xref: /openbmc/linux/mm/filemap.c (revision 5f2fb52fac15a8a8e10ce020dd532504a8abfc4e)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   *	linux/mm/filemap.c
4   *
5   * Copyright (C) 1994-1999  Linus Torvalds
6   */
7  
8  /*
9   * This file handles the generic file mmap semantics used by
10   * most "normal" filesystems (but you don't /have/ to use this:
11   * the NFS filesystem used to do this differently, for example)
12   */
13  #include <linux/export.h>
14  #include <linux/compiler.h>
15  #include <linux/dax.h>
16  #include <linux/fs.h>
17  #include <linux/sched/signal.h>
18  #include <linux/uaccess.h>
19  #include <linux/capability.h>
20  #include <linux/kernel_stat.h>
21  #include <linux/gfp.h>
22  #include <linux/mm.h>
23  #include <linux/swap.h>
24  #include <linux/mman.h>
25  #include <linux/pagemap.h>
26  #include <linux/file.h>
27  #include <linux/uio.h>
28  #include <linux/error-injection.h>
29  #include <linux/hash.h>
30  #include <linux/writeback.h>
31  #include <linux/backing-dev.h>
32  #include <linux/pagevec.h>
33  #include <linux/blkdev.h>
34  #include <linux/security.h>
35  #include <linux/cpuset.h>
36  #include <linux/hugetlb.h>
37  #include <linux/memcontrol.h>
38  #include <linux/cleancache.h>
39  #include <linux/shmem_fs.h>
40  #include <linux/rmap.h>
41  #include <linux/delayacct.h>
42  #include <linux/psi.h>
43  #include <linux/ramfs.h>
44  #include "internal.h"
45  
46  #define CREATE_TRACE_POINTS
47  #include <trace/events/filemap.h>
48  
49  /*
50   * FIXME: remove all knowledge of the buffer layer from the core VM
51   */
52  #include <linux/buffer_head.h> /* for try_to_free_buffers */
53  
54  #include <asm/mman.h>
55  
56  /*
57   * Shared mappings implemented 30.11.1994. It's not fully working yet,
58   * though.
59   *
60   * Shared mappings now work. 15.8.1995  Bruno.
61   *
62   * finished 'unifying' the page and buffer cache and SMP-threaded the
63   * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
64   *
65   * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
66   */
67  
68  /*
69   * Lock ordering:
70   *
71   *  ->i_mmap_rwsem		(truncate_pagecache)
72   *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
73   *      ->swap_lock		(exclusive_swap_page, others)
74   *        ->i_pages lock
75   *
76   *  ->i_mutex
77   *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
78   *
79   *  ->mmap_sem
80   *    ->i_mmap_rwsem
81   *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
82   *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
83   *
84   *  ->mmap_sem
85   *    ->lock_page		(access_process_vm)
86   *
87   *  ->i_mutex			(generic_perform_write)
88   *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
89   *
90   *  bdi->wb.list_lock
91   *    sb_lock			(fs/fs-writeback.c)
92   *    ->i_pages lock		(__sync_single_inode)
93   *
94   *  ->i_mmap_rwsem
95   *    ->anon_vma.lock		(vma_adjust)
96   *
97   *  ->anon_vma.lock
98   *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
99   *
100   *  ->page_table_lock or pte_lock
101   *    ->swap_lock		(try_to_unmap_one)
102   *    ->private_lock		(try_to_unmap_one)
103   *    ->i_pages lock		(try_to_unmap_one)
104   *    ->pgdat->lru_lock		(follow_page->mark_page_accessed)
105   *    ->pgdat->lru_lock		(check_pte_range->isolate_lru_page)
106   *    ->private_lock		(page_remove_rmap->set_page_dirty)
107   *    ->i_pages lock		(page_remove_rmap->set_page_dirty)
108   *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
109   *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
110   *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
111   *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
112   *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
113   *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
114   *
115   * ->i_mmap_rwsem
116   *   ->tasklist_lock            (memory_failure, collect_procs_ao)
117   */
118  
119  static void page_cache_delete(struct address_space *mapping,
120  				   struct page *page, void *shadow)
121  {
122  	XA_STATE(xas, &mapping->i_pages, page->index);
123  	unsigned int nr = 1;
124  
125  	mapping_set_update(&xas, mapping);
126  
127  	/* hugetlb pages are represented by a single entry in the xarray */
128  	if (!PageHuge(page)) {
129  		xas_set_order(&xas, page->index, compound_order(page));
130  		nr = compound_nr(page);
131  	}
132  
133  	VM_BUG_ON_PAGE(!PageLocked(page), page);
134  	VM_BUG_ON_PAGE(PageTail(page), page);
135  	VM_BUG_ON_PAGE(nr != 1 && shadow, page);
136  
137  	xas_store(&xas, shadow);
138  	xas_init_marks(&xas);
139  
140  	page->mapping = NULL;
141  	/* Leave page->index set: truncation lookup relies upon it */
142  
143  	if (shadow) {
144  		mapping->nrexceptional += nr;
145  		/*
146  		 * Make sure the nrexceptional update is committed before
147  		 * the nrpages update so that final truncate racing
148  		 * with reclaim does not see both counters 0 at the
149  		 * same time and miss a shadow entry.
150  		 */
151  		smp_wmb();
152  	}
153  	mapping->nrpages -= nr;
154  }
155  
156  static void unaccount_page_cache_page(struct address_space *mapping,
157  				      struct page *page)
158  {
159  	int nr;
160  
161  	/*
162  	 * if we're uptodate, flush out into the cleancache, otherwise
163  	 * invalidate any existing cleancache entries.  We can't leave
164  	 * stale data around in the cleancache once our page is gone
165  	 */
166  	if (PageUptodate(page) && PageMappedToDisk(page))
167  		cleancache_put_page(page);
168  	else
169  		cleancache_invalidate_page(mapping, page);
170  
171  	VM_BUG_ON_PAGE(PageTail(page), page);
172  	VM_BUG_ON_PAGE(page_mapped(page), page);
173  	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
174  		int mapcount;
175  
176  		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
177  			 current->comm, page_to_pfn(page));
178  		dump_page(page, "still mapped when deleted");
179  		dump_stack();
180  		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
181  
182  		mapcount = page_mapcount(page);
183  		if (mapping_exiting(mapping) &&
184  		    page_count(page) >= mapcount + 2) {
185  			/*
186  			 * All vmas have already been torn down, so it's
187  			 * a good bet that actually the page is unmapped,
188  			 * and we'd prefer not to leak it: if we're wrong,
189  			 * some other bad page check should catch it later.
190  			 */
191  			page_mapcount_reset(page);
192  			page_ref_sub(page, mapcount);
193  		}
194  	}
195  
196  	/* hugetlb pages do not participate in page cache accounting. */
197  	if (PageHuge(page))
198  		return;
199  
200  	nr = hpage_nr_pages(page);
201  
202  	__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
203  	if (PageSwapBacked(page)) {
204  		__mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
205  		if (PageTransHuge(page))
206  			__dec_node_page_state(page, NR_SHMEM_THPS);
207  	} else if (PageTransHuge(page)) {
208  		__dec_node_page_state(page, NR_FILE_THPS);
209  		filemap_nr_thps_dec(mapping);
210  	}
211  
212  	/*
213  	 * At this point page must be either written or cleaned by
214  	 * truncate.  Dirty page here signals a bug and loss of
215  	 * unwritten data.
216  	 *
217  	 * This fixes dirty accounting after removing the page entirely
218  	 * but leaves PageDirty set: it has no effect for truncated
219  	 * page and anyway will be cleared before returning page into
220  	 * buddy allocator.
221  	 */
222  	if (WARN_ON_ONCE(PageDirty(page)))
223  		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
224  }
225  
226  /*
227   * Delete a page from the page cache and free it. Caller has to make
228   * sure the page is locked and that nobody else uses it - or that usage
229   * is safe.  The caller must hold the i_pages lock.
230   */
231  void __delete_from_page_cache(struct page *page, void *shadow)
232  {
233  	struct address_space *mapping = page->mapping;
234  
235  	trace_mm_filemap_delete_from_page_cache(page);
236  
237  	unaccount_page_cache_page(mapping, page);
238  	page_cache_delete(mapping, page, shadow);
239  }
240  
241  static void page_cache_free_page(struct address_space *mapping,
242  				struct page *page)
243  {
244  	void (*freepage)(struct page *);
245  
246  	freepage = mapping->a_ops->freepage;
247  	if (freepage)
248  		freepage(page);
249  
250  	if (PageTransHuge(page) && !PageHuge(page)) {
251  		page_ref_sub(page, HPAGE_PMD_NR);
252  		VM_BUG_ON_PAGE(page_count(page) <= 0, page);
253  	} else {
254  		put_page(page);
255  	}
256  }
257  
258  /**
259   * delete_from_page_cache - delete page from page cache
260   * @page: the page which the kernel is trying to remove from page cache
261   *
262   * This must be called only on pages that have been verified to be in the page
263   * cache and locked.  It will never put the page into the free list, the caller
264   * has a reference on the page.
265   */
266  void delete_from_page_cache(struct page *page)
267  {
268  	struct address_space *mapping = page_mapping(page);
269  	unsigned long flags;
270  
271  	BUG_ON(!PageLocked(page));
272  	xa_lock_irqsave(&mapping->i_pages, flags);
273  	__delete_from_page_cache(page, NULL);
274  	xa_unlock_irqrestore(&mapping->i_pages, flags);
275  
276  	page_cache_free_page(mapping, page);
277  }
278  EXPORT_SYMBOL(delete_from_page_cache);
279  
280  /*
281   * page_cache_delete_batch - delete several pages from page cache
282   * @mapping: the mapping to which pages belong
283   * @pvec: pagevec with pages to delete
284   *
285   * The function walks over mapping->i_pages and removes pages passed in @pvec
286   * from the mapping. The function expects @pvec to be sorted by page index
287   * and is optimised for it to be dense.
288   * It tolerates holes in @pvec (mapping entries at those indices are not
289   * modified). The function expects only THP head pages to be present in the
290   * @pvec.
291   *
292   * The function expects the i_pages lock to be held.
293   */
294  static void page_cache_delete_batch(struct address_space *mapping,
295  			     struct pagevec *pvec)
296  {
297  	XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
298  	int total_pages = 0;
299  	int i = 0;
300  	struct page *page;
301  
302  	mapping_set_update(&xas, mapping);
303  	xas_for_each(&xas, page, ULONG_MAX) {
304  		if (i >= pagevec_count(pvec))
305  			break;
306  
307  		/* A swap/dax/shadow entry got inserted? Skip it. */
308  		if (xa_is_value(page))
309  			continue;
310  		/*
311  		 * A page got inserted in our range? Skip it. We have our
312  		 * pages locked so they are protected from being removed.
313  		 * If we see a page whose index is higher than ours, it
314  		 * means our page has been removed, which shouldn't be
315  		 * possible because we're holding the PageLock.
316  		 */
317  		if (page != pvec->pages[i]) {
318  			VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
319  					page);
320  			continue;
321  		}
322  
323  		WARN_ON_ONCE(!PageLocked(page));
324  
325  		if (page->index == xas.xa_index)
326  			page->mapping = NULL;
327  		/* Leave page->index set: truncation lookup relies on it */
328  
329  		/*
330  		 * Move to the next page in the vector if this is a regular
331  		 * page or the index is of the last sub-page of this compound
332  		 * page.
333  		 */
334  		if (page->index + compound_nr(page) - 1 == xas.xa_index)
335  			i++;
336  		xas_store(&xas, NULL);
337  		total_pages++;
338  	}
339  	mapping->nrpages -= total_pages;
340  }
341  
342  void delete_from_page_cache_batch(struct address_space *mapping,
343  				  struct pagevec *pvec)
344  {
345  	int i;
346  	unsigned long flags;
347  
348  	if (!pagevec_count(pvec))
349  		return;
350  
351  	xa_lock_irqsave(&mapping->i_pages, flags);
352  	for (i = 0; i < pagevec_count(pvec); i++) {
353  		trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
354  
355  		unaccount_page_cache_page(mapping, pvec->pages[i]);
356  	}
357  	page_cache_delete_batch(mapping, pvec);
358  	xa_unlock_irqrestore(&mapping->i_pages, flags);
359  
360  	for (i = 0; i < pagevec_count(pvec); i++)
361  		page_cache_free_page(mapping, pvec->pages[i]);
362  }
363  
364  int filemap_check_errors(struct address_space *mapping)
365  {
366  	int ret = 0;
367  	/* Check for outstanding write errors */
368  	if (test_bit(AS_ENOSPC, &mapping->flags) &&
369  	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
370  		ret = -ENOSPC;
371  	if (test_bit(AS_EIO, &mapping->flags) &&
372  	    test_and_clear_bit(AS_EIO, &mapping->flags))
373  		ret = -EIO;
374  	return ret;
375  }
376  EXPORT_SYMBOL(filemap_check_errors);
377  
378  static int filemap_check_and_keep_errors(struct address_space *mapping)
379  {
380  	/* Check for outstanding write errors */
381  	if (test_bit(AS_EIO, &mapping->flags))
382  		return -EIO;
383  	if (test_bit(AS_ENOSPC, &mapping->flags))
384  		return -ENOSPC;
385  	return 0;
386  }
387  
388  /**
389   * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
390   * @mapping:	address space structure to write
391   * @start:	offset in bytes where the range starts
392   * @end:	offset in bytes where the range ends (inclusive)
393   * @sync_mode:	enable synchronous operation
394   *
395   * Start writeback against all of a mapping's dirty pages that lie
396   * within the byte offsets <start, end> inclusive.
397   *
398   * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
399   * opposed to a regular memory cleansing writeback.  The difference between
400   * these two operations is that if a dirty page/buffer is encountered, it must
401   * be waited upon, and not just skipped over.
402   *
403   * Return: %0 on success, negative error code otherwise.
404   */
405  int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
406  				loff_t end, int sync_mode)
407  {
408  	int ret;
409  	struct writeback_control wbc = {
410  		.sync_mode = sync_mode,
411  		.nr_to_write = LONG_MAX,
412  		.range_start = start,
413  		.range_end = end,
414  	};
415  
416  	if (!mapping_cap_writeback_dirty(mapping) ||
417  	    !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
418  		return 0;
419  
420  	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
421  	ret = do_writepages(mapping, &wbc);
422  	wbc_detach_inode(&wbc);
423  	return ret;
424  }
425  
426  static inline int __filemap_fdatawrite(struct address_space *mapping,
427  	int sync_mode)
428  {
429  	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
430  }
431  
432  int filemap_fdatawrite(struct address_space *mapping)
433  {
434  	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
435  }
436  EXPORT_SYMBOL(filemap_fdatawrite);
437  
438  int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
439  				loff_t end)
440  {
441  	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
442  }
443  EXPORT_SYMBOL(filemap_fdatawrite_range);
444  
445  /**
446   * filemap_flush - mostly a non-blocking flush
447   * @mapping:	target address_space
448   *
449   * This is a mostly non-blocking flush.  Not suitable for data-integrity
450   * purposes - I/O may not be started against all dirty pages.
451   *
452   * Return: %0 on success, negative error code otherwise.
