xref: /openbmc/linux/mm/filemap.c (revision 62e7ca52)
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/memcontrol.h>
35 #include <linux/cleancache.h>
36 #include <linux/rmap.h>
37 #include "internal.h"
38 
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/filemap.h>
41 
42 /*
43  * FIXME: remove all knowledge of the buffer layer from the core VM
44  */
45 #include <linux/buffer_head.h> /* for try_to_free_buffers */
46 
47 #include <asm/mman.h>
48 
49 /*
50  * Shared mappings implemented 30.11.1994. It's not fully working yet,
51  * though.
52  *
53  * Shared mappings now work. 15.8.1995  Bruno.
54  *
55  * finished 'unifying' the page and buffer cache and SMP-threaded the
56  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
57  *
58  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
59  */
60 
61 /*
62  * Lock ordering:
63  *
64  *  ->i_mmap_mutex		(truncate_pagecache)
65  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
66  *      ->swap_lock		(exclusive_swap_page, others)
67  *        ->mapping->tree_lock
68  *
69  *  ->i_mutex
70  *    ->i_mmap_mutex		(truncate->unmap_mapping_range)
71  *
72  *  ->mmap_sem
73  *    ->i_mmap_mutex
74  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
75  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
76  *
77  *  ->mmap_sem
78  *    ->lock_page		(access_process_vm)
79  *
80  *  ->i_mutex			(generic_perform_write)
81  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
82  *
83  *  bdi->wb.list_lock
84  *    sb_lock			(fs/fs-writeback.c)
85  *    ->mapping->tree_lock	(__sync_single_inode)
86  *
87  *  ->i_mmap_mutex
88  *    ->anon_vma.lock		(vma_adjust)
89  *
90  *  ->anon_vma.lock
91  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
92  *
93  *  ->page_table_lock or pte_lock
94  *    ->swap_lock		(try_to_unmap_one)
95  *    ->private_lock		(try_to_unmap_one)
96  *    ->tree_lock		(try_to_unmap_one)
97  *    ->zone.lru_lock		(follow_page->mark_page_accessed)
98  *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
99  *    ->private_lock		(page_remove_rmap->set_page_dirty)
100  *    ->tree_lock		(page_remove_rmap->set_page_dirty)
101  *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
102  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
103  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
104  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
105  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
106  *
107  * ->i_mmap_mutex
108  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
109  */
110 
111 static void page_cache_tree_delete(struct address_space *mapping,
112 				   struct page *page, void *shadow)
113 {
114 	struct radix_tree_node *node;
115 	unsigned long index;
116 	unsigned int offset;
117 	unsigned int tag;
118 	void **slot;
119 
120 	VM_BUG_ON(!PageLocked(page));
121 
122 	__radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
123 
124 	if (shadow) {
125 		mapping->nrshadows++;
126 		/*
127 		 * Make sure the nrshadows update is committed before
128 		 * the nrpages update so that final truncate racing
129 		 * with reclaim does not see both counters 0 at the
130 		 * same time and miss a shadow entry.
131 		 */
132 		smp_wmb();
133 	}
134 	mapping->nrpages--;
135 
136 	if (!node) {
137 		/* Clear direct pointer tags in root node */
138 		mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
139 		radix_tree_replace_slot(slot, shadow);
140 		return;
141 	}
142 
143 	/* Clear tree tags for the removed page */
144 	index = page->index;
145 	offset = index & RADIX_TREE_MAP_MASK;
146 	for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
147 		if (test_bit(offset, node->tags[tag]))
148 			radix_tree_tag_clear(&mapping->page_tree, index, tag);
149 	}
150 
151 	/* Delete page, swap shadow entry */
152 	radix_tree_replace_slot(slot, shadow);
153 	workingset_node_pages_dec(node);
154 	if (shadow)
155 		workingset_node_shadows_inc(node);
156 	else
157 		if (__radix_tree_delete_node(&mapping->page_tree, node))
158 			return;
159 
160 	/*
161 	 * Track node that only contains shadow entries.
162 	 *
163 	 * Avoid acquiring the list_lru lock if already tracked.  The
164 	 * list_empty() test is safe as node->private_list is
165 	 * protected by mapping->tree_lock.
166 	 */
167 	if (!workingset_node_pages(node) &&
168 	    list_empty(&node->private_list)) {
169 		node->private_data = mapping;
170 		list_lru_add(&workingset_shadow_nodes, &node->private_list);
171 	}
172 }
173 
174 /*
175  * Delete a page from the page cache and free it. Caller has to make
176  * sure the page is locked and that nobody else uses it - or that usage
177  * is safe.  The caller must hold the mapping's tree_lock.
178  */
179 void __delete_from_page_cache(struct page *page, void *shadow)
180 {
181 	struct address_space *mapping = page->mapping;
182 
183 	trace_mm_filemap_delete_from_page_cache(page);
184 	/*
185 	 * if we're uptodate, flush out into the cleancache, otherwise
186 	 * invalidate any existing cleancache entries.  We can't leave
187 	 * stale data around in the cleancache once our page is gone
188 	 */
189 	if (PageUptodate(page) && PageMappedToDisk(page))
190 		cleancache_put_page(page);
191 	else
192 		cleancache_invalidate_page(mapping, page);
193 
194 	page_cache_tree_delete(mapping, page, shadow);
195 
196 	page->mapping = NULL;
197 	/* Leave page->index set: truncation lookup relies upon it */
198 
199 	__dec_zone_page_state(page, NR_FILE_PAGES);
200 	if (PageSwapBacked(page))
201 		__dec_zone_page_state(page, NR_SHMEM);
202 	BUG_ON(page_mapped(page));
203 
204 	/*
205 	 * Some filesystems seem to re-dirty the page even after
206 	 * the VM has canceled the dirty bit (eg ext3 journaling).
207 	 *
208 	 * Fix it up by doing a final dirty accounting check after
209 	 * having removed the page entirely.
210 	 */
211 	if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
212 		dec_zone_page_state(page, NR_FILE_DIRTY);
213 		dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
214 	}
215 }
216 
217 /**
218  * delete_from_page_cache - delete page from page cache
219  * @page: the page which the kernel is trying to remove from page cache
220  *
221  * This must be called only on pages that have been verified to be in the page
222  * cache and locked.  It will never put the page into the free list, the caller
223  * has a reference on the page.
224  */
225 void delete_from_page_cache(struct page *page)
226 {
227 	struct address_space *mapping = page->mapping;
228 	void (*freepage)(struct page *);
229 
230 	BUG_ON(!PageLocked(page));
231 
232 	freepage = mapping->a_ops->freepage;
233 	spin_lock_irq(&mapping->tree_lock);
234 	__delete_from_page_cache(page, NULL);
235 	spin_unlock_irq(&mapping->tree_lock);
236 	mem_cgroup_uncharge_cache_page(page);
237 
238 	if (freepage)
239 		freepage(page);
240 	page_cache_release(page);
241 }
242 EXPORT_SYMBOL(delete_from_page_cache);
243 
244 static int filemap_check_errors(struct address_space *mapping)
245 {
246 	int ret = 0;
247 	/* Check for outstanding write errors */
248 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
249 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
250 		ret = -ENOSPC;
251 	if (test_bit(AS_EIO, &mapping->flags) &&
252 	    test_and_clear_bit(AS_EIO, &mapping->flags))
253 		ret = -EIO;
254 	return ret;
255 }
256 
257 /**
258  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
259  * @mapping:	address space structure to write
260  * @start:	offset in bytes where the range starts
261  * @end:	offset in bytes where the range ends (inclusive)
262  * @sync_mode:	enable synchronous operation
263  *
264  * Start writeback against all of a mapping's dirty pages that lie
265  * within the byte offsets <start, end> inclusive.
266  *
267  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
268  * opposed to a regular memory cleansing writeback.  The difference between
269  * these two operations is that if a dirty page/buffer is encountered, it must
270  * be waited upon, and not just skipped over.
271  */
272 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
273 				loff_t end, int sync_mode)
274 {
275 	int ret;
276 	struct writeback_control wbc = {
277 		.sync_mode = sync_mode,
278 		.nr_to_write = LONG_MAX,
279 		.range_start = start,
280 		.range_end = end,
281 	};
282 
283 	if (!mapping_cap_writeback_dirty(mapping))
284 		return 0;
285 
286 	ret = do_writepages(mapping, &wbc);
287 	return ret;
288 }
289 
290 static inline int __filemap_fdatawrite(struct address_space *mapping,
291 	int sync_mode)
292 {
293 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
294 }
295 
296 int filemap_fdatawrite(struct address_space *mapping)
297 {
298 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
299 }
300 EXPORT_SYMBOL(filemap_fdatawrite);
301 
302 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
303 				loff_t end)
304 {
305 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
306 }
307 EXPORT_SYMBOL(filemap_fdatawrite_range);
308 
309 /**
310  * filemap_flush - mostly a non-blocking flush
311  * @mapping:	target address_space
312  *
313  * This is a mostly non-blocking flush.  Not suitable for data-integrity
314  * purposes - I/O may not be started against all dirty pages.
315  */
316 int filemap_flush(struct address_space *mapping)
317 {
318 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
319 }
320 EXPORT_SYMBOL(filemap_flush);
321 
322 /**
323  * filemap_fdatawait_range - wait for writeback to complete
324  * @mapping:		address space structure to wait for
325  * @start_byte:		offset in bytes where the range starts
326  * @end_byte:		offset in bytes where the range ends (inclusive)
327  *
328  * Walk the list of under-writeback pages of the given address space
329  * in the given range and wait for all of them.
330  */
331 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
332 			    loff_t end_byte)
333 {
334 	pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
335 	pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
336 	struct pagevec pvec;
337 	int nr_pages;
338 	int ret2, ret = 0;
339 
340 	if (end_byte < start_byte)
341 		goto out;
342 
343 	pagevec_init(&pvec, 0);
344 	while ((index <= end) &&
345 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
346 			PAGECACHE_TAG_WRITEBACK,
347 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
348 		unsigned i;
349 
350 		for (i = 0; i < nr_pages; i++) {
351 			struct page *page = pvec.pages[i];
352 
353 			/* until radix tree lookup accepts end_index */
354 			if (page->index > end)
355 				continue;
356 
357 			wait_on_page_writeback(page);
358 			if (TestClearPageError(page))
359 				ret = -EIO;
360 		}
361 		pagevec_release(&pvec);
362 		cond_resched();
363 	}
364 out:
365 	ret2 = filemap_check_errors(mapping);
366 	if (!ret)
367 		ret = ret2;
368 
369 	return ret;
370 }
371 EXPORT_SYMBOL(filemap_fdatawait_range);
372 
373 /**
374  * filemap_fdatawait - wait for all under-writeback pages to complete
375  * @mapping: address space structure to wait for
376  *
377  * Walk the list of under-writeback pages of the given address space
378  * and wait for all of them.
