xref: /openbmc/linux/mm/filemap.c (revision 643d1f7f)
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/compiler.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/backing-dev.h>
32 #include <linux/security.h>
33 #include <linux/syscalls.h>
34 #include <linux/cpuset.h>
35 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
36 #include "internal.h"
37 
38 /*
39  * FIXME: remove all knowledge of the buffer layer from the core VM
40  */
41 #include <linux/buffer_head.h> /* for generic_osync_inode */
42 
43 #include <asm/mman.h>
44 
45 static ssize_t
46 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
47 	loff_t offset, unsigned long nr_segs);
48 
49 /*
50  * Shared mappings implemented 30.11.1994. It's not fully working yet,
51  * though.
52  *
53  * Shared mappings now work. 15.8.1995  Bruno.
54  *
55  * finished 'unifying' the page and buffer cache and SMP-threaded the
56  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
57  *
58  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
59  */
60 
61 /*
62  * Lock ordering:
63  *
64  *  ->i_mmap_lock		(vmtruncate)
65  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
66  *      ->swap_lock		(exclusive_swap_page, others)
67  *        ->mapping->tree_lock
68  *          ->zone.lock
69  *
70  *  ->i_mutex
71  *    ->i_mmap_lock		(truncate->unmap_mapping_range)
72  *
73  *  ->mmap_sem
74  *    ->i_mmap_lock
75  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
76  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
77  *
78  *  ->mmap_sem
79  *    ->lock_page		(access_process_vm)
80  *
81  *  ->i_mutex			(generic_file_buffered_write)
82  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
83  *
84  *  ->i_mutex
85  *    ->i_alloc_sem             (various)
86  *
87  *  ->inode_lock
88  *    ->sb_lock			(fs/fs-writeback.c)
89  *    ->mapping->tree_lock	(__sync_single_inode)
90  *
91  *  ->i_mmap_lock
92  *    ->anon_vma.lock		(vma_adjust)
93  *
94  *  ->anon_vma.lock
95  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
96  *
97  *  ->page_table_lock or pte_lock
98  *    ->swap_lock		(try_to_unmap_one)
99  *    ->private_lock		(try_to_unmap_one)
100  *    ->tree_lock		(try_to_unmap_one)
101  *    ->zone.lru_lock		(follow_page->mark_page_accessed)
102  *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
103  *    ->private_lock		(page_remove_rmap->set_page_dirty)
104  *    ->tree_lock		(page_remove_rmap->set_page_dirty)
105  *    ->inode_lock		(page_remove_rmap->set_page_dirty)
106  *    ->inode_lock		(zap_pte_range->set_page_dirty)
107  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
108  *
109  *  ->task->proc_lock
110  *    ->dcache_lock		(proc_pid_lookup)
111  */
112 
113 /*
114  * Remove a page from the page cache and free it. Caller has to make
115  * sure the page is locked and that nobody else uses it - or that usage
116  * is safe.  The caller must hold a write_lock on the mapping's tree_lock.
117  */
118 void __remove_from_page_cache(struct page *page)
119 {
120 	struct address_space *mapping = page->mapping;
121 
122 	radix_tree_delete(&mapping->page_tree, page->index);
123 	page->mapping = NULL;
124 	mapping->nrpages--;
125 	__dec_zone_page_state(page, NR_FILE_PAGES);
126 	BUG_ON(page_mapped(page));
127 
128 	/*
129 	 * Some filesystems seem to re-dirty the page even after
130 	 * the VM has canceled the dirty bit (eg ext3 journaling).
131 	 *
132 	 * Fix it up by doing a final dirty accounting check after
133 	 * having removed the page entirely.
134 	 */
135 	if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
136 		dec_zone_page_state(page, NR_FILE_DIRTY);
137 		dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
138 	}
139 }
140 
141 void remove_from_page_cache(struct page *page)
142 {
143 	struct address_space *mapping = page->mapping;
144 
145 	BUG_ON(!PageLocked(page));
146 
147 	write_lock_irq(&mapping->tree_lock);
148 	__remove_from_page_cache(page);
149 	write_unlock_irq(&mapping->tree_lock);
150 }
151 
152 static int sync_page(void *word)
153 {
154 	struct address_space *mapping;
155 	struct page *page;
156 
157 	page = container_of((unsigned long *)word, struct page, flags);
158 
159 	/*
160 	 * page_mapping() is being called without PG_locked held.
161 	 * Some knowledge of the state and use of the page is used to
162 	 * reduce the requirements down to a memory barrier.
163 	 * The danger here is of a stale page_mapping() return value
164 	 * indicating a struct address_space different from the one it's
165 	 * associated with when it is associated with one.
166 	 * After smp_mb(), it's either the correct page_mapping() for
167 	 * the page, or an old page_mapping() and the page's own
168 	 * page_mapping() has gone NULL.
169 	 * The ->sync_page() address_space operation must tolerate
170 	 * page_mapping() going NULL. By an amazing coincidence,
171 	 * this comes about because none of the users of the page
172 	 * in the ->sync_page() methods make essential use of the
173 	 * page_mapping(), merely passing the page down to the backing
174 	 * device's unplug functions when it's non-NULL, which in turn
175 	 * ignore it for all cases but swap, where only page_private(page) is
176 	 * of interest. When page_mapping() does go NULL, the entire
177 	 * call stack gracefully ignores the page and returns.
178 	 * -- wli
179 	 */
180 	smp_mb();
181 	mapping = page_mapping(page);
182 	if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
183 		mapping->a_ops->sync_page(page);
184 	io_schedule();
185 	return 0;
186 }
187 
188 static int sync_page_killable(void *word)
189 {
190 	sync_page(word);
191 	return fatal_signal_pending(current) ? -EINTR : 0;
192 }
193 
194 /**
195  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
196  * @mapping:	address space structure to write
197  * @start:	offset in bytes where the range starts
198  * @end:	offset in bytes where the range ends (inclusive)
199  * @sync_mode:	enable synchronous operation
200  *
201  * Start writeback against all of a mapping's dirty pages that lie
202  * within the byte offsets <start, end> inclusive.
203  *
204  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
205  * opposed to a regular memory cleansing writeback.  The difference between
206  * these two operations is that if a dirty page/buffer is encountered, it must
207  * be waited upon, and not just skipped over.
208  */
209 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
210 				loff_t end, int sync_mode)
211 {
212 	int ret;
213 	struct writeback_control wbc = {
214 		.sync_mode = sync_mode,
215 		.nr_to_write = mapping->nrpages * 2,
216 		.range_start = start,
217 		.range_end = end,
218 	};
219 
220 	if (!mapping_cap_writeback_dirty(mapping))
221 		return 0;
222 
223 	ret = do_writepages(mapping, &wbc);
224 	return ret;
225 }
226 
227 static inline int __filemap_fdatawrite(struct address_space *mapping,
228 	int sync_mode)
229 {
230 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
231 }
232 
233 int filemap_fdatawrite(struct address_space *mapping)
234 {
235 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
236 }
237 EXPORT_SYMBOL(filemap_fdatawrite);
238 
239 static int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
240 				loff_t end)
241 {
242 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
243 }
244 
245 /**
246  * filemap_flush - mostly a non-blocking flush
247  * @mapping:	target address_space
248  *
249  * This is a mostly non-blocking flush.  Not suitable for data-integrity
250  * purposes - I/O may not be started against all dirty pages.
251  */
252 int filemap_flush(struct address_space *mapping)
253 {
254 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
255 }
256 EXPORT_SYMBOL(filemap_flush);
257 
258 /**
259  * wait_on_page_writeback_range - wait for writeback to complete
260  * @mapping:	target address_space
261  * @start:	beginning page index
262  * @end:	ending page index
263  *
264  * Wait for writeback to complete against pages indexed by start->end
265  * inclusive
266  */
267 int wait_on_page_writeback_range(struct address_space *mapping,
268 				pgoff_t start, pgoff_t end)
269 {
270 	struct pagevec pvec;
271 	int nr_pages;
272 	int ret = 0;
273 	pgoff_t index;
274 
275 	if (end < start)
276 		return 0;
277 
278 	pagevec_init(&pvec, 0);
279 	index = start;
280 	while ((index <= end) &&
281 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
282 			PAGECACHE_TAG_WRITEBACK,
283 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
284 		unsigned i;
285 
286 		for (i = 0; i < nr_pages; i++) {
287 			struct page *page = pvec.pages[i];
288 
289 			/* until radix tree lookup accepts end_index */
290 			if (page->index > end)
291 				continue;
292 
293 			wait_on_page_writeback(page);
294 			if (PageError(page))
295 				ret = -EIO;
296 		}
297 		pagevec_release(&pvec);
298 		cond_resched();
299 	}
300 
301 	/* Check for outstanding write errors */
302 	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
303 		ret = -ENOSPC;
304 	if (test_and_clear_bit(AS_EIO, &mapping->flags))
305 		ret = -EIO;
306 
307 	return ret;
308 }
309 
310 /**
311  * sync_page_range - write and wait on all pages in the passed range
312  * @inode:	target inode
313  * @mapping:	target address_space
314  * @pos:	beginning offset in pages to write
315  * @count:	number of bytes to write
316  *
317  * Write and wait upon all the pages in the passed range.  This is a "data
318  * integrity" operation.  It waits upon in-flight writeout before starting and
319  * waiting upon new writeout.  If there was an IO error, return it.
320  *
321  * We need to re-take i_mutex during the generic_osync_inode list walk because
322  * it is otherwise livelockable.
323  */
324 int sync_page_range(struct inode *inode, struct address_space *mapping,
325 			loff_t pos, loff_t count)
326 {
327 	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
328 	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
329 	int ret;
330 
331 	if (!mapping_cap_writeback_dirty(mapping) || !count)
332 		return 0;
333 	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
334 	if (ret == 0) {
335 		mutex_lock(&inode->i_mutex);
336 		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
337 		mutex_unlock(&inode->i_mutex);
338 	}
339 	if (ret == 0)
340 		ret = wait_on_page_writeback_range(mapping, start, end);
341 	return ret;
342 }
343 EXPORT_SYMBOL(sync_page_range);
344 
345 /**
346  * sync_page_range_nolock
347  * @inode:	target inode
348  * @mapping:	target address_space
349  * @pos:	beginning offset in pages to write
350  * @count:	number of bytes to write
351  *
352  * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
353  * as it forces O_SYNC writers to different parts of the same file
354  * to be serialised right until io completion.