453   */
454  int filemap_flush(struct address_space *mapping)
455  {
456  	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
457  }
458  EXPORT_SYMBOL(filemap_flush);
459  
460  /**
461   * filemap_range_has_page - check if a page exists in range.
462   * @mapping:           address space within which to check
463   * @start_byte:        offset in bytes where the range starts
464   * @end_byte:          offset in bytes where the range ends (inclusive)
465   *
466   * Find at least one page in the range supplied, usually used to check if
467   * direct writing in this range will trigger a writeback.
468   *
469   * Return: %true if at least one page exists in the specified range,
470   * %false otherwise.
471   */
472  bool filemap_range_has_page(struct address_space *mapping,
473  			   loff_t start_byte, loff_t end_byte)
474  {
475  	struct page *page;
476  	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
477  	pgoff_t max = end_byte >> PAGE_SHIFT;
478  
479  	if (end_byte < start_byte)
480  		return false;
481  
482  	rcu_read_lock();
483  	for (;;) {
484  		page = xas_find(&xas, max);
485  		if (xas_retry(&xas, page))
486  			continue;
487  		/* Shadow entries don't count */
488  		if (xa_is_value(page))
489  			continue;
490  		/*
491  		 * We don't need to try to pin this page; we're about to
492  		 * release the RCU lock anyway.  It is enough to know that
493  		 * there was a page here recently.
494  		 */
495  		break;
496  	}
497  	rcu_read_unlock();
498  
499  	return page != NULL;
500  }
501  EXPORT_SYMBOL(filemap_range_has_page);
502  
503  static void __filemap_fdatawait_range(struct address_space *mapping,
504  				     loff_t start_byte, loff_t end_byte)
505  {
506  	pgoff_t index = start_byte >> PAGE_SHIFT;
507  	pgoff_t end = end_byte >> PAGE_SHIFT;
508  	struct pagevec pvec;
509  	int nr_pages;
510  
511  	if (end_byte < start_byte)
512  		return;
513  
514  	pagevec_init(&pvec);
515  	while (index <= end) {
516  		unsigned i;
517  
518  		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
519  				end, PAGECACHE_TAG_WRITEBACK);
520  		if (!nr_pages)
521  			break;
522  
523  		for (i = 0; i < nr_pages; i++) {
524  			struct page *page = pvec.pages[i];
525  
526  			wait_on_page_writeback(page);
527  			ClearPageError(page);
528  		}
529  		pagevec_release(&pvec);
530  		cond_resched();
531  	}
532  }
533  
534  /**
535   * filemap_fdatawait_range - wait for writeback to complete
536   * @mapping:		address space structure to wait for
537   * @start_byte:		offset in bytes where the range starts
538   * @end_byte:		offset in bytes where the range ends (inclusive)
539   *
540   * Walk the list of under-writeback pages of the given address space
541   * in the given range and wait for all of them.  Check error status of
542   * the address space and return it.
543   *
544   * Since the error status of the address space is cleared by this function,
545   * callers are responsible for checking the return value and handling and/or
546   * reporting the error.
547   *
548   * Return: error status of the address space.
549   */
550  int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
551  			    loff_t end_byte)
552  {
553  	__filemap_fdatawait_range(mapping, start_byte, end_byte);
554  	return filemap_check_errors(mapping);
555  }
556  EXPORT_SYMBOL(filemap_fdatawait_range);
557  
558  /**
559   * filemap_fdatawait_range_keep_errors - wait for writeback to complete
560   * @mapping:		address space structure to wait for
561   * @start_byte:		offset in bytes where the range starts
562   * @end_byte:		offset in bytes where the range ends (inclusive)
563   *
564   * Walk the list of under-writeback pages of the given address space in the
565   * given range and wait for all of them.  Unlike filemap_fdatawait_range(),
566   * this function does not clear error status of the address space.
567   *
568   * Use this function if callers don't handle errors themselves.  Expected
569   * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
570   * fsfreeze(8)
571   */
572  int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
573  		loff_t start_byte, loff_t end_byte)
574  {
575  	__filemap_fdatawait_range(mapping, start_byte, end_byte);
576  	return filemap_check_and_keep_errors(mapping);
577  }
578  EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
579  
580  /**
581   * file_fdatawait_range - wait for writeback to complete
582   * @file:		file pointing to address space structure to wait for
583   * @start_byte:		offset in bytes where the range starts
584   * @end_byte:		offset in bytes where the range ends (inclusive)
585   *
586   * Walk the list of under-writeback pages of the address space that file
587   * refers to, in the given range and wait for all of them.  Check error
588   * status of the address space vs. the file->f_wb_err cursor and return it.
589   *
590   * Since the error status of the file is advanced by this function,
591   * callers are responsible for checking the return value and handling and/or
592   * reporting the error.
593   *
594   * Return: error status of the address space vs. the file->f_wb_err cursor.
595   */
596  int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
597  {
598  	struct address_space *mapping = file->f_mapping;
599  
600  	__filemap_fdatawait_range(mapping, start_byte, end_byte);
601  	return file_check_and_advance_wb_err(file);
602  }
603  EXPORT_SYMBOL(file_fdatawait_range);
604  
605  /**
606   * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
607   * @mapping: address space structure to wait for
608   *
609   * Walk the list of under-writeback pages of the given address space
610   * and wait for all of them.  Unlike filemap_fdatawait(), this function
611   * does not clear error status of the address space.
612   *
613   * Use this function if callers don't handle errors themselves.  Expected
614   * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
615   * fsfreeze(8)
616   *
617   * Return: error status of the address space.
618   */
619  int filemap_fdatawait_keep_errors(struct address_space *mapping)
620  {
621  	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
622  	return filemap_check_and_keep_errors(mapping);
623  }
624  EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
625  
626  /* Returns true if writeback might be needed or already in progress. */
627  static bool mapping_needs_writeback(struct address_space *mapping)
628  {
629  	if (dax_mapping(mapping))
630  		return mapping->nrexceptional;
631  
632  	return mapping->nrpages;
633  }
634  
635  /**
636   * filemap_write_and_wait_range - write out & wait on a file range
637   * @mapping:	the address_space for the pages
638   * @lstart:	offset in bytes where the range starts
639   * @lend:	offset in bytes where the range ends (inclusive)
640   *
641   * Write out and wait upon file offsets lstart->lend, inclusive.
642   *
643   * Note that @lend is inclusive (describes the last byte to be written) so
644   * that this function can be used to write to the very end-of-file (end = -1).
645   *
646   * Return: error status of the address space.
647   */
648  int filemap_write_and_wait_range(struct address_space *mapping,
649  				 loff_t lstart, loff_t lend)
650  {
651  	int err = 0;
652  
653  	if (mapping_needs_writeback(mapping)) {
654  		err = __filemap_fdatawrite_range(mapping, lstart, lend,
655  						 WB_SYNC_ALL);
656  		/*
657  		 * Even if the above returned error, the pages may be
658  		 * written partially (e.g. -ENOSPC), so we wait for it.
659  		 * But the -EIO is special case, it may indicate the worst
660  		 * thing (e.g. bug) happened, so we avoid waiting for it.
661  		 */
662  		if (err != -EIO) {
663  			int err2 = filemap_fdatawait_range(mapping,
664  						lstart, lend);
665  			if (!err)
666  				err = err2;
667  		} else {
668  			/* Clear any previously stored errors */
669  			filemap_check_errors(mapping);
670  		}
671  	} else {
672  		err = filemap_check_errors(mapping);
673  	}
674  	return err;
675  }
676  EXPORT_SYMBOL(filemap_write_and_wait_range);
677  
678  void __filemap_set_wb_err(struct address_space *mapping, int err)
679  {
680  	errseq_t eseq = errseq_set(&mapping->wb_err, err);
681  
682  	trace_filemap_set_wb_err(mapping, eseq);
683  }
684  EXPORT_SYMBOL(__filemap_set_wb_err);
685  
686  /**
687   * file_check_and_advance_wb_err - report wb error (if any) that was previously
688   * 				   and advance wb_err to current one
689   * @file: struct file on which the error is being reported
690   *
691   * When userland calls fsync (or something like nfsd does the equivalent), we
692   * want to report any writeback errors that occurred since the last fsync (or
693   * since the file was opened if there haven't been any).
694   *
695   * Grab the wb_err from the mapping. If it matches what we have in the file,
696   * then just quickly return 0. The file is all caught up.
697   *
698   * If it doesn't match, then take the mapping value, set the "seen" flag in
699   * it and try to swap it into place. If it works, or another task beat us
700   * to it with the new value, then update the f_wb_err and return the error
701   * portion. The error at this point must be reported via proper channels
702   * (a'la fsync, or NFS COMMIT operation, etc.).
703   *
704   * While we handle mapping->wb_err with atomic operations, the f_wb_err
705   * value is protected by the f_lock since we must ensure that it reflects
706   * the latest value swapped in for this file descriptor.
707   *
708   * Return: %0 on success, negative error code otherwise.
709   */
710  int file_check_and_advance_wb_err(struct file *file)
711  {
712  	int err = 0;
713  	errseq_t old = READ_ONCE(file->f_wb_err);
714  	struct address_space *mapping = file->f_mapping;
715  
716  	/* Locklessly handle the common case where nothing has changed */
717  	if (errseq_check(&mapping->wb_err, old)) {
718  		/* Something changed, must use slow path */
719  		spin_lock(&file->f_lock);
720  		old = file->f_wb_err;
721  		err = errseq_check_and_advance(&mapping->wb_err,
722  						&file->f_wb_err);
723  		trace_file_check_and_advance_wb_err(file, old);
724  		spin_unlock(&file->f_lock);
725  	}
726  
727  	/*
728  	 * We're mostly using this function as a drop in replacement for
729  	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
730  	 * that the legacy code would have had on these flags.
731  	 */
732  	clear_bit(AS_EIO, &mapping->flags);
733  	clear_bit(AS_ENOSPC, &mapping->flags);
734  	return err;
735  }
736  EXPORT_SYMBOL(file_check_and_advance_wb_err);
737  
738  /**
739   * file_write_and_wait_range - write out & wait on a file range
740   * @file:	file pointing to address_space with pages
741   * @lstart:	offset in bytes where the range starts
742   * @lend:	offset in bytes where the range ends (inclusive)
743   *
744   * Write out and wait upon file offsets lstart->lend, inclusive.
745   *
746   * Note that @lend is inclusive (describes the last byte to be written) so
747   * that this function can be used to write to the very end-of-file (end = -1).
748   *
749   * After writing out and waiting on the data, we check and advance the
750   * f_wb_err cursor to the latest value, and return any errors detected there.
751   *
752   * Return: %0 on success, negative error code otherwise.
753   */
754  int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
755  {
756  	int err = 0, err2;
757  	struct address_space *mapping = file->f_mapping;
758  
759  	if (mapping_needs_writeback(mapping)) {
760  		err = __filemap_fdatawrite_range(mapping, lstart, lend,
761  						 WB_SYNC_ALL);
762  		/* See comment of filemap_write_and_wait() */
763  		if (err != -EIO)
764  			__filemap_fdatawait_range(mapping, lstart, lend);
765  	}
766  	err2 = file_check_and_advance_wb_err(file);
767  	if (!err)
768  		err = err2;
769  	return err;
770  }
771  EXPORT_SYMBOL(file_write_and_wait_range);
772  
773  /**
774   * replace_page_cache_page - replace a pagecache page with a new one
775   * @old:	page to be replaced
776   * @new:	page to replace with
777   * @gfp_mask:	allocation mode
778   *
779   * This function replaces a page in the pagecache with a new one.  On
780   * success it acquires the pagecache reference for the new page and
781   * drops it for the old page.  Both the old and new pages must be
782   * locked.  This function does not add the new page to the LRU, the
783   * caller must do that.
784   *
785   * The remove + add is atomic.  This function cannot fail.
786   *
787   * Return: %0
788   */
789  int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
790  {
791  	struct address_space *mapping = old->mapping;
792  	void (*freepage)(struct page *) = mapping->a_ops->freepage;
793  	pgoff_t offset = old->index;
794  	XA_STATE(xas, &mapping->i_pages, offset);
795  	unsigned long flags;
796  
797  	VM_BUG_ON_PAGE(!PageLocked(old), old);
798  	VM_BUG_ON_PAGE(!PageLocked(new), new);
799  	VM_BUG_ON_PAGE(new->mapping, new);
800  
801  	get_page(new);
802  	new->mapping = mapping;
803  	new->index = offset;
804  
805  	xas_lock_irqsave(&xas, flags);
806  	xas_store(&xas, new);
807  
808  	old->mapping = NULL;
809  	/* hugetlb pages do not participate in page cache accounting. */
810  	if (!PageHuge(old))
811  		__dec_node_page_state(new, NR_FILE_PAGES);
812  	if (!PageHuge(new))
813  		__inc_node_page_state(new, NR_FILE_PAGES);
814  	if (PageSwapBacked(old))
815  		__dec_node_page_state(new, NR_SHMEM);
816  	if (PageSwapBacked(new))
817  		__inc_node_page_state(new, NR_SHMEM);
818  	xas_unlock_irqrestore(&xas, flags);
819  	mem_cgroup_migrate(old, new);
820  	if (freepage)
821  		freepage(old);
822  	put_page(old);
823  
824  	return 0;
825  }
826  EXPORT_SYMBOL_GPL(replace_page_cache_page);
827  
828  static int __add_to_page_cache_locked(struct page *page,
829  				      struct address_space *mapping,
830  				      pgoff_t offset, gfp_t gfp_mask,
831  				      void **shadowp)
832  {
833  	XA_STATE(xas, &mapping->i_pages, offset);
834  	int huge = PageHuge(page);
835  	struct mem_cgroup *memcg;
836  	int error;
837  	void *old;
838  
839  	VM_BUG_ON_PAGE(!PageLocked(page), page);
840  	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
841  	mapping_set_update(&xas, mapping);
842  
843  	if (!huge) {
844  		error = mem_cgroup_try_charge(page, current->mm,
845  					      gfp_mask, &memcg, false);
846  		if (error)
847  			return error;
848  	}
849  
850  	get_page(page);
851  	page->mapping = mapping;
852  	page->index = offset;
853  
854  	do {
855  		xas_lock_irq(&xas);
856  		old = xas_load(&xas);
857  		if (old && !xa_is_value(old))
858  			xas_set_err(&xas, -EEXIST);
859  		xas_store(&xas, page);
860  		if (xas_error(&xas))
861  			goto unlock;
862  
863  		if (xa_is_value(old)) {
864  			mapping->nrexceptional--;
865  			if (shadowp)
866  				*shadowp = old;
867  		}
868  		mapping->nrpages++;
869  
870  		/* hugetlb pages do not participate in page cache accounting */
871  		if (!huge)
872  			__inc_node_page_state(page, NR_FILE_PAGES);
873  unlock:
874  		xas_unlock_irq(&xas);
875  	} while (xas_nomem(&xas, gfp_mask & GFP_RECLAIM_MASK));
876  
877  	if (xas_error(&xas))
878  		goto error;
879  
880  	if (!huge)
881  		mem_cgroup_commit_charge(page, memcg, false, false);
882  	trace_mm_filemap_add_to_page_cache(page);
883  	return 0;
884  error:
885  	page->mapping = NULL;
886  	/* Leave page->index set: truncation relies upon it */
887  	if (!huge)
888  		mem_cgroup_cancel_charge(page, memcg, false);
889  	put_page(page);
890  	return xas_error(&xas);
891  }
892  ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO);
893  
894  /**
895   * add_to_page_cache_locked - add a locked page to the pagecache
896   * @page:	page to add
897   * @mapping:	the page's address_space
898   * @offset:	page index
899   * @gfp_mask:	page allocation mode
900   *
901   * This function is used to add a page to the pagecache. It must be locked.
