xref: /openbmc/linux/mm/filemap.c (revision 5ebfa90bdd3d78f4967dc0095daf755989a999e0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	linux/mm/filemap.c
4  *
5  * Copyright (C) 1994-1999  Linus Torvalds
6  */
7 
8 /*
9  * This file handles the generic file mmap semantics used by
10  * most "normal" filesystems (but you don't /have/ to use this:
11  * the NFS filesystem used to do this differently, for example)
12  */
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
16 #include <linux/fs.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
22 #include <linux/mm.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/mman.h>
26 #include <linux/pagemap.h>
27 #include <linux/file.h>
28 #include <linux/uio.h>
29 #include <linux/error-injection.h>
30 #include <linux/hash.h>
31 #include <linux/writeback.h>
32 #include <linux/backing-dev.h>
33 #include <linux/pagevec.h>
34 #include <linux/security.h>
35 #include <linux/cpuset.h>
36 #include <linux/hugetlb.h>
37 #include <linux/memcontrol.h>
38 #include <linux/shmem_fs.h>
39 #include <linux/rmap.h>
40 #include <linux/delayacct.h>
41 #include <linux/psi.h>
42 #include <linux/ramfs.h>
43 #include <linux/page_idle.h>
44 #include <linux/migrate.h>
45 #include <asm/pgalloc.h>
46 #include <asm/tlbflush.h>
47 #include "internal.h"
48 
49 #define CREATE_TRACE_POINTS
50 #include <trace/events/filemap.h>
51 
52 /*
53  * FIXME: remove all knowledge of the buffer layer from the core VM
54  */
55 #include <linux/buffer_head.h> /* for try_to_free_buffers */
56 
57 #include <asm/mman.h>
58 
59 /*
60  * Shared mappings implemented 30.11.1994. It's not fully working yet,
61  * though.
62  *
63  * Shared mappings now work. 15.8.1995  Bruno.
64  *
65  * finished 'unifying' the page and buffer cache and SMP-threaded the
66  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
67  *
68  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
69  */
70 
71 /*
72  * Lock ordering:
73  *
74  *  ->i_mmap_rwsem		(truncate_pagecache)
75  *    ->private_lock		(__free_pte->block_dirty_folio)
76  *      ->swap_lock		(exclusive_swap_page, others)
77  *        ->i_pages lock
78  *
79  *  ->i_rwsem
80  *    ->invalidate_lock		(acquired by fs in truncate path)
81  *      ->i_mmap_rwsem		(truncate->unmap_mapping_range)
82  *
83  *  ->mmap_lock
84  *    ->i_mmap_rwsem
85  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
86  *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
87  *
88  *  ->mmap_lock
89  *    ->invalidate_lock		(filemap_fault)
90  *      ->lock_page		(filemap_fault, access_process_vm)
91  *
92  *  ->i_rwsem			(generic_perform_write)
93  *    ->mmap_lock		(fault_in_readable->do_page_fault)
94  *
95  *  bdi->wb.list_lock
96  *    sb_lock			(fs/fs-writeback.c)
97  *    ->i_pages lock		(__sync_single_inode)
98  *
99  *  ->i_mmap_rwsem
100  *    ->anon_vma.lock		(vma_adjust)
101  *
102  *  ->anon_vma.lock
103  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
104  *
105  *  ->page_table_lock or pte_lock
106  *    ->swap_lock		(try_to_unmap_one)
107  *    ->private_lock		(try_to_unmap_one)
108  *    ->i_pages lock		(try_to_unmap_one)
109  *    ->lruvec->lru_lock	(follow_page->mark_page_accessed)
110  *    ->lruvec->lru_lock	(check_pte_range->isolate_lru_page)
111  *    ->private_lock		(page_remove_rmap->set_page_dirty)
112  *    ->i_pages lock		(page_remove_rmap->set_page_dirty)
113  *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
114  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
115  *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
116  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
117  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
118  *    ->private_lock		(zap_pte_range->block_dirty_folio)
119  *
120  * ->i_mmap_rwsem
121  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
122  */
123 
124 static void page_cache_delete(struct address_space *mapping,
125 				   struct folio *folio, void *shadow)
126 {
127 	XA_STATE(xas, &mapping->i_pages, folio->index);
128 	long nr = 1;
129 
130 	mapping_set_update(&xas, mapping);
131 
132 	/* hugetlb pages are represented by a single entry in the xarray */
133 	if (!folio_test_hugetlb(folio)) {
134 		xas_set_order(&xas, folio->index, folio_order(folio));
135 		nr = folio_nr_pages(folio);
136 	}
137 
138 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
139 
140 	xas_store(&xas, shadow);
141 	xas_init_marks(&xas);
142 
143 	folio->mapping = NULL;
144 	/* Leave page->index set: truncation lookup relies upon it */
145 	mapping->nrpages -= nr;
146 }
147 
148 static void filemap_unaccount_folio(struct address_space *mapping,
149 		struct folio *folio)
150 {
151 	long nr;
152 
153 	VM_BUG_ON_FOLIO(folio_mapped(folio), folio);
154 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) {
155 		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
156 			 current->comm, folio_pfn(folio));
157 		dump_page(&folio->page, "still mapped when deleted");
158 		dump_stack();
159 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
160 
161 		if (mapping_exiting(mapping) && !folio_test_large(folio)) {
162 			int mapcount = page_mapcount(&folio->page);
163 
164 			if (folio_ref_count(folio) >= mapcount + 2) {
165 				/*
166 				 * All vmas have already been torn down, so it's
167 				 * a good bet that actually the page is unmapped
168 				 * and we'd rather not leak it: if we're wrong,
169 				 * another bad page check should catch it later.
170 				 */
171 				page_mapcount_reset(&folio->page);
172 				folio_ref_sub(folio, mapcount);
173 			}
174 		}
175 	}
176 
177 	/* hugetlb folios do not participate in page cache accounting. */
178 	if (folio_test_hugetlb(folio))
179 		return;
180 
181 	nr = folio_nr_pages(folio);
182 
183 	__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
184 	if (folio_test_swapbacked(folio)) {
185 		__lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
186 		if (folio_test_pmd_mappable(folio))
187 			__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr);
188 	} else if (folio_test_pmd_mappable(folio)) {
189 		__lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr);
190 		filemap_nr_thps_dec(mapping);
191 	}
192 
193 	/*
194 	 * At this point folio must be either written or cleaned by
195 	 * truncate.  Dirty folio here signals a bug and loss of
196 	 * unwritten data - on ordinary filesystems.
197 	 *
198 	 * But it's harmless on in-memory filesystems like tmpfs; and can
199 	 * occur when a driver which did get_user_pages() sets page dirty
200 	 * before putting it, while the inode is being finally evicted.
201 	 *
202 	 * Below fixes dirty accounting after removing the folio entirely
203 	 * but leaves the dirty flag set: it has no effect for truncated
204 	 * folio and anyway will be cleared before returning folio to
205 	 * buddy allocator.
206 	 */
207 	if (WARN_ON_ONCE(folio_test_dirty(folio) &&
208 			 mapping_can_writeback(mapping)))
209 		folio_account_cleaned(folio, inode_to_wb(mapping->host));
210 }
211 
212 /*
213  * Delete a page from the page cache and free it. Caller has to make
214  * sure the page is locked and that nobody else uses it - or that usage
215  * is safe.  The caller must hold the i_pages lock.
216  */
217 void __filemap_remove_folio(struct folio *folio, void *shadow)
218 {
219 	struct address_space *mapping = folio->mapping;
220 
221 	trace_mm_filemap_delete_from_page_cache(folio);
222 	filemap_unaccount_folio(mapping, folio);
223 	page_cache_delete(mapping, folio, shadow);
224 }
225 
226 void filemap_free_folio(struct address_space *mapping, struct folio *folio)
227 {
228 	void (*free_folio)(struct folio *);
229 	int refs = 1;
230 
231 	free_folio = mapping->a_ops->free_folio;
232 	if (free_folio)
233 		free_folio(folio);
234 
235 	if (folio_test_large(folio) && !folio_test_hugetlb(folio))
236 		refs = folio_nr_pages(folio);
237 	folio_put_refs(folio, refs);
238 }
239 
240 /**
241  * filemap_remove_folio - Remove folio from page cache.
242  * @folio: The folio.
243  *
244  * This must be called only on folios that are locked and have been
245  * verified to be in the page cache.  It will never put the folio into
246  * the free list because the caller has a reference on the page.
247  */
248 void filemap_remove_folio(struct folio *folio)
249 {
250 	struct address_space *mapping = folio->mapping;
251 
252 	BUG_ON(!folio_test_locked(folio));
253 	spin_lock(&mapping->host->i_lock);
254 	xa_lock_irq(&mapping->i_pages);
255 	__filemap_remove_folio(folio, NULL);
256 	xa_unlock_irq(&mapping->i_pages);
257 	if (mapping_shrinkable(mapping))
258 		inode_add_lru(mapping->host);
259 	spin_unlock(&mapping->host->i_lock);
260 
261 	filemap_free_folio(mapping, folio);
262 }
263 
264 /*
265  * page_cache_delete_batch - delete several folios from page cache
266  * @mapping: the mapping to which folios belong
267  * @fbatch: batch of folios to delete
268  *
269  * The function walks over mapping->i_pages and removes folios passed in
270  * @fbatch from the mapping. The function expects @fbatch to be sorted
271  * by page index and is optimised for it to be dense.
272  * It tolerates holes in @fbatch (mapping entries at those indices are not
273  * modified).
274  *
275  * The function expects the i_pages lock to be held.
276  */
277 static void page_cache_delete_batch(struct address_space *mapping,
278 			     struct folio_batch *fbatch)
279 {
280 	XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index);
281 	long total_pages = 0;
282 	int i = 0;
283 	struct folio *folio;
284 
285 	mapping_set_update(&xas, mapping);
286 	xas_for_each(&xas, folio, ULONG_MAX) {
287 		if (i >= folio_batch_count(fbatch))
288 			break;
289 
290 		/* A swap/dax/shadow entry got inserted? Skip it. */
291 		if (xa_is_value(folio))
292 			continue;
293 		/*
294 		 * A page got inserted in our range? Skip it. We have our
295 		 * pages locked so they are protected from being removed.
296 		 * If we see a page whose index is higher than ours, it
297 		 * means our page has been removed, which shouldn't be
298 		 * possible because we're holding the PageLock.
299 		 */
300 		if (folio != fbatch->folios[i]) {
301 			VM_BUG_ON_FOLIO(folio->index >
302 					fbatch->folios[i]->index, folio);
303 			continue;
304 		}
305 
306 		WARN_ON_ONCE(!folio_test_locked(folio));
307 
308 		folio->mapping = NULL;
309 		/* Leave folio->index set: truncation lookup relies on it */
310 
311 		i++;
312 		xas_store(&xas, NULL);
313 		total_pages += folio_nr_pages(folio);
314 	}
315 	mapping->nrpages -= total_pages;
316 }
317 
318 void delete_from_page_cache_batch(struct address_space *mapping,
319 				  struct folio_batch *fbatch)
320 {
321 	int i;
322 
323 	if (!folio_batch_count(fbatch))
324 		return;
325 
326 	spin_lock(&mapping->host->i_lock);
327 	xa_lock_irq(&mapping->i_pages);
328 	for (i = 0; i < folio_batch_count(fbatch); i++) {
329 		struct folio *folio = fbatch->folios[i];
330 
331 		trace_mm_filemap_delete_from_page_cache(folio);
332 		filemap_unaccount_folio(mapping, folio);
333 	}
334 	page_cache_delete_batch(mapping, fbatch);
335 	xa_unlock_irq(&mapping->i_pages);
336 	if (mapping_shrinkable(mapping))
337 		inode_add_lru(mapping->host);
338 	spin_unlock(&mapping->host->i_lock);
339 
340 	for (i = 0; i < folio_batch_count(fbatch); i++)
341 		filemap_free_folio(mapping, fbatch->folios[i]);
342 }
343 
344 int filemap_check_errors(struct address_space *mapping)
345 {
346 	int ret = 0;
347 	/* Check for outstanding write errors */
348 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
349 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
350 		ret = -ENOSPC;
351 	if (test_bit(AS_EIO, &mapping->flags) &&
352 	    test_and_clear_bit(AS_EIO, &mapping->flags))
353 		ret = -EIO;
354 	return ret;
355 }
356 EXPORT_SYMBOL(filemap_check_errors);
357 
358 static int filemap_check_and_keep_errors(struct address_space *mapping)
359 {
360 	/* Check for outstanding write errors */
361 	if (test_bit(AS_EIO, &mapping->flags))
362 		return -EIO;
363 	if (test_bit(AS_ENOSPC, &mapping->flags))
364 		return -ENOSPC;
365 	return 0;
366 }
367 
368 /**
369  * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
370  * @mapping:	address space structure to write
371  * @wbc:	the writeback_control controlling the writeout
372  *
373  * Call writepages on the mapping using the provided wbc to control the
374  * writeout.