355  */
356 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
357 			   loff_t pos, loff_t count)
358 {
359 	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
360 	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
361 	int ret;
362 
363 	if (!mapping_cap_writeback_dirty(mapping) || !count)
364 		return 0;
365 	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
366 	if (ret == 0)
367 		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
368 	if (ret == 0)
369 		ret = wait_on_page_writeback_range(mapping, start, end);
370 	return ret;
371 }
372 EXPORT_SYMBOL(sync_page_range_nolock);
373 
374 /**
375  * filemap_fdatawait - wait for all under-writeback pages to complete
376  * @mapping: address space structure to wait for
377  *
378  * Walk the list of under-writeback pages of the given address space
379  * and wait for all of them.
380  */
381 int filemap_fdatawait(struct address_space *mapping)
382 {
383 	loff_t i_size = i_size_read(mapping->host);
384 
385 	if (i_size == 0)
386 		return 0;
387 
388 	return wait_on_page_writeback_range(mapping, 0,
389 				(i_size - 1) >> PAGE_CACHE_SHIFT);
390 }
391 EXPORT_SYMBOL(filemap_fdatawait);
392 
393 int filemap_write_and_wait(struct address_space *mapping)
394 {
395 	int err = 0;
396 
397 	if (mapping->nrpages) {
398 		err = filemap_fdatawrite(mapping);
399 		/*
400 		 * Even if the above returned error, the pages may be
401 		 * written partially (e.g. -ENOSPC), so we wait for it.
402 		 * But the -EIO is special case, it may indicate the worst
403 		 * thing (e.g. bug) happened, so we avoid waiting for it.
404 		 */
405 		if (err != -EIO) {
406 			int err2 = filemap_fdatawait(mapping);
407 			if (!err)
408 				err = err2;
409 		}
410 	}
411 	return err;
412 }
413 EXPORT_SYMBOL(filemap_write_and_wait);
414 
415 /**
416  * filemap_write_and_wait_range - write out & wait on a file range
417  * @mapping:	the address_space for the pages
418  * @lstart:	offset in bytes where the range starts
419  * @lend:	offset in bytes where the range ends (inclusive)
420  *
421  * Write out and wait upon file offsets lstart->lend, inclusive.
422  *
423  * Note that `lend' is inclusive (describes the last byte to be written) so
424  * that this function can be used to write to the very end-of-file (end = -1).
425  */
426 int filemap_write_and_wait_range(struct address_space *mapping,
427 				 loff_t lstart, loff_t lend)
428 {
429 	int err = 0;
430 
431 	if (mapping->nrpages) {
432 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
433 						 WB_SYNC_ALL);
434 		/* See comment of filemap_write_and_wait() */
435 		if (err != -EIO) {
436 			int err2 = wait_on_page_writeback_range(mapping,
437 						lstart >> PAGE_CACHE_SHIFT,
438 						lend >> PAGE_CACHE_SHIFT);
439 			if (!err)
440 				err = err2;
441 		}
442 	}
443 	return err;
444 }
445 
446 /**
447  * add_to_page_cache - add newly allocated pagecache pages
448  * @page:	page to add
449  * @mapping:	the page's address_space
450  * @offset:	page index
451  * @gfp_mask:	page allocation mode
452  *
453  * This function is used to add newly allocated pagecache pages;
454  * the page is new, so we can just run SetPageLocked() against it.
455  * The other page state flags were set by rmqueue().
456  *
457  * This function does not add the page to the LRU.  The caller must do that.
458  */
459 int add_to_page_cache(struct page *page, struct address_space *mapping,
460 		pgoff_t offset, gfp_t gfp_mask)
461 {
462 	int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
463 
464 	if (error == 0) {
465 		write_lock_irq(&mapping->tree_lock);
466 		error = radix_tree_insert(&mapping->page_tree, offset, page);
467 		if (!error) {
468 			page_cache_get(page);
469 			SetPageLocked(page);
470 			page->mapping = mapping;
471 			page->index = offset;
472 			mapping->nrpages++;
473 			__inc_zone_page_state(page, NR_FILE_PAGES);
474 		}
475 		write_unlock_irq(&mapping->tree_lock);
476 		radix_tree_preload_end();
477 	}
478 	return error;
479 }
480 EXPORT_SYMBOL(add_to_page_cache);
481 
482 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
483 				pgoff_t offset, gfp_t gfp_mask)
484 {
485 	int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
486 	if (ret == 0)
487 		lru_cache_add(page);
488 	return ret;
489 }
490 
491 #ifdef CONFIG_NUMA
492 struct page *__page_cache_alloc(gfp_t gfp)
493 {
494 	if (cpuset_do_page_mem_spread()) {
495 		int n = cpuset_mem_spread_node();
496 		return alloc_pages_node(n, gfp, 0);
497 	}
498 	return alloc_pages(gfp, 0);
499 }
500 EXPORT_SYMBOL(__page_cache_alloc);
501 #endif
502 
503 static int __sleep_on_page_lock(void *word)
504 {
505 	io_schedule();
506 	return 0;
507 }
508 
509 /*
510  * In order to wait for pages to become available there must be
511  * waitqueues associated with pages. By using a hash table of
512  * waitqueues where the bucket discipline is to maintain all
513  * waiters on the same queue and wake all when any of the pages
514  * become available, and for the woken contexts to check to be
515  * sure the appropriate page became available, this saves space
516  * at a cost of "thundering herd" phenomena during rare hash
517  * collisions.
518  */
519 static wait_queue_head_t *page_waitqueue(struct page *page)
520 {
521 	const struct zone *zone = page_zone(page);
522 
523 	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
524 }
525 
526 static inline void wake_up_page(struct page *page, int bit)
527 {
528 	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
529 }
530 
531 void fastcall wait_on_page_bit(struct page *page, int bit_nr)
532 {
533 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
534 
535 	if (test_bit(bit_nr, &page->flags))
536 		__wait_on_bit(page_waitqueue(page), &wait, sync_page,
537 							TASK_UNINTERRUPTIBLE);
538 }
539 EXPORT_SYMBOL(wait_on_page_bit);
540 
541 /**
542  * unlock_page - unlock a locked page
543  * @page: the page
544  *
545  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
546  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
547  * mechananism between PageLocked pages and PageWriteback pages is shared.
548  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
549  *
550  * The first mb is necessary to safely close the critical section opened by the
551  * TestSetPageLocked(), the second mb is necessary to enforce ordering between
552  * the clear_bit and the read of the waitqueue (to avoid SMP races with a
553  * parallel wait_on_page_locked()).
554  */
555 void fastcall unlock_page(struct page *page)
556 {
557 	smp_mb__before_clear_bit();
558 	if (!TestClearPageLocked(page))
559 		BUG();
560 	smp_mb__after_clear_bit();
561 	wake_up_page(page, PG_locked);
562 }
563 EXPORT_SYMBOL(unlock_page);
564 
565 /**
566  * end_page_writeback - end writeback against a page
567  * @page: the page
568  */
569 void end_page_writeback(struct page *page)
570 {
571 	if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) {
572 		if (!test_clear_page_writeback(page))
573 			BUG();
574 	}
575 	smp_mb__after_clear_bit();
576 	wake_up_page(page, PG_writeback);
577 }
578 EXPORT_SYMBOL(end_page_writeback);
579 
580 /**
581  * __lock_page - get a lock on the page, assuming we need to sleep to get it
582  * @page: the page to lock
583  *
584  * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary.  If some
585  * random driver's requestfn sets TASK_RUNNING, we could busywait.  However
586  * chances are that on the second loop, the block layer's plug list is empty,
587  * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
588  */
589 void fastcall __lock_page(struct page *page)
590 {
591 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
592 
593 	__wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
594 							TASK_UNINTERRUPTIBLE);
595 }
596 EXPORT_SYMBOL(__lock_page);
597 
598 int fastcall __lock_page_killable(struct page *page)
599 {
600 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
601 
602 	return __wait_on_bit_lock(page_waitqueue(page), &wait,
603 					sync_page_killable, TASK_KILLABLE);
604 }
605 
606 /*
607  * Variant of lock_page that does not require the caller to hold a reference
608  * on the page's mapping.
609  */
610 void fastcall __lock_page_nosync(struct page *page)
611 {
612 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
613 	__wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
614 							TASK_UNINTERRUPTIBLE);
615 }
616 
617 /**
618  * find_get_page - find and get a page reference
619  * @mapping: the address_space to search
620  * @offset: the page index
621  *
622  * Is there a pagecache struct page at the given (mapping, offset) tuple?
623  * If yes, increment its refcount and return it; if no, return NULL.
624  */
625 struct page * find_get_page(struct address_space *mapping, pgoff_t offset)
626 {
627 	struct page *page;
628 
629 	read_lock_irq(&mapping->tree_lock);
630 	page = radix_tree_lookup(&mapping->page_tree, offset);
631 	if (page)
632 		page_cache_get(page);
633 	read_unlock_irq(&mapping->tree_lock);
634 	return page;
635 }
636 EXPORT_SYMBOL(find_get_page);
637 
638 /**
639  * find_lock_page - locate, pin and lock a pagecache page
640  * @mapping: the address_space to search
641  * @offset: the page index
642  *
643  * Locates the desired pagecache page, locks it, increments its reference
644  * count and returns its address.
645  *
646  * Returns zero if the page was not present. find_lock_page() may sleep.
647  */
648 struct page *find_lock_page(struct address_space *mapping,
649 				pgoff_t offset)
650 {
651 	struct page *page;
652 
653 repeat:
654 	read_lock_irq(&mapping->tree_lock);
655 	page = radix_tree_lookup(&mapping->page_tree, offset);
656 	if (page) {
657 		page_cache_get(page);
658 		if (TestSetPageLocked(page)) {
659 			read_unlock_irq(&mapping->tree_lock);
660 			__lock_page(page);
661 
662 			/* Has the page been truncated while we slept? */
663 			if (unlikely(page->mapping != mapping)) {
664 				unlock_page(page);
665 				page_cache_release(page);
666 				goto repeat;
667 			}
668 			VM_BUG_ON(page->index != offset);
669 			goto out;
670 		}
671 	}
672 	read_unlock_irq(&mapping->tree_lock);
673 out:
674 	return page;
675 }
676 EXPORT_SYMBOL(find_lock_page);
677 
678 /**
679  * find_or_create_page - locate or add a pagecache page
680  * @mapping: the page's address_space
681  * @index: the page's index into the mapping
682  * @gfp_mask: page allocation mode
683  *
684  * Locates a page in the pagecache.  If the page is not present, a new page
685  * is allocated using @gfp_mask and is added to the pagecache and to the VM's
686  * LRU list.  The returned page is locked and has its reference count
687  * incremented.
688  *
689  * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
690  * allocation!
691  *
692  * find_or_create_page() returns the desired page's address, or zero on
693  * memory exhaustion.