379  */
380 int filemap_fdatawait(struct address_space *mapping)
381 {
382 	loff_t i_size = i_size_read(mapping->host);
383 
384 	if (i_size == 0)
385 		return 0;
386 
387 	return filemap_fdatawait_range(mapping, 0, i_size - 1);
388 }
389 EXPORT_SYMBOL(filemap_fdatawait);
390 
391 int filemap_write_and_wait(struct address_space *mapping)
392 {
393 	int err = 0;
394 
395 	if (mapping->nrpages) {
396 		err = filemap_fdatawrite(mapping);
397 		/*
398 		 * Even if the above returned error, the pages may be
399 		 * written partially (e.g. -ENOSPC), so we wait for it.
400 		 * But the -EIO is special case, it may indicate the worst
401 		 * thing (e.g. bug) happened, so we avoid waiting for it.
402 		 */
403 		if (err != -EIO) {
404 			int err2 = filemap_fdatawait(mapping);
405 			if (!err)
406 				err = err2;
407 		}
408 	} else {
409 		err = filemap_check_errors(mapping);
410 	}
411 	return err;
412 }
413 EXPORT_SYMBOL(filemap_write_and_wait);
414 
415 /**
416  * filemap_write_and_wait_range - write out & wait on a file range
417  * @mapping:	the address_space for the pages
418  * @lstart:	offset in bytes where the range starts
419  * @lend:	offset in bytes where the range ends (inclusive)
420  *
421  * Write out and wait upon file offsets lstart->lend, inclusive.
422  *
423  * Note that `lend' is inclusive (describes the last byte to be written) so
424  * that this function can be used to write to the very end-of-file (end = -1).
425  */
426 int filemap_write_and_wait_range(struct address_space *mapping,
427 				 loff_t lstart, loff_t lend)
428 {
429 	int err = 0;
430 
431 	if (mapping->nrpages) {
432 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
433 						 WB_SYNC_ALL);
434 		/* See comment of filemap_write_and_wait() */
435 		if (err != -EIO) {
436 			int err2 = filemap_fdatawait_range(mapping,
437 						lstart, lend);
438 			if (!err)
439 				err = err2;
440 		}
441 	} else {
442 		err = filemap_check_errors(mapping);
443 	}
444 	return err;
445 }
446 EXPORT_SYMBOL(filemap_write_and_wait_range);
447 
448 /**
449  * replace_page_cache_page - replace a pagecache page with a new one
450  * @old:	page to be replaced
451  * @new:	page to replace with
452  * @gfp_mask:	allocation mode
453  *
454  * This function replaces a page in the pagecache with a new one.  On
455  * success it acquires the pagecache reference for the new page and
456  * drops it for the old page.  Both the old and new pages must be
457  * locked.  This function does not add the new page to the LRU, the
458  * caller must do that.
459  *
460  * The remove + add is atomic.  The only way this function can fail is
461  * memory allocation failure.
462  */
463 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
464 {
465 	int error;
466 
467 	VM_BUG_ON_PAGE(!PageLocked(old), old);
468 	VM_BUG_ON_PAGE(!PageLocked(new), new);
469 	VM_BUG_ON_PAGE(new->mapping, new);
470 
471 	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
472 	if (!error) {
473 		struct address_space *mapping = old->mapping;
474 		void (*freepage)(struct page *);
475 
476 		pgoff_t offset = old->index;
477 		freepage = mapping->a_ops->freepage;
478 
479 		page_cache_get(new);
480 		new->mapping = mapping;
481 		new->index = offset;
482 
483 		spin_lock_irq(&mapping->tree_lock);
484 		__delete_from_page_cache(old, NULL);
485 		error = radix_tree_insert(&mapping->page_tree, offset, new);
486 		BUG_ON(error);
487 		mapping->nrpages++;
488 		__inc_zone_page_state(new, NR_FILE_PAGES);
489 		if (PageSwapBacked(new))
490 			__inc_zone_page_state(new, NR_SHMEM);
491 		spin_unlock_irq(&mapping->tree_lock);
492 		/* mem_cgroup codes must not be called under tree_lock */
493 		mem_cgroup_replace_page_cache(old, new);
494 		radix_tree_preload_end();
495 		if (freepage)
496 			freepage(old);
497 		page_cache_release(old);
498 	}
499 
500 	return error;
501 }
502 EXPORT_SYMBOL_GPL(replace_page_cache_page);
503 
504 static int page_cache_tree_insert(struct address_space *mapping,
505 				  struct page *page, void **shadowp)
506 {
507 	struct radix_tree_node *node;
508 	void **slot;
509 	int error;
510 
511 	error = __radix_tree_create(&mapping->page_tree, page->index,
512 				    &node, &slot);
513 	if (error)
514 		return error;
515 	if (*slot) {
516 		void *p;
517 
518 		p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
519 		if (!radix_tree_exceptional_entry(p))
520 			return -EEXIST;
521 		if (shadowp)
522 			*shadowp = p;
523 		mapping->nrshadows--;
524 		if (node)
525 			workingset_node_shadows_dec(node);
526 	}
527 	radix_tree_replace_slot(slot, page);
528 	mapping->nrpages++;
529 	if (node) {
530 		workingset_node_pages_inc(node);
531 		/*
532 		 * Don't track node that contains actual pages.
533 		 *
534 		 * Avoid acquiring the list_lru lock if already
535 		 * untracked.  The list_empty() test is safe as
536 		 * node->private_list is protected by
537 		 * mapping->tree_lock.
538 		 */
539 		if (!list_empty(&node->private_list))
540 			list_lru_del(&workingset_shadow_nodes,
541 				     &node->private_list);
542 	}
543 	return 0;
544 }
545 
546 static int __add_to_page_cache_locked(struct page *page,
547 				      struct address_space *mapping,
548 				      pgoff_t offset, gfp_t gfp_mask,
549 				      void **shadowp)
550 {
551 	int error;
552 
553 	VM_BUG_ON_PAGE(!PageLocked(page), page);
554 	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
555 
556 	error = mem_cgroup_charge_file(page, current->mm,
557 					gfp_mask & GFP_RECLAIM_MASK);
558 	if (error)
559 		return error;
560 
561 	error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
562 	if (error) {
563 		mem_cgroup_uncharge_cache_page(page);
564 		return error;
565 	}
566 
567 	page_cache_get(page);
568 	page->mapping = mapping;
569 	page->index = offset;
570 
571 	spin_lock_irq(&mapping->tree_lock);
572 	error = page_cache_tree_insert(mapping, page, shadowp);
573 	radix_tree_preload_end();
574 	if (unlikely(error))
575 		goto err_insert;
576 	__inc_zone_page_state(page, NR_FILE_PAGES);
577 	spin_unlock_irq(&mapping->tree_lock);
578 	trace_mm_filemap_add_to_page_cache(page);
579 	return 0;
580 err_insert:
581 	page->mapping = NULL;
582 	/* Leave page->index set: truncation relies upon it */
583 	spin_unlock_irq(&mapping->tree_lock);
584 	mem_cgroup_uncharge_cache_page(page);
585 	page_cache_release(page);
586 	return error;
587 }
588 
589 /**
590  * add_to_page_cache_locked - add a locked page to the pagecache
591  * @page:	page to add
592  * @mapping:	the page's address_space
593  * @offset:	page index
594  * @gfp_mask:	page allocation mode
595  *
596  * This function is used to add a page to the pagecache. It must be locked.
597  * This function does not add the page to the LRU.  The caller must do that.
598  */
599 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
600 		pgoff_t offset, gfp_t gfp_mask)
601 {
602 	return __add_to_page_cache_locked(page, mapping, offset,
603 					  gfp_mask, NULL);
604 }
605 EXPORT_SYMBOL(add_to_page_cache_locked);
606 
607 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
608 				pgoff_t offset, gfp_t gfp_mask)
609 {
610 	void *shadow = NULL;
611 	int ret;
612 
613 	__set_page_locked(page);
614 	ret = __add_to_page_cache_locked(page, mapping, offset,
615 					 gfp_mask, &shadow);
616 	if (unlikely(ret))
617 		__clear_page_locked(page);
618 	else {
619 		/*
620 		 * The page might have been evicted from cache only
621 		 * recently, in which case it should be activated like
622 		 * any other repeatedly accessed page.
623 		 */
624 		if (shadow && workingset_refault(shadow)) {
625 			SetPageActive(page);
626 			workingset_activation(page);
627 		} else
628 			ClearPageActive(page);
629 		lru_cache_add(page);
630 	}
631 	return ret;
632 }
633 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
634 
635 #ifdef CONFIG_NUMA
636 struct page *__page_cache_alloc(gfp_t gfp)
637 {
638 	int n;
639 	struct page *page;
640 
641 	if (cpuset_do_page_mem_spread()) {
642 		unsigned int cpuset_mems_cookie;
643 		do {
644 			cpuset_mems_cookie = read_mems_allowed_begin();
645 			n = cpuset_mem_spread_node();
646 			page = alloc_pages_exact_node(n, gfp, 0);
647 		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
648 
649 		return page;
650 	}
651 	return alloc_pages(gfp, 0);
652 }
653 EXPORT_SYMBOL(__page_cache_alloc);
654 #endif
655 
656 /*
657  * In order to wait for pages to become available there must be
658  * waitqueues associated with pages. By using a hash table of
659  * waitqueues where the bucket discipline is to maintain all
660  * waiters on the same queue and wake all when any of the pages
661  * become available, and for the woken contexts to check to be
662  * sure the appropriate page became available, this saves space
663  * at a cost of "thundering herd" phenomena during rare hash
664  * collisions.
665  */
666 static wait_queue_head_t *page_waitqueue(struct page *page)
667 {
668 	const struct zone *zone = page_zone(page);
669 
670 	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
671 }
672 
673 static inline void wake_up_page(struct page *page, int bit)
674 {
675 	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
676 }
677 
678 void wait_on_page_bit(struct page *page, int bit_nr)
679 {
680 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
681 
682 	if (test_bit(bit_nr, &page->flags))
683 		__wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
684 							TASK_UNINTERRUPTIBLE);
685 }
686 EXPORT_SYMBOL(wait_on_page_bit);
687 
688 int wait_on_page_bit_killable(struct page *page, int bit_nr)
689 {
690 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
691 
692 	if (!test_bit(bit_nr, &page->flags))
693 		return 0;
694 
695 	return __wait_on_bit(page_waitqueue(page), &wait,
696 			     bit_wait_io, TASK_KILLABLE);
697 }
698 
699 /**
700  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
701  * @page: Page defining the wait queue of interest
702  * @waiter: Waiter to add to the queue
703  *
704  * Add an arbitrary @waiter to the wait queue for the nominated @page.
705  */
706 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
707 {
708 	wait_queue_head_t *q = page_waitqueue(page);
709 	unsigned long flags;
710 
711 	spin_lock_irqsave(&q->lock, flags);
712 	__add_wait_queue(q, waiter);
713 	spin_unlock_irqrestore(&q->lock, flags);
714 }
715 EXPORT_SYMBOL_GPL(add_page_wait_queue);
716 
717 /**
718  * unlock_page - unlock a locked page
719  * @page: the page
720  *
721  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
722  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
723  * mechananism between PageLocked pages and PageWriteback pages is shared.
