1 /* 2 * linux/mm/filemap.c 3 * 4 * Copyright (C) 1994-1999 Linus Torvalds 5 */ 6 7 /* 8 * This file handles the generic file mmap semantics used by 9 * most "normal" filesystems (but you don't /have/ to use this: 10 * the NFS filesystem used to do this differently, for example) 11 */ 12 #include <linux/export.h> 13 #include <linux/compiler.h> 14 #include <linux/fs.h> 15 #include <linux/uaccess.h> 16 #include <linux/aio.h> 17 #include <linux/capability.h> 18 #include <linux/kernel_stat.h> 19 #include <linux/gfp.h> 20 #include <linux/mm.h> 21 #include <linux/swap.h> 22 #include <linux/mman.h> 23 #include <linux/pagemap.h> 24 #include <linux/file.h> 25 #include <linux/uio.h> 26 #include <linux/hash.h> 27 #include <linux/writeback.h> 28 #include <linux/backing-dev.h> 29 #include <linux/pagevec.h> 30 #include <linux/blkdev.h> 31 #include <linux/security.h> 32 #include <linux/cpuset.h> 33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */ 34 #include <linux/memcontrol.h> 35 #include <linux/cleancache.h> 36 #include <linux/rmap.h> 37 #include "internal.h" 38 39 #define CREATE_TRACE_POINTS 40 #include <trace/events/filemap.h> 41 42 /* 43 * FIXME: remove all knowledge of the buffer layer from the core VM 44 */ 45 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 46 47 #include <asm/mman.h> 48 49 /* 50 * Shared mappings implemented 30.11.1994. It's not fully working yet, 51 * though. 52 * 53 * Shared mappings now work. 15.8.1995 Bruno. 54 * 55 * finished 'unifying' the page and buffer cache and SMP-threaded the 56 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 57 * 58 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 59 */ 60 61 /* 62 * Lock ordering: 63 * 64 * ->i_mmap_mutex (truncate_pagecache) 65 * ->private_lock (__free_pte->__set_page_dirty_buffers) 66 * ->swap_lock (exclusive_swap_page, others) 67 * ->mapping->tree_lock 68 * 69 * ->i_mutex 70 * ->i_mmap_mutex (truncate->unmap_mapping_range) 71 * 72 * ->mmap_sem 73 * ->i_mmap_mutex 74 * ->page_table_lock or pte_lock (various, mainly in memory.c) 75 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock) 76 * 77 * ->mmap_sem 78 * ->lock_page (access_process_vm) 79 * 80 * ->i_mutex (generic_perform_write) 81 * ->mmap_sem (fault_in_pages_readable->do_page_fault) 82 * 83 * bdi->wb.list_lock 84 * sb_lock (fs/fs-writeback.c) 85 * ->mapping->tree_lock (__sync_single_inode) 86 * 87 * ->i_mmap_mutex 88 * ->anon_vma.lock (vma_adjust) 89 * 90 * ->anon_vma.lock 91 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 92 * 93 * ->page_table_lock or pte_lock 94 * ->swap_lock (try_to_unmap_one) 95 * ->private_lock (try_to_unmap_one) 96 * ->tree_lock (try_to_unmap_one) 97 * ->zone.lru_lock (follow_page->mark_page_accessed) 98 * ->zone.lru_lock (check_pte_range->isolate_lru_page) 99 * ->private_lock (page_remove_rmap->set_page_dirty) 100 * ->tree_lock (page_remove_rmap->set_page_dirty) 101 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty) 102 * ->inode->i_lock (page_remove_rmap->set_page_dirty) 103 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 104 * ->inode->i_lock (zap_pte_range->set_page_dirty) 105 * ->private_lock (zap_pte_range->__set_page_dirty_buffers) 106 * 107 * ->i_mmap_mutex 108 * ->tasklist_lock (memory_failure, collect_procs_ao) 109 */ 110 111 static void page_cache_tree_delete(struct address_space *mapping, 112 struct page *page, void *shadow) 113 { 114 struct radix_tree_node *node; 115 unsigned long index; 116 unsigned int offset; 117 unsigned int tag; 118 void **slot; 119 120 VM_BUG_ON(!PageLocked(page)); 121 122 __radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot); 123 124 if (shadow) { 125 mapping->nrshadows++; 126 /* 127 * Make sure the nrshadows update is committed before 128 * the nrpages update so that final truncate racing 129 * with reclaim does not see both counters 0 at the 130 * same time and miss a shadow entry. 131 */ 132 smp_wmb(); 133 } 134 mapping->nrpages--; 135 136 if (!node) { 137 /* Clear direct pointer tags in root node */ 138 mapping->page_tree.gfp_mask &= __GFP_BITS_MASK; 139 radix_tree_replace_slot(slot, shadow); 140 return; 141 } 142 143 /* Clear tree tags for the removed page */ 144 index = page->index; 145 offset = index & RADIX_TREE_MAP_MASK; 146 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) { 147 if (test_bit(offset, node->tags[tag])) 148 radix_tree_tag_clear(&mapping->page_tree, index, tag); 149 } 150 151 /* Delete page, swap shadow entry */ 152 radix_tree_replace_slot(slot, shadow); 153 workingset_node_pages_dec(node); 154 if (shadow) 155 workingset_node_shadows_inc(node); 156 else 157 if (__radix_tree_delete_node(&mapping->page_tree, node)) 158 return; 159 160 /* 161 * Track node that only contains shadow entries. 162 * 163 * Avoid acquiring the list_lru lock if already tracked. The 164 * list_empty() test is safe as node->private_list is 165 * protected by mapping->tree_lock. 166 */ 167 if (!workingset_node_pages(node) && 168 list_empty(&node->private_list)) { 169 node->private_data = mapping; 170 list_lru_add(&workingset_shadow_nodes, &node->private_list); 171 } 172 } 173 174 /* 175 * Delete a page from the page cache and free it. Caller has to make 176 * sure the page is locked and that nobody else uses it - or that usage 177 * is safe. The caller must hold the mapping's tree_lock. 178 */ 179 void __delete_from_page_cache(struct page *page, void *shadow) 180 { 181 struct address_space *mapping = page->mapping; 182 183 trace_mm_filemap_delete_from_page_cache(page); 184 /* 185 * if we're uptodate, flush out into the cleancache, otherwise 186 * invalidate any existing cleancache entries. We can't leave 187 * stale data around in the cleancache once our page is gone 188 */ 189 if (PageUptodate(page) && PageMappedToDisk(page)) 190 cleancache_put_page(page); 191 else 192 cleancache_invalidate_page(mapping, page); 193 194 page_cache_tree_delete(mapping, page, shadow); 195 196 page->mapping = NULL; 197 /* Leave page->index set: truncation lookup relies upon it */ 198 199 __dec_zone_page_state(page, NR_FILE_PAGES); 200 if (PageSwapBacked(page)) 201 __dec_zone_page_state(page, NR_SHMEM); 202 BUG_ON(page_mapped(page)); 203 204 /* 205 * Some filesystems seem to re-dirty the page even after 206 * the VM has canceled the dirty bit (eg ext3 journaling). 207 * 208 * Fix it up by doing a final dirty accounting check after 209 * having removed the page entirely. 210 */ 211 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) { 212 dec_zone_page_state(page, NR_FILE_DIRTY); 213 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE); 214 } 215 } 216 217 /** 218 * delete_from_page_cache - delete page from page cache 219 * @page: the page which the kernel is trying to remove from page cache 220 * 221 * This must be called only on pages that have been verified to be in the page 222 * cache and locked. It will never put the page into the free list, the caller 223 * has a reference on the page. 224 */ 225 void delete_from_page_cache(struct page *page) 226 { 227 struct address_space *mapping = page->mapping; 228 void (*freepage)(struct page *); 229 230 BUG_ON(!PageLocked(page)); 231 232 freepage = mapping->a_ops->freepage; 233 spin_lock_irq(&mapping->tree_lock); 234 __delete_from_page_cache(page, NULL); 235 spin_unlock_irq(&mapping->tree_lock); 236 mem_cgroup_uncharge_cache_page(page); 237 238 if (freepage) 239 freepage(page); 240 page_cache_release(page); 241 } 242 EXPORT_SYMBOL(delete_from_page_cache); 243 244 static int filemap_check_errors(struct address_space *mapping) 245 { 246 int ret = 0; 247 /* Check for outstanding write errors */ 248 if (test_bit(AS_ENOSPC, &mapping->flags) && 249 test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 250 ret = -ENOSPC; 251 if (test_bit(AS_EIO, &mapping->flags) && 252 test_and_clear_bit(AS_EIO, &mapping->flags)) 253 ret = -EIO; 254 return ret; 255 } 256 257 /** 258 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 259 * @mapping: address space structure to write 260 * @start: offset in bytes where the range starts 261 * @end: offset in bytes where the range ends (inclusive) 262 * @sync_mode: enable synchronous operation 263 * 264 * Start writeback against all of a mapping's dirty pages that lie 265 * within the byte offsets <start, end> inclusive. 266 * 267 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 268 * opposed to a regular memory cleansing writeback. The difference between 269 * these two operations is that if a dirty page/buffer is encountered, it must 270 * be waited upon, and not just skipped over. 271 */ 272 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 273 loff_t end, int sync_mode) 274 { 275 int ret; 276 struct writeback_control wbc = { 277 .sync_mode = sync_mode, 278 .nr_to_write = LONG_MAX, 279 .range_start = start, 280 .range_end = end, 281 }; 282 283 if (!mapping_cap_writeback_dirty(mapping)) 284 return 0; 285 286 ret = do_writepages(mapping, &wbc); 287 return ret; 288 } 289 290 static inline int __filemap_fdatawrite(struct address_space *mapping, 291 int sync_mode) 292 { 293 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 294 } 295 296 int filemap_fdatawrite(struct address_space *mapping) 297 { 298 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 299 } 300 EXPORT_SYMBOL(filemap_fdatawrite); 301 302 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 303 loff_t end) 304 { 305 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 306 } 307 EXPORT_SYMBOL(filemap_fdatawrite_range); 308 309 /** 310 * filemap_flush - mostly a non-blocking flush 311 * @mapping: target address_space 312 * 313 * This is a mostly non-blocking flush. Not suitable for data-integrity 314 * purposes - I/O may not be started against all dirty pages. 