1 /* 2 * linux/mm/filemap.c 3 * 4 * Copyright (C) 1994-1999 Linus Torvalds 5 */ 6 7 /* 8 * This file handles the generic file mmap semantics used by 9 * most "normal" filesystems (but you don't /have/ to use this: 10 * the NFS filesystem used to do this differently, for example) 11 */ 12 #include <linux/export.h> 13 #include <linux/compiler.h> 14 #include <linux/fs.h> 15 #include <linux/uaccess.h> 16 #include <linux/aio.h> 17 #include <linux/capability.h> 18 #include <linux/kernel_stat.h> 19 #include <linux/gfp.h> 20 #include <linux/mm.h> 21 #include <linux/swap.h> 22 #include <linux/mman.h> 23 #include <linux/pagemap.h> 24 #include <linux/file.h> 25 #include <linux/uio.h> 26 #include <linux/hash.h> 27 #include <linux/writeback.h> 28 #include <linux/backing-dev.h> 29 #include <linux/pagevec.h> 30 #include <linux/blkdev.h> 31 #include <linux/security.h> 32 #include <linux/syscalls.h> 33 #include <linux/cpuset.h> 34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */ 35 #include <linux/memcontrol.h> 36 #include <linux/cleancache.h> 37 #include "internal.h" 38 39 /* 40 * FIXME: remove all knowledge of the buffer layer from the core VM 41 */ 42 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 43 44 #include <asm/mman.h> 45 46 /* 47 * Shared mappings implemented 30.11.1994. It's not fully working yet, 48 * though. 49 * 50 * Shared mappings now work. 15.8.1995 Bruno. 51 * 52 * finished 'unifying' the page and buffer cache and SMP-threaded the 53 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 54 * 55 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 56 */ 57 58 /* 59 * Lock ordering: 60 * 61 * ->i_mmap_mutex (truncate_pagecache) 62 * ->private_lock (__free_pte->__set_page_dirty_buffers) 63 * ->swap_lock (exclusive_swap_page, others) 64 * ->mapping->tree_lock 65 * 66 * ->i_mutex 67 * ->i_mmap_mutex (truncate->unmap_mapping_range) 68 * 69 * ->mmap_sem 70 * ->i_mmap_mutex 71 * ->page_table_lock or pte_lock (various, mainly in memory.c) 72 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock) 73 * 74 * ->mmap_sem 75 * ->lock_page (access_process_vm) 76 * 77 * ->i_mutex (generic_file_buffered_write) 78 * ->mmap_sem (fault_in_pages_readable->do_page_fault) 79 * 80 * bdi->wb.list_lock 81 * sb_lock (fs/fs-writeback.c) 82 * ->mapping->tree_lock (__sync_single_inode) 83 * 84 * ->i_mmap_mutex 85 * ->anon_vma.lock (vma_adjust) 86 * 87 * ->anon_vma.lock 88 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 89 * 90 * ->page_table_lock or pte_lock 91 * ->swap_lock (try_to_unmap_one) 92 * ->private_lock (try_to_unmap_one) 93 * ->tree_lock (try_to_unmap_one) 94 * ->zone.lru_lock (follow_page->mark_page_accessed) 95 * ->zone.lru_lock (check_pte_range->isolate_lru_page) 96 * ->private_lock (page_remove_rmap->set_page_dirty) 97 * ->tree_lock (page_remove_rmap->set_page_dirty) 98 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty) 99 * ->inode->i_lock (page_remove_rmap->set_page_dirty) 100 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 101 * ->inode->i_lock (zap_pte_range->set_page_dirty) 102 * ->private_lock (zap_pte_range->__set_page_dirty_buffers) 103 * 104 * ->i_mmap_mutex 105 * ->tasklist_lock (memory_failure, collect_procs_ao) 106 */ 107 108 /* 109 * Delete a page from the page cache and free it. Caller has to make 110 * sure the page is locked and that nobody else uses it - or that usage 111 * is safe. The caller must hold the mapping's tree_lock. 112 */ 113 void __delete_from_page_cache(struct page *page) 114 { 115 struct address_space *mapping = page->mapping; 116 117 /* 118 * if we're uptodate, flush out into the cleancache, otherwise 119 * invalidate any existing cleancache entries. We can't leave 120 * stale data around in the cleancache once our page is gone 121 */ 122 if (PageUptodate(page) && PageMappedToDisk(page)) 123 cleancache_put_page(page); 124 else 125 cleancache_invalidate_page(mapping, page); 126 127 radix_tree_delete(&mapping->page_tree, page->index); 128 page->mapping = NULL; 129 /* Leave page->index set: truncation lookup relies upon it */ 130 mapping->nrpages--; 131 __dec_zone_page_state(page, NR_FILE_PAGES); 132 if (PageSwapBacked(page)) 133 __dec_zone_page_state(page, NR_SHMEM); 134 BUG_ON(page_mapped(page)); 135 136 /* 137 * Some filesystems seem to re-dirty the page even after 138 * the VM has canceled the dirty bit (eg ext3 journaling). 139 * 140 * Fix it up by doing a final dirty accounting check after 141 * having removed the page entirely. 142 */ 143 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) { 144 dec_zone_page_state(page, NR_FILE_DIRTY); 145 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE); 146 } 147 } 148 149 /** 150 * delete_from_page_cache - delete page from page cache 151 * @page: the page which the kernel is trying to remove from page cache 152 * 153 * This must be called only on pages that have been verified to be in the page 154 * cache and locked. It will never put the page into the free list, the caller 155 * has a reference on the page. 156 */ 157 void delete_from_page_cache(struct page *page) 158 { 159 struct address_space *mapping = page->mapping; 160 void (*freepage)(struct page *); 161 162 BUG_ON(!PageLocked(page)); 163 164 freepage = mapping->a_ops->freepage; 165 spin_lock_irq(&mapping->tree_lock); 166 __delete_from_page_cache(page); 167 spin_unlock_irq(&mapping->tree_lock); 168 mem_cgroup_uncharge_cache_page(page); 169 170 if (freepage) 171 freepage(page); 172 page_cache_release(page); 173 } 174 EXPORT_SYMBOL(delete_from_page_cache); 175 176 static int sleep_on_page(void *word) 177 { 178 io_schedule(); 179 return 0; 180 } 181 182 static int sleep_on_page_killable(void *word) 183 { 184 sleep_on_page(word); 185 return fatal_signal_pending(current) ? -EINTR : 0; 186 } 187 188 /** 189 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 190 * @mapping: address space structure to write 191 * @start: offset in bytes where the range starts 192 * @end: offset in bytes where the range ends (inclusive) 193 * @sync_mode: enable synchronous operation 194 * 195 * Start writeback against all of a mapping's dirty pages that lie 196 * within the byte offsets <start, end> inclusive. 197 * 198 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 199 * opposed to a regular memory cleansing writeback. The difference between 200 * these two operations is that if a dirty page/buffer is encountered, it must 201 * be waited upon, and not just skipped over. 202 */ 203 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 204 loff_t end, int sync_mode) 205 { 206 int ret; 207 struct writeback_control wbc = { 208 .sync_mode = sync_mode, 209 .nr_to_write = LONG_MAX, 210 .range_start = start, 211 .range_end = end, 212 }; 213 214 if (!mapping_cap_writeback_dirty(mapping)) 215 return 0; 216 217 ret = do_writepages(mapping, &wbc); 218 return ret; 219 } 220 221 static inline int __filemap_fdatawrite(struct address_space *mapping, 222 int sync_mode) 223 { 224 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 225 } 226 227 int filemap_fdatawrite(struct address_space *mapping) 228 { 229 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 230 } 231 EXPORT_SYMBOL(filemap_fdatawrite); 232 233 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 234 loff_t end) 235 { 236 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 237 } 238 EXPORT_SYMBOL(filemap_fdatawrite_range); 239 240 /** 241 * filemap_flush - mostly a non-blocking flush 242 * @mapping: target address_space 243 * 244 * This is a mostly non-blocking flush. Not suitable for data-integrity 245 * purposes - I/O may not be started against all dirty pages. 246 */ 247 int filemap_flush(struct address_space *mapping) 248 { 249 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 250 } 251 EXPORT_SYMBOL(filemap_flush); 252 253 /** 254 * filemap_fdatawait_range - wait for writeback to complete 255 * @mapping: address space structure to wait for 256 * @start_byte: offset in bytes where the range starts 257 * @end_byte: offset in bytes where the range ends (inclusive) 258 * 259 * Walk the list of under-writeback pages of the given address space 260 * in the given range and wait for all of them. 261 */ 262 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 263 loff_t end_byte) 264 { 265 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT; 266 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT; 267 struct pagevec pvec; 268 int nr_pages; 269 int ret = 0; 270 271 if (end_byte < start_byte) 272 return 0; 273 274 pagevec_init(&pvec, 0); 275 while ((index <= end) && 276 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 277 PAGECACHE_TAG_WRITEBACK, 278 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) { 279 unsigned i; 280 281 for (i = 0; i < nr_pages; i++) { 282 struct page *page = pvec.pages[i]; 283 284 /* until radix tree lookup accepts end_index */ 285 if (page->index > end) 286 continue; 287 288 wait_on_page_writeback(page); 289 if (TestClearPageError(page)) 290 ret = -EIO; 291 } 292 pagevec_release(&pvec); 293 cond_resched(); 294 } 295 296 /* Check for outstanding write errors */ 297 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 298 ret = -ENOSPC; 299 if (test_and_clear_bit(AS_EIO, &mapping->flags)) 300 ret = -EIO; 301 302 return ret; 303 } 304 EXPORT_SYMBOL(filemap_fdatawait_range); 305 306 /** 307 * filemap_fdatawait - wait for all under-writeback pages to complete 308 * @mapping: address space structure to wait for 309 * 310 * Walk the list of under-writeback pages of the given address space 311 * and wait for all of them. 312 */ 313 int filemap_fdatawait(struct address_space *mapping) 314 { 315 loff_t i_size = i_size_read(mapping->host); 316 317 if (i_size == 0) 318 return 0; 319 320 return filemap_fdatawait_range(mapping, 0, i_size - 1); 321 } 322 EXPORT_SYMBOL(filemap_fdatawait); 323 324 int filemap_write_and_wait(struct address_space *mapping) 325 { 326 int err = 0; 327 328 if (mapping->nrpages) { 329 err = filemap_fdatawrite(mapping); 330 /* 331 * Even if the above returned error, the pages may be 332 * written partially (e.g. -ENOSPC), so we wait for it. 333 * But the -EIO is special case, it may indicate the worst 334 * thing (e.g. bug) happened, so we avoid waiting for it. 335 */ 336 if (err != -EIO) { 337 int err2 = filemap_fdatawait(mapping); 338 if (!err) 339 err = err2; 340 } 341 } 342 return err; 343 } 344 EXPORT_SYMBOL(filemap_write_and_wait); 345 346 /** 347 * filemap_write_and_wait_range - write out & wait on a file range 348 * @mapping: the address_space for the pages 349 * @lstart: offset in bytes where the range starts 350 * @lend: offset in bytes where the range ends (inclusive) 351 * 352 * Write out and wait upon file offsets lstart->lend, inclusive. 