724  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
725  *
726  * The mb is necessary to enforce ordering between the clear_bit and the read
727  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
728  */
729 void unlock_page(struct page *page)
730 {
731 	VM_BUG_ON_PAGE(!PageLocked(page), page);
732 	clear_bit_unlock(PG_locked, &page->flags);
733 	smp_mb__after_atomic();
734 	wake_up_page(page, PG_locked);
735 }
736 EXPORT_SYMBOL(unlock_page);
737 
738 /**
739  * end_page_writeback - end writeback against a page
740  * @page: the page
741  */
742 void end_page_writeback(struct page *page)
743 {
744 	/*
745 	 * TestClearPageReclaim could be used here but it is an atomic
746 	 * operation and overkill in this particular case. Failing to
747 	 * shuffle a page marked for immediate reclaim is too mild to
748 	 * justify taking an atomic operation penalty at the end of
749 	 * ever page writeback.
750 	 */
751 	if (PageReclaim(page)) {
752 		ClearPageReclaim(page);
753 		rotate_reclaimable_page(page);
754 	}
755 
756 	if (!test_clear_page_writeback(page))
757 		BUG();
758 
759 	smp_mb__after_atomic();
760 	wake_up_page(page, PG_writeback);
761 }
762 EXPORT_SYMBOL(end_page_writeback);
763 
764 /*
765  * After completing I/O on a page, call this routine to update the page
766  * flags appropriately
767  */
768 void page_endio(struct page *page, int rw, int err)
769 {
770 	if (rw == READ) {
771 		if (!err) {
772 			SetPageUptodate(page);
773 		} else {
774 			ClearPageUptodate(page);
775 			SetPageError(page);
776 		}
777 		unlock_page(page);
778 	} else { /* rw == WRITE */
779 		if (err) {
780 			SetPageError(page);
781 			if (page->mapping)
782 				mapping_set_error(page->mapping, err);
783 		}
784 		end_page_writeback(page);
785 	}
786 }
787 EXPORT_SYMBOL_GPL(page_endio);
788 
789 /**
790  * __lock_page - get a lock on the page, assuming we need to sleep to get it
791  * @page: the page to lock
792  */
793 void __lock_page(struct page *page)
794 {
795 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
796 
797 	__wait_on_bit_lock(page_waitqueue(page), &wait, bit_wait_io,
798 							TASK_UNINTERRUPTIBLE);
799 }
800 EXPORT_SYMBOL(__lock_page);
801 
802 int __lock_page_killable(struct page *page)
803 {
804 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
805 
806 	return __wait_on_bit_lock(page_waitqueue(page), &wait,
807 					bit_wait_io, TASK_KILLABLE);
808 }
809 EXPORT_SYMBOL_GPL(__lock_page_killable);
810 
811 /*
812  * Return values:
813  * 1 - page is locked; mmap_sem is still held.
814  * 0 - page is not locked.
815  *     mmap_sem has been released (up_read()), unless flags had both
816  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
817  *     which case mmap_sem is still held.
818  *
819  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
820  * with the page locked and the mmap_sem unperturbed.
821  */
822 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
823 			 unsigned int flags)
824 {
825 	if (flags & FAULT_FLAG_ALLOW_RETRY) {
826 		/*
827 		 * CAUTION! In this case, mmap_sem is not released
828 		 * even though return 0.
829 		 */
830 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
831 			return 0;
832 
833 		up_read(&mm->mmap_sem);
834 		if (flags & FAULT_FLAG_KILLABLE)
835 			wait_on_page_locked_killable(page);
836 		else
837 			wait_on_page_locked(page);
838 		return 0;
839 	} else {
840 		if (flags & FAULT_FLAG_KILLABLE) {
841 			int ret;
842 
843 			ret = __lock_page_killable(page);
844 			if (ret) {
845 				up_read(&mm->mmap_sem);
846 				return 0;
847 			}
848 		} else
849 			__lock_page(page);
850 		return 1;
851 	}
852 }
853 
854 /**
855  * page_cache_next_hole - find the next hole (not-present entry)
856  * @mapping: mapping
857  * @index: index
858  * @max_scan: maximum range to search
859  *
860  * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
861  * lowest indexed hole.
862  *
863  * Returns: the index of the hole if found, otherwise returns an index
864  * outside of the set specified (in which case 'return - index >=
865  * max_scan' will be true). In rare cases of index wrap-around, 0 will
866  * be returned.
867  *
868  * page_cache_next_hole may be called under rcu_read_lock. However,
869  * like radix_tree_gang_lookup, this will not atomically search a
870  * snapshot of the tree at a single point in time. For example, if a
871  * hole is created at index 5, then subsequently a hole is created at
872  * index 10, page_cache_next_hole covering both indexes may return 10
873  * if called under rcu_read_lock.
874  */
875 pgoff_t page_cache_next_hole(struct address_space *mapping,
876 			     pgoff_t index, unsigned long max_scan)
877 {
878 	unsigned long i;
879 
880 	for (i = 0; i < max_scan; i++) {
881 		struct page *page;
882 
883 		page = radix_tree_lookup(&mapping->page_tree, index);
884 		if (!page || radix_tree_exceptional_entry(page))
885 			break;
886 		index++;
887 		if (index == 0)
888 			break;
889 	}
890 
891 	return index;
892 }
893 EXPORT_SYMBOL(page_cache_next_hole);
894 
895 /**
896  * page_cache_prev_hole - find the prev hole (not-present entry)
897  * @mapping: mapping
898  * @index: index
899  * @max_scan: maximum range to search
900  *
901  * Search backwards in the range [max(index-max_scan+1, 0), index] for
902  * the first hole.
903  *
904  * Returns: the index of the hole if found, otherwise returns an index
905  * outside of the set specified (in which case 'index - return >=
906  * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
907  * will be returned.
908  *
909  * page_cache_prev_hole may be called under rcu_read_lock. However,
910  * like radix_tree_gang_lookup, this will not atomically search a
911  * snapshot of the tree at a single point in time. For example, if a
912  * hole is created at index 10, then subsequently a hole is created at
913  * index 5, page_cache_prev_hole covering both indexes may return 5 if
914  * called under rcu_read_lock.
915  */
916 pgoff_t page_cache_prev_hole(struct address_space *mapping,
917 			     pgoff_t index, unsigned long max_scan)
918 {
919 	unsigned long i;
920 
921 	for (i = 0; i < max_scan; i++) {
922 		struct page *page;
923 
924 		page = radix_tree_lookup(&mapping->page_tree, index);
925 		if (!page || radix_tree_exceptional_entry(page))
926 			break;
927 		index--;
928 		if (index == ULONG_MAX)
929 			break;
930 	}
931 
932 	return index;
933 }
934 EXPORT_SYMBOL(page_cache_prev_hole);
935 
936 /**
937  * find_get_entry - find and get a page cache entry
938  * @mapping: the address_space to search
939  * @offset: the page cache index
940  *
941  * Looks up the page cache slot at @mapping & @offset.  If there is a
942  * page cache page, it is returned with an increased refcount.
943  *
944  * If the slot holds a shadow entry of a previously evicted page, or a
945  * swap entry from shmem/tmpfs, it is returned.
946  *
947  * Otherwise, %NULL is returned.
948  */
949 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
950 {
951 	void **pagep;
952 	struct page *page;
953 
954 	rcu_read_lock();
955 repeat:
956 	page = NULL;
957 	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
958 	if (pagep) {
959 		page = radix_tree_deref_slot(pagep);
960 		if (unlikely(!page))
961 			goto out;
962 		if (radix_tree_exception(page)) {
963 			if (radix_tree_deref_retry(page))
964 				goto repeat;
965 			/*
966 			 * A shadow entry of a recently evicted page,
967 			 * or a swap entry from shmem/tmpfs.  Return
968 			 * it without attempting to raise page count.
969 			 */
970 			goto out;
971 		}
972 		if (!page_cache_get_speculative(page))
973 			goto repeat;
974 
975 		/*
976 		 * Has the page moved?
977 		 * This is part of the lockless pagecache protocol. See
978 		 * include/linux/pagemap.h for details.
979 		 */
980 		if (unlikely(page != *pagep)) {
981 			page_cache_release(page);
982 			goto repeat;
983 		}
984 	}
985 out:
986 	rcu_read_unlock();
987 
988 	return page;
989 }
990 EXPORT_SYMBOL(find_get_entry);
991 
992 /**
993  * find_lock_entry - locate, pin and lock a page cache entry
994  * @mapping: the address_space to search
995  * @offset: the page cache index
996  *
997  * Looks up the page cache slot at @mapping & @offset.  If there is a
998  * page cache page, it is returned locked and with an increased
999  * refcount.
1000  *
1001  * If the slot holds a shadow entry of a previously evicted page, or a
1002  * swap entry from shmem/tmpfs, it is returned.
1003  *
1004  * Otherwise, %NULL is returned.
1005  *
1006  * find_lock_entry() may sleep.
1007  */
1008 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1009 {
1010 	struct page *page;
1011 
1012 repeat:
1013 	page = find_get_entry(mapping, offset);
1014 	if (page && !radix_tree_exception(page)) {
1015 		lock_page(page);
1016 		/* Has the page been truncated? */
1017 		if (unlikely(page->mapping != mapping)) {
1018 			unlock_page(page);
1019 			page_cache_release(page);
1020 			goto repeat;
1021 		}
1022 		VM_BUG_ON_PAGE(page->index != offset, page);
1023 	}
1024 	return page;
1025 }
1026 EXPORT_SYMBOL(find_lock_entry);
1027 
1028 /**
1029  * pagecache_get_page - find and get a page reference
1030  * @mapping: the address_space to search
1031  * @offset: the page index
1032  * @fgp_flags: PCG flags
1033  * @cache_gfp_mask: gfp mask to use for the page cache data page allocation
1034  * @radix_gfp_mask: gfp mask to use for radix tree node allocation
1035  *
1036  * Looks up the page cache slot at @mapping & @offset.
1037  *
1038  * PCG flags modify how the page is returned.
1039  *
1040  * FGP_ACCESSED: the page will be marked accessed
1041  * FGP_LOCK: Page is return locked
1042  * FGP_CREAT: If page is not present then a new page is allocated using
1043  *		@cache_gfp_mask and added to the page cache and the VM's LRU
1044  *		list. If radix tree nodes are allocated during page cache
1045  *		insertion then @radix_gfp_mask is used. The page is returned
1046  *		locked and with an increased refcount. Otherwise, %NULL is
1047  *		returned.
1048  *
1049  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1050  * if the GFP flags specified for FGP_CREAT are atomic.
1051  *
1052  * If there is a page cache page, it is returned with an increased refcount.