902   * This function does not add the page to the LRU.  The caller must do that.
903   *
904   * Return: %0 on success, negative error code otherwise.
905   */
906  int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
907  		pgoff_t offset, gfp_t gfp_mask)
908  {
909  	return __add_to_page_cache_locked(page, mapping, offset,
910  					  gfp_mask, NULL);
911  }
912  EXPORT_SYMBOL(add_to_page_cache_locked);
913  
914  int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
915  				pgoff_t offset, gfp_t gfp_mask)
916  {
917  	void *shadow = NULL;
918  	int ret;
919  
920  	__SetPageLocked(page);
921  	ret = __add_to_page_cache_locked(page, mapping, offset,
922  					 gfp_mask, &shadow);
923  	if (unlikely(ret))
924  		__ClearPageLocked(page);
925  	else {
926  		/*
927  		 * The page might have been evicted from cache only
928  		 * recently, in which case it should be activated like
929  		 * any other repeatedly accessed page.
930  		 * The exception is pages getting rewritten; evicting other
931  		 * data from the working set, only to cache data that will
932  		 * get overwritten with something else, is a waste of memory.
933  		 */
934  		WARN_ON_ONCE(PageActive(page));
935  		if (!(gfp_mask & __GFP_WRITE) && shadow)
936  			workingset_refault(page, shadow);
937  		lru_cache_add(page);
938  	}
939  	return ret;
940  }
941  EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
942  
943  #ifdef CONFIG_NUMA
944  struct page *__page_cache_alloc(gfp_t gfp)
945  {
946  	int n;
947  	struct page *page;
948  
949  	if (cpuset_do_page_mem_spread()) {
950  		unsigned int cpuset_mems_cookie;
951  		do {
952  			cpuset_mems_cookie = read_mems_allowed_begin();
953  			n = cpuset_mem_spread_node();
954  			page = __alloc_pages_node(n, gfp, 0);
955  		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
956  
957  		return page;
958  	}
959  	return alloc_pages(gfp, 0);
960  }
961  EXPORT_SYMBOL(__page_cache_alloc);
962  #endif
963  
964  /*
965   * In order to wait for pages to become available there must be
966   * waitqueues associated with pages. By using a hash table of
967   * waitqueues where the bucket discipline is to maintain all
968   * waiters on the same queue and wake all when any of the pages
969   * become available, and for the woken contexts to check to be
970   * sure the appropriate page became available, this saves space
971   * at a cost of "thundering herd" phenomena during rare hash
972   * collisions.
973   */
974  #define PAGE_WAIT_TABLE_BITS 8
975  #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
976  static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
977  
978  static wait_queue_head_t *page_waitqueue(struct page *page)
979  {
980  	return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
981  }
982  
983  void __init pagecache_init(void)
984  {
985  	int i;
986  
987  	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
988  		init_waitqueue_head(&page_wait_table[i]);
989  
990  	page_writeback_init();
991  }
992  
993  /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
994  struct wait_page_key {
995  	struct page *page;
996  	int bit_nr;
997  	int page_match;
998  };
999  
1000  struct wait_page_queue {
1001  	struct page *page;
1002  	int bit_nr;
1003  	wait_queue_entry_t wait;
1004  };
1005  
1006  static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1007  {
1008  	struct wait_page_key *key = arg;
1009  	struct wait_page_queue *wait_page
1010  		= container_of(wait, struct wait_page_queue, wait);
1011  
1012  	if (wait_page->page != key->page)
1013  	       return 0;
1014  	key->page_match = 1;
1015  
1016  	if (wait_page->bit_nr != key->bit_nr)
1017  		return 0;
1018  
1019  	/*
1020  	 * Stop walking if it's locked.
1021  	 * Is this safe if put_and_wait_on_page_locked() is in use?
1022  	 * Yes: the waker must hold a reference to this page, and if PG_locked
1023  	 * has now already been set by another task, that task must also hold
1024  	 * a reference to the *same usage* of this page; so there is no need
1025  	 * to walk on to wake even the put_and_wait_on_page_locked() callers.
1026  	 */
1027  	if (test_bit(key->bit_nr, &key->page->flags))
1028  		return -1;
1029  
1030  	return autoremove_wake_function(wait, mode, sync, key);
1031  }
1032  
1033  static void wake_up_page_bit(struct page *page, int bit_nr)
1034  {
1035  	wait_queue_head_t *q = page_waitqueue(page);
1036  	struct wait_page_key key;
1037  	unsigned long flags;
1038  	wait_queue_entry_t bookmark;
1039  
1040  	key.page = page;
1041  	key.bit_nr = bit_nr;
1042  	key.page_match = 0;
1043  
1044  	bookmark.flags = 0;
1045  	bookmark.private = NULL;
1046  	bookmark.func = NULL;
1047  	INIT_LIST_HEAD(&bookmark.entry);
1048  
1049  	spin_lock_irqsave(&q->lock, flags);
1050  	__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1051  
1052  	while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1053  		/*
1054  		 * Take a breather from holding the lock,
1055  		 * allow pages that finish wake up asynchronously
1056  		 * to acquire the lock and remove themselves
1057  		 * from wait queue
1058  		 */
1059  		spin_unlock_irqrestore(&q->lock, flags);
1060  		cpu_relax();
1061  		spin_lock_irqsave(&q->lock, flags);
1062  		__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1063  	}
1064  
1065  	/*
1066  	 * It is possible for other pages to have collided on the waitqueue
1067  	 * hash, so in that case check for a page match. That prevents a long-
1068  	 * term waiter
1069  	 *
1070  	 * It is still possible to miss a case here, when we woke page waiters
1071  	 * and removed them from the waitqueue, but there are still other
1072  	 * page waiters.
1073  	 */
1074  	if (!waitqueue_active(q) || !key.page_match) {
1075  		ClearPageWaiters(page);
1076  		/*
1077  		 * It's possible to miss clearing Waiters here, when we woke
1078  		 * our page waiters, but the hashed waitqueue has waiters for
1079  		 * other pages on it.
1080  		 *
1081  		 * That's okay, it's a rare case. The next waker will clear it.
1082  		 */
1083  	}
1084  	spin_unlock_irqrestore(&q->lock, flags);
1085  }
1086  
1087  static void wake_up_page(struct page *page, int bit)
1088  {
1089  	if (!PageWaiters(page))
1090  		return;
1091  	wake_up_page_bit(page, bit);
1092  }
1093  
1094  /*
1095   * A choice of three behaviors for wait_on_page_bit_common():
1096   */
1097  enum behavior {
1098  	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
1099  			 * __lock_page() waiting on then setting PG_locked.
1100  			 */
1101  	SHARED,		/* Hold ref to page and check the bit when woken, like
1102  			 * wait_on_page_writeback() waiting on PG_writeback.
1103  			 */
1104  	DROP,		/* Drop ref to page before wait, no check when woken,
1105  			 * like put_and_wait_on_page_locked() on PG_locked.
1106  			 */
1107  };
1108  
1109  static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1110  	struct page *page, int bit_nr, int state, enum behavior behavior)
1111  {
1112  	struct wait_page_queue wait_page;
1113  	wait_queue_entry_t *wait = &wait_page.wait;
1114  	bool bit_is_set;
1115  	bool thrashing = false;
1116  	bool delayacct = false;
1117  	unsigned long pflags;
1118  	int ret = 0;
1119  
1120  	if (bit_nr == PG_locked &&
1121  	    !PageUptodate(page) && PageWorkingset(page)) {
1122  		if (!PageSwapBacked(page)) {
1123  			delayacct_thrashing_start();
1124  			delayacct = true;
1125  		}
1126  		psi_memstall_enter(&pflags);
1127  		thrashing = true;
1128  	}
1129  
1130  	init_wait(wait);
1131  	wait->flags = behavior == EXCLUSIVE ? WQ_FLAG_EXCLUSIVE : 0;
1132  	wait->func = wake_page_function;
1133  	wait_page.page = page;
1134  	wait_page.bit_nr = bit_nr;
1135  
1136  	for (;;) {
1137  		spin_lock_irq(&q->lock);
1138  
1139  		if (likely(list_empty(&wait->entry))) {
1140  			__add_wait_queue_entry_tail(q, wait);
1141  			SetPageWaiters(page);
1142  		}
1143  
1144  		set_current_state(state);
1145  
1146  		spin_unlock_irq(&q->lock);
1147  
1148  		bit_is_set = test_bit(bit_nr, &page->flags);
1149  		if (behavior == DROP)
1150  			put_page(page);
1151  
1152  		if (likely(bit_is_set))
1153  			io_schedule();
1154  
1155  		if (behavior == EXCLUSIVE) {
1156  			if (!test_and_set_bit_lock(bit_nr, &page->flags))
1157  				break;
1158  		} else if (behavior == SHARED) {
1159  			if (!test_bit(bit_nr, &page->flags))
1160  				break;
1161  		}
1162  
1163  		if (signal_pending_state(state, current)) {
1164  			ret = -EINTR;
1165  			break;
1166  		}
1167  
1168  		if (behavior == DROP) {
1169  			/*
1170  			 * We can no longer safely access page->flags:
1171  			 * even if CONFIG_MEMORY_HOTREMOVE is not enabled,
1172  			 * there is a risk of waiting forever on a page reused
1173  			 * for something that keeps it locked indefinitely.
1174  			 * But best check for -EINTR above before breaking.
1175  			 */
1176  			break;
1177  		}
1178  	}
1179  
1180  	finish_wait(q, wait);
1181  
1182  	if (thrashing) {
1183  		if (delayacct)
1184  			delayacct_thrashing_end();
1185  		psi_memstall_leave(&pflags);
1186  	}
1187  
1188  	/*
1189  	 * A signal could leave PageWaiters set. Clearing it here if
1190  	 * !waitqueue_active would be possible (by open-coding finish_wait),
1191  	 * but still fail to catch it in the case of wait hash collision. We
1192  	 * already can fail to clear wait hash collision cases, so don't
1193  	 * bother with signals either.
1194  	 */
1195  
1196  	return ret;
1197  }
1198  
1199  void wait_on_page_bit(struct page *page, int bit_nr)
1200  {
1201  	wait_queue_head_t *q = page_waitqueue(page);
1202  	wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1203  }
1204  EXPORT_SYMBOL(wait_on_page_bit);
1205  
1206  int wait_on_page_bit_killable(struct page *page, int bit_nr)
1207  {
1208  	wait_queue_head_t *q = page_waitqueue(page);
1209  	return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
1210  }
1211  EXPORT_SYMBOL(wait_on_page_bit_killable);
1212  
1213  /**
1214   * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1215   * @page: The page to wait for.
1216   *
1217   * The caller should hold a reference on @page.  They expect the page to
1218   * become unlocked relatively soon, but do not wish to hold up migration
1219   * (for example) by holding the reference while waiting for the page to
1220   * come unlocked.  After this function returns, the caller should not
1221   * dereference @page.
1222   */
1223  void put_and_wait_on_page_locked(struct page *page)
1224  {
1225  	wait_queue_head_t *q;
1226  
1227  	page = compound_head(page);
1228  	q = page_waitqueue(page);
1229  	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP);
1230  }
1231  
1232  /**
1233   * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1234   * @page: Page defining the wait queue of interest
1235   * @waiter: Waiter to add to the queue
1236   *
1237   * Add an arbitrary @waiter to the wait queue for the nominated @page.
1238   */
1239  void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1240  {
1241  	wait_queue_head_t *q = page_waitqueue(page);
1242  	unsigned long flags;
1243  
1244  	spin_lock_irqsave(&q->lock, flags);
1245  	__add_wait_queue_entry_tail(q, waiter);
1246  	SetPageWaiters(page);
1247  	spin_unlock_irqrestore(&q->lock, flags);
1248  }
1249  EXPORT_SYMBOL_GPL(add_page_wait_queue);
1250  
1251  #ifndef clear_bit_unlock_is_negative_byte
1252  
1253  /*
1254   * PG_waiters is the high bit in the same byte as PG_lock.
1255   *
1256   * On x86 (and on many other architectures), we can clear PG_lock and
1257   * test the sign bit at the same time. But if the architecture does
1258   * not support that special operation, we just do this all by hand
1259   * instead.
1260   *
1261   * The read of PG_waiters has to be after (or concurrently with) PG_locked
1262   * being cleared, but a memory barrier should be unneccssary since it is
1263   * in the same byte as PG_locked.
1264   */
1265  static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1266  {
1267  	clear_bit_unlock(nr, mem);
1268  	/* smp_mb__after_atomic(); */
1269  	return test_bit(PG_waiters, mem);
1270  }
1271  
1272  #endif
1273  
1274  /**
1275   * unlock_page - unlock a locked page
1276   * @page: the page
1277   *
1278   * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1279   * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1280   * mechanism between PageLocked pages and PageWriteback pages is shared.
1281   * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1282   *
1283   * Note that this depends on PG_waiters being the sign bit in the byte
1284   * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1285   * clear the PG_locked bit and test PG_waiters at the same time fairly
1286   * portably (architectures that do LL/SC can test any bit, while x86 can
1287   * test the sign bit).
1288   */
1289  void unlock_page(struct page *page)
1290  {
1291  	BUILD_BUG_ON(PG_waiters != 7);
1292  	page = compound_head(page);
1293  	VM_BUG_ON_PAGE(!PageLocked(page), page);
1294  	if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1295  		wake_up_page_bit(page, PG_locked);
1296  }
1297  EXPORT_SYMBOL(unlock_page);
1298  
1299  /**
1300   * end_page_writeback - end writeback against a page
1301   * @page: the page
1302   */
1303  void end_page_writeback(struct page *page)
1304  {
1305  	/*
1306  	 * TestClearPageReclaim could be used here but it is an atomic
1307  	 * operation and overkill in this particular case. Failing to
1308  	 * shuffle a page marked for immediate reclaim is too mild to
1309  	 * justify taking an atomic operation penalty at the end of
1310  	 * ever page writeback.