353 * 354 * Note that `lend' is inclusive (describes the last byte to be written) so 355 * that this function can be used to write to the very end-of-file (end = -1). 356 */ 357 int filemap_write_and_wait_range(struct address_space *mapping, 358 loff_t lstart, loff_t lend) 359 { 360 int err = 0; 361 362 if (mapping->nrpages) { 363 err = __filemap_fdatawrite_range(mapping, lstart, lend, 364 WB_SYNC_ALL); 365 /* See comment of filemap_write_and_wait() */ 366 if (err != -EIO) { 367 int err2 = filemap_fdatawait_range(mapping, 368 lstart, lend); 369 if (!err) 370 err = err2; 371 } 372 } 373 return err; 374 } 375 EXPORT_SYMBOL(filemap_write_and_wait_range); 376 377 /** 378 * replace_page_cache_page - replace a pagecache page with a new one 379 * @old: page to be replaced 380 * @new: page to replace with 381 * @gfp_mask: allocation mode 382 * 383 * This function replaces a page in the pagecache with a new one. On 384 * success it acquires the pagecache reference for the new page and 385 * drops it for the old page. Both the old and new pages must be 386 * locked. This function does not add the new page to the LRU, the 387 * caller must do that. 388 * 389 * The remove + add is atomic. The only way this function can fail is 390 * memory allocation failure. 391 */ 392 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask) 393 { 394 int error; 395 396 VM_BUG_ON(!PageLocked(old)); 397 VM_BUG_ON(!PageLocked(new)); 398 VM_BUG_ON(new->mapping); 399 400 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM); 401 if (!error) { 402 struct address_space *mapping = old->mapping; 403 void (*freepage)(struct page *); 404 405 pgoff_t offset = old->index; 406 freepage = mapping->a_ops->freepage; 407 408 page_cache_get(new); 409 new->mapping = mapping; 410 new->index = offset; 411 412 spin_lock_irq(&mapping->tree_lock); 413 __delete_from_page_cache(old); 414 error = radix_tree_insert(&mapping->page_tree, offset, new); 415 BUG_ON(error); 416 mapping->nrpages++; 417 __inc_zone_page_state(new, NR_FILE_PAGES); 418 if (PageSwapBacked(new)) 419 __inc_zone_page_state(new, NR_SHMEM); 420 spin_unlock_irq(&mapping->tree_lock); 421 /* mem_cgroup codes must not be called under tree_lock */ 422 mem_cgroup_replace_page_cache(old, new); 423 radix_tree_preload_end(); 424 if (freepage) 425 freepage(old); 426 page_cache_release(old); 427 } 428 429 return error; 430 } 431 EXPORT_SYMBOL_GPL(replace_page_cache_page); 432 433 /** 434 * add_to_page_cache_locked - add a locked page to the pagecache 435 * @page: page to add 436 * @mapping: the page's address_space 437 * @offset: page index 438 * @gfp_mask: page allocation mode 439 * 440 * This function is used to add a page to the pagecache. It must be locked. 441 * This function does not add the page to the LRU. The caller must do that. 442 */ 443 int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 444 pgoff_t offset, gfp_t gfp_mask) 445 { 446 int error; 447 448 VM_BUG_ON(!PageLocked(page)); 449 VM_BUG_ON(PageSwapBacked(page)); 450 451 error = mem_cgroup_cache_charge(page, current->mm, 452 gfp_mask & GFP_RECLAIM_MASK); 453 if (error) 454 goto out; 455 456 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM); 457 if (error == 0) { 458 page_cache_get(page); 459 page->mapping = mapping; 460 page->index = offset; 461 462 spin_lock_irq(&mapping->tree_lock); 463 error = radix_tree_insert(&mapping->page_tree, offset, page); 464 if (likely(!error)) { 465 mapping->nrpages++; 466 __inc_zone_page_state(page, NR_FILE_PAGES); 467 spin_unlock_irq(&mapping->tree_lock); 468 } else { 469 page->mapping = NULL; 470 /* Leave page->index set: truncation relies upon it */ 471 spin_unlock_irq(&mapping->tree_lock); 472 mem_cgroup_uncharge_cache_page(page); 473 page_cache_release(page); 474 } 475 radix_tree_preload_end(); 476 } else 477 mem_cgroup_uncharge_cache_page(page); 478 out: 479 return error; 480 } 481 EXPORT_SYMBOL(add_to_page_cache_locked); 482 483 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 484 pgoff_t offset, gfp_t gfp_mask) 485 { 486 int ret; 487 488 ret = add_to_page_cache(page, mapping, offset, gfp_mask); 489 if (ret == 0) 490 lru_cache_add_file(page); 491 return ret; 492 } 493 EXPORT_SYMBOL_GPL(add_to_page_cache_lru); 494 495 #ifdef CONFIG_NUMA 496 struct page *__page_cache_alloc(gfp_t gfp) 497 { 498 int n; 499 struct page *page; 500 501 if (cpuset_do_page_mem_spread()) { 502 unsigned int cpuset_mems_cookie; 503 do { 504 cpuset_mems_cookie = get_mems_allowed(); 505 n = cpuset_mem_spread_node(); 506 page = alloc_pages_exact_node(n, gfp, 0); 507 } while (!put_mems_allowed(cpuset_mems_cookie) && !page); 508 509 return page; 510 } 511 return alloc_pages(gfp, 0); 512 } 513 EXPORT_SYMBOL(__page_cache_alloc); 514 #endif 515 516 /* 517 * In order to wait for pages to become available there must be 518 * waitqueues associated with pages. By using a hash table of 519 * waitqueues where the bucket discipline is to maintain all 520 * waiters on the same queue and wake all when any of the pages 521 * become available, and for the woken contexts to check to be 522 * sure the appropriate page became available, this saves space 523 * at a cost of "thundering herd" phenomena during rare hash 524 * collisions. 525 */ 526 static wait_queue_head_t *page_waitqueue(struct page *page) 527 { 528 const struct zone *zone = page_zone(page); 529 530 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)]; 531 } 532 533 static inline void wake_up_page(struct page *page, int bit) 534 { 535 __wake_up_bit(page_waitqueue(page), &page->flags, bit); 536 } 537 538 void wait_on_page_bit(struct page *page, int bit_nr) 539 { 540 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr); 541 542 if (test_bit(bit_nr, &page->flags)) 543 __wait_on_bit(page_waitqueue(page), &wait, sleep_on_page, 544 TASK_UNINTERRUPTIBLE); 545 } 546 EXPORT_SYMBOL(wait_on_page_bit); 547 548 int wait_on_page_bit_killable(struct page *page, int bit_nr) 549 { 550 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr); 551 552 if (!test_bit(bit_nr, &page->flags)) 553 return 0; 554 555 return __wait_on_bit(page_waitqueue(page), &wait, 556 sleep_on_page_killable, TASK_KILLABLE); 557 } 558 559 /** 560 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue 561 * @page: Page defining the wait queue of interest 562 * @waiter: Waiter to add to the queue 563 * 564 * Add an arbitrary @waiter to the wait queue for the nominated @page. 565 */ 566 void add_page_wait_queue(struct page *page, wait_queue_t *waiter) 567 { 568 wait_queue_head_t *q = page_waitqueue(page); 569 unsigned long flags; 570 571 spin_lock_irqsave(&q->lock, flags); 572 __add_wait_queue(q, waiter); 573 spin_unlock_irqrestore(&q->lock, flags); 574 } 575 EXPORT_SYMBOL_GPL(add_page_wait_queue); 576 577 /** 578 * unlock_page - unlock a locked page 579 * @page: the page 580 * 581 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). 582 * Also wakes sleepers in wait_on_page_writeback() because the wakeup 583 * mechananism between PageLocked pages and PageWriteback pages is shared. 584 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. 585 * 586 * The mb is necessary to enforce ordering between the clear_bit and the read 587 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()). 588 */ 589 void unlock_page(struct page *page) 590 { 591 VM_BUG_ON(!PageLocked(page)); 592 clear_bit_unlock(PG_locked, &page->flags); 593 smp_mb__after_clear_bit(); 594 wake_up_page(page, PG_locked); 595 } 596 EXPORT_SYMBOL(unlock_page); 597 598 /** 599 * end_page_writeback - end writeback against a page 600 * @page: the page 601 */ 602 void end_page_writeback(struct page *page) 603 { 604 if (TestClearPageReclaim(page)) 605 rotate_reclaimable_page(page); 606 607 if (!test_clear_page_writeback(page)) 608 BUG(); 609 610 smp_mb__after_clear_bit(); 611 wake_up_page(page, PG_writeback); 612 } 613 EXPORT_SYMBOL(end_page_writeback); 614 615 /** 616 * __lock_page - get a lock on the page, assuming we need to sleep to get it 617 * @page: the page to lock 618 */ 619 void __lock_page(struct page *page) 620 { 621 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 622 623 __wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page, 624 TASK_UNINTERRUPTIBLE); 625 } 626 EXPORT_SYMBOL(__lock_page); 627 628 int __lock_page_killable(struct page *page) 629 { 630 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 631 632 return __wait_on_bit_lock(page_waitqueue(page), &wait, 633 sleep_on_page_killable, TASK_KILLABLE); 634 } 635 EXPORT_SYMBOL_GPL(__lock_page_killable); 636 637 int __lock_page_or_retry(struct page *page, struct mm_struct *mm, 638 unsigned int flags) 639 { 640 if (flags & FAULT_FLAG_ALLOW_RETRY) { 641 /* 642 * CAUTION! In this case, mmap_sem is not released 643 * even though return 0. 