fatal signal is received by the calling task.
1611  *
1612  * Return:
1613  * - 0 if successful.
1614  * - -EINTR if a fatal signal was encountered.
1615  */
1616 int folio_wait_private_2_killable(struct folio *folio)
1617 {
1618 	int ret = 0;
1619 
1620 	while (folio_test_private_2(folio)) {
1621 		ret = folio_wait_bit_killable(folio, PG_private_2);
1622 		if (ret < 0)
1623 			break;
1624 	}
1625 
1626 	return ret;
1627 }
1628 EXPORT_SYMBOL(folio_wait_private_2_killable);
1629 
1630 /**
1631  * folio_end_writeback - End writeback against a folio.
1632  * @folio: The folio.
1633  */
1634 void folio_end_writeback(struct folio *folio)
1635 {
1636 	/*
1637 	 * folio_test_clear_reclaim() could be used here but it is an
1638 	 * atomic operation and overkill in this particular case. Failing
1639 	 * to shuffle a folio marked for immediate reclaim is too mild
1640 	 * a gain to justify taking an atomic operation penalty at the
1641 	 * end of every folio writeback.
1642 	 */
1643 	if (folio_test_reclaim(folio)) {
1644 		folio_clear_reclaim(folio);
1645 		folio_rotate_reclaimable(folio);
1646 	}
1647 
1648 	/*
1649 	 * Writeback does not hold a folio reference of its own, relying
1650 	 * on truncation to wait for the clearing of PG_writeback.
1651 	 * But here we must make sure that the folio is not freed and
1652 	 * reused before the folio_wake().
1653 	 */
1654 	folio_get(folio);
1655 	if (!__folio_end_writeback(folio))
1656 		BUG();
1657 
1658 	smp_mb__after_atomic();
1659 	folio_wake(folio, PG_writeback);
1660 	acct_reclaim_writeback(folio);
1661 	folio_put(folio);
1662 }
1663 EXPORT_SYMBOL(folio_end_writeback);
1664 
1665 /*
1666  * After completing I/O on a page, call this routine to update the page
1667  * flags appropriately
1668  */
1669 void page_endio(struct page *page, bool is_write, int err)
1670 {
1671 	if (!is_write) {
1672 		if (!err) {
1673 			SetPageUptodate(page);
1674 		} else {
1675 			ClearPageUptodate(page);
1676 			SetPageError(page);
1677 		}
1678 		unlock_page(page);
1679 	} else {
1680 		if (err) {
1681 			struct address_space *mapping;
1682 
1683 			SetPageError(page);
1684 			mapping = page_mapping(page);
1685 			if (mapping)
1686 				mapping_set_error(mapping, err);
1687 		}
1688 		end_page_writeback(page);
1689 	}
1690 }
1691 EXPORT_SYMBOL_GPL(page_endio);
1692 
1693 /**
1694  * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1695  * @folio: The folio to lock
1696  */
1697 void __folio_lock(struct folio *folio)
1698 {
1699 	folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
1700 				EXCLUSIVE);
1701 }
1702 EXPORT_SYMBOL(__folio_lock);
1703 
1704 int __folio_lock_killable(struct folio *folio)
1705 {
1706 	return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
1707 					EXCLUSIVE);
1708 }
1709 EXPORT_SYMBOL_GPL(__folio_lock_killable);
1710 
1711 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
1712 {
1713 	struct wait_queue_head *q = folio_waitqueue(folio);
1714 	int ret = 0;
1715 
1716 	wait->folio = folio;
1717 	wait->bit_nr = PG_locked;
1718 
1719 	spin_lock_irq(&q->lock);
1720 	__add_wait_queue_entry_tail(q, &wait->wait);
1721 	folio_set_waiters(folio);
1722 	ret = !folio_trylock(folio);
1723 	/*
1724 	 * If we were successful now, we know we're still on the
1725 	 * waitqueue as we're still under the lock. This means it's
1726 	 * safe to remove and return success, we know the callback
1727 	 * isn't going to trigger.
1728 	 */
1729 	if (!ret)
1730 		__remove_wait_queue(q, &wait->wait);
1731 	else
1732 		ret = -EIOCBQUEUED;
1733 	spin_unlock_irq(&q->lock);
1734 	return ret;
1735 }
1736 
1737 /*
1738  * Return values:
1739  * true - folio is locked; mmap_lock is still held.
1740  * false - folio is not locked.
1741  *     mmap_lock has been released (mmap_read_unlock(), unless flags had both
1742  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1743  *     which case mmap_lock is still held.
1744  *
1745  * If neither ALLOW_RETRY nor KILLABLE are set, will always return true
1746  * with the folio locked and the mmap_lock unperturbed.
1747  */
1748 bool __folio_lock_or_retry(struct folio *folio, struct mm_struct *mm,
1749 			 unsigned int flags)
1750 {
1751 	if (fault_flag_allow_retry_first(flags)) {
1752 		/*
1753 		 * CAUTION! In this case, mmap_lock is not released
1754 		 * even though return 0.
1755 		 */
1756 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1757 			return false;
1758 
1759 		mmap_read_unlock(mm);
1760 		if (flags & FAULT_FLAG_KILLABLE)
1761 			folio_wait_locked_killable(folio);
1762 		else
1763 			folio_wait_locked(folio);
1764 		return false;
1765 	}
1766 	if (flags & FAULT_FLAG_KILLABLE) {
1767 		bool ret;
1768 
1769 		ret = __folio_lock_killable(folio);
1770 		if (ret) {
1771 			mmap_read_unlock(mm);
1772 			return false;
1773 		}
1774 	} else {
1775 		__folio_lock(folio);
1776 	}
1777 
1778 	return true;
1779 }
1780 
1781 /**
1782  * page_cache_next_miss() - Find the next gap in the page cache.
1783  * @mapping: Mapping.
1784  * @index: Index.
1785  * @max_scan: Maximum range to search.
1786  *
1787  * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1788  * gap with the lowest index.
1789  *
1790  * This function may be called under the rcu_read_lock.  However, this will
1791  * not atomically search a snapshot of the cache at a single point in time.
1792  * For example, if a gap is created at index 5, then subsequently a gap is
1793  * created at index 10, page_cache_next_miss covering both indices may
1794  * return 10 if called under the rcu_read_lock.
1795  *
1796  * Return: The index of the gap if found, otherwise an index outside the
1797  * range specified (in which case 'return - index >= max_scan' will be true).
1798  * In the rare case of index wrap-around, 0 will be returned.
1799  */
1800 pgoff_t page_cache_next_miss(struct address_space *mapping,
1801 			     pgoff_t index, unsigned long max_scan)
1802 {
1803 	XA_STATE(xas, &mapping->i_pages, index);
1804 
1805 	while (max_scan--) {
1806 		void *entry = xas_next(&xas);
1807 		if (!entry || xa_is_value(entry))
1808 			break;
1809 		if (xas.xa_index == 0)
1810 			break;
1811 	}
1812 
1813 	return xas.xa_index;
1814 }
1815 EXPORT_SYMBOL(page_cache_next_miss);
1816 
1817 /**
1818  * page_cache_prev_miss() - Find the previous gap in the page cache.
1819  * @mapping: Mapping.
1820  * @index: Index.
1821  * @max_scan: Maximum range to search.
1822  *
1823  * Search the range [max(index - max_scan + 1, 0), index] for the
1824  * gap with the highest index.
1825  *
1826  * This function may be called under the rcu_read_lock.  However, this will
1827  * not atomically search a snapshot of the cache at a single point in time.
1828  * For example, if a gap is created at index 10, then subsequently a gap is
1829  * created at index 5, page_cache_prev_miss() covering both indices may
1830  * return 5 if called under the rcu_read_lock.
1831  *
1832  * Return: The index of the gap if found, otherwise an index outside the
1833  * range specified (in which case 'index - return >= max_scan' will be true).
1834  * In the rare case of wrap-around, ULONG_MAX will be returned.
1835  */
1836 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1837 			     pgoff_t index, unsigned long max_scan)
1838 {
1839 	XA_STATE(xas, &mapping->i_pages, index);
1840 
1841 	while (max_scan--) {
1842 		void *entry = xas_prev(&xas);
1843 		if (!entry || xa_is_value(entry))
1844 			break;
1845 		if (xas.xa_index == ULONG_MAX)
1846 			break;
1847 	}
1848 
1849 	return xas.xa_index;
1850 }
1851 EXPORT_SYMBOL(page_cache_prev_miss);
1852 
1853 /*
1854  * Lockless page cache protocol:
1855  * On the lookup side:
1856  * 1. Load the folio from i_pages
1857  * 2. Increment the refcount if it's not zero
1858  * 3. If the folio is not found by xas_reload(), put the refcount and retry
1859  *
1860  * On the removal side:
1861  * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1862  * B. Remove the page from i_pages
1863  * C. Return the page to the page allocator
1864  *
1865  * This means that any page may have its reference count temporarily
1866  * increased by a speculative page cache (or fast GUP) lookup as it can
1867  * be allocated by another user before the RCU grace period expires.
1868  * Because the refcount temporarily acquired here may end up being the
1869  * last refcount on the page, any page allocation must be freeable by
1870  * folio_put().
1871  */
1872 
1873 /*
1874  * mapping_get_entry - Get a page cache entry.
1875  * @mapping: the address_space to search
1876  * @index: The page cache index.
1877  *
1878  * Looks up the page cache entry at @mapping & @index.  If it is a folio,
1879  * it is returned with an increased refcount.  If it is a shadow entry
1880  * of a previously evicted folio, or a swap entry from shmem/tmpfs,
1881  * it is returned without further action.
1882  *
1883  * Return: The folio, swap or shadow entry, %NULL if nothing is found.
1884  */
1885 static void *mapping_get_entry(struct address_space *mapping, pgoff_t index)
1886 {
1887 	XA_STATE(xas, &mapping->i_pages, index);
1888 	struct folio *folio;
1889 
1890 	rcu_read_lock();
1891 repeat:
1892 	xas_reset(&xas);
1893 	folio = xas_load(&xas);
1894 	if (xas_retry(&xas, folio))
1895 		goto repeat;
1896 	/*
1897 	 * A shadow entry of a recently evicted page, or a swap entry from
1898 	 * shmem/tmpfs.  Return it without attempting to raise page count.
1899 	 */
1900 	if (!folio || xa_is_value(folio))
1901 		goto out;
1902 
1903 	if (!folio_try_get_rcu(folio))
1904 		goto repeat;
1905 
1906 	if (unlikely(folio != xas_reload(&xas))) {
1907 		folio_put(folio);
1908 		goto repeat;
1909 	}
1910 out:
1911 	rcu_read_unlock();
1912 
1913 	return folio;
1914 }
1915 
1916 /**
1917  * __filemap_get_folio - Find and get a reference to a folio.