694  */
695 struct page *find_or_create_page(struct address_space *mapping,
696 		pgoff_t index, gfp_t gfp_mask)
697 {
698 	struct page *page;
699 	int err;
700 repeat:
701 	page = find_lock_page(mapping, index);
702 	if (!page) {
703 		page = __page_cache_alloc(gfp_mask);
704 		if (!page)
705 			return NULL;
706 		err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
707 		if (unlikely(err)) {
708 			page_cache_release(page);
709 			page = NULL;
710 			if (err == -EEXIST)
711 				goto repeat;
712 		}
713 	}
714 	return page;
715 }
716 EXPORT_SYMBOL(find_or_create_page);
717 
718 /**
719  * find_get_pages - gang pagecache lookup
720  * @mapping:	The address_space to search
721  * @start:	The starting page index
722  * @nr_pages:	The maximum number of pages
723  * @pages:	Where the resulting pages are placed
724  *
725  * find_get_pages() will search for and return a group of up to
726  * @nr_pages pages in the mapping.  The pages are placed at @pages.
727  * find_get_pages() takes a reference against the returned pages.
728  *
729  * The search returns a group of mapping-contiguous pages with ascending
730  * indexes.  There may be holes in the indices due to not-present pages.
731  *
732  * find_get_pages() returns the number of pages which were found.
733  */
734 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
735 			    unsigned int nr_pages, struct page **pages)
736 {
737 	unsigned int i;
738 	unsigned int ret;
739 
740 	read_lock_irq(&mapping->tree_lock);
741 	ret = radix_tree_gang_lookup(&mapping->page_tree,
742 				(void **)pages, start, nr_pages);
743 	for (i = 0; i < ret; i++)
744 		page_cache_get(pages[i]);
745 	read_unlock_irq(&mapping->tree_lock);
746 	return ret;
747 }
748 
749 /**
750  * find_get_pages_contig - gang contiguous pagecache lookup
751  * @mapping:	The address_space to search
752  * @index:	The starting page index
753  * @nr_pages:	The maximum number of pages
754  * @pages:	Where the resulting pages are placed
755  *
756  * find_get_pages_contig() works exactly like find_get_pages(), except
757  * that the returned number of pages are guaranteed to be contiguous.
758  *
759  * find_get_pages_contig() returns the number of pages which were found.
760  */
761 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
762 			       unsigned int nr_pages, struct page **pages)
763 {
764 	unsigned int i;
765 	unsigned int ret;
766 
767 	read_lock_irq(&mapping->tree_lock);
768 	ret = radix_tree_gang_lookup(&mapping->page_tree,
769 				(void **)pages, index, nr_pages);
770 	for (i = 0; i < ret; i++) {
771 		if (pages[i]->mapping == NULL || pages[i]->index != index)
772 			break;
773 
774 		page_cache_get(pages[i]);
775 		index++;
776 	}
777 	read_unlock_irq(&mapping->tree_lock);
778 	return i;
779 }
780 EXPORT_SYMBOL(find_get_pages_contig);
781 
782 /**
783  * find_get_pages_tag - find and return pages that match @tag
784  * @mapping:	the address_space to search
785  * @index:	the starting page index
786  * @tag:	the tag index
787  * @nr_pages:	the maximum number of pages
788  * @pages:	where the resulting pages are placed
789  *
790  * Like find_get_pages, except we only return pages which are tagged with
791  * @tag.   We update @index to index the next page for the traversal.
792  */
793 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
794 			int tag, unsigned int nr_pages, struct page **pages)
795 {
796 	unsigned int i;
797 	unsigned int ret;
798 
799 	read_lock_irq(&mapping->tree_lock);
800 	ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
801 				(void **)pages, *index, nr_pages, tag);
802 	for (i = 0; i < ret; i++)
803 		page_cache_get(pages[i]);
804 	if (ret)
805 		*index = pages[ret - 1]->index + 1;
806 	read_unlock_irq(&mapping->tree_lock);
807 	return ret;
808 }
809 EXPORT_SYMBOL(find_get_pages_tag);
810 
811 /**
812  * grab_cache_page_nowait - returns locked page at given index in given cache
813  * @mapping: target address_space
814  * @index: the page index
815  *
816  * Same as grab_cache_page(), but do not wait if the page is unavailable.
817  * This is intended for speculative data generators, where the data can
818  * be regenerated if the page couldn't be grabbed.  This routine should
819  * be safe to call while holding the lock for another page.
820  *
821  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
822  * and deadlock against the caller's locked page.
823  */
824 struct page *
825 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
826 {
827 	struct page *page = find_get_page(mapping, index);
828 
829 	if (page) {
830 		if (!TestSetPageLocked(page))
831 			return page;
832 		page_cache_release(page);
833 		return NULL;
834 	}
835 	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
836 	if (page && add_to_page_cache_lru(page, mapping, index, GFP_KERNEL)) {
837 		page_cache_release(page);
838 		page = NULL;
839 	}
840 	return page;
841 }
842 EXPORT_SYMBOL(grab_cache_page_nowait);
843 
844 /*
845  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
846  * a _large_ part of the i/o request. Imagine the worst scenario:
847  *
848  *      ---R__________________________________________B__________
849  *         ^ reading here                             ^ bad block(assume 4k)
850  *
851  * read(R) => miss => readahead(R...B) => media error => frustrating retries
852  * => failing the whole request => read(R) => read(R+1) =>
853  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
854  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
855  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
856  *
857  * It is going insane. Fix it by quickly scaling down the readahead size.
858  */
859 static void shrink_readahead_size_eio(struct file *filp,
860 					struct file_ra_state *ra)
861 {
862 	if (!ra->ra_pages)
863 		return;
864 
865 	ra->ra_pages /= 4;
866 }
867 
868 /**
869  * do_generic_mapping_read - generic file read routine
870  * @mapping:	address_space to be read
871  * @ra:		file's readahead state
872  * @filp:	the file to read
873  * @ppos:	current file position
874  * @desc:	read_descriptor
875  * @actor:	read method
876  *
877  * This is a generic file read routine, and uses the
878  * mapping->a_ops->readpage() function for the actual low-level stuff.
879  *
880  * This is really ugly. But the goto's actually try to clarify some
881  * of the logic when it comes to error handling etc.
882  *
883  * Note the struct file* is only passed for the use of readpage.
884  * It may be NULL.
885  */
886 void do_generic_mapping_read(struct address_space *mapping,
887 			     struct file_ra_state *ra,
888 			     struct file *filp,
889 			     loff_t *ppos,
890 			     read_descriptor_t *desc,
891 			     read_actor_t actor)
892 {
893 	struct inode *inode = mapping->host;
894 	pgoff_t index;
895 	pgoff_t last_index;
896 	pgoff_t prev_index;
897 	unsigned long offset;      /* offset into pagecache page */
898 	unsigned int prev_offset;
899 	int error;
900 
901 	index = *ppos >> PAGE_CACHE_SHIFT;
902 	prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
903 	prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
904 	last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
905 	offset = *ppos & ~PAGE_CACHE_MASK;
906 
907 	for (;;) {
908 		struct page *page;
909 		pgoff_t end_index;
910 		loff_t isize;
911 		unsigned long nr, ret;
912 
913 		cond_resched();
914 find_page:
915 		page = find_get_page(mapping, index);
916 		if (!page) {
917 			page_cache_sync_readahead(mapping,
918 					ra, filp,
919 					index, last_index - index);
920 			page = find_get_page(mapping, index);
921 			if (unlikely(page == NULL))
922 				goto no_cached_page;
923 		}
924 		if (PageReadahead(page)) {
925 			page_cache_async_readahead(mapping,
926 					ra, filp, page,
927 					index, last_index - index);
928 		}
929 		if (!PageUptodate(page))
930 			goto page_not_up_to_date;
931 page_ok:
932 		/*
933 		 * i_size must be checked after we know the page is Uptodate.
934 		 *
935 		 * Checking i_size after the check allows us to calculate
936 		 * the correct value for "nr", which means the zero-filled
937 		 * part of the page is not copied back to userspace (unless
938 		 * another truncate extends the file - this is desired though).
939 		 */
940 
941 		isize = i_size_read(inode);
942 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
943 		if (unlikely(!isize || index > end_index)) {
944 			page_cache_release(page);
945 			goto out;
946 		}
947 
948 		/* nr is the maximum number of bytes to copy from this page */
949 		nr = PAGE_CACHE_SIZE;
950 		if (index == end_index) {
951 			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
952 			if (nr <= offset) {
953 				page_cache_release(page);
954 				goto out;
955 			}
956 		}
957 		nr = nr - offset;
958 
959 		/* If users can be writing to this page using arbitrary
960 		 * virtual addresses, take care about potential aliasing
961 		 * before reading the page on the kernel side.
962 		 */
963 		if (mapping_writably_mapped(mapping))
964 			flush_dcache_page(page);
965 
966 		/*
967 		 * When a sequential read accesses a page several times,
968 		 * only mark it as accessed the first time.
969 		 */
970 		if (prev_index != index || offset != prev_offset)
971 			mark_page_accessed(page);
972 		prev_index = index;
973 
974 		/*
975 		 * Ok, we have the page, and it's up-to-date, so
976 		 * now we can copy it to user space...
977 		 *
978 		 * The actor routine returns how many bytes were actually used..
979 		 * NOTE! This may not be the same as how much of a user buffer
980 		 * we filled up (we may be padding etc), so we can only update
981 		 * "pos" here (the actor routine has to update the user buffer
982 		 * pointers and the remaining count).