644 */ 645 if (flags & FAULT_FLAG_RETRY_NOWAIT) 646 return 0; 647 648 up_read(&mm->mmap_sem); 649 if (flags & FAULT_FLAG_KILLABLE) 650 wait_on_page_locked_killable(page); 651 else 652 wait_on_page_locked(page); 653 return 0; 654 } else { 655 if (flags & FAULT_FLAG_KILLABLE) { 656 int ret; 657 658 ret = __lock_page_killable(page); 659 if (ret) { 660 up_read(&mm->mmap_sem); 661 return 0; 662 } 663 } else 664 __lock_page(page); 665 return 1; 666 } 667 } 668 669 /** 670 * find_get_page - find and get a page reference 671 * @mapping: the address_space to search 672 * @offset: the page index 673 * 674 * Is there a pagecache struct page at the given (mapping, offset) tuple? 675 * If yes, increment its refcount and return it; if no, return NULL. 676 */ 677 struct page *find_get_page(struct address_space *mapping, pgoff_t offset) 678 { 679 void **pagep; 680 struct page *page; 681 682 rcu_read_lock(); 683 repeat: 684 page = NULL; 685 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset); 686 if (pagep) { 687 page = radix_tree_deref_slot(pagep); 688 if (unlikely(!page)) 689 goto out; 690 if (radix_tree_exception(page)) { 691 if (radix_tree_deref_retry(page)) 692 goto repeat; 693 /* 694 * Otherwise, shmem/tmpfs must be storing a swap entry 695 * here as an exceptional entry: so return it without 696 * attempting to raise page count. 697 */ 698 goto out; 699 } 700 if (!page_cache_get_speculative(page)) 701 goto repeat; 702 703 /* 704 * Has the page moved? 705 * This is part of the lockless pagecache protocol. See 706 * include/linux/pagemap.h for details. 707 */ 708 if (unlikely(page != *pagep)) { 709 page_cache_release(page); 710 goto repeat; 711 } 712 } 713 out: 714 rcu_read_unlock(); 715 716 return page; 717 } 718 EXPORT_SYMBOL(find_get_page); 719 720 /** 721 * find_lock_page - locate, pin and lock a pagecache page 722 * @mapping: the address_space to search 723 * @offset: the page index 724 * 725 * Locates the desired pagecache page, locks it, increments its reference 726 * count and returns its address. 727 * 728 * Returns zero if the page was not present. find_lock_page() may sleep. 729 */ 730 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset) 731 { 732 struct page *page; 733 734 repeat: 735 page = find_get_page(mapping, offset); 736 if (page && !radix_tree_exception(page)) { 737 lock_page(page); 738 /* Has the page been truncated? */ 739 if (unlikely(page->mapping != mapping)) { 740 unlock_page(page); 741 page_cache_release(page); 742 goto repeat; 743 } 744 VM_BUG_ON(page->index != offset); 745 } 746 return page; 747 } 748 EXPORT_SYMBOL(find_lock_page); 749 750 /** 751 * find_or_create_page - locate or add a pagecache page 752 * @mapping: the page's address_space 753 * @index: the page's index into the mapping 754 * @gfp_mask: page allocation mode 755 * 756 * Locates a page in the pagecache. If the page is not present, a new page 757 * is allocated using @gfp_mask and is added to the pagecache and to the VM's 758 * LRU list. The returned page is locked and has its reference count 759 * incremented. 760 * 761 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic 762 * allocation! 763 * 764 * find_or_create_page() returns the desired page's address, or zero on 765 * memory exhaustion. 766 */ 767 struct page *find_or_create_page(struct address_space *mapping, 768 pgoff_t index, gfp_t gfp_mask) 769 { 770 struct page *page; 771 int err; 772 repeat: 773 page = find_lock_page(mapping, index); 774 if (!page) { 775 page = __page_cache_alloc(gfp_mask); 776 if (!page) 777 return NULL; 778 /* 779 * We want a regular kernel memory (not highmem or DMA etc) 780 * allocation for the radix tree nodes, but we need to honour 781 * the context-specific requirements the caller has asked for. 782 * GFP_RECLAIM_MASK collects those requirements. 783 */ 784 err = add_to_page_cache_lru(page, mapping, index, 785 (gfp_mask & GFP_RECLAIM_MASK)); 786 if (unlikely(err)) { 787 page_cache_release(page); 788 page = NULL; 789 if (err == -EEXIST) 790 goto repeat; 791 } 792 } 793 return page; 794 } 795 EXPORT_SYMBOL(find_or_create_page); 796 797 /** 798 * find_get_pages - gang pagecache lookup 799 * @mapping: The address_space to search 800 * @start: The starting page index 801 * @nr_pages: The maximum number of pages 802 * @pages: Where the resulting pages are placed 803 * 804 * find_get_pages() will search for and return a group of up to 805 * @nr_pages pages in the mapping. The pages are placed at @pages. 806 * find_get_pages() takes a reference against the returned pages. 807 * 808 * The search returns a group of mapping-contiguous pages with ascending 809 * indexes. There may be holes in the indices due to not-present pages. 810 * 811 * find_get_pages() returns the number of pages which were found. 812 */ 813 unsigned find_get_pages(struct address_space *mapping, pgoff_t start, 814 unsigned int nr_pages, struct page **pages) 815 { 816 struct radix_tree_iter iter; 817 void **slot; 818 unsigned ret = 0; 819 820 if (unlikely(!nr_pages)) 821 return 0; 822 823 rcu_read_lock(); 824 restart: 825 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { 826 struct page *page; 827 repeat: 828 page = radix_tree_deref_slot(slot); 829 if (unlikely(!page)) 830 continue; 831 832 if (radix_tree_exception(page)) { 833 if (radix_tree_deref_retry(page)) { 834 /* 835 * Transient condition which can only trigger 836 * when entry at index 0 moves out of or back 837 * to root: none yet gotten, safe to restart. 838 */ 839 WARN_ON(iter.index); 840 goto restart; 841 } 842 /* 843 * Otherwise, shmem/tmpfs must be storing a swap entry 844 * here as an exceptional entry: so skip over it - 845 * we only reach this from invalidate_mapping_pages(). 846 */ 847 continue; 848 } 849 850 if (!page_cache_get_speculative(page)) 851 goto repeat; 852 853 /* Has the page moved? */ 854 if (unlikely(page != *slot)) { 855 page_cache_release(page); 856 goto repeat; 857 } 858 859 pages[ret] = page; 860 if (++ret == nr_pages) 861 break; 862 } 863 864 rcu_read_unlock(); 865 return ret; 866 } 867 868 /** 869 * find_get_pages_contig - gang contiguous pagecache lookup 870 * @mapping: The address_space to search 871 * @index: The starting page index 872 * @nr_pages: The maximum number of pages 873 * @pages: Where the resulting pages are placed 874 * 875 * find_get_pages_contig() works exactly like find_get_pages(), except 876 * that the returned number of pages are guaranteed to be contiguous. 877 * 878 * find_get_pages_contig() returns the number of pages which were found. 879 */ 880 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, 881 unsigned int nr_pages, struct page **pages) 882 { 883 struct radix_tree_iter iter; 884 void **slot; 885 unsigned int ret = 0; 886 887 if (unlikely(!nr_pages)) 888 return 0; 889 890 rcu_read_lock(); 891 restart: 892 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) { 893 struct page *page; 894 repeat: 895 page = radix_tree_deref_slot(slot); 896 /* The hole, there no reason to continue */ 897 if (unlikely(!page)) 898 break; 899 900 if (radix_tree_exception(page)) { 901 if (radix_tree_deref_retry(page)) { 902 /* 903 * Transient condition which can only trigger 904 * when entry at index 0 moves out of or back 905 * to root: none yet gotten, safe to restart. 906 */ 907 goto restart; 908 } 909 /* 910 * Otherwise, shmem/tmpfs must be storing a swap entry 911 * here as an exceptional entry: so stop looking for 912 * contiguous pages. 913 */ 914 break; 915 } 916 917 if (!page_cache_get_speculative(page)) 918 goto repeat; 919 920 /* Has the page moved? */ 921 if (unlikely(page != *slot)) { 922 page_cache_release(page); 923 goto repeat; 924 } 925 926 /* 927 * must check mapping and index after taking the ref. 928 * otherwise we can get both false positives and false 929 * negatives, which is just confusing to the caller. 930 */ 931 if (page->mapping == NULL || page->index != iter.index) { 932 page_cache_release(page); 933 break; 934 } 935 936 pages[ret] = page; 937 if (++ret == nr_pages) 938 break; 939 } 940 rcu_read_unlock(); 941 return ret; 942 } 943 EXPORT_SYMBOL(find_get_pages_contig); 944 945 /** 946 * find_get_pages_tag - find and return pages that match @tag 947 * @mapping: the address_space to search 948 * @index: the starting page index 949 * @tag: the tag index 950 * @nr_pages: the maximum number of pages 951 * @pages: where the resulting pages are placed 952 * 953 * Like find_get_pages, except we only return pages which are tagged with 954 * @tag. We update @index to index the next page for the traversal. 955 */ 956 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, 957 int tag, unsigned int nr_pages, struct page **pages) 958 { 959 struct radix_tree_iter iter; 960 void **slot; 961 unsigned ret = 0; 962 963 if (unlikely(!nr_pages)) 964 return 0; 965 966 rcu_read_lock(); 967 restart: 968 radix_tree_for_each_tagged(slot, &mapping->page_tree, 969 &iter, *index, tag) { 970 struct page *page; 971 repeat: 972 page = radix_tree_deref_slot(slot); 973 if (unlikely(!page)) 974 continue; 975 976 if (radix_tree_exception(page)) { 977 if (radix_tree_deref_retry(page)) { 978 /* 979 * Transient condition which can only trigger 980 * when entry at index 0 moves out of or back 981 * to root: none yet gotten, safe to restart. 982 */ 983 goto restart; 984 } 985 /* 986 * This function is never used on a shmem/tmpfs 987 * mapping, so a swap entry won't be found here. 988 */ 989 BUG(); 990 } 991 992 if (!page_cache_get_speculative(page)) 993 goto repeat; 994 995 /* Has the page moved? */ 996 if (unlikely(page != *slot)) { 997 page_cache_release(page); 998 goto repeat; 999 } 1000 1001 pages[ret] = page; 1002 if (++ret == nr_pages) 1003 break; 1004 } 1005 1006 rcu_read_unlock(); 1007 1008 if (ret) 1009 *index = pages[ret - 1]->index + 1; 1010 1011 return ret; 1012 } 1013 EXPORT_SYMBOL(find_get_pages_tag); 1014 1015 /** 1016 * grab_cache_page_nowait - returns locked page at given index in given cache 1017 * @mapping: target address_space 1018 * @index: the page index 1019 * 1020 * Same as grab_cache_page(), but do not wait if the page is unavailable. 