1311  	 */
1312  	if (PageReclaim(page)) {
1313  		ClearPageReclaim(page);
1314  		rotate_reclaimable_page(page);
1315  	}
1316  
1317  	if (!test_clear_page_writeback(page))
1318  		BUG();
1319  
1320  	smp_mb__after_atomic();
1321  	wake_up_page(page, PG_writeback);
1322  }
1323  EXPORT_SYMBOL(end_page_writeback);
1324  
1325  /*
1326   * After completing I/O on a page, call this routine to update the page
1327   * flags appropriately
1328   */
1329  void page_endio(struct page *page, bool is_write, int err)
1330  {
1331  	if (!is_write) {
1332  		if (!err) {
1333  			SetPageUptodate(page);
1334  		} else {
1335  			ClearPageUptodate(page);
1336  			SetPageError(page);
1337  		}
1338  		unlock_page(page);
1339  	} else {
1340  		if (err) {
1341  			struct address_space *mapping;
1342  
1343  			SetPageError(page);
1344  			mapping = page_mapping(page);
1345  			if (mapping)
1346  				mapping_set_error(mapping, err);
1347  		}
1348  		end_page_writeback(page);
1349  	}
1350  }
1351  EXPORT_SYMBOL_GPL(page_endio);
1352  
1353  /**
1354   * __lock_page - get a lock on the page, assuming we need to sleep to get it
1355   * @__page: the page to lock
1356   */
1357  void __lock_page(struct page *__page)
1358  {
1359  	struct page *page = compound_head(__page);
1360  	wait_queue_head_t *q = page_waitqueue(page);
1361  	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
1362  				EXCLUSIVE);
1363  }
1364  EXPORT_SYMBOL(__lock_page);
1365  
1366  int __lock_page_killable(struct page *__page)
1367  {
1368  	struct page *page = compound_head(__page);
1369  	wait_queue_head_t *q = page_waitqueue(page);
1370  	return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
1371  					EXCLUSIVE);
1372  }
1373  EXPORT_SYMBOL_GPL(__lock_page_killable);
1374  
1375  /*
1376   * Return values:
1377   * 1 - page is locked; mmap_sem is still held.
1378   * 0 - page is not locked.
1379   *     mmap_sem has been released (up_read()), unless flags had both
1380   *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1381   *     which case mmap_sem is still held.
1382   *
1383   * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1384   * with the page locked and the mmap_sem unperturbed.
1385   */
1386  int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1387  			 unsigned int flags)
1388  {
1389  	if (flags & FAULT_FLAG_ALLOW_RETRY) {
1390  		/*
1391  		 * CAUTION! In this case, mmap_sem is not released
1392  		 * even though return 0.
1393  		 */
1394  		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1395  			return 0;
1396  
1397  		up_read(&mm->mmap_sem);
1398  		if (flags & FAULT_FLAG_KILLABLE)
1399  			wait_on_page_locked_killable(page);
1400  		else
1401  			wait_on_page_locked(page);
1402  		return 0;
1403  	} else {
1404  		if (flags & FAULT_FLAG_KILLABLE) {
1405  			int ret;
1406  
1407  			ret = __lock_page_killable(page);
1408  			if (ret) {
1409  				up_read(&mm->mmap_sem);
1410  				return 0;
1411  			}
1412  		} else
1413  			__lock_page(page);
1414  		return 1;
1415  	}
1416  }
1417  
1418  /**
1419   * page_cache_next_miss() - Find the next gap in the page cache.
1420   * @mapping: Mapping.
1421   * @index: Index.
1422   * @max_scan: Maximum range to search.
1423   *
1424   * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1425   * gap with the lowest index.
1426   *
1427   * This function may be called under the rcu_read_lock.  However, this will
1428   * not atomically search a snapshot of the cache at a single point in time.
1429   * For example, if a gap is created at index 5, then subsequently a gap is
1430   * created at index 10, page_cache_next_miss covering both indices may
1431   * return 10 if called under the rcu_read_lock.
1432   *
1433   * Return: The index of the gap if found, otherwise an index outside the
1434   * range specified (in which case 'return - index >= max_scan' will be true).
1435   * In the rare case of index wrap-around, 0 will be returned.
1436   */
1437  pgoff_t page_cache_next_miss(struct address_space *mapping,
1438  			     pgoff_t index, unsigned long max_scan)
1439  {
1440  	XA_STATE(xas, &mapping->i_pages, index);
1441  
1442  	while (max_scan--) {
1443  		void *entry = xas_next(&xas);
1444  		if (!entry || xa_is_value(entry))
1445  			break;
1446  		if (xas.xa_index == 0)
1447  			break;
1448  	}
1449  
1450  	return xas.xa_index;
1451  }
1452  EXPORT_SYMBOL(page_cache_next_miss);
1453  
1454  /**
1455   * page_cache_prev_miss() - Find the previous gap in the page cache.
1456   * @mapping: Mapping.
1457   * @index: Index.
1458   * @max_scan: Maximum range to search.
1459   *
1460   * Search the range [max(index - max_scan + 1, 0), index] for the
1461   * gap with the highest index.
1462   *
1463   * This function may be called under the rcu_read_lock.  However, this will
1464   * not atomically search a snapshot of the cache at a single point in time.
1465   * For example, if a gap is created at index 10, then subsequently a gap is
1466   * created at index 5, page_cache_prev_miss() covering both indices may
1467   * return 5 if called under the rcu_read_lock.
1468   *
1469   * Return: The index of the gap if found, otherwise an index outside the
1470   * range specified (in which case 'index - return >= max_scan' will be true).
1471   * In the rare case of wrap-around, ULONG_MAX will be returned.
1472   */
1473  pgoff_t page_cache_prev_miss(struct address_space *mapping,
1474  			     pgoff_t index, unsigned long max_scan)
1475  {
1476  	XA_STATE(xas, &mapping->i_pages, index);
1477  
1478  	while (max_scan--) {
1479  		void *entry = xas_prev(&xas);
1480  		if (!entry || xa_is_value(entry))
1481  			break;
1482  		if (xas.xa_index == ULONG_MAX)
1483  			break;
1484  	}
1485  
1486  	return xas.xa_index;
1487  }
1488  EXPORT_SYMBOL(page_cache_prev_miss);
1489  
1490  /**
1491   * find_get_entry - find and get a page cache entry
1492   * @mapping: the address_space to search
1493   * @offset: the page cache index
1494   *
1495   * Looks up the page cache slot at @mapping & @offset.  If there is a
1496   * page cache page, it is returned with an increased refcount.
1497   *
1498   * If the slot holds a shadow entry of a previously evicted page, or a
1499   * swap entry from shmem/tmpfs, it is returned.
1500   *
1501   * Return: the found page or shadow entry, %NULL if nothing is found.
1502   */
1503  struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1504  {
1505  	XA_STATE(xas, &mapping->i_pages, offset);
1506  	struct page *page;
1507  
1508  	rcu_read_lock();
1509  repeat:
1510  	xas_reset(&xas);
1511  	page = xas_load(&xas);
1512  	if (xas_retry(&xas, page))
1513  		goto repeat;
1514  	/*
1515  	 * A shadow entry of a recently evicted page, or a swap entry from
1516  	 * shmem/tmpfs.  Return it without attempting to raise page count.
1517  	 */
1518  	if (!page || xa_is_value(page))
1519  		goto out;
1520  
1521  	if (!page_cache_get_speculative(page))
1522  		goto repeat;
1523  
1524  	/*
1525  	 * Has the page moved or been split?
1526  	 * This is part of the lockless pagecache protocol. See
1527  	 * include/linux/pagemap.h for details.
1528  	 */
1529  	if (unlikely(page != xas_reload(&xas))) {
1530  		put_page(page);
1531  		goto repeat;
1532  	}
1533  	page = find_subpage(page, offset);
1534  out:
1535  	rcu_read_unlock();
1536  
1537  	return page;
1538  }
1539  EXPORT_SYMBOL(find_get_entry);
1540  
1541  /**
1542   * find_lock_entry - locate, pin and lock a page cache entry
1543   * @mapping: the address_space to search
1544   * @offset: the page cache index
1545   *
1546   * Looks up the page cache slot at @mapping & @offset.  If there is a
1547   * page cache page, it is returned locked and with an increased
1548   * refcount.
1549   *
1550   * If the slot holds a shadow entry of a previously evicted page, or a
1551   * swap entry from shmem/tmpfs, it is returned.
1552   *
1553   * find_lock_entry() may sleep.
1554   *
1555   * Return: the found page or shadow entry, %NULL if nothing is found.
1556   */
1557  struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1558  {
1559  	struct page *page;
1560  
1561  repeat:
1562  	page = find_get_entry(mapping, offset);
1563  	if (page && !xa_is_value(page)) {
1564  		lock_page(page);
1565  		/* Has the page been truncated? */
1566  		if (unlikely(page_mapping(page) != mapping)) {
1567  			unlock_page(page);
1568  			put_page(page);
1569  			goto repeat;
1570  		}
1571  		VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1572  	}
1573  	return page;
1574  }
1575  EXPORT_SYMBOL(find_lock_entry);
1576  
1577  /**
1578   * pagecache_get_page - find and get a page reference
1579   * @mapping: the address_space to search
1580   * @offset: the page index
1581   * @fgp_flags: PCG flags
1582   * @gfp_mask: gfp mask to use for the page cache data page allocation
1583   *
1584   * Looks up the page cache slot at @mapping & @offset.
1585   *
1586   * PCG flags modify how the page is returned.
1587   *
1588   * @fgp_flags can be:
1589   *
1590   * - FGP_ACCESSED: the page will be marked accessed
1591   * - FGP_LOCK: Page is return locked
1592   * - FGP_CREAT: If page is not present then a new page is allocated using
1593   *   @gfp_mask and added to the page cache and the VM's LRU
1594   *   list. The page is returned locked and with an increased
1595   *   refcount.
1596   * - FGP_FOR_MMAP: Similar to FGP_CREAT, only we want to allow the caller to do
1597   *   its own locking dance if the page is already in cache, or unlock the page
1598   *   before returning if we had to add the page to pagecache.
1599   *
1600   * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1601   * if the GFP flags specified for FGP_CREAT are atomic.
1602   *
1603   * If there is a page cache page, it is returned with an increased refcount.
1604   *
1605   * Return: the found page or %NULL otherwise.
1606   */
1607  struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1608  	int fgp_flags, gfp_t gfp_mask)
1609  {
1610  	struct page *page;
1611  
1612  repeat:
1613  	page = find_get_entry(mapping, offset);
1614  	if (xa_is_value(page))
1615  		page = NULL;
1616  	if (!page)
1617  		goto no_page;
1618  
1619  	if (fgp_flags & FGP_LOCK) {
1620  		if (fgp_flags & FGP_NOWAIT) {
1621  			if (!trylock_page(page)) {
1622  				put_page(page);
1623  				return NULL;
1624  			}
1625  		} else {
1626  			lock_page(page);
1627  		}
1628  
1629  		/* Has the page been truncated? */
1630  		if (unlikely(compound_head(page)->mapping != mapping)) {
1631  			unlock_page(page);
1632  			put_page(page);
1633  			goto repeat;
1634  		}
1635  		VM_BUG_ON_PAGE(page->index != offset, page);
1636  	}
1637  
1638  	if (fgp_flags & FGP_ACCESSED)
1639  		mark_page_accessed(page);
1640  
1641  no_page:
1642  	if (!page && (fgp_flags & FGP_CREAT)) {
1643  		int err;
1644  		if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1645  			gfp_mask |= __GFP_WRITE;
1646  		if (fgp_flags & FGP_NOFS)
1647  			gfp_mask &= ~__GFP_FS;
1648  
1649  		page = __page_cache_alloc(gfp_mask);
1650  		if (!page)
1651  			return NULL;
1652  
1653  		if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1654  			fgp_flags |= FGP_LOCK;
1655  
1656  		/* Init accessed so avoid atomic mark_page_accessed later */
1657  		if (fgp_flags & FGP_ACCESSED)
1658  			__SetPageReferenced(page);
1659  
1660  		err = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
1661  		if (unlikely(err)) {
1662  			put_page(page);
1663  			page = NULL;
1664  			if (err == -EEXIST)
1665  				goto repeat;
1666  		}
1667  
1668  		/*
1669  		 * add_to_page_cache_lru locks the page, and for mmap we expect
1670  		 * an unlocked page.
1671  		 */
1672  		if (page && (fgp_flags & FGP_FOR_MMAP))
1673  			unlock_page(page);
1674  	}
1675  
1676  	return page;
1677  }
1678  EXPORT_SYMBOL(pagecache_get_page);
1679  
1680  /**
1681   * find_get_entries - gang pagecache lookup
1682   * @mapping:	The address_space to search
1683   * @start:	The starting page cache index
1684   * @nr_entries:	The maximum number of entries
1685   * @entries:	Where the resulting entries are placed
1686   * @indices:	The cache indices corresponding to the entries in @entries
1687   *
1688   * find_get_entries() will search for and return a group of up to
1689   * @nr_entries entries in the mapping.  The entries are placed at
1690   * @entries.  find_get_entries() takes a reference against any actual
1691   * pages it returns.
1692   *
1693   * The search returns a group of mapping-contiguous page cache entries
1694   * with ascending indexes.  There may be holes in the indices due to
1695   * not-present pages.
1696   *
1697   * Any shadow entries of evicted pages, or swap entries from
1698   * shmem/tmpfs, are included in the returned array.
1699   *
1700   * Return: the number of pages and shadow entries which were found.
1701   */
1702  unsigned find_get_entries(struct address_space *mapping,
1703  			  pgoff_t start, unsigned int nr_entries,
1704  			  struct page **entries, pgoff_t *indices)
1705  {
1706  	XA_STATE(xas, &mapping->i_pages, start);
1707  	struct page *page;
1708  	unsigned int ret = 0;
1709  
1710  	if (!nr_entries)
1711  		return 0;
1712  
1713  	rcu_read_lock();
1714  	xas_for_each(&xas, page, ULONG_MAX) {
1715  		if (xas_retry(&xas, page))
1716  			continue;
1717  		/*
1718  		 * A shadow entry of a recently evicted page, a swap
1719  		 * entry from shmem/tmpfs or a DAX entry.  Return it
1720  		 * without attempting to raise page count.
1721  		 */
1722  		if (xa_is_value(page))
1723  			goto export;
1724  
1725  		if (!page_cache_get_speculative(page))
1726  			goto retry;
1727  
1728  		/* Has the page moved or been split? */
1729  		if (unlikely(page != xas_reload(&xas)))
1730  			goto put_page;
1731  		page = find_subpage(page, xas.xa_index);
1732  
1733  export:
1734  		indices[ret] = xas.xa_index;
1735  		entries[ret] = page;
1736  		if (++ret == nr_entries)
1737  			break;
1738  		continue;
1739  put_page:
1740  		put_page(page);
1741  retry:
1742  		xas_reset(&xas);
1743  	}
1744  	rcu_read_unlock();
1745  	return ret;
1746  }
1747  
1748  /**
1749   * find_get_pages_range - gang pagecache lookup
1750   * @mapping:	The address_space to search
1751   * @start:	The starting page index
1752   * @end:	The final page index (inclusive)
1753   * @nr_pages:	The maximum number of pages
1754   * @pages:	Where the resulting pages are placed
1755   *
1756   * find_get_pages_range() will search for and return a group of up to @nr_pages
1757   * pages in the mapping starting at index @start and up to index @end
1758   * (inclusive).  The pages are placed at @pages.  find_get_pages_range() takes
1759   * a reference against the returned pages.
1760   *
1761   * The search returns a group of mapping-contiguous pages with ascending
1762   * indexes.  There may be holes in the indices due to not-present pages.
1763   * We also update @start to index the next page for the traversal.
1764   *
1765   * Return: the number of pages which were found. If this number is
1766   * smaller than @nr_pages, the end of specified range has been
1767   * reached.