983 		 */
984 		ret = actor(desc, page, offset, nr);
985 		offset += ret;
986 		index += offset >> PAGE_CACHE_SHIFT;
987 		offset &= ~PAGE_CACHE_MASK;
988 		prev_offset = offset;
989 
990 		page_cache_release(page);
991 		if (ret == nr && desc->count)
992 			continue;
993 		goto out;
994 
995 page_not_up_to_date:
996 		/* Get exclusive access to the page ... */
997 		if (lock_page_killable(page))
998 			goto readpage_eio;
999 
1000 		/* Did it get truncated before we got the lock? */
1001 		if (!page->mapping) {
1002 			unlock_page(page);
1003 			page_cache_release(page);
1004 			continue;
1005 		}
1006 
1007 		/* Did somebody else fill it already? */
1008 		if (PageUptodate(page)) {
1009 			unlock_page(page);
1010 			goto page_ok;
1011 		}
1012 
1013 readpage:
1014 		/* Start the actual read. The read will unlock the page. */
1015 		error = mapping->a_ops->readpage(filp, page);
1016 
1017 		if (unlikely(error)) {
1018 			if (error == AOP_TRUNCATED_PAGE) {
1019 				page_cache_release(page);
1020 				goto find_page;
1021 			}
1022 			goto readpage_error;
1023 		}
1024 
1025 		if (!PageUptodate(page)) {
1026 			if (lock_page_killable(page))
1027 				goto readpage_eio;
1028 			if (!PageUptodate(page)) {
1029 				if (page->mapping == NULL) {
1030 					/*
1031 					 * invalidate_inode_pages got it
1032 					 */
1033 					unlock_page(page);
1034 					page_cache_release(page);
1035 					goto find_page;
1036 				}
1037 				unlock_page(page);
1038 				shrink_readahead_size_eio(filp, ra);
1039 				goto readpage_eio;
1040 			}
1041 			unlock_page(page);
1042 		}
1043 
1044 		goto page_ok;
1045 
1046 readpage_eio:
1047 		error = -EIO;
1048 readpage_error:
1049 		/* UHHUH! A synchronous read error occurred. Report it */
1050 		desc->error = error;
1051 		page_cache_release(page);
1052 		goto out;
1053 
1054 no_cached_page:
1055 		/*
1056 		 * Ok, it wasn't cached, so we need to create a new
1057 		 * page..
1058 		 */
1059 		page = page_cache_alloc_cold(mapping);
1060 		if (!page) {
1061 			desc->error = -ENOMEM;
1062 			goto out;
1063 		}
1064 		error = add_to_page_cache_lru(page, mapping,
1065 						index, GFP_KERNEL);
1066 		if (error) {
1067 			page_cache_release(page);
1068 			if (error == -EEXIST)
1069 				goto find_page;
1070 			desc->error = error;
1071 			goto out;
1072 		}
1073 		goto readpage;
1074 	}
1075 
1076 out:
1077 	ra->prev_pos = prev_index;
1078 	ra->prev_pos <<= PAGE_CACHE_SHIFT;
1079 	ra->prev_pos |= prev_offset;
1080 
1081 	*ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1082 	if (filp)
1083 		file_accessed(filp);
1084 }
1085 EXPORT_SYMBOL(do_generic_mapping_read);
1086 
1087 int file_read_actor(read_descriptor_t *desc, struct page *page,
1088 			unsigned long offset, unsigned long size)
1089 {
1090 	char *kaddr;
1091 	unsigned long left, count = desc->count;
1092 
1093 	if (size > count)
1094 		size = count;
1095 
1096 	/*
1097 	 * Faults on the destination of a read are common, so do it before
1098 	 * taking the kmap.
1099 	 */
1100 	if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1101 		kaddr = kmap_atomic(page, KM_USER0);
1102 		left = __copy_to_user_inatomic(desc->arg.buf,
1103 						kaddr + offset, size);
1104 		kunmap_atomic(kaddr, KM_USER0);
1105 		if (left == 0)
1106 			goto success;
1107 	}
1108 
1109 	/* Do it the slow way */
1110 	kaddr = kmap(page);
1111 	left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1112 	kunmap(page);
1113 
1114 	if (left) {
1115 		size -= left;
1116 		desc->error = -EFAULT;
1117 	}
1118 success:
1119 	desc->count = count - size;
1120 	desc->written += size;
1121 	desc->arg.buf += size;
1122 	return size;
1123 }
1124 
1125 /*
1126  * Performs necessary checks before doing a write
1127  * @iov:	io vector request
1128  * @nr_segs:	number of segments in the iovec
1129  * @count:	number of bytes to write
1130  * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1131  *
1132  * Adjust number of segments and amount of bytes to write (nr_segs should be
1133  * properly initialized first). Returns appropriate error code that caller
1134  * should return or zero in case that write should be allowed.
1135  */
1136 int generic_segment_checks(const struct iovec *iov,
1137 			unsigned long *nr_segs, size_t *count, int access_flags)
1138 {
1139 	unsigned long   seg;
1140 	size_t cnt = 0;
1141 	for (seg = 0; seg < *nr_segs; seg++) {
1142 		const struct iovec *iv = &iov[seg];
1143 
1144 		/*
1145 		 * If any segment has a negative length, or the cumulative
1146 		 * length ever wraps negative then return -EINVAL.
1147 		 */
1148 		cnt += iv->iov_len;
1149 		if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1150 			return -EINVAL;
1151 		if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1152 			continue;
1153 		if (seg == 0)
1154 			return -EFAULT;
1155 		*nr_segs = seg;
1156 		cnt -= iv->iov_len;	/* This segment is no good */
1157 		break;
1158 	}
1159 	*count = cnt;
1160 	return 0;
1161 }
1162 EXPORT_SYMBOL(generic_segment_checks);
1163 
1164 /**
1165  * generic_file_aio_read - generic filesystem read routine
1166  * @iocb:	kernel I/O control block
1167  * @iov:	io vector request
1168  * @nr_segs:	number of segments in the iovec
1169  * @pos:	current file position
1170  *
1171  * This is the "read()" routine for all filesystems
1172  * that can use the page cache directly.
1173  */
1174 ssize_t
1175 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1176 		unsigned long nr_segs, loff_t pos)
1177 {
1178 	struct file *filp = iocb->ki_filp;
1179 	ssize_t retval;
1180 	unsigned long seg;
1181 	size_t count;
1182 	loff_t *ppos = &iocb->ki_pos;
1183 
1184 	count = 0;
1185 	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1186 	if (retval)
1187 		return retval;
1188 
1189 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1190 	if (filp->f_flags & O_DIRECT) {
1191 		loff_t size;
1192 		struct address_space *mapping;
1193 		struct inode *inode;
1194 
1195 		mapping = filp->f_mapping;
1196 		inode = mapping->host;
1197 		retval = 0;
1198 		if (!count)
1199 			goto out; /* skip atime */
1200 		size = i_size_read(inode);
1201 		if (pos < size) {
1202 			retval = generic_file_direct_IO(READ, iocb,
1203 						iov, pos, nr_segs);
1204 			if (retval > 0)
1205 				*ppos = pos + retval;
1206 		}
1207 		if (likely(retval != 0)) {
1208 			file_accessed(filp);
1209 			goto out;
1210 		}
1211 	}
1212 
1213 	retval = 0;
1214 	if (count) {
1215 		for (seg = 0; seg < nr_segs; seg++) {
1216 			read_descriptor_t desc;
1217 
1218 			desc.written = 0;
1219 			desc.arg.buf = iov[seg].iov_base;
1220 			desc.count = iov[seg].iov_len;
1221 			if (desc.count == 0)
1222 				continue;
1223 			desc.error = 0;
1224 			do_generic_file_read(filp,ppos,&desc,file_read_actor);
1225 			retval += desc.written;
1226 			if (desc.error) {
1227 				retval = retval ?: desc.error;
1228 				break;
1229 			}
1230 			if (desc.count > 0)
1231 				break;
1232 		}
1233 	}
1234 out:
1235 	return retval;
1236 }
1237 EXPORT_SYMBOL(generic_file_aio_read);
1238 
1239 static ssize_t
1240 do_readahead(struct address_space *mapping, struct file *filp,
1241 	     pgoff_t index, unsigned long nr)
1242 {
1243 	if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1244 		return -EINVAL;
1245 
1246 	force_page_cache_readahead(mapping, filp, index,
1247 					max_sane_readahead(nr));
1248 	return 0;
1249 }
1250 
1251 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1252 {
1253 	ssize_t ret;
1254 	struct file *file;
1255 
1256 	ret = -EBADF;
1257 	file = fget(fd);
1258 	if (file) {
1259 		if (file->f_mode & FMODE_READ) {
1260 			struct address_space *mapping = file->f_mapping;
1261 			pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1262 			pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1263 			unsigned long len = end - start + 1;
1264 			ret = do_readahead(mapping, file, start, len);
1265 		}
1266 		fput(file);
1267 	}
1268 	return ret;
1269 }
1270 
1271 #ifdef CONFIG_MMU
1272 /**
1273  * page_cache_read - adds requested page to the page cache if not already there
1274  * @file:	file to read
1275  * @offset:	page index
1276  *
1277  * This adds the requested page to the page cache if it isn't already there,
1278  * and schedules an I/O to read in its contents from disk.
1279  */
1280 static int fastcall page_cache_read(struct file * file, pgoff_t offset)
1281 {
1282 	struct address_space *mapping = file->f_mapping;
1283 	struct page *page;
1284 	int ret;
1285 
1286 	do {
1287 		page = page_cache_alloc_cold(mapping);
1288 		if (!page)
1289 			return -ENOMEM;
1290 
1291 		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1292 		if (ret == 0)
1293 			ret = mapping->a_ops->readpage(file, page);
1294 		else if (ret == -EEXIST)
1295 			ret = 0; /* losing race to add is OK */
1296 
1297 		page_cache_release(page);
1298 
1299 	} while (ret == AOP_TRUNCATED_PAGE);
1300 
1301 	return ret;
1302 }
1303 
1304 #define MMAP_LOTSAMISS  (100)
1305 
1306 /**
1307  * filemap_fault - read in file data for page fault handling
1308  * @vma:	vma in which the fault was taken
1309  * @vmf:	struct vm_fault containing details of the fault
1310  *
1311  * filemap_fault() is invoked via the vma operations vector for a
1312  * mapped memory region to read in file data during a page fault.
1313  *
1314  * The goto's are kind of ugly, but this streamlines the normal case of having
1315  * it in the page cache, and handles the special cases reasonably without
1316  * having a lot of duplicated code.
1317  */
1318 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1319 {
1320 	int error;
1321 	struct file *file = vma->vm_file;
1322 	struct address_space *mapping = file->f_mapping;
1323 	struct file_ra_state *ra = &file->f_ra;
1324 	struct inode *inode = mapping->host;
1325 	struct page *page;
1326 	unsigned long size;
1327 	int did_readaround = 0;
1328 	int ret = 0;
1329 
1330 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1331 	if (vmf->pgoff >= size)
1332 		return VM_FAULT_SIGBUS;
1333 
1334 	/* If we don't want any read-ahead, don't bother */
1335 	if (VM_RandomReadHint(vma))
1336 		goto no_cached_page;
1337 
1338 	/*
1339 	 * Do we have something in the page cache already?
1340 	 */
1341 retry_find:
1342 	page = find_lock_page(mapping, vmf->pgoff);
1343 	/*
1344 	 * For sequential accesses, we use the generic readahead logic.