1021 * This is intended for speculative data generators, where the data can 1022 * be regenerated if the page couldn't be grabbed. This routine should 1023 * be safe to call while holding the lock for another page. 1024 * 1025 * Clear __GFP_FS when allocating the page to avoid recursion into the fs 1026 * and deadlock against the caller's locked page. 1027 */ 1028 struct page * 1029 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index) 1030 { 1031 struct page *page = find_get_page(mapping, index); 1032 1033 if (page) { 1034 if (trylock_page(page)) 1035 return page; 1036 page_cache_release(page); 1037 return NULL; 1038 } 1039 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS); 1040 if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) { 1041 page_cache_release(page); 1042 page = NULL; 1043 } 1044 return page; 1045 } 1046 EXPORT_SYMBOL(grab_cache_page_nowait); 1047 1048 /* 1049 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 1050 * a _large_ part of the i/o request. Imagine the worst scenario: 1051 * 1052 * ---R__________________________________________B__________ 1053 * ^ reading here ^ bad block(assume 4k) 1054 * 1055 * read(R) => miss => readahead(R...B) => media error => frustrating retries 1056 * => failing the whole request => read(R) => read(R+1) => 1057 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 1058 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 1059 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 1060 * 1061 * It is going insane. Fix it by quickly scaling down the readahead size. 1062 */ 1063 static void shrink_readahead_size_eio(struct file *filp, 1064 struct file_ra_state *ra) 1065 { 1066 ra->ra_pages /= 4; 1067 } 1068 1069 /** 1070 * do_generic_file_read - generic file read routine 1071 * @filp: the file to read 1072 * @ppos: current file position 1073 * @desc: read_descriptor 1074 * @actor: read method 1075 * 1076 * This is a generic file read routine, and uses the 1077 * mapping->a_ops->readpage() function for the actual low-level stuff. 1078 * 1079 * This is really ugly. But the goto's actually try to clarify some 1080 * of the logic when it comes to error handling etc. 1081 */ 1082 static void do_generic_file_read(struct file *filp, loff_t *ppos, 1083 read_descriptor_t *desc, read_actor_t actor) 1084 { 1085 struct address_space *mapping = filp->f_mapping; 1086 struct inode *inode = mapping->host; 1087 struct file_ra_state *ra = &filp->f_ra; 1088 pgoff_t index; 1089 pgoff_t last_index; 1090 pgoff_t prev_index; 1091 unsigned long offset; /* offset into pagecache page */ 1092 unsigned int prev_offset; 1093 int error; 1094 1095 index = *ppos >> PAGE_CACHE_SHIFT; 1096 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT; 1097 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1); 1098 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT; 1099 offset = *ppos & ~PAGE_CACHE_MASK; 1100 1101 for (;;) { 1102 struct page *page; 1103 pgoff_t end_index; 1104 loff_t isize; 1105 unsigned long nr, ret; 1106 1107 cond_resched(); 1108 find_page: 1109 page = find_get_page(mapping, index); 1110 if (!page) { 1111 page_cache_sync_readahead(mapping, 1112 ra, filp, 1113 index, last_index - index); 1114 page = find_get_page(mapping, index); 1115 if (unlikely(page == NULL)) 1116 goto no_cached_page; 1117 } 1118 if (PageReadahead(page)) { 1119 page_cache_async_readahead(mapping, 1120 ra, filp, page, 1121 index, last_index - index); 1122 } 1123 if (!PageUptodate(page)) { 1124 if (inode->i_blkbits == PAGE_CACHE_SHIFT || 1125 !mapping->a_ops->is_partially_uptodate) 1126 goto page_not_up_to_date; 1127 if (!trylock_page(page)) 1128 goto page_not_up_to_date; 1129 /* Did it get truncated before we got the lock? */ 1130 if (!page->mapping) 1131 goto page_not_up_to_date_locked; 1132 if (!mapping->a_ops->is_partially_uptodate(page, 1133 desc, offset)) 1134 goto page_not_up_to_date_locked; 1135 unlock_page(page); 1136 } 1137 page_ok: 1138 /* 1139 * i_size must be checked after we know the page is Uptodate. 1140 * 1141 * Checking i_size after the check allows us to calculate 1142 * the correct value for "nr", which means the zero-filled 1143 * part of the page is not copied back to userspace (unless 1144 * another truncate extends the file - this is desired though). 1145 */ 1146 1147 isize = i_size_read(inode); 1148 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 1149 if (unlikely(!isize || index > end_index)) { 1150 page_cache_release(page); 1151 goto out; 1152 } 1153 1154 /* nr is the maximum number of bytes to copy from this page */ 1155 nr = PAGE_CACHE_SIZE; 1156 if (index == end_index) { 1157 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 1158 if (nr <= offset) { 1159 page_cache_release(page); 1160 goto out; 1161 } 1162 } 1163 nr = nr - offset; 1164 1165 /* If users can be writing to this page using arbitrary 1166 * virtual addresses, take care about potential aliasing 1167 * before reading the page on the kernel side. 1168 */ 1169 if (mapping_writably_mapped(mapping)) 1170 flush_dcache_page(page); 1171 1172 /* 1173 * When a sequential read accesses a page several times, 1174 * only mark it as accessed the first time. 1175 */ 1176 if (prev_index != index || offset != prev_offset) 1177 mark_page_accessed(page); 1178 prev_index = index; 1179 1180 /* 1181 * Ok, we have the page, and it's up-to-date, so 1182 * now we can copy it to user space... 1183 * 1184 * The actor routine returns how many bytes were actually used.. 1185 * NOTE! This may not be the same as how much of a user buffer 1186 * we filled up (we may be padding etc), so we can only update 1187 * "pos" here (the actor routine has to update the user buffer 1188 * pointers and the remaining count). 1189 */ 1190 ret = actor(desc, page, offset, nr); 1191 offset += ret; 1192 index += offset >> PAGE_CACHE_SHIFT; 1193 offset &= ~PAGE_CACHE_MASK; 1194 prev_offset = offset; 1195 1196 page_cache_release(page); 1197 if (ret == nr && desc->count) 1198 continue; 1199 goto out; 1200 1201 page_not_up_to_date: 1202 /* Get exclusive access to the page ... */ 1203 error = lock_page_killable(page); 1204 if (unlikely(error)) 1205 goto readpage_error; 1206 1207 page_not_up_to_date_locked: 1208 /* Did it get truncated before we got the lock? */ 1209 if (!page->mapping) { 1210 unlock_page(page); 1211 page_cache_release(page); 1212 continue; 1213 } 1214 1215 /* Did somebody else fill it already? */ 1216 if (PageUptodate(page)) { 1217 unlock_page(page); 1218 goto page_ok; 1219 } 1220 1221 readpage: 1222 /* 1223 * A previous I/O error may have been due to temporary 1224 * failures, eg. multipath errors. 1225 * PG_error will be set again if readpage fails. 1226 */ 1227 ClearPageError(page); 1228 /* Start the actual read. The read will unlock the page. */ 1229 error = mapping->a_ops->readpage(filp, page); 1230 1231 if (unlikely(error)) { 1232 if (error == AOP_TRUNCATED_PAGE) { 1233 page_cache_release(page); 1234 goto find_page; 1235 } 1236 goto readpage_error; 1237 } 1238 1239 if (!PageUptodate(page)) { 1240 error = lock_page_killable(page); 1241 if (unlikely(error)) 1242 goto readpage_error; 1243 if (!PageUptodate(page)) { 1244 if (page->mapping == NULL) { 1245 /* 1246 * invalidate_mapping_pages got it 1247 */ 1248 unlock_page(page); 1249 page_cache_release(page); 1250 goto find_page; 1251 } 1252 unlock_page(page); 1253 shrink_readahead_size_eio(filp, ra); 1254 error = -EIO; 1255 goto readpage_error; 1256 } 1257 unlock_page(page); 1258 } 1259 1260 goto page_ok; 1261 1262 readpage_error: 1263 /* UHHUH! A synchronous read error occurred. Report it */ 1264 desc->error = error; 1265 page_cache_release(page); 1266 goto out; 1267 1268 no_cached_page: 1269 /* 1270 * Ok, it wasn't cached, so we need to create a new 1271 * page.. 1272 */ 1273 page = page_cache_alloc_cold(mapping); 1274 if (!page) { 1275 desc->error = -ENOMEM; 1276 goto out; 1277 } 1278 error = add_to_page_cache_lru(page, mapping, 1279 index, GFP_KERNEL); 1280 if (error) { 1281 page_cache_release(page); 1282 if (error == -EEXIST) 1283 goto find_page; 1284 desc->error = error; 1285 goto out; 1286 } 1287 goto readpage; 1288 } 1289 1290 out: 1291 ra->prev_pos = prev_index; 1292 ra->prev_pos <<= PAGE_CACHE_SHIFT; 1293 ra->prev_pos |= prev_offset; 1294 1295 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset; 1296 file_accessed(filp); 1297 } 1298 1299 int file_read_actor(read_descriptor_t *desc, struct page *page, 1300 unsigned long offset, unsigned long size) 1301 { 1302 char *kaddr; 1303 unsigned long left, count = desc->count; 1304 1305 if (size > count) 1306 size = count; 1307 1308 /* 1309 * Faults on the destination of a read are common, so do it before 1310 * taking the kmap. 1311 */ 1312 if (!fault_in_pages_writeable(desc->arg.buf, size)) { 1313 kaddr = kmap_atomic(page); 1314 left = __copy_to_user_inatomic(desc->arg.buf, 1315 kaddr + offset, size); 1316 kunmap_atomic(kaddr); 1317 if (left == 0) 1318 goto success; 1319 } 1320 1321 /* Do it the slow way */ 1322 kaddr = kmap(page); 1323 left = __copy_to_user(desc->arg.buf, kaddr + offset, size); 1324 kunmap(page); 1325 1326 if (left) { 1327 size -= left; 1328 desc->error = -EFAULT; 1329 } 1330 success: 1331 desc->count = count - size; 1332 desc->written += size; 1333 desc->arg.buf += size; 1334 return size; 1335 } 1336 1337 /* 1338 * Performs necessary checks before doing a write 1339 * @iov: io vector request 1340 * @nr_segs: number of segments in the iovec 1341 * @count: number of bytes to write 1342 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE 1343 * 1344 * Adjust number of segments and amount of bytes to write (nr_segs should be 1345 * properly initialized first). Returns appropriate error code that caller 1346 * should return or zero in case that write should be allowed. 