375  *
376  * Return: %0 on success, negative error code otherwise.
377  */
378 int filemap_fdatawrite_wbc(struct address_space *mapping,
379 			   struct writeback_control *wbc)
380 {
381 	int ret;
382 
383 	if (!mapping_can_writeback(mapping) ||
384 	    !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
385 		return 0;
386 
387 	wbc_attach_fdatawrite_inode(wbc, mapping->host);
388 	ret = do_writepages(mapping, wbc);
389 	wbc_detach_inode(wbc);
390 	return ret;
391 }
392 EXPORT_SYMBOL(filemap_fdatawrite_wbc);
393 
394 /**
395  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
396  * @mapping:	address space structure to write
397  * @start:	offset in bytes where the range starts
398  * @end:	offset in bytes where the range ends (inclusive)
399  * @sync_mode:	enable synchronous operation
400  *
401  * Start writeback against all of a mapping's dirty pages that lie
402  * within the byte offsets <start, end> inclusive.
403  *
404  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
405  * opposed to a regular memory cleansing writeback.  The difference between
406  * these two operations is that if a dirty page/buffer is encountered, it must
407  * be waited upon, and not just skipped over.
408  *
409  * Return: %0 on success, negative error code otherwise.
410  */
411 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
412 				loff_t end, int sync_mode)
413 {
414 	struct writeback_control wbc = {
415 		.sync_mode = sync_mode,
416 		.nr_to_write = LONG_MAX,
417 		.range_start = start,
418 		.range_end = end,
419 	};
420 
421 	return filemap_fdatawrite_wbc(mapping, &wbc);
422 }
423 
424 static inline int __filemap_fdatawrite(struct address_space *mapping,
425 	int sync_mode)
426 {
427 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
428 }
429 
430 int filemap_fdatawrite(struct address_space *mapping)
431 {
432 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
433 }
434 EXPORT_SYMBOL(filemap_fdatawrite);
435 
436 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
437 				loff_t end)
438 {
439 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
440 }
441 EXPORT_SYMBOL(filemap_fdatawrite_range);
442 
443 /**
444  * filemap_flush - mostly a non-blocking flush
445  * @mapping:	target address_space
446  *
447  * This is a mostly non-blocking flush.  Not suitable for data-integrity
448  * purposes - I/O may not be started against all dirty pages.
449  *
450  * Return: %0 on success, negative error code otherwise.
451  */
452 int filemap_flush(struct address_space *mapping)
453 {
454 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
455 }
456 EXPORT_SYMBOL(filemap_flush);
457 
458 /**
459  * filemap_range_has_page - check if a page exists in range.
460  * @mapping:           address space within which to check
461  * @start_byte:        offset in bytes where the range starts
462  * @end_byte:          offset in bytes where the range ends (inclusive)
463  *
464  * Find at least one page in the range supplied, usually used to check if
465  * direct writing in this range will trigger a writeback.
466  *
467  * Return: %true if at least one page exists in the specified range,
468  * %false otherwise.
469  */
470 bool filemap_range_has_page(struct address_space *mapping,
471 			   loff_t start_byte, loff_t end_byte)
472 {
473 	struct page *page;
474 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
475 	pgoff_t max = end_byte >> PAGE_SHIFT;
476 
477 	if (end_byte < start_byte)
478 		return false;
479 
480 	rcu_read_lock();
481 	for (;;) {
482 		page = xas_find(&xas, max);
483 		if (xas_retry(&xas, page))
484 			continue;
485 		/* Shadow entries don't count */
486 		if (xa_is_value(page))
487 			continue;
488 		/*
489 		 * We don't need to try to pin this page; we're about to
490 		 * release the RCU lock anyway.  It is enough to know that
491 		 * there was a page here recently.
492 		 */
493 		break;
494 	}
495 	rcu_read_unlock();
496 
497 	return page != NULL;
498 }
499 EXPORT_SYMBOL(filemap_range_has_page);
500 
501 static void __filemap_fdatawait_range(struct address_space *mapping,
502 				     loff_t start_byte, loff_t end_byte)
503 {
504 	pgoff_t index = start_byte >> PAGE_SHIFT;
505 	pgoff_t end = end_byte >> PAGE_SHIFT;
506 	struct pagevec pvec;
507 	int nr_pages;
508 
509 	pagevec_init(&pvec);
510 	while (index <= end) {
511 		unsigned i;
512 
513 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
514 				end, PAGECACHE_TAG_WRITEBACK);
515 		if (!nr_pages)
516 			break;
517 
518 		for (i = 0; i < nr_pages; i++) {
519 			struct page *page = pvec.pages[i];
520 
521 			wait_on_page_writeback(page);
522 			ClearPageError(page);
523 		}
524 		pagevec_release(&pvec);
525 		cond_resched();
526 	}
527 }
528 
529 /**
530  * filemap_fdatawait_range - wait for writeback to complete
531  * @mapping:		address space structure to wait for
532  * @start_byte:		offset in bytes where the range starts
533  * @end_byte:		offset in bytes where the range ends (inclusive)
534  *
535  * Walk the list of under-writeback pages of the given address space
536  * in the given range and wait for all of them.  Check error status of
537  * the address space and return it.
538  *
539  * Since the error status of the address space is cleared by this function,
540  * callers are responsible for checking the return value and handling and/or
541  * reporting the error.
542  *
543  * Return: error status of the address space.
544  */
545 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
546 			    loff_t end_byte)
547 {
548 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
549 	return filemap_check_errors(mapping);
550 }
551 EXPORT_SYMBOL(filemap_fdatawait_range);
552 
553 /**
554  * filemap_fdatawait_range_keep_errors - wait for writeback to complete
555  * @mapping:		address space structure to wait for
556  * @start_byte:		offset in bytes where the range starts
557  * @end_byte:		offset in bytes where the range ends (inclusive)
558  *
559  * Walk the list of under-writeback pages of the given address space in the
560  * given range and wait for all of them.  Unlike filemap_fdatawait_range(),
561  * this function does not clear error status of the address space.
562  *
563  * Use this function if callers don't handle errors themselves.  Expected
564  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
565  * fsfreeze(8)
566  */
567 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
568 		loff_t start_byte, loff_t end_byte)
569 {
570 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
571 	return filemap_check_and_keep_errors(mapping);
572 }
573 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
574 
575 /**
576  * file_fdatawait_range - wait for writeback to complete
577  * @file:		file pointing to address space structure to wait for
578  * @start_byte:		offset in bytes where the range starts
579  * @end_byte:		offset in bytes where the range ends (inclusive)
580  *
581  * Walk the list of under-writeback pages of the address space that file
582  * refers to, in the given range and wait for all of them.  Check error
583  * status of the address space vs. the file->f_wb_err cursor and return it.
584  *
585  * Since the error status of the file is advanced by this function,
586  * callers are responsible for checking the return value and handling and/or
587  * reporting the error.
588  *
589  * Return: error status of the address space vs. the file->f_wb_err cursor.
590  */
591 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
592 {
593 	struct address_space *mapping = file->f_mapping;
594 
595 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
596 	return file_check_and_advance_wb_err(file);
597 }
598 EXPORT_SYMBOL(file_fdatawait_range);
599 
600 /**
601  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
602  * @mapping: address space structure to wait for
603  *
604  * Walk the list of under-writeback pages of the given address space
605  * and wait for all of them.  Unlike filemap_fdatawait(), this function
606  * does not clear error status of the address space.
607  *
608  * Use this function if callers don't handle errors themselves.  Expected
609  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
610  * fsfreeze(8)
611  *
612  * Return: error status of the address space.
613  */
614 int filemap_fdatawait_keep_errors(struct address_space *mapping)
615 {
616 	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
617 	return filemap_check_and_keep_errors(mapping);
618 }
619 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
620 
621 /* Returns true if writeback might be needed or already in progress. */
622 static bool mapping_needs_writeback(struct address_space *mapping)
623 {
624 	return mapping->nrpages;
625 }
626 
627 bool filemap_range_has_writeback(struct address_space *mapping,
628 				 loff_t start_byte, loff_t end_byte)
629 {
630 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
631 	pgoff_t max = end_byte >> PAGE_SHIFT;
632 	struct folio *folio;
633 
634 	if (end_byte < start_byte)
635 		return false;
636 
637 	rcu_read_lock();
638 	xas_for_each(&xas, folio, max) {
639 		if (xas_retry(&xas, folio))
640 			continue;
641 		if (xa_is_value(folio))
642 			continue;
643 		if (folio_test_dirty(folio) || folio_test_locked(folio) ||
644 				folio_test_writeback(folio))
645 			break;
646 	}
647 	rcu_read_unlock();
648 	return folio != NULL;
649 }
650 EXPORT_SYMBOL_GPL(filemap_range_has_writeback);
651 
652 /**
653  * filemap_write_and_wait_range - write out & wait on a file range
654  * @mapping:	the address_space for the pages
655  * @lstart:	offset in bytes where the range starts
656  * @lend:	offset in bytes where the range ends (inclusive)
657  *
658  * Write out and wait upon file offsets lstart->lend, inclusive.
659  *
660  * Note that @lend is inclusive (describes the last byte to be written) so
661  * that this function can be used to write to the very end-of-file (end = -1).
662  *
663  * Return: error status of the address space.
664  */
665 int filemap_write_and_wait_range(struct address_space *mapping,
666 				 loff_t lstart, loff_t lend)
667 {
668 	int err = 0, err2;
669 
670 	if (lend < lstart)
671 		return 0;
672 
673 	if (mapping_needs_writeback(mapping)) {
674 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
675 						 WB_SYNC_ALL);
676 		/*
677 		 * Even if the above returned error, the pages may be
678 		 * written partially (e.g. -ENOSPC), so we wait for it.
679 		 * But the -EIO is special case, it may indicate the worst
680 		 * thing (e.g. bug) happened, so we avoid waiting for it.
681 		 */
682 		if (err != -EIO)
683 			__filemap_fdatawait_range(mapping, lstart, lend);
684 	}
685 	err2 = filemap_check_errors(mapping);
686 	if (!err)
687 		err = err2;
688 	return err;
689 }
690 EXPORT_SYMBOL(filemap_write_and_wait_range);
691 
692 void __filemap_set_wb_err(struct address_space *mapping, int err)
693 {
694 	errseq_t eseq = errseq_set(&mapping->wb_err, err);
695 
696 	trace_filemap_set_wb_err(mapping, eseq);
697 }
698 EXPORT_SYMBOL(__filemap_set_wb_err);
699 
700 /**
701  * file_check_and_advance_wb_err - report wb error (if any) that was previously
702  * 				   and advance wb_err to current one
703  * @file: struct file on which the error is being reported
704  *
705  * When userland calls fsync (or something like nfsd does the equivalent), we
706  * want to report any writeback errors that occurred since the last fsync (or
707  * since the file was opened if there haven't been any).