1768   */
1769  unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1770  			      pgoff_t end, unsigned int nr_pages,
1771  			      struct page **pages)
1772  {
1773  	XA_STATE(xas, &mapping->i_pages, *start);
1774  	struct page *page;
1775  	unsigned ret = 0;
1776  
1777  	if (unlikely(!nr_pages))
1778  		return 0;
1779  
1780  	rcu_read_lock();
1781  	xas_for_each(&xas, page, end) {
1782  		if (xas_retry(&xas, page))
1783  			continue;
1784  		/* Skip over shadow, swap and DAX entries */
1785  		if (xa_is_value(page))
1786  			continue;
1787  
1788  		if (!page_cache_get_speculative(page))
1789  			goto retry;
1790  
1791  		/* Has the page moved or been split? */
1792  		if (unlikely(page != xas_reload(&xas)))
1793  			goto put_page;
1794  
1795  		pages[ret] = find_subpage(page, xas.xa_index);
1796  		if (++ret == nr_pages) {
1797  			*start = xas.xa_index + 1;
1798  			goto out;
1799  		}
1800  		continue;
1801  put_page:
1802  		put_page(page);
1803  retry:
1804  		xas_reset(&xas);
1805  	}
1806  
1807  	/*
1808  	 * We come here when there is no page beyond @end. We take care to not
1809  	 * overflow the index @start as it confuses some of the callers. This
1810  	 * breaks the iteration when there is a page at index -1 but that is
1811  	 * already broken anyway.
1812  	 */
1813  	if (end == (pgoff_t)-1)
1814  		*start = (pgoff_t)-1;
1815  	else
1816  		*start = end + 1;
1817  out:
1818  	rcu_read_unlock();
1819  
1820  	return ret;
1821  }
1822  
1823  /**
1824   * find_get_pages_contig - gang contiguous pagecache lookup
1825   * @mapping:	The address_space to search
1826   * @index:	The starting page index
1827   * @nr_pages:	The maximum number of pages
1828   * @pages:	Where the resulting pages are placed
1829   *
1830   * find_get_pages_contig() works exactly like find_get_pages(), except
1831   * that the returned number of pages are guaranteed to be contiguous.
1832   *
1833   * Return: the number of pages which were found.
1834   */
1835  unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1836  			       unsigned int nr_pages, struct page **pages)
1837  {
1838  	XA_STATE(xas, &mapping->i_pages, index);
1839  	struct page *page;
1840  	unsigned int ret = 0;
1841  
1842  	if (unlikely(!nr_pages))
1843  		return 0;
1844  
1845  	rcu_read_lock();
1846  	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1847  		if (xas_retry(&xas, page))
1848  			continue;
1849  		/*
1850  		 * If the entry has been swapped out, we can stop looking.
1851  		 * No current caller is looking for DAX entries.
1852  		 */
1853  		if (xa_is_value(page))
1854  			break;
1855  
1856  		if (!page_cache_get_speculative(page))
1857  			goto retry;
1858  
1859  		/* Has the page moved or been split? */
1860  		if (unlikely(page != xas_reload(&xas)))
1861  			goto put_page;
1862  
1863  		pages[ret] = find_subpage(page, xas.xa_index);
1864  		if (++ret == nr_pages)
1865  			break;
1866  		continue;
1867  put_page:
1868  		put_page(page);
1869  retry:
1870  		xas_reset(&xas);
1871  	}
1872  	rcu_read_unlock();
1873  	return ret;
1874  }
1875  EXPORT_SYMBOL(find_get_pages_contig);
1876  
1877  /**
1878   * find_get_pages_range_tag - find and return pages in given range matching @tag
1879   * @mapping:	the address_space to search
1880   * @index:	the starting page index
1881   * @end:	The final page index (inclusive)
1882   * @tag:	the tag index
1883   * @nr_pages:	the maximum number of pages
1884   * @pages:	where the resulting pages are placed
1885   *
1886   * Like find_get_pages, except we only return pages which are tagged with
1887   * @tag.   We update @index to index the next page for the traversal.
1888   *
1889   * Return: the number of pages which were found.
1890   */
1891  unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
1892  			pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
1893  			struct page **pages)
1894  {
1895  	XA_STATE(xas, &mapping->i_pages, *index);
1896  	struct page *page;
1897  	unsigned ret = 0;
1898  
1899  	if (unlikely(!nr_pages))
1900  		return 0;
1901  
1902  	rcu_read_lock();
1903  	xas_for_each_marked(&xas, page, end, tag) {
1904  		if (xas_retry(&xas, page))
1905  			continue;
1906  		/*
1907  		 * Shadow entries should never be tagged, but this iteration
1908  		 * is lockless so there is a window for page reclaim to evict
1909  		 * a page we saw tagged.  Skip over it.
1910  		 */
1911  		if (xa_is_value(page))
1912  			continue;
1913  
1914  		if (!page_cache_get_speculative(page))
1915  			goto retry;
1916  
1917  		/* Has the page moved or been split? */
1918  		if (unlikely(page != xas_reload(&xas)))
1919  			goto put_page;
1920  
1921  		pages[ret] = find_subpage(page, xas.xa_index);
1922  		if (++ret == nr_pages) {
1923  			*index = xas.xa_index + 1;
1924  			goto out;
1925  		}
1926  		continue;
1927  put_page:
1928  		put_page(page);
1929  retry:
1930  		xas_reset(&xas);
1931  	}
1932  
1933  	/*
1934  	 * We come here when we got to @end. We take care to not overflow the
1935  	 * index @index as it confuses some of the callers. This breaks the
1936  	 * iteration when there is a page at index -1 but that is already
1937  	 * broken anyway.
1938  	 */
1939  	if (end == (pgoff_t)-1)
1940  		*index = (pgoff_t)-1;
1941  	else
1942  		*index = end + 1;
1943  out:
1944  	rcu_read_unlock();
1945  
1946  	return ret;
1947  }
1948  EXPORT_SYMBOL(find_get_pages_range_tag);
1949  
1950  /*
1951   * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1952   * a _large_ part of the i/o request. Imagine the worst scenario:
1953   *
1954   *      ---R__________________________________________B__________
1955   *         ^ reading here                             ^ bad block(assume 4k)
1956   *
1957   * read(R) => miss => readahead(R...B) => media error => frustrating retries
1958   * => failing the whole request => read(R) => read(R+1) =>
1959   * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1960   * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1961   * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1962   *
1963   * It is going insane. Fix it by quickly scaling down the readahead size.
1964   */
1965  static void shrink_readahead_size_eio(struct file *filp,
1966  					struct file_ra_state *ra)
1967  {
1968  	ra->ra_pages /= 4;
1969  }
1970  
1971  /**
1972   * generic_file_buffered_read - generic file read routine
1973   * @iocb:	the iocb to read
1974   * @iter:	data destination
1975   * @written:	already copied
1976   *
1977   * This is a generic file read routine, and uses the
1978   * mapping->a_ops->readpage() function for the actual low-level stuff.
1979   *
1980   * This is really ugly. But the goto's actually try to clarify some
1981   * of the logic when it comes to error handling etc.
1982   *
1983   * Return:
1984   * * total number of bytes copied, including those the were already @written
1985   * * negative error code if nothing was copied
1986   */
1987  static ssize_t generic_file_buffered_read(struct kiocb *iocb,
1988  		struct iov_iter *iter, ssize_t written)
1989  {
1990  	struct file *filp = iocb->ki_filp;
1991  	struct address_space *mapping = filp->f_mapping;
1992  	struct inode *inode = mapping->host;
1993  	struct file_ra_state *ra = &filp->f_ra;
1994  	loff_t *ppos = &iocb->ki_pos;
1995  	pgoff_t index;
1996  	pgoff_t last_index;
1997  	pgoff_t prev_index;
1998  	unsigned long offset;      /* offset into pagecache page */
1999  	unsigned int prev_offset;
2000  	int error = 0;
2001  
2002  	if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
2003  		return 0;
2004  	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2005  
2006  	index = *ppos >> PAGE_SHIFT;
2007  	prev_index = ra->prev_pos >> PAGE_SHIFT;
2008  	prev_offset = ra->prev_pos & (PAGE_SIZE-1);
2009  	last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
2010  	offset = *ppos & ~PAGE_MASK;
2011  
2012  	for (;;) {
2013  		struct page *page;
2014  		pgoff_t end_index;
2015  		loff_t isize;
2016  		unsigned long nr, ret;
2017  
2018  		cond_resched();
2019  find_page:
2020  		if (fatal_signal_pending(current)) {
2021  			error = -EINTR;
2022  			goto out;
2023  		}
2024  
2025  		page = find_get_page(mapping, index);
2026  		if (!page) {
2027  			if (iocb->ki_flags & IOCB_NOWAIT)
2028  				goto would_block;
2029  			page_cache_sync_readahead(mapping,
2030  					ra, filp,
2031  					index, last_index - index);
2032  			page = find_get_page(mapping, index);
2033  			if (unlikely(page == NULL))
2034  				goto no_cached_page;
2035  		}
2036  		if (PageReadahead(page)) {
2037  			page_cache_async_readahead(mapping,
2038  					ra, filp, page,
2039  					index, last_index - index);
2040  		}
2041  		if (!PageUptodate(page)) {
2042  			if (iocb->ki_flags & IOCB_NOWAIT) {
2043  				put_page(page);
2044  				goto would_block;
2045  			}
2046  
2047  			/*
2048  			 * See comment in do_read_cache_page on why
2049  			 * wait_on_page_locked is used to avoid unnecessarily
2050  			 * serialisations and why it's safe.
2051  			 */
2052  			error = wait_on_page_locked_killable(page);
2053  			if (unlikely(error))
2054  				goto readpage_error;
2055  			if (PageUptodate(page))
2056  				goto page_ok;
2057  
2058  			if (inode->i_blkbits == PAGE_SHIFT ||
2059  					!mapping->a_ops->is_partially_uptodate)
2060  				goto page_not_up_to_date;
2061  			/* pipes can't handle partially uptodate pages */
2062  			if (unlikely(iov_iter_is_pipe(iter)))
2063  				goto page_not_up_to_date;
2064  			if (!trylock_page(page))
2065  				goto page_not_up_to_date;
2066  			/* Did it get truncated before we got the lock? */
2067  			if (!page->mapping)
2068  				goto page_not_up_to_date_locked;
2069  			if (!mapping->a_ops->is_partially_uptodate(page,
2070  							offset, iter->count))
2071  				goto page_not_up_to_date_locked;
2072  			unlock_page(page);
2073  		}
2074  page_ok:
2075  		/*
2076  		 * i_size must be checked after we know the page is Uptodate.
2077  		 *
2078  		 * Checking i_size after the check allows us to calculate
2079  		 * the correct value for "nr", which means the zero-filled
2080  		 * part of the page is not copied back to userspace (unless
2081  		 * another truncate extends the file - this is desired though).
2082  		 */
2083  
2084  		isize = i_size_read(inode);
2085  		end_index = (isize - 1) >> PAGE_SHIFT;
2086  		if (unlikely(!isize || index > end_index)) {
2087  			put_page(page);
2088  			goto out;
2089  		}
2090  
2091  		/* nr is the maximum number of bytes to copy from this page */
2092  		nr = PAGE_SIZE;
2093  		if (index == end_index) {
2094  			nr = ((isize - 1) & ~PAGE_MASK) + 1;
2095  			if (nr <= offset) {
2096  				put_page(page);
2097  				goto out;
2098  			}
2099  		}
2100  		nr = nr - offset;
2101  
2102  		/* If users can be writing to this page using arbitrary
2103  		 * virtual addresses, take care about potential aliasing
2104  		 * before reading the page on the kernel side.
2105  		 */
2106  		if (mapping_writably_mapped(mapping))
2107  			flush_dcache_page(page);
2108  
2109  		/*
2110  		 * When a sequential read accesses a page several times,
2111  		 * only mark it as accessed the first time.
2112  		 */
2113  		if (prev_index != index || offset != prev_offset)
2114  			mark_page_accessed(page);
2115  		prev_index = index;
2116  
2117  		/*
2118  		 * Ok, we have the page, and it's up-to-date, so
2119  		 * now we can copy it to user space...
2120  		 */
2121  
2122  		ret = copy_page_to_iter(page, offset, nr, iter);
2123  		offset += ret;
2124  		index += offset >> PAGE_SHIFT;
2125  		offset &= ~PAGE_MASK;
2126  		prev_offset = offset;
2127  
2128  		put_page(page);
2129  		written += ret;
2130  		if (!iov_iter_count(iter))
2131  			goto out;
2132  		if (ret < nr) {
2133  			error = -EFAULT;
2134  			goto out;
2135  		}
2136  		continue;
2137  
2138  page_not_up_to_date:
2139  		/* Get exclusive access to the page ... */
2140  		error = lock_page_killable(page);
2141  		if (unlikely(error))
2142  			goto readpage_error;
2143  
2144  page_not_up_to_date_locked:
2145  		/* Did it get truncated before we got the lock? */
2146  		if (!page->mapping) {
2147  			unlock_page(page);
2148  			put_page(page);
2149  			continue;
2150  		}
2151  
2152  		/* Did somebody else fill it already? */
2153  		if (PageUptodate(page)) {
2154  			unlock_page(page);
2155  			goto page_ok;
2156  		}
2157  
2158  readpage:
2159  		/*
2160  		 * A previous I/O error may have been due to temporary
2161  		 * failures, eg. multipath errors.
2162  		 * PG_error will be set again if readpage fails.
2163  		 */
2164  		ClearPageError(page);
2165  		/* Start the actual read. The read will unlock the page. */
2166  		error = mapping->a_ops->readpage(filp, page);
2167  
2168  		if (unlikely(error)) {
2169  			if (error == AOP_TRUNCATED_PAGE) {
2170  				put_page(page);
2171  				error = 0;
2172  				goto find_page;
2173  			}
2174  			goto readpage_error;
2175  		}
2176  
2177  		if (!PageUptodate(page)) {
2178  			error = lock_page_killable(page);
2179  			if (unlikely(error))
2180  				goto readpage_error;
2181  			if (!PageUptodate(page)) {
2182  				if (page->mapping == NULL) {
2183  					/*
2184  					 * invalidate_mapping_pages got it
2185  					 */
2186  					unlock_page(page);
2187  					put_page(page);
2188  					goto find_page;
2189  				}
2190  				unlock_page(page);
2191  				shrink_readahead_size_eio(filp, ra);
2192  				error = -EIO;
2193  				goto readpage_error;
2194  			}
2195  			unlock_page(page);
2196  		}
2197  
2198  		goto page_ok;
2199  
2200  readpage_error:
2201  		/* UHHUH! A synchronous read error occurred. Report it */
2202  		put_page(page);
2203  		goto out;
2204  
2205  no_cached_page:
2206  		/*
2207  		 * Ok, it wasn't cached, so we need to create a new
2208  		 * page..