1345 	 */
1346 	if (VM_SequentialReadHint(vma)) {
1347 		if (!page) {
1348 			page_cache_sync_readahead(mapping, ra, file,
1349 							   vmf->pgoff, 1);
1350 			page = find_lock_page(mapping, vmf->pgoff);
1351 			if (!page)
1352 				goto no_cached_page;
1353 		}
1354 		if (PageReadahead(page)) {
1355 			page_cache_async_readahead(mapping, ra, file, page,
1356 							   vmf->pgoff, 1);
1357 		}
1358 	}
1359 
1360 	if (!page) {
1361 		unsigned long ra_pages;
1362 
1363 		ra->mmap_miss++;
1364 
1365 		/*
1366 		 * Do we miss much more than hit in this file? If so,
1367 		 * stop bothering with read-ahead. It will only hurt.
1368 		 */
1369 		if (ra->mmap_miss > MMAP_LOTSAMISS)
1370 			goto no_cached_page;
1371 
1372 		/*
1373 		 * To keep the pgmajfault counter straight, we need to
1374 		 * check did_readaround, as this is an inner loop.
1375 		 */
1376 		if (!did_readaround) {
1377 			ret = VM_FAULT_MAJOR;
1378 			count_vm_event(PGMAJFAULT);
1379 		}
1380 		did_readaround = 1;
1381 		ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1382 		if (ra_pages) {
1383 			pgoff_t start = 0;
1384 
1385 			if (vmf->pgoff > ra_pages / 2)
1386 				start = vmf->pgoff - ra_pages / 2;
1387 			do_page_cache_readahead(mapping, file, start, ra_pages);
1388 		}
1389 		page = find_lock_page(mapping, vmf->pgoff);
1390 		if (!page)
1391 			goto no_cached_page;
1392 	}
1393 
1394 	if (!did_readaround)
1395 		ra->mmap_miss--;
1396 
1397 	/*
1398 	 * We have a locked page in the page cache, now we need to check
1399 	 * that it's up-to-date. If not, it is going to be due to an error.
1400 	 */
1401 	if (unlikely(!PageUptodate(page)))
1402 		goto page_not_uptodate;
1403 
1404 	/* Must recheck i_size under page lock */
1405 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1406 	if (unlikely(vmf->pgoff >= size)) {
1407 		unlock_page(page);
1408 		page_cache_release(page);
1409 		return VM_FAULT_SIGBUS;
1410 	}
1411 
1412 	/*
1413 	 * Found the page and have a reference on it.
1414 	 */
1415 	mark_page_accessed(page);
1416 	ra->prev_pos = (loff_t)page->index << PAGE_CACHE_SHIFT;
1417 	vmf->page = page;
1418 	return ret | VM_FAULT_LOCKED;
1419 
1420 no_cached_page:
1421 	/*
1422 	 * We're only likely to ever get here if MADV_RANDOM is in
1423 	 * effect.
1424 	 */
1425 	error = page_cache_read(file, vmf->pgoff);
1426 
1427 	/*
1428 	 * The page we want has now been added to the page cache.
1429 	 * In the unlikely event that someone removed it in the
1430 	 * meantime, we'll just come back here and read it again.
1431 	 */
1432 	if (error >= 0)
1433 		goto retry_find;
1434 
1435 	/*
1436 	 * An error return from page_cache_read can result if the
1437 	 * system is low on memory, or a problem occurs while trying
1438 	 * to schedule I/O.
1439 	 */
1440 	if (error == -ENOMEM)
1441 		return VM_FAULT_OOM;
1442 	return VM_FAULT_SIGBUS;
1443 
1444 page_not_uptodate:
1445 	/* IO error path */
1446 	if (!did_readaround) {
1447 		ret = VM_FAULT_MAJOR;
1448 		count_vm_event(PGMAJFAULT);
1449 	}
1450 
1451 	/*
1452 	 * Umm, take care of errors if the page isn't up-to-date.
1453 	 * Try to re-read it _once_. We do this synchronously,
1454 	 * because there really aren't any performance issues here
1455 	 * and we need to check for errors.
1456 	 */
1457 	ClearPageError(page);
1458 	error = mapping->a_ops->readpage(file, page);
1459 	page_cache_release(page);
1460 
1461 	if (!error || error == AOP_TRUNCATED_PAGE)
1462 		goto retry_find;
1463 
1464 	/* Things didn't work out. Return zero to tell the mm layer so. */
1465 	shrink_readahead_size_eio(file, ra);
1466 	return VM_FAULT_SIGBUS;
1467 }
1468 EXPORT_SYMBOL(filemap_fault);
1469 
1470 struct vm_operations_struct generic_file_vm_ops = {
1471 	.fault		= filemap_fault,
1472 };
1473 
1474 /* This is used for a general mmap of a disk file */
1475 
1476 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1477 {
1478 	struct address_space *mapping = file->f_mapping;
1479 
1480 	if (!mapping->a_ops->readpage)
1481 		return -ENOEXEC;
1482 	file_accessed(file);
1483 	vma->vm_ops = &generic_file_vm_ops;
1484 	vma->vm_flags |= VM_CAN_NONLINEAR;
1485 	return 0;
1486 }
1487 
1488 /*
1489  * This is for filesystems which do not implement ->writepage.
1490  */
1491 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1492 {
1493 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1494 		return -EINVAL;
1495 	return generic_file_mmap(file, vma);
1496 }
1497 #else
1498 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1499 {
1500 	return -ENOSYS;
1501 }
1502 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1503 {
1504 	return -ENOSYS;
1505 }
1506 #endif /* CONFIG_MMU */
1507 
1508 EXPORT_SYMBOL(generic_file_mmap);
1509 EXPORT_SYMBOL(generic_file_readonly_mmap);
1510 
1511 static struct page *__read_cache_page(struct address_space *mapping,
1512 				pgoff_t index,
1513 				int (*filler)(void *,struct page*),
1514 				void *data)
1515 {
1516 	struct page *page;
1517 	int err;
1518 repeat:
1519 	page = find_get_page(mapping, index);
1520 	if (!page) {
1521 		page = page_cache_alloc_cold(mapping);
1522 		if (!page)
1523 			return ERR_PTR(-ENOMEM);
1524 		err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1525 		if (unlikely(err)) {
1526 			page_cache_release(page);
1527 			if (err == -EEXIST)
1528 				goto repeat;
1529 			/* Presumably ENOMEM for radix tree node */
1530 			return ERR_PTR(err);
1531 		}
1532 		err = filler(data, page);
1533 		if (err < 0) {
1534 			page_cache_release(page);
1535 			page = ERR_PTR(err);
1536 		}
1537 	}
1538 	return page;
1539 }
1540 
1541 /*
1542  * Same as read_cache_page, but don't wait for page to become unlocked
1543  * after submitting it to the filler.
1544  */
1545 struct page *read_cache_page_async(struct address_space *mapping,
1546 				pgoff_t index,
1547 				int (*filler)(void *,struct page*),
1548 				void *data)
1549 {
1550 	struct page *page;
1551 	int err;
1552 
1553 retry:
1554 	page = __read_cache_page(mapping, index, filler, data);
1555 	if (IS_ERR(page))
1556 		return page;
1557 	if (PageUptodate(page))
1558 		goto out;
1559 
1560 	lock_page(page);
1561 	if (!page->mapping) {
1562 		unlock_page(page);
1563 		page_cache_release(page);
1564 		goto retry;
1565 	}
1566 	if (PageUptodate(page)) {
1567 		unlock_page(page);
1568 		goto out;
1569 	}
1570 	err = filler(data, page);
1571 	if (err < 0) {
1572 		page_cache_release(page);
1573 		return ERR_PTR(err);
1574 	}
1575 out:
1576 	mark_page_accessed(page);
1577 	return page;
1578 }
1579 EXPORT_SYMBOL(read_cache_page_async);
1580 
1581 /**
1582  * read_cache_page - read into page cache, fill it if needed
1583  * @mapping:	the page's address_space
1584  * @index:	the page index
1585  * @filler:	function to perform the read
1586  * @data:	destination for read data
1587  *
1588  * Read into the page cache. If a page already exists, and PageUptodate() is
1589  * not set, try to fill the page then wait for it to become unlocked.
1590  *
1591  * If the page does not get brought uptodate, return -EIO.
1592  */
1593 struct page *read_cache_page(struct address_space *mapping,
1594 				pgoff_t index,
1595 				int (*filler)(void *,struct page*),
1596 				void *data)
1597 {
1598 	struct page *page;
1599 
1600 	page = read_cache_page_async(mapping, index, filler, data);
1601 	if (IS_ERR(page))
1602 		goto out;
1603 	wait_on_page_locked(page);
1604 	if (!PageUptodate(page)) {
1605 		page_cache_release(page);
1606 		page = ERR_PTR(-EIO);
1607 	}
1608  out:
1609 	return page;
1610 }
1611 EXPORT_SYMBOL(read_cache_page);
1612 
1613 /*
1614  * The logic we want is
1615  *
1616  *	if suid or (sgid and xgrp)
1617  *		remove privs
1618  */
1619 int should_remove_suid(struct dentry *dentry)
1620 {
1621 	mode_t mode = dentry->d_inode->i_mode;
1622 	int kill = 0;
1623 
1624 	/* suid always must be killed */
1625 	if (unlikely(mode & S_ISUID))
1626 		kill = ATTR_KILL_SUID;
1627 
1628 	/*
1629 	 * sgid without any exec bits is just a mandatory locking mark; leave
1630 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1631 	 */
1632 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1633 		kill |= ATTR_KILL_SGID;
1634 
1635 	if (unlikely(kill && !capable(CAP_FSETID)))
1636 		return kill;
1637 
1638 	return 0;
1639 }
1640 EXPORT_SYMBOL(should_remove_suid);
1641 
1642 int __remove_suid(struct dentry *dentry, int kill)
1643 {
1644 	struct iattr newattrs;
1645 
1646 	newattrs.ia_valid = ATTR_FORCE | kill;
1647 	return notify_change(dentry, &newattrs);
1648 }
1649 
1650 int remove_suid(struct dentry *dentry)
1651 {
1652 	int killsuid = should_remove_suid(dentry);
1653 	int killpriv = security_inode_need_killpriv(dentry);
1654 	int error = 0;
1655 
1656 	if (killpriv < 0)
1657 		return killpriv;
1658 	if (killpriv)
1659 		error = security_inode_killpriv(dentry);
1660 	if (!error && killsuid)
1661 		error = __remove_suid(dentry, killsuid);
1662 
1663 	return error;
1664 }
1665 EXPORT_SYMBOL(remove_suid);
1666 
1667 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1668 			const struct iovec *iov, size_t base, size_t bytes)
1669 {
1670 	size_t copied = 0, left = 0;
1671 
1672 	while (bytes) {
1673 		char __user *buf = iov->iov_base + base;
1674 		int copy = min(bytes, iov->iov_len - base);
1675 
1676 		base = 0;
1677 		left = __copy_from_user_inatomic_nocache(vaddr, buf, copy);
1678 		copied += copy;
1679 		bytes -= copy;
1680 		vaddr += copy;
1681 		iov++;
1682 
1683 		if (unlikely(left))
1684 			break;
1685 	}
1686 	return copied - left;
1687 }
1688 
1689 /*
1690  * Copy as much as we can into the page and return the number of bytes which
1691  * were sucessfully copied.  If a fault is encountered then return the number of
1692  * bytes which were copied.