315 */ 316 int filemap_flush(struct address_space *mapping) 317 { 318 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 319 } 320 EXPORT_SYMBOL(filemap_flush); 321 322 /** 323 * filemap_fdatawait_range - wait for writeback to complete 324 * @mapping: address space structure to wait for 325 * @start_byte: offset in bytes where the range starts 326 * @end_byte: offset in bytes where the range ends (inclusive) 327 * 328 * Walk the list of under-writeback pages of the given address space 329 * in the given range and wait for all of them. 330 */ 331 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 332 loff_t end_byte) 333 { 334 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT; 335 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT; 336 struct pagevec pvec; 337 int nr_pages; 338 int ret2, ret = 0; 339 340 if (end_byte < start_byte) 341 goto out; 342 343 pagevec_init(&pvec, 0); 344 while ((index <= end) && 345 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 346 PAGECACHE_TAG_WRITEBACK, 347 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) { 348 unsigned i; 349 350 for (i = 0; i < nr_pages; i++) { 351 struct page *page = pvec.pages[i]; 352 353 /* until radix tree lookup accepts end_index */ 354 if (page->index > end) 355 continue; 356 357 wait_on_page_writeback(page); 358 if (TestClearPageError(page)) 359 ret = -EIO; 360 } 361 pagevec_release(&pvec); 362 cond_resched(); 363 } 364 out: 365 ret2 = filemap_check_errors(mapping); 366 if (!ret) 367 ret = ret2; 368 369 return ret; 370 } 371 EXPORT_SYMBOL(filemap_fdatawait_range); 372 373 /** 374 * filemap_fdatawait - wait for all under-writeback pages to complete 375 * @mapping: address space structure to wait for 376 * 377 * Walk the list of under-writeback pages of the given address space 378 * and wait for all of them. 379 */ 380 int filemap_fdatawait(struct address_space *mapping) 381 { 382 loff_t i_size = i_size_read(mapping->host); 383 384 if (i_size == 0) 385 return 0; 386 387 return filemap_fdatawait_range(mapping, 0, i_size - 1); 388 } 389 EXPORT_SYMBOL(filemap_fdatawait); 390 391 int filemap_write_and_wait(struct address_space *mapping) 392 { 393 int err = 0; 394 395 if (mapping->nrpages) { 396 err = filemap_fdatawrite(mapping); 397 /* 398 * Even if the above returned error, the pages may be 399 * written partially (e.g. -ENOSPC), so we wait for it. 400 * But the -EIO is special case, it may indicate the worst 401 * thing (e.g. bug) happened, so we avoid waiting for it. 402 */ 403 if (err != -EIO) { 404 int err2 = filemap_fdatawait(mapping); 405 if (!err) 406 err = err2; 407 } 408 } else { 409 err = filemap_check_errors(mapping); 410 } 411 return err; 412 } 413 EXPORT_SYMBOL(filemap_write_and_wait); 414 415 /** 416 * filemap_write_and_wait_range - write out & wait on a file range 417 * @mapping: the address_space for the pages 418 * @lstart: offset in bytes where the range starts 419 * @lend: offset in bytes where the range ends (inclusive) 420 * 421 * Write out and wait upon file offsets lstart->lend, inclusive. 422 * 423 * Note that `lend' is inclusive (describes the last byte to be written) so 424 * that this function can be used to write to the very end-of-file (end = -1). 425 */ 426 int filemap_write_and_wait_range(struct address_space *mapping, 427 loff_t lstart, loff_t lend) 428 { 429 int err = 0; 430 431 if (mapping->nrpages) { 432 err = __filemap_fdatawrite_range(mapping, lstart, lend, 433 WB_SYNC_ALL); 434 /* See comment of filemap_write_and_wait() */ 435 if (err != -EIO) { 436 int err2 = filemap_fdatawait_range(mapping, 437 lstart, lend); 438 if (!err) 439 err = err2; 440 } 441 } else { 442 err = filemap_check_errors(mapping); 443 } 444 return err; 445 } 446 EXPORT_SYMBOL(filemap_write_and_wait_range); 447 448 /** 449 * replace_page_cache_page - replace a pagecache page with a new one 450 * @old: page to be replaced 451 * @new: page to replace with 452 * @gfp_mask: allocation mode 453 * 454 * This function replaces a page in the pagecache with a new one. On 455 * success it acquires the pagecache reference for the new page and 456 * drops it for the old page. Both the old and new pages must be 457 * locked. This function does not add the new page to the LRU, the 458 * caller must do that. 459 * 460 * The remove + add is atomic. The only way this function can fail is 461 * memory allocation failure. 462 */ 463 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask) 464 { 465 int error; 466 467 VM_BUG_ON_PAGE(!PageLocked(old), old); 468 VM_BUG_ON_PAGE(!PageLocked(new), new); 469 VM_BUG_ON_PAGE(new->mapping, new); 470 471 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM); 472 if (!error) { 473 struct address_space *mapping = old->mapping; 474 void (*freepage)(struct page *); 475 476 pgoff_t offset = old->index; 477 freepage = mapping->a_ops->freepage; 478 479 page_cache_get(new); 480 new->mapping = mapping; 481 new->index = offset; 482 483 spin_lock_irq(&mapping->tree_lock); 484 __delete_from_page_cache(old, NULL); 485 error = radix_tree_insert(&mapping->page_tree, offset, new); 486 BUG_ON(error); 487 mapping->nrpages++; 488 __inc_zone_page_state(new, NR_FILE_PAGES); 489 if (PageSwapBacked(new)) 490 __inc_zone_page_state(new, NR_SHMEM); 491 spin_unlock_irq(&mapping->tree_lock); 492 /* mem_cgroup codes must not be called under tree_lock */ 493 mem_cgroup_replace_page_cache(old, new); 494 radix_tree_preload_end(); 495 if (freepage) 496 freepage(old); 497 page_cache_release(old); 498 } 499 500 return error; 501 } 502 EXPORT_SYMBOL_GPL(replace_page_cache_page); 503 504 static int page_cache_tree_insert(struct address_space *mapping, 505 struct page *page, void **shadowp) 506 { 507 struct radix_tree_node *node; 508 void **slot; 509 int error; 510 511 error = __radix_tree_create(&mapping->page_tree, page->index, 512 &node, &slot); 513 if (error) 514 return error; 515 if (*slot) { 516 void *p; 517 518 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock); 519 if (!radix_tree_exceptional_entry(p)) 520 return -EEXIST; 521 if (shadowp) 522 *shadowp = p; 523 mapping->nrshadows--; 524 if (node) 525 workingset_node_shadows_dec(node); 526 } 527 radix_tree_replace_slot(slot, page); 528 mapping->nrpages++; 529 if (node) { 530 workingset_node_pages_inc(node); 531 /* 532 * Don't track node that contains actual pages. 533 * 534 * Avoid acquiring the list_lru lock if already 535 * untracked. The list_empty() test is safe as 536 * node->private_list is protected by 537 * mapping->tree_lock. 538 */ 539 if (!list_empty(&node->private_list)) 540 list_lru_del(&workingset_shadow_nodes, 541 &node->private_list); 542 } 543 return 0; 544 } 545 546 static int __add_to_page_cache_locked(struct page *page, 547 struct address_space *mapping, 548 pgoff_t offset, gfp_t gfp_mask, 549 void **shadowp) 550 { 551 int error; 552 553 VM_BUG_ON_PAGE(!PageLocked(page), page); 554 VM_BUG_ON_PAGE(PageSwapBacked(page), page); 555 556 error = mem_cgroup_charge_file(page, current->mm, 557 gfp_mask & GFP_RECLAIM_MASK); 558 if (error) 559 return error; 560 561 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM); 562 if (error) { 563 mem_cgroup_uncharge_cache_page(page); 564 return error; 565 } 566 567 page_cache_get(page); 568 page->mapping = mapping; 569 page->index = offset; 570 571 spin_lock_irq(&mapping->tree_lock); 572 error = page_cache_tree_insert(mapping, page, shadowp); 573 radix_tree_preload_end(); 574 if (unlikely(error)) 575 goto err_insert; 576 __inc_zone_page_state(page, NR_FILE_PAGES); 577 spin_unlock_irq(&mapping->tree_lock); 578 trace_mm_filemap_add_to_page_cache(page); 579 return 0; 580 err_insert: 581 page->mapping = NULL; 582 /* Leave page->index set: truncation relies upon it */ 583 spin_unlock_irq(&mapping->tree_lock); 584 mem_cgroup_uncharge_cache_page(page); 585 page_cache_release(page); 586 return error; 587 } 588 589 /** 590 * add_to_page_cache_locked - add a locked page to the pagecache 591 * @page: page to add 592 * @mapping: the page's address_space 593 * @offset: page index 594 * @gfp_mask: page allocation mode 595 * 596 * This function is used to add a page to the pagecache. It must be locked. 597 * This function does not add the page to the LRU. The caller must do that. 598 */ 599 int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 600 pgoff_t offset, gfp_t gfp_mask) 601 { 602 return __add_to_page_cache_locked(page, mapping, offset, 603 gfp_mask, NULL); 604 } 605 EXPORT_SYMBOL(add_to_page_cache_locked); 606 607 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 608 pgoff_t offset, gfp_t gfp_mask) 609 { 610 void *shadow = NULL; 611 int ret; 612 613 __set_page_locked(page); 614 ret = __add_to_page_cache_locked(page, mapping, offset, 615 gfp_mask, &shadow); 616 if (unlikely(ret)) 617 __clear_page_locked(page); 618 else { 619 /* 620 * The page might have been evicted from cache only 621 * recently, in which case it should be activated like 622 * any other repeatedly accessed page. 623 */ 624 if (shadow && workingset_refault(shadow)) { 625 SetPageActive(page); 626 workingset_activation(page); 627 } else 628 ClearPageActive(page); 629 lru_cache_add(page); 630 } 631 return ret; 632 } 633 EXPORT_SYMBOL_GPL(add_to_page_cache_lru); 634 635 #ifdef CONFIG_NUMA 636 struct page *__page_cache_alloc(gfp_t gfp) 637 { 638 int n; 639 struct page *page; 640 641 if (cpuset_do_page_mem_spread()) { 642 unsigned int cpuset_mems_cookie; 643 do { 644 cpuset_mems_cookie = read_mems_allowed_begin(); 645 n = cpuset_mem_spread_node(); 646 page = alloc_pages_exact_node(n, gfp, 0); 647 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie)); 648 649 return page; 650 } 651 return alloc_pages(gfp, 0); 652 } 653 EXPORT_SYMBOL(__page_cache_alloc); 654 #endif 655 656 /* 657 * In order to wait for pages to become available there must be 658 * waitqueues associated with pages. By using a hash table of 659 * waitqueues where the bucket discipline is to maintain all 660 * waiters on the same queue and wake all when any of the pages 661 * become available, and for the woken contexts to check to be 662 * sure the appropriate page became available, this saves space 663 * at a cost of "thundering herd" phenomena during rare hash 664 * collisions. 