2209  		 */
2210  		page = page_cache_alloc(mapping);
2211  		if (!page) {
2212  			error = -ENOMEM;
2213  			goto out;
2214  		}
2215  		error = add_to_page_cache_lru(page, mapping, index,
2216  				mapping_gfp_constraint(mapping, GFP_KERNEL));
2217  		if (error) {
2218  			put_page(page);
2219  			if (error == -EEXIST) {
2220  				error = 0;
2221  				goto find_page;
2222  			}
2223  			goto out;
2224  		}
2225  		goto readpage;
2226  	}
2227  
2228  would_block:
2229  	error = -EAGAIN;
2230  out:
2231  	ra->prev_pos = prev_index;
2232  	ra->prev_pos <<= PAGE_SHIFT;
2233  	ra->prev_pos |= prev_offset;
2234  
2235  	*ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2236  	file_accessed(filp);
2237  	return written ? written : error;
2238  }
2239  
2240  /**
2241   * generic_file_read_iter - generic filesystem read routine
2242   * @iocb:	kernel I/O control block
2243   * @iter:	destination for the data read
2244   *
2245   * This is the "read_iter()" routine for all filesystems
2246   * that can use the page cache directly.
2247   * Return:
2248   * * number of bytes copied, even for partial reads
2249   * * negative error code if nothing was read
2250   */
2251  ssize_t
2252  generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2253  {
2254  	size_t count = iov_iter_count(iter);
2255  	ssize_t retval = 0;
2256  
2257  	if (!count)
2258  		goto out; /* skip atime */
2259  
2260  	if (iocb->ki_flags & IOCB_DIRECT) {
2261  		struct file *file = iocb->ki_filp;
2262  		struct address_space *mapping = file->f_mapping;
2263  		struct inode *inode = mapping->host;
2264  		loff_t size;
2265  
2266  		size = i_size_read(inode);
2267  		if (iocb->ki_flags & IOCB_NOWAIT) {
2268  			if (filemap_range_has_page(mapping, iocb->ki_pos,
2269  						   iocb->ki_pos + count - 1))
2270  				return -EAGAIN;
2271  		} else {
2272  			retval = filemap_write_and_wait_range(mapping,
2273  						iocb->ki_pos,
2274  					        iocb->ki_pos + count - 1);
2275  			if (retval < 0)
2276  				goto out;
2277  		}
2278  
2279  		file_accessed(file);
2280  
2281  		retval = mapping->a_ops->direct_IO(iocb, iter);
2282  		if (retval >= 0) {
2283  			iocb->ki_pos += retval;
2284  			count -= retval;
2285  		}
2286  		iov_iter_revert(iter, count - iov_iter_count(iter));
2287  
2288  		/*
2289  		 * Btrfs can have a short DIO read if we encounter
2290  		 * compressed extents, so if there was an error, or if
2291  		 * we've already read everything we wanted to, or if
2292  		 * there was a short read because we hit EOF, go ahead
2293  		 * and return.  Otherwise fallthrough to buffered io for
2294  		 * the rest of the read.  Buffered reads will not work for
2295  		 * DAX files, so don't bother trying.
2296  		 */
2297  		if (retval < 0 || !count || iocb->ki_pos >= size ||
2298  		    IS_DAX(inode))
2299  			goto out;
2300  	}
2301  
2302  	retval = generic_file_buffered_read(iocb, iter, retval);
2303  out:
2304  	return retval;
2305  }
2306  EXPORT_SYMBOL(generic_file_read_iter);
2307  
2308  #ifdef CONFIG_MMU
2309  #define MMAP_LOTSAMISS  (100)
2310  /*
2311   * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_sem
2312   * @vmf - the vm_fault for this fault.
2313   * @page - the page to lock.
2314   * @fpin - the pointer to the file we may pin (or is already pinned).
2315   *
2316   * This works similar to lock_page_or_retry in that it can drop the mmap_sem.
2317   * It differs in that it actually returns the page locked if it returns 1 and 0
2318   * if it couldn't lock the page.  If we did have to drop the mmap_sem then fpin
2319   * will point to the pinned file and needs to be fput()'ed at a later point.
2320   */
2321  static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
2322  				     struct file **fpin)
2323  {
2324  	if (trylock_page(page))
2325  		return 1;
2326  
2327  	/*
2328  	 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2329  	 * the mmap_sem still held. That's how FAULT_FLAG_RETRY_NOWAIT
2330  	 * is supposed to work. We have way too many special cases..
2331  	 */
2332  	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2333  		return 0;
2334  
2335  	*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2336  	if (vmf->flags & FAULT_FLAG_KILLABLE) {
2337  		if (__lock_page_killable(page)) {
2338  			/*
2339  			 * We didn't have the right flags to drop the mmap_sem,
2340  			 * but all fault_handlers only check for fatal signals
2341  			 * if we return VM_FAULT_RETRY, so we need to drop the
2342  			 * mmap_sem here and return 0 if we don't have a fpin.
2343  			 */
2344  			if (*fpin == NULL)
2345  				up_read(&vmf->vma->vm_mm->mmap_sem);
2346  			return 0;
2347  		}
2348  	} else
2349  		__lock_page(page);
2350  	return 1;
2351  }
2352  
2353  
2354  /*
2355   * Synchronous readahead happens when we don't even find a page in the page
2356   * cache at all.  We don't want to perform IO under the mmap sem, so if we have
2357   * to drop the mmap sem we return the file that was pinned in order for us to do
2358   * that.  If we didn't pin a file then we return NULL.  The file that is
2359   * returned needs to be fput()'ed when we're done with it.
2360   */
2361  static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
2362  {
2363  	struct file *file = vmf->vma->vm_file;
2364  	struct file_ra_state *ra = &file->f_ra;
2365  	struct address_space *mapping = file->f_mapping;
2366  	struct file *fpin = NULL;
2367  	pgoff_t offset = vmf->pgoff;
2368  
2369  	/* If we don't want any read-ahead, don't bother */
2370  	if (vmf->vma->vm_flags & VM_RAND_READ)
2371  		return fpin;
2372  	if (!ra->ra_pages)
2373  		return fpin;
2374  
2375  	if (vmf->vma->vm_flags & VM_SEQ_READ) {
2376  		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2377  		page_cache_sync_readahead(mapping, ra, file, offset,
2378  					  ra->ra_pages);
2379  		return fpin;
2380  	}
2381  
2382  	/* Avoid banging the cache line if not needed */
2383  	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2384  		ra->mmap_miss++;
2385  
2386  	/*
2387  	 * Do we miss much more than hit in this file? If so,
2388  	 * stop bothering with read-ahead. It will only hurt.
2389  	 */
2390  	if (ra->mmap_miss > MMAP_LOTSAMISS)
2391  		return fpin;
2392  
2393  	/*
2394  	 * mmap read-around
2395  	 */
2396  	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2397  	ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2398  	ra->size = ra->ra_pages;
2399  	ra->async_size = ra->ra_pages / 4;
2400  	ra_submit(ra, mapping, file);
2401  	return fpin;
2402  }
2403  
2404  /*
2405   * Asynchronous readahead happens when we find the page and PG_readahead,
2406   * so we want to possibly extend the readahead further.  We return the file that
2407   * was pinned if we have to drop the mmap_sem in order to do IO.
2408   */
2409  static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
2410  					    struct page *page)
2411  {
2412  	struct file *file = vmf->vma->vm_file;
2413  	struct file_ra_state *ra = &file->f_ra;
2414  	struct address_space *mapping = file->f_mapping;
2415  	struct file *fpin = NULL;
2416  	pgoff_t offset = vmf->pgoff;
2417  
2418  	/* If we don't want any read-ahead, don't bother */
2419  	if (vmf->vma->vm_flags & VM_RAND_READ)
2420  		return fpin;
2421  	if (ra->mmap_miss > 0)
2422  		ra->mmap_miss--;
2423  	if (PageReadahead(page)) {
2424  		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2425  		page_cache_async_readahead(mapping, ra, file,
2426  					   page, offset, ra->ra_pages);
2427  	}
2428  	return fpin;
2429  }
2430  
2431  /**
2432   * filemap_fault - read in file data for page fault handling
2433   * @vmf:	struct vm_fault containing details of the fault
2434   *
2435   * filemap_fault() is invoked via the vma operations vector for a
2436   * mapped memory region to read in file data during a page fault.
2437   *
2438   * The goto's are kind of ugly, but this streamlines the normal case of having
2439   * it in the page cache, and handles the special cases reasonably without
2440   * having a lot of duplicated code.
2441   *
2442   * vma->vm_mm->mmap_sem must be held on entry.
2443   *
2444   * If our return value has VM_FAULT_RETRY set, it's because the mmap_sem
2445   * may be dropped before doing I/O or by lock_page_maybe_drop_mmap().
2446   *
2447   * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2448   * has not been released.
2449   *
2450   * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2451   *
2452   * Return: bitwise-OR of %VM_FAULT_ codes.
2453   */
2454  vm_fault_t filemap_fault(struct vm_fault *vmf)
2455  {
2456  	int error;
2457  	struct file *file = vmf->vma->vm_file;
2458  	struct file *fpin = NULL;
2459  	struct address_space *mapping = file->f_mapping;
2460  	struct file_ra_state *ra = &file->f_ra;
2461  	struct inode *inode = mapping->host;
2462  	pgoff_t offset = vmf->pgoff;
2463  	pgoff_t max_off;
2464  	struct page *page;
2465  	vm_fault_t ret = 0;
2466  
2467  	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2468  	if (unlikely(offset >= max_off))
2469  		return VM_FAULT_SIGBUS;
2470  
2471  	/*
2472  	 * Do we have something in the page cache already?
2473  	 */
2474  	page = find_get_page(mapping, offset);
2475  	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2476  		/*
2477  		 * We found the page, so try async readahead before
2478  		 * waiting for the lock.
2479  		 */
2480  		fpin = do_async_mmap_readahead(vmf, page);
2481  	} else if (!page) {
2482  		/* No page in the page cache at all */
2483  		count_vm_event(PGMAJFAULT);
2484  		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2485  		ret = VM_FAULT_MAJOR;
2486  		fpin = do_sync_mmap_readahead(vmf);
2487  retry_find:
2488  		page = pagecache_get_page(mapping, offset,
2489  					  FGP_CREAT|FGP_FOR_MMAP,
2490  					  vmf->gfp_mask);
2491  		if (!page) {
2492  			if (fpin)
2493  				goto out_retry;
2494  			return vmf_error(-ENOMEM);
2495  		}
2496  	}
2497  
2498  	if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
2499  		goto out_retry;
2500  
2501  	/* Did it get truncated? */
2502  	if (unlikely(compound_head(page)->mapping != mapping)) {
2503  		unlock_page(page);
2504  		put_page(page);
2505  		goto retry_find;
2506  	}
2507  	VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
2508  
2509  	/*
2510  	 * We have a locked page in the page cache, now we need to check
2511  	 * that it's up-to-date. If not, it is going to be due to an error.
2512  	 */
2513  	if (unlikely(!PageUptodate(page)))
2514  		goto page_not_uptodate;
2515  
2516  	/*
2517  	 * We've made it this far and we had to drop our mmap_sem, now is the
2518  	 * time to return to the upper layer and have it re-find the vma and
2519  	 * redo the fault.
2520  	 */
2521  	if (fpin) {
2522  		unlock_page(page);
2523  		goto out_retry;
2524  	}
2525  
2526  	/*
2527  	 * Found the page and have a reference on it.
2528  	 * We must recheck i_size under page lock.
2529  	 */
2530  	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2531  	if (unlikely(offset >= max_off)) {
2532  		unlock_page(page);
2533  		put_page(page);
2534  		return VM_FAULT_SIGBUS;
2535  	}
2536  
2537  	vmf->page = page;
2538  	return ret | VM_FAULT_LOCKED;
2539  
2540  page_not_uptodate:
2541  	/*
2542  	 * Umm, take care of errors if the page isn't up-to-date.
2543  	 * Try to re-read it _once_. We do this synchronously,
2544  	 * because there really aren't any performance issues here
2545  	 * and we need to check for errors.
2546  	 */
2547  	ClearPageError(page);
2548  	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2549  	error = mapping->a_ops->readpage(file, page);
2550  	if (!error) {
2551  		wait_on_page_locked(page);
2552  		if (!PageUptodate(page))
2553  			error = -EIO;
2554  	}
2555  	if (fpin)
2556  		goto out_retry;
2557  	put_page(page);
2558  
2559  	if (!error || error == AOP_TRUNCATED_PAGE)
2560  		goto retry_find;
2561  
2562  	/* Things didn't work out. Return zero to tell the mm layer so. */
2563  	shrink_readahead_size_eio(file, ra);
2564  	return VM_FAULT_SIGBUS;
2565  
2566  out_retry:
2567  	/*
2568  	 * We dropped the mmap_sem, we need to return to the fault handler to
2569  	 * re-find the vma and come back and find our hopefully still populated
2570  	 * page.
2571  	 */
2572  	if (page)
2573  		put_page(page);
2574  	if (fpin)
2575  		fput(fpin);
2576  	return ret | VM_FAULT_RETRY;
2577  }
2578  EXPORT_SYMBOL(filemap_fault);
2579  
2580  void filemap_map_pages(struct vm_fault *vmf,
2581  		pgoff_t start_pgoff, pgoff_t end_pgoff)
2582  {
2583  	struct file *file = vmf->vma->vm_file;
2584  	struct address_space *mapping = file->f_mapping;
2585  	pgoff_t last_pgoff = start_pgoff;
2586  	unsigned long max_idx;
2587  	XA_STATE(xas, &mapping->i_pages, start_pgoff);
2588  	struct page *page;
2589  
2590  	rcu_read_lock();
2591  	xas_for_each(&xas, page, end_pgoff) {
2592  		if (xas_retry(&xas, page))
2593  			continue;
2594  		if (xa_is_value(page))
2595  			goto next;
2596  
2597  		/*
2598  		 * Check for a locked page first, as a speculative
2599  		 * reference may adversely influence page migration.
2600  		 */
2601  		if (PageLocked(page))
2602  			goto next;
2603  		if (!page_cache_get_speculative(page))
2604  			goto next;
2605  
2606  		/* Has the page moved or been split? */
2607  		if (unlikely(page != xas_reload(&xas)))
2608  			goto skip;
2609  		page = find_subpage(page, xas.xa_index);
2610  
2611  		if (!PageUptodate(page) ||
2612  				PageReadahead(page) ||
2613  				PageHWPoison(page))
2614  			goto skip;
2615  		if (!trylock_page(page))
2616  			goto skip;
2617  
2618  		if (page->mapping != mapping || !PageUptodate(page))
2619  			goto unlock;
2620  
2621  		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2622  		if (page->index >= max_idx)
2623  			goto unlock;
2624  
2625  		if (file->f_ra.mmap_miss > 0)
2626  			file->f_ra.mmap_miss--;
2627  
2628  		vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
2629  		if (vmf->pte)
2630  			vmf->pte += xas.xa_index - last_pgoff;
2631  		last_pgoff = xas.xa_index;
2632  		if (alloc_set_pte(vmf, NULL, page))
2633  			goto unlock;
2634  		unlock_page(page);
2635  		goto next;
2636  unlock:
2637  		unlock_page(page);
2638  skip:
2639  		put_page(page);
2640  next:
2641  		/* Huge page is mapped? No need to proceed. */
2642  		if (pmd_trans_huge(*vmf->pmd))
2643  			break;
2644  	}
2645  	rcu_read_unlock();
2646  }
2647  EXPORT_SYMBOL(filemap_map_pages);
2648  
2649  vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2650  {
2651  	struct page *page = vmf->page;
2652  	struct inode *inode = file_inode(vmf->vma->vm_file);
2653  	vm_fault_t ret = VM_FAULT_LOCKED;
2654  
2655  	sb_start_pagefault(inode->i_sb);
2656  	file_update_time(vmf->vma->vm_file);
2657  	lock_page(page);
2658  	if (page->mapping != inode->i_mapping) {
2659  		unlock_page(page);
2660  		ret = VM_FAULT_NOPAGE;
2661  		goto out;
2662  	}
2663  	/*
2664  	 * We mark the page dirty already here so that when freeze is in
2665  	 * progress, we are guaranteed that writeback during freezing will
2666  	 * see the dirty page and writeprotect it again.