1693  */
1694 size_t iov_iter_copy_from_user_atomic(struct page *page,
1695 		struct iov_iter *i, unsigned long offset, size_t bytes)
1696 {
1697 	char *kaddr;
1698 	size_t copied;
1699 
1700 	BUG_ON(!in_atomic());
1701 	kaddr = kmap_atomic(page, KM_USER0);
1702 	if (likely(i->nr_segs == 1)) {
1703 		int left;
1704 		char __user *buf = i->iov->iov_base + i->iov_offset;
1705 		left = __copy_from_user_inatomic_nocache(kaddr + offset,
1706 							buf, bytes);
1707 		copied = bytes - left;
1708 	} else {
1709 		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1710 						i->iov, i->iov_offset, bytes);
1711 	}
1712 	kunmap_atomic(kaddr, KM_USER0);
1713 
1714 	return copied;
1715 }
1716 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1717 
1718 /*
1719  * This has the same sideeffects and return value as
1720  * iov_iter_copy_from_user_atomic().
1721  * The difference is that it attempts to resolve faults.
1722  * Page must not be locked.
1723  */
1724 size_t iov_iter_copy_from_user(struct page *page,
1725 		struct iov_iter *i, unsigned long offset, size_t bytes)
1726 {
1727 	char *kaddr;
1728 	size_t copied;
1729 
1730 	kaddr = kmap(page);
1731 	if (likely(i->nr_segs == 1)) {
1732 		int left;
1733 		char __user *buf = i->iov->iov_base + i->iov_offset;
1734 		left = __copy_from_user_nocache(kaddr + offset, buf, bytes);
1735 		copied = bytes - left;
1736 	} else {
1737 		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1738 						i->iov, i->iov_offset, bytes);
1739 	}
1740 	kunmap(page);
1741 	return copied;
1742 }
1743 EXPORT_SYMBOL(iov_iter_copy_from_user);
1744 
1745 static void __iov_iter_advance_iov(struct iov_iter *i, size_t bytes)
1746 {
1747 	if (likely(i->nr_segs == 1)) {
1748 		i->iov_offset += bytes;
1749 	} else {
1750 		const struct iovec *iov = i->iov;
1751 		size_t base = i->iov_offset;
1752 
1753 		/*
1754 		 * The !iov->iov_len check ensures we skip over unlikely
1755 		 * zero-length segments.
1756 		 */
1757 		while (bytes || !iov->iov_len) {
1758 			int copy = min(bytes, iov->iov_len - base);
1759 
1760 			bytes -= copy;
1761 			base += copy;
1762 			if (iov->iov_len == base) {
1763 				iov++;
1764 				base = 0;
1765 			}
1766 		}
1767 		i->iov = iov;
1768 		i->iov_offset = base;
1769 	}
1770 }
1771 
1772 void iov_iter_advance(struct iov_iter *i, size_t bytes)
1773 {
1774 	BUG_ON(i->count < bytes);
1775 
1776 	__iov_iter_advance_iov(i, bytes);
1777 	i->count -= bytes;
1778 }
1779 EXPORT_SYMBOL(iov_iter_advance);
1780 
1781 /*
1782  * Fault in the first iovec of the given iov_iter, to a maximum length
1783  * of bytes. Returns 0 on success, or non-zero if the memory could not be
1784  * accessed (ie. because it is an invalid address).
1785  *
1786  * writev-intensive code may want this to prefault several iovecs -- that
1787  * would be possible (callers must not rely on the fact that _only_ the
1788  * first iovec will be faulted with the current implementation).
1789  */
1790 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
1791 {
1792 	char __user *buf = i->iov->iov_base + i->iov_offset;
1793 	bytes = min(bytes, i->iov->iov_len - i->iov_offset);
1794 	return fault_in_pages_readable(buf, bytes);
1795 }
1796 EXPORT_SYMBOL(iov_iter_fault_in_readable);
1797 
1798 /*
1799  * Return the count of just the current iov_iter segment.
1800  */
1801 size_t iov_iter_single_seg_count(struct iov_iter *i)
1802 {
1803 	const struct iovec *iov = i->iov;
1804 	if (i->nr_segs == 1)
1805 		return i->count;
1806 	else
1807 		return min(i->count, iov->iov_len - i->iov_offset);
1808 }
1809 EXPORT_SYMBOL(iov_iter_single_seg_count);
1810 
1811 /*
1812  * Performs necessary checks before doing a write
1813  *
1814  * Can adjust writing position or amount of bytes to write.
1815  * Returns appropriate error code that caller should return or
1816  * zero in case that write should be allowed.
1817  */
1818 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1819 {
1820 	struct inode *inode = file->f_mapping->host;
1821 	unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1822 
1823         if (unlikely(*pos < 0))
1824                 return -EINVAL;
1825 
1826 	if (!isblk) {
1827 		/* FIXME: this is for backwards compatibility with 2.4 */
1828 		if (file->f_flags & O_APPEND)
1829                         *pos = i_size_read(inode);
1830 
1831 		if (limit != RLIM_INFINITY) {
1832 			if (*pos >= limit) {
1833 				send_sig(SIGXFSZ, current, 0);
1834 				return -EFBIG;
1835 			}
1836 			if (*count > limit - (typeof(limit))*pos) {
1837 				*count = limit - (typeof(limit))*pos;
1838 			}
1839 		}
1840 	}
1841 
1842 	/*
1843 	 * LFS rule
1844 	 */
1845 	if (unlikely(*pos + *count > MAX_NON_LFS &&
1846 				!(file->f_flags & O_LARGEFILE))) {
1847 		if (*pos >= MAX_NON_LFS) {
1848 			return -EFBIG;
1849 		}
1850 		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1851 			*count = MAX_NON_LFS - (unsigned long)*pos;
1852 		}
1853 	}
1854 
1855 	/*
1856 	 * Are we about to exceed the fs block limit ?
1857 	 *
1858 	 * If we have written data it becomes a short write.  If we have
1859 	 * exceeded without writing data we send a signal and return EFBIG.
1860 	 * Linus frestrict idea will clean these up nicely..
1861 	 */
1862 	if (likely(!isblk)) {
1863 		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
1864 			if (*count || *pos > inode->i_sb->s_maxbytes) {
1865 				return -EFBIG;
1866 			}
1867 			/* zero-length writes at ->s_maxbytes are OK */
1868 		}
1869 
1870 		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
1871 			*count = inode->i_sb->s_maxbytes - *pos;
1872 	} else {
1873 #ifdef CONFIG_BLOCK
1874 		loff_t isize;
1875 		if (bdev_read_only(I_BDEV(inode)))
1876 			return -EPERM;
1877 		isize = i_size_read(inode);
1878 		if (*pos >= isize) {
1879 			if (*count || *pos > isize)
1880 				return -ENOSPC;
1881 		}
1882 
1883 		if (*pos + *count > isize)
1884 			*count = isize - *pos;
1885 #else
1886 		return -EPERM;
1887 #endif
1888 	}
1889 	return 0;
1890 }
1891 EXPORT_SYMBOL(generic_write_checks);
1892 
1893 int pagecache_write_begin(struct file *file, struct address_space *mapping,
1894 				loff_t pos, unsigned len, unsigned flags,
1895 				struct page **pagep, void **fsdata)
1896 {
1897 	const struct address_space_operations *aops = mapping->a_ops;
1898 
1899 	if (aops->write_begin) {
1900 		return aops->write_begin(file, mapping, pos, len, flags,
1901 							pagep, fsdata);
1902 	} else {
1903 		int ret;
1904 		pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1905 		unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
1906 		struct inode *inode = mapping->host;
1907 		struct page *page;
1908 again:
1909 		page = __grab_cache_page(mapping, index);
1910 		*pagep = page;
1911 		if (!page)
1912 			return -ENOMEM;
1913 
1914 		if (flags & AOP_FLAG_UNINTERRUPTIBLE && !PageUptodate(page)) {
1915 			/*
1916 			 * There is no way to resolve a short write situation
1917 			 * for a !Uptodate page (except by double copying in
1918 			 * the caller done by generic_perform_write_2copy).
1919 			 *
1920 			 * Instead, we have to bring it uptodate here.
1921 			 */
1922 			ret = aops->readpage(file, page);
1923 			page_cache_release(page);
1924 			if (ret) {
1925 				if (ret == AOP_TRUNCATED_PAGE)
1926 					goto again;
1927 				return ret;
1928 			}
1929 			goto again;
1930 		}
1931 
1932 		ret = aops->prepare_write(file, page, offset, offset+len);
1933 		if (ret) {
1934 			unlock_page(page);
1935 			page_cache_release(page);
1936 			if (pos + len > inode->i_size)
1937 				vmtruncate(inode, inode->i_size);
1938 		}
1939 		return ret;
1940 	}
1941 }
1942 EXPORT_SYMBOL(pagecache_write_begin);
1943 
1944 int pagecache_write_end(struct file *file, struct address_space *mapping,
1945 				loff_t pos, unsigned len, unsigned copied,
1946 				struct page *page, void *fsdata)
1947 {
1948 	const struct address_space_operations *aops = mapping->a_ops;
1949 	int ret;
1950 
1951 	if (aops->write_end) {
1952 		mark_page_accessed(page);
1953 		ret = aops->write_end(file, mapping, pos, len, copied,
1954 							page, fsdata);
1955 	} else {
1956 		unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
1957 		struct inode *inode = mapping->host;
1958 
1959 		flush_dcache_page(page);
1960 		ret = aops->commit_write(file, page, offset, offset+len);
1961 		unlock_page(page);
1962 		mark_page_accessed(page);
1963 		page_cache_release(page);
1964 
1965 		if (ret < 0) {
1966 			if (pos + len > inode->i_size)
1967 				vmtruncate(inode, inode->i_size);
1968 		} else if (ret > 0)
1969 			ret = min_t(size_t, copied, ret);
1970 		else
1971 			ret = copied;
1972 	}
1973 
1974 	return ret;
1975 }
1976 EXPORT_SYMBOL(pagecache_write_end);
1977 
1978 ssize_t
1979 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
1980 		unsigned long *nr_segs, loff_t pos, loff_t *ppos,
1981 		size_t count, size_t ocount)
1982 {
1983 	struct file	*file = iocb->ki_filp;
1984 	struct address_space *mapping = file->f_mapping;
1985 	struct inode	*inode = mapping->host;
1986 	ssize_t		written;
1987 
1988 	if (count != ocount)
1989 		*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
1990 
1991 	written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
1992 	if (written > 0) {
1993 		loff_t end = pos + written;
1994 		if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
1995 			i_size_write(inode,  end);
1996 			mark_inode_dirty(inode);
1997 		}
1998 		*ppos = end;
1999 	}
2000 
2001 	/*
2002 	 * Sync the fs metadata but not the minor inode changes and
2003 	 * of course not the data as we did direct DMA for the IO.