665 */ 666 static wait_queue_head_t *page_waitqueue(struct page *page) 667 { 668 const struct zone *zone = page_zone(page); 669 670 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)]; 671 } 672 673 static inline void wake_up_page(struct page *page, int bit) 674 { 675 __wake_up_bit(page_waitqueue(page), &page->flags, bit); 676 } 677 678 void wait_on_page_bit(struct page *page, int bit_nr) 679 { 680 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr); 681 682 if (test_bit(bit_nr, &page->flags)) 683 __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io, 684 TASK_UNINTERRUPTIBLE); 685 } 686 EXPORT_SYMBOL(wait_on_page_bit); 687 688 int wait_on_page_bit_killable(struct page *page, int bit_nr) 689 { 690 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr); 691 692 if (!test_bit(bit_nr, &page->flags)) 693 return 0; 694 695 return __wait_on_bit(page_waitqueue(page), &wait, 696 bit_wait_io, TASK_KILLABLE); 697 } 698 699 /** 700 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue 701 * @page: Page defining the wait queue of interest 702 * @waiter: Waiter to add to the queue 703 * 704 * Add an arbitrary @waiter to the wait queue for the nominated @page. 705 */ 706 void add_page_wait_queue(struct page *page, wait_queue_t *waiter) 707 { 708 wait_queue_head_t *q = page_waitqueue(page); 709 unsigned long flags; 710 711 spin_lock_irqsave(&q->lock, flags); 712 __add_wait_queue(q, waiter); 713 spin_unlock_irqrestore(&q->lock, flags); 714 } 715 EXPORT_SYMBOL_GPL(add_page_wait_queue); 716 717 /** 718 * unlock_page - unlock a locked page 719 * @page: the page 720 * 721 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). 722 * Also wakes sleepers in wait_on_page_writeback() because the wakeup 723 * mechananism between PageLocked pages and PageWriteback pages is shared. 724 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. 725 * 726 * The mb is necessary to enforce ordering between the clear_bit and the read 727 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()). 728 */ 729 void unlock_page(struct page *page) 730 { 731 VM_BUG_ON_PAGE(!PageLocked(page), page); 732 clear_bit_unlock(PG_locked, &page->flags); 733 smp_mb__after_atomic(); 734 wake_up_page(page, PG_locked); 735 } 736 EXPORT_SYMBOL(unlock_page); 737 738 /** 739 * end_page_writeback - end writeback against a page 740 * @page: the page 741 */ 742 void end_page_writeback(struct page *page) 743 { 744 /* 745 * TestClearPageReclaim could be used here but it is an atomic 746 * operation and overkill in this particular case. Failing to 747 * shuffle a page marked for immediate reclaim is too mild to 748 * justify taking an atomic operation penalty at the end of 749 * ever page writeback. 750 */ 751 if (PageReclaim(page)) { 752 ClearPageReclaim(page); 753 rotate_reclaimable_page(page); 754 } 755 756 if (!test_clear_page_writeback(page)) 757 BUG(); 758 759 smp_mb__after_atomic(); 760 wake_up_page(page, PG_writeback); 761 } 762 EXPORT_SYMBOL(end_page_writeback); 763 764 /* 765 * After completing I/O on a page, call this routine to update the page 766 * flags appropriately 767 */ 768 void page_endio(struct page *page, int rw, int err) 769 { 770 if (rw == READ) { 771 if (!err) { 772 SetPageUptodate(page); 773 } else { 774 ClearPageUptodate(page); 775 SetPageError(page); 776 } 777 unlock_page(page); 778 } else { /* rw == WRITE */ 779 if (err) { 780 SetPageError(page); 781 if (page->mapping) 782 mapping_set_error(page->mapping, err); 783 } 784 end_page_writeback(page); 785 } 786 } 787 EXPORT_SYMBOL_GPL(page_endio); 788 789 /** 790 * __lock_page - get a lock on the page, assuming we need to sleep to get it 791 * @page: the page to lock 792 */ 793 void __lock_page(struct page *page) 794 { 795 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 796 797 __wait_on_bit_lock(page_waitqueue(page), &wait, bit_wait_io, 798 TASK_UNINTERRUPTIBLE); 799 } 800 EXPORT_SYMBOL(__lock_page); 801 802 int __lock_page_killable(struct page *page) 803 { 804 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 805 806 return __wait_on_bit_lock(page_waitqueue(page), &wait, 807 bit_wait_io, TASK_KILLABLE); 808 } 809 EXPORT_SYMBOL_GPL(__lock_page_killable); 810 811 /* 812 * Return values: 813 * 1 - page is locked; mmap_sem is still held. 814 * 0 - page is not locked. 815 * mmap_sem has been released (up_read()), unless flags had both 816 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in 817 * which case mmap_sem is still held. 818 * 819 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1 820 * with the page locked and the mmap_sem unperturbed. 821 */ 822 int __lock_page_or_retry(struct page *page, struct mm_struct *mm, 823 unsigned int flags) 824 { 825 if (flags & FAULT_FLAG_ALLOW_RETRY) { 826 /* 827 * CAUTION! In this case, mmap_sem is not released 828 * even though return 0. 829 */ 830 if (flags & FAULT_FLAG_RETRY_NOWAIT) 831 return 0; 832 833 up_read(&mm->mmap_sem); 834 if (flags & FAULT_FLAG_KILLABLE) 835 wait_on_page_locked_killable(page); 836 else 837 wait_on_page_locked(page); 838 return 0; 839 } else { 840 if (flags & FAULT_FLAG_KILLABLE) { 841 int ret; 842 843 ret = __lock_page_killable(page); 844 if (ret) { 845 up_read(&mm->mmap_sem); 846 return 0; 847 } 848 } else 849 __lock_page(page); 850 return 1; 851 } 852 } 853 854 /** 855 * page_cache_next_hole - find the next hole (not-present entry) 856 * @mapping: mapping 857 * @index: index 858 * @max_scan: maximum range to search 859 * 860 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the 861 * lowest indexed hole. 862 * 863 * Returns: the index of the hole if found, otherwise returns an index 864 * outside of the set specified (in which case 'return - index >= 865 * max_scan' will be true). In rare cases of index wrap-around, 0 will 866 * be returned. 867 * 868 * page_cache_next_hole may be called under rcu_read_lock. However, 869 * like radix_tree_gang_lookup, this will not atomically search a 870 * snapshot of the tree at a single point in time. For example, if a 871 * hole is created at index 5, then subsequently a hole is created at 872 * index 10, page_cache_next_hole covering both indexes may return 10 873 * if called under rcu_read_lock. 874 */ 875 pgoff_t page_cache_next_hole(struct address_space *mapping, 876 pgoff_t index, unsigned long max_scan) 877 { 878 unsigned long i; 879 880 for (i = 0; i < max_scan; i++) { 881 struct page *page; 882 883 page = radix_tree_lookup(&mapping->page_tree, index); 884 if (!page || radix_tree_exceptional_entry(page)) 885 break; 886 index++; 887 if (index == 0) 888 break; 889 } 890 891 return index; 892 } 893 EXPORT_SYMBOL(page_cache_next_hole); 894 895 /** 896 * page_cache_prev_hole - find the prev hole (not-present entry) 897 * @mapping: mapping 898 * @index: index 899 * @max_scan: maximum range to search 900 * 901 * Search backwards in the range [max(index-max_scan+1, 0), index] for 902 * the first hole. 903 * 904 * Returns: the index of the hole if found, otherwise returns an index 905 * outside of the set specified (in which case 'index - return >= 906 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX 907 * will be returned. 908 * 909 * page_cache_prev_hole may be called under rcu_read_lock. However, 910 * like radix_tree_gang_lookup, this will not atomically search a 911 * snapshot of the tree at a single point in time. For example, if a 912 * hole is created at index 10, then subsequently a hole is created at 913 * index 5, page_cache_prev_hole covering both indexes may return 5 if 914 * called under rcu_read_lock. 915 */ 916 pgoff_t page_cache_prev_hole(struct address_space *mapping, 917 pgoff_t index, unsigned long max_scan) 918 { 919 unsigned long i; 920 921 for (i = 0; i < max_scan; i++) { 922 struct page *page; 923 924 page = radix_tree_lookup(&mapping->page_tree, index); 925 if (!page || radix_tree_exceptional_entry(page)) 926 break; 927 index--; 928 if (index == ULONG_MAX) 929 break; 930 } 931 932 return index; 933 } 934 EXPORT_SYMBOL(page_cache_prev_hole); 935 936 /** 937 * find_get_entry - find and get a page cache entry 938 * @mapping: the address_space to search 939 * @offset: the page cache index 940 * 941 * Looks up the page cache slot at @mapping & @offset. If there is a 942 * page cache page, it is returned with an increased refcount. 943 * 944 * If the slot holds a shadow entry of a previously evicted page, or a 945 * swap entry from shmem/tmpfs, it is returned. 946 * 947 * Otherwise, %NULL is returned. 948 */ 949 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset) 950 { 951 void **pagep; 952 struct page *page; 953 954 rcu_read_lock(); 955 repeat: 956 page = NULL; 957 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset); 958 if (pagep) { 959 page = radix_tree_deref_slot(pagep); 960 if (unlikely(!page)) 961 goto out; 962 if (radix_tree_exception(page)) { 963 if (radix_tree_deref_retry(page)) 964 goto repeat; 965 /* 966 * A shadow entry of a recently evicted page, 967 * or a swap entry from shmem/tmpfs. Return 968 * it without attempting to raise page count. 969 */ 970 goto out; 971 } 972 if (!page_cache_get_speculative(page)) 973 goto repeat; 974 975 /* 976 * Has the page moved? 977 * This is part of the lockless pagecache protocol. See 978 * include/linux/pagemap.h for details. 979 */ 980 if (unlikely(page != *pagep)) { 981 page_cache_release(page); 982 goto repeat; 983 } 984 } 985 out: 986 rcu_read_unlock(); 987 988 return page; 989 } 990 EXPORT_SYMBOL(find_get_entry); 991 992 /** 993 * find_lock_entry - locate, pin and lock a page cache entry 994 * @mapping: the address_space to search 995 * @offset: the page cache index 996 * 997 * Looks up the page cache slot at @mapping & @offset. If there is a 998 * page cache page, it is returned locked and with an increased 999 * refcount. 