1347 */ 1348 int generic_segment_checks(const struct iovec *iov, 1349 unsigned long *nr_segs, size_t *count, int access_flags) 1350 { 1351 unsigned long seg; 1352 size_t cnt = 0; 1353 for (seg = 0; seg < *nr_segs; seg++) { 1354 const struct iovec *iv = &iov[seg]; 1355 1356 /* 1357 * If any segment has a negative length, or the cumulative 1358 * length ever wraps negative then return -EINVAL. 1359 */ 1360 cnt += iv->iov_len; 1361 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0)) 1362 return -EINVAL; 1363 if (access_ok(access_flags, iv->iov_base, iv->iov_len)) 1364 continue; 1365 if (seg == 0) 1366 return -EFAULT; 1367 *nr_segs = seg; 1368 cnt -= iv->iov_len; /* This segment is no good */ 1369 break; 1370 } 1371 *count = cnt; 1372 return 0; 1373 } 1374 EXPORT_SYMBOL(generic_segment_checks); 1375 1376 /** 1377 * generic_file_aio_read - generic filesystem read routine 1378 * @iocb: kernel I/O control block 1379 * @iov: io vector request 1380 * @nr_segs: number of segments in the iovec 1381 * @pos: current file position 1382 * 1383 * This is the "read()" routine for all filesystems 1384 * that can use the page cache directly. 1385 */ 1386 ssize_t 1387 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov, 1388 unsigned long nr_segs, loff_t pos) 1389 { 1390 struct file *filp = iocb->ki_filp; 1391 ssize_t retval; 1392 unsigned long seg = 0; 1393 size_t count; 1394 loff_t *ppos = &iocb->ki_pos; 1395 1396 count = 0; 1397 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE); 1398 if (retval) 1399 return retval; 1400 1401 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ 1402 if (filp->f_flags & O_DIRECT) { 1403 loff_t size; 1404 struct address_space *mapping; 1405 struct inode *inode; 1406 1407 mapping = filp->f_mapping; 1408 inode = mapping->host; 1409 if (!count) 1410 goto out; /* skip atime */ 1411 size = i_size_read(inode); 1412 if (pos < size) { 1413 retval = filemap_write_and_wait_range(mapping, pos, 1414 pos + iov_length(iov, nr_segs) - 1); 1415 if (!retval) { 1416 struct blk_plug plug; 1417 1418 blk_start_plug(&plug); 1419 retval = mapping->a_ops->direct_IO(READ, iocb, 1420 iov, pos, nr_segs); 1421 blk_finish_plug(&plug); 1422 } 1423 if (retval > 0) { 1424 *ppos = pos + retval; 1425 count -= retval; 1426 } 1427 1428 /* 1429 * Btrfs can have a short DIO read if we encounter 1430 * compressed extents, so if there was an error, or if 1431 * we've already read everything we wanted to, or if 1432 * there was a short read because we hit EOF, go ahead 1433 * and return. Otherwise fallthrough to buffered io for 1434 * the rest of the read. 1435 */ 1436 if (retval < 0 || !count || *ppos >= size) { 1437 file_accessed(filp); 1438 goto out; 1439 } 1440 } 1441 } 1442 1443 count = retval; 1444 for (seg = 0; seg < nr_segs; seg++) { 1445 read_descriptor_t desc; 1446 loff_t offset = 0; 1447 1448 /* 1449 * If we did a short DIO read we need to skip the section of the 1450 * iov that we've already read data into. 1451 */ 1452 if (count) { 1453 if (count > iov[seg].iov_len) { 1454 count -= iov[seg].iov_len; 1455 continue; 1456 } 1457 offset = count; 1458 count = 0; 1459 } 1460 1461 desc.written = 0; 1462 desc.arg.buf = iov[seg].iov_base + offset; 1463 desc.count = iov[seg].iov_len - offset; 1464 if (desc.count == 0) 1465 continue; 1466 desc.error = 0; 1467 do_generic_file_read(filp, ppos, &desc, file_read_actor); 1468 retval += desc.written; 1469 if (desc.error) { 1470 retval = retval ?: desc.error; 1471 break; 1472 } 1473 if (desc.count > 0) 1474 break; 1475 } 1476 out: 1477 return retval; 1478 } 1479 EXPORT_SYMBOL(generic_file_aio_read); 1480 1481 static ssize_t 1482 do_readahead(struct address_space *mapping, struct file *filp, 1483 pgoff_t index, unsigned long nr) 1484 { 1485 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage) 1486 return -EINVAL; 1487 1488 force_page_cache_readahead(mapping, filp, index, nr); 1489 return 0; 1490 } 1491 1492 SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count) 1493 { 1494 ssize_t ret; 1495 struct file *file; 1496 1497 ret = -EBADF; 1498 file = fget(fd); 1499 if (file) { 1500 if (file->f_mode & FMODE_READ) { 1501 struct address_space *mapping = file->f_mapping; 1502 pgoff_t start = offset >> PAGE_CACHE_SHIFT; 1503 pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT; 1504 unsigned long len = end - start + 1; 1505 ret = do_readahead(mapping, file, start, len); 1506 } 1507 fput(file); 1508 } 1509 return ret; 1510 } 1511 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS 1512 asmlinkage long SyS_readahead(long fd, loff_t offset, long count) 1513 { 1514 return SYSC_readahead((int) fd, offset, (size_t) count); 1515 } 1516 SYSCALL_ALIAS(sys_readahead, SyS_readahead); 1517 #endif 1518 1519 #ifdef CONFIG_MMU 1520 /** 1521 * page_cache_read - adds requested page to the page cache if not already there 1522 * @file: file to read 1523 * @offset: page index 1524 * 1525 * This adds the requested page to the page cache if it isn't already there, 1526 * and schedules an I/O to read in its contents from disk. 1527 */ 1528 static int page_cache_read(struct file *file, pgoff_t offset) 1529 { 1530 struct address_space *mapping = file->f_mapping; 1531 struct page *page; 1532 int ret; 1533 1534 do { 1535 page = page_cache_alloc_cold(mapping); 1536 if (!page) 1537 return -ENOMEM; 1538 1539 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL); 1540 if (ret == 0) 1541 ret = mapping->a_ops->readpage(file, page); 1542 else if (ret == -EEXIST) 1543 ret = 0; /* losing race to add is OK */ 1544 1545 page_cache_release(page); 1546 1547 } while (ret == AOP_TRUNCATED_PAGE); 1548 1549 return ret; 1550 } 1551 1552 #define MMAP_LOTSAMISS (100) 1553 1554 /* 1555 * Synchronous readahead happens when we don't even find 1556 * a page in the page cache at all. 1557 */ 1558 static void do_sync_mmap_readahead(struct vm_area_struct *vma, 1559 struct file_ra_state *ra, 1560 struct file *file, 1561 pgoff_t offset) 1562 { 1563 unsigned long ra_pages; 1564 struct address_space *mapping = file->f_mapping; 1565 1566 /* If we don't want any read-ahead, don't bother */ 1567 if (VM_RandomReadHint(vma)) 1568 return; 1569 if (!ra->ra_pages) 1570 return; 1571 1572 if (VM_SequentialReadHint(vma)) { 1573 page_cache_sync_readahead(mapping, ra, file, offset, 1574 ra->ra_pages); 1575 return; 1576 } 1577 1578 /* Avoid banging the cache line if not needed */ 1579 if (ra->mmap_miss < MMAP_LOTSAMISS * 10) 1580 ra->mmap_miss++; 1581 1582 /* 1583 * Do we miss much more than hit in this file? If so, 1584 * stop bothering with read-ahead. It will only hurt. 1585 */ 1586 if (ra->mmap_miss > MMAP_LOTSAMISS) 1587 return; 1588 1589 /* 1590 * mmap read-around 1591 */ 1592 ra_pages = max_sane_readahead(ra->ra_pages); 1593 ra->start = max_t(long, 0, offset - ra_pages / 2); 1594 ra->size = ra_pages; 1595 ra->async_size = ra_pages / 4; 1596 ra_submit(ra, mapping, file); 1597 } 1598 1599 /* 1600 * Asynchronous readahead happens when we find the page and PG_readahead, 1601 * so we want to possibly extend the readahead further.. 1602 */ 1603 static void do_async_mmap_readahead(struct vm_area_struct *vma, 1604 struct file_ra_state *ra, 1605 struct file *file, 1606 struct page *page, 1607 pgoff_t offset) 1608 { 1609 struct address_space *mapping = file->f_mapping; 1610 1611 /* If we don't want any read-ahead, don't bother */ 1612 if (VM_RandomReadHint(vma)) 1613 return; 1614 if (ra->mmap_miss > 0) 1615 ra->mmap_miss--; 1616 if (PageReadahead(page)) 1617 page_cache_async_readahead(mapping, ra, file, 1618 page, offset, ra->ra_pages); 1619 } 1620 1621 /** 1622 * filemap_fault - read in file data for page fault handling 1623 * @vma: vma in which the fault was taken 1624 * @vmf: struct vm_fault containing details of the fault 1625 * 1626 * filemap_fault() is invoked via the vma operations vector for a 1627 * mapped memory region to read in file data during a page fault. 1628 * 1629 * The goto's are kind of ugly, but this streamlines the normal case of having 1630 * it in the page cache, and handles the special cases reasonably without 1631 * having a lot of duplicated code. 1632 */ 1633 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1634 { 1635 int error; 1636 struct file *file = vma->vm_file; 1637 struct address_space *mapping = file->f_mapping; 1638 struct file_ra_state *ra = &file->f_ra; 1639 struct inode *inode = mapping->host; 1640 pgoff_t offset = vmf->pgoff; 1641 struct page *page; 1642 pgoff_t size; 1643 int ret = 0; 1644 1645 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1646 if (offset >= size) 1647 return VM_FAULT_SIGBUS; 1648 1649 /* 1650 * Do we have something in the page cache already? 1651 */ 1652 page = find_get_page(mapping, offset); 1653 if (likely(page)) { 1654 /* 1655 * We found the page, so try async readahead before 1656 * waiting for the lock. 1657 */ 1658 do_async_mmap_readahead(vma, ra, file, page, offset); 1659 } else { 1660 /* No page in the page cache at all */ 1661 do_sync_mmap_readahead(vma, ra, file, offset); 1662 count_vm_event(PGMAJFAULT); 1663 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT); 1664 ret = VM_FAULT_MAJOR; 1665 retry_find: 1666 page = find_get_page(mapping, offset); 1667 if (!page) 1668 goto no_cached_page; 1669 } 1670 1671 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) { 1672 page_cache_release(page); 1673 return ret | VM_FAULT_RETRY; 1674 } 1675 1676 /* Did it get truncated? */ 1677 if (unlikely(page->mapping != mapping)) { 1678 unlock_page(page); 1679 put_page(page); 1680 goto retry_find; 1681 } 1682 VM_BUG_ON(page->index != offset); 1683 1684 /* 1685 * We have a locked page in the page cache, now we need to check 1686 * that it's up-to-date. If not, it is going to be due to an error. 