1918  * @mapping: The address_space to search.
1919  * @index: The page index.
1920  * @fgp_flags: %FGP flags modify how the folio is returned.
1921  * @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
1922  *
1923  * Looks up the page cache entry at @mapping & @index.
1924  *
1925  * @fgp_flags can be zero or more of these flags:
1926  *
1927  * * %FGP_ACCESSED - The folio will be marked accessed.
1928  * * %FGP_LOCK - The folio is returned locked.
1929  * * %FGP_ENTRY - If there is a shadow / swap / DAX entry, return it
1930  *   instead of allocating a new folio to replace it.
1931  * * %FGP_CREAT - If no page is present then a new page is allocated using
1932  *   @gfp and added to the page cache and the VM's LRU list.
1933  *   The page is returned locked and with an increased refcount.
1934  * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1935  *   page is already in cache.  If the page was allocated, unlock it before
1936  *   returning so the caller can do the same dance.
1937  * * %FGP_WRITE - The page will be written to by the caller.
1938  * * %FGP_NOFS - __GFP_FS will get cleared in gfp.
1939  * * %FGP_NOWAIT - Don't get blocked by page lock.
1940  * * %FGP_STABLE - Wait for the folio to be stable (finished writeback)
1941  *
1942  * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1943  * if the %GFP flags specified for %FGP_CREAT are atomic.
1944  *
1945  * If there is a page cache page, it is returned with an increased refcount.
1946  *
1947  * Return: The found folio or %NULL otherwise.
1948  */
1949 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
1950 		int fgp_flags, gfp_t gfp)
1951 {
1952 	struct folio *folio;
1953 
1954 repeat:
1955 	folio = mapping_get_entry(mapping, index);
1956 	if (xa_is_value(folio)) {
1957 		if (fgp_flags & FGP_ENTRY)
1958 			return folio;
1959 		folio = NULL;
1960 	}
1961 	if (!folio)
1962 		goto no_page;
1963 
1964 	if (fgp_flags & FGP_LOCK) {
1965 		if (fgp_flags & FGP_NOWAIT) {
1966 			if (!folio_trylock(folio)) {
1967 				folio_put(folio);
1968 				return NULL;
1969 			}
1970 		} else {
1971 			folio_lock(folio);
1972 		}
1973 
1974 		/* Has the page been truncated? */
1975 		if (unlikely(folio->mapping != mapping)) {
1976 			folio_unlock(folio);
1977 			folio_put(folio);
1978 			goto repeat;
1979 		}
1980 		VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
1981 	}
1982 
1983 	if (fgp_flags & FGP_ACCESSED)
1984 		folio_mark_accessed(folio);
1985 	else if (fgp_flags & FGP_WRITE) {
1986 		/* Clear idle flag for buffer write */
1987 		if (folio_test_idle(folio))
1988 			folio_clear_idle(folio);
1989 	}
1990 
1991 	if (fgp_flags & FGP_STABLE)
1992 		folio_wait_stable(folio);
1993 no_page:
1994 	if (!folio && (fgp_flags & FGP_CREAT)) {
1995 		int err;
1996 		if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1997 			gfp |= __GFP_WRITE;
1998 		if (fgp_flags & FGP_NOFS)
1999 			gfp &= ~__GFP_FS;
2000 
2001 		folio = filemap_alloc_folio(gfp, 0);
2002 		if (!folio)
2003 			return NULL;
2004 
2005 		if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
2006 			fgp_flags |= FGP_LOCK;
2007 
2008 		/* Init accessed so avoid atomic mark_page_accessed later */
2009 		if (fgp_flags & FGP_ACCESSED)
2010 			__folio_set_referenced(folio);
2011 
2012 		err = filemap_add_folio(mapping, folio, index, gfp);
2013 		if (unlikely(err)) {
2014 			folio_put(folio);
2015 			folio = NULL;
2016 			if (err == -EEXIST)
2017 				goto repeat;
2018 		}
2019 
2020 		/*
2021 		 * filemap_add_folio locks the page, and for mmap
2022 		 * we expect an unlocked page.
2023 		 */
2024 		if (folio && (fgp_flags & FGP_FOR_MMAP))
2025 			folio_unlock(folio);
2026 	}
2027 
2028 	return folio;
2029 }
2030 EXPORT_SYMBOL(__filemap_get_folio);
2031 
2032 static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max,
2033 		xa_mark_t mark)
2034 {
2035 	struct folio *folio;
2036 
2037 retry:
2038 	if (mark == XA_PRESENT)
2039 		folio = xas_find(xas, max);
2040 	else
2041 		folio = xas_find_marked(xas, max, mark);
2042 
2043 	if (xas_retry(xas, folio))
2044 		goto retry;
2045 	/*
2046 	 * A shadow entry of a recently evicted page, a swap
2047 	 * entry from shmem/tmpfs or a DAX entry.  Return it
2048 	 * without attempting to raise page count.
2049 	 */
2050 	if (!folio || xa_is_value(folio))
2051 		return folio;
2052 
2053 	if (!folio_try_get_rcu(folio))
2054 		goto reset;
2055 
2056 	if (unlikely(folio != xas_reload(xas))) {
2057 		folio_put(folio);
2058 		goto reset;
2059 	}
2060 
2061 	return folio;
2062 reset:
2063 	xas_reset(xas);
2064 	goto retry;
2065 }
2066 
2067 /**
2068  * find_get_entries - gang pagecache lookup
2069  * @mapping:	The address_space to search
2070  * @start:	The starting page cache index
2071  * @end:	The final page index (inclusive).
2072  * @fbatch:	Where the resulting entries are placed.
2073  * @indices:	The cache indices corresponding to the entries in @entries
2074  *
2075  * find_get_entries() will search for and return a batch of entries in
2076  * the mapping.  The entries are placed in @fbatch.  find_get_entries()
2077  * takes a reference on any actual folios it returns.
2078  *
2079  * The entries have ascending indexes.  The indices may not be consecutive
2080  * due to not-present entries or large folios.
2081  *
2082  * Any shadow entries of evicted folios, or swap entries from
2083  * shmem/tmpfs, are included in the returned array.
2084  *
2085  * Return: The number of entries which were found.
2086  */
2087 unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
2088 		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2089 {
2090 	XA_STATE(xas, &mapping->i_pages, start);
2091 	struct folio *folio;
2092 
2093 	rcu_read_lock();
2094 	while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2095 		indices[fbatch->nr] = xas.xa_index;
2096 		if (!folio_batch_add(fbatch, folio))
2097 			break;
2098 	}
2099 	rcu_read_unlock();
2100 
2101 	return folio_batch_count(fbatch);
2102 }
2103 
2104 /**
2105  * find_lock_entries - Find a batch of pagecache entries.
2106  * @mapping:	The address_space to search.
2107  * @start:	The starting page cache index.
2108  * @end:	The final page index (inclusive).
2109  * @fbatch:	Where the resulting entries are placed.
2110  * @indices:	The cache indices of the entries in @fbatch.
2111  *
2112  * find_lock_entries() will return a batch of entries from @mapping.
2113  * Swap, shadow and DAX entries are included.  Folios are returned
2114  * locked and with an incremented refcount.  Folios which are locked
2115  * by somebody else or under writeback are skipped.  Folios which are
2116  * partially outside the range are not returned.
2117  *
2118  * The entries have ascending indexes.  The indices may not be consecutive
2119  * due to not-present entries, large folios, folios which could not be
2120  * locked or folios under writeback.
2121  *
2122  * Return: The number of entries which were found.
2123  */
2124 unsigned find_lock_entries(struct address_space *mapping, pgoff_t start,
2125 		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2126 {
2127 	XA_STATE(xas, &mapping->i_pages, start);
2128 	struct folio *folio;
2129 
2130 	rcu_read_lock();
2131 	while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2132 		if (!xa_is_value(folio)) {
2133 			if (folio->index < start)
2134 				goto put;
2135 			if (folio->index + folio_nr_pages(folio) - 1 > end)
2136 				goto put;
2137 			if (!folio_trylock(folio))
2138 				goto put;
2139 			if (folio->mapping != mapping ||
2140 			    folio_test_writeback(folio))
2141 				goto unlock;
2142 			VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index),
2143 					folio);
2144 		}
2145 		indices[fbatch->nr] = xas.xa_index;
2146 		if (!folio_batch_add(fbatch, folio))
2147 			break;
2148 		continue;
2149 unlock:
2150 		folio_unlock(folio);
2151 put:
2152 		folio_put(folio);
2153 	}
2154 	rcu_read_unlock();
2155 
2156 	return folio_batch_count(fbatch);
2157 }
2158 
2159 static inline
2160 bool folio_more_pages(struct folio *folio, pgoff_t index, pgoff_t max)
2161 {
2162 	if (!folio_test_large(folio) || folio_test_hugetlb(folio))
2163 		return false;
2164 	if (index >= max)
2165 		return false;
2166 	return index < folio->index + folio_nr_pages(folio) - 1;
2167 }
2168 
2169 /**
2170  * find_get_pages_range - gang pagecache lookup
2171  * @mapping:	The address_space to search
2172  * @start:	The starting page index
2173  * @end:	The final page index (inclusive)
2174  * @nr_pages:	The maximum number of pages
2175  * @pages:	Where the resulting pages are placed
2176  *
2177  * find_get_pages_range() will search for and return a group of up to @nr_pages
2178  * pages in the mapping starting at index @start and up to index @end
2179  * (inclusive).  The pages are placed at @pages.  find_get_pages_range() takes
2180  * a reference against the returned pages.
2181  *
2182  * The search returns a group of mapping-contiguous pages with ascending
2183  * indexes.  There may be holes in the indices due to not-present pages.
2184  * We also update @start to index the next page for the traversal.
2185  *
2186  * Return: the number of pages which were found. If this number is
2187  * smaller than @nr_pages, the end of specified range has been
2188  * reached.
2189  */
2190 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
2191 			      pgoff_t end, unsigned int nr_pages,
2192 			      struct page **pages)
2193 {
2194 	XA_STATE(xas, &mapping->i_pages, *start);
2195 	struct folio *folio;
2196 	unsigned ret = 0;
2197 
2198 	if (unlikely(!nr_pages))
2199 		return 0;
2200 
2201 	rcu_read_lock();
2202 	while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2203 		/* Skip over shadow, swap and DAX entries */
2204 		if (xa_is_value(folio))
2205 			continue;
2206 
2207 again:
2208 		pages[ret] = folio_file_page(folio, xas.xa_index);
2209 		if (++ret == nr_pages) {
2210 			*start = xas.xa_index + 1;
2211 			goto out;
2212 		}
2213 		if (folio_more_pages(folio, xas.xa_index, end)) {
2214 			xas.xa_index++;
2215 			folio_ref_inc(folio);
2216 			goto again;
2217 		}
2218 	}
2219 
2220 	/*
2221 	 * We come here when there is no page beyond @end. We take care to not
2222 	 * overflow the index @start as it confuses some of the callers. This
2223 	 * breaks the iteration when there is a page at index -1 but that is
2224 	 * already broken anyway.