708  *
709  * Grab the wb_err from the mapping. If it matches what we have in the file,
710  * then just quickly return 0. The file is all caught up.
711  *
712  * If it doesn't match, then take the mapping value, set the "seen" flag in
713  * it and try to swap it into place. If it works, or another task beat us
714  * to it with the new value, then update the f_wb_err and return the error
715  * portion. The error at this point must be reported via proper channels
716  * (a'la fsync, or NFS COMMIT operation, etc.).
717  *
718  * While we handle mapping->wb_err with atomic operations, the f_wb_err
719  * value is protected by the f_lock since we must ensure that it reflects
720  * the latest value swapped in for this file descriptor.
721  *
722  * Return: %0 on success, negative error code otherwise.
723  */
724 int file_check_and_advance_wb_err(struct file *file)
725 {
726 	int err = 0;
727 	errseq_t old = READ_ONCE(file->f_wb_err);
728 	struct address_space *mapping = file->f_mapping;
729 
730 	/* Locklessly handle the common case where nothing has changed */
731 	if (errseq_check(&mapping->wb_err, old)) {
732 		/* Something changed, must use slow path */
733 		spin_lock(&file->f_lock);
734 		old = file->f_wb_err;
735 		err = errseq_check_and_advance(&mapping->wb_err,
736 						&file->f_wb_err);
737 		trace_file_check_and_advance_wb_err(file, old);
738 		spin_unlock(&file->f_lock);
739 	}
740 
741 	/*
742 	 * We're mostly using this function as a drop in replacement for
743 	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
744 	 * that the legacy code would have had on these flags.
745 	 */
746 	clear_bit(AS_EIO, &mapping->flags);
747 	clear_bit(AS_ENOSPC, &mapping->flags);
748 	return err;
749 }
750 EXPORT_SYMBOL(file_check_and_advance_wb_err);
751 
752 /**
753  * file_write_and_wait_range - write out & wait on a file range
754  * @file:	file pointing to address_space with pages
755  * @lstart:	offset in bytes where the range starts
756  * @lend:	offset in bytes where the range ends (inclusive)
757  *
758  * Write out and wait upon file offsets lstart->lend, inclusive.
759  *
760  * Note that @lend is inclusive (describes the last byte to be written) so
761  * that this function can be used to write to the very end-of-file (end = -1).
762  *
763  * After writing out and waiting on the data, we check and advance the
764  * f_wb_err cursor to the latest value, and return any errors detected there.
765  *
766  * Return: %0 on success, negative error code otherwise.
767  */
768 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
769 {
770 	int err = 0, err2;
771 	struct address_space *mapping = file->f_mapping;
772 
773 	if (lend < lstart)
774 		return 0;
775 
776 	if (mapping_needs_writeback(mapping)) {
777 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
778 						 WB_SYNC_ALL);
779 		/* See comment of filemap_write_and_wait() */
780 		if (err != -EIO)
781 			__filemap_fdatawait_range(mapping, lstart, lend);
782 	}
783 	err2 = file_check_and_advance_wb_err(file);
784 	if (!err)
785 		err = err2;
786 	return err;
787 }
788 EXPORT_SYMBOL(file_write_and_wait_range);
789 
790 /**
791  * replace_page_cache_folio - replace a pagecache folio with a new one
792  * @old:	folio to be replaced
793  * @new:	folio to replace with
794  *
795  * This function replaces a folio in the pagecache with a new one.  On
796  * success it acquires the pagecache reference for the new folio and
797  * drops it for the old folio.  Both the old and new folios must be
798  * locked.  This function does not add the new folio to the LRU, the
799  * caller must do that.
800  *
801  * The remove + add is atomic.  This function cannot fail.
802  */
803 void replace_page_cache_folio(struct folio *old, struct folio *new)
804 {
805 	struct address_space *mapping = old->mapping;
806 	void (*free_folio)(struct folio *) = mapping->a_ops->free_folio;
807 	pgoff_t offset = old->index;
808 	XA_STATE(xas, &mapping->i_pages, offset);
809 
810 	VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
811 	VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
812 	VM_BUG_ON_FOLIO(new->mapping, new);
813 
814 	folio_get(new);
815 	new->mapping = mapping;
816 	new->index = offset;
817 
818 	mem_cgroup_migrate(old, new);
819 
820 	xas_lock_irq(&xas);
821 	xas_store(&xas, new);
822 
823 	old->mapping = NULL;
824 	/* hugetlb pages do not participate in page cache accounting. */
825 	if (!folio_test_hugetlb(old))
826 		__lruvec_stat_sub_folio(old, NR_FILE_PAGES);
827 	if (!folio_test_hugetlb(new))
828 		__lruvec_stat_add_folio(new, NR_FILE_PAGES);
829 	if (folio_test_swapbacked(old))
830 		__lruvec_stat_sub_folio(old, NR_SHMEM);
831 	if (folio_test_swapbacked(new))
832 		__lruvec_stat_add_folio(new, NR_SHMEM);
833 	xas_unlock_irq(&xas);
834 	if (free_folio)
835 		free_folio(old);
836 	folio_put(old);
837 }
838 EXPORT_SYMBOL_GPL(replace_page_cache_folio);
839 
840 noinline int __filemap_add_folio(struct address_space *mapping,
841 		struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
842 {
843 	XA_STATE(xas, &mapping->i_pages, index);
844 	int huge = folio_test_hugetlb(folio);
845 	bool charged = false;
846 	long nr = 1;
847 
848 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
849 	VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
850 	mapping_set_update(&xas, mapping);
851 
852 	if (!huge) {
853 		int error = mem_cgroup_charge(folio, NULL, gfp);
854 		VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
855 		if (error)
856 			return error;
857 		charged = true;
858 		xas_set_order(&xas, index, folio_order(folio));
859 		nr = folio_nr_pages(folio);
860 	}
861 
862 	gfp &= GFP_RECLAIM_MASK;
863 	folio_ref_add(folio, nr);
864 	folio->mapping = mapping;
865 	folio->index = xas.xa_index;
866 
867 	do {
868 		unsigned int order = xa_get_order(xas.xa, xas.xa_index);
869 		void *entry, *old = NULL;
870 
871 		if (order > folio_order(folio))
872 			xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
873 					order, gfp);
874 		xas_lock_irq(&xas);
875 		xas_for_each_conflict(&xas, entry) {
876 			old = entry;
877 			if (!xa_is_value(entry)) {
878 				xas_set_err(&xas, -EEXIST);
879 				goto unlock;
880 			}
881 		}
882 
883 		if (old) {
884 			if (shadowp)
885 				*shadowp = old;
886 			/* entry may have been split before we acquired lock */
887 			order = xa_get_order(xas.xa, xas.xa_index);
888 			if (order > folio_order(folio)) {
889 				/* How to handle large swap entries? */
890 				BUG_ON(shmem_mapping(mapping));
891 				xas_split(&xas, old, order);
892 				xas_reset(&xas);
893 			}
894 		}
895 
896 		xas_store(&xas, folio);
897 		if (xas_error(&xas))
898 			goto unlock;
899 
900 		mapping->nrpages += nr;
901 
902 		/* hugetlb pages do not participate in page cache accounting */
903 		if (!huge) {
904 			__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
905 			if (folio_test_pmd_mappable(folio))
906 				__lruvec_stat_mod_folio(folio,
907 						NR_FILE_THPS, nr);
908 		}
909 unlock:
910 		xas_unlock_irq(&xas);
911 	} while (xas_nomem(&xas, gfp));
912 
913 	if (xas_error(&xas))
914 		goto error;
915 
916 	trace_mm_filemap_add_to_page_cache(folio);
917 	return 0;
918 error:
919 	if (charged)
920 		mem_cgroup_uncharge(folio);
921 	folio->mapping = NULL;
922 	/* Leave page->index set: truncation relies upon it */
923 	folio_put_refs(folio, nr);
924 	return xas_error(&xas);
925 }
926 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
927 
928 int filemap_add_folio(struct address_space *mapping, struct folio *folio,
929 				pgoff_t index, gfp_t gfp)
930 {
931 	void *shadow = NULL;
932 	int ret;
933 
934 	__folio_set_locked(folio);
935 	ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
936 	if (unlikely(ret))
937 		__folio_clear_locked(folio);
938 	else {
939 		/*
940 		 * The folio might have been evicted from cache only
941 		 * recently, in which case it should be activated like
942 		 * any other repeatedly accessed folio.
943 		 * The exception is folios getting rewritten; evicting other
944 		 * data from the working set, only to cache data that will
945 		 * get overwritten with something else, is a waste of memory.
946 		 */
947 		WARN_ON_ONCE(folio_test_active(folio));
948 		if (!(gfp & __GFP_WRITE) && shadow)
949 			workingset_refault(folio, shadow);
950 		folio_add_lru(folio);
951 	}
952 	return ret;
953 }
954 EXPORT_SYMBOL_GPL(filemap_add_folio);
955 
956 #ifdef CONFIG_NUMA
957 struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order)
958 {
959 	int n;
960 	struct folio *folio;
961 
962 	if (cpuset_do_page_mem_spread()) {
963 		unsigned int cpuset_mems_cookie;
964 		do {
965 			cpuset_mems_cookie = read_mems_allowed_begin();
966 			n = cpuset_mem_spread_node();
967 			folio = __folio_alloc_node(gfp, order, n);
968 		} while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
969 
970 		return folio;
971 	}
972 	return folio_alloc(gfp, order);
973 }
974 EXPORT_SYMBOL(filemap_alloc_folio);
975 #endif
976 
977 /*
978  * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
979  *
980  * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
981  *
982  * @mapping1: the first mapping to lock
983  * @mapping2: the second mapping to lock
984  */
985 void filemap_invalidate_lock_two(struct address_space *mapping1,
986 				 struct address_space *mapping2)
987 {
988 	if (mapping1 > mapping2)
989 		swap(mapping1, mapping2);
990 	if (mapping1)
991 		down_write(&mapping1->invalidate_lock);
992 	if (mapping2 && mapping1 != mapping2)
993 		down_write_nested(&mapping2->invalidate_lock, 1);
994 }
995 EXPORT_SYMBOL(filemap_invalidate_lock_two);
996 
997 /*
998  * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
999  *
1000  * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1001  *
1002  * @mapping1: the first mapping to unlock
1003  * @mapping2: the second mapping to unlock
1004  */
1005 void filemap_invalidate_unlock_two(struct address_space *mapping1,
1006 				   struct address_space *mapping2)
1007 {
1008 	if (mapping1)
1009 		up_write(&mapping1->invalidate_lock);
1010 	if (mapping2 && mapping1 != mapping2)
1011 		up_write(&mapping2->invalidate_lock);
1012 }
1013 EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1014 
1015 /*
1016  * In order to wait for pages to become available there must be
1017  * waitqueues associated with pages. By using a hash table of
1018  * waitqueues where the bucket discipline is to maintain all
1019  * waiters on the same queue and wake all when any of the pages
1020  * become available, and for the woken contexts to check to be
1021  * sure the appropriate page became available, this saves space
1022  * at a cost of "thundering herd" phenomena during rare hash
1023  * collisions.
1024  */
1025 #define PAGE_WAIT_TABLE_BITS 8
1026 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1027 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1028 
1029 static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1030 {
1031 	return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
1032 }
1033 
1034 void __init pagecache_init(void)
1035 {
1036 	int i;
1037 
1038 	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1039 		init_waitqueue_head(&folio_wait_table[i]);
1040 
1041 	page_writeback_init();
1042 }
1043 
1044 /*
1045  * The page wait code treats the "wait->flags" somewhat unusually, because
1046  * we have multiple different kinds of waits, not just the usual "exclusive"
1047  * one.