2667  	 */
2668  	set_page_dirty(page);
2669  	wait_for_stable_page(page);
2670  out:
2671  	sb_end_pagefault(inode->i_sb);
2672  	return ret;
2673  }
2674  
2675  const struct vm_operations_struct generic_file_vm_ops = {
2676  	.fault		= filemap_fault,
2677  	.map_pages	= filemap_map_pages,
2678  	.page_mkwrite	= filemap_page_mkwrite,
2679  };
2680  
2681  /* This is used for a general mmap of a disk file */
2682  
2683  int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2684  {
2685  	struct address_space *mapping = file->f_mapping;
2686  
2687  	if (!mapping->a_ops->readpage)
2688  		return -ENOEXEC;
2689  	file_accessed(file);
2690  	vma->vm_ops = &generic_file_vm_ops;
2691  	return 0;
2692  }
2693  
2694  /*
2695   * This is for filesystems which do not implement ->writepage.
2696   */
2697  int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2698  {
2699  	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2700  		return -EINVAL;
2701  	return generic_file_mmap(file, vma);
2702  }
2703  #else
2704  vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2705  {
2706  	return VM_FAULT_SIGBUS;
2707  }
2708  int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2709  {
2710  	return -ENOSYS;
2711  }
2712  int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2713  {
2714  	return -ENOSYS;
2715  }
2716  #endif /* CONFIG_MMU */
2717  
2718  EXPORT_SYMBOL(filemap_page_mkwrite);
2719  EXPORT_SYMBOL(generic_file_mmap);
2720  EXPORT_SYMBOL(generic_file_readonly_mmap);
2721  
2722  static struct page *wait_on_page_read(struct page *page)
2723  {
2724  	if (!IS_ERR(page)) {
2725  		wait_on_page_locked(page);
2726  		if (!PageUptodate(page)) {
2727  			put_page(page);
2728  			page = ERR_PTR(-EIO);
2729  		}
2730  	}
2731  	return page;
2732  }
2733  
2734  static struct page *do_read_cache_page(struct address_space *mapping,
2735  				pgoff_t index,
2736  				int (*filler)(void *, struct page *),
2737  				void *data,
2738  				gfp_t gfp)
2739  {
2740  	struct page *page;
2741  	int err;
2742  repeat:
2743  	page = find_get_page(mapping, index);
2744  	if (!page) {
2745  		page = __page_cache_alloc(gfp);
2746  		if (!page)
2747  			return ERR_PTR(-ENOMEM);
2748  		err = add_to_page_cache_lru(page, mapping, index, gfp);
2749  		if (unlikely(err)) {
2750  			put_page(page);
2751  			if (err == -EEXIST)
2752  				goto repeat;
2753  			/* Presumably ENOMEM for xarray node */
2754  			return ERR_PTR(err);
2755  		}
2756  
2757  filler:
2758  		if (filler)
2759  			err = filler(data, page);
2760  		else
2761  			err = mapping->a_ops->readpage(data, page);
2762  
2763  		if (err < 0) {
2764  			put_page(page);
2765  			return ERR_PTR(err);
2766  		}
2767  
2768  		page = wait_on_page_read(page);
2769  		if (IS_ERR(page))
2770  			return page;
2771  		goto out;
2772  	}
2773  	if (PageUptodate(page))
2774  		goto out;
2775  
2776  	/*
2777  	 * Page is not up to date and may be locked due one of the following
2778  	 * case a: Page is being filled and the page lock is held
2779  	 * case b: Read/write error clearing the page uptodate status
2780  	 * case c: Truncation in progress (page locked)
2781  	 * case d: Reclaim in progress
2782  	 *
2783  	 * Case a, the page will be up to date when the page is unlocked.
2784  	 *    There is no need to serialise on the page lock here as the page
2785  	 *    is pinned so the lock gives no additional protection. Even if the
2786  	 *    the page is truncated, the data is still valid if PageUptodate as
2787  	 *    it's a race vs truncate race.
2788  	 * Case b, the page will not be up to date
2789  	 * Case c, the page may be truncated but in itself, the data may still
2790  	 *    be valid after IO completes as it's a read vs truncate race. The
2791  	 *    operation must restart if the page is not uptodate on unlock but
2792  	 *    otherwise serialising on page lock to stabilise the mapping gives
2793  	 *    no additional guarantees to the caller as the page lock is
2794  	 *    released before return.
2795  	 * Case d, similar to truncation. If reclaim holds the page lock, it
2796  	 *    will be a race with remove_mapping that determines if the mapping
2797  	 *    is valid on unlock but otherwise the data is valid and there is
2798  	 *    no need to serialise with page lock.
2799  	 *
2800  	 * As the page lock gives no additional guarantee, we optimistically
2801  	 * wait on the page to be unlocked and check if it's up to date and
2802  	 * use the page if it is. Otherwise, the page lock is required to
2803  	 * distinguish between the different cases. The motivation is that we
2804  	 * avoid spurious serialisations and wakeups when multiple processes
2805  	 * wait on the same page for IO to complete.
2806  	 */
2807  	wait_on_page_locked(page);
2808  	if (PageUptodate(page))
2809  		goto out;
2810  
2811  	/* Distinguish between all the cases under the safety of the lock */
2812  	lock_page(page);
2813  
2814  	/* Case c or d, restart the operation */
2815  	if (!page->mapping) {
2816  		unlock_page(page);
2817  		put_page(page);
2818  		goto repeat;
2819  	}
2820  
2821  	/* Someone else locked and filled the page in a very small window */
2822  	if (PageUptodate(page)) {
2823  		unlock_page(page);
2824  		goto out;
2825  	}
2826  	goto filler;
2827  
2828  out:
2829  	mark_page_accessed(page);
2830  	return page;
2831  }
2832  
2833  /**
2834   * read_cache_page - read into page cache, fill it if needed
2835   * @mapping:	the page's address_space
2836   * @index:	the page index
2837   * @filler:	function to perform the read
2838   * @data:	first arg to filler(data, page) function, often left as NULL
2839   *
2840   * Read into the page cache. If a page already exists, and PageUptodate() is
2841   * not set, try to fill the page and wait for it to become unlocked.
2842   *
2843   * If the page does not get brought uptodate, return -EIO.
2844   *
2845   * Return: up to date page on success, ERR_PTR() on failure.
2846   */
2847  struct page *read_cache_page(struct address_space *mapping,
2848  				pgoff_t index,
2849  				int (*filler)(void *, struct page *),
2850  				void *data)
2851  {
2852  	return do_read_cache_page(mapping, index, filler, data,
2853  			mapping_gfp_mask(mapping));
2854  }
2855  EXPORT_SYMBOL(read_cache_page);
2856  
2857  /**
2858   * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2859   * @mapping:	the page's address_space
2860   * @index:	the page index
2861   * @gfp:	the page allocator flags to use if allocating
2862   *
2863   * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2864   * any new page allocations done using the specified allocation flags.
2865   *
2866   * If the page does not get brought uptodate, return -EIO.
2867   *
2868   * Return: up to date page on success, ERR_PTR() on failure.
2869   */
2870  struct page *read_cache_page_gfp(struct address_space *mapping,
2871  				pgoff_t index,
2872  				gfp_t gfp)
2873  {
2874  	return do_read_cache_page(mapping, index, NULL, NULL, gfp);
2875  }
2876  EXPORT_SYMBOL(read_cache_page_gfp);
2877  
2878  /*
2879   * Don't operate on ranges the page cache doesn't support, and don't exceed the
2880   * LFS limits.  If pos is under the limit it becomes a short access.  If it
2881   * exceeds the limit we return -EFBIG.
2882   */
2883  static int generic_write_check_limits(struct file *file, loff_t pos,
2884  				      loff_t *count)
2885  {
2886  	struct inode *inode = file->f_mapping->host;
2887  	loff_t max_size = inode->i_sb->s_maxbytes;
2888  	loff_t limit = rlimit(RLIMIT_FSIZE);
2889  
2890  	if (limit != RLIM_INFINITY) {
2891  		if (pos >= limit) {
2892  			send_sig(SIGXFSZ, current, 0);
2893  			return -EFBIG;
2894  		}
2895  		*count = min(*count, limit - pos);
2896  	}
2897  
2898  	if (!(file->f_flags & O_LARGEFILE))
2899  		max_size = MAX_NON_LFS;
2900  
2901  	if (unlikely(pos >= max_size))
2902  		return -EFBIG;
2903  
2904  	*count = min(*count, max_size - pos);
2905  
2906  	return 0;
2907  }
2908  
2909  /*
2910   * Performs necessary checks before doing a write
2911   *
2912   * Can adjust writing position or amount of bytes to write.
2913   * Returns appropriate error code that caller should return or
2914   * zero in case that write should be allowed.
2915   */
2916  inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2917  {
2918  	struct file *file = iocb->ki_filp;
2919  	struct inode *inode = file->f_mapping->host;
2920  	loff_t count;
2921  	int ret;
2922  
2923  	if (IS_SWAPFILE(inode))
2924  		return -ETXTBSY;
2925  
2926  	if (!iov_iter_count(from))
2927  		return 0;
2928  
2929  	/* FIXME: this is for backwards compatibility with 2.4 */
2930  	if (iocb->ki_flags & IOCB_APPEND)
2931  		iocb->ki_pos = i_size_read(inode);
2932  
2933  	if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2934  		return -EINVAL;
2935  
2936  	count = iov_iter_count(from);
2937  	ret = generic_write_check_limits(file, iocb->ki_pos, &count);
2938  	if (ret)
2939  		return ret;
2940  
2941  	iov_iter_truncate(from, count);
2942  	return iov_iter_count(from);
2943  }
2944  EXPORT_SYMBOL(generic_write_checks);
2945  
2946  /*
2947   * Performs necessary checks before doing a clone.
2948   *
2949   * Can adjust amount of bytes to clone via @req_count argument.
2950   * Returns appropriate error code that caller should return or
2951   * zero in case the clone should be allowed.
2952   */
2953  int generic_remap_checks(struct file *file_in, loff_t pos_in,
2954  			 struct file *file_out, loff_t pos_out,
2955  			 loff_t *req_count, unsigned int remap_flags)
2956  {
2957  	struct inode *inode_in = file_in->f_mapping->host;
2958  	struct inode *inode_out = file_out->f_mapping->host;
2959  	uint64_t count = *req_count;
2960  	uint64_t bcount;
2961  	loff_t size_in, size_out;
2962  	loff_t bs = inode_out->i_sb->s_blocksize;
2963  	int ret;
2964  
2965  	/* The start of both ranges must be aligned to an fs block. */
2966  	if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_out, bs))
2967  		return -EINVAL;
2968  
2969  	/* Ensure offsets don't wrap. */
2970  	if (pos_in + count < pos_in || pos_out + count < pos_out)
2971  		return -EINVAL;
2972  
2973  	size_in = i_size_read(inode_in);
2974  	size_out = i_size_read(inode_out);
2975  
2976  	/* Dedupe requires both ranges to be within EOF. */
2977  	if ((remap_flags & REMAP_FILE_DEDUP) &&
2978  	    (pos_in >= size_in || pos_in + count > size_in ||
2979  	     pos_out >= size_out || pos_out + count > size_out))
2980  		return -EINVAL;
2981  
2982  	/* Ensure the infile range is within the infile. */
2983  	if (pos_in >= size_in)
2984  		return -EINVAL;
2985  	count = min(count, size_in - (uint64_t)pos_in);
2986  
2987  	ret = generic_write_check_limits(file_out, pos_out, &count);
2988  	if (ret)
2989  		return ret;
2990  
2991  	/*
2992  	 * If the user wanted us to link to the infile's EOF, round up to the
2993  	 * next block boundary for this check.
2994  	 *
2995  	 * Otherwise, make sure the count is also block-aligned, having
2996  	 * already confirmed the starting offsets' block alignment.
2997  	 */
2998  	if (pos_in + count == size_in) {
2999  		bcount = ALIGN(size_in, bs) - pos_in;
3000  	} else {
3001  		if (!IS_ALIGNED(count, bs))
3002  			count = ALIGN_DOWN(count, bs);
3003  		bcount = count;
3004  	}
3005  
3006  	/* Don't allow overlapped cloning within the same file. */
3007  	if (inode_in == inode_out &&
3008  	    pos_out + bcount > pos_in &&
3009  	    pos_out < pos_in + bcount)
3010  		return -EINVAL;
3011  
3012  	/*
3013  	 * We shortened the request but the caller can't deal with that, so
3014  	 * bounce the request back to userspace.
3015  	 */
3016  	if (*req_count != count && !(remap_flags & REMAP_FILE_CAN_SHORTEN))
3017  		return -EINVAL;
3018  
3019  	*req_count = count;
3020  	return 0;
3021  }
3022  
3023  
3024  /*
3025   * Performs common checks before doing a file copy/clone
3026   * from @file_in to @file_out.
3027   */
3028  int generic_file_rw_checks(struct file *file_in, struct file *file_out)
3029  {
3030  	struct inode *inode_in = file_inode(file_in);
3031  	struct inode *inode_out = file_inode(file_out);
3032  
3033  	/* Don't copy dirs, pipes, sockets... */
3034  	if (S_ISDIR(inode_in->i_mode) || S_ISDIR(inode_out->i_mode))
3035  		return -EISDIR;
3036  	if (!S_ISREG(inode_in->i_mode) || !S_ISREG(inode_out->i_mode))
3037  		return -EINVAL;
3038  
3039  	if (!(file_in->f_mode & FMODE_READ) ||
3040  	    !(file_out->f_mode & FMODE_WRITE) ||
3041  	    (file_out->f_flags & O_APPEND))
3042  		return -EBADF;
3043  
3044  	return 0;
3045  }
3046  
3047  /*
3048   * Performs necessary checks before doing a file copy
3049   *
3050   * Can adjust amount of bytes to copy via @req_count argument.
3051   * Returns appropriate error code that caller should return or
3052   * zero in case the copy should be allowed.