2225 	 */
2226 	if (end == (pgoff_t)-1)
2227 		*start = (pgoff_t)-1;
2228 	else
2229 		*start = end + 1;
2230 out:
2231 	rcu_read_unlock();
2232 
2233 	return ret;
2234 }
2235 
2236 /**
2237  * find_get_pages_contig - gang contiguous pagecache lookup
2238  * @mapping:	The address_space to search
2239  * @index:	The starting page index
2240  * @nr_pages:	The maximum number of pages
2241  * @pages:	Where the resulting pages are placed
2242  *
2243  * find_get_pages_contig() works exactly like find_get_pages_range(),
2244  * except that the returned number of pages are guaranteed to be
2245  * contiguous.
2246  *
2247  * Return: the number of pages which were found.
2248  */
2249 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
2250 			       unsigned int nr_pages, struct page **pages)
2251 {
2252 	XA_STATE(xas, &mapping->i_pages, index);
2253 	struct folio *folio;
2254 	unsigned int ret = 0;
2255 
2256 	if (unlikely(!nr_pages))
2257 		return 0;
2258 
2259 	rcu_read_lock();
2260 	for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2261 		if (xas_retry(&xas, folio))
2262 			continue;
2263 		/*
2264 		 * If the entry has been swapped out, we can stop looking.
2265 		 * No current caller is looking for DAX entries.
2266 		 */
2267 		if (xa_is_value(folio))
2268 			break;
2269 
2270 		if (!folio_try_get_rcu(folio))
2271 			goto retry;
2272 
2273 		if (unlikely(folio != xas_reload(&xas)))
2274 			goto put_page;
2275 
2276 again:
2277 		pages[ret] = folio_file_page(folio, xas.xa_index);
2278 		if (++ret == nr_pages)
2279 			break;
2280 		if (folio_more_pages(folio, xas.xa_index, ULONG_MAX)) {
2281 			xas.xa_index++;
2282 			folio_ref_inc(folio);
2283 			goto again;
2284 		}
2285 		continue;
2286 put_page:
2287 		folio_put(folio);
2288 retry:
2289 		xas_reset(&xas);
2290 	}
2291 	rcu_read_unlock();
2292 	return ret;
2293 }
2294 EXPORT_SYMBOL(find_get_pages_contig);
2295 
2296 /**
2297  * find_get_pages_range_tag - Find and return head pages matching @tag.
2298  * @mapping:	the address_space to search
2299  * @index:	the starting page index
2300  * @end:	The final page index (inclusive)
2301  * @tag:	the tag index
2302  * @nr_pages:	the maximum number of pages
2303  * @pages:	where the resulting pages are placed
2304  *
2305  * Like find_get_pages_range(), except we only return head pages which are
2306  * tagged with @tag.  @index is updated to the index immediately after the
2307  * last page we return, ready for the next iteration.
2308  *
2309  * Return: the number of pages which were found.
2310  */
2311 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
2312 			pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
2313 			struct page **pages)
2314 {
2315 	XA_STATE(xas, &mapping->i_pages, *index);
2316 	struct folio *folio;
2317 	unsigned ret = 0;
2318 
2319 	if (unlikely(!nr_pages))
2320 		return 0;
2321 
2322 	rcu_read_lock();
2323 	while ((folio = find_get_entry(&xas, end, tag))) {
2324 		/*
2325 		 * Shadow entries should never be tagged, but this iteration
2326 		 * is lockless so there is a window for page reclaim to evict
2327 		 * a page we saw tagged.  Skip over it.
2328 		 */
2329 		if (xa_is_value(folio))
2330 			continue;
2331 
2332 		pages[ret] = &folio->page;
2333 		if (++ret == nr_pages) {
2334 			*index = folio->index + folio_nr_pages(folio);
2335 			goto out;
2336 		}
2337 	}
2338 
2339 	/*
2340 	 * We come here when we got to @end. We take care to not overflow the
2341 	 * index @index as it confuses some of the callers. This breaks the
2342 	 * iteration when there is a page at index -1 but that is already
2343 	 * broken anyway.
2344 	 */
2345 	if (end == (pgoff_t)-1)
2346 		*index = (pgoff_t)-1;
2347 	else
2348 		*index = end + 1;
2349 out:
2350 	rcu_read_unlock();
2351 
2352 	return ret;
2353 }
2354 EXPORT_SYMBOL(find_get_pages_range_tag);
2355 
2356 /*
2357  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2358  * a _large_ part of the i/o request. Imagine the worst scenario:
2359  *
2360  *      ---R__________________________________________B__________
2361  *         ^ reading here                             ^ bad block(assume 4k)
2362  *
2363  * read(R) => miss => readahead(R...B) => media error => frustrating retries
2364  * => failing the whole request => read(R) => read(R+1) =>
2365  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2366  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2367  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2368  *
2369  * It is going insane. Fix it by quickly scaling down the readahead size.
2370  */
2371 static void shrink_readahead_size_eio(struct file_ra_state *ra)
2372 {
2373 	ra->ra_pages /= 4;
2374 }
2375 
2376 /*
2377  * filemap_get_read_batch - Get a batch of folios for read
2378  *
2379  * Get a batch of folios which represent a contiguous range of bytes in
2380  * the file.  No exceptional entries will be returned.  If @index is in
2381  * the middle of a folio, the entire folio will be returned.  The last
2382  * folio in the batch may have the readahead flag set or the uptodate flag
2383  * clear so that the caller can take the appropriate action.
2384  */
2385 static void filemap_get_read_batch(struct address_space *mapping,
2386 		pgoff_t index, pgoff_t max, struct folio_batch *fbatch)
2387 {
2388 	XA_STATE(xas, &mapping->i_pages, index);
2389 	struct folio *folio;
2390 
2391 	rcu_read_lock();
2392 	for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2393 		if (xas_retry(&xas, folio))
2394 			continue;
2395 		if (xas.xa_index > max || xa_is_value(folio))
2396 			break;
2397 		if (!folio_try_get_rcu(folio))
2398 			goto retry;
2399 
2400 		if (unlikely(folio != xas_reload(&xas)))
2401 			goto put_folio;
2402 
2403 		if (!folio_batch_add(fbatch, folio))
2404 			break;
2405 		if (!folio_test_uptodate(folio))
2406 			break;
2407 		if (folio_test_readahead(folio))
2408 			break;
2409 		xas_advance(&xas, folio->index + folio_nr_pages(folio) - 1);
2410 		continue;
2411 put_folio:
2412 		folio_put(folio);
2413 retry:
2414 		xas_reset(&xas);
2415 	}
2416 	rcu_read_unlock();
2417 }
2418 
2419 static int filemap_read_folio(struct file *file, struct address_space *mapping,
2420 		struct folio *folio)
2421 {
2422 	int error;
2423 
2424 	/*
2425 	 * A previous I/O error may have been due to temporary failures,
2426 	 * eg. multipath errors.  PG_error will be set again if readpage
2427 	 * fails.
2428 	 */
2429 	folio_clear_error(folio);
2430 	/* Start the actual read. The read will unlock the page. */
2431 	error = mapping->a_ops->readpage(file, &folio->page);
2432 	if (error)
2433 		return error;
2434 
2435 	error = folio_wait_locked_killable(folio);
2436 	if (error)
2437 		return error;
2438 	if (folio_test_uptodate(folio))
2439 		return 0;
2440 	shrink_readahead_size_eio(&file->f_ra);
2441 	return -EIO;
2442 }
2443 
2444 static bool filemap_range_uptodate(struct address_space *mapping,
2445 		loff_t pos, struct iov_iter *iter, struct folio *folio)
2446 {
2447 	int count;
2448 
2449 	if (folio_test_uptodate(folio))
2450 		return true;
2451 	/* pipes can't handle partially uptodate pages */
2452 	if (iov_iter_is_pipe(iter))
2453 		return false;
2454 	if (!mapping->a_ops->is_partially_uptodate)
2455 		return false;
2456 	if (mapping->host->i_blkbits >= folio_shift(folio))
2457 		return false;
2458 
2459 	count = iter->count;
2460 	if (folio_pos(folio) > pos) {
2461 		count -= folio_pos(folio) - pos;
2462 		pos = 0;
2463 	} else {
2464 		pos -= folio_pos(folio);
2465 	}
2466 
2467 	return mapping->a_ops->is_partially_uptodate(folio, pos, count);
2468 }
2469 
2470 static int filemap_update_page(struct kiocb *iocb,
2471 		struct address_space *mapping, struct iov_iter *iter,
2472 		struct folio *folio)
2473 {
2474 	int error;
2475 
2476 	if (iocb->ki_flags & IOCB_NOWAIT) {
2477 		if (!filemap_invalidate_trylock_shared(mapping))
2478 			return -EAGAIN;
2479 	} else {
2480 		filemap_invalidate_lock_shared(mapping);
2481 	}
2482 
2483 	if (!folio_trylock(folio)) {
2484 		error = -EAGAIN;
2485 		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2486 			goto unlock_mapping;
2487 		if (!(iocb->ki_flags & IOCB_WAITQ)) {
2488 			filemap_invalidate_unlock_shared(mapping);
2489 			/*
2490 			 * This is where we usually end up waiting for a
2491 			 * previously submitted readahead to finish.