1000 * 1001 * If the slot holds a shadow entry of a previously evicted page, or a 1002 * swap entry from shmem/tmpfs, it is returned. 1003 * 1004 * Otherwise, %NULL is returned. 1005 * 1006 * find_lock_entry() may sleep. 1007 */ 1008 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset) 1009 { 1010 struct page *page; 1011 1012 repeat: 1013 page = find_get_entry(mapping, offset); 1014 if (page && !radix_tree_exception(page)) { 1015 lock_page(page); 1016 /* Has the page been truncated? */ 1017 if (unlikely(page->mapping != mapping)) { 1018 unlock_page(page); 1019 page_cache_release(page); 1020 goto repeat; 1021 } 1022 VM_BUG_ON_PAGE(page->index != offset, page); 1023 } 1024 return page; 1025 } 1026 EXPORT_SYMBOL(find_lock_entry); 1027 1028 /** 1029 * pagecache_get_page - find and get a page reference 1030 * @mapping: the address_space to search 1031 * @offset: the page index 1032 * @fgp_flags: PCG flags 1033 * @cache_gfp_mask: gfp mask to use for the page cache data page allocation 1034 * @radix_gfp_mask: gfp mask to use for radix tree node allocation 1035 * 1036 * Looks up the page cache slot at @mapping & @offset. 1037 * 1038 * PCG flags modify how the page is returned. 1039 * 1040 * FGP_ACCESSED: the page will be marked accessed 1041 * FGP_LOCK: Page is return locked 1042 * FGP_CREAT: If page is not present then a new page is allocated using 1043 * @cache_gfp_mask and added to the page cache and the VM's LRU 1044 * list. If radix tree nodes are allocated during page cache 1045 * insertion then @radix_gfp_mask is used. The page is returned 1046 * locked and with an increased refcount. Otherwise, %NULL is 1047 * returned. 1048 * 1049 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even 1050 * if the GFP flags specified for FGP_CREAT are atomic. 1051 * 1052 * If there is a page cache page, it is returned with an increased refcount. 1053 */ 1054 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset, 1055 int fgp_flags, gfp_t cache_gfp_mask, gfp_t radix_gfp_mask) 1056 { 1057 struct page *page; 1058 1059 repeat: 1060 page = find_get_entry(mapping, offset); 1061 if (radix_tree_exceptional_entry(page)) 1062 page = NULL; 1063 if (!page) 1064 goto no_page; 1065 1066 if (fgp_flags & FGP_LOCK) { 1067 if (fgp_flags & FGP_NOWAIT) { 1068 if (!trylock_page(page)) { 1069 page_cache_release(page); 1070 return NULL; 1071 } 1072 } else { 1073 lock_page(page); 1074 } 1075 1076 /* Has the page been truncated? */ 1077 if (unlikely(page->mapping != mapping)) { 1078 unlock_page(page); 1079 page_cache_release(page); 1080 goto repeat; 1081 } 1082 VM_BUG_ON_PAGE(page->index != offset, page); 1083 } 1084 1085 if (page && (fgp_flags & FGP_ACCESSED)) 1086 mark_page_accessed(page); 1087 1088 no_page: 1089 if (!page && (fgp_flags & FGP_CREAT)) { 1090 int err; 1091 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping)) 1092 cache_gfp_mask |= __GFP_WRITE; 1093 if (fgp_flags & FGP_NOFS) { 1094 cache_gfp_mask &= ~__GFP_FS; 1095 radix_gfp_mask &= ~__GFP_FS; 1096 } 1097 1098 page = __page_cache_alloc(cache_gfp_mask); 1099 if (!page) 1100 return NULL; 1101 1102 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK))) 1103 fgp_flags |= FGP_LOCK; 1104 1105 /* Init accessed so avoid atomic mark_page_accessed later */ 1106 if (fgp_flags & FGP_ACCESSED) 1107 __SetPageReferenced(page); 1108 1109 err = add_to_page_cache_lru(page, mapping, offset, radix_gfp_mask); 1110 if (unlikely(err)) { 1111 page_cache_release(page); 1112 page = NULL; 1113 if (err == -EEXIST) 1114 goto repeat; 1115 } 1116 } 1117 1118 return page; 1119 } 1120 EXPORT_SYMBOL(pagecache_get_page); 1121 1122 /** 1123 * find_get_entries - gang pagecache lookup 1124 * @mapping: The address_space to search 1125 * @start: The starting page cache index 1126 * @nr_entries: The maximum number of entries 1127 * @entries: Where the resulting entries are placed 1128 * @indices: The cache indices corresponding to the entries in @entries 1129 * 1130 * find_get_entries() will search for and return a group of up to 1131 * @nr_entries entries in the mapping. The entries are placed at 1132 * @entries. find_get_entries() takes a reference against any actual 1133 * pages it returns. 1134 * 1135 * The search returns a group of mapping-contiguous page cache entries 1136 * with ascending indexes. There may be holes in the indices due to 1137 * not-present pages. 1138 * 1139 * Any shadow entries of evicted pages, or swap entries from 1140 * shmem/tmpfs, are included in the returned array. 1141 * 1142 * find_get_entries() returns the number of pages and shadow entries 1143 * which were found. 1144 */ 1145 unsigned find_get_entries(struct address_space *mapping, 1146 pgoff_t start, unsigned int nr_entries, 1147 struct page **entries, pgoff_t *indices) 1148 { 1149 void **slot; 1150 unsigned int ret = 0; 1151 struct radix_tree_iter iter; 1152 1153 if (!nr_entries) 1154 return 0; 1155 1156 rcu_read_lock(); 1157 restart: 1158 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { 1159 struct page *page; 1160 repeat: 1161 page = radix_tree_deref_slot(slot); 1162 if (unlikely(!page)) 1163 continue; 1164 if (radix_tree_exception(page)) { 1165 if (radix_tree_deref_retry(page)) 1166 goto restart; 1167 /* 1168 * A shadow entry of a recently evicted page, 1169 * or a swap entry from shmem/tmpfs. Return 1170 * it without attempting to raise page count. 1171 */ 1172 goto export; 1173 } 1174 if (!page_cache_get_speculative(page)) 1175 goto repeat; 1176 1177 /* Has the page moved? */ 1178 if (unlikely(page != *slot)) { 1179 page_cache_release(page); 1180 goto repeat; 1181 } 1182 export: 1183 indices[ret] = iter.index; 1184 entries[ret] = page; 1185 if (++ret == nr_entries) 1186 break; 1187 } 1188 rcu_read_unlock(); 1189 return ret; 1190 } 1191 1192 /** 1193 * find_get_pages - gang pagecache lookup 1194 * @mapping: The address_space to search 1195 * @start: The starting page index 1196 * @nr_pages: The maximum number of pages 1197 * @pages: Where the resulting pages are placed 1198 * 1199 * find_get_pages() will search for and return a group of up to 1200 * @nr_pages pages in the mapping. The pages are placed at @pages. 1201 * find_get_pages() takes a reference against the returned pages. 1202 * 1203 * The search returns a group of mapping-contiguous pages with ascending 1204 * indexes. There may be holes in the indices due to not-present pages. 1205 * 1206 * find_get_pages() returns the number of pages which were found. 1207 */ 1208 unsigned find_get_pages(struct address_space *mapping, pgoff_t start, 1209 unsigned int nr_pages, struct page **pages) 1210 { 1211 struct radix_tree_iter iter; 1212 void **slot; 1213 unsigned ret = 0; 1214 1215 if (unlikely(!nr_pages)) 1216 return 0; 1217 1218 rcu_read_lock(); 1219 restart: 1220 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { 1221 struct page *page; 1222 repeat: 1223 page = radix_tree_deref_slot(slot); 1224 if (unlikely(!page)) 1225 continue; 1226 1227 if (radix_tree_exception(page)) { 1228 if (radix_tree_deref_retry(page)) { 1229 /* 1230 * Transient condition which can only trigger 1231 * when entry at index 0 moves out of or back 1232 * to root: none yet gotten, safe to restart. 1233 */ 1234 WARN_ON(iter.index); 1235 goto restart; 1236 } 1237 /* 1238 * A shadow entry of a recently evicted page, 1239 * or a swap entry from shmem/tmpfs. Skip 1240 * over it. 1241 */ 1242 continue; 1243 } 1244 1245 if (!page_cache_get_speculative(page)) 1246 goto repeat; 1247 1248 /* Has the page moved? */ 1249 if (unlikely(page != *slot)) { 1250 page_cache_release(page); 1251 goto repeat; 1252 } 1253 1254 pages[ret] = page; 1255 if (++ret == nr_pages) 1256 break; 1257 } 1258 1259 rcu_read_unlock(); 1260 return ret; 1261 } 1262 1263 /** 1264 * find_get_pages_contig - gang contiguous pagecache lookup 1265 * @mapping: The address_space to search 1266 * @index: The starting page index 1267 * @nr_pages: The maximum number of pages 1268 * @pages: Where the resulting pages are placed 1269 * 1270 * find_get_pages_contig() works exactly like find_get_pages(), except 1271 * that the returned number of pages are guaranteed to be contiguous. 1272 * 1273 * find_get_pages_contig() returns the number of pages which were found. 1274 */ 1275 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, 1276 unsigned int nr_pages, struct page **pages) 1277 { 1278 struct radix_tree_iter iter; 1279 void **slot; 1280 unsigned int ret = 0; 1281 1282 if (unlikely(!nr_pages)) 1283 return 0; 1284 1285 rcu_read_lock(); 1286 restart: 1287 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) { 1288 struct page *page; 1289 repeat: 1290 page = radix_tree_deref_slot(slot); 1291 /* The hole, there no reason to continue */ 1292 if (unlikely(!page)) 1293 break; 1294 1295 if (radix_tree_exception(page)) { 1296 if (radix_tree_deref_retry(page)) { 1297 /* 1298 * Transient condition which can only trigger 1299 * when entry at index 0 moves out of or back 1300 * to root: none yet gotten, safe to restart. 1301 */ 1302 goto restart; 1303 } 1304 /* 1305 * A shadow entry of a recently evicted page, 1306 * or a swap entry from shmem/tmpfs. Stop 1307 * looking for contiguous pages. 1308 */ 1309 break; 1310 } 1311 1312 if (!page_cache_get_speculative(page)) 1313 goto repeat; 1314 1315 /* Has the page moved? */ 1316 if (unlikely(page != *slot)) { 1317 page_cache_release(page); 1318 goto repeat; 1319 } 1320 1321 /* 1322 * must check mapping and index after taking the ref. 1323 * otherwise we can get both false positives and false 1324 * negatives, which is just confusing to the caller. 