1053  */
1054 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1055 	int fgp_flags, gfp_t cache_gfp_mask, gfp_t radix_gfp_mask)
1056 {
1057 	struct page *page;
1058 
1059 repeat:
1060 	page = find_get_entry(mapping, offset);
1061 	if (radix_tree_exceptional_entry(page))
1062 		page = NULL;
1063 	if (!page)
1064 		goto no_page;
1065 
1066 	if (fgp_flags & FGP_LOCK) {
1067 		if (fgp_flags & FGP_NOWAIT) {
1068 			if (!trylock_page(page)) {
1069 				page_cache_release(page);
1070 				return NULL;
1071 			}
1072 		} else {
1073 			lock_page(page);
1074 		}
1075 
1076 		/* Has the page been truncated? */
1077 		if (unlikely(page->mapping != mapping)) {
1078 			unlock_page(page);
1079 			page_cache_release(page);
1080 			goto repeat;
1081 		}
1082 		VM_BUG_ON_PAGE(page->index != offset, page);
1083 	}
1084 
1085 	if (page && (fgp_flags & FGP_ACCESSED))
1086 		mark_page_accessed(page);
1087 
1088 no_page:
1089 	if (!page && (fgp_flags & FGP_CREAT)) {
1090 		int err;
1091 		if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1092 			cache_gfp_mask |= __GFP_WRITE;
1093 		if (fgp_flags & FGP_NOFS) {
1094 			cache_gfp_mask &= ~__GFP_FS;
1095 			radix_gfp_mask &= ~__GFP_FS;
1096 		}
1097 
1098 		page = __page_cache_alloc(cache_gfp_mask);
1099 		if (!page)
1100 			return NULL;
1101 
1102 		if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1103 			fgp_flags |= FGP_LOCK;
1104 
1105 		/* Init accessed so avoid atomic mark_page_accessed later */
1106 		if (fgp_flags & FGP_ACCESSED)
1107 			__SetPageReferenced(page);
1108 
1109 		err = add_to_page_cache_lru(page, mapping, offset, radix_gfp_mask);
1110 		if (unlikely(err)) {
1111 			page_cache_release(page);
1112 			page = NULL;
1113 			if (err == -EEXIST)
1114 				goto repeat;
1115 		}
1116 	}
1117 
1118 	return page;
1119 }
1120 EXPORT_SYMBOL(pagecache_get_page);
1121 
1122 /**
1123  * find_get_entries - gang pagecache lookup
1124  * @mapping:	The address_space to search
1125  * @start:	The starting page cache index
1126  * @nr_entries:	The maximum number of entries
1127  * @entries:	Where the resulting entries are placed
1128  * @indices:	The cache indices corresponding to the entries in @entries
1129  *
1130  * find_get_entries() will search for and return a group of up to
1131  * @nr_entries entries in the mapping.  The entries are placed at
1132  * @entries.  find_get_entries() takes a reference against any actual
1133  * pages it returns.
1134  *
1135  * The search returns a group of mapping-contiguous page cache entries
1136  * with ascending indexes.  There may be holes in the indices due to
1137  * not-present pages.
1138  *
1139  * Any shadow entries of evicted pages, or swap entries from
1140  * shmem/tmpfs, are included in the returned array.
1141  *
1142  * find_get_entries() returns the number of pages and shadow entries
1143  * which were found.
1144  */
1145 unsigned find_get_entries(struct address_space *mapping,
1146 			  pgoff_t start, unsigned int nr_entries,
1147 			  struct page **entries, pgoff_t *indices)
1148 {
1149 	void **slot;
1150 	unsigned int ret = 0;
1151 	struct radix_tree_iter iter;
1152 
1153 	if (!nr_entries)
1154 		return 0;
1155 
1156 	rcu_read_lock();
1157 restart:
1158 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1159 		struct page *page;
1160 repeat:
1161 		page = radix_tree_deref_slot(slot);
1162 		if (unlikely(!page))
1163 			continue;
1164 		if (radix_tree_exception(page)) {
1165 			if (radix_tree_deref_retry(page))
1166 				goto restart;
1167 			/*
1168 			 * A shadow entry of a recently evicted page,
1169 			 * or a swap entry from shmem/tmpfs.  Return
1170 			 * it without attempting to raise page count.
1171 			 */
1172 			goto export;
1173 		}
1174 		if (!page_cache_get_speculative(page))
1175 			goto repeat;
1176 
1177 		/* Has the page moved? */
1178 		if (unlikely(page != *slot)) {
1179 			page_cache_release(page);
1180 			goto repeat;
1181 		}
1182 export:
1183 		indices[ret] = iter.index;
1184 		entries[ret] = page;
1185 		if (++ret == nr_entries)
1186 			break;
1187 	}
1188 	rcu_read_unlock();
1189 	return ret;
1190 }
1191 
1192 /**
1193  * find_get_pages - gang pagecache lookup
1194  * @mapping:	The address_space to search
1195  * @start:	The starting page index
1196  * @nr_pages:	The maximum number of pages
1197  * @pages:	Where the resulting pages are placed
1198  *
1199  * find_get_pages() will search for and return a group of up to
1200  * @nr_pages pages in the mapping.  The pages are placed at @pages.
1201  * find_get_pages() takes a reference against the returned pages.
1202  *
1203  * The search returns a group of mapping-contiguous pages with ascending
1204  * indexes.  There may be holes in the indices due to not-present pages.
1205  *
1206  * find_get_pages() returns the number of pages which were found.
1207  */
1208 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1209 			    unsigned int nr_pages, struct page **pages)
1210 {
1211 	struct radix_tree_iter iter;
1212 	void **slot;
1213 	unsigned ret = 0;
1214 
1215 	if (unlikely(!nr_pages))
1216 		return 0;
1217 
1218 	rcu_read_lock();
1219 restart:
1220 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1221 		struct page *page;
1222 repeat:
1223 		page = radix_tree_deref_slot(slot);
1224 		if (unlikely(!page))
1225 			continue;
1226 
1227 		if (radix_tree_exception(page)) {
1228 			if (radix_tree_deref_retry(page)) {
1229 				/*
1230 				 * Transient condition which can only trigger
1231 				 * when entry at index 0 moves out of or back
1232 				 * to root: none yet gotten, safe to restart.
1233 				 */
1234 				WARN_ON(iter.index);
1235 				goto restart;
1236 			}
1237 			/*
1238 			 * A shadow entry of a recently evicted page,
1239 			 * or a swap entry from shmem/tmpfs.  Skip
1240 			 * over it.
1241 			 */
1242 			continue;
1243 		}
1244 
1245 		if (!page_cache_get_speculative(page))
1246 			goto repeat;
1247 
1248 		/* Has the page moved? */
1249 		if (unlikely(page != *slot)) {
1250 			page_cache_release(page);
1251 			goto repeat;
1252 		}
1253 
1254 		pages[ret] = page;
1255 		if (++ret == nr_pages)
1256 			break;
1257 	}
1258 
1259 	rcu_read_unlock();
1260 	return ret;
1261 }
1262 
1263 /**
1264  * find_get_pages_contig - gang contiguous pagecache lookup
1265  * @mapping:	The address_space to search
1266  * @index:	The starting page index
1267  * @nr_pages:	The maximum number of pages
1268  * @pages:	Where the resulting pages are placed
1269  *
1270  * find_get_pages_contig() works exactly like find_get_pages(), except
1271  * that the returned number of pages are guaranteed to be contiguous.
1272  *
1273  * find_get_pages_contig() returns the number of pages which were found.
1274  */
1275 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1276 			       unsigned int nr_pages, struct page **pages)
1277 {
1278 	struct radix_tree_iter iter;
1279 	void **slot;
1280 	unsigned int ret = 0;
1281 
1282 	if (unlikely(!nr_pages))
1283 		return 0;
1284 
1285 	rcu_read_lock();
1286 restart:
1287 	radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1288 		struct page *page;
1289 repeat:
1290 		page = radix_tree_deref_slot(slot);
1291 		/* The hole, there no reason to continue */
1292 		if (unlikely(!page))
1293 			break;
1294 
1295 		if (radix_tree_exception(page)) {
1296 			if (radix_tree_deref_retry(page)) {
1297 				/*
1298 				 * Transient condition which can only trigger
1299 				 * when entry at index 0 moves out of or back
1300 				 * to root: none yet gotten, safe to restart.
1301 				 */
1302 				goto restart;
1303 			}
1304 			/*
1305 			 * A shadow entry of a recently evicted page,
1306 			 * or a swap entry from shmem/tmpfs.  Stop
1307 			 * looking for contiguous pages.
1308 			 */
1309 			break;
1310 		}
1311 
1312 		if (!page_cache_get_speculative(page))
1313 			goto repeat;
1314 
1315 		/* Has the page moved? */
1316 		if (unlikely(page != *slot)) {
1317 			page_cache_release(page);
1318 			goto repeat;
1319 		}
1320 
1321 		/*
1322 		 * must check mapping and index after taking the ref.
1323 		 * otherwise we can get both false positives and false
1324 		 * negatives, which is just confusing to the caller.
1325 		 */
1326 		if (page->mapping == NULL || page->index != iter.index) {
1327 			page_cache_release(page);
1328 			break;
1329 		}
1330 
1331 		pages[ret] = page;
1332 		if (++ret == nr_pages)
1333 			break;
1334 	}
1335 	rcu_read_unlock();
1336 	return ret;
1337 }
1338 EXPORT_SYMBOL(find_get_pages_contig);
1339 
1340 /**
1341  * find_get_pages_tag - find and return pages that match @tag
1342  * @mapping:	the address_space to search
1343  * @index:	the starting page index
1344  * @tag:	the tag index
1345  * @nr_pages:	the maximum number of pages
1346  * @pages:	where the resulting pages are placed
1347  *
1348  * Like find_get_pages, except we only return pages which are tagged with
1349  * @tag.   We update @index to index the next page for the traversal.
1350  */
1351 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1352 			int tag, unsigned int nr_pages, struct page **pages)
1353 {
1354 	struct radix_tree_iter iter;
1355 	void **slot;
1356 	unsigned ret = 0;
1357 
1358 	if (unlikely(!nr_pages))
1359 		return 0;
1360 
1361 	rcu_read_lock();
1362 restart:
1363 	radix_tree_for_each_tagged(slot, &mapping->page_tree,
1364 				   &iter, *index, tag) {
1365 		struct page *page;
1366 repeat:
1367 		page = radix_tree_deref_slot(slot);
1368 		if (unlikely(!page))
1369 			continue;
1370 
1371 		if (radix_tree_exception(page)) {
1372 			if (radix_tree_deref_retry(page)) {
1373 				/*
1374 				 * Transient condition which can only trigger
1375 				 * when entry at index 0 moves out of or back
1376 				 * to root: none yet gotten, safe to restart.
1377 				 */
1378 				goto restart;
1379 			}
1380 			/*
1381 			 * A shadow entry of a recently evicted page.