2492 			 */
2493 			folio_put_wait_locked(folio, TASK_KILLABLE);
2494 			return AOP_TRUNCATED_PAGE;
2495 		}
2496 		error = __folio_lock_async(folio, iocb->ki_waitq);
2497 		if (error)
2498 			goto unlock_mapping;
2499 	}
2500 
2501 	error = AOP_TRUNCATED_PAGE;
2502 	if (!folio->mapping)
2503 		goto unlock;
2504 
2505 	error = 0;
2506 	if (filemap_range_uptodate(mapping, iocb->ki_pos, iter, folio))
2507 		goto unlock;
2508 
2509 	error = -EAGAIN;
2510 	if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2511 		goto unlock;
2512 
2513 	error = filemap_read_folio(iocb->ki_filp, mapping, folio);
2514 	goto unlock_mapping;
2515 unlock:
2516 	folio_unlock(folio);
2517 unlock_mapping:
2518 	filemap_invalidate_unlock_shared(mapping);
2519 	if (error == AOP_TRUNCATED_PAGE)
2520 		folio_put(folio);
2521 	return error;
2522 }
2523 
2524 static int filemap_create_folio(struct file *file,
2525 		struct address_space *mapping, pgoff_t index,
2526 		struct folio_batch *fbatch)
2527 {
2528 	struct folio *folio;
2529 	int error;
2530 
2531 	folio = filemap_alloc_folio(mapping_gfp_mask(mapping), 0);
2532 	if (!folio)
2533 		return -ENOMEM;
2534 
2535 	/*
2536 	 * Protect against truncate / hole punch. Grabbing invalidate_lock
2537 	 * here assures we cannot instantiate and bring uptodate new
2538 	 * pagecache folios after evicting page cache during truncate
2539 	 * and before actually freeing blocks.	Note that we could
2540 	 * release invalidate_lock after inserting the folio into
2541 	 * the page cache as the locked folio would then be enough to
2542 	 * synchronize with hole punching. But there are code paths
2543 	 * such as filemap_update_page() filling in partially uptodate
2544 	 * pages or ->readpages() that need to hold invalidate_lock
2545 	 * while mapping blocks for IO so let's hold the lock here as
2546 	 * well to keep locking rules simple.
2547 	 */
2548 	filemap_invalidate_lock_shared(mapping);
2549 	error = filemap_add_folio(mapping, folio, index,
2550 			mapping_gfp_constraint(mapping, GFP_KERNEL));
2551 	if (error == -EEXIST)
2552 		error = AOP_TRUNCATED_PAGE;
2553 	if (error)
2554 		goto error;
2555 
2556 	error = filemap_read_folio(file, mapping, folio);
2557 	if (error)
2558 		goto error;
2559 
2560 	filemap_invalidate_unlock_shared(mapping);
2561 	folio_batch_add(fbatch, folio);
2562 	return 0;
2563 error:
2564 	filemap_invalidate_unlock_shared(mapping);
2565 	folio_put(folio);
2566 	return error;
2567 }
2568 
2569 static int filemap_readahead(struct kiocb *iocb, struct file *file,
2570 		struct address_space *mapping, struct folio *folio,
2571 		pgoff_t last_index)
2572 {
2573 	DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index);
2574 
2575 	if (iocb->ki_flags & IOCB_NOIO)
2576 		return -EAGAIN;
2577 	page_cache_async_ra(&ractl, folio, last_index - folio->index);
2578 	return 0;
2579 }
2580 
2581 static int filemap_get_pages(struct kiocb *iocb, struct iov_iter *iter,
2582 		struct folio_batch *fbatch)
2583 {
2584 	struct file *filp = iocb->ki_filp;
2585 	struct address_space *mapping = filp->f_mapping;
2586 	struct file_ra_state *ra = &filp->f_ra;
2587 	pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2588 	pgoff_t last_index;
2589 	struct folio *folio;
2590 	int err = 0;
2591 
2592 	last_index = DIV_ROUND_UP(iocb->ki_pos + iter->count, PAGE_SIZE);
2593 retry:
2594 	if (fatal_signal_pending(current))
2595 		return -EINTR;
2596 
2597 	filemap_get_read_batch(mapping, index, last_index, fbatch);
2598 	if (!folio_batch_count(fbatch)) {
2599 		if (iocb->ki_flags & IOCB_NOIO)
2600 			return -EAGAIN;
2601 		page_cache_sync_readahead(mapping, ra, filp, index,
2602 				last_index - index);
2603 		filemap_get_read_batch(mapping, index, last_index, fbatch);
2604 	}
2605 	if (!folio_batch_count(fbatch)) {
2606 		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2607 			return -EAGAIN;
2608 		err = filemap_create_folio(filp, mapping,
2609 				iocb->ki_pos >> PAGE_SHIFT, fbatch);
2610 		if (err == AOP_TRUNCATED_PAGE)
2611 			goto retry;
2612 		return err;
2613 	}
2614 
2615 	folio = fbatch->folios[folio_batch_count(fbatch) - 1];
2616 	if (folio_test_readahead(folio)) {
2617 		err = filemap_readahead(iocb, filp, mapping, folio, last_index);
2618 		if (err)
2619 			goto err;
2620 	}
2621 	if (!folio_test_uptodate(folio)) {
2622 		if ((iocb->ki_flags & IOCB_WAITQ) &&
2623 		    folio_batch_count(fbatch) > 1)
2624 			iocb->ki_flags |= IOCB_NOWAIT;
2625 		err = filemap_update_page(iocb, mapping, iter, folio);
2626 		if (err)
2627 			goto err;
2628 	}
2629 
2630 	return 0;
2631 err:
2632 	if (err < 0)
2633 		folio_put(folio);
2634 	if (likely(--fbatch->nr))
2635 		return 0;
2636 	if (err == AOP_TRUNCATED_PAGE)
2637 		goto retry;
2638 	return err;
2639 }
2640 
2641 /**
2642  * filemap_read - Read data from the page cache.
2643  * @iocb: The iocb to read.
2644  * @iter: Destination for the data.
2645  * @already_read: Number of bytes already read by the caller.
2646  *
2647  * Copies data from the page cache.  If the data is not currently present,
2648  * uses the readahead and readpage address_space operations to fetch it.
2649  *
2650  * Return: Total number of bytes copied, including those already read by
2651  * the caller.  If an error happens before any bytes are copied, returns
2652  * a negative error number.
2653  */
2654 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2655 		ssize_t already_read)
2656 {
2657 	struct file *filp = iocb->ki_filp;
2658 	struct file_ra_state *ra = &filp->f_ra;
2659 	struct address_space *mapping = filp->f_mapping;
2660 	struct inode *inode = mapping->host;
2661 	struct folio_batch fbatch;
2662 	int i, error = 0;
2663 	bool writably_mapped;
2664 	loff_t isize, end_offset;
2665 
2666 	if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2667 		return 0;
2668 	if (unlikely(!iov_iter_count(iter)))
2669 		return 0;
2670 
2671 	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2672 	folio_batch_init(&fbatch);
2673 
2674 	do {
2675 		cond_resched();
2676 
2677 		/*
2678 		 * If we've already successfully copied some data, then we
2679 		 * can no longer safely return -EIOCBQUEUED. Hence mark
2680 		 * an async read NOWAIT at that point.
2681 		 */
2682 		if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2683 			iocb->ki_flags |= IOCB_NOWAIT;
2684 
2685 		if (unlikely(iocb->ki_pos >= i_size_read(inode)))
2686 			break;
2687 
2688 		error = filemap_get_pages(iocb, iter, &fbatch);
2689 		if (error < 0)
2690 			break;
2691 
2692 		/*
2693 		 * i_size must be checked after we know the pages are Uptodate.
2694 		 *
2695 		 * Checking i_size after the check allows us to calculate
2696 		 * the correct value for "nr", which means the zero-filled
2697 		 * part of the page is not copied back to userspace (unless
2698 		 * another truncate extends the file - this is desired though).
2699 		 */
2700 		isize = i_size_read(inode);
2701 		if (unlikely(iocb->ki_pos >= isize))
2702 			goto put_folios;
2703 		end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2704 
2705 		/*
2706 		 * Once we start copying data, we don't want to be touching any
2707 		 * cachelines that might be contended:
2708 		 */
2709 		writably_mapped = mapping_writably_mapped(mapping);
2710 
2711 		/*
2712 		 * When a sequential read accesses a page several times, only
2713 		 * mark it as accessed the first time.
2714 		 */
2715 		if (iocb->ki_pos >> PAGE_SHIFT !=
2716 		    ra->prev_pos >> PAGE_SHIFT)
2717 			folio_mark_accessed(fbatch.folios[0]);
2718 
2719 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
2720 			struct folio *folio = fbatch.folios[i];
2721 			size_t fsize = folio_size(folio);
2722 			size_t offset = iocb->ki_pos & (fsize - 1);
2723 			size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2724 					     fsize - offset);
2725 			size_t copied;
2726 
2727 			if (end_offset < folio_pos(folio))
2728 				break;
2729 			if (i > 0)
2730 				folio_mark_accessed(folio);
2731 			/*
2732 			 * If users can be writing to this folio using arbitrary
2733 			 * virtual addresses, take care of potential aliasing
2734 			 * before reading the folio on the kernel side.
2735 			 */
2736 			if (writably_mapped)
2737 				flush_dcache_folio(folio);
2738 
2739 			copied = copy_folio_to_iter(folio, offset, bytes, iter);
2740 
2741 			already_read += copied;
2742 			iocb->ki_pos += copied;
2743 			ra->prev_pos = iocb->ki_pos;
2744 
2745 			if (copied < bytes) {
2746 				error = -EFAULT;
2747 				break;
2748 			}
2749 		}
2750 put_folios:
2751 		for (i = 0; i < folio_batch_count(&fbatch); i++)
2752 			folio_put(fbatch.folios[i]);
2753 		folio_batch_init(&fbatch);
2754 	} while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2755 
2756 	file_accessed(filp);
2757 
2758 	return already_read ? already_read : error;
2759 }
2760 EXPORT_SYMBOL_GPL(filemap_read);
2761 
2762 /**
2763  * generic_file_read_iter - generic filesystem read routine
2764  * @iocb:	kernel I/O control block
2765  * @iter:	destination for the data read
2766  *
2767  * This is the "read_iter()" routine for all filesystems
2768  * that can use the page cache directly.
2769  *
2770  * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2771  * be returned when no data can be read without waiting for I/O requests
2772  * to complete; it doesn't prevent readahead.
2773  *
2774  * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2775  * requests shall be made for the read or for readahead.  When no data
2776  * can be read, -EAGAIN shall be returned.  When readahead would be
2777  * triggered, a partial, possibly empty read shall be returned.