1048  *
1049  * We have:
1050  *
1051  *  (a) no special bits set:
1052  *
1053  *	We're just waiting for the bit to be released, and when a waker
1054  *	calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1055  *	and remove it from the wait queue.
1056  *
1057  *	Simple and straightforward.
1058  *
1059  *  (b) WQ_FLAG_EXCLUSIVE:
1060  *
1061  *	The waiter is waiting to get the lock, and only one waiter should
1062  *	be woken up to avoid any thundering herd behavior. We'll set the
1063  *	WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1064  *
1065  *	This is the traditional exclusive wait.
1066  *
1067  *  (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1068  *
1069  *	The waiter is waiting to get the bit, and additionally wants the
1070  *	lock to be transferred to it for fair lock behavior. If the lock
1071  *	cannot be taken, we stop walking the wait queue without waking
1072  *	the waiter.
1073  *
1074  *	This is the "fair lock handoff" case, and in addition to setting
1075  *	WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1076  *	that it now has the lock.
1077  */
1078 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1079 {
1080 	unsigned int flags;
1081 	struct wait_page_key *key = arg;
1082 	struct wait_page_queue *wait_page
1083 		= container_of(wait, struct wait_page_queue, wait);
1084 
1085 	if (!wake_page_match(wait_page, key))
1086 		return 0;
1087 
1088 	/*
1089 	 * If it's a lock handoff wait, we get the bit for it, and
1090 	 * stop walking (and do not wake it up) if we can't.
1091 	 */
1092 	flags = wait->flags;
1093 	if (flags & WQ_FLAG_EXCLUSIVE) {
1094 		if (test_bit(key->bit_nr, &key->folio->flags))
1095 			return -1;
1096 		if (flags & WQ_FLAG_CUSTOM) {
1097 			if (test_and_set_bit(key->bit_nr, &key->folio->flags))
1098 				return -1;
1099 			flags |= WQ_FLAG_DONE;
1100 		}
1101 	}
1102 
1103 	/*
1104 	 * We are holding the wait-queue lock, but the waiter that
1105 	 * is waiting for this will be checking the flags without
1106 	 * any locking.
1107 	 *
1108 	 * So update the flags atomically, and wake up the waiter
1109 	 * afterwards to avoid any races. This store-release pairs
1110 	 * with the load-acquire in folio_wait_bit_common().
1111 	 */
1112 	smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1113 	wake_up_state(wait->private, mode);
1114 
1115 	/*
1116 	 * Ok, we have successfully done what we're waiting for,
1117 	 * and we can unconditionally remove the wait entry.
1118 	 *
1119 	 * Note that this pairs with the "finish_wait()" in the
1120 	 * waiter, and has to be the absolute last thing we do.
1121 	 * After this list_del_init(&wait->entry) the wait entry
1122 	 * might be de-allocated and the process might even have
1123 	 * exited.
1124 	 */
1125 	list_del_init_careful(&wait->entry);
1126 	return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1127 }
1128 
1129 static void folio_wake_bit(struct folio *folio, int bit_nr)
1130 {
1131 	wait_queue_head_t *q = folio_waitqueue(folio);
1132 	struct wait_page_key key;
1133 	unsigned long flags;
1134 	wait_queue_entry_t bookmark;
1135 
1136 	key.folio = folio;
1137 	key.bit_nr = bit_nr;
1138 	key.page_match = 0;
1139 
1140 	bookmark.flags = 0;
1141 	bookmark.private = NULL;
1142 	bookmark.func = NULL;
1143 	INIT_LIST_HEAD(&bookmark.entry);
1144 
1145 	spin_lock_irqsave(&q->lock, flags);
1146 	__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1147 
1148 	while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1149 		/*
1150 		 * Take a breather from holding the lock,
1151 		 * allow pages that finish wake up asynchronously
1152 		 * to acquire the lock and remove themselves
1153 		 * from wait queue
1154 		 */
1155 		spin_unlock_irqrestore(&q->lock, flags);
1156 		cpu_relax();
1157 		spin_lock_irqsave(&q->lock, flags);
1158 		__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1159 	}
1160 
1161 	/*
1162 	 * It's possible to miss clearing waiters here, when we woke our page
1163 	 * waiters, but the hashed waitqueue has waiters for other pages on it.
1164 	 * That's okay, it's a rare case. The next waker will clear it.
1165 	 *
1166 	 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE,
1167 	 * other), the flag may be cleared in the course of freeing the page;
1168 	 * but that is not required for correctness.
1169 	 */
1170 	if (!waitqueue_active(q) || !key.page_match)
1171 		folio_clear_waiters(folio);
1172 
1173 	spin_unlock_irqrestore(&q->lock, flags);
1174 }
1175 
1176 static void folio_wake(struct folio *folio, int bit)
1177 {
1178 	if (!folio_test_waiters(folio))
1179 		return;
1180 	folio_wake_bit(folio, bit);
1181 }
1182 
1183 /*
1184  * A choice of three behaviors for folio_wait_bit_common():
1185  */
1186 enum behavior {
1187 	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
1188 			 * __folio_lock() waiting on then setting PG_locked.
1189 			 */
1190 	SHARED,		/* Hold ref to page and check the bit when woken, like
1191 			 * folio_wait_writeback() waiting on PG_writeback.
1192 			 */
1193 	DROP,		/* Drop ref to page before wait, no check when woken,
1194 			 * like folio_put_wait_locked() on PG_locked.
1195 			 */
1196 };
1197 
1198 /*
1199  * Attempt to check (or get) the folio flag, and mark us done
1200  * if successful.
1201  */
1202 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
1203 					struct wait_queue_entry *wait)
1204 {
1205 	if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1206 		if (test_and_set_bit(bit_nr, &folio->flags))
1207 			return false;
1208 	} else if (test_bit(bit_nr, &folio->flags))
1209 		return false;
1210 
1211 	wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1212 	return true;
1213 }
1214 
1215 /* How many times do we accept lock stealing from under a waiter? */
1216 int sysctl_page_lock_unfairness = 5;
1217 
1218 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1219 		int state, enum behavior behavior)
1220 {
1221 	wait_queue_head_t *q = folio_waitqueue(folio);
1222 	int unfairness = sysctl_page_lock_unfairness;
1223 	struct wait_page_queue wait_page;
1224 	wait_queue_entry_t *wait = &wait_page.wait;
1225 	bool thrashing = false;
1226 	unsigned long pflags;
1227 	bool in_thrashing;
1228 
1229 	if (bit_nr == PG_locked &&
1230 	    !folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1231 		delayacct_thrashing_start(&in_thrashing);
1232 		psi_memstall_enter(&pflags);
1233 		thrashing = true;
1234 	}
1235 
1236 	init_wait(wait);
1237 	wait->func = wake_page_function;
1238 	wait_page.folio = folio;
1239 	wait_page.bit_nr = bit_nr;
1240 
1241 repeat:
1242 	wait->flags = 0;
1243 	if (behavior == EXCLUSIVE) {
1244 		wait->flags = WQ_FLAG_EXCLUSIVE;
1245 		if (--unfairness < 0)
1246 			wait->flags |= WQ_FLAG_CUSTOM;
1247 	}
1248 
1249 	/*
1250 	 * Do one last check whether we can get the
1251 	 * page bit synchronously.
1252 	 *
1253 	 * Do the folio_set_waiters() marking before that
1254 	 * to let any waker we _just_ missed know they
1255 	 * need to wake us up (otherwise they'll never
1256 	 * even go to the slow case that looks at the
1257 	 * page queue), and add ourselves to the wait
1258 	 * queue if we need to sleep.
1259 	 *
1260 	 * This part needs to be done under the queue
1261 	 * lock to avoid races.
1262 	 */
1263 	spin_lock_irq(&q->lock);
1264 	folio_set_waiters(folio);
1265 	if (!folio_trylock_flag(folio, bit_nr, wait))
1266 		__add_wait_queue_entry_tail(q, wait);
1267 	spin_unlock_irq(&q->lock);
1268 
1269 	/*
1270 	 * From now on, all the logic will be based on
1271 	 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1272 	 * see whether the page bit testing has already
1273 	 * been done by the wake function.
1274 	 *
1275 	 * We can drop our reference to the folio.
1276 	 */
1277 	if (behavior == DROP)
1278 		folio_put(folio);
1279 
1280 	/*
1281 	 * Note that until the "finish_wait()", or until
1282 	 * we see the WQ_FLAG_WOKEN flag, we need to
1283 	 * be very careful with the 'wait->flags', because
1284 	 * we may race with a waker that sets them.
1285 	 */
1286 	for (;;) {
1287 		unsigned int flags;
1288 
1289 		set_current_state(state);
1290 
1291 		/* Loop until we've been woken or interrupted */
1292 		flags = smp_load_acquire(&wait->flags);
1293 		if (!(flags & WQ_FLAG_WOKEN)) {
1294 			if (signal_pending_state(state, current))
1295 				break;
1296 
1297 			io_schedule();
1298 			continue;
1299 		}
1300 
1301 		/* If we were non-exclusive, we're done */
1302 		if (behavior != EXCLUSIVE)
1303 			break;
1304 
1305 		/* If the waker got the lock for us, we're done */
1306 		if (flags & WQ_FLAG_DONE)
1307 			break;
1308 
1309 		/*
1310 		 * Otherwise, if we're getting the lock, we need to
1311 		 * try to get it ourselves.
1312 		 *
1313 		 * And if that fails, we'll have to retry this all.
1314 		 */
1315 		if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
1316 			goto repeat;
1317 
1318 		wait->flags |= WQ_FLAG_DONE;
1319 		break;
1320 	}
1321 
1322 	/*
1323 	 * If a signal happened, this 'finish_wait()' may remove the last
1324 	 * waiter from the wait-queues, but the folio waiters bit will remain
1325 	 * set. That's ok. The next wakeup will take care of it, and trying
1326 	 * to do it here would be difficult and prone to races.
1327 	 */
1328 	finish_wait(q, wait);
1329 
1330 	if (thrashing) {
1331 		delayacct_thrashing_end(&in_thrashing);
1332 		psi_memstall_leave(&pflags);
1333 	}
1334 
1335 	/*
1336 	 * NOTE! The wait->flags weren't stable until we've done the
1337 	 * 'finish_wait()', and we could have exited the loop above due
1338 	 * to a signal, and had a wakeup event happen after the signal
1339 	 * test but before the 'finish_wait()'.
1340 	 *
1341 	 * So only after the finish_wait() can we reliably determine
1342 	 * if we got woken up or not, so we can now figure out the final
1343 	 * return value based on that state without races.
1344 	 *
1345 	 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1346 	 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1347 	 */
1348 	if (behavior == EXCLUSIVE)
1349 		return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1350 
1351 	return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1352 }
1353 
1354 #ifdef CONFIG_MIGRATION
1355 /**
1356  * migration_entry_wait_on_locked - Wait for a migration entry to be removed
1357  * @entry: migration swap entry.
1358  * @ptep: mapped pte pointer. Will return with the ptep unmapped. Only required
1359  *        for pte entries, pass NULL for pmd entries.
1360  * @ptl: already locked ptl. This function will drop the lock.
1361  *
1362  * Wait for a migration entry referencing the given page to be removed. This is
1363  * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except
1364  * this can be called without taking a reference on the page. Instead this
1365  * should be called while holding the ptl for the migration entry referencing
1366  * the page.
1367  *
1368  * Returns after unmapping and unlocking the pte/ptl with pte_unmap_unlock().