1382 			 *
1383 			 * Those entries should never be tagged, but
1384 			 * this tree walk is lockless and the tags are
1385 			 * looked up in bulk, one radix tree node at a
1386 			 * time, so there is a sizable window for page
1387 			 * reclaim to evict a page we saw tagged.
1388 			 *
1389 			 * Skip over it.
1390 			 */
1391 			continue;
1392 		}
1393 
1394 		if (!page_cache_get_speculative(page))
1395 			goto repeat;
1396 
1397 		/* Has the page moved? */
1398 		if (unlikely(page != *slot)) {
1399 			page_cache_release(page);
1400 			goto repeat;
1401 		}
1402 
1403 		pages[ret] = page;
1404 		if (++ret == nr_pages)
1405 			break;
1406 	}
1407 
1408 	rcu_read_unlock();
1409 
1410 	if (ret)
1411 		*index = pages[ret - 1]->index + 1;
1412 
1413 	return ret;
1414 }
1415 EXPORT_SYMBOL(find_get_pages_tag);
1416 
1417 /*
1418  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1419  * a _large_ part of the i/o request. Imagine the worst scenario:
1420  *
1421  *      ---R__________________________________________B__________
1422  *         ^ reading here                             ^ bad block(assume 4k)
1423  *
1424  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1425  * => failing the whole request => read(R) => read(R+1) =>
1426  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1427  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1428  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1429  *
1430  * It is going insane. Fix it by quickly scaling down the readahead size.
1431  */
1432 static void shrink_readahead_size_eio(struct file *filp,
1433 					struct file_ra_state *ra)
1434 {
1435 	ra->ra_pages /= 4;
1436 }
1437 
1438 /**
1439  * do_generic_file_read - generic file read routine
1440  * @filp:	the file to read
1441  * @ppos:	current file position
1442  * @iter:	data destination
1443  * @written:	already copied
1444  *
1445  * This is a generic file read routine, and uses the
1446  * mapping->a_ops->readpage() function for the actual low-level stuff.
1447  *
1448  * This is really ugly. But the goto's actually try to clarify some
1449  * of the logic when it comes to error handling etc.
1450  */
1451 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1452 		struct iov_iter *iter, ssize_t written)
1453 {
1454 	struct address_space *mapping = filp->f_mapping;
1455 	struct inode *inode = mapping->host;
1456 	struct file_ra_state *ra = &filp->f_ra;
1457 	pgoff_t index;
1458 	pgoff_t last_index;
1459 	pgoff_t prev_index;
1460 	unsigned long offset;      /* offset into pagecache page */
1461 	unsigned int prev_offset;
1462 	int error = 0;
1463 
1464 	index = *ppos >> PAGE_CACHE_SHIFT;
1465 	prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1466 	prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1467 	last_index = (*ppos + iter->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1468 	offset = *ppos & ~PAGE_CACHE_MASK;
1469 
1470 	for (;;) {
1471 		struct page *page;
1472 		pgoff_t end_index;
1473 		loff_t isize;
1474 		unsigned long nr, ret;
1475 
1476 		cond_resched();
1477 find_page:
1478 		page = find_get_page(mapping, index);
1479 		if (!page) {
1480 			page_cache_sync_readahead(mapping,
1481 					ra, filp,
1482 					index, last_index - index);
1483 			page = find_get_page(mapping, index);
1484 			if (unlikely(page == NULL))
1485 				goto no_cached_page;
1486 		}
1487 		if (PageReadahead(page)) {
1488 			page_cache_async_readahead(mapping,
1489 					ra, filp, page,
1490 					index, last_index - index);
1491 		}
1492 		if (!PageUptodate(page)) {
1493 			if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1494 					!mapping->a_ops->is_partially_uptodate)
1495 				goto page_not_up_to_date;
1496 			if (!trylock_page(page))
1497 				goto page_not_up_to_date;
1498 			/* Did it get truncated before we got the lock? */
1499 			if (!page->mapping)
1500 				goto page_not_up_to_date_locked;
1501 			if (!mapping->a_ops->is_partially_uptodate(page,
1502 							offset, iter->count))
1503 				goto page_not_up_to_date_locked;
1504 			unlock_page(page);
1505 		}
1506 page_ok:
1507 		/*
1508 		 * i_size must be checked after we know the page is Uptodate.
1509 		 *
1510 		 * Checking i_size after the check allows us to calculate
1511 		 * the correct value for "nr", which means the zero-filled
1512 		 * part of the page is not copied back to userspace (unless
1513 		 * another truncate extends the file - this is desired though).
1514 		 */
1515 
1516 		isize = i_size_read(inode);
1517 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1518 		if (unlikely(!isize || index > end_index)) {
1519 			page_cache_release(page);
1520 			goto out;
1521 		}
1522 
1523 		/* nr is the maximum number of bytes to copy from this page */
1524 		nr = PAGE_CACHE_SIZE;
1525 		if (index == end_index) {
1526 			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1527 			if (nr <= offset) {
1528 				page_cache_release(page);
1529 				goto out;
1530 			}
1531 		}
1532 		nr = nr - offset;
1533 
1534 		/* If users can be writing to this page using arbitrary
1535 		 * virtual addresses, take care about potential aliasing
1536 		 * before reading the page on the kernel side.
1537 		 */
1538 		if (mapping_writably_mapped(mapping))
1539 			flush_dcache_page(page);
1540 
1541 		/*
1542 		 * When a sequential read accesses a page several times,
1543 		 * only mark it as accessed the first time.
1544 		 */
1545 		if (prev_index != index || offset != prev_offset)
1546 			mark_page_accessed(page);
1547 		prev_index = index;
1548 
1549 		/*
1550 		 * Ok, we have the page, and it's up-to-date, so
1551 		 * now we can copy it to user space...
1552 		 */
1553 
1554 		ret = copy_page_to_iter(page, offset, nr, iter);
1555 		offset += ret;
1556 		index += offset >> PAGE_CACHE_SHIFT;
1557 		offset &= ~PAGE_CACHE_MASK;
1558 		prev_offset = offset;
1559 
1560 		page_cache_release(page);
1561 		written += ret;
1562 		if (!iov_iter_count(iter))
1563 			goto out;
1564 		if (ret < nr) {
1565 			error = -EFAULT;
1566 			goto out;
1567 		}
1568 		continue;
1569 
1570 page_not_up_to_date:
1571 		/* Get exclusive access to the page ... */
1572 		error = lock_page_killable(page);
1573 		if (unlikely(error))
1574 			goto readpage_error;
1575 
1576 page_not_up_to_date_locked:
1577 		/* Did it get truncated before we got the lock? */
1578 		if (!page->mapping) {
1579 			unlock_page(page);
1580 			page_cache_release(page);
1581 			continue;
1582 		}
1583 
1584 		/* Did somebody else fill it already? */
1585 		if (PageUptodate(page)) {
1586 			unlock_page(page);
1587 			goto page_ok;
1588 		}
1589 
1590 readpage:
1591 		/*
1592 		 * A previous I/O error may have been due to temporary
1593 		 * failures, eg. multipath errors.
1594 		 * PG_error will be set again if readpage fails.
1595 		 */
1596 		ClearPageError(page);
1597 		/* Start the actual read. The read will unlock the page. */
1598 		error = mapping->a_ops->readpage(filp, page);
1599 
1600 		if (unlikely(error)) {
1601 			if (error == AOP_TRUNCATED_PAGE) {
1602 				page_cache_release(page);
1603 				error = 0;
1604 				goto find_page;
1605 			}
1606 			goto readpage_error;
1607 		}
1608 
1609 		if (!PageUptodate(page)) {
1610 			error = lock_page_killable(page);
1611 			if (unlikely(error))
1612 				goto readpage_error;
1613 			if (!PageUptodate(page)) {
1614 				if (page->mapping == NULL) {
1615 					/*
1616 					 * invalidate_mapping_pages got it
1617 					 */
1618 					unlock_page(page);
1619 					page_cache_release(page);
1620 					goto find_page;
1621 				}
1622 				unlock_page(page);
1623 				shrink_readahead_size_eio(filp, ra);
1624 				error = -EIO;
1625 				goto readpage_error;
1626 			}
1627 			unlock_page(page);
1628 		}
1629 
1630 		goto page_ok;
1631 
1632 readpage_error:
1633 		/* UHHUH! A synchronous read error occurred. Report it */
1634 		page_cache_release(page);
1635 		goto out;
1636 
1637 no_cached_page:
1638 		/*
1639 		 * Ok, it wasn't cached, so we need to create a new
1640 		 * page..
1641 		 */
1642 		page = page_cache_alloc_cold(mapping);
1643 		if (!page) {
1644 			error = -ENOMEM;
1645 			goto out;
1646 		}
1647 		error = add_to_page_cache_lru(page, mapping,
1648 						index, GFP_KERNEL);
1649 		if (error) {
1650 			page_cache_release(page);
1651 			if (error == -EEXIST) {
1652 				error = 0;
1653 				goto find_page;
1654 			}
1655 			goto out;
1656 		}
1657 		goto readpage;
1658 	}
1659 
1660 out:
1661 	ra->prev_pos = prev_index;
1662 	ra->prev_pos <<= PAGE_CACHE_SHIFT;
1663 	ra->prev_pos |= prev_offset;
1664 
1665 	*ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1666 	file_accessed(filp);
1667 	return written ? written : error;
1668 }
1669 
1670 /**
1671  * generic_file_read_iter - generic filesystem read routine
1672  * @iocb:	kernel I/O control block
1673  * @iter:	destination for the data read
1674  *
1675  * This is the "read_iter()" routine for all filesystems
1676  * that can use the page cache directly.
1677  */
1678 ssize_t
1679 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1680 {
1681 	struct file *file = iocb->ki_filp;
1682 	ssize_t retval = 0;
1683 	loff_t *ppos = &iocb->ki_pos;
1684 	loff_t pos = *ppos;
1685 
1686 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1687 	if (file->f_flags & O_DIRECT) {
1688 		struct address_space *mapping = file->f_mapping;
1689 		struct inode *inode = mapping->host;
1690 		size_t count = iov_iter_count(iter);
1691 		loff_t size;
1692 
1693 		if (!count)
1694 			goto out; /* skip atime */
1695 		size = i_size_read(inode);
1696 		retval = filemap_write_and_wait_range(mapping, pos,
1697 					pos + count - 1);
1698 		if (!retval) {
1699 			struct iov_iter data = *iter;
1700 			retval = mapping->a_ops->direct_IO(READ, iocb, &data, pos);
1701 		}
1702 
1703 		if (retval > 0) {
1704 			*ppos = pos + retval;
1705 			iov_iter_advance(iter, retval);
1706 		}
1707 
1708 		/*
1709 		 * Btrfs can have a short DIO read if we encounter
1710 		 * compressed extents, so if there was an error, or if
1711 		 * we've already read everything we wanted to, or if
1712 		 * there was a short read because we hit EOF, go ahead
1713 		 * and return.  Otherwise fallthrough to buffered io for
1714 		 * the rest of the read.