2778  *
2779  * Return:
2780  * * number of bytes copied, even for partial reads
2781  * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2782  */
2783 ssize_t
2784 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2785 {
2786 	size_t count = iov_iter_count(iter);
2787 	ssize_t retval = 0;
2788 
2789 	if (!count)
2790 		return 0; /* skip atime */
2791 
2792 	if (iocb->ki_flags & IOCB_DIRECT) {
2793 		struct file *file = iocb->ki_filp;
2794 		struct address_space *mapping = file->f_mapping;
2795 		struct inode *inode = mapping->host;
2796 
2797 		if (iocb->ki_flags & IOCB_NOWAIT) {
2798 			if (filemap_range_needs_writeback(mapping, iocb->ki_pos,
2799 						iocb->ki_pos + count - 1))
2800 				return -EAGAIN;
2801 		} else {
2802 			retval = filemap_write_and_wait_range(mapping,
2803 						iocb->ki_pos,
2804 					        iocb->ki_pos + count - 1);
2805 			if (retval < 0)
2806 				return retval;
2807 		}
2808 
2809 		file_accessed(file);
2810 
2811 		retval = mapping->a_ops->direct_IO(iocb, iter);
2812 		if (retval >= 0) {
2813 			iocb->ki_pos += retval;
2814 			count -= retval;
2815 		}
2816 		if (retval != -EIOCBQUEUED)
2817 			iov_iter_revert(iter, count - iov_iter_count(iter));
2818 
2819 		/*
2820 		 * Btrfs can have a short DIO read if we encounter
2821 		 * compressed extents, so if there was an error, or if
2822 		 * we've already read everything we wanted to, or if
2823 		 * there was a short read because we hit EOF, go ahead
2824 		 * and return.  Otherwise fallthrough to buffered io for
2825 		 * the rest of the read.  Buffered reads will not work for
2826 		 * DAX files, so don't bother trying.
2827 		 */
2828 		if (retval < 0 || !count || IS_DAX(inode))
2829 			return retval;
2830 		if (iocb->ki_pos >= i_size_read(inode))
2831 			return retval;
2832 	}
2833 
2834 	return filemap_read(iocb, iter, retval);
2835 }
2836 EXPORT_SYMBOL(generic_file_read_iter);
2837 
2838 static inline loff_t folio_seek_hole_data(struct xa_state *xas,
2839 		struct address_space *mapping, struct folio *folio,
2840 		loff_t start, loff_t end, bool seek_data)
2841 {
2842 	const struct address_space_operations *ops = mapping->a_ops;
2843 	size_t offset, bsz = i_blocksize(mapping->host);
2844 
2845 	if (xa_is_value(folio) || folio_test_uptodate(folio))
2846 		return seek_data ? start : end;
2847 	if (!ops->is_partially_uptodate)
2848 		return seek_data ? end : start;
2849 
2850 	xas_pause(xas);
2851 	rcu_read_unlock();
2852 	folio_lock(folio);
2853 	if (unlikely(folio->mapping != mapping))
2854 		goto unlock;
2855 
2856 	offset = offset_in_folio(folio, start) & ~(bsz - 1);
2857 
2858 	do {
2859 		if (ops->is_partially_uptodate(folio, offset, bsz) ==
2860 							seek_data)
2861 			break;
2862 		start = (start + bsz) & ~(bsz - 1);
2863 		offset += bsz;
2864 	} while (offset < folio_size(folio));
2865 unlock:
2866 	folio_unlock(folio);
2867 	rcu_read_lock();
2868 	return start;
2869 }
2870 
2871 static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio)
2872 {
2873 	if (xa_is_value(folio))
2874 		return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
2875 	return folio_size(folio);
2876 }
2877 
2878 /**
2879  * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
2880  * @mapping: Address space to search.
2881  * @start: First byte to consider.
2882  * @end: Limit of search (exclusive).
2883  * @whence: Either SEEK_HOLE or SEEK_DATA.
2884  *
2885  * If the page cache knows which blocks contain holes and which blocks
2886  * contain data, your filesystem can use this function to implement
2887  * SEEK_HOLE and SEEK_DATA.  This is useful for filesystems which are
2888  * entirely memory-based such as tmpfs, and filesystems which support
2889  * unwritten extents.
2890  *
2891  * Return: The requested offset on success, or -ENXIO if @whence specifies
2892  * SEEK_DATA and there is no data after @start.  There is an implicit hole
2893  * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
2894  * and @end contain data.
2895  */
2896 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
2897 		loff_t end, int whence)
2898 {
2899 	XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
2900 	pgoff_t max = (end - 1) >> PAGE_SHIFT;
2901 	bool seek_data = (whence == SEEK_DATA);
2902 	struct folio *folio;
2903 
2904 	if (end <= start)
2905 		return -ENXIO;
2906 
2907 	rcu_read_lock();
2908 	while ((folio = find_get_entry(&xas, max, XA_PRESENT))) {
2909 		loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
2910 		size_t seek_size;
2911 
2912 		if (start < pos) {
2913 			if (!seek_data)
2914 				goto unlock;
2915 			start = pos;
2916 		}
2917 
2918 		seek_size = seek_folio_size(&xas, folio);
2919 		pos = round_up((u64)pos + 1, seek_size);
2920 		start = folio_seek_hole_data(&xas, mapping, folio, start, pos,
2921 				seek_data);
2922 		if (start < pos)
2923 			goto unlock;
2924 		if (start >= end)
2925 			break;
2926 		if (seek_size > PAGE_SIZE)
2927 			xas_set(&xas, pos >> PAGE_SHIFT);
2928 		if (!xa_is_value(folio))
2929 			folio_put(folio);
2930 	}
2931 	if (seek_data)
2932 		start = -ENXIO;
2933 unlock:
2934 	rcu_read_unlock();
2935 	if (folio && !xa_is_value(folio))
2936 		folio_put(folio);
2937 	if (start > end)
2938 		return end;
2939 	return start;
2940 }
2941 
2942 #ifdef CONFIG_MMU
2943 #define MMAP_LOTSAMISS  (100)
2944 /*
2945  * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
2946  * @vmf - the vm_fault for this fault.
2947  * @folio - the folio to lock.
2948  * @fpin - the pointer to the file we may pin (or is already pinned).
2949  *
2950  * This works similar to lock_folio_or_retry in that it can drop the
2951  * mmap_lock.  It differs in that it actually returns the folio locked
2952  * if it returns 1 and 0 if it couldn't lock the folio.  If we did have
2953  * to drop the mmap_lock then fpin will point to the pinned file and
2954  * needs to be fput()'ed at a later point.
2955  */
2956 static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio,
2957 				     struct file **fpin)
2958 {
2959 	if (folio_trylock(folio))
2960 		return 1;
2961 
2962 	/*
2963 	 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2964 	 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
2965 	 * is supposed to work. We have way too many special cases..
2966 	 */
2967 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2968 		return 0;
2969 
2970 	*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2971 	if (vmf->flags & FAULT_FLAG_KILLABLE) {
2972 		if (__folio_lock_killable(folio)) {
2973 			/*
2974 			 * We didn't have the right flags to drop the mmap_lock,
2975 			 * but all fault_handlers only check for fatal signals
2976 			 * if we return VM_FAULT_RETRY, so we need to drop the
2977 			 * mmap_lock here and return 0 if we don't have a fpin.
2978 			 */
2979 			if (*fpin == NULL)
2980 				mmap_read_unlock(vmf->vma->vm_mm);
2981 			return 0;
2982 		}
2983 	} else
2984 		__folio_lock(folio);
2985 
2986 	return 1;
2987 }
2988 
2989 /*
2990  * Synchronous readahead happens when we don't even find a page in the page
2991  * cache at all.  We don't want to perform IO under the mmap sem, so if we have
2992  * to drop the mmap sem we return the file that was pinned in order for us to do
2993  * that.  If we didn't pin a file then we return NULL.  The file that is
2994  * returned needs to be fput()'ed when we're done with it.
2995  */
2996 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
2997 {
2998 	struct file *file = vmf->vma->vm_file;
2999 	struct file_ra_state *ra = &file->f_ra;
3000 	struct address_space *mapping = file->f_mapping;
3001 	DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
3002 	struct file *fpin = NULL;
3003 	unsigned int mmap_miss;
3004 
3005 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3006 	/* Use the readahead code, even if readahead is disabled */
3007 	if (vmf->vma->vm_flags & VM_HUGEPAGE) {
3008 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3009 		ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1);
3010 		ra->size = HPAGE_PMD_NR;
3011 		/*
3012 		 * Fetch two PMD folios, so we get the chance to actually
3013 		 * readahead, unless we've been told not to.
3014 		 */
3015 		if (!(vmf->vma->vm_flags & VM_RAND_READ))
3016 			ra->size *= 2;
3017 		ra->async_size = HPAGE_PMD_NR;
3018 		page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER);
3019 		return fpin;
3020 	}
3021 #endif
3022 
3023 	/* If we don't want any read-ahead, don't bother */
3024 	if (vmf->vma->vm_flags & VM_RAND_READ)
3025 		return fpin;
3026 	if (!ra->ra_pages)
3027 		return fpin;
3028 
3029 	if (vmf->vma->vm_flags & VM_SEQ_READ) {
3030 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3031 		page_cache_sync_ra(&ractl, ra->ra_pages);
3032 		return fpin;
3033 	}
3034 
3035 	/* Avoid banging the cache line if not needed */
3036 	mmap_miss = READ_ONCE(ra->mmap_miss);
3037 	if (mmap_miss < MMAP_LOTSAMISS * 10)
3038 		WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
3039 
3040 	/*
3041 	 * Do we miss much more than hit in this file? If so,
3042 	 * stop bothering with read-ahead. It will only hurt.
3043 	 */
3044 	if (mmap_miss > MMAP_LOTSAMISS)
3045 		return fpin;
3046 
3047 	/*
3048 	 * mmap read-around
3049 	 */
3050 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3051 	ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
3052 	ra->size = ra->ra_pages;
3053 	ra->async_size = ra->ra_pages / 4;
3054 	ractl._index = ra->start;
3055 	page_cache_ra_order(&ractl, ra, 0);
3056 	return fpin;
3057 }
3058 
3059 /*
3060  * Asynchronous readahead happens when we find the page and PG_readahead,
3061  * so we want to possibly extend the readahead further.  We return the file that
3062  * was pinned if we have to drop the mmap_lock in order to do IO.
3063  */
3064 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
3065 					    struct folio *folio)
3066 {
3067 	struct file *file = vmf->vma->vm_file;
3068 	struct file_ra_state *ra = &file->f_ra;
3069 	DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff);
3070 	struct file *fpin = NULL;
3071 	unsigned int mmap_miss;
3072 
3073 	/* If we don't want any read-ahead, don't bother */
3074 	if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
3075 		return fpin;
3076 
3077 	mmap_miss = READ_ONCE(ra->mmap_miss);
3078 	if (mmap_miss)
3079 		WRITE_ONCE(ra->mmap_miss, --mmap_miss);
3080 
3081 	if (folio_test_readahead(folio)) {
3082 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3083 		page_cache_async_ra(&ractl, folio, ra->ra_pages);
3084 	}
3085 	return fpin;
3086 }
3087 
3088 /**
3089  * filemap_fault - read in file data for page fault handling
3090  * @vmf:	struct vm_fault containing details of the fault
3091  *
3092  * filemap_fault() is invoked via the vma operations vector for a
3093  * mapped memory region to read in file data during a page fault.