1369  *
1370  * This follows the same logic as folio_wait_bit_common() so see the comments
1371  * there.
1372  */
1373 void migration_entry_wait_on_locked(swp_entry_t entry, pte_t *ptep,
1374 				spinlock_t *ptl)
1375 {
1376 	struct wait_page_queue wait_page;
1377 	wait_queue_entry_t *wait = &wait_page.wait;
1378 	bool thrashing = false;
1379 	unsigned long pflags;
1380 	bool in_thrashing;
1381 	wait_queue_head_t *q;
1382 	struct folio *folio = page_folio(pfn_swap_entry_to_page(entry));
1383 
1384 	q = folio_waitqueue(folio);
1385 	if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1386 		delayacct_thrashing_start(&in_thrashing);
1387 		psi_memstall_enter(&pflags);
1388 		thrashing = true;
1389 	}
1390 
1391 	init_wait(wait);
1392 	wait->func = wake_page_function;
1393 	wait_page.folio = folio;
1394 	wait_page.bit_nr = PG_locked;
1395 	wait->flags = 0;
1396 
1397 	spin_lock_irq(&q->lock);
1398 	folio_set_waiters(folio);
1399 	if (!folio_trylock_flag(folio, PG_locked, wait))
1400 		__add_wait_queue_entry_tail(q, wait);
1401 	spin_unlock_irq(&q->lock);
1402 
1403 	/*
1404 	 * If a migration entry exists for the page the migration path must hold
1405 	 * a valid reference to the page, and it must take the ptl to remove the
1406 	 * migration entry. So the page is valid until the ptl is dropped.
1407 	 */
1408 	if (ptep)
1409 		pte_unmap_unlock(ptep, ptl);
1410 	else
1411 		spin_unlock(ptl);
1412 
1413 	for (;;) {
1414 		unsigned int flags;
1415 
1416 		set_current_state(TASK_UNINTERRUPTIBLE);
1417 
1418 		/* Loop until we've been woken or interrupted */
1419 		flags = smp_load_acquire(&wait->flags);
1420 		if (!(flags & WQ_FLAG_WOKEN)) {
1421 			if (signal_pending_state(TASK_UNINTERRUPTIBLE, current))
1422 				break;
1423 
1424 			io_schedule();
1425 			continue;
1426 		}
1427 		break;
1428 	}
1429 
1430 	finish_wait(q, wait);
1431 
1432 	if (thrashing) {
1433 		delayacct_thrashing_end(&in_thrashing);
1434 		psi_memstall_leave(&pflags);
1435 	}
1436 }
1437 #endif
1438 
1439 void folio_wait_bit(struct folio *folio, int bit_nr)
1440 {
1441 	folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1442 }
1443 EXPORT_SYMBOL(folio_wait_bit);
1444 
1445 int folio_wait_bit_killable(struct folio *folio, int bit_nr)
1446 {
1447 	return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
1448 }
1449 EXPORT_SYMBOL(folio_wait_bit_killable);
1450 
1451 /**
1452  * folio_put_wait_locked - Drop a reference and wait for it to be unlocked
1453  * @folio: The folio to wait for.
1454  * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1455  *
1456  * The caller should hold a reference on @folio.  They expect the page to
1457  * become unlocked relatively soon, but do not wish to hold up migration
1458  * (for example) by holding the reference while waiting for the folio to
1459  * come unlocked.  After this function returns, the caller should not
1460  * dereference @folio.
1461  *
1462  * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal.
1463  */
1464 static int folio_put_wait_locked(struct folio *folio, int state)
1465 {
1466 	return folio_wait_bit_common(folio, PG_locked, state, DROP);
1467 }
1468 
1469 /**
1470  * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue
1471  * @folio: Folio defining the wait queue of interest
1472  * @waiter: Waiter to add to the queue
1473  *
1474  * Add an arbitrary @waiter to the wait queue for the nominated @folio.
1475  */
1476 void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter)
1477 {
1478 	wait_queue_head_t *q = folio_waitqueue(folio);
1479 	unsigned long flags;
1480 
1481 	spin_lock_irqsave(&q->lock, flags);
1482 	__add_wait_queue_entry_tail(q, waiter);
1483 	folio_set_waiters(folio);
1484 	spin_unlock_irqrestore(&q->lock, flags);
1485 }
1486 EXPORT_SYMBOL_GPL(folio_add_wait_queue);
1487 
1488 #ifndef clear_bit_unlock_is_negative_byte
1489 
1490 /*
1491  * PG_waiters is the high bit in the same byte as PG_lock.
1492  *
1493  * On x86 (and on many other architectures), we can clear PG_lock and
1494  * test the sign bit at the same time. But if the architecture does
1495  * not support that special operation, we just do this all by hand
1496  * instead.
1497  *
1498  * The read of PG_waiters has to be after (or concurrently with) PG_locked
1499  * being cleared, but a memory barrier should be unnecessary since it is
1500  * in the same byte as PG_locked.
1501  */
1502 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1503 {
1504 	clear_bit_unlock(nr, mem);
1505 	/* smp_mb__after_atomic(); */
1506 	return test_bit(PG_waiters, mem);
1507 }
1508 
1509 #endif
1510 
1511 /**
1512  * folio_unlock - Unlock a locked folio.
1513  * @folio: The folio.
1514  *
1515  * Unlocks the folio and wakes up any thread sleeping on the page lock.
1516  *
1517  * Context: May be called from interrupt or process context.  May not be
1518  * called from NMI context.
1519  */
1520 void folio_unlock(struct folio *folio)
1521 {
1522 	/* Bit 7 allows x86 to check the byte's sign bit */
1523 	BUILD_BUG_ON(PG_waiters != 7);
1524 	BUILD_BUG_ON(PG_locked > 7);
1525 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1526 	if (clear_bit_unlock_is_negative_byte(PG_locked, folio_flags(folio, 0)))
1527 		folio_wake_bit(folio, PG_locked);
1528 }
1529 EXPORT_SYMBOL(folio_unlock);
1530 
1531 /**
1532  * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1533  * @folio: The folio.
1534  *
1535  * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1536  * it.  The folio reference held for PG_private_2 being set is released.
1537  *
1538  * This is, for example, used when a netfs folio is being written to a local
1539  * disk cache, thereby allowing writes to the cache for the same folio to be
1540  * serialised.
1541  */
1542 void folio_end_private_2(struct folio *folio)
1543 {
1544 	VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1545 	clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
1546 	folio_wake_bit(folio, PG_private_2);
1547 	folio_put(folio);
1548 }
1549 EXPORT_SYMBOL(folio_end_private_2);
1550 
1551 /**
1552  * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1553  * @folio: The folio to wait on.
1554  *
1555  * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio.
1556  */
1557 void folio_wait_private_2(struct folio *folio)
1558 {
1559 	while (folio_test_private_2(folio))
1560 		folio_wait_bit(folio, PG_private_2);
1561 }
1562 EXPORT_SYMBOL(folio_wait_private_2);
1563 
1564 /**
1565  * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1566  * @folio: The folio to wait on.
1567  *
1568  * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio or until a
1569  * fatal signal is received by the calling task.
1570  *
1571  * Return:
1572  * - 0 if successful.
1573  * - -EINTR if a fatal signal was encountered.
1574  */
1575 int folio_wait_private_2_killable(struct folio *folio)
1576 {
1577 	int ret = 0;
1578 
1579 	while (folio_test_private_2(folio)) {
1580 		ret = folio_wait_bit_killable(folio, PG_private_2);
1581 		if (ret < 0)
1582 			break;
1583 	}
1584 
1585 	return ret;
1586 }
1587 EXPORT_SYMBOL(folio_wait_private_2_killable);
1588 
1589 /**
1590  * folio_end_writeback - End writeback against a folio.
1591  * @folio: The folio.
1592  */
1593 void folio_end_writeback(struct folio *folio)
1594 {
1595 	/*
1596 	 * folio_test_clear_reclaim() could be used here but it is an
1597 	 * atomic operation and overkill in this particular case. Failing
1598 	 * to shuffle a folio marked for immediate reclaim is too mild
1599 	 * a gain to justify taking an atomic operation penalty at the
1600 	 * end of every folio writeback.
1601 	 */
1602 	if (folio_test_reclaim(folio)) {
1603 		folio_clear_reclaim(folio);
1604 		folio_rotate_reclaimable(folio);
1605 	}
1606 
1607 	/*
1608 	 * Writeback does not hold a folio reference of its own, relying
1609 	 * on truncation to wait for the clearing of PG_writeback.
1610 	 * But here we must make sure that the folio is not freed and
1611 	 * reused before the folio_wake().
1612 	 */
1613 	folio_get(folio);
1614 	if (!__folio_end_writeback(folio))
1615 		BUG();
1616 
1617 	smp_mb__after_atomic();
1618 	folio_wake(folio, PG_writeback);
1619 	acct_reclaim_writeback(folio);
1620 	folio_put(folio);
1621 }
1622 EXPORT_SYMBOL(folio_end_writeback);
1623 
1624 /*
1625  * After completing I/O on a page, call this routine to update the page
1626  * flags appropriately
1627  */
1628 void page_endio(struct page *page, bool is_write, int err)
1629 {
1630 	struct folio *folio = page_folio(page);
1631 
1632 	if (!is_write) {
1633 		if (!err) {
1634 			folio_mark_uptodate(folio);
1635 		} else {
1636 			folio_clear_uptodate(folio);
1637 			folio_set_error(folio);
1638 		}
1639 		folio_unlock(folio);
1640 	} else {
1641 		if (err) {
1642 			struct address_space *mapping;
1643 
1644 			folio_set_error(folio);
1645 			mapping = folio_mapping(folio);
1646 			if (mapping)
1647 				mapping_set_error(mapping, err);
1648 		}
1649 		folio_end_writeback(folio);
1650 	}
1651 }
1652 EXPORT_SYMBOL_GPL(page_endio);
1653 
1654 /**
1655  * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1656  * @folio: The folio to lock
1657  */
1658 void __folio_lock(struct folio *folio)
1659 {
1660 	folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
1661 				EXCLUSIVE);
1662 }
1663 EXPORT_SYMBOL(__folio_lock);
1664 
1665 int __folio_lock_killable(struct folio *folio)
1666 {
1667 	return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
1668 					EXCLUSIVE);
1669 }
1670 EXPORT_SYMBOL_GPL(__folio_lock_killable);
1671 
1672 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
1673 {
1674 	struct wait_queue_head *q = folio_waitqueue(folio);
1675 	int ret = 0;
1676 
1677 	wait->folio = folio;
1678 	wait->bit_nr = PG_locked;
1679 
1680 	spin_lock_irq(&q->lock);
1681 	__add_wait_queue_entry_tail(q, &wait->wait);
1682 	folio_set_waiters(folio);
1683 	ret = !folio_trylock(folio);
1684 	/*
1685 	 * If we were successful now, we know we're still on the
1686 	 * waitqueue as we're still under the lock. This means it's
1687 	 * safe to remove and return success, we know the callback
1688 	 * isn't going to trigger.
1689 	 */
1690 	if (!ret)
1691 		__remove_wait_queue(q, &wait->wait);
1692 	else
1693 		ret = -EIOCBQUEUED;
1694 	spin_unlock_irq(&q->lock);
1695 	return ret;
1696 }
1697 
1698 /*
1699  * Return values:
1700  * true - folio is locked; mmap_lock is still held.
1701  * false - folio is not locked.
1702  *     mmap_lock has been released (mmap_read_unlock(), unless flags had both
1703  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1704  *     which case mmap_lock is still held.
1705  *
1706  * If neither ALLOW_RETRY nor KILLABLE are set, will always return true
1707  * with the folio locked and the mmap_lock unperturbed.