2004 	 * i_mutex is held, which protects generic_osync_inode() from
2005 	 * livelocking.  AIO O_DIRECT ops attempt to sync metadata here.
2006 	 */
2007 	if ((written >= 0 || written == -EIOCBQUEUED) &&
2008 	    ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2009 		int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
2010 		if (err < 0)
2011 			written = err;
2012 	}
2013 	return written;
2014 }
2015 EXPORT_SYMBOL(generic_file_direct_write);
2016 
2017 /*
2018  * Find or create a page at the given pagecache position. Return the locked
2019  * page. This function is specifically for buffered writes.
2020  */
2021 struct page *__grab_cache_page(struct address_space *mapping, pgoff_t index)
2022 {
2023 	int status;
2024 	struct page *page;
2025 repeat:
2026 	page = find_lock_page(mapping, index);
2027 	if (likely(page))
2028 		return page;
2029 
2030 	page = page_cache_alloc(mapping);
2031 	if (!page)
2032 		return NULL;
2033 	status = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
2034 	if (unlikely(status)) {
2035 		page_cache_release(page);
2036 		if (status == -EEXIST)
2037 			goto repeat;
2038 		return NULL;
2039 	}
2040 	return page;
2041 }
2042 EXPORT_SYMBOL(__grab_cache_page);
2043 
2044 static ssize_t generic_perform_write_2copy(struct file *file,
2045 				struct iov_iter *i, loff_t pos)
2046 {
2047 	struct address_space *mapping = file->f_mapping;
2048 	const struct address_space_operations *a_ops = mapping->a_ops;
2049 	struct inode *inode = mapping->host;
2050 	long status = 0;
2051 	ssize_t written = 0;
2052 
2053 	do {
2054 		struct page *src_page;
2055 		struct page *page;
2056 		pgoff_t index;		/* Pagecache index for current page */
2057 		unsigned long offset;	/* Offset into pagecache page */
2058 		unsigned long bytes;	/* Bytes to write to page */
2059 		size_t copied;		/* Bytes copied from user */
2060 
2061 		offset = (pos & (PAGE_CACHE_SIZE - 1));
2062 		index = pos >> PAGE_CACHE_SHIFT;
2063 		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2064 						iov_iter_count(i));
2065 
2066 		/*
2067 		 * a non-NULL src_page indicates that we're doing the
2068 		 * copy via get_user_pages and kmap.
2069 		 */
2070 		src_page = NULL;
2071 
2072 		/*
2073 		 * Bring in the user page that we will copy from _first_.
2074 		 * Otherwise there's a nasty deadlock on copying from the
2075 		 * same page as we're writing to, without it being marked
2076 		 * up-to-date.
2077 		 *
2078 		 * Not only is this an optimisation, but it is also required
2079 		 * to check that the address is actually valid, when atomic
2080 		 * usercopies are used, below.
2081 		 */
2082 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2083 			status = -EFAULT;
2084 			break;
2085 		}
2086 
2087 		page = __grab_cache_page(mapping, index);
2088 		if (!page) {
2089 			status = -ENOMEM;
2090 			break;
2091 		}
2092 
2093 		/*
2094 		 * non-uptodate pages cannot cope with short copies, and we
2095 		 * cannot take a pagefault with the destination page locked.
2096 		 * So pin the source page to copy it.
2097 		 */
2098 		if (!PageUptodate(page) && !segment_eq(get_fs(), KERNEL_DS)) {
2099 			unlock_page(page);
2100 
2101 			src_page = alloc_page(GFP_KERNEL);
2102 			if (!src_page) {
2103 				page_cache_release(page);
2104 				status = -ENOMEM;
2105 				break;
2106 			}
2107 
2108 			/*
2109 			 * Cannot get_user_pages with a page locked for the
2110 			 * same reason as we can't take a page fault with a
2111 			 * page locked (as explained below).
2112 			 */
2113 			copied = iov_iter_copy_from_user(src_page, i,
2114 								offset, bytes);
2115 			if (unlikely(copied == 0)) {
2116 				status = -EFAULT;
2117 				page_cache_release(page);
2118 				page_cache_release(src_page);
2119 				break;
2120 			}
2121 			bytes = copied;
2122 
2123 			lock_page(page);
2124 			/*
2125 			 * Can't handle the page going uptodate here, because
2126 			 * that means we would use non-atomic usercopies, which
2127 			 * zero out the tail of the page, which can cause
2128 			 * zeroes to become transiently visible. We could just
2129 			 * use a non-zeroing copy, but the APIs aren't too
2130 			 * consistent.
2131 			 */
2132 			if (unlikely(!page->mapping || PageUptodate(page))) {
2133 				unlock_page(page);
2134 				page_cache_release(page);
2135 				page_cache_release(src_page);
2136 				continue;
2137 			}
2138 		}
2139 
2140 		status = a_ops->prepare_write(file, page, offset, offset+bytes);
2141 		if (unlikely(status))
2142 			goto fs_write_aop_error;
2143 
2144 		if (!src_page) {
2145 			/*
2146 			 * Must not enter the pagefault handler here, because
2147 			 * we hold the page lock, so we might recursively
2148 			 * deadlock on the same lock, or get an ABBA deadlock
2149 			 * against a different lock, or against the mmap_sem
2150 			 * (which nests outside the page lock).  So increment
2151 			 * preempt count, and use _atomic usercopies.
2152 			 *
2153 			 * The page is uptodate so we are OK to encounter a
2154 			 * short copy: if unmodified parts of the page are
2155 			 * marked dirty and written out to disk, it doesn't
2156 			 * really matter.
2157 			 */
2158 			pagefault_disable();
2159 			copied = iov_iter_copy_from_user_atomic(page, i,
2160 								offset, bytes);
2161 			pagefault_enable();
2162 		} else {
2163 			void *src, *dst;
2164 			src = kmap_atomic(src_page, KM_USER0);
2165 			dst = kmap_atomic(page, KM_USER1);
2166 			memcpy(dst + offset, src + offset, bytes);
2167 			kunmap_atomic(dst, KM_USER1);
2168 			kunmap_atomic(src, KM_USER0);
2169 			copied = bytes;
2170 		}
2171 		flush_dcache_page(page);
2172 
2173 		status = a_ops->commit_write(file, page, offset, offset+bytes);
2174 		if (unlikely(status < 0))
2175 			goto fs_write_aop_error;
2176 		if (unlikely(status > 0)) /* filesystem did partial write */
2177 			copied = min_t(size_t, copied, status);
2178 
2179 		unlock_page(page);
2180 		mark_page_accessed(page);
2181 		page_cache_release(page);
2182 		if (src_page)
2183 			page_cache_release(src_page);
2184 
2185 		iov_iter_advance(i, copied);
2186 		pos += copied;
2187 		written += copied;
2188 
2189 		balance_dirty_pages_ratelimited(mapping);
2190 		cond_resched();
2191 		continue;
2192 
2193 fs_write_aop_error:
2194 		unlock_page(page);
2195 		page_cache_release(page);
2196 		if (src_page)
2197 			page_cache_release(src_page);
2198 
2199 		/*
2200 		 * prepare_write() may have instantiated a few blocks
2201 		 * outside i_size.  Trim these off again. Don't need
2202 		 * i_size_read because we hold i_mutex.
2203 		 */
2204 		if (pos + bytes > inode->i_size)
2205 			vmtruncate(inode, inode->i_size);
2206 		break;
2207 	} while (iov_iter_count(i));
2208 
2209 	return written ? written : status;
2210 }
2211 
2212 static ssize_t generic_perform_write(struct file *file,
2213 				struct iov_iter *i, loff_t pos)
2214 {
2215 	struct address_space *mapping = file->f_mapping;
2216 	const struct address_space_operations *a_ops = mapping->a_ops;
2217 	long status = 0;
2218 	ssize_t written = 0;
2219 	unsigned int flags = 0;
2220 
2221 	/*
2222 	 * Copies from kernel address space cannot fail (NFSD is a big user).
2223 	 */
2224 	if (segment_eq(get_fs(), KERNEL_DS))
2225 		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2226 
2227 	do {
2228 		struct page *page;
2229 		pgoff_t index;		/* Pagecache index for current page */
2230 		unsigned long offset;	/* Offset into pagecache page */
2231 		unsigned long bytes;	/* Bytes to write to page */
2232 		size_t copied;		/* Bytes copied from user */
2233 		void *fsdata;
2234 
2235 		offset = (pos & (PAGE_CACHE_SIZE - 1));
2236 		index = pos >> PAGE_CACHE_SHIFT;
2237 		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2238 						iov_iter_count(i));
2239 
2240 again:
2241 
2242 		/*
2243 		 * Bring in the user page that we will copy from _first_.
2244 		 * Otherwise there's a nasty deadlock on copying from the
2245 		 * same page as we're writing to, without it being marked
2246 		 * up-to-date.
2247 		 *
2248 		 * Not only is this an optimisation, but it is also required
2249 		 * to check that the address is actually valid, when atomic
2250 		 * usercopies are used, below.
2251 		 */
2252 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2253 			status = -EFAULT;
2254 			break;
2255 		}
2256 
2257 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2258 						&page, &fsdata);
2259 		if (unlikely(status))
2260 			break;
2261 
2262 		pagefault_disable();
2263 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2264 		pagefault_enable();
2265 		flush_dcache_page(page);
2266 
2267 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2268 						page, fsdata);
2269 		if (unlikely(status < 0))
2270 			break;
2271 		copied = status;
2272 
2273 		cond_resched();
2274 
2275 		iov_iter_advance(i, copied);
2276 		if (unlikely(copied == 0)) {
2277 			/*
2278 			 * If we were unable to copy any data at all, we must
2279 			 * fall back to a single segment length write.
2280 			 *
2281 			 * If we didn't fallback here, we could livelock
2282 			 * because not all segments in the iov can be copied at
2283 			 * once without a pagefault.