3094  *
3095  * The goto's are kind of ugly, but this streamlines the normal case of having
3096  * it in the page cache, and handles the special cases reasonably without
3097  * having a lot of duplicated code.
3098  *
3099  * vma->vm_mm->mmap_lock must be held on entry.
3100  *
3101  * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
3102  * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap().
3103  *
3104  * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
3105  * has not been released.
3106  *
3107  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
3108  *
3109  * Return: bitwise-OR of %VM_FAULT_ codes.
3110  */
3111 vm_fault_t filemap_fault(struct vm_fault *vmf)
3112 {
3113 	int error;
3114 	struct file *file = vmf->vma->vm_file;
3115 	struct file *fpin = NULL;
3116 	struct address_space *mapping = file->f_mapping;
3117 	struct inode *inode = mapping->host;
3118 	pgoff_t max_idx, index = vmf->pgoff;
3119 	struct folio *folio;
3120 	vm_fault_t ret = 0;
3121 	bool mapping_locked = false;
3122 
3123 	max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3124 	if (unlikely(index >= max_idx))
3125 		return VM_FAULT_SIGBUS;
3126 
3127 	/*
3128 	 * Do we have something in the page cache already?
3129 	 */
3130 	folio = filemap_get_folio(mapping, index);
3131 	if (likely(folio)) {
3132 		/*
3133 		 * We found the page, so try async readahead before waiting for
3134 		 * the lock.
3135 		 */
3136 		if (!(vmf->flags & FAULT_FLAG_TRIED))
3137 			fpin = do_async_mmap_readahead(vmf, folio);
3138 		if (unlikely(!folio_test_uptodate(folio))) {
3139 			filemap_invalidate_lock_shared(mapping);
3140 			mapping_locked = true;
3141 		}
3142 	} else {
3143 		/* No page in the page cache at all */
3144 		count_vm_event(PGMAJFAULT);
3145 		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
3146 		ret = VM_FAULT_MAJOR;
3147 		fpin = do_sync_mmap_readahead(vmf);
3148 retry_find:
3149 		/*
3150 		 * See comment in filemap_create_folio() why we need
3151 		 * invalidate_lock
3152 		 */
3153 		if (!mapping_locked) {
3154 			filemap_invalidate_lock_shared(mapping);
3155 			mapping_locked = true;
3156 		}
3157 		folio = __filemap_get_folio(mapping, index,
3158 					  FGP_CREAT|FGP_FOR_MMAP,
3159 					  vmf->gfp_mask);
3160 		if (!folio) {
3161 			if (fpin)
3162 				goto out_retry;
3163 			filemap_invalidate_unlock_shared(mapping);
3164 			return VM_FAULT_OOM;
3165 		}
3166 	}
3167 
3168 	if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin))
3169 		goto out_retry;
3170 
3171 	/* Did it get truncated? */
3172 	if (unlikely(folio->mapping != mapping)) {
3173 		folio_unlock(folio);
3174 		folio_put(folio);
3175 		goto retry_find;
3176 	}
3177 	VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
3178 
3179 	/*
3180 	 * We have a locked page in the page cache, now we need to check
3181 	 * that it's up-to-date. If not, it is going to be due to an error.
3182 	 */
3183 	if (unlikely(!folio_test_uptodate(folio))) {
3184 		/*
3185 		 * The page was in cache and uptodate and now it is not.
3186 		 * Strange but possible since we didn't hold the page lock all
3187 		 * the time. Let's drop everything get the invalidate lock and
3188 		 * try again.
3189 		 */
3190 		if (!mapping_locked) {
3191 			folio_unlock(folio);
3192 			folio_put(folio);
3193 			goto retry_find;
3194 		}
3195 		goto page_not_uptodate;
3196 	}
3197 
3198 	/*
3199 	 * We've made it this far and we had to drop our mmap_lock, now is the
3200 	 * time to return to the upper layer and have it re-find the vma and
3201 	 * redo the fault.
3202 	 */
3203 	if (fpin) {
3204 		folio_unlock(folio);
3205 		goto out_retry;
3206 	}
3207 	if (mapping_locked)
3208 		filemap_invalidate_unlock_shared(mapping);
3209 
3210 	/*
3211 	 * Found the page and have a reference on it.
3212 	 * We must recheck i_size under page lock.
3213 	 */
3214 	max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3215 	if (unlikely(index >= max_idx)) {
3216 		folio_unlock(folio);
3217 		folio_put(folio);
3218 		return VM_FAULT_SIGBUS;
3219 	}
3220 
3221 	vmf->page = folio_file_page(folio, index);
3222 	return ret | VM_FAULT_LOCKED;
3223 
3224 page_not_uptodate:
3225 	/*
3226 	 * Umm, take care of errors if the page isn't up-to-date.
3227 	 * Try to re-read it _once_. We do this synchronously,
3228 	 * because there really aren't any performance issues here
3229 	 * and we need to check for errors.
3230 	 */
3231 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3232 	error = filemap_read_folio(file, mapping, folio);
3233 	if (fpin)
3234 		goto out_retry;
3235 	folio_put(folio);
3236 
3237 	if (!error || error == AOP_TRUNCATED_PAGE)
3238 		goto retry_find;
3239 	filemap_invalidate_unlock_shared(mapping);
3240 
3241 	return VM_FAULT_SIGBUS;
3242 
3243 out_retry:
3244 	/*
3245 	 * We dropped the mmap_lock, we need to return to the fault handler to
3246 	 * re-find the vma and come back and find our hopefully still populated
3247 	 * page.
3248 	 */
3249 	if (folio)
3250 		folio_put(folio);
3251 	if (mapping_locked)
3252 		filemap_invalidate_unlock_shared(mapping);
3253 	if (fpin)
3254 		fput(fpin);
3255 	return ret | VM_FAULT_RETRY;
3256 }
3257 EXPORT_SYMBOL(filemap_fault);
3258 
3259 static bool filemap_map_pmd(struct vm_fault *vmf, struct page *page)
3260 {
3261 	struct mm_struct *mm = vmf->vma->vm_mm;
3262 
3263 	/* Huge page is mapped? No need to proceed. */
3264 	if (pmd_trans_huge(*vmf->pmd)) {
3265 		unlock_page(page);
3266 		put_page(page);
3267 		return true;
3268 	}
3269 
3270 	if (pmd_none(*vmf->pmd) && PageTransHuge(page)) {
3271 		vm_fault_t ret = do_set_pmd(vmf, page);
3272 		if (!ret) {
3273 			/* The page is mapped successfully, reference consumed. */
3274 			unlock_page(page);
3275 			return true;
3276 		}
3277 	}
3278 
3279 	if (pmd_none(*vmf->pmd))
3280 		pmd_install(mm, vmf->pmd, &vmf->prealloc_pte);
3281 
3282 	/* See comment in handle_pte_fault() */
3283 	if (pmd_devmap_trans_unstable(vmf->pmd)) {
3284 		unlock_page(page);
3285 		put_page(page);
3286 		return true;
3287 	}
3288 
3289 	return false;
3290 }
3291 
3292 static struct folio *next_uptodate_page(struct folio *folio,
3293 				       struct address_space *mapping,
3294 				       struct xa_state *xas, pgoff_t end_pgoff)
3295 {
3296 	unsigned long max_idx;
3297 
3298 	do {
3299 		if (!folio)
3300 			return NULL;
3301 		if (xas_retry(xas, folio))
3302 			continue;
3303 		if (xa_is_value(folio))
3304 			continue;
3305 		if (folio_test_locked(folio))
3306 			continue;
3307 		if (!folio_try_get_rcu(folio))
3308 			continue;
3309 		/* Has the page moved or been split? */
3310 		if (unlikely(folio != xas_reload(xas)))
3311 			goto skip;
3312 		if (!folio_test_uptodate(folio) || folio_test_readahead(folio))
3313 			goto skip;
3314 		if (!folio_trylock(folio))
3315 			goto skip;
3316 		if (folio->mapping != mapping)
3317 			goto unlock;
3318 		if (!folio_test_uptodate(folio))
3319 			goto unlock;
3320 		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3321 		if (xas->xa_index >= max_idx)
3322 			goto unlock;
3323 		return folio;
3324 unlock:
3325 		folio_unlock(folio);
3326 skip:
3327 		folio_put(folio);
3328 	} while ((folio = xas_next_entry(xas, end_pgoff)) != NULL);
3329 
3330 	return NULL;
3331 }
3332 
3333 static inline struct folio *first_map_page(struct address_space *mapping,
3334 					  struct xa_state *xas,
3335 					  pgoff_t end_pgoff)
3336 {
3337 	return next_uptodate_page(xas_find(xas, end_pgoff),
3338 				  mapping, xas, end_pgoff);
3339 }
3340 
3341 static inline struct folio *next_map_page(struct address_space *mapping,
3342 					 struct xa_state *xas,
3343 					 pgoff_t end_pgoff)
3344 {
3345 	return next_uptodate_page(xas_next_entry(xas, end_pgoff),
3346 				  mapping, xas, end_pgoff);
3347 }
3348 
3349 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3350 			     pgoff_t start_pgoff, pgoff_t end_pgoff)
3351 {
3352 	struct vm_area_struct *vma = vmf->vma;
3353 	struct file *file = vma->vm_file;
3354 	struct address_space *mapping = file->f_mapping;
3355 	pgoff_t last_pgoff = start_pgoff;
3356 	unsigned long addr;
3357 	XA_STATE(xas, &mapping->i_pages, start_pgoff);
3358 	struct folio *folio;
3359 	struct page *page;
3360 	unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss);
3361 	vm_fault_t ret = 0;
3362 
3363 	rcu_read_lock();
3364 	folio = first_map_page(mapping, &xas, end_pgoff);
3365 	if (!folio)
3366 		goto out;
3367 
3368 	if (filemap_map_pmd(vmf, &folio->page)) {
3369 		ret = VM_FAULT_NOPAGE;
3370 		goto out;
3371 	}
3372 
3373 	addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3374 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3375 	do {
3376 again:
3377 		page = folio_file_page(folio, xas.xa_index);
3378 		if (PageHWPoison(page))
3379 			goto unlock;
3380 
3381 		if (mmap_miss > 0)
3382 			mmap_miss--;
3383 
3384 		addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3385 		vmf->pte += xas.xa_index - last_pgoff;
3386 		last_pgoff = xas.xa_index;
3387 
3388 		if (!pte_none(*vmf->pte))
3389 			goto unlock;
3390 
3391 		/* We're about to handle the fault */
3392 		if (vmf->address == addr)
3393 			ret = VM_FAULT_NOPAGE;
3394 
3395 		do_set_pte(vmf, page, addr);
3396 		/* no need to invalidate: a not-present page won't be cached */
3397 		update_mmu_cache(vma, addr, vmf->pte);
3398 		if (folio_more_pages(folio, xas.xa_index, end_pgoff)) {
3399 			xas.xa_index++;
3400 			folio_ref_inc(folio);
3401 			goto again;
3402 		}
3403 		folio_unlock(folio);
3404 		continue;
3405 unlock:
3406 		if (folio_more_pages(folio, xas.xa_index, end_pgoff)) {
3407 			xas.xa_index++;
3408 			goto again;
3409 		}
3410 		folio_unlock(folio);
3411 		folio_put(folio);
3412 	} while ((folio = next_map_page(mapping, &xas, end_pgoff)) != NULL);
3413 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3414 out:
3415 	rcu_read_unlock();
3416 	WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss);
3417 	return ret;
3418 }
3419 EXPORT_SYMBOL(filemap_map_pages);
3420 
3421 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3422 {
3423 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3424 	struct folio *folio = page_folio(vmf->page);
3425 	vm_fault_t ret = VM_FAULT_LOCKED;
3426 
3427 	sb_start_pagefault(mapping->host->i_sb);
3428 	file_update_time(vmf->vma->vm_file);
3429 	folio_lock(folio);
3430 	if (folio->mapping != mapping) {
3431 		folio_unlock(folio);
3432 		ret = VM_FAULT_NOPAGE;
3433 		goto out;
3434 	}
3435 	/*
3436 	 * We mark the folio dirty already here so that when freeze is in
3437 	 * progress, we are guaranteed that writeback during freezing will
3438 	 * see the dirty folio and writeprotect it again.