1687 */ 1688 if (unlikely(!PageUptodate(page))) 1689 goto page_not_uptodate; 1690 1691 /* 1692 * Found the page and have a reference on it. 1693 * We must recheck i_size under page lock. 1694 */ 1695 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1696 if (unlikely(offset >= size)) { 1697 unlock_page(page); 1698 page_cache_release(page); 1699 return VM_FAULT_SIGBUS; 1700 } 1701 1702 vmf->page = page; 1703 return ret | VM_FAULT_LOCKED; 1704 1705 no_cached_page: 1706 /* 1707 * We're only likely to ever get here if MADV_RANDOM is in 1708 * effect. 1709 */ 1710 error = page_cache_read(file, offset); 1711 1712 /* 1713 * The page we want has now been added to the page cache. 1714 * In the unlikely event that someone removed it in the 1715 * meantime, we'll just come back here and read it again. 1716 */ 1717 if (error >= 0) 1718 goto retry_find; 1719 1720 /* 1721 * An error return from page_cache_read can result if the 1722 * system is low on memory, or a problem occurs while trying 1723 * to schedule I/O. 1724 */ 1725 if (error == -ENOMEM) 1726 return VM_FAULT_OOM; 1727 return VM_FAULT_SIGBUS; 1728 1729 page_not_uptodate: 1730 /* 1731 * Umm, take care of errors if the page isn't up-to-date. 1732 * Try to re-read it _once_. We do this synchronously, 1733 * because there really aren't any performance issues here 1734 * and we need to check for errors. 1735 */ 1736 ClearPageError(page); 1737 error = mapping->a_ops->readpage(file, page); 1738 if (!error) { 1739 wait_on_page_locked(page); 1740 if (!PageUptodate(page)) 1741 error = -EIO; 1742 } 1743 page_cache_release(page); 1744 1745 if (!error || error == AOP_TRUNCATED_PAGE) 1746 goto retry_find; 1747 1748 /* Things didn't work out. Return zero to tell the mm layer so. */ 1749 shrink_readahead_size_eio(file, ra); 1750 return VM_FAULT_SIGBUS; 1751 } 1752 EXPORT_SYMBOL(filemap_fault); 1753 1754 const struct vm_operations_struct generic_file_vm_ops = { 1755 .fault = filemap_fault, 1756 }; 1757 1758 /* This is used for a general mmap of a disk file */ 1759 1760 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 1761 { 1762 struct address_space *mapping = file->f_mapping; 1763 1764 if (!mapping->a_ops->readpage) 1765 return -ENOEXEC; 1766 file_accessed(file); 1767 vma->vm_ops = &generic_file_vm_ops; 1768 vma->vm_flags |= VM_CAN_NONLINEAR; 1769 return 0; 1770 } 1771 1772 /* 1773 * This is for filesystems which do not implement ->writepage. 1774 */ 1775 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 1776 { 1777 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 1778 return -EINVAL; 1779 return generic_file_mmap(file, vma); 1780 } 1781 #else 1782 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 1783 { 1784 return -ENOSYS; 1785 } 1786 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) 1787 { 1788 return -ENOSYS; 1789 } 1790 #endif /* CONFIG_MMU */ 1791 1792 EXPORT_SYMBOL(generic_file_mmap); 1793 EXPORT_SYMBOL(generic_file_readonly_mmap); 1794 1795 static struct page *__read_cache_page(struct address_space *mapping, 1796 pgoff_t index, 1797 int (*filler)(void *, struct page *), 1798 void *data, 1799 gfp_t gfp) 1800 { 1801 struct page *page; 1802 int err; 1803 repeat: 1804 page = find_get_page(mapping, index); 1805 if (!page) { 1806 page = __page_cache_alloc(gfp | __GFP_COLD); 1807 if (!page) 1808 return ERR_PTR(-ENOMEM); 1809 err = add_to_page_cache_lru(page, mapping, index, gfp); 1810 if (unlikely(err)) { 1811 page_cache_release(page); 1812 if (err == -EEXIST) 1813 goto repeat; 1814 /* Presumably ENOMEM for radix tree node */ 1815 return ERR_PTR(err); 1816 } 1817 err = filler(data, page); 1818 if (err < 0) { 1819 page_cache_release(page); 1820 page = ERR_PTR(err); 1821 } 1822 } 1823 return page; 1824 } 1825 1826 static struct page *do_read_cache_page(struct address_space *mapping, 1827 pgoff_t index, 1828 int (*filler)(void *, struct page *), 1829 void *data, 1830 gfp_t gfp) 1831 1832 { 1833 struct page *page; 1834 int err; 1835 1836 retry: 1837 page = __read_cache_page(mapping, index, filler, data, gfp); 1838 if (IS_ERR(page)) 1839 return page; 1840 if (PageUptodate(page)) 1841 goto out; 1842 1843 lock_page(page); 1844 if (!page->mapping) { 1845 unlock_page(page); 1846 page_cache_release(page); 1847 goto retry; 1848 } 1849 if (PageUptodate(page)) { 1850 unlock_page(page); 1851 goto out; 1852 } 1853 err = filler(data, page); 1854 if (err < 0) { 1855 page_cache_release(page); 1856 return ERR_PTR(err); 1857 } 1858 out: 1859 mark_page_accessed(page); 1860 return page; 1861 } 1862 1863 /** 1864 * read_cache_page_async - read into page cache, fill it if needed 1865 * @mapping: the page's address_space 1866 * @index: the page index 1867 * @filler: function to perform the read 1868 * @data: first arg to filler(data, page) function, often left as NULL 1869 * 1870 * Same as read_cache_page, but don't wait for page to become unlocked 1871 * after submitting it to the filler. 1872 * 1873 * Read into the page cache. If a page already exists, and PageUptodate() is 1874 * not set, try to fill the page but don't wait for it to become unlocked. 1875 * 1876 * If the page does not get brought uptodate, return -EIO. 1877 */ 1878 struct page *read_cache_page_async(struct address_space *mapping, 1879 pgoff_t index, 1880 int (*filler)(void *, struct page *), 1881 void *data) 1882 { 1883 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping)); 1884 } 1885 EXPORT_SYMBOL(read_cache_page_async); 1886 1887 static struct page *wait_on_page_read(struct page *page) 1888 { 1889 if (!IS_ERR(page)) { 1890 wait_on_page_locked(page); 1891 if (!PageUptodate(page)) { 1892 page_cache_release(page); 1893 page = ERR_PTR(-EIO); 1894 } 1895 } 1896 return page; 1897 } 1898 1899 /** 1900 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 1901 * @mapping: the page's address_space 1902 * @index: the page index 1903 * @gfp: the page allocator flags to use if allocating 1904 * 1905 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 1906 * any new page allocations done using the specified allocation flags. 1907 * 1908 * If the page does not get brought uptodate, return -EIO. 1909 */ 1910 struct page *read_cache_page_gfp(struct address_space *mapping, 1911 pgoff_t index, 1912 gfp_t gfp) 1913 { 1914 filler_t *filler = (filler_t *)mapping->a_ops->readpage; 1915 1916 return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp)); 1917 } 1918 EXPORT_SYMBOL(read_cache_page_gfp); 1919 1920 /** 1921 * read_cache_page - read into page cache, fill it if needed 1922 * @mapping: the page's address_space 1923 * @index: the page index 1924 * @filler: function to perform the read 1925 * @data: first arg to filler(data, page) function, often left as NULL 1926 * 1927 * Read into the page cache. If a page already exists, and PageUptodate() is 1928 * not set, try to fill the page then wait for it to become unlocked. 1929 * 1930 * If the page does not get brought uptodate, return -EIO. 1931 */ 1932 struct page *read_cache_page(struct address_space *mapping, 1933 pgoff_t index, 1934 int (*filler)(void *, struct page *), 1935 void *data) 1936 { 1937 return wait_on_page_read(read_cache_page_async(mapping, index, filler, data)); 1938 } 1939 EXPORT_SYMBOL(read_cache_page); 1940 1941 /* 1942 * The logic we want is 1943 * 1944 * if suid or (sgid and xgrp) 1945 * remove privs 1946 */ 1947 int should_remove_suid(struct dentry *dentry) 1948 { 1949 umode_t mode = dentry->d_inode->i_mode; 1950 int kill = 0; 1951 1952 /* suid always must be killed */ 1953 if (unlikely(mode & S_ISUID)) 1954 kill = ATTR_KILL_SUID; 1955 1956 /* 1957 * sgid without any exec bits is just a mandatory locking mark; leave 1958 * it alone. If some exec bits are set, it's a real sgid; kill it. 1959 */ 1960 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP))) 1961 kill |= ATTR_KILL_SGID; 1962 1963 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode))) 1964 return kill; 1965 1966 return 0; 1967 } 1968 EXPORT_SYMBOL(should_remove_suid); 1969 1970 static int __remove_suid(struct dentry *dentry, int kill) 1971 { 1972 struct iattr newattrs; 1973 1974 newattrs.ia_valid = ATTR_FORCE | kill; 1975 return notify_change(dentry, &newattrs); 1976 } 1977 1978 int file_remove_suid(struct file *file) 1979 { 1980 struct dentry *dentry = file->f_path.dentry; 1981 struct inode *inode = dentry->d_inode; 1982 int killsuid; 1983 int killpriv; 1984 int error = 0; 1985 1986 /* Fast path for nothing security related */ 1987 if (IS_NOSEC(inode)) 1988 return 0; 1989 1990 killsuid = should_remove_suid(dentry); 1991 killpriv = security_inode_need_killpriv(dentry); 1992 1993 if (killpriv < 0) 1994 return killpriv; 1995 if (killpriv) 1996 error = security_inode_killpriv(dentry); 1997 if (!error && killsuid) 1998 error = __remove_suid(dentry, killsuid); 1999 if (!error && (inode->i_sb->s_flags & MS_NOSEC)) 2000 inode->i_flags |= S_NOSEC; 2001 2002 return error; 2003 } 2004 EXPORT_SYMBOL(file_remove_suid); 2005 2006 static size_t __iovec_copy_from_user_inatomic(char *vaddr, 2007 const struct iovec *iov, size_t base, size_t bytes) 2008 { 2009 size_t copied = 0, left = 0; 2010 2011 while (bytes) { 2012 char __user *buf = iov->iov_base + base; 2013 int copy = min(bytes, iov->iov_len - base); 2014 2015 base = 0; 2016 left = __copy_from_user_inatomic(vaddr, buf, copy); 2017 copied += copy; 2018 bytes -= copy; 2019 vaddr += copy; 2020 iov++; 2021 2022 if (unlikely(left)) 2023 break; 2024 } 2025 return copied - left; 2026 } 2027 2028 /* 2029 * Copy as much as we can into the page and return the number of bytes which 2030 * were successfully copied. If a fault is encountered then return the number of 2031 * bytes which were copied. 