1715 		 */
1716 		if (retval < 0 || !iov_iter_count(iter) || *ppos >= size) {
1717 			file_accessed(file);
1718 			goto out;
1719 		}
1720 	}
1721 
1722 	retval = do_generic_file_read(file, ppos, iter, retval);
1723 out:
1724 	return retval;
1725 }
1726 EXPORT_SYMBOL(generic_file_read_iter);
1727 
1728 #ifdef CONFIG_MMU
1729 /**
1730  * page_cache_read - adds requested page to the page cache if not already there
1731  * @file:	file to read
1732  * @offset:	page index
1733  *
1734  * This adds the requested page to the page cache if it isn't already there,
1735  * and schedules an I/O to read in its contents from disk.
1736  */
1737 static int page_cache_read(struct file *file, pgoff_t offset)
1738 {
1739 	struct address_space *mapping = file->f_mapping;
1740 	struct page *page;
1741 	int ret;
1742 
1743 	do {
1744 		page = page_cache_alloc_cold(mapping);
1745 		if (!page)
1746 			return -ENOMEM;
1747 
1748 		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1749 		if (ret == 0)
1750 			ret = mapping->a_ops->readpage(file, page);
1751 		else if (ret == -EEXIST)
1752 			ret = 0; /* losing race to add is OK */
1753 
1754 		page_cache_release(page);
1755 
1756 	} while (ret == AOP_TRUNCATED_PAGE);
1757 
1758 	return ret;
1759 }
1760 
1761 #define MMAP_LOTSAMISS  (100)
1762 
1763 /*
1764  * Synchronous readahead happens when we don't even find
1765  * a page in the page cache at all.
1766  */
1767 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1768 				   struct file_ra_state *ra,
1769 				   struct file *file,
1770 				   pgoff_t offset)
1771 {
1772 	unsigned long ra_pages;
1773 	struct address_space *mapping = file->f_mapping;
1774 
1775 	/* If we don't want any read-ahead, don't bother */
1776 	if (vma->vm_flags & VM_RAND_READ)
1777 		return;
1778 	if (!ra->ra_pages)
1779 		return;
1780 
1781 	if (vma->vm_flags & VM_SEQ_READ) {
1782 		page_cache_sync_readahead(mapping, ra, file, offset,
1783 					  ra->ra_pages);
1784 		return;
1785 	}
1786 
1787 	/* Avoid banging the cache line if not needed */
1788 	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1789 		ra->mmap_miss++;
1790 
1791 	/*
1792 	 * Do we miss much more than hit in this file? If so,
1793 	 * stop bothering with read-ahead. It will only hurt.
1794 	 */
1795 	if (ra->mmap_miss > MMAP_LOTSAMISS)
1796 		return;
1797 
1798 	/*
1799 	 * mmap read-around
1800 	 */
1801 	ra_pages = max_sane_readahead(ra->ra_pages);
1802 	ra->start = max_t(long, 0, offset - ra_pages / 2);
1803 	ra->size = ra_pages;
1804 	ra->async_size = ra_pages / 4;
1805 	ra_submit(ra, mapping, file);
1806 }
1807 
1808 /*
1809  * Asynchronous readahead happens when we find the page and PG_readahead,
1810  * so we want to possibly extend the readahead further..
1811  */
1812 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1813 				    struct file_ra_state *ra,
1814 				    struct file *file,
1815 				    struct page *page,
1816 				    pgoff_t offset)
1817 {
1818 	struct address_space *mapping = file->f_mapping;
1819 
1820 	/* If we don't want any read-ahead, don't bother */
1821 	if (vma->vm_flags & VM_RAND_READ)
1822 		return;
1823 	if (ra->mmap_miss > 0)
1824 		ra->mmap_miss--;
1825 	if (PageReadahead(page))
1826 		page_cache_async_readahead(mapping, ra, file,
1827 					   page, offset, ra->ra_pages);
1828 }
1829 
1830 /**
1831  * filemap_fault - read in file data for page fault handling
1832  * @vma:	vma in which the fault was taken
1833  * @vmf:	struct vm_fault containing details of the fault
1834  *
1835  * filemap_fault() is invoked via the vma operations vector for a
1836  * mapped memory region to read in file data during a page fault.
1837  *
1838  * The goto's are kind of ugly, but this streamlines the normal case of having
1839  * it in the page cache, and handles the special cases reasonably without
1840  * having a lot of duplicated code.
1841  *
1842  * vma->vm_mm->mmap_sem must be held on entry.
1843  *
1844  * If our return value has VM_FAULT_RETRY set, it's because
1845  * lock_page_or_retry() returned 0.
1846  * The mmap_sem has usually been released in this case.
1847  * See __lock_page_or_retry() for the exception.
1848  *
1849  * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
1850  * has not been released.
1851  *
1852  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
1853  */
1854 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1855 {
1856 	int error;
1857 	struct file *file = vma->vm_file;
1858 	struct address_space *mapping = file->f_mapping;
1859 	struct file_ra_state *ra = &file->f_ra;
1860 	struct inode *inode = mapping->host;
1861 	pgoff_t offset = vmf->pgoff;
1862 	struct page *page;
1863 	loff_t size;
1864 	int ret = 0;
1865 
1866 	size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1867 	if (offset >= size >> PAGE_CACHE_SHIFT)
1868 		return VM_FAULT_SIGBUS;
1869 
1870 	/*
1871 	 * Do we have something in the page cache already?
1872 	 */
1873 	page = find_get_page(mapping, offset);
1874 	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1875 		/*
1876 		 * We found the page, so try async readahead before
1877 		 * waiting for the lock.
1878 		 */
1879 		do_async_mmap_readahead(vma, ra, file, page, offset);
1880 	} else if (!page) {
1881 		/* No page in the page cache at all */
1882 		do_sync_mmap_readahead(vma, ra, file, offset);
1883 		count_vm_event(PGMAJFAULT);
1884 		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1885 		ret = VM_FAULT_MAJOR;
1886 retry_find:
1887 		page = find_get_page(mapping, offset);
1888 		if (!page)
1889 			goto no_cached_page;
1890 	}
1891 
1892 	if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1893 		page_cache_release(page);
1894 		return ret | VM_FAULT_RETRY;
1895 	}
1896 
1897 	/* Did it get truncated? */
1898 	if (unlikely(page->mapping != mapping)) {
1899 		unlock_page(page);
1900 		put_page(page);
1901 		goto retry_find;
1902 	}
1903 	VM_BUG_ON_PAGE(page->index != offset, page);
1904 
1905 	/*
1906 	 * We have a locked page in the page cache, now we need to check
1907 	 * that it's up-to-date. If not, it is going to be due to an error.
1908 	 */
1909 	if (unlikely(!PageUptodate(page)))
1910 		goto page_not_uptodate;
1911 
1912 	/*
1913 	 * Found the page and have a reference on it.
1914 	 * We must recheck i_size under page lock.
1915 	 */
1916 	size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1917 	if (unlikely(offset >= size >> PAGE_CACHE_SHIFT)) {
1918 		unlock_page(page);
1919 		page_cache_release(page);
1920 		return VM_FAULT_SIGBUS;
1921 	}
1922 
1923 	vmf->page = page;
1924 	return ret | VM_FAULT_LOCKED;
1925 
1926 no_cached_page:
1927 	/*
1928 	 * We're only likely to ever get here if MADV_RANDOM is in
1929 	 * effect.
1930 	 */
1931 	error = page_cache_read(file, offset);
1932 
1933 	/*
1934 	 * The page we want has now been added to the page cache.
1935 	 * In the unlikely event that someone removed it in the
1936 	 * meantime, we'll just come back here and read it again.
1937 	 */
1938 	if (error >= 0)
1939 		goto retry_find;
1940 
1941 	/*
1942 	 * An error return from page_cache_read can result if the
1943 	 * system is low on memory, or a problem occurs while trying
1944 	 * to schedule I/O.
1945 	 */
1946 	if (error == -ENOMEM)
1947 		return VM_FAULT_OOM;
1948 	return VM_FAULT_SIGBUS;
1949 
1950 page_not_uptodate:
1951 	/*
1952 	 * Umm, take care of errors if the page isn't up-to-date.
1953 	 * Try to re-read it _once_. We do this synchronously,
1954 	 * because there really aren't any performance issues here
1955 	 * and we need to check for errors.
1956 	 */
1957 	ClearPageError(page);
1958 	error = mapping->a_ops->readpage(file, page);
1959 	if (!error) {
1960 		wait_on_page_locked(page);
1961 		if (!PageUptodate(page))
1962 			error = -EIO;
1963 	}
1964 	page_cache_release(page);
1965 
1966 	if (!error || error == AOP_TRUNCATED_PAGE)
1967 		goto retry_find;
1968 
1969 	/* Things didn't work out. Return zero to tell the mm layer so. */
1970 	shrink_readahead_size_eio(file, ra);
1971 	return VM_FAULT_SIGBUS;
1972 }
1973 EXPORT_SYMBOL(filemap_fault);
1974 
1975 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
1976 {
1977 	struct radix_tree_iter iter;
1978 	void **slot;
1979 	struct file *file = vma->vm_file;
1980 	struct address_space *mapping = file->f_mapping;
1981 	loff_t size;
1982 	struct page *page;
1983 	unsigned long address = (unsigned long) vmf->virtual_address;
1984 	unsigned long addr;
1985 	pte_t *pte;
1986 
1987 	rcu_read_lock();
1988 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
1989 		if (iter.index > vmf->max_pgoff)
1990 			break;
1991 repeat:
1992 		page = radix_tree_deref_slot(slot);
1993 		if (unlikely(!page))
1994 			goto next;
1995 		if (radix_tree_exception(page)) {
1996 			if (radix_tree_deref_retry(page))
1997 				break;
1998 			else
1999 				goto next;
2000 		}
2001 
2002 		if (!page_cache_get_speculative(page))
2003 			goto repeat;
2004 
2005 		/* Has the page moved? */
2006 		if (unlikely(page != *slot)) {
2007 			page_cache_release(page);
2008 			goto repeat;
2009 		}
2010 
2011 		if (!PageUptodate(page) ||
2012 				PageReadahead(page) ||
2013 				PageHWPoison(page))
2014 			goto skip;
2015 		if (!trylock_page(page))
2016 			goto skip;
2017 
2018 		if (page->mapping != mapping || !PageUptodate(page))
2019 			goto unlock;
2020 
2021 		size = round_up(i_size_read(mapping->host), PAGE_CACHE_SIZE);
2022 		if (page->index >= size >> PAGE_CACHE_SHIFT)
2023 			goto unlock;
2024 
2025 		pte = vmf->pte + page->index - vmf->pgoff;
2026 		if (!pte_none(*pte))
2027 			goto unlock;
2028 
2029 		if (file->f_ra.mmap_miss > 0)
2030 			file->f_ra.mmap_miss--;
2031 		addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2032 		do_set_pte(vma, addr, page, pte, false, false);
2033 		unlock_page(page);
2034 		goto next;
2035 unlock:
2036 		unlock_page(page);
2037 skip:
2038 		page_cache_release(page);
2039 next:
2040 		if (iter.index == vmf->max_pgoff)
2041 			break;
2042 	}
2043 	rcu_read_unlock();
2044 }
2045 EXPORT_SYMBOL(filemap_map_pages);
2046 
2047 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2048 {
2049 	struct page *page = vmf->page;
2050 	struct inode *inode = file_inode(vma->vm_file);
2051 	int ret = VM_FAULT_LOCKED;
2052 
2053 	sb_start_pagefault(inode->i_sb);
2054 	file_update_time(vma->vm_file);
2055 	lock_page(page);
2056 	if (page->mapping != inode->i_mapping) {
2057 		unlock_page(page);
2058 		ret = VM_FAULT_NOPAGE;
2059 		goto out;
2060 	}
2061 	/*
2062 	 * We mark the page dirty already here so that when freeze is in
2063 	 * progress, we are guaranteed that writeback during freezing will
2064 	 * see the dirty page and writeprotect it again.