3439 	 */
3440 	folio_mark_dirty(folio);
3441 	folio_wait_stable(folio);
3442 out:
3443 	sb_end_pagefault(mapping->host->i_sb);
3444 	return ret;
3445 }
3446 
3447 const struct vm_operations_struct generic_file_vm_ops = {
3448 	.fault		= filemap_fault,
3449 	.map_pages	= filemap_map_pages,
3450 	.page_mkwrite	= filemap_page_mkwrite,
3451 };
3452 
3453 /* This is used for a general mmap of a disk file */
3454 
3455 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3456 {
3457 	struct address_space *mapping = file->f_mapping;
3458 
3459 	if (!mapping->a_ops->readpage)
3460 		return -ENOEXEC;
3461 	file_accessed(file);
3462 	vma->vm_ops = &generic_file_vm_ops;
3463 	return 0;
3464 }
3465 
3466 /*
3467  * This is for filesystems which do not implement ->writepage.
3468  */
3469 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3470 {
3471 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
3472 		return -EINVAL;
3473 	return generic_file_mmap(file, vma);
3474 }
3475 #else
3476 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3477 {
3478 	return VM_FAULT_SIGBUS;
3479 }
3480 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3481 {
3482 	return -ENOSYS;
3483 }
3484 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3485 {
3486 	return -ENOSYS;
3487 }
3488 #endif /* CONFIG_MMU */
3489 
3490 EXPORT_SYMBOL(filemap_page_mkwrite);
3491 EXPORT_SYMBOL(generic_file_mmap);
3492 EXPORT_SYMBOL(generic_file_readonly_mmap);
3493 
3494 static struct folio *do_read_cache_folio(struct address_space *mapping,
3495 		pgoff_t index, filler_t filler, void *data, gfp_t gfp)
3496 {
3497 	struct folio *folio;
3498 	int err;
3499 repeat:
3500 	folio = filemap_get_folio(mapping, index);
3501 	if (!folio) {
3502 		folio = filemap_alloc_folio(gfp, 0);
3503 		if (!folio)
3504 			return ERR_PTR(-ENOMEM);
3505 		err = filemap_add_folio(mapping, folio, index, gfp);
3506 		if (unlikely(err)) {
3507 			folio_put(folio);
3508 			if (err == -EEXIST)
3509 				goto repeat;
3510 			/* Presumably ENOMEM for xarray node */
3511 			return ERR_PTR(err);
3512 		}
3513 
3514 filler:
3515 		if (filler)
3516 			err = filler(data, &folio->page);
3517 		else
3518 			err = mapping->a_ops->readpage(data, &folio->page);
3519 
3520 		if (err < 0) {
3521 			folio_put(folio);
3522 			return ERR_PTR(err);
3523 		}
3524 
3525 		folio_wait_locked(folio);
3526 		if (!folio_test_uptodate(folio)) {
3527 			folio_put(folio);
3528 			return ERR_PTR(-EIO);
3529 		}
3530 
3531 		goto out;
3532 	}
3533 	if (folio_test_uptodate(folio))
3534 		goto out;
3535 
3536 	if (!folio_trylock(folio)) {
3537 		folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE);
3538 		goto repeat;
3539 	}
3540 
3541 	/* Folio was truncated from mapping */
3542 	if (!folio->mapping) {
3543 		folio_unlock(folio);
3544 		folio_put(folio);
3545 		goto repeat;
3546 	}
3547 
3548 	/* Someone else locked and filled the page in a very small window */
3549 	if (folio_test_uptodate(folio)) {
3550 		folio_unlock(folio);
3551 		goto out;
3552 	}
3553 
3554 	/*
3555 	 * A previous I/O error may have been due to temporary
3556 	 * failures.
3557 	 * Clear page error before actual read, PG_error will be
3558 	 * set again if read page fails.
3559 	 */
3560 	folio_clear_error(folio);
3561 	goto filler;
3562 
3563 out:
3564 	folio_mark_accessed(folio);
3565 	return folio;
3566 }
3567 
3568 /**
3569  * read_cache_folio - read into page cache, fill it if needed
3570  * @mapping:	the page's address_space
3571  * @index:	the page index
3572  * @filler:	function to perform the read
3573  * @data:	first arg to filler(data, page) function, often left as NULL
3574  *
3575  * Read into the page cache. If a page already exists, and PageUptodate() is
3576  * not set, try to fill the page and wait for it to become unlocked.
3577  *
3578  * If the page does not get brought uptodate, return -EIO.
3579  *
3580  * The function expects mapping->invalidate_lock to be already held.
3581  *
3582  * Return: up to date page on success, ERR_PTR() on failure.
3583  */
3584 struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index,
3585 		filler_t filler, void *data)
3586 {
3587 	return do_read_cache_folio(mapping, index, filler, data,
3588 			mapping_gfp_mask(mapping));
3589 }
3590 EXPORT_SYMBOL(read_cache_folio);
3591 
3592 static struct page *do_read_cache_page(struct address_space *mapping,
3593 		pgoff_t index, filler_t *filler, void *data, gfp_t gfp)
3594 {
3595 	struct folio *folio;
3596 
3597 	folio = do_read_cache_folio(mapping, index, filler, data, gfp);
3598 	if (IS_ERR(folio))
3599 		return &folio->page;
3600 	return folio_file_page(folio, index);
3601 }
3602 
3603 struct page *read_cache_page(struct address_space *mapping,
3604 				pgoff_t index, filler_t *filler, void *data)
3605 {
3606 	return do_read_cache_page(mapping, index, filler, data,
3607 			mapping_gfp_mask(mapping));
3608 }
3609 EXPORT_SYMBOL(read_cache_page);
3610 
3611 /**
3612  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3613  * @mapping:	the page's address_space
3614  * @index:	the page index
3615  * @gfp:	the page allocator flags to use if allocating
3616  *
3617  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3618  * any new page allocations done using the specified allocation flags.
3619  *
3620  * If the page does not get brought uptodate, return -EIO.
3621  *
3622  * The function expects mapping->invalidate_lock to be already held.
3623  *
3624  * Return: up to date page on success, ERR_PTR() on failure.
3625  */
3626 struct page *read_cache_page_gfp(struct address_space *mapping,
3627 				pgoff_t index,
3628 				gfp_t gfp)
3629 {
3630 	return do_read_cache_page(mapping, index, NULL, NULL, gfp);
3631 }
3632 EXPORT_SYMBOL(read_cache_page_gfp);
3633 
3634 int pagecache_write_begin(struct file *file, struct address_space *mapping,
3635 				loff_t pos, unsigned len, unsigned flags,
3636 				struct page **pagep, void **fsdata)
3637 {
3638 	const struct address_space_operations *aops = mapping->a_ops;
3639 
3640 	return aops->write_begin(file, mapping, pos, len, flags,
3641 							pagep, fsdata);
3642 }
3643 EXPORT_SYMBOL(pagecache_write_begin);
3644 
3645 int pagecache_write_end(struct file *file, struct address_space *mapping,
3646 				loff_t pos, unsigned len, unsigned copied,
3647 				struct page *page, void *fsdata)
3648 {
3649 	const struct address_space_operations *aops = mapping->a_ops;
3650 
3651 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3652 }
3653 EXPORT_SYMBOL(pagecache_write_end);
3654 
3655 /*
3656  * Warn about a page cache invalidation failure during a direct I/O write.
3657  */
3658 void dio_warn_stale_pagecache(struct file *filp)
3659 {
3660 	static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3661 	char pathname[128];
3662 	char *path;
3663 
3664 	errseq_set(&filp->f_mapping->wb_err, -EIO);
3665 	if (__ratelimit(&_rs)) {
3666 		path = file_path(filp, pathname, sizeof(pathname));
3667 		if (IS_ERR(path))
3668 			path = "(unknown)";
3669 		pr_crit("Page cache invalidation failure on direct I/O.  Possible data corruption due to collision with buffered I/O!\n");
3670 		pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3671 			current->comm);
3672 	}
3673 }
3674 
3675 ssize_t
3676 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3677 {
3678 	struct file	*file = iocb->ki_filp;
3679 	struct address_space *mapping = file->f_mapping;
3680 	struct inode	*inode = mapping->host;
3681 	loff_t		pos = iocb->ki_pos;
3682 	ssize_t		written;
3683 	size_t		write_len;
3684 	pgoff_t		end;
3685 
3686 	write_len = iov_iter_count(from);
3687 	end = (pos + write_len - 1) >> PAGE_SHIFT;
3688 
3689 	if (iocb->ki_flags & IOCB_NOWAIT) {
3690 		/* If there are pages to writeback, return */
3691 		if (filemap_range_has_page(file->f_mapping, pos,
3692 					   pos + write_len - 1))
3693 			return -EAGAIN;
3694 	} else {
3695 		written = filemap_write_and_wait_range(mapping, pos,
3696 							pos + write_len - 1);
3697 		if (written)
3698 			goto out;
3699 	}
3700 
3701 	/*
3702 	 * After a write we want buffered reads to be sure to go to disk to get
3703 	 * the new data.  We invalidate clean cached page from the region we're
3704 	 * about to write.  We do this *before* the write so that we can return
3705 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
3706 	 */
3707 	written = invalidate_inode_pages2_range(mapping,
3708 					pos >> PAGE_SHIFT, end);
3709 	/*
3710 	 * If a page can not be invalidated, return 0 to fall back
3711 	 * to buffered write.