3053   */
3054  int generic_copy_file_checks(struct file *file_in, loff_t pos_in,
3055  			     struct file *file_out, loff_t pos_out,
3056  			     size_t *req_count, unsigned int flags)
3057  {
3058  	struct inode *inode_in = file_inode(file_in);
3059  	struct inode *inode_out = file_inode(file_out);
3060  	uint64_t count = *req_count;
3061  	loff_t size_in;
3062  	int ret;
3063  
3064  	ret = generic_file_rw_checks(file_in, file_out);
3065  	if (ret)
3066  		return ret;
3067  
3068  	/* Don't touch certain kinds of inodes */
3069  	if (IS_IMMUTABLE(inode_out))
3070  		return -EPERM;
3071  
3072  	if (IS_SWAPFILE(inode_in) || IS_SWAPFILE(inode_out))
3073  		return -ETXTBSY;
3074  
3075  	/* Ensure offsets don't wrap. */
3076  	if (pos_in + count < pos_in || pos_out + count < pos_out)
3077  		return -EOVERFLOW;
3078  
3079  	/* Shorten the copy to EOF */
3080  	size_in = i_size_read(inode_in);
3081  	if (pos_in >= size_in)
3082  		count = 0;
3083  	else
3084  		count = min(count, size_in - (uint64_t)pos_in);
3085  
3086  	ret = generic_write_check_limits(file_out, pos_out, &count);
3087  	if (ret)
3088  		return ret;
3089  
3090  	/* Don't allow overlapped copying within the same file. */
3091  	if (inode_in == inode_out &&
3092  	    pos_out + count > pos_in &&
3093  	    pos_out < pos_in + count)
3094  		return -EINVAL;
3095  
3096  	*req_count = count;
3097  	return 0;
3098  }
3099  
3100  int pagecache_write_begin(struct file *file, struct address_space *mapping,
3101  				loff_t pos, unsigned len, unsigned flags,
3102  				struct page **pagep, void **fsdata)
3103  {
3104  	const struct address_space_operations *aops = mapping->a_ops;
3105  
3106  	return aops->write_begin(file, mapping, pos, len, flags,
3107  							pagep, fsdata);
3108  }
3109  EXPORT_SYMBOL(pagecache_write_begin);
3110  
3111  int pagecache_write_end(struct file *file, struct address_space *mapping,
3112  				loff_t pos, unsigned len, unsigned copied,
3113  				struct page *page, void *fsdata)
3114  {
3115  	const struct address_space_operations *aops = mapping->a_ops;
3116  
3117  	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3118  }
3119  EXPORT_SYMBOL(pagecache_write_end);
3120  
3121  /*
3122   * Warn about a page cache invalidation failure during a direct I/O write.
3123   */
3124  void dio_warn_stale_pagecache(struct file *filp)
3125  {
3126  	static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3127  	char pathname[128];
3128  	struct inode *inode = file_inode(filp);
3129  	char *path;
3130  
3131  	errseq_set(&inode->i_mapping->wb_err, -EIO);
3132  	if (__ratelimit(&_rs)) {
3133  		path = file_path(filp, pathname, sizeof(pathname));
3134  		if (IS_ERR(path))
3135  			path = "(unknown)";
3136  		pr_crit("Page cache invalidation failure on direct I/O.  Possible data corruption due to collision with buffered I/O!\n");
3137  		pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3138  			current->comm);
3139  	}
3140  }
3141  
3142  ssize_t
3143  generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3144  {
3145  	struct file	*file = iocb->ki_filp;
3146  	struct address_space *mapping = file->f_mapping;
3147  	struct inode	*inode = mapping->host;
3148  	loff_t		pos = iocb->ki_pos;
3149  	ssize_t		written;
3150  	size_t		write_len;
3151  	pgoff_t		end;
3152  
3153  	write_len = iov_iter_count(from);
3154  	end = (pos + write_len - 1) >> PAGE_SHIFT;
3155  
3156  	if (iocb->ki_flags & IOCB_NOWAIT) {
3157  		/* If there are pages to writeback, return */
3158  		if (filemap_range_has_page(inode->i_mapping, pos,
3159  					   pos + write_len - 1))
3160  			return -EAGAIN;
3161  	} else {
3162  		written = filemap_write_and_wait_range(mapping, pos,
3163  							pos + write_len - 1);
3164  		if (written)
3165  			goto out;
3166  	}
3167  
3168  	/*
3169  	 * After a write we want buffered reads to be sure to go to disk to get
3170  	 * the new data.  We invalidate clean cached page from the region we're
3171  	 * about to write.  We do this *before* the write so that we can return
3172  	 * without clobbering -EIOCBQUEUED from ->direct_IO().
3173  	 */
3174  	written = invalidate_inode_pages2_range(mapping,
3175  					pos >> PAGE_SHIFT, end);
3176  	/*
3177  	 * If a page can not be invalidated, return 0 to fall back
3178  	 * to buffered write.
3179  	 */
3180  	if (written) {
3181  		if (written == -EBUSY)
3182  			return 0;
3183  		goto out;
3184  	}
3185  
3186  	written = mapping->a_ops->direct_IO(iocb, from);
3187  
3188  	/*
3189  	 * Finally, try again to invalidate clean pages which might have been
3190  	 * cached by non-direct readahead, or faulted in by get_user_pages()
3191  	 * if the source of the write was an mmap'ed region of the file
3192  	 * we're writing.  Either one is a pretty crazy thing to do,
3193  	 * so we don't support it 100%.  If this invalidation
3194  	 * fails, tough, the write still worked...
3195  	 *
3196  	 * Most of the time we do not need this since dio_complete() will do
3197  	 * the invalidation for us. However there are some file systems that
3198  	 * do not end up with dio_complete() being called, so let's not break
3199  	 * them by removing it completely.
3200  	 *
3201  	 * Noticeable example is a blkdev_direct_IO().
3202  	 *
3203  	 * Skip invalidation for async writes or if mapping has no pages.
3204  	 */
3205  	if (written > 0 && mapping->nrpages &&
3206  	    invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3207  		dio_warn_stale_pagecache(file);
3208  
3209  	if (written > 0) {
3210  		pos += written;
3211  		write_len -= written;
3212  		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3213  			i_size_write(inode, pos);
3214  			mark_inode_dirty(inode);
3215  		}
3216  		iocb->ki_pos = pos;
3217  	}
3218  	iov_iter_revert(from, write_len - iov_iter_count(from));
3219  out:
3220  	return written;
3221  }
3222  EXPORT_SYMBOL(generic_file_direct_write);
3223  
3224  /*
3225   * Find or create a page at the given pagecache position. Return the locked
3226   * page. This function is specifically for buffered writes.
3227   */
3228  struct page *grab_cache_page_write_begin(struct address_space *mapping,
3229  					pgoff_t index, unsigned flags)
3230  {
3231  	struct page *page;
3232  	int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3233  
3234  	if (flags & AOP_FLAG_NOFS)
3235  		fgp_flags |= FGP_NOFS;
3236  
3237  	page = pagecache_get_page(mapping, index, fgp_flags,
3238  			mapping_gfp_mask(mapping));
3239  	if (page)
3240  		wait_for_stable_page(page);
3241  
3242  	return page;
3243  }
3244  EXPORT_SYMBOL(grab_cache_page_write_begin);
3245  
3246  ssize_t generic_perform_write(struct file *file,
3247  				struct iov_iter *i, loff_t pos)
3248  {
3249  	struct address_space *mapping = file->f_mapping;
3250  	const struct address_space_operations *a_ops = mapping->a_ops;
3251  	long status = 0;
3252  	ssize_t written = 0;
3253  	unsigned int flags = 0;
3254  
3255  	do {
3256  		struct page *page;
3257  		unsigned long offset;	/* Offset into pagecache page */
3258  		unsigned long bytes;	/* Bytes to write to page */
3259  		size_t copied;		/* Bytes copied from user */
3260  		void *fsdata;
3261  
3262  		offset = (pos & (PAGE_SIZE - 1));
3263  		bytes = min_t(unsigned long, PAGE_SIZE - offset,
3264  						iov_iter_count(i));
3265  
3266  again:
3267  		/*
3268  		 * Bring in the user page that we will copy from _first_.
3269  		 * Otherwise there's a nasty deadlock on copying from the
3270  		 * same page as we're writing to, without it being marked
3271  		 * up-to-date.
3272  		 *
3273  		 * Not only is this an optimisation, but it is also required
3274  		 * to check that the address is actually valid, when atomic
3275  		 * usercopies are used, below.
3276  		 */
3277  		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3278  			status = -EFAULT;
3279  			break;
3280  		}
3281  
3282  		if (fatal_signal_pending(current)) {
3283  			status = -EINTR;
3284  			break;
3285  		}
3286  
3287  		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3288  						&page, &fsdata);
3289  		if (unlikely(status < 0))
3290  			break;
3291  
3292  		if (mapping_writably_mapped(mapping))
3293  			flush_dcache_page(page);
3294  
3295  		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
3296  		flush_dcache_page(page);
3297  
3298  		status = a_ops->write_end(file, mapping, pos, bytes, copied,
3299  						page, fsdata);
3300  		if (unlikely(status < 0))
3301  			break;
3302  		copied = status;
3303  
3304  		cond_resched();
3305  
3306  		iov_iter_advance(i, copied);
3307  		if (unlikely(copied == 0)) {
3308  			/*
3309  			 * If we were unable to copy any data at all, we must
3310  			 * fall back to a single segment length write.
3311  			 *
3312  			 * If we didn't fallback here, we could livelock
3313  			 * because not all segments in the iov can be copied at
3314  			 * once without a pagefault.
3315  			 */
3316  			bytes = min_t(unsigned long, PAGE_SIZE - offset,
3317  						iov_iter_single_seg_count(i));
3318  			goto again;
3319  		}
3320  		pos += copied;
3321  		written += copied;
3322  
3323  		balance_dirty_pages_ratelimited(mapping);
3324  	} while (iov_iter_count(i));
3325  
3326  	return written ? written : status;
3327  }
3328  EXPORT_SYMBOL(generic_perform_write);
3329  
3330  /**
3331   * __generic_file_write_iter - write data to a file
3332   * @iocb:	IO state structure (file, offset, etc.)
3333   * @from:	iov_iter with data to write
3334   *
3335   * This function does all the work needed for actually writing data to a
3336   * file. It does all basic checks, removes SUID from the file, updates
3337   * modification times and calls proper subroutines depending on whether we
3338   * do direct IO or a standard buffered write.
3339   *
3340   * It expects i_mutex to be grabbed unless we work on a block device or similar
3341   * object which does not need locking at all.
3342   *
3343   * This function does *not* take care of syncing data in case of O_SYNC write.
3344   * A caller has to handle it. This is mainly due to the fact that we want to
3345   * avoid syncing under i_mutex.
3346   *
3347   * Return:
3348   * * number of bytes written, even for truncated writes
3349   * * negative error code if no data has been written at all
3350   */
3351  ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3352  {
3353  	struct file *file = iocb->ki_filp;
3354  	struct address_space * mapping = file->f_mapping;
3355  	struct inode 	*inode = mapping->host;
3356  	ssize_t		written = 0;
3357  	ssize_t		err;
3358  	ssize_t		status;
3359  
3360  	/* We can write back this queue in page reclaim */
3361  	current->backing_dev_info = inode_to_bdi(inode);
3362  	err = file_remove_privs(file);
3363  	if (err)
3364  		goto out;
3365  
3366  	err = file_update_time(file);
3367  	if (err)
3368  		goto out;
3369  
3370  	if (iocb->ki_flags & IOCB_DIRECT) {
3371  		loff_t pos, endbyte;
3372  
3373  		written = generic_file_direct_write(iocb, from);
3374  		/*
3375  		 * If the write stopped short of completing, fall back to
3376  		 * buffered writes.  Some filesystems do this for writes to
3377  		 * holes, for example.  For DAX files, a buffered write will
3378  		 * not succeed (even if it did, DAX does not handle dirty
3379  		 * page-cache pages correctly).
3380  		 */
3381  		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3382  			goto out;
3383  
3384  		status = generic_perform_write(file, from, pos = iocb->ki_pos);
3385  		/*
3386  		 * If generic_perform_write() returned a synchronous error
3387  		 * then we want to return the number of bytes which were
3388  		 * direct-written, or the error code if that was zero.  Note
3389  		 * that this differs from normal direct-io semantics, which
3390  		 * will return -EFOO even if some bytes were written.
3391  		 */
3392  		if (unlikely(status < 0)) {
3393  			err = status;
3394  			goto out;
3395  		}
3396  		/*
3397  		 * We need to ensure that the page cache pages are written to
3398  		 * disk and invalidated to preserve the expected O_DIRECT
3399  		 * semantics.
3400  		 */
3401  		endbyte = pos + status - 1;
3402  		err = filemap_write_and_wait_range(mapping, pos, endbyte);
3403  		if (err == 0) {
3404  			iocb->ki_pos = endbyte + 1;
3405  			written += status;
3406  			invalidate_mapping_pages(mapping,
3407  						 pos >> PAGE_SHIFT,
3408  						 endbyte >> PAGE_SHIFT);
3409  		} else {
3410  			/*
3411  			 * We don't know how much we wrote, so just return
3412  			 * the number of bytes which were direct-written
3413  			 */
3414  		}
3415  	} else {
3416  		written = generic_perform_write(file, from, iocb->ki_pos);
3417  		if (likely(written > 0))
3418  			iocb->ki_pos += written;
3419  	}
3420  out:
3421  	current->backing_dev_info = NULL;
3422  	return written ? written : err;
3423  }
3424  EXPORT_SYMBOL(__generic_file_write_iter);
3425  
3426  /**
3427   * generic_file_write_iter - write data to a file
3428   * @iocb:	IO state structure
3429   * @from:	iov_iter with data to write
3430   *
3431   * This is a wrapper around __generic_file_write_iter() to be used by most
3432   * filesystems. It takes care of syncing the file in case of O_SYNC file
3433   * and acquires i_mutex as needed.
3434   * Return:
3435   * * negative error code if no data has been written at all of
3436   *   vfs_fsync_range() failed for a synchronous write
3437   * * number of bytes written, even for truncated writes
3438   */
3439  ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3440  {
3441  	struct file *file = iocb->ki_filp;
3442  	struct inode *inode = file->f_mapping->host;
3443  	ssize_t ret;
3444  
3445  	inode_lock(inode);
3446  	ret = generic_write_checks(iocb, from);
3447  	if (ret > 0)
3448  		ret = __generic_file_write_iter(iocb, from);
3449  	inode_unlock(inode);
3450  
3451  	if (ret > 0)
3452  		ret = generic_write_sync(iocb, ret);
3453  	return ret;
3454  }
3455  EXPORT_SYMBOL(generic_file_write_iter);
3456  
3457  /**
3458   * try_to_release_page() - release old fs-specific metadata on a page
3459   *
3460   * @page: the page which the kernel is trying to free
3461   * @gfp_mask: memory allocation flags (and I/O mode)
3462   *
3463   * The address_space is to try to release any data against the page
3464   * (presumably at page->private).
3465   *
3466   * This may also be called if PG_fscache is set on a page, indicating that the
3467   * page is known to the local caching routines.
3468   *
3469   * The @gfp_mask argument specifies whether I/O may be performed to release
3470   * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3471   *
3472   * Return: %1 if the release was successful, otherwise return zero.
3473   */
3474  int try_to_release_page(struct page *page, gfp_t gfp_mask)
3475  {
3476  	struct address_space * const mapping = page->mapping;
3477  
3478  	BUG_ON(!PageLocked(page));
3479  	if (PageWriteback(page))
3480  		return 0;
3481  
3482  	if (mapping && mapping->a_ops->releasepage)
3483  		return mapping->a_ops->releasepage(page, gfp_mask);
3484  	return try_to_free_buffers(page);
3485  }
3486  
3487  EXPORT_SYMBOL(try_to_release_page);
3488