2032 */ 2033 size_t iov_iter_copy_from_user_atomic(struct page *page, 2034 struct iov_iter *i, unsigned long offset, size_t bytes) 2035 { 2036 char *kaddr; 2037 size_t copied; 2038 2039 BUG_ON(!in_atomic()); 2040 kaddr = kmap_atomic(page); 2041 if (likely(i->nr_segs == 1)) { 2042 int left; 2043 char __user *buf = i->iov->iov_base + i->iov_offset; 2044 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes); 2045 copied = bytes - left; 2046 } else { 2047 copied = __iovec_copy_from_user_inatomic(kaddr + offset, 2048 i->iov, i->iov_offset, bytes); 2049 } 2050 kunmap_atomic(kaddr); 2051 2052 return copied; 2053 } 2054 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic); 2055 2056 /* 2057 * This has the same sideeffects and return value as 2058 * iov_iter_copy_from_user_atomic(). 2059 * The difference is that it attempts to resolve faults. 2060 * Page must not be locked. 2061 */ 2062 size_t iov_iter_copy_from_user(struct page *page, 2063 struct iov_iter *i, unsigned long offset, size_t bytes) 2064 { 2065 char *kaddr; 2066 size_t copied; 2067 2068 kaddr = kmap(page); 2069 if (likely(i->nr_segs == 1)) { 2070 int left; 2071 char __user *buf = i->iov->iov_base + i->iov_offset; 2072 left = __copy_from_user(kaddr + offset, buf, bytes); 2073 copied = bytes - left; 2074 } else { 2075 copied = __iovec_copy_from_user_inatomic(kaddr + offset, 2076 i->iov, i->iov_offset, bytes); 2077 } 2078 kunmap(page); 2079 return copied; 2080 } 2081 EXPORT_SYMBOL(iov_iter_copy_from_user); 2082 2083 void iov_iter_advance(struct iov_iter *i, size_t bytes) 2084 { 2085 BUG_ON(i->count < bytes); 2086 2087 if (likely(i->nr_segs == 1)) { 2088 i->iov_offset += bytes; 2089 i->count -= bytes; 2090 } else { 2091 const struct iovec *iov = i->iov; 2092 size_t base = i->iov_offset; 2093 unsigned long nr_segs = i->nr_segs; 2094 2095 /* 2096 * The !iov->iov_len check ensures we skip over unlikely 2097 * zero-length segments (without overruning the iovec). 2098 */ 2099 while (bytes || unlikely(i->count && !iov->iov_len)) { 2100 int copy; 2101 2102 copy = min(bytes, iov->iov_len - base); 2103 BUG_ON(!i->count || i->count < copy); 2104 i->count -= copy; 2105 bytes -= copy; 2106 base += copy; 2107 if (iov->iov_len == base) { 2108 iov++; 2109 nr_segs--; 2110 base = 0; 2111 } 2112 } 2113 i->iov = iov; 2114 i->iov_offset = base; 2115 i->nr_segs = nr_segs; 2116 } 2117 } 2118 EXPORT_SYMBOL(iov_iter_advance); 2119 2120 /* 2121 * Fault in the first iovec of the given iov_iter, to a maximum length 2122 * of bytes. Returns 0 on success, or non-zero if the memory could not be 2123 * accessed (ie. because it is an invalid address). 2124 * 2125 * writev-intensive code may want this to prefault several iovecs -- that 2126 * would be possible (callers must not rely on the fact that _only_ the 2127 * first iovec will be faulted with the current implementation). 2128 */ 2129 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes) 2130 { 2131 char __user *buf = i->iov->iov_base + i->iov_offset; 2132 bytes = min(bytes, i->iov->iov_len - i->iov_offset); 2133 return fault_in_pages_readable(buf, bytes); 2134 } 2135 EXPORT_SYMBOL(iov_iter_fault_in_readable); 2136 2137 /* 2138 * Return the count of just the current iov_iter segment. 2139 */ 2140 size_t iov_iter_single_seg_count(struct iov_iter *i) 2141 { 2142 const struct iovec *iov = i->iov; 2143 if (i->nr_segs == 1) 2144 return i->count; 2145 else 2146 return min(i->count, iov->iov_len - i->iov_offset); 2147 } 2148 EXPORT_SYMBOL(iov_iter_single_seg_count); 2149 2150 /* 2151 * Performs necessary checks before doing a write 2152 * 2153 * Can adjust writing position or amount of bytes to write. 2154 * Returns appropriate error code that caller should return or 2155 * zero in case that write should be allowed. 2156 */ 2157 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk) 2158 { 2159 struct inode *inode = file->f_mapping->host; 2160 unsigned long limit = rlimit(RLIMIT_FSIZE); 2161 2162 if (unlikely(*pos < 0)) 2163 return -EINVAL; 2164 2165 if (!isblk) { 2166 /* FIXME: this is for backwards compatibility with 2.4 */ 2167 if (file->f_flags & O_APPEND) 2168 *pos = i_size_read(inode); 2169 2170 if (limit != RLIM_INFINITY) { 2171 if (*pos >= limit) { 2172 send_sig(SIGXFSZ, current, 0); 2173 return -EFBIG; 2174 } 2175 if (*count > limit - (typeof(limit))*pos) { 2176 *count = limit - (typeof(limit))*pos; 2177 } 2178 } 2179 } 2180 2181 /* 2182 * LFS rule 2183 */ 2184 if (unlikely(*pos + *count > MAX_NON_LFS && 2185 !(file->f_flags & O_LARGEFILE))) { 2186 if (*pos >= MAX_NON_LFS) { 2187 return -EFBIG; 2188 } 2189 if (*count > MAX_NON_LFS - (unsigned long)*pos) { 2190 *count = MAX_NON_LFS - (unsigned long)*pos; 2191 } 2192 } 2193 2194 /* 2195 * Are we about to exceed the fs block limit ? 2196 * 2197 * If we have written data it becomes a short write. If we have 2198 * exceeded without writing data we send a signal and return EFBIG. 2199 * Linus frestrict idea will clean these up nicely.. 2200 */ 2201 if (likely(!isblk)) { 2202 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) { 2203 if (*count || *pos > inode->i_sb->s_maxbytes) { 2204 return -EFBIG; 2205 } 2206 /* zero-length writes at ->s_maxbytes are OK */ 2207 } 2208 2209 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes)) 2210 *count = inode->i_sb->s_maxbytes - *pos; 2211 } else { 2212 #ifdef CONFIG_BLOCK 2213 loff_t isize; 2214 if (bdev_read_only(I_BDEV(inode))) 2215 return -EPERM; 2216 isize = i_size_read(inode); 2217 if (*pos >= isize) { 2218 if (*count || *pos > isize) 2219 return -ENOSPC; 2220 } 2221 2222 if (*pos + *count > isize) 2223 *count = isize - *pos; 2224 #else 2225 return -EPERM; 2226 #endif 2227 } 2228 return 0; 2229 } 2230 EXPORT_SYMBOL(generic_write_checks); 2231 2232 int pagecache_write_begin(struct file *file, struct address_space *mapping, 2233 loff_t pos, unsigned len, unsigned flags, 2234 struct page **pagep, void **fsdata) 2235 { 2236 const struct address_space_operations *aops = mapping->a_ops; 2237 2238 return aops->write_begin(file, mapping, pos, len, flags, 2239 pagep, fsdata); 2240 } 2241 EXPORT_SYMBOL(pagecache_write_begin); 2242 2243 int pagecache_write_end(struct file *file, struct address_space *mapping, 2244 loff_t pos, unsigned len, unsigned copied, 2245 struct page *page, void *fsdata) 2246 { 2247 const struct address_space_operations *aops = mapping->a_ops; 2248 2249 mark_page_accessed(page); 2250 return aops->write_end(file, mapping, pos, len, copied, page, fsdata); 2251 } 2252 EXPORT_SYMBOL(pagecache_write_end); 2253 2254 ssize_t 2255 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov, 2256 unsigned long *nr_segs, loff_t pos, loff_t *ppos, 2257 size_t count, size_t ocount) 2258 { 2259 struct file *file = iocb->ki_filp; 2260 struct address_space *mapping = file->f_mapping; 2261 struct inode *inode = mapping->host; 2262 ssize_t written; 2263 size_t write_len; 2264 pgoff_t end; 2265 2266 if (count != ocount) 2267 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count); 2268 2269 write_len = iov_length(iov, *nr_segs); 2270 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT; 2271 2272 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1); 2273 if (written) 2274 goto out; 2275 2276 /* 2277 * After a write we want buffered reads to be sure to go to disk to get 2278 * the new data. We invalidate clean cached page from the region we're 2279 * about to write. We do this *before* the write so that we can return 2280 * without clobbering -EIOCBQUEUED from ->direct_IO(). 2281 */ 2282 if (mapping->nrpages) { 2283 written = invalidate_inode_pages2_range(mapping, 2284 pos >> PAGE_CACHE_SHIFT, end); 2285 /* 2286 * If a page can not be invalidated, return 0 to fall back 2287 * to buffered write. 2288 */ 2289 if (written) { 2290 if (written == -EBUSY) 2291 return 0; 2292 goto out; 2293 } 2294 } 2295 2296 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs); 2297 2298 /* 2299 * Finally, try again to invalidate clean pages which might have been 2300 * cached by non-direct readahead, or faulted in by get_user_pages() 2301 * if the source of the write was an mmap'ed region of the file 2302 * we're writing. Either one is a pretty crazy thing to do, 2303 * so we don't support it 100%. If this invalidation 2304 * fails, tough, the write still worked... 2305 */ 2306 if (mapping->nrpages) { 2307 invalidate_inode_pages2_range(mapping, 2308 pos >> PAGE_CACHE_SHIFT, end); 2309 } 2310 2311 if (written > 0) { 2312 pos += written; 2313 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 2314 i_size_write(inode, pos); 2315 mark_inode_dirty(inode); 2316 } 2317 *ppos = pos; 2318 } 2319 out: 2320 return written; 2321 } 2322 EXPORT_SYMBOL(generic_file_direct_write); 2323 2324 /* 2325 * Find or create a page at the given pagecache position. Return the locked 2326 * page. This function is specifically for buffered writes. 