2065 	 */
2066 	set_page_dirty(page);
2067 	wait_for_stable_page(page);
2068 out:
2069 	sb_end_pagefault(inode->i_sb);
2070 	return ret;
2071 }
2072 EXPORT_SYMBOL(filemap_page_mkwrite);
2073 
2074 const struct vm_operations_struct generic_file_vm_ops = {
2075 	.fault		= filemap_fault,
2076 	.map_pages	= filemap_map_pages,
2077 	.page_mkwrite	= filemap_page_mkwrite,
2078 	.remap_pages	= generic_file_remap_pages,
2079 };
2080 
2081 /* This is used for a general mmap of a disk file */
2082 
2083 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2084 {
2085 	struct address_space *mapping = file->f_mapping;
2086 
2087 	if (!mapping->a_ops->readpage)
2088 		return -ENOEXEC;
2089 	file_accessed(file);
2090 	vma->vm_ops = &generic_file_vm_ops;
2091 	return 0;
2092 }
2093 
2094 /*
2095  * This is for filesystems which do not implement ->writepage.
2096  */
2097 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2098 {
2099 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2100 		return -EINVAL;
2101 	return generic_file_mmap(file, vma);
2102 }
2103 #else
2104 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2105 {
2106 	return -ENOSYS;
2107 }
2108 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2109 {
2110 	return -ENOSYS;
2111 }
2112 #endif /* CONFIG_MMU */
2113 
2114 EXPORT_SYMBOL(generic_file_mmap);
2115 EXPORT_SYMBOL(generic_file_readonly_mmap);
2116 
2117 static struct page *wait_on_page_read(struct page *page)
2118 {
2119 	if (!IS_ERR(page)) {
2120 		wait_on_page_locked(page);
2121 		if (!PageUptodate(page)) {
2122 			page_cache_release(page);
2123 			page = ERR_PTR(-EIO);
2124 		}
2125 	}
2126 	return page;
2127 }
2128 
2129 static struct page *__read_cache_page(struct address_space *mapping,
2130 				pgoff_t index,
2131 				int (*filler)(void *, struct page *),
2132 				void *data,
2133 				gfp_t gfp)
2134 {
2135 	struct page *page;
2136 	int err;
2137 repeat:
2138 	page = find_get_page(mapping, index);
2139 	if (!page) {
2140 		page = __page_cache_alloc(gfp | __GFP_COLD);
2141 		if (!page)
2142 			return ERR_PTR(-ENOMEM);
2143 		err = add_to_page_cache_lru(page, mapping, index, gfp);
2144 		if (unlikely(err)) {
2145 			page_cache_release(page);
2146 			if (err == -EEXIST)
2147 				goto repeat;
2148 			/* Presumably ENOMEM for radix tree node */
2149 			return ERR_PTR(err);
2150 		}
2151 		err = filler(data, page);
2152 		if (err < 0) {
2153 			page_cache_release(page);
2154 			page = ERR_PTR(err);
2155 		} else {
2156 			page = wait_on_page_read(page);
2157 		}
2158 	}
2159 	return page;
2160 }
2161 
2162 static struct page *do_read_cache_page(struct address_space *mapping,
2163 				pgoff_t index,
2164 				int (*filler)(void *, struct page *),
2165 				void *data,
2166 				gfp_t gfp)
2167 
2168 {
2169 	struct page *page;
2170 	int err;
2171 
2172 retry:
2173 	page = __read_cache_page(mapping, index, filler, data, gfp);
2174 	if (IS_ERR(page))
2175 		return page;
2176 	if (PageUptodate(page))
2177 		goto out;
2178 
2179 	lock_page(page);
2180 	if (!page->mapping) {
2181 		unlock_page(page);
2182 		page_cache_release(page);
2183 		goto retry;
2184 	}
2185 	if (PageUptodate(page)) {
2186 		unlock_page(page);
2187 		goto out;
2188 	}
2189 	err = filler(data, page);
2190 	if (err < 0) {
2191 		page_cache_release(page);
2192 		return ERR_PTR(err);
2193 	} else {
2194 		page = wait_on_page_read(page);
2195 		if (IS_ERR(page))
2196 			return page;
2197 	}
2198 out:
2199 	mark_page_accessed(page);
2200 	return page;
2201 }
2202 
2203 /**
2204  * read_cache_page - read into page cache, fill it if needed
2205  * @mapping:	the page's address_space
2206  * @index:	the page index
2207  * @filler:	function to perform the read
2208  * @data:	first arg to filler(data, page) function, often left as NULL
2209  *
2210  * Read into the page cache. If a page already exists, and PageUptodate() is
2211  * not set, try to fill the page and wait for it to become unlocked.
2212  *
2213  * If the page does not get brought uptodate, return -EIO.
2214  */
2215 struct page *read_cache_page(struct address_space *mapping,
2216 				pgoff_t index,
2217 				int (*filler)(void *, struct page *),
2218 				void *data)
2219 {
2220 	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2221 }
2222 EXPORT_SYMBOL(read_cache_page);
2223 
2224 /**
2225  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2226  * @mapping:	the page's address_space
2227  * @index:	the page index
2228  * @gfp:	the page allocator flags to use if allocating
2229  *
2230  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2231  * any new page allocations done using the specified allocation flags.
2232  *
2233  * If the page does not get brought uptodate, return -EIO.
2234  */
2235 struct page *read_cache_page_gfp(struct address_space *mapping,
2236 				pgoff_t index,
2237 				gfp_t gfp)
2238 {
2239 	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2240 
2241 	return do_read_cache_page(mapping, index, filler, NULL, gfp);
2242 }
2243 EXPORT_SYMBOL(read_cache_page_gfp);
2244 
2245 /*
2246  * Performs necessary checks before doing a write
2247  *
2248  * Can adjust writing position or amount of bytes to write.
2249  * Returns appropriate error code that caller should return or
2250  * zero in case that write should be allowed.
2251  */
2252 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2253 {
2254 	struct inode *inode = file->f_mapping->host;
2255 	unsigned long limit = rlimit(RLIMIT_FSIZE);
2256 
2257         if (unlikely(*pos < 0))
2258                 return -EINVAL;
2259 
2260 	if (!isblk) {
2261 		/* FIXME: this is for backwards compatibility with 2.4 */
2262 		if (file->f_flags & O_APPEND)
2263                         *pos = i_size_read(inode);
2264 
2265 		if (limit != RLIM_INFINITY) {
2266 			if (*pos >= limit) {
2267 				send_sig(SIGXFSZ, current, 0);
2268 				return -EFBIG;
2269 			}
2270 			if (*count > limit - (typeof(limit))*pos) {
2271 				*count = limit - (typeof(limit))*pos;
2272 			}
2273 		}
2274 	}
2275 
2276 	/*
2277 	 * LFS rule
2278 	 */
2279 	if (unlikely(*pos + *count > MAX_NON_LFS &&
2280 				!(file->f_flags & O_LARGEFILE))) {
2281 		if (*pos >= MAX_NON_LFS) {
2282 			return -EFBIG;
2283 		}
2284 		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2285 			*count = MAX_NON_LFS - (unsigned long)*pos;
2286 		}
2287 	}
2288 
2289 	/*
2290 	 * Are we about to exceed the fs block limit ?
2291 	 *
2292 	 * If we have written data it becomes a short write.  If we have
2293 	 * exceeded without writing data we send a signal and return EFBIG.
2294 	 * Linus frestrict idea will clean these up nicely..
2295 	 */
2296 	if (likely(!isblk)) {
2297 		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2298 			if (*count || *pos > inode->i_sb->s_maxbytes) {
2299 				return -EFBIG;
2300 			}
2301 			/* zero-length writes at ->s_maxbytes are OK */
2302 		}
2303 
2304 		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2305 			*count = inode->i_sb->s_maxbytes - *pos;
2306 	} else {
2307 #ifdef CONFIG_BLOCK
2308 		loff_t isize;
2309 		if (bdev_read_only(I_BDEV(inode)))
2310 			return -EPERM;
2311 		isize = i_size_read(inode);
2312 		if (*pos >= isize) {
2313 			if (*count || *pos > isize)
2314 				return -ENOSPC;
2315 		}
2316 
2317 		if (*pos + *count > isize)
2318 			*count = isize - *pos;
2319 #else
2320 		return -EPERM;
2321 #endif
2322 	}
2323 	return 0;
2324 }
2325 EXPORT_SYMBOL(generic_write_checks);
2326 
2327 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2328 				loff_t pos, unsigned len, unsigned flags,
2329 				struct page **pagep, void **fsdata)
2330 {
2331 	const struct address_space_operations *aops = mapping->a_ops;
2332 
2333 	return aops->write_begin(file, mapping, pos, len, flags,
2334 							pagep, fsdata);
2335 }
2336 EXPORT_SYMBOL(pagecache_write_begin);
2337 
2338 int pagecache_write_end(struct file *file, struct address_space *mapping,
2339 				loff_t pos, unsigned len, unsigned copied,
2340 				struct page *page, void *fsdata)
2341 {
2342 	const struct address_space_operations *aops = mapping->a_ops;
2343 
2344 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2345 }
2346 EXPORT_SYMBOL(pagecache_write_end);
2347 
2348 ssize_t
2349 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from, loff_t pos)
2350 {
2351 	struct file	*file = iocb->ki_filp;
2352 	struct address_space *mapping = file->f_mapping;
2353 	struct inode	*inode = mapping->host;
2354 	ssize_t		written;
2355 	size_t		write_len;
2356 	pgoff_t		end;
2357 	struct iov_iter data;
2358 
2359 	write_len = iov_iter_count(from);
2360 	end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2361 
2362 	written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2363 	if (written)
2364 		goto out;
2365 
2366 	/*
2367 	 * After a write we want buffered reads to be sure to go to disk to get
2368 	 * the new data.  We invalidate clean cached page from the region we're
2369 	 * about to write.  We do this *before* the write so that we can return
2370 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2371 	 */
2372 	if (mapping->nrpages) {
2373 		written = invalidate_inode_pages2_range(mapping,
2374 					pos >> PAGE_CACHE_SHIFT, end);
2375 		/*
2376 		 * If a page can not be invalidated, return 0 to fall back
2377 		 * to buffered write.