3712 	 */
3713 	if (written) {
3714 		if (written == -EBUSY)
3715 			return 0;
3716 		goto out;
3717 	}
3718 
3719 	written = mapping->a_ops->direct_IO(iocb, from);
3720 
3721 	/*
3722 	 * Finally, try again to invalidate clean pages which might have been
3723 	 * cached by non-direct readahead, or faulted in by get_user_pages()
3724 	 * if the source of the write was an mmap'ed region of the file
3725 	 * we're writing.  Either one is a pretty crazy thing to do,
3726 	 * so we don't support it 100%.  If this invalidation
3727 	 * fails, tough, the write still worked...
3728 	 *
3729 	 * Most of the time we do not need this since dio_complete() will do
3730 	 * the invalidation for us. However there are some file systems that
3731 	 * do not end up with dio_complete() being called, so let's not break
3732 	 * them by removing it completely.
3733 	 *
3734 	 * Noticeable example is a blkdev_direct_IO().
3735 	 *
3736 	 * Skip invalidation for async writes or if mapping has no pages.
3737 	 */
3738 	if (written > 0 && mapping->nrpages &&
3739 	    invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3740 		dio_warn_stale_pagecache(file);
3741 
3742 	if (written > 0) {
3743 		pos += written;
3744 		write_len -= written;
3745 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3746 			i_size_write(inode, pos);
3747 			mark_inode_dirty(inode);
3748 		}
3749 		iocb->ki_pos = pos;
3750 	}
3751 	if (written != -EIOCBQUEUED)
3752 		iov_iter_revert(from, write_len - iov_iter_count(from));
3753 out:
3754 	return written;
3755 }
3756 EXPORT_SYMBOL(generic_file_direct_write);
3757 
3758 ssize_t generic_perform_write(struct file *file,
3759 				struct iov_iter *i, loff_t pos)
3760 {
3761 	struct address_space *mapping = file->f_mapping;
3762 	const struct address_space_operations *a_ops = mapping->a_ops;
3763 	long status = 0;
3764 	ssize_t written = 0;
3765 	unsigned int flags = 0;
3766 
3767 	do {
3768 		struct page *page;
3769 		unsigned long offset;	/* Offset into pagecache page */
3770 		unsigned long bytes;	/* Bytes to write to page */
3771 		size_t copied;		/* Bytes copied from user */
3772 		void *fsdata;
3773 
3774 		offset = (pos & (PAGE_SIZE - 1));
3775 		bytes = min_t(unsigned long, PAGE_SIZE - offset,
3776 						iov_iter_count(i));
3777 
3778 again:
3779 		/*
3780 		 * Bring in the user page that we will copy from _first_.
3781 		 * Otherwise there's a nasty deadlock on copying from the
3782 		 * same page as we're writing to, without it being marked
3783 		 * up-to-date.
3784 		 */
3785 		if (unlikely(fault_in_iov_iter_readable(i, bytes))) {
3786 			status = -EFAULT;
3787 			break;
3788 		}
3789 
3790 		if (fatal_signal_pending(current)) {
3791 			status = -EINTR;
3792 			break;
3793 		}
3794 
3795 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3796 						&page, &fsdata);
3797 		if (unlikely(status < 0))
3798 			break;
3799 
3800 		if (mapping_writably_mapped(mapping))
3801 			flush_dcache_page(page);
3802 
3803 		copied = copy_page_from_iter_atomic(page, offset, bytes, i);
3804 		flush_dcache_page(page);
3805 
3806 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
3807 						page, fsdata);
3808 		if (unlikely(status != copied)) {
3809 			iov_iter_revert(i, copied - max(status, 0L));
3810 			if (unlikely(status < 0))
3811 				break;
3812 		}
3813 		cond_resched();
3814 
3815 		if (unlikely(status == 0)) {
3816 			/*
3817 			 * A short copy made ->write_end() reject the
3818 			 * thing entirely.  Might be memory poisoning
3819 			 * halfway through, might be a race with munmap,
3820 			 * might be severe memory pressure.
3821 			 */
3822 			if (copied)
3823 				bytes = copied;
3824 			goto again;
3825 		}
3826 		pos += status;
3827 		written += status;
3828 
3829 		balance_dirty_pages_ratelimited(mapping);
3830 	} while (iov_iter_count(i));
3831 
3832 	return written ? written : status;
3833 }
3834 EXPORT_SYMBOL(generic_perform_write);
3835 
3836 /**
3837  * __generic_file_write_iter - write data to a file
3838  * @iocb:	IO state structure (file, offset, etc.)
3839  * @from:	iov_iter with data to write
3840  *
3841  * This function does all the work needed for actually writing data to a
3842  * file. It does all basic checks, removes SUID from the file, updates
3843  * modification times and calls proper subroutines depending on whether we
3844  * do direct IO or a standard buffered write.
3845  *
3846  * It expects i_rwsem to be grabbed unless we work on a block device or similar
3847  * object which does not need locking at all.
3848  *
3849  * This function does *not* take care of syncing data in case of O_SYNC write.
3850  * A caller has to handle it. This is mainly due to the fact that we want to
3851  * avoid syncing under i_rwsem.
3852  *
3853  * Return:
3854  * * number of bytes written, even for truncated writes
3855  * * negative error code if no data has been written at all
3856  */
3857 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3858 {
3859 	struct file *file = iocb->ki_filp;
3860 	struct address_space *mapping = file->f_mapping;
3861 	struct inode 	*inode = mapping->host;
3862 	ssize_t		written = 0;
3863 	ssize_t		err;
3864 	ssize_t		status;
3865 
3866 	/* We can write back this queue in page reclaim */
3867 	current->backing_dev_info = inode_to_bdi(inode);
3868 	err = file_remove_privs(file);
3869 	if (err)
3870 		goto out;
3871 
3872 	err = file_update_time(file);
3873 	if (err)
3874 		goto out;
3875 
3876 	if (iocb->ki_flags & IOCB_DIRECT) {
3877 		loff_t pos, endbyte;
3878 
3879 		written = generic_file_direct_write(iocb, from);
3880 		/*
3881 		 * If the write stopped short of completing, fall back to
3882 		 * buffered writes.  Some filesystems do this for writes to
3883 		 * holes, for example.  For DAX files, a buffered write will
3884 		 * not succeed (even if it did, DAX does not handle dirty
3885 		 * page-cache pages correctly).
3886 		 */
3887 		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3888 			goto out;
3889 
3890 		status = generic_perform_write(file, from, pos = iocb->ki_pos);
3891 		/*
3892 		 * If generic_perform_write() returned a synchronous error
3893 		 * then we want to return the number of bytes which were
3894 		 * direct-written, or the error code if that was zero.  Note
3895 		 * that this differs from normal direct-io semantics, which
3896 		 * will return -EFOO even if some bytes were written.
3897 		 */
3898 		if (unlikely(status < 0)) {
3899 			err = status;
3900 			goto out;
3901 		}
3902 		/*
3903 		 * We need to ensure that the page cache pages are written to
3904 		 * disk and invalidated to preserve the expected O_DIRECT
3905 		 * semantics.
3906 		 */
3907 		endbyte = pos + status - 1;
3908 		err = filemap_write_and_wait_range(mapping, pos, endbyte);
3909 		if (err == 0) {
3910 			iocb->ki_pos = endbyte + 1;
3911 			written += status;
3912 			invalidate_mapping_pages(mapping,
3913 						 pos >> PAGE_SHIFT,
3914 						 endbyte >> PAGE_SHIFT);
3915 		} else {
3916 			/*
3917 			 * We don't know how much we wrote, so just return
3918 			 * the number of bytes which were direct-written
3919 			 */
3920 		}
3921 	} else {
3922 		written = generic_perform_write(file, from, iocb->ki_pos);
3923 		if (likely(written > 0))
3924 			iocb->ki_pos += written;
3925 	}
3926 out:
3927 	current->backing_dev_info = NULL;
3928 	return written ? written : err;
3929 }
3930 EXPORT_SYMBOL(__generic_file_write_iter);
3931 
3932 /**
3933  * generic_file_write_iter - write data to a file
3934  * @iocb:	IO state structure
3935  * @from:	iov_iter with data to write
3936  *
3937  * This is a wrapper around __generic_file_write_iter() to be used by most
3938  * filesystems. It takes care of syncing the file in case of O_SYNC file
3939  * and acquires i_rwsem as needed.
3940  * Return:
3941  * * negative error code if no data has been written at all of
3942  *   vfs_fsync_range() failed for a synchronous write
3943  * * number of bytes written, even for truncated writes
3944  */
3945 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3946 {
3947 	struct file *file = iocb->ki_filp;
3948 	struct inode *inode = file->f_mapping->host;
3949 	ssize_t ret;
3950 
3951 	inode_lock(inode);
3952 	ret = generic_write_checks(iocb, from);
3953 	if (ret > 0)
3954 		ret = __generic_file_write_iter(iocb, from);
3955 	inode_unlock(inode);
3956 
3957 	if (ret > 0)
3958 		ret = generic_write_sync(iocb, ret);
3959 	return ret;
3960 }
3961 EXPORT_SYMBOL(generic_file_write_iter);
3962 
3963 /**
3964  * filemap_release_folio() - Release fs-specific metadata on a folio.
3965  * @folio: The folio which the kernel is trying to free.
3966  * @gfp: Memory allocation flags (and I/O mode).
3967  *
3968  * The address_space is trying to release any data attached to a folio
3969  * (presumably at folio->private).
3970  *
3971  * This will also be called if the private_2 flag is set on a page,
3972  * indicating that the folio has other metadata associated with it.
3973  *
3974  * The @gfp argument specifies whether I/O may be performed to release
3975  * this page (__GFP_IO), and whether the call may block
3976  * (__GFP_RECLAIM & __GFP_FS).
3977  *
3978  * Return: %true if the release was successful, otherwise %false.
3979  */
3980 bool filemap_release_folio(struct folio *folio, gfp_t gfp)
3981 {
3982 	struct address_space * const mapping = folio->mapping;
3983 
3984 	BUG_ON(!folio_test_locked(folio));
3985 	if (folio_test_writeback(folio))
3986 		return false;
3987 
3988 	if (mapping && mapping->a_ops->releasepage)
3989 		return mapping->a_ops->releasepage(&folio->page, gfp);
3990 	return try_to_free_buffers(&folio->page);
3991 }
3992 EXPORT_SYMBOL(filemap_release_folio);
3993