1325 */ 1326 if (page->mapping == NULL || page->index != iter.index) { 1327 page_cache_release(page); 1328 break; 1329 } 1330 1331 pages[ret] = page; 1332 if (++ret == nr_pages) 1333 break; 1334 } 1335 rcu_read_unlock(); 1336 return ret; 1337 } 1338 EXPORT_SYMBOL(find_get_pages_contig); 1339 1340 /** 1341 * find_get_pages_tag - find and return pages that match @tag 1342 * @mapping: the address_space to search 1343 * @index: the starting page index 1344 * @tag: the tag index 1345 * @nr_pages: the maximum number of pages 1346 * @pages: where the resulting pages are placed 1347 * 1348 * Like find_get_pages, except we only return pages which are tagged with 1349 * @tag. We update @index to index the next page for the traversal. 1350 */ 1351 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, 1352 int tag, unsigned int nr_pages, struct page **pages) 1353 { 1354 struct radix_tree_iter iter; 1355 void **slot; 1356 unsigned ret = 0; 1357 1358 if (unlikely(!nr_pages)) 1359 return 0; 1360 1361 rcu_read_lock(); 1362 restart: 1363 radix_tree_for_each_tagged(slot, &mapping->page_tree, 1364 &iter, *index, tag) { 1365 struct page *page; 1366 repeat: 1367 page = radix_tree_deref_slot(slot); 1368 if (unlikely(!page)) 1369 continue; 1370 1371 if (radix_tree_exception(page)) { 1372 if (radix_tree_deref_retry(page)) { 1373 /* 1374 * Transient condition which can only trigger 1375 * when entry at index 0 moves out of or back 1376 * to root: none yet gotten, safe to restart. 1377 */ 1378 goto restart; 1379 } 1380 /* 1381 * A shadow entry of a recently evicted page. 1382 * 1383 * Those entries should never be tagged, but 1384 * this tree walk is lockless and the tags are 1385 * looked up in bulk, one radix tree node at a 1386 * time, so there is a sizable window for page 1387 * reclaim to evict a page we saw tagged. 1388 * 1389 * Skip over it. 1390 */ 1391 continue; 1392 } 1393 1394 if (!page_cache_get_speculative(page)) 1395 goto repeat; 1396 1397 /* Has the page moved? */ 1398 if (unlikely(page != *slot)) { 1399 page_cache_release(page); 1400 goto repeat; 1401 } 1402 1403 pages[ret] = page; 1404 if (++ret == nr_pages) 1405 break; 1406 } 1407 1408 rcu_read_unlock(); 1409 1410 if (ret) 1411 *index = pages[ret - 1]->index + 1; 1412 1413 return ret; 1414 } 1415 EXPORT_SYMBOL(find_get_pages_tag); 1416 1417 /* 1418 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 1419 * a _large_ part of the i/o request. Imagine the worst scenario: 1420 * 1421 * ---R__________________________________________B__________ 1422 * ^ reading here ^ bad block(assume 4k) 1423 * 1424 * read(R) => miss => readahead(R...B) => media error => frustrating retries 1425 * => failing the whole request => read(R) => read(R+1) => 1426 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 1427 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 1428 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 1429 * 1430 * It is going insane. Fix it by quickly scaling down the readahead size. 1431 */ 1432 static void shrink_readahead_size_eio(struct file *filp, 1433 struct file_ra_state *ra) 1434 { 1435 ra->ra_pages /= 4; 1436 } 1437 1438 /** 1439 * do_generic_file_read - generic file read routine 1440 * @filp: the file to read 1441 * @ppos: current file position 1442 * @iter: data destination 1443 * @written: already copied 1444 * 1445 * This is a generic file read routine, and uses the 1446 * mapping->a_ops->readpage() function for the actual low-level stuff. 1447 * 1448 * This is really ugly. But the goto's actually try to clarify some 1449 * of the logic when it comes to error handling etc. 1450 */ 1451 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos, 1452 struct iov_iter *iter, ssize_t written) 1453 { 1454 struct address_space *mapping = filp->f_mapping; 1455 struct inode *inode = mapping->host; 1456 struct file_ra_state *ra = &filp->f_ra; 1457 pgoff_t index; 1458 pgoff_t last_index; 1459 pgoff_t prev_index; 1460 unsigned long offset; /* offset into pagecache page */ 1461 unsigned int prev_offset; 1462 int error = 0; 1463 1464 index = *ppos >> PAGE_CACHE_SHIFT; 1465 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT; 1466 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1); 1467 last_index = (*ppos + iter->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT; 1468 offset = *ppos & ~PAGE_CACHE_MASK; 1469 1470 for (;;) { 1471 struct page *page; 1472 pgoff_t end_index; 1473 loff_t isize; 1474 unsigned long nr, ret; 1475 1476 cond_resched(); 1477 find_page: 1478 page = find_get_page(mapping, index); 1479 if (!page) { 1480 page_cache_sync_readahead(mapping, 1481 ra, filp, 1482 index, last_index - index); 1483 page = find_get_page(mapping, index); 1484 if (unlikely(page == NULL)) 1485 goto no_cached_page; 1486 } 1487 if (PageReadahead(page)) { 1488 page_cache_async_readahead(mapping, 1489 ra, filp, page, 1490 index, last_index - index); 1491 } 1492 if (!PageUptodate(page)) { 1493 if (inode->i_blkbits == PAGE_CACHE_SHIFT || 1494 !mapping->a_ops->is_partially_uptodate) 1495 goto page_not_up_to_date; 1496 if (!trylock_page(page)) 1497 goto page_not_up_to_date; 1498 /* Did it get truncated before we got the lock? */ 1499 if (!page->mapping) 1500 goto page_not_up_to_date_locked; 1501 if (!mapping->a_ops->is_partially_uptodate(page, 1502 offset, iter->count)) 1503 goto page_not_up_to_date_locked; 1504 unlock_page(page); 1505 } 1506 page_ok: 1507 /* 1508 * i_size must be checked after we know the page is Uptodate. 1509 * 1510 * Checking i_size after the check allows us to calculate 1511 * the correct value for "nr", which means the zero-filled 1512 * part of the page is not copied back to userspace (unless 1513 * another truncate extends the file - this is desired though). 1514 */ 1515 1516 isize = i_size_read(inode); 1517 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 1518 if (unlikely(!isize || index > end_index)) { 1519 page_cache_release(page); 1520 goto out; 1521 } 1522 1523 /* nr is the maximum number of bytes to copy from this page */ 1524 nr = PAGE_CACHE_SIZE; 1525 if (index == end_index) { 1526 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 1527 if (nr <= offset) { 1528 page_cache_release(page); 1529 goto out; 1530 } 1531 } 1532 nr = nr - offset; 1533 1534 /* If users can be writing to this page using arbitrary 1535 * virtual addresses, take care about potential aliasing 1536 * before reading the page on the kernel side. 1537 */ 1538 if (mapping_writably_mapped(mapping)) 1539 flush_dcache_page(page); 1540 1541 /* 1542 * When a sequential read accesses a page several times, 1543 * only mark it as accessed the first time. 1544 */ 1545 if (prev_index != index || offset != prev_offset) 1546 mark_page_accessed(page); 1547 prev_index = index; 1548 1549 /* 1550 * Ok, we have the page, and it's up-to-date, so 1551 * now we can copy it to user space... 1552 */ 1553 1554 ret = copy_page_to_iter(page, offset, nr, iter); 1555 offset += ret; 1556 index += offset >> PAGE_CACHE_SHIFT; 1557 offset &= ~PAGE_CACHE_MASK; 1558 prev_offset = offset; 1559 1560 page_cache_release(page); 1561 written += ret; 1562 if (!iov_iter_count(iter)) 1563 goto out; 1564 if (ret < nr) { 1565 error = -EFAULT; 1566 goto out; 1567 } 1568 continue; 1569 1570 page_not_up_to_date: 1571 /* Get exclusive access to the page ... */ 1572 error = lock_page_killable(page); 1573 if (unlikely(error)) 1574 goto readpage_error; 1575 1576 page_not_up_to_date_locked: 1577 /* Did it get truncated before we got the lock? */ 1578 if (!page->mapping) { 1579 unlock_page(page); 1580 page_cache_release(page); 1581 continue; 1582 } 1583 1584 /* Did somebody else fill it already? */ 1585 if (PageUptodate(page)) { 1586 unlock_page(page); 1587 goto page_ok; 1588 } 1589 1590 readpage: 1591 /* 1592 * A previous I/O error may have been due to temporary 1593 * failures, eg. multipath errors. 1594 * PG_error will be set again if readpage fails. 1595 */ 1596 ClearPageError(page); 1597 /* Start the actual read. The read will unlock the page. */ 1598 error = mapping->a_ops->readpage(filp, page); 1599 1600 if (unlikely(error)) { 1601 if (error == AOP_TRUNCATED_PAGE) { 1602 page_cache_release(page); 1603 error = 0; 1604 goto find_page; 1605 } 1606 goto readpage_error; 1607 } 1608 1609 if (!PageUptodate(page)) { 1610 error = lock_page_killable(page); 1611 if (unlikely(error)) 1612 goto readpage_error; 1613 if (!PageUptodate(page)) { 1614 if (page->mapping == NULL) { 1615 /* 1616 * invalidate_mapping_pages got it 1617 */ 1618 unlock_page(page); 1619 page_cache_release(page); 1620 goto find_page; 1621 } 1622 unlock_page(page); 1623 shrink_readahead_size_eio(filp, ra); 1624 error = -EIO; 1625 goto readpage_error; 1626 } 1627 unlock_page(page); 1628 } 1629 1630 goto page_ok; 1631 1632 readpage_error: 1633 /* UHHUH! A synchronous read error occurred. Report it */ 1634 page_cache_release(page); 1635 goto out; 1636 1637 no_cached_page: 1638 /* 1639 * Ok, it wasn't cached, so we need to create a new 1640 * page.. 1641 */ 1642 page = page_cache_alloc_cold(mapping); 1643 if (!page) { 1644 error = -ENOMEM; 1645 goto out; 1646 } 1647 error = add_to_page_cache_lru(page, mapping, 1648 index, GFP_KERNEL); 1649 if (error) { 1650 page_cache_release(page); 1651 if (error == -EEXIST) { 1652 error = 0; 1653 goto find_page; 1654 } 1655 goto out; 1656 } 1657 goto readpage; 1658 } 1659 1660 out: 1661 ra->prev_pos = prev_index; 1662 ra->prev_pos <<= PAGE_CACHE_SHIFT; 1663 ra->prev_pos |= prev_offset; 1664 1665 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset; 1666 file_accessed(filp); 1667 return written ? written : error; 1668 } 1669 1670 /** 1671 * generic_file_read_iter - generic filesystem read routine 1672 * @iocb: kernel I/O control block 1673 * @iter: destination for the data read 1674 * 1675 * This is the "read_iter()" routine for all filesystems 1676 * that can use the page cache directly. 