2378 		 */
2379 		if (written) {
2380 			if (written == -EBUSY)
2381 				return 0;
2382 			goto out;
2383 		}
2384 	}
2385 
2386 	data = *from;
2387 	written = mapping->a_ops->direct_IO(WRITE, iocb, &data, pos);
2388 
2389 	/*
2390 	 * Finally, try again to invalidate clean pages which might have been
2391 	 * cached by non-direct readahead, or faulted in by get_user_pages()
2392 	 * if the source of the write was an mmap'ed region of the file
2393 	 * we're writing.  Either one is a pretty crazy thing to do,
2394 	 * so we don't support it 100%.  If this invalidation
2395 	 * fails, tough, the write still worked...
2396 	 */
2397 	if (mapping->nrpages) {
2398 		invalidate_inode_pages2_range(mapping,
2399 					      pos >> PAGE_CACHE_SHIFT, end);
2400 	}
2401 
2402 	if (written > 0) {
2403 		pos += written;
2404 		iov_iter_advance(from, written);
2405 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2406 			i_size_write(inode, pos);
2407 			mark_inode_dirty(inode);
2408 		}
2409 		iocb->ki_pos = pos;
2410 	}
2411 out:
2412 	return written;
2413 }
2414 EXPORT_SYMBOL(generic_file_direct_write);
2415 
2416 /*
2417  * Find or create a page at the given pagecache position. Return the locked
2418  * page. This function is specifically for buffered writes.
2419  */
2420 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2421 					pgoff_t index, unsigned flags)
2422 {
2423 	struct page *page;
2424 	int fgp_flags = FGP_LOCK|FGP_ACCESSED|FGP_WRITE|FGP_CREAT;
2425 
2426 	if (flags & AOP_FLAG_NOFS)
2427 		fgp_flags |= FGP_NOFS;
2428 
2429 	page = pagecache_get_page(mapping, index, fgp_flags,
2430 			mapping_gfp_mask(mapping),
2431 			GFP_KERNEL);
2432 	if (page)
2433 		wait_for_stable_page(page);
2434 
2435 	return page;
2436 }
2437 EXPORT_SYMBOL(grab_cache_page_write_begin);
2438 
2439 ssize_t generic_perform_write(struct file *file,
2440 				struct iov_iter *i, loff_t pos)
2441 {
2442 	struct address_space *mapping = file->f_mapping;
2443 	const struct address_space_operations *a_ops = mapping->a_ops;
2444 	long status = 0;
2445 	ssize_t written = 0;
2446 	unsigned int flags = 0;
2447 
2448 	/*
2449 	 * Copies from kernel address space cannot fail (NFSD is a big user).
2450 	 */
2451 	if (segment_eq(get_fs(), KERNEL_DS))
2452 		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2453 
2454 	do {
2455 		struct page *page;
2456 		unsigned long offset;	/* Offset into pagecache page */
2457 		unsigned long bytes;	/* Bytes to write to page */
2458 		size_t copied;		/* Bytes copied from user */
2459 		void *fsdata;
2460 
2461 		offset = (pos & (PAGE_CACHE_SIZE - 1));
2462 		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2463 						iov_iter_count(i));
2464 
2465 again:
2466 		/*
2467 		 * Bring in the user page that we will copy from _first_.
2468 		 * Otherwise there's a nasty deadlock on copying from the
2469 		 * same page as we're writing to, without it being marked
2470 		 * up-to-date.
2471 		 *
2472 		 * Not only is this an optimisation, but it is also required
2473 		 * to check that the address is actually valid, when atomic
2474 		 * usercopies are used, below.
2475 		 */
2476 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2477 			status = -EFAULT;
2478 			break;
2479 		}
2480 
2481 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2482 						&page, &fsdata);
2483 		if (unlikely(status < 0))
2484 			break;
2485 
2486 		if (mapping_writably_mapped(mapping))
2487 			flush_dcache_page(page);
2488 
2489 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2490 		flush_dcache_page(page);
2491 
2492 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2493 						page, fsdata);
2494 		if (unlikely(status < 0))
2495 			break;
2496 		copied = status;
2497 
2498 		cond_resched();
2499 
2500 		iov_iter_advance(i, copied);
2501 		if (unlikely(copied == 0)) {
2502 			/*
2503 			 * If we were unable to copy any data at all, we must
2504 			 * fall back to a single segment length write.
2505 			 *
2506 			 * If we didn't fallback here, we could livelock
2507 			 * because not all segments in the iov can be copied at
2508 			 * once without a pagefault.
2509 			 */
2510 			bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2511 						iov_iter_single_seg_count(i));
2512 			goto again;
2513 		}
2514 		pos += copied;
2515 		written += copied;
2516 
2517 		balance_dirty_pages_ratelimited(mapping);
2518 		if (fatal_signal_pending(current)) {
2519 			status = -EINTR;
2520 			break;
2521 		}
2522 	} while (iov_iter_count(i));
2523 
2524 	return written ? written : status;
2525 }
2526 EXPORT_SYMBOL(generic_perform_write);
2527 
2528 /**
2529  * __generic_file_write_iter - write data to a file
2530  * @iocb:	IO state structure (file, offset, etc.)
2531  * @from:	iov_iter with data to write
2532  *
2533  * This function does all the work needed for actually writing data to a
2534  * file. It does all basic checks, removes SUID from the file, updates
2535  * modification times and calls proper subroutines depending on whether we
2536  * do direct IO or a standard buffered write.
2537  *
2538  * It expects i_mutex to be grabbed unless we work on a block device or similar
2539  * object which does not need locking at all.
2540  *
2541  * This function does *not* take care of syncing data in case of O_SYNC write.
2542  * A caller has to handle it. This is mainly due to the fact that we want to
2543  * avoid syncing under i_mutex.
2544  */
2545 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2546 {
2547 	struct file *file = iocb->ki_filp;
2548 	struct address_space * mapping = file->f_mapping;
2549 	struct inode 	*inode = mapping->host;
2550 	loff_t		pos = iocb->ki_pos;
2551 	ssize_t		written = 0;
2552 	ssize_t		err;
2553 	ssize_t		status;
2554 	size_t		count = iov_iter_count(from);
2555 
2556 	/* We can write back this queue in page reclaim */
2557 	current->backing_dev_info = mapping->backing_dev_info;
2558 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2559 	if (err)
2560 		goto out;
2561 
2562 	if (count == 0)
2563 		goto out;
2564 
2565 	iov_iter_truncate(from, count);
2566 
2567 	err = file_remove_suid(file);
2568 	if (err)
2569 		goto out;
2570 
2571 	err = file_update_time(file);
2572 	if (err)
2573 		goto out;
2574 
2575 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2576 	if (unlikely(file->f_flags & O_DIRECT)) {
2577 		loff_t endbyte;
2578 
2579 		written = generic_file_direct_write(iocb, from, pos);
2580 		if (written < 0 || written == count)
2581 			goto out;
2582 
2583 		/*
2584 		 * direct-io write to a hole: fall through to buffered I/O
2585 		 * for completing the rest of the request.
2586 		 */
2587 		pos += written;
2588 		count -= written;
2589 
2590 		status = generic_perform_write(file, from, pos);
2591 		/*
2592 		 * If generic_perform_write() returned a synchronous error
2593 		 * then we want to return the number of bytes which were
2594 		 * direct-written, or the error code if that was zero.  Note
2595 		 * that this differs from normal direct-io semantics, which
2596 		 * will return -EFOO even if some bytes were written.
2597 		 */
2598 		if (unlikely(status < 0) && !written) {
2599 			err = status;
2600 			goto out;
2601 		}
2602 		iocb->ki_pos = pos + status;
2603 		/*
2604 		 * We need to ensure that the page cache pages are written to
2605 		 * disk and invalidated to preserve the expected O_DIRECT
2606 		 * semantics.
2607 		 */
2608 		endbyte = pos + status - 1;
2609 		err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2610 		if (err == 0) {
2611 			written += status;
2612 			invalidate_mapping_pages(mapping,
2613 						 pos >> PAGE_CACHE_SHIFT,
2614 						 endbyte >> PAGE_CACHE_SHIFT);
2615 		} else {
2616 			/*
2617 			 * We don't know how much we wrote, so just return
2618 			 * the number of bytes which were direct-written
2619 			 */
2620 		}
2621 	} else {
2622 		written = generic_perform_write(file, from, pos);
2623 		if (likely(written >= 0))
2624 			iocb->ki_pos = pos + written;
2625 	}
2626 out:
2627 	current->backing_dev_info = NULL;
2628 	return written ? written : err;
2629 }
2630 EXPORT_SYMBOL(__generic_file_write_iter);
2631 
2632 /**
2633  * generic_file_write_iter - write data to a file
2634  * @iocb:	IO state structure
2635  * @from:	iov_iter with data to write
2636  *
2637  * This is a wrapper around __generic_file_write_iter() to be used by most
2638  * filesystems. It takes care of syncing the file in case of O_SYNC file
2639  * and acquires i_mutex as needed.
2640  */
2641 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2642 {
2643 	struct file *file = iocb->ki_filp;
2644 	struct inode *inode = file->f_mapping->host;
2645 	ssize_t ret;
2646 
2647 	mutex_lock(&inode->i_mutex);
2648 	ret = __generic_file_write_iter(iocb, from);
2649 	mutex_unlock(&inode->i_mutex);
2650 
2651 	if (ret > 0) {
2652 		ssize_t err;
2653 
2654 		err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2655 		if (err < 0)
2656 			ret = err;
2657 	}
2658 	return ret;
2659 }
2660 EXPORT_SYMBOL(generic_file_write_iter);
2661 
2662 /**
2663  * try_to_release_page() - release old fs-specific metadata on a page
2664  *
2665  * @page: the page which the kernel is trying to free
2666  * @gfp_mask: memory allocation flags (and I/O mode)
2667  *
2668  * The address_space is to try to release any data against the page
2669  * (presumably at page->private).  If the release was successful, return `1'.
2670  * Otherwise return zero.
2671  *
2672  * This may also be called if PG_fscache is set on a page, indicating that the
2673  * page is known to the local caching routines.
2674  *
2675  * The @gfp_mask argument specifies whether I/O may be performed to release
2676  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2677  *
2678  */
2679 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2680 {
2681 	struct address_space * const mapping = page->mapping;
2682 
2683 	BUG_ON(!PageLocked(page));
2684 	if (PageWriteback(page))
2685 		return 0;
2686 
2687 	if (mapping && mapping->a_ops->releasepage)
2688 		return mapping->a_ops->releasepage(page, gfp_mask);
2689 	return try_to_free_buffers(page);
2690 }
2691 
2692 EXPORT_SYMBOL(try_to_release_page);
2693