1708  */
1709 bool __folio_lock_or_retry(struct folio *folio, struct mm_struct *mm,
1710 			 unsigned int flags)
1711 {
1712 	if (fault_flag_allow_retry_first(flags)) {
1713 		/*
1714 		 * CAUTION! In this case, mmap_lock is not released
1715 		 * even though return 0.
1716 		 */
1717 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1718 			return false;
1719 
1720 		mmap_read_unlock(mm);
1721 		if (flags & FAULT_FLAG_KILLABLE)
1722 			folio_wait_locked_killable(folio);
1723 		else
1724 			folio_wait_locked(folio);
1725 		return false;
1726 	}
1727 	if (flags & FAULT_FLAG_KILLABLE) {
1728 		bool ret;
1729 
1730 		ret = __folio_lock_killable(folio);
1731 		if (ret) {
1732 			mmap_read_unlock(mm);
1733 			return false;
1734 		}
1735 	} else {
1736 		__folio_lock(folio);
1737 	}
1738 
1739 	return true;
1740 }
1741 
1742 /**
1743  * page_cache_next_miss() - Find the next gap in the page cache.
1744  * @mapping: Mapping.
1745  * @index: Index.
1746  * @max_scan: Maximum range to search.
1747  *
1748  * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1749  * gap with the lowest index.
1750  *
1751  * This function may be called under the rcu_read_lock.  However, this will
1752  * not atomically search a snapshot of the cache at a single point in time.
1753  * For example, if a gap is created at index 5, then subsequently a gap is
1754  * created at index 10, page_cache_next_miss covering both indices may
1755  * return 10 if called under the rcu_read_lock.
1756  *
1757  * Return: The index of the gap if found, otherwise an index outside the
1758  * range specified (in which case 'return - index >= max_scan' will be true).
1759  * In the rare case of index wrap-around, 0 will be returned.
1760  */
1761 pgoff_t page_cache_next_miss(struct address_space *mapping,
1762 			     pgoff_t index, unsigned long max_scan)
1763 {
1764 	XA_STATE(xas, &mapping->i_pages, index);
1765 
1766 	while (max_scan--) {
1767 		void *entry = xas_next(&xas);
1768 		if (!entry || xa_is_value(entry))
1769 			break;
1770 		if (xas.xa_index == 0)
1771 			break;
1772 	}
1773 
1774 	return xas.xa_index;
1775 }
1776 EXPORT_SYMBOL(page_cache_next_miss);
1777 
1778 /**
1779  * page_cache_prev_miss() - Find the previous gap in the page cache.
1780  * @mapping: Mapping.
1781  * @index: Index.
1782  * @max_scan: Maximum range to search.
1783  *
1784  * Search the range [max(index - max_scan + 1, 0), index] for the
1785  * gap with the highest index.
1786  *
1787  * This function may be called under the rcu_read_lock.  However, this will
1788  * not atomically search a snapshot of the cache at a single point in time.
1789  * For example, if a gap is created at index 10, then subsequently a gap is
1790  * created at index 5, page_cache_prev_miss() covering both indices may
1791  * return 5 if called under the rcu_read_lock.
1792  *
1793  * Return: The index of the gap if found, otherwise an index outside the
1794  * range specified (in which case 'index - return >= max_scan' will be true).
1795  * In the rare case of wrap-around, ULONG_MAX will be returned.
1796  */
1797 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1798 			     pgoff_t index, unsigned long max_scan)
1799 {
1800 	XA_STATE(xas, &mapping->i_pages, index);
1801 
1802 	while (max_scan--) {
1803 		void *entry = xas_prev(&xas);
1804 		if (!entry || xa_is_value(entry))
1805 			break;
1806 		if (xas.xa_index == ULONG_MAX)
1807 			break;
1808 	}
1809 
1810 	return xas.xa_index;
1811 }
1812 EXPORT_SYMBOL(page_cache_prev_miss);
1813 
1814 /*
1815  * Lockless page cache protocol:
1816  * On the lookup side:
1817  * 1. Load the folio from i_pages
1818  * 2. Increment the refcount if it's not zero
1819  * 3. If the folio is not found by xas_reload(), put the refcount and retry
1820  *
1821  * On the removal side:
1822  * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1823  * B. Remove the page from i_pages
1824  * C. Return the page to the page allocator
1825  *
1826  * This means that any page may have its reference count temporarily
1827  * increased by a speculative page cache (or fast GUP) lookup as it can
1828  * be allocated by another user before the RCU grace period expires.
1829  * Because the refcount temporarily acquired here may end up being the
1830  * last refcount on the page, any page allocation must be freeable by
1831  * folio_put().
1832  */
1833 
1834 /*
1835  * mapping_get_entry - Get a page cache entry.
1836  * @mapping: the address_space to search
1837  * @index: The page cache index.
1838  *
1839  * Looks up the page cache entry at @mapping & @index.  If it is a folio,
1840  * it is returned with an increased refcount.  If it is a shadow entry
1841  * of a previously evicted folio, or a swap entry from shmem/tmpfs,
1842  * it is returned without further action.
1843  *
1844  * Return: The folio, swap or shadow entry, %NULL if nothing is found.
1845  */
1846 static void *mapping_get_entry(struct address_space *mapping, pgoff_t index)
1847 {
1848 	XA_STATE(xas, &mapping->i_pages, index);
1849 	struct folio *folio;
1850 
1851 	rcu_read_lock();
1852 repeat:
1853 	xas_reset(&xas);
1854 	folio = xas_load(&xas);
1855 	if (xas_retry(&xas, folio))
1856 		goto repeat;
1857 	/*
1858 	 * A shadow entry of a recently evicted page, or a swap entry from
1859 	 * shmem/tmpfs.  Return it without attempting to raise page count.
1860 	 */
1861 	if (!folio || xa_is_value(folio))
1862 		goto out;
1863 
1864 	if (!folio_try_get_rcu(folio))
1865 		goto repeat;
1866 
1867 	if (unlikely(folio != xas_reload(&xas))) {
1868 		folio_put(folio);
1869 		goto repeat;
1870 	}
1871 out:
1872 	rcu_read_unlock();
1873 
1874 	return folio;
1875 }
1876 
1877 /**
1878  * __filemap_get_folio - Find and get a reference to a folio.
1879  * @mapping: The address_space to search.
1880  * @index: The page index.
1881  * @fgp_flags: %FGP flags modify how the folio is returned.
1882  * @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
1883  *
1884  * Looks up the page cache entry at @mapping & @index.
1885  *
1886  * @fgp_flags can be zero or more of these flags:
1887  *
1888  * * %FGP_ACCESSED - The folio will be marked accessed.
1889  * * %FGP_LOCK - The folio is returned locked.
1890  * * %FGP_ENTRY - If there is a shadow / swap / DAX entry, return it
1891  *   instead of allocating a new folio to replace it.
1892  * * %FGP_CREAT - If no page is present then a new page is allocated using
1893  *   @gfp and added to the page cache and the VM's LRU list.
1894  *   The page is returned locked and with an increased refcount.
1895  * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1896  *   page is already in cache.  If the page was allocated, unlock it before
1897  *   returning so the caller can do the same dance.
1898  * * %FGP_WRITE - The page will be written to by the caller.
1899  * * %FGP_NOFS - __GFP_FS will get cleared in gfp.
1900  * * %FGP_NOWAIT - Don't get blocked by page lock.
1901  * * %FGP_STABLE - Wait for the folio to be stable (finished writeback)
1902  *
1903  * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1904  * if the %GFP flags specified for %FGP_CREAT are atomic.
1905  *
1906  * If there is a page cache page, it is returned with an increased refcount.
1907  *
1908  * Return: The found folio or %NULL otherwise.
1909  */
1910 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
1911 		int fgp_flags, gfp_t gfp)
1912 {
1913 	struct folio *folio;
1914 
1915 repeat:
1916 	folio = mapping_get_entry(mapping, index);
1917 	if (xa_is_value(folio)) {
1918 		if (fgp_flags & FGP_ENTRY)
1919 			return folio;
1920 		folio = NULL;
1921 	}
1922 	if (!folio)
1923 		goto no_page;
1924 
1925 	if (fgp_flags & FGP_LOCK) {
1926 		if (fgp_flags & FGP_NOWAIT) {
1927 			if (!folio_trylock(folio)) {
1928 				folio_put(folio);
1929 				return NULL;
1930 			}
1931 		} else {
1932 			folio_lock(folio);
1933 		}
1934 
1935 		/* Has the page been truncated? */
1936 		if (unlikely(folio->mapping != mapping)) {
1937 			folio_unlock(folio);
1938 			folio_put(folio);
1939 			goto repeat;
1940 		}
1941 		VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
1942 	}
1943 
1944 	if (fgp_flags & FGP_ACCESSED)
1945 		folio_mark_accessed(folio);
1946 	else if (fgp_flags & FGP_WRITE) {
1947 		/* Clear idle flag for buffer write */
1948 		if (folio_test_idle(folio))
1949 			folio_clear_idle(folio);
1950 	}
1951 
1952 	if (fgp_flags & FGP_STABLE)
1953 		folio_wait_stable(folio);
1954 no_page:
1955 	if (!folio && (fgp_flags & FGP_CREAT)) {
1956 		int err;
1957 		if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1958 			gfp |= __GFP_WRITE;
1959 		if (fgp_flags & FGP_NOFS)
1960 			gfp &= ~__GFP_FS;
1961 		if (fgp_flags & FGP_NOWAIT) {
1962 			gfp &= ~GFP_KERNEL;
1963 			gfp |= GFP_NOWAIT | __GFP_NOWARN;
1964 		}
1965 
1966 		folio = filemap_alloc_folio(gfp, 0);
1967 		if (!folio)
1968 			return NULL;
1969 
1970 		if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1971 			fgp_flags |= FGP_LOCK;
1972 
1973 		/* Init accessed so avoid atomic mark_page_accessed later */
1974 		if (fgp_flags & FGP_ACCESSED)
1975 			__folio_set_referenced(folio);
1976 
1977 		err = filemap_add_folio(mapping, folio, index, gfp);
1978 		if (unlikely(err)) {
1979 			folio_put(folio);
1980 			folio = NULL;
1981 			if (err == -EEXIST)
1982 				goto repeat;
1983 		}
1984 
1985 		/*
1986 		 * filemap_add_folio locks the page, and for mmap
1987 		 * we expect an unlocked page.
1988 		 */
1989 		if (folio && (fgp_flags & FGP_FOR_MMAP))
1990 			folio_unlock(folio);
1991 	}
1992 
1993 	return folio;
1994 }
1995 EXPORT_SYMBOL(__filemap_get_folio);
1996 
1997 static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max,
1998 		xa_mark_t mark)
1999 {
2000 	struct folio *folio;
2001 
2002 retry:
2003 	if (mark == XA_PRESENT)
2004 		folio = xas_find(xas, max);
2005 	else
2006 		folio = xas_find_marked(xas, max, mark);
2007 
2008 	if (xas_retry(xas, folio))
2009 		goto retry;
2010 	/*
2011 	 * A shadow entry of a recently evicted page, a swap
2012 	 * entry from shmem/tmpfs or a DAX entry.  Return it
2013 	 * without attempting to raise page count.
2014 	 */
2015 	if (!folio || xa_is_value(folio))
2016 		return folio;
2017 
2018 	if (!folio_try_get_rcu(folio))
2019 		goto reset;
2020 
2021 	if (unlikely(folio != xas_reload(xas))) {
2022 		folio_put(folio);
2023 		goto reset;
2024 	}
2025 
2026 	return folio;
2027 reset:
2028 	xas_reset(xas);
2029 	goto retry;
2030 }
2031 
2032 /**
2033  * find_get_entries - gang pagecache lookup
2034  * @mapping:	The address_space to search
2035  * @start:	The starting page cache index
2036  * @end:	The final page index (inclusive).