1677 */ 1678 ssize_t 1679 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 1680 { 1681 struct file *file = iocb->ki_filp; 1682 ssize_t retval = 0; 1683 loff_t *ppos = &iocb->ki_pos; 1684 loff_t pos = *ppos; 1685 1686 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ 1687 if (file->f_flags & O_DIRECT) { 1688 struct address_space *mapping = file->f_mapping; 1689 struct inode *inode = mapping->host; 1690 size_t count = iov_iter_count(iter); 1691 loff_t size; 1692 1693 if (!count) 1694 goto out; /* skip atime */ 1695 size = i_size_read(inode); 1696 retval = filemap_write_and_wait_range(mapping, pos, 1697 pos + count - 1); 1698 if (!retval) { 1699 struct iov_iter data = *iter; 1700 retval = mapping->a_ops->direct_IO(READ, iocb, &data, pos); 1701 } 1702 1703 if (retval > 0) { 1704 *ppos = pos + retval; 1705 iov_iter_advance(iter, retval); 1706 } 1707 1708 /* 1709 * Btrfs can have a short DIO read if we encounter 1710 * compressed extents, so if there was an error, or if 1711 * we've already read everything we wanted to, or if 1712 * there was a short read because we hit EOF, go ahead 1713 * and return. Otherwise fallthrough to buffered io for 1714 * the rest of the read. 1715 */ 1716 if (retval < 0 || !iov_iter_count(iter) || *ppos >= size) { 1717 file_accessed(file); 1718 goto out; 1719 } 1720 } 1721 1722 retval = do_generic_file_read(file, ppos, iter, retval); 1723 out: 1724 return retval; 1725 } 1726 EXPORT_SYMBOL(generic_file_read_iter); 1727 1728 #ifdef CONFIG_MMU 1729 /** 1730 * page_cache_read - adds requested page to the page cache if not already there 1731 * @file: file to read 1732 * @offset: page index 1733 * 1734 * This adds the requested page to the page cache if it isn't already there, 1735 * and schedules an I/O to read in its contents from disk. 1736 */ 1737 static int page_cache_read(struct file *file, pgoff_t offset) 1738 { 1739 struct address_space *mapping = file->f_mapping; 1740 struct page *page; 1741 int ret; 1742 1743 do { 1744 page = page_cache_alloc_cold(mapping); 1745 if (!page) 1746 return -ENOMEM; 1747 1748 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL); 1749 if (ret == 0) 1750 ret = mapping->a_ops->readpage(file, page); 1751 else if (ret == -EEXIST) 1752 ret = 0; /* losing race to add is OK */ 1753 1754 page_cache_release(page); 1755 1756 } while (ret == AOP_TRUNCATED_PAGE); 1757 1758 return ret; 1759 } 1760 1761 #define MMAP_LOTSAMISS (100) 1762 1763 /* 1764 * Synchronous readahead happens when we don't even find 1765 * a page in the page cache at all. 1766 */ 1767 static void do_sync_mmap_readahead(struct vm_area_struct *vma, 1768 struct file_ra_state *ra, 1769 struct file *file, 1770 pgoff_t offset) 1771 { 1772 unsigned long ra_pages; 1773 struct address_space *mapping = file->f_mapping; 1774 1775 /* If we don't want any read-ahead, don't bother */ 1776 if (vma->vm_flags & VM_RAND_READ) 1777 return; 1778 if (!ra->ra_pages) 1779 return; 1780 1781 if (vma->vm_flags & VM_SEQ_READ) { 1782 page_cache_sync_readahead(mapping, ra, file, offset, 1783 ra->ra_pages); 1784 return; 1785 } 1786 1787 /* Avoid banging the cache line if not needed */ 1788 if (ra->mmap_miss < MMAP_LOTSAMISS * 10) 1789 ra->mmap_miss++; 1790 1791 /* 1792 * Do we miss much more than hit in this file? If so, 1793 * stop bothering with read-ahead. It will only hurt. 1794 */ 1795 if (ra->mmap_miss > MMAP_LOTSAMISS) 1796 return; 1797 1798 /* 1799 * mmap read-around 1800 */ 1801 ra_pages = max_sane_readahead(ra->ra_pages); 1802 ra->start = max_t(long, 0, offset - ra_pages / 2); 1803 ra->size = ra_pages; 1804 ra->async_size = ra_pages / 4; 1805 ra_submit(ra, mapping, file); 1806 } 1807 1808 /* 1809 * Asynchronous readahead happens when we find the page and PG_readahead, 1810 * so we want to possibly extend the readahead further.. 1811 */ 1812 static void do_async_mmap_readahead(struct vm_area_struct *vma, 1813 struct file_ra_state *ra, 1814 struct file *file, 1815 struct page *page, 1816 pgoff_t offset) 1817 { 1818 struct address_space *mapping = file->f_mapping; 1819 1820 /* If we don't want any read-ahead, don't bother */ 1821 if (vma->vm_flags & VM_RAND_READ) 1822 return; 1823 if (ra->mmap_miss > 0) 1824 ra->mmap_miss--; 1825 if (PageReadahead(page)) 1826 page_cache_async_readahead(mapping, ra, file, 1827 page, offset, ra->ra_pages); 1828 } 1829 1830 /** 1831 * filemap_fault - read in file data for page fault handling 1832 * @vma: vma in which the fault was taken 1833 * @vmf: struct vm_fault containing details of the fault 1834 * 1835 * filemap_fault() is invoked via the vma operations vector for a 1836 * mapped memory region to read in file data during a page fault. 1837 * 1838 * The goto's are kind of ugly, but this streamlines the normal case of having 1839 * it in the page cache, and handles the special cases reasonably without 1840 * having a lot of duplicated code. 1841 * 1842 * vma->vm_mm->mmap_sem must be held on entry. 1843 * 1844 * If our return value has VM_FAULT_RETRY set, it's because 1845 * lock_page_or_retry() returned 0. 1846 * The mmap_sem has usually been released in this case. 1847 * See __lock_page_or_retry() for the exception. 1848 * 1849 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem 1850 * has not been released. 1851 * 1852 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. 1853 */ 1854 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1855 { 1856 int error; 1857 struct file *file = vma->vm_file; 1858 struct address_space *mapping = file->f_mapping; 1859 struct file_ra_state *ra = &file->f_ra; 1860 struct inode *inode = mapping->host; 1861 pgoff_t offset = vmf->pgoff; 1862 struct page *page; 1863 loff_t size; 1864 int ret = 0; 1865 1866 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE); 1867 if (offset >= size >> PAGE_CACHE_SHIFT) 1868 return VM_FAULT_SIGBUS; 1869 1870 /* 1871 * Do we have something in the page cache already? 1872 */ 1873 page = find_get_page(mapping, offset); 1874 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) { 1875 /* 1876 * We found the page, so try async readahead before 1877 * waiting for the lock. 1878 */ 1879 do_async_mmap_readahead(vma, ra, file, page, offset); 1880 } else if (!page) { 1881 /* No page in the page cache at all */ 1882 do_sync_mmap_readahead(vma, ra, file, offset); 1883 count_vm_event(PGMAJFAULT); 1884 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT); 1885 ret = VM_FAULT_MAJOR; 1886 retry_find: 1887 page = find_get_page(mapping, offset); 1888 if (!page) 1889 goto no_cached_page; 1890 } 1891 1892 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) { 1893 page_cache_release(page); 1894 return ret | VM_FAULT_RETRY; 1895 } 1896 1897 /* Did it get truncated? */ 1898 if (unlikely(page->mapping != mapping)) { 1899 unlock_page(page); 1900 put_page(page); 1901 goto retry_find; 1902 } 1903 VM_BUG_ON_PAGE(page->index != offset, page); 1904 1905 /* 1906 * We have a locked page in the page cache, now we need to check 1907 * that it's up-to-date. If not, it is going to be due to an error. 1908 */ 1909 if (unlikely(!PageUptodate(page))) 1910 goto page_not_uptodate; 1911 1912 /* 1913 * Found the page and have a reference on it. 1914 * We must recheck i_size under page lock. 1915 */ 1916 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE); 1917 if (unlikely(offset >= size >> PAGE_CACHE_SHIFT)) { 1918 unlock_page(page); 1919 page_cache_release(page); 1920 return VM_FAULT_SIGBUS; 1921 } 1922 1923 vmf->page = page; 1924 return ret | VM_FAULT_LOCKED; 1925 1926 no_cached_page: 1927 /* 1928 * We're only likely to ever get here if MADV_RANDOM is in 1929 * effect. 1930 */ 1931 error = page_cache_read(file, offset); 1932 1933 /* 1934 * The page we want has now been added to the page cache. 1935 * In the unlikely event that someone removed it in the 1936 * meantime, we'll just come back here and read it again. 1937 */ 1938 if (error >= 0) 1939 goto retry_find; 1940 1941 /* 1942 * An error return from page_cache_read can result if the 1943 * system is low on memory, or a problem occurs while trying 1944 * to schedule I/O. 1945 */ 1946 if (error == -ENOMEM) 1947 return VM_FAULT_OOM; 1948 return VM_FAULT_SIGBUS; 1949 1950 page_not_uptodate: 1951 /* 1952 * Umm, take care of errors if the page isn't up-to-date. 1953 * Try to re-read it _once_. We do this synchronously, 1954 * because there really aren't any performance issues here 1955 * and we need to check for errors. 1956 */ 1957 ClearPageError(page); 1958 error = mapping->a_ops->readpage(file, page); 1959 if (!error) { 1960 wait_on_page_locked(page); 1961 if (!PageUptodate(page)) 1962 error = -EIO; 1963 } 1964 page_cache_release(page); 1965 1966 if (!error || error == AOP_TRUNCATED_PAGE) 1967 goto retry_find; 1968 1969 /* Things didn't work out. Return zero to tell the mm layer so. */ 1970 shrink_readahead_size_eio(file, ra); 1971 return VM_FAULT_SIGBUS; 1972 } 1973 EXPORT_SYMBOL(filemap_fault); 1974 1975 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf) 1976 { 1977 struct radix_tree_iter iter; 1978 void **slot; 1979 struct file *file = vma->vm_file; 1980 struct address_space *mapping = file->f_mapping; 1981 loff_t size; 1982 struct page *page; 1983 unsigned long address = (unsigned long) vmf->virtual_address; 1984 unsigned long addr; 1985 pte_t *pte; 1986 1987 rcu_read_lock(); 1988 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) { 1989 if (iter.index > vmf->max_pgoff) 1990 break; 1991 repeat: 1992 page = radix_tree_deref_slot(slot); 1993 if (unlikely(!page)) 1994 goto next; 1995 if (radix_tree_exception(page)) { 1996 if (radix_tree_deref_retry(page)) 1997 break; 1998 else 1999 goto next; 2000 } 2001 2002 if (!page_cache_get_speculative(page)) 2003 goto repeat; 2004 2005 /* Has the page moved? */ 2006 if (unlikely(page != *slot)) { 2007 page_cache_release(page); 2008 goto repeat; 2009 } 2010 2011 if (!PageUptodate(page) || 2012 PageReadahead(page) || 2013 PageHWPoison(page)) 2014 goto skip; 2015 if (!trylock_page(page)) 2016 goto skip; 2017 2018 if (page->mapping != mapping || !PageUptodate(page)) 2019 goto unlock; 2020 2021 size = round_up(i_size_read(mapping->host), PAGE_CACHE_SIZE); 2022 if (page->index >= size >> PAGE_CACHE_SHIFT) 2023 goto unlock; 2024 2025 pte = vmf->pte + page->index - vmf->pgoff; 2026 if (!pte_none(*pte)) 2027 goto unlock; 2028 2029 if (file->f_ra.mmap_miss > 0) 2030 file->f_ra.mmap_miss--; 2031 addr = address + (page->index - vmf->pgoff) * PAGE_SIZE; 2032 do_set_pte(vma, addr, page, pte, false, false); 2033 unlock_page(page); 2034 goto next; 2035 unlock: 2036 unlock_page(page); 2037 skip: 2038 page_cache_release(page); 2039 next: 2040 if (iter.index == vmf->max_pgoff) 2041 break; 2042 } 2043 rcu_read_unlock(); 2044 } 2045 EXPORT_SYMBOL(filemap_map_pages); 2046 2047 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 2048 { 2049 struct page *page = vmf->page; 2050 struct inode *inode = file_inode(vma->vm_file); 2051 int ret = VM_FAULT_LOCKED; 2052 2053 sb_start_pagefault(inode->i_sb); 2054 file_update_time(vma->vm_file); 2055 lock_page(page); 2056 if (page->mapping != inode->i_mapping) { 2057 unlock_page(page); 2058 ret = VM_FAULT_NOPAGE; 2059 goto out; 2060 } 2061 /* 2062 * We mark the page dirty already here so that when freeze is in 2063 * progress, we are guaranteed that writeback during freezing will 2064 * see the dirty page and writeprotect it again. 