2284 			 */
2285 			bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2286 						iov_iter_single_seg_count(i));
2287 			goto again;
2288 		}
2289 		pos += copied;
2290 		written += copied;
2291 
2292 		balance_dirty_pages_ratelimited(mapping);
2293 
2294 	} while (iov_iter_count(i));
2295 
2296 	return written ? written : status;
2297 }
2298 
2299 ssize_t
2300 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2301 		unsigned long nr_segs, loff_t pos, loff_t *ppos,
2302 		size_t count, ssize_t written)
2303 {
2304 	struct file *file = iocb->ki_filp;
2305 	struct address_space *mapping = file->f_mapping;
2306 	const struct address_space_operations *a_ops = mapping->a_ops;
2307 	struct inode *inode = mapping->host;
2308 	ssize_t status;
2309 	struct iov_iter i;
2310 
2311 	iov_iter_init(&i, iov, nr_segs, count, written);
2312 	if (a_ops->write_begin)
2313 		status = generic_perform_write(file, &i, pos);
2314 	else
2315 		status = generic_perform_write_2copy(file, &i, pos);
2316 
2317 	if (likely(status >= 0)) {
2318 		written += status;
2319 		*ppos = pos + status;
2320 
2321 		/*
2322 		 * For now, when the user asks for O_SYNC, we'll actually give
2323 		 * O_DSYNC
2324 		 */
2325 		if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2326 			if (!a_ops->writepage || !is_sync_kiocb(iocb))
2327 				status = generic_osync_inode(inode, mapping,
2328 						OSYNC_METADATA|OSYNC_DATA);
2329 		}
2330   	}
2331 
2332 	/*
2333 	 * If we get here for O_DIRECT writes then we must have fallen through
2334 	 * to buffered writes (block instantiation inside i_size).  So we sync
2335 	 * the file data here, to try to honour O_DIRECT expectations.
2336 	 */
2337 	if (unlikely(file->f_flags & O_DIRECT) && written)
2338 		status = filemap_write_and_wait(mapping);
2339 
2340 	return written ? written : status;
2341 }
2342 EXPORT_SYMBOL(generic_file_buffered_write);
2343 
2344 static ssize_t
2345 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2346 				unsigned long nr_segs, loff_t *ppos)
2347 {
2348 	struct file *file = iocb->ki_filp;
2349 	struct address_space * mapping = file->f_mapping;
2350 	size_t ocount;		/* original count */
2351 	size_t count;		/* after file limit checks */
2352 	struct inode 	*inode = mapping->host;
2353 	loff_t		pos;
2354 	ssize_t		written;
2355 	ssize_t		err;
2356 
2357 	ocount = 0;
2358 	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2359 	if (err)
2360 		return err;
2361 
2362 	count = ocount;
2363 	pos = *ppos;
2364 
2365 	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2366 
2367 	/* We can write back this queue in page reclaim */
2368 	current->backing_dev_info = mapping->backing_dev_info;
2369 	written = 0;
2370 
2371 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2372 	if (err)
2373 		goto out;
2374 
2375 	if (count == 0)
2376 		goto out;
2377 
2378 	err = remove_suid(file->f_path.dentry);
2379 	if (err)
2380 		goto out;
2381 
2382 	file_update_time(file);
2383 
2384 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2385 	if (unlikely(file->f_flags & O_DIRECT)) {
2386 		loff_t endbyte;
2387 		ssize_t written_buffered;
2388 
2389 		written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2390 							ppos, count, ocount);
2391 		if (written < 0 || written == count)
2392 			goto out;
2393 		/*
2394 		 * direct-io write to a hole: fall through to buffered I/O
2395 		 * for completing the rest of the request.
2396 		 */
2397 		pos += written;
2398 		count -= written;
2399 		written_buffered = generic_file_buffered_write(iocb, iov,
2400 						nr_segs, pos, ppos, count,
2401 						written);
2402 		/*
2403 		 * If generic_file_buffered_write() retuned a synchronous error
2404 		 * then we want to return the number of bytes which were
2405 		 * direct-written, or the error code if that was zero.  Note
2406 		 * that this differs from normal direct-io semantics, which
2407 		 * will return -EFOO even if some bytes were written.
2408 		 */
2409 		if (written_buffered < 0) {
2410 			err = written_buffered;
2411 			goto out;
2412 		}
2413 
2414 		/*
2415 		 * We need to ensure that the page cache pages are written to
2416 		 * disk and invalidated to preserve the expected O_DIRECT
2417 		 * semantics.
2418 		 */
2419 		endbyte = pos + written_buffered - written - 1;
2420 		err = do_sync_mapping_range(file->f_mapping, pos, endbyte,
2421 					    SYNC_FILE_RANGE_WAIT_BEFORE|
2422 					    SYNC_FILE_RANGE_WRITE|
2423 					    SYNC_FILE_RANGE_WAIT_AFTER);
2424 		if (err == 0) {
2425 			written = written_buffered;
2426 			invalidate_mapping_pages(mapping,
2427 						 pos >> PAGE_CACHE_SHIFT,
2428 						 endbyte >> PAGE_CACHE_SHIFT);
2429 		} else {
2430 			/*
2431 			 * We don't know how much we wrote, so just return
2432 			 * the number of bytes which were direct-written
2433 			 */
2434 		}
2435 	} else {
2436 		written = generic_file_buffered_write(iocb, iov, nr_segs,
2437 				pos, ppos, count, written);
2438 	}
2439 out:
2440 	current->backing_dev_info = NULL;
2441 	return written ? written : err;
2442 }
2443 
2444 ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
2445 		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
2446 {
2447 	struct file *file = iocb->ki_filp;
2448 	struct address_space *mapping = file->f_mapping;
2449 	struct inode *inode = mapping->host;
2450 	ssize_t ret;
2451 
2452 	BUG_ON(iocb->ki_pos != pos);
2453 
2454 	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2455 			&iocb->ki_pos);
2456 
2457 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2458 		ssize_t err;
2459 
2460 		err = sync_page_range_nolock(inode, mapping, pos, ret);
2461 		if (err < 0)
2462 			ret = err;
2463 	}
2464 	return ret;
2465 }
2466 EXPORT_SYMBOL(generic_file_aio_write_nolock);
2467 
2468 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2469 		unsigned long nr_segs, loff_t pos)
2470 {
2471 	struct file *file = iocb->ki_filp;
2472 	struct address_space *mapping = file->f_mapping;
2473 	struct inode *inode = mapping->host;
2474 	ssize_t ret;
2475 
2476 	BUG_ON(iocb->ki_pos != pos);
2477 
2478 	mutex_lock(&inode->i_mutex);
2479 	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2480 			&iocb->ki_pos);
2481 	mutex_unlock(&inode->i_mutex);
2482 
2483 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2484 		ssize_t err;
2485 
2486 		err = sync_page_range(inode, mapping, pos, ret);
2487 		if (err < 0)
2488 			ret = err;
2489 	}
2490 	return ret;
2491 }
2492 EXPORT_SYMBOL(generic_file_aio_write);
2493 
2494 /*
2495  * Called under i_mutex for writes to S_ISREG files.   Returns -EIO if something
2496  * went wrong during pagecache shootdown.
2497  */
2498 static ssize_t
2499 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
2500 	loff_t offset, unsigned long nr_segs)
2501 {
2502 	struct file *file = iocb->ki_filp;
2503 	struct address_space *mapping = file->f_mapping;
2504 	ssize_t retval;
2505 	size_t write_len;
2506 	pgoff_t end = 0; /* silence gcc */
2507 
2508 	/*
2509 	 * If it's a write, unmap all mmappings of the file up-front.  This
2510 	 * will cause any pte dirty bits to be propagated into the pageframes
2511 	 * for the subsequent filemap_write_and_wait().
2512 	 */
2513 	if (rw == WRITE) {
2514 		write_len = iov_length(iov, nr_segs);
2515 		end = (offset + write_len - 1) >> PAGE_CACHE_SHIFT;
2516 	       	if (mapping_mapped(mapping))
2517 			unmap_mapping_range(mapping, offset, write_len, 0);
2518 	}
2519 
2520 	retval = filemap_write_and_wait(mapping);
2521 	if (retval)
2522 		goto out;
2523 
2524 	/*
2525 	 * After a write we want buffered reads to be sure to go to disk to get
2526 	 * the new data.  We invalidate clean cached page from the region we're
2527 	 * about to write.  We do this *before* the write so that we can return
2528 	 * -EIO without clobbering -EIOCBQUEUED from ->direct_IO().
2529 	 */
2530 	if (rw == WRITE && mapping->nrpages) {
2531 		retval = invalidate_inode_pages2_range(mapping,
2532 					offset >> PAGE_CACHE_SHIFT, end);
2533 		if (retval)
2534 			goto out;
2535 	}
2536 
2537 	retval = mapping->a_ops->direct_IO(rw, iocb, iov, offset, nr_segs);
2538 
2539 	/*
2540 	 * Finally, try again to invalidate clean pages which might have been
2541 	 * cached by non-direct readahead, or faulted in by get_user_pages()
2542 	 * if the source of the write was an mmap'ed region of the file
2543 	 * we're writing.  Either one is a pretty crazy thing to do,
2544 	 * so we don't support it 100%.  If this invalidation
2545 	 * fails, tough, the write still worked...
2546 	 */
2547 	if (rw == WRITE && mapping->nrpages) {
2548 		invalidate_inode_pages2_range(mapping, offset >> PAGE_CACHE_SHIFT, end);
2549 	}
2550 out:
2551 	return retval;
2552 }
2553 
2554 /**
2555  * try_to_release_page() - release old fs-specific metadata on a page
2556  *
2557  * @page: the page which the kernel is trying to free
2558  * @gfp_mask: memory allocation flags (and I/O mode)
2559  *
2560  * The address_space is to try to release any data against the page
2561  * (presumably at page->private).  If the release was successful, return `1'.
2562  * Otherwise return zero.
2563  *
2564  * The @gfp_mask argument specifies whether I/O may be performed to release
2565  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
2566  *
2567  * NOTE: @gfp_mask may go away, and this function may become non-blocking.
2568  */
2569 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2570 {
2571 	struct address_space * const mapping = page->mapping;
2572 
2573 	BUG_ON(!PageLocked(page));
2574 	if (PageWriteback(page))
2575 		return 0;
2576 
2577 	if (mapping && mapping->a_ops->releasepage)
2578 		return mapping->a_ops->releasepage(page, gfp_mask);
2579 	return try_to_free_buffers(page);
2580 }
2581 
2582 EXPORT_SYMBOL(try_to_release_page);
2583