2037  * @fbatch:	Where the resulting entries are placed.
2038  * @indices:	The cache indices corresponding to the entries in @entries
2039  *
2040  * find_get_entries() will search for and return a batch of entries in
2041  * the mapping.  The entries are placed in @fbatch.  find_get_entries()
2042  * takes a reference on any actual folios it returns.
2043  *
2044  * The entries have ascending indexes.  The indices may not be consecutive
2045  * due to not-present entries or large folios.
2046  *
2047  * Any shadow entries of evicted folios, or swap entries from
2048  * shmem/tmpfs, are included in the returned array.
2049  *
2050  * Return: The number of entries which were found.
2051  */
2052 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
2053 		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2054 {
2055 	XA_STATE(xas, &mapping->i_pages, *start);
2056 	struct folio *folio;
2057 
2058 	rcu_read_lock();
2059 	while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2060 		indices[fbatch->nr] = xas.xa_index;
2061 		if (!folio_batch_add(fbatch, folio))
2062 			break;
2063 	}
2064 	rcu_read_unlock();
2065 
2066 	if (folio_batch_count(fbatch)) {
2067 		unsigned long nr = 1;
2068 		int idx = folio_batch_count(fbatch) - 1;
2069 
2070 		folio = fbatch->folios[idx];
2071 		if (!xa_is_value(folio) && !folio_test_hugetlb(folio))
2072 			nr = folio_nr_pages(folio);
2073 		*start = indices[idx] + nr;
2074 	}
2075 	return folio_batch_count(fbatch);
2076 }
2077 
2078 /**
2079  * find_lock_entries - Find a batch of pagecache entries.
2080  * @mapping:	The address_space to search.
2081  * @start:	The starting page cache index.
2082  * @end:	The final page index (inclusive).
2083  * @fbatch:	Where the resulting entries are placed.
2084  * @indices:	The cache indices of the entries in @fbatch.
2085  *
2086  * find_lock_entries() will return a batch of entries from @mapping.
2087  * Swap, shadow and DAX entries are included.  Folios are returned
2088  * locked and with an incremented refcount.  Folios which are locked
2089  * by somebody else or under writeback are skipped.  Folios which are
2090  * partially outside the range are not returned.
2091  *
2092  * The entries have ascending indexes.  The indices may not be consecutive
2093  * due to not-present entries, large folios, folios which could not be
2094  * locked or folios under writeback.
2095  *
2096  * Return: The number of entries which were found.
2097  */
2098 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
2099 		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2100 {
2101 	XA_STATE(xas, &mapping->i_pages, *start);
2102 	struct folio *folio;
2103 
2104 	rcu_read_lock();
2105 	while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2106 		if (!xa_is_value(folio)) {
2107 			if (folio->index < *start)
2108 				goto put;
2109 			if (folio->index + folio_nr_pages(folio) - 1 > end)
2110 				goto put;
2111 			if (!folio_trylock(folio))
2112 				goto put;
2113 			if (folio->mapping != mapping ||
2114 			    folio_test_writeback(folio))
2115 				goto unlock;
2116 			VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index),
2117 					folio);
2118 		}
2119 		indices[fbatch->nr] = xas.xa_index;
2120 		if (!folio_batch_add(fbatch, folio))
2121 			break;
2122 		continue;
2123 unlock:
2124 		folio_unlock(folio);
2125 put:
2126 		folio_put(folio);
2127 	}
2128 	rcu_read_unlock();
2129 
2130 	if (folio_batch_count(fbatch)) {
2131 		unsigned long nr = 1;
2132 		int idx = folio_batch_count(fbatch) - 1;
2133 
2134 		folio = fbatch->folios[idx];
2135 		if (!xa_is_value(folio) && !folio_test_hugetlb(folio))
2136 			nr = folio_nr_pages(folio);
2137 		*start = indices[idx] + nr;
2138 	}
2139 	return folio_batch_count(fbatch);
2140 }
2141 
2142 /**
2143  * filemap_get_folios - Get a batch of folios
2144  * @mapping:	The address_space to search
2145  * @start:	The starting page index
2146  * @end:	The final page index (inclusive)
2147  * @fbatch:	The batch to fill.
2148  *
2149  * Search for and return a batch of folios in the mapping starting at
2150  * index @start and up to index @end (inclusive).  The folios are returned
2151  * in @fbatch with an elevated reference count.
2152  *
2153  * The first folio may start before @start; if it does, it will contain
2154  * @start.  The final folio may extend beyond @end; if it does, it will
2155  * contain @end.  The folios have ascending indices.  There may be gaps
2156  * between the folios if there are indices which have no folio in the
2157  * page cache.  If folios are added to or removed from the page cache
2158  * while this is running, they may or may not be found by this call.
2159  *
2160  * Return: The number of folios which were found.
2161  * We also update @start to index the next folio for the traversal.
2162  */
2163 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
2164 		pgoff_t end, struct folio_batch *fbatch)
2165 {
2166 	XA_STATE(xas, &mapping->i_pages, *start);
2167 	struct folio *folio;
2168 
2169 	rcu_read_lock();
2170 	while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2171 		/* Skip over shadow, swap and DAX entries */
2172 		if (xa_is_value(folio))
2173 			continue;
2174 		if (!folio_batch_add(fbatch, folio)) {
2175 			unsigned long nr = folio_nr_pages(folio);
2176 
2177 			if (folio_test_hugetlb(folio))
2178 				nr = 1;
2179 			*start = folio->index + nr;
2180 			goto out;
2181 		}
2182 	}
2183 
2184 	/*
2185 	 * We come here when there is no page beyond @end. We take care to not
2186 	 * overflow the index @start as it confuses some of the callers. This
2187 	 * breaks the iteration when there is a page at index -1 but that is
2188 	 * already broken anyway.
2189 	 */
2190 	if (end == (pgoff_t)-1)
2191 		*start = (pgoff_t)-1;
2192 	else
2193 		*start = end + 1;
2194 out:
2195 	rcu_read_unlock();
2196 
2197 	return folio_batch_count(fbatch);
2198 }
2199 EXPORT_SYMBOL(filemap_get_folios);
2200 
2201 static inline
2202 bool folio_more_pages(struct folio *folio, pgoff_t index, pgoff_t max)
2203 {
2204 	if (!folio_test_large(folio) || folio_test_hugetlb(folio))
2205 		return false;
2206 	if (index >= max)
2207 		return false;
2208 	return index < folio->index + folio_nr_pages(folio) - 1;
2209 }
2210 
2211 /**
2212  * filemap_get_folios_contig - Get a batch of contiguous folios
2213  * @mapping:	The address_space to search
2214  * @start:	The starting page index
2215  * @end:	The final page index (inclusive)
2216  * @fbatch:	The batch to fill
2217  *
2218  * filemap_get_folios_contig() works exactly like filemap_get_folios(),
2219  * except the returned folios are guaranteed to be contiguous. This may
2220  * not return all contiguous folios if the batch gets filled up.
2221  *
2222  * Return: The number of folios found.
2223  * Also update @start to be positioned for traversal of the next folio.
2224  */
2225 
2226 unsigned filemap_get_folios_contig(struct address_space *mapping,
2227 		pgoff_t *start, pgoff_t end, struct folio_batch *fbatch)
2228 {
2229 	XA_STATE(xas, &mapping->i_pages, *start);
2230 	unsigned long nr;
2231 	struct folio *folio;
2232 
2233 	rcu_read_lock();
2234 
2235 	for (folio = xas_load(&xas); folio && xas.xa_index <= end;
2236 			folio = xas_next(&xas)) {
2237 		if (xas_retry(&xas, folio))
2238 			continue;
2239 		/*
2240 		 * If the entry has been swapped out, we can stop looking.
2241 		 * No current caller is looking for DAX entries.
2242 		 */
2243 		if (xa_is_value(folio))
2244 			goto update_start;
2245 
2246 		if (!folio_try_get_rcu(folio))
2247 			goto retry;
2248 
2249 		if (unlikely(folio != xas_reload(&xas)))
2250 			goto put_folio;
2251 
2252 		if (!folio_batch_add(fbatch, folio)) {
2253 			nr = folio_nr_pages(folio);
2254 
2255 			if (folio_test_hugetlb(folio))
2256 				nr = 1;
2257 			*start = folio->index + nr;
2258 			goto out;
2259 		}
2260 		continue;
2261 put_folio:
2262 		folio_put(folio);
2263 
2264 retry:
2265 		xas_reset(&xas);
2266 	}
2267 
2268 update_start:
2269 	nr = folio_batch_count(fbatch);
2270 
2271 	if (nr) {
2272 		folio = fbatch->folios[nr - 1];
2273 		if (folio_test_hugetlb(folio))
2274 			*start = folio->index + 1;
2275 		else
2276 			*start = folio->index + folio_nr_pages(folio);
2277 	}
2278 out:
2279 	rcu_read_unlock();
2280 	return folio_batch_count(fbatch);
2281 }
2282 EXPORT_SYMBOL(filemap_get_folios_contig);
2283 
2284 /**
2285  * find_get_pages_range_tag - Find and return head pages matching @tag.
2286  * @mapping:	the address_space to search
2287  * @index:	the starting page index
2288  * @end:	The final page index (inclusive)
2289  * @tag:	the tag index
2290  * @nr_pages:	the maximum number of pages
2291  * @pages:	where the resulting pages are placed
2292  *
2293  * Like find_get_pages_range(), except we only return head pages which are
2294  * tagged with @tag.  @index is updated to the index immediately after the
2295  * last page we return, ready for the next iteration.
2296  *
2297  * Return: the number of pages which were found.
2298  */
2299 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
2300 			pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
2301 			struct page **pages)
2302 {
2303 	XA_STATE(xas, &mapping->i_pages, *index);
2304 	struct folio *folio;
2305 	unsigned ret = 0;
2306 
2307 	if (unlikely(!nr_pages))
2308 		return 0;
2309 
2310 	rcu_read_lock();
2311 	while ((folio = find_get_entry(&xas, end, tag))) {
2312 		/*
2313 		 * Shadow entries should never be tagged, but this iteration
2314 		 * is lockless so there is a window for page reclaim to evict
2315 		 * a page we saw tagged.  Skip over it.
2316 		 */
2317 		if (xa_is_value(folio))
2318 			continue;
2319 
2320 		pages[ret] = &folio->page;
2321 		if (++ret == nr_pages) {
2322 			*index = folio->index + folio_nr_pages(folio);
2323 			goto out;
2324 		}
2325 	}
2326 
2327 	/*
2328 	 * We come here when we got to @end. We take care to not overflow the
2329 	 * index @index as it confuses some of the callers. This breaks the
2330 	 * iteration when there is a page at index -1 but that is already
2331 	 * broken anyway.
2332 	 */
2333 	if (end == (pgoff_t)-1)
2334 		*index = (pgoff_t)-1;
2335 	else
2336 		*index = end + 1;
2337 out:
2338 	rcu_read_unlock();
2339 
2340 	return ret;
2341 }
2342 EXPORT_SYMBOL(find_get_pages_range_tag);
2343 
2344 /*
2345  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2346  * a _large_ part of the i/o request. Imagine the worst scenario:
2347  *
2348  *      ---R__________________________________________B__________
2349  *         ^ reading here                             ^ bad block(assume 4k)
2350  *
2351  * read(R) => miss => readahead(R...B) => media error => frustrating retries
2352  * => failing the whole request => read(R) => read(R+1) =>
2353  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2354  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2355  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2356  *
2357  * It is going insane. Fix it by quickly scaling down the readahead size.