2065 */ 2066 set_page_dirty(page); 2067 wait_for_stable_page(page); 2068 out: 2069 sb_end_pagefault(inode->i_sb); 2070 return ret; 2071 } 2072 EXPORT_SYMBOL(filemap_page_mkwrite); 2073 2074 const struct vm_operations_struct generic_file_vm_ops = { 2075 .fault = filemap_fault, 2076 .map_pages = filemap_map_pages, 2077 .page_mkwrite = filemap_page_mkwrite, 2078 .remap_pages = generic_file_remap_pages, 2079 }; 2080 2081 /* This is used for a general mmap of a disk file */ 2082 2083 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 2084 { 2085 struct address_space *mapping = file->f_mapping; 2086 2087 if (!mapping->a_ops->readpage) 2088 return -ENOEXEC; 2089 file_accessed(file); 2090 vma->vm_ops = &generic_file_vm_ops; 2091 return 0; 2092 } 2093 2094 /* 2095 * This is for filesystems which do not implement ->writepage. 2096 */ 2097 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 2098 { 2099 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 2100 return -EINVAL; 2101 return generic_file_mmap(file, vma); 2102 } 2103 #else 2104 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 2105 { 2106 return -ENOSYS; 2107 } 2108 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) 2109 { 2110 return -ENOSYS; 2111 } 2112 #endif /* CONFIG_MMU */ 2113 2114 EXPORT_SYMBOL(generic_file_mmap); 2115 EXPORT_SYMBOL(generic_file_readonly_mmap); 2116 2117 static struct page *wait_on_page_read(struct page *page) 2118 { 2119 if (!IS_ERR(page)) { 2120 wait_on_page_locked(page); 2121 if (!PageUptodate(page)) { 2122 page_cache_release(page); 2123 page = ERR_PTR(-EIO); 2124 } 2125 } 2126 return page; 2127 } 2128 2129 static struct page *__read_cache_page(struct address_space *mapping, 2130 pgoff_t index, 2131 int (*filler)(void *, struct page *), 2132 void *data, 2133 gfp_t gfp) 2134 { 2135 struct page *page; 2136 int err; 2137 repeat: 2138 page = find_get_page(mapping, index); 2139 if (!page) { 2140 page = __page_cache_alloc(gfp | __GFP_COLD); 2141 if (!page) 2142 return ERR_PTR(-ENOMEM); 2143 err = add_to_page_cache_lru(page, mapping, index, gfp); 2144 if (unlikely(err)) { 2145 page_cache_release(page); 2146 if (err == -EEXIST) 2147 goto repeat; 2148 /* Presumably ENOMEM for radix tree node */ 2149 return ERR_PTR(err); 2150 } 2151 err = filler(data, page); 2152 if (err < 0) { 2153 page_cache_release(page); 2154 page = ERR_PTR(err); 2155 } else { 2156 page = wait_on_page_read(page); 2157 } 2158 } 2159 return page; 2160 } 2161 2162 static struct page *do_read_cache_page(struct address_space *mapping, 2163 pgoff_t index, 2164 int (*filler)(void *, struct page *), 2165 void *data, 2166 gfp_t gfp) 2167 2168 { 2169 struct page *page; 2170 int err; 2171 2172 retry: 2173 page = __read_cache_page(mapping, index, filler, data, gfp); 2174 if (IS_ERR(page)) 2175 return page; 2176 if (PageUptodate(page)) 2177 goto out; 2178 2179 lock_page(page); 2180 if (!page->mapping) { 2181 unlock_page(page); 2182 page_cache_release(page); 2183 goto retry; 2184 } 2185 if (PageUptodate(page)) { 2186 unlock_page(page); 2187 goto out; 2188 } 2189 err = filler(data, page); 2190 if (err < 0) { 2191 page_cache_release(page); 2192 return ERR_PTR(err); 2193 } else { 2194 page = wait_on_page_read(page); 2195 if (IS_ERR(page)) 2196 return page; 2197 } 2198 out: 2199 mark_page_accessed(page); 2200 return page; 2201 } 2202 2203 /** 2204 * read_cache_page - read into page cache, fill it if needed 2205 * @mapping: the page's address_space 2206 * @index: the page index 2207 * @filler: function to perform the read 2208 * @data: first arg to filler(data, page) function, often left as NULL 2209 * 2210 * Read into the page cache. If a page already exists, and PageUptodate() is 2211 * not set, try to fill the page and wait for it to become unlocked. 2212 * 2213 * If the page does not get brought uptodate, return -EIO. 2214 */ 2215 struct page *read_cache_page(struct address_space *mapping, 2216 pgoff_t index, 2217 int (*filler)(void *, struct page *), 2218 void *data) 2219 { 2220 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping)); 2221 } 2222 EXPORT_SYMBOL(read_cache_page); 2223 2224 /** 2225 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 2226 * @mapping: the page's address_space 2227 * @index: the page index 2228 * @gfp: the page allocator flags to use if allocating 2229 * 2230 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 2231 * any new page allocations done using the specified allocation flags. 2232 * 2233 * If the page does not get brought uptodate, return -EIO. 2234 */ 2235 struct page *read_cache_page_gfp(struct address_space *mapping, 2236 pgoff_t index, 2237 gfp_t gfp) 2238 { 2239 filler_t *filler = (filler_t *)mapping->a_ops->readpage; 2240 2241 return do_read_cache_page(mapping, index, filler, NULL, gfp); 2242 } 2243 EXPORT_SYMBOL(read_cache_page_gfp); 2244 2245 /* 2246 * Performs necessary checks before doing a write 2247 * 2248 * Can adjust writing position or amount of bytes to write. 2249 * Returns appropriate error code that caller should return or 2250 * zero in case that write should be allowed. 2251 */ 2252 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk) 2253 { 2254 struct inode *inode = file->f_mapping->host; 2255 unsigned long limit = rlimit(RLIMIT_FSIZE); 2256 2257 if (unlikely(*pos < 0)) 2258 return -EINVAL; 2259 2260 if (!isblk) { 2261 /* FIXME: this is for backwards compatibility with 2.4 */ 2262 if (file->f_flags & O_APPEND) 2263 *pos = i_size_read(inode); 2264 2265 if (limit != RLIM_INFINITY) { 2266 if (*pos >= limit) { 2267 send_sig(SIGXFSZ, current, 0); 2268 return -EFBIG; 2269 } 2270 if (*count > limit - (typeof(limit))*pos) { 2271 *count = limit - (typeof(limit))*pos; 2272 } 2273 } 2274 } 2275 2276 /* 2277 * LFS rule 2278 */ 2279 if (unlikely(*pos + *count > MAX_NON_LFS && 2280 !(file->f_flags & O_LARGEFILE))) { 2281 if (*pos >= MAX_NON_LFS) { 2282 return -EFBIG; 2283 } 2284 if (*count > MAX_NON_LFS - (unsigned long)*pos) { 2285 *count = MAX_NON_LFS - (unsigned long)*pos; 2286 } 2287 } 2288 2289 /* 2290 * Are we about to exceed the fs block limit ? 2291 * 2292 * If we have written data it becomes a short write. If we have 2293 * exceeded without writing data we send a signal and return EFBIG. 2294 * Linus frestrict idea will clean these up nicely.. 2295 */ 2296 if (likely(!isblk)) { 2297 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) { 2298 if (*count || *pos > inode->i_sb->s_maxbytes) { 2299 return -EFBIG; 2300 } 2301 /* zero-length writes at ->s_maxbytes are OK */ 2302 } 2303 2304 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes)) 2305 *count = inode->i_sb->s_maxbytes - *pos; 2306 } else { 2307 #ifdef CONFIG_BLOCK 2308 loff_t isize; 2309 if (bdev_read_only(I_BDEV(inode))) 2310 return -EPERM; 2311 isize = i_size_read(inode); 2312 if (*pos >= isize) { 2313 if (*count || *pos > isize) 2314 return -ENOSPC; 2315 } 2316 2317 if (*pos + *count > isize) 2318 *count = isize - *pos; 2319 #else 2320 return -EPERM; 2321 #endif 2322 } 2323 return 0; 2324 } 2325 EXPORT_SYMBOL(generic_write_checks); 2326 2327 int pagecache_write_begin(struct file *file, struct address_space *mapping, 2328 loff_t pos, unsigned len, unsigned flags, 2329 struct page **pagep, void **fsdata) 2330 { 2331 const struct address_space_operations *aops = mapping->a_ops; 2332 2333 return aops->write_begin(file, mapping, pos, len, flags, 2334 pagep, fsdata); 2335 } 2336 EXPORT_SYMBOL(pagecache_write_begin); 2337 2338 int pagecache_write_end(struct file *file, struct address_space *mapping, 2339 loff_t pos, unsigned len, unsigned copied, 2340 struct page *page, void *fsdata) 2341 { 2342 const struct address_space_operations *aops = mapping->a_ops; 2343 2344 return aops->write_end(file, mapping, pos, len, copied, page, fsdata); 2345 } 2346 EXPORT_SYMBOL(pagecache_write_end); 2347 2348 ssize_t 2349 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from, loff_t pos) 2350 { 2351 struct file *file = iocb->ki_filp; 2352 struct address_space *mapping = file->f_mapping; 2353 struct inode *inode = mapping->host; 2354 ssize_t written; 2355 size_t write_len; 2356 pgoff_t end; 2357 struct iov_iter data; 2358 2359 write_len = iov_iter_count(from); 2360 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT; 2361 2362 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1); 2363 if (written) 2364 goto out; 2365 2366 /* 2367 * After a write we want buffered reads to be sure to go to disk to get 2368 * the new data. We invalidate clean cached page from the region we're 2369 * about to write. We do this *before* the write so that we can return 2370 * without clobbering -EIOCBQUEUED from ->direct_IO(). 