2327 */ 2328 struct page *grab_cache_page_write_begin(struct address_space *mapping, 2329 pgoff_t index, unsigned flags) 2330 { 2331 int status; 2332 gfp_t gfp_mask; 2333 struct page *page; 2334 gfp_t gfp_notmask = 0; 2335 2336 gfp_mask = mapping_gfp_mask(mapping); 2337 if (mapping_cap_account_dirty(mapping)) 2338 gfp_mask |= __GFP_WRITE; 2339 if (flags & AOP_FLAG_NOFS) 2340 gfp_notmask = __GFP_FS; 2341 repeat: 2342 page = find_lock_page(mapping, index); 2343 if (page) 2344 goto found; 2345 2346 page = __page_cache_alloc(gfp_mask & ~gfp_notmask); 2347 if (!page) 2348 return NULL; 2349 status = add_to_page_cache_lru(page, mapping, index, 2350 GFP_KERNEL & ~gfp_notmask); 2351 if (unlikely(status)) { 2352 page_cache_release(page); 2353 if (status == -EEXIST) 2354 goto repeat; 2355 return NULL; 2356 } 2357 found: 2358 wait_on_page_writeback(page); 2359 return page; 2360 } 2361 EXPORT_SYMBOL(grab_cache_page_write_begin); 2362 2363 static ssize_t generic_perform_write(struct file *file, 2364 struct iov_iter *i, loff_t pos) 2365 { 2366 struct address_space *mapping = file->f_mapping; 2367 const struct address_space_operations *a_ops = mapping->a_ops; 2368 long status = 0; 2369 ssize_t written = 0; 2370 unsigned int flags = 0; 2371 2372 /* 2373 * Copies from kernel address space cannot fail (NFSD is a big user). 2374 */ 2375 if (segment_eq(get_fs(), KERNEL_DS)) 2376 flags |= AOP_FLAG_UNINTERRUPTIBLE; 2377 2378 do { 2379 struct page *page; 2380 unsigned long offset; /* Offset into pagecache page */ 2381 unsigned long bytes; /* Bytes to write to page */ 2382 size_t copied; /* Bytes copied from user */ 2383 void *fsdata; 2384 2385 offset = (pos & (PAGE_CACHE_SIZE - 1)); 2386 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset, 2387 iov_iter_count(i)); 2388 2389 again: 2390 /* 2391 * Bring in the user page that we will copy from _first_. 2392 * Otherwise there's a nasty deadlock on copying from the 2393 * same page as we're writing to, without it being marked 2394 * up-to-date. 2395 * 2396 * Not only is this an optimisation, but it is also required 2397 * to check that the address is actually valid, when atomic 2398 * usercopies are used, below. 2399 */ 2400 if (unlikely(iov_iter_fault_in_readable(i, bytes))) { 2401 status = -EFAULT; 2402 break; 2403 } 2404 2405 status = a_ops->write_begin(file, mapping, pos, bytes, flags, 2406 &page, &fsdata); 2407 if (unlikely(status)) 2408 break; 2409 2410 if (mapping_writably_mapped(mapping)) 2411 flush_dcache_page(page); 2412 2413 pagefault_disable(); 2414 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); 2415 pagefault_enable(); 2416 flush_dcache_page(page); 2417 2418 mark_page_accessed(page); 2419 status = a_ops->write_end(file, mapping, pos, bytes, copied, 2420 page, fsdata); 2421 if (unlikely(status < 0)) 2422 break; 2423 copied = status; 2424 2425 cond_resched(); 2426 2427 iov_iter_advance(i, copied); 2428 if (unlikely(copied == 0)) { 2429 /* 2430 * If we were unable to copy any data at all, we must 2431 * fall back to a single segment length write. 2432 * 2433 * If we didn't fallback here, we could livelock 2434 * because not all segments in the iov can be copied at 2435 * once without a pagefault. 2436 */ 2437 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset, 2438 iov_iter_single_seg_count(i)); 2439 goto again; 2440 } 2441 pos += copied; 2442 written += copied; 2443 2444 balance_dirty_pages_ratelimited(mapping); 2445 if (fatal_signal_pending(current)) { 2446 status = -EINTR; 2447 break; 2448 } 2449 } while (iov_iter_count(i)); 2450 2451 return written ? written : status; 2452 } 2453 2454 ssize_t 2455 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov, 2456 unsigned long nr_segs, loff_t pos, loff_t *ppos, 2457 size_t count, ssize_t written) 2458 { 2459 struct file *file = iocb->ki_filp; 2460 ssize_t status; 2461 struct iov_iter i; 2462 2463 iov_iter_init(&i, iov, nr_segs, count, written); 2464 status = generic_perform_write(file, &i, pos); 2465 2466 if (likely(status >= 0)) { 2467 written += status; 2468 *ppos = pos + status; 2469 } 2470 2471 return written ? written : status; 2472 } 2473 EXPORT_SYMBOL(generic_file_buffered_write); 2474 2475 /** 2476 * __generic_file_aio_write - write data to a file 2477 * @iocb: IO state structure (file, offset, etc.) 2478 * @iov: vector with data to write 2479 * @nr_segs: number of segments in the vector 2480 * @ppos: position where to write 2481 * 2482 * This function does all the work needed for actually writing data to a 2483 * file. It does all basic checks, removes SUID from the file, updates 2484 * modification times and calls proper subroutines depending on whether we 2485 * do direct IO or a standard buffered write. 2486 * 2487 * It expects i_mutex to be grabbed unless we work on a block device or similar 2488 * object which does not need locking at all. 2489 * 2490 * This function does *not* take care of syncing data in case of O_SYNC write. 2491 * A caller has to handle it. This is mainly due to the fact that we want to 2492 * avoid syncing under i_mutex. 2493 */ 2494 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov, 2495 unsigned long nr_segs, loff_t *ppos) 2496 { 2497 struct file *file = iocb->ki_filp; 2498 struct address_space * mapping = file->f_mapping; 2499 size_t ocount; /* original count */ 2500 size_t count; /* after file limit checks */ 2501 struct inode *inode = mapping->host; 2502 loff_t pos; 2503 ssize_t written; 2504 ssize_t err; 2505 2506 ocount = 0; 2507 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ); 2508 if (err) 2509 return err; 2510 2511 count = ocount; 2512 pos = *ppos; 2513 2514 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE); 2515 2516 /* We can write back this queue in page reclaim */ 2517 current->backing_dev_info = mapping->backing_dev_info; 2518 written = 0; 2519 2520 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode)); 2521 if (err) 2522 goto out; 2523 2524 if (count == 0) 2525 goto out; 2526 2527 err = file_remove_suid(file); 2528 if (err) 2529 goto out; 2530 2531 file_update_time(file); 2532 2533 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ 2534 if (unlikely(file->f_flags & O_DIRECT)) { 2535 loff_t endbyte; 2536 ssize_t written_buffered; 2537 2538 written = generic_file_direct_write(iocb, iov, &nr_segs, pos, 2539 ppos, count, ocount); 2540 if (written < 0 || written == count) 2541 goto out; 2542 /* 2543 * direct-io write to a hole: fall through to buffered I/O 2544 * for completing the rest of the request. 2545 */ 2546 pos += written; 2547 count -= written; 2548 written_buffered = generic_file_buffered_write(iocb, iov, 2549 nr_segs, pos, ppos, count, 2550 written); 2551 /* 2552 * If generic_file_buffered_write() retuned a synchronous error 2553 * then we want to return the number of bytes which were 2554 * direct-written, or the error code if that was zero. Note 2555 * that this differs from normal direct-io semantics, which 2556 * will return -EFOO even if some bytes were written. 2557 */ 2558 if (written_buffered < 0) { 2559 err = written_buffered; 2560 goto out; 2561 } 2562 2563 /* 2564 * We need to ensure that the page cache pages are written to 2565 * disk and invalidated to preserve the expected O_DIRECT 2566 * semantics. 2567 */ 2568 endbyte = pos + written_buffered - written - 1; 2569 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte); 2570 if (err == 0) { 2571 written = written_buffered; 2572 invalidate_mapping_pages(mapping, 2573 pos >> PAGE_CACHE_SHIFT, 2574 endbyte >> PAGE_CACHE_SHIFT); 2575 } else { 2576 /* 2577 * We don't know how much we wrote, so just return 2578 * the number of bytes which were direct-written 2579 */ 2580 } 2581 } else { 2582 written = generic_file_buffered_write(iocb, iov, nr_segs, 2583 pos, ppos, count, written); 2584 } 2585 out: 2586 current->backing_dev_info = NULL; 2587 return written ? written : err; 2588 } 2589 EXPORT_SYMBOL(__generic_file_aio_write); 2590 2591 /** 2592 * generic_file_aio_write - write data to a file 2593 * @iocb: IO state structure 2594 * @iov: vector with data to write 2595 * @nr_segs: number of segments in the vector 2596 * @pos: position in file where to write 2597 * 2598 * This is a wrapper around __generic_file_aio_write() to be used by most 2599 * filesystems. It takes care of syncing the file in case of O_SYNC file 2600 * and acquires i_mutex as needed. 2601 */ 2602 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov, 2603 unsigned long nr_segs, loff_t pos) 2604 { 2605 struct file *file = iocb->ki_filp; 2606 struct inode *inode = file->f_mapping->host; 2607 struct blk_plug plug; 2608 ssize_t ret; 2609 2610 BUG_ON(iocb->ki_pos != pos); 2611 2612 mutex_lock(&inode->i_mutex); 2613 blk_start_plug(&plug); 2614 ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos); 2615 mutex_unlock(&inode->i_mutex); 2616 2617 if (ret > 0 || ret == -EIOCBQUEUED) { 2618 ssize_t err; 2619 2620 err = generic_write_sync(file, pos, ret); 2621 if (err < 0 && ret > 0) 2622 ret = err; 2623 } 2624 blk_finish_plug(&plug); 2625 return ret; 2626 } 2627 EXPORT_SYMBOL(generic_file_aio_write); 2628 2629 /** 2630 * try_to_release_page() - release old fs-specific metadata on a page 2631 * 2632 * @page: the page which the kernel is trying to free 2633 * @gfp_mask: memory allocation flags (and I/O mode) 2634 * 2635 * The address_space is to try to release any data against the page 2636 * (presumably at page->private). If the release was successful, return `1'. 2637 * Otherwise return zero. 2638 * 2639 * This may also be called if PG_fscache is set on a page, indicating that the 2640 * page is known to the local caching routines. 2641 * 2642 * The @gfp_mask argument specifies whether I/O may be performed to release 2643 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS). 2644 * 2645 */ 2646 int try_to_release_page(struct page *page, gfp_t gfp_mask) 2647 { 2648 struct address_space * const mapping = page->mapping; 2649 2650 BUG_ON(!PageLocked(page)); 2651 if (PageWriteback(page)) 2652 return 0; 2653 2654 if (mapping && mapping->a_ops->releasepage) 2655 return mapping->a_ops->releasepage(page, gfp_mask); 2656 return try_to_free_buffers(page); 2657 } 2658 2659 EXPORT_SYMBOL(try_to_release_page); 2660