2371 */ 2372 if (mapping->nrpages) { 2373 written = invalidate_inode_pages2_range(mapping, 2374 pos >> PAGE_CACHE_SHIFT, end); 2375 /* 2376 * If a page can not be invalidated, return 0 to fall back 2377 * to buffered write. 2378 */ 2379 if (written) { 2380 if (written == -EBUSY) 2381 return 0; 2382 goto out; 2383 } 2384 } 2385 2386 data = *from; 2387 written = mapping->a_ops->direct_IO(WRITE, iocb, &data, pos); 2388 2389 /* 2390 * Finally, try again to invalidate clean pages which might have been 2391 * cached by non-direct readahead, or faulted in by get_user_pages() 2392 * if the source of the write was an mmap'ed region of the file 2393 * we're writing. Either one is a pretty crazy thing to do, 2394 * so we don't support it 100%. If this invalidation 2395 * fails, tough, the write still worked... 2396 */ 2397 if (mapping->nrpages) { 2398 invalidate_inode_pages2_range(mapping, 2399 pos >> PAGE_CACHE_SHIFT, end); 2400 } 2401 2402 if (written > 0) { 2403 pos += written; 2404 iov_iter_advance(from, written); 2405 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 2406 i_size_write(inode, pos); 2407 mark_inode_dirty(inode); 2408 } 2409 iocb->ki_pos = pos; 2410 } 2411 out: 2412 return written; 2413 } 2414 EXPORT_SYMBOL(generic_file_direct_write); 2415 2416 /* 2417 * Find or create a page at the given pagecache position. Return the locked 2418 * page. This function is specifically for buffered writes. 2419 */ 2420 struct page *grab_cache_page_write_begin(struct address_space *mapping, 2421 pgoff_t index, unsigned flags) 2422 { 2423 struct page *page; 2424 int fgp_flags = FGP_LOCK|FGP_ACCESSED|FGP_WRITE|FGP_CREAT; 2425 2426 if (flags & AOP_FLAG_NOFS) 2427 fgp_flags |= FGP_NOFS; 2428 2429 page = pagecache_get_page(mapping, index, fgp_flags, 2430 mapping_gfp_mask(mapping), 2431 GFP_KERNEL); 2432 if (page) 2433 wait_for_stable_page(page); 2434 2435 return page; 2436 } 2437 EXPORT_SYMBOL(grab_cache_page_write_begin); 2438 2439 ssize_t generic_perform_write(struct file *file, 2440 struct iov_iter *i, loff_t pos) 2441 { 2442 struct address_space *mapping = file->f_mapping; 2443 const struct address_space_operations *a_ops = mapping->a_ops; 2444 long status = 0; 2445 ssize_t written = 0; 2446 unsigned int flags = 0; 2447 2448 /* 2449 * Copies from kernel address space cannot fail (NFSD is a big user). 2450 */ 2451 if (segment_eq(get_fs(), KERNEL_DS)) 2452 flags |= AOP_FLAG_UNINTERRUPTIBLE; 2453 2454 do { 2455 struct page *page; 2456 unsigned long offset; /* Offset into pagecache page */ 2457 unsigned long bytes; /* Bytes to write to page */ 2458 size_t copied; /* Bytes copied from user */ 2459 void *fsdata; 2460 2461 offset = (pos & (PAGE_CACHE_SIZE - 1)); 2462 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset, 2463 iov_iter_count(i)); 2464 2465 again: 2466 /* 2467 * Bring in the user page that we will copy from _first_. 2468 * Otherwise there's a nasty deadlock on copying from the 2469 * same page as we're writing to, without it being marked 2470 * up-to-date. 2471 * 2472 * Not only is this an optimisation, but it is also required 2473 * to check that the address is actually valid, when atomic 2474 * usercopies are used, below. 2475 */ 2476 if (unlikely(iov_iter_fault_in_readable(i, bytes))) { 2477 status = -EFAULT; 2478 break; 2479 } 2480 2481 status = a_ops->write_begin(file, mapping, pos, bytes, flags, 2482 &page, &fsdata); 2483 if (unlikely(status < 0)) 2484 break; 2485 2486 if (mapping_writably_mapped(mapping)) 2487 flush_dcache_page(page); 2488 2489 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); 2490 flush_dcache_page(page); 2491 2492 status = a_ops->write_end(file, mapping, pos, bytes, copied, 2493 page, fsdata); 2494 if (unlikely(status < 0)) 2495 break; 2496 copied = status; 2497 2498 cond_resched(); 2499 2500 iov_iter_advance(i, copied); 2501 if (unlikely(copied == 0)) { 2502 /* 2503 * If we were unable to copy any data at all, we must 2504 * fall back to a single segment length write. 2505 * 2506 * If we didn't fallback here, we could livelock 2507 * because not all segments in the iov can be copied at 2508 * once without a pagefault. 2509 */ 2510 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset, 2511 iov_iter_single_seg_count(i)); 2512 goto again; 2513 } 2514 pos += copied; 2515 written += copied; 2516 2517 balance_dirty_pages_ratelimited(mapping); 2518 if (fatal_signal_pending(current)) { 2519 status = -EINTR; 2520 break; 2521 } 2522 } while (iov_iter_count(i)); 2523 2524 return written ? written : status; 2525 } 2526 EXPORT_SYMBOL(generic_perform_write); 2527 2528 /** 2529 * __generic_file_write_iter - write data to a file 2530 * @iocb: IO state structure (file, offset, etc.) 2531 * @from: iov_iter with data to write 2532 * 2533 * This function does all the work needed for actually writing data to a 2534 * file. It does all basic checks, removes SUID from the file, updates 2535 * modification times and calls proper subroutines depending on whether we 2536 * do direct IO or a standard buffered write. 2537 * 2538 * It expects i_mutex to be grabbed unless we work on a block device or similar 2539 * object which does not need locking at all. 2540 * 2541 * This function does *not* take care of syncing data in case of O_SYNC write. 2542 * A caller has to handle it. This is mainly due to the fact that we want to 2543 * avoid syncing under i_mutex. 2544 */ 2545 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 2546 { 2547 struct file *file = iocb->ki_filp; 2548 struct address_space * mapping = file->f_mapping; 2549 struct inode *inode = mapping->host; 2550 loff_t pos = iocb->ki_pos; 2551 ssize_t written = 0; 2552 ssize_t err; 2553 ssize_t status; 2554 size_t count = iov_iter_count(from); 2555 2556 /* We can write back this queue in page reclaim */ 2557 current->backing_dev_info = mapping->backing_dev_info; 2558 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode)); 2559 if (err) 2560 goto out; 2561 2562 if (count == 0) 2563 goto out; 2564 2565 iov_iter_truncate(from, count); 2566 2567 err = file_remove_suid(file); 2568 if (err) 2569 goto out; 2570 2571 err = file_update_time(file); 2572 if (err) 2573 goto out; 2574 2575 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ 2576 if (unlikely(file->f_flags & O_DIRECT)) { 2577 loff_t endbyte; 2578 2579 written = generic_file_direct_write(iocb, from, pos); 2580 if (written < 0 || written == count) 2581 goto out; 2582 2583 /* 2584 * direct-io write to a hole: fall through to buffered I/O 2585 * for completing the rest of the request. 2586 */ 2587 pos += written; 2588 count -= written; 2589 2590 status = generic_perform_write(file, from, pos); 2591 /* 2592 * If generic_perform_write() returned a synchronous error 2593 * then we want to return the number of bytes which were 2594 * direct-written, or the error code if that was zero. Note 2595 * that this differs from normal direct-io semantics, which 2596 * will return -EFOO even if some bytes were written. 2597 */ 2598 if (unlikely(status < 0) && !written) { 2599 err = status; 2600 goto out; 2601 } 2602 iocb->ki_pos = pos + status; 2603 /* 2604 * We need to ensure that the page cache pages are written to 2605 * disk and invalidated to preserve the expected O_DIRECT 2606 * semantics. 2607 */ 2608 endbyte = pos + status - 1; 2609 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte); 2610 if (err == 0) { 2611 written += status; 2612 invalidate_mapping_pages(mapping, 2613 pos >> PAGE_CACHE_SHIFT, 2614 endbyte >> PAGE_CACHE_SHIFT); 2615 } else { 2616 /* 2617 * We don't know how much we wrote, so just return 2618 * the number of bytes which were direct-written 2619 */ 2620 } 2621 } else { 2622 written = generic_perform_write(file, from, pos); 2623 if (likely(written >= 0)) 2624 iocb->ki_pos = pos + written; 2625 } 2626 out: 2627 current->backing_dev_info = NULL; 2628 return written ? written : err; 2629 } 2630 EXPORT_SYMBOL(__generic_file_write_iter); 2631 2632 /** 2633 * generic_file_write_iter - write data to a file 2634 * @iocb: IO state structure 2635 * @from: iov_iter with data to write 2636 * 2637 * This is a wrapper around __generic_file_write_iter() to be used by most 2638 * filesystems. It takes care of syncing the file in case of O_SYNC file 2639 * and acquires i_mutex as needed. 2640 */ 2641 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 2642 { 2643 struct file *file = iocb->ki_filp; 2644 struct inode *inode = file->f_mapping->host; 2645 ssize_t ret; 2646 2647 mutex_lock(&inode->i_mutex); 2648 ret = __generic_file_write_iter(iocb, from); 2649 mutex_unlock(&inode->i_mutex); 2650 2651 if (ret > 0) { 2652 ssize_t err; 2653 2654 err = generic_write_sync(file, iocb->ki_pos - ret, ret); 2655 if (err < 0) 2656 ret = err; 2657 } 2658 return ret; 2659 } 2660 EXPORT_SYMBOL(generic_file_write_iter); 2661 2662 /** 2663 * try_to_release_page() - release old fs-specific metadata on a page 2664 * 2665 * @page: the page which the kernel is trying to free 2666 * @gfp_mask: memory allocation flags (and I/O mode) 2667 * 2668 * The address_space is to try to release any data against the page 2669 * (presumably at page->private). If the release was successful, return `1'. 2670 * Otherwise return zero. 2671 * 2672 * This may also be called if PG_fscache is set on a page, indicating that the 2673 * page is known to the local caching routines. 2674 * 2675 * The @gfp_mask argument specifies whether I/O may be performed to release 2676 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS). 2677 * 2678 */ 2679 int try_to_release_page(struct page *page, gfp_t gfp_mask) 2680 { 2681 struct address_space * const mapping = page->mapping; 2682 2683 BUG_ON(!PageLocked(page)); 2684 if (PageWriteback(page)) 2685 return 0; 2686 2687 if (mapping && mapping->a_ops->releasepage) 2688 return mapping->a_ops->releasepage(page, gfp_mask); 2689 return try_to_free_buffers(page); 2690 } 2691 2692 EXPORT_SYMBOL(try_to_release_page); 2693