2358  */
2359 static void shrink_readahead_size_eio(struct file_ra_state *ra)
2360 {
2361 	ra->ra_pages /= 4;
2362 }
2363 
2364 /*
2365  * filemap_get_read_batch - Get a batch of folios for read
2366  *
2367  * Get a batch of folios which represent a contiguous range of bytes in
2368  * the file.  No exceptional entries will be returned.  If @index is in
2369  * the middle of a folio, the entire folio will be returned.  The last
2370  * folio in the batch may have the readahead flag set or the uptodate flag
2371  * clear so that the caller can take the appropriate action.
2372  */
2373 static void filemap_get_read_batch(struct address_space *mapping,
2374 		pgoff_t index, pgoff_t max, struct folio_batch *fbatch)
2375 {
2376 	XA_STATE(xas, &mapping->i_pages, index);
2377 	struct folio *folio;
2378 
2379 	rcu_read_lock();
2380 	for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2381 		if (xas_retry(&xas, folio))
2382 			continue;
2383 		if (xas.xa_index > max || xa_is_value(folio))
2384 			break;
2385 		if (xa_is_sibling(folio))
2386 			break;
2387 		if (!folio_try_get_rcu(folio))
2388 			goto retry;
2389 
2390 		if (unlikely(folio != xas_reload(&xas)))
2391 			goto put_folio;
2392 
2393 		if (!folio_batch_add(fbatch, folio))
2394 			break;
2395 		if (!folio_test_uptodate(folio))
2396 			break;
2397 		if (folio_test_readahead(folio))
2398 			break;
2399 		xas_advance(&xas, folio->index + folio_nr_pages(folio) - 1);
2400 		continue;
2401 put_folio:
2402 		folio_put(folio);
2403 retry:
2404 		xas_reset(&xas);
2405 	}
2406 	rcu_read_unlock();
2407 }
2408 
2409 static int filemap_read_folio(struct file *file, filler_t filler,
2410 		struct folio *folio)
2411 {
2412 	bool workingset = folio_test_workingset(folio);
2413 	unsigned long pflags;
2414 	int error;
2415 
2416 	/*
2417 	 * A previous I/O error may have been due to temporary failures,
2418 	 * eg. multipath errors.  PG_error will be set again if read_folio
2419 	 * fails.
2420 	 */
2421 	folio_clear_error(folio);
2422 
2423 	/* Start the actual read. The read will unlock the page. */
2424 	if (unlikely(workingset))
2425 		psi_memstall_enter(&pflags);
2426 	error = filler(file, folio);
2427 	if (unlikely(workingset))
2428 		psi_memstall_leave(&pflags);
2429 	if (error)
2430 		return error;
2431 
2432 	error = folio_wait_locked_killable(folio);
2433 	if (error)
2434 		return error;
2435 	if (folio_test_uptodate(folio))
2436 		return 0;
2437 	if (file)
2438 		shrink_readahead_size_eio(&file->f_ra);
2439 	return -EIO;
2440 }
2441 
2442 static bool filemap_range_uptodate(struct address_space *mapping,
2443 		loff_t pos, struct iov_iter *iter, struct folio *folio)
2444 {
2445 	int count;
2446 
2447 	if (folio_test_uptodate(folio))
2448 		return true;
2449 	/* pipes can't handle partially uptodate pages */
2450 	if (iov_iter_is_pipe(iter))
2451 		return false;
2452 	if (!mapping->a_ops->is_partially_uptodate)
2453 		return false;
2454 	if (mapping->host->i_blkbits >= folio_shift(folio))
2455 		return false;
2456 
2457 	count = iter->count;
2458 	if (folio_pos(folio) > pos) {
2459 		count -= folio_pos(folio) - pos;
2460 		pos = 0;
2461 	} else {
2462 		pos -= folio_pos(folio);
2463 	}
2464 
2465 	return mapping->a_ops->is_partially_uptodate(folio, pos, count);
2466 }
2467 
2468 static int filemap_update_page(struct kiocb *iocb,
2469 		struct address_space *mapping, struct iov_iter *iter,
2470 		struct folio *folio)
2471 {
2472 	int error;
2473 
2474 	if (iocb->ki_flags & IOCB_NOWAIT) {
2475 		if (!filemap_invalidate_trylock_shared(mapping))
2476 			return -EAGAIN;
2477 	} else {
2478 		filemap_invalidate_lock_shared(mapping);
2479 	}
2480 
2481 	if (!folio_trylock(folio)) {
2482 		error = -EAGAIN;
2483 		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2484 			goto unlock_mapping;
2485 		if (!(iocb->ki_flags & IOCB_WAITQ)) {
2486 			filemap_invalidate_unlock_shared(mapping);
2487 			/*
2488 			 * This is where we usually end up waiting for a
2489 			 * previously submitted readahead to finish.
2490 			 */
2491 			folio_put_wait_locked(folio, TASK_KILLABLE);
2492 			return AOP_TRUNCATED_PAGE;
2493 		}
2494 		error = __folio_lock_async(folio, iocb->ki_waitq);
2495 		if (error)
2496 			goto unlock_mapping;
2497 	}
2498 
2499 	error = AOP_TRUNCATED_PAGE;
2500 	if (!folio->mapping)
2501 		goto unlock;
2502 
2503 	error = 0;
2504 	if (filemap_range_uptodate(mapping, iocb->ki_pos, iter, folio))
2505 		goto unlock;
2506 
2507 	error = -EAGAIN;
2508 	if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2509 		goto unlock;
2510 
2511 	error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio,
2512 			folio);
2513 	goto unlock_mapping;
2514 unlock:
2515 	folio_unlock(folio);
2516 unlock_mapping:
2517 	filemap_invalidate_unlock_shared(mapping);
2518 	if (error == AOP_TRUNCATED_PAGE)
2519 		folio_put(folio);
2520 	return error;
2521 }
2522 
2523 static int filemap_create_folio(struct file *file,
2524 		struct address_space *mapping, pgoff_t index,
2525 		struct folio_batch *fbatch)
2526 {
2527 	struct folio *folio;
2528 	int error;
2529 
2530 	folio = filemap_alloc_folio(mapping_gfp_mask(mapping), 0);
2531 	if (!folio)
2532 		return -ENOMEM;
2533 
2534 	/*
2535 	 * Protect against truncate / hole punch. Grabbing invalidate_lock
2536 	 * here assures we cannot instantiate and bring uptodate new
2537 	 * pagecache folios after evicting page cache during truncate
2538 	 * and before actually freeing blocks.	Note that we could
2539 	 * release invalidate_lock after inserting the folio into
2540 	 * the page cache as the locked folio would then be enough to
2541 	 * synchronize with hole punching. But there are code paths
2542 	 * such as filemap_update_page() filling in partially uptodate
2543 	 * pages or ->readahead() that need to hold invalidate_lock
2544 	 * while mapping blocks for IO so let's hold the lock here as
2545 	 * well to keep locking rules simple.
2546 	 */
2547 	filemap_invalidate_lock_shared(mapping);
2548 	error = filemap_add_folio(mapping, folio, index,
2549 			mapping_gfp_constraint(mapping, GFP_KERNEL));
2550 	if (error == -EEXIST)
2551 		error = AOP_TRUNCATED_PAGE;
2552 	if (error)
2553 		goto error;
2554 
2555 	error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
2556 	if (error)
2557 		goto error;
2558 
2559 	filemap_invalidate_unlock_shared(mapping);
2560 	folio_batch_add(fbatch, folio);
2561 	return 0;
2562 error:
2563 	filemap_invalidate_unlock_shared(mapping);
2564 	folio_put(folio);
2565 	return error;
2566 }
2567 
2568 static int filemap_readahead(struct kiocb *iocb, struct file *file,
2569 		struct address_space *mapping, struct folio *folio,
2570 		pgoff_t last_index)
2571 {
2572 	DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index);
2573 
2574 	if (iocb->ki_flags & IOCB_NOIO)
2575 		return -EAGAIN;
2576 	page_cache_async_ra(&ractl, folio, last_index - folio->index);
2577 	return 0;
2578 }
2579 
2580 static int filemap_get_pages(struct kiocb *iocb, struct iov_iter *iter,
2581 		struct folio_batch *fbatch)
2582 {
2583 	struct file *filp = iocb->ki_filp;
2584 	struct address_space *mapping = filp->f_mapping;
2585 	struct file_ra_state *ra = &filp->f_ra;
2586 	pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2587 	pgoff_t last_index;
2588 	struct folio *folio;
2589 	int err = 0;
2590 
2591 	last_index = DIV_ROUND_UP(iocb->ki_pos + iter->count, PAGE_SIZE);
2592 retry:
2593 	if (fatal_signal_pending(current))
2594 		return -EINTR;
2595 
2596 	filemap_get_read_batch(mapping, index, last_index, fbatch);
2597 	if (!folio_batch_count(fbatch)) {
2598 		if (iocb->ki_flags & IOCB_NOIO)
2599 			return -EAGAIN;
2600 		page_cache_sync_readahead(mapping, ra, filp, index,
2601 				last_index - index);
2602 		filemap_get_read_batch(mapping, index, last_index, fbatch);
2603 	}
2604 	if (!folio_batch_count(fbatch)) {
2605 		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2606 			return -EAGAIN;
2607 		err = filemap_create_folio(filp, mapping,
2608 				iocb->ki_pos >> PAGE_SHIFT, fbatch);
2609 		if (err == AOP_TRUNCATED_PAGE)
2610 			goto retry;
2611 		return err;
2612 	}
2613 
2614 	folio = fbatch->folios[folio_batch_count(fbatch) - 1];
2615 	if (folio_test_readahead(folio)) {
2616 		err = filemap_readahead(iocb, filp, mapping, folio, last_index);
2617 		if (err)
2618 			goto err;
2619 	}
2620 	if (!folio_test_uptodate(folio)) {
2621 		if ((iocb->ki_flags & IOCB_WAITQ) &&
2622 		    folio_batch_count(fbatch) > 1)
2623 			iocb->ki_flags |= IOCB_NOWAIT;
2624 		err = filemap_update_page(iocb, mapping, iter, folio);
2625 		if (err)
2626 			goto err;
2627 	}
2628 
2629 	return 0;
2630 err:
2631 	if (err < 0)
2632 		folio_put(folio);
2633 	if (likely(--fbatch->nr))
2634 		return 0;
2635 	if (err == AOP_TRUNCATED_PAGE)
2636 		goto retry;
2637 	return err;
2638 }
2639 
2640 static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio)
2641 {
2642 	unsigned int shift = folio_shift(folio);
2643 
2644 	return (pos1 >> shift == pos2 >> shift);
2645 }
2646 
2647 /**
2648  * filemap_read - Read data from the page cache.
2649  * @iocb: The iocb to read.
2650  * @iter: Destination for the data.
2651  * @already_read: Number of bytes already read by the caller.
2652  *
2653  * Copies data from the page cache.  If the data is not currently present,
2654  * uses the readahead and read_folio address_space operations to fetch it.
2655  *
2656  * Return: Total number of bytes copied, including those already read by
2657  * the caller.  If an error happens before any bytes are copied, returns
2658  * a negative error number.
2659  */
2660 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2661 		ssize_t already_read)
2662 {
2663 	struct file *filp = iocb->ki_filp;
2664 	struct file_ra_state *ra = &filp->f_ra;
2665 	struct address_space *mapping = filp->f_mapping;
2666 	struct inode *inode = mapping->host;
2667 	struct folio_batch fbatch;
2668 	int i, error = 0;
2669 	bool writably_mapped;
2670 	loff_t isize, end_offset;
2671 
2672 	if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2673 		return 0;
2674 	if (unlikely(!iov_iter_count(iter)))
2675 		return 0;
2676 
2677 	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2678 	folio_batch_init(&fbatch);
2679 
2680 	do {
2681 		cond_resched();
2682 
2683 		/*
2684 		 * If we've already successfully copied some data, then we
2685 		 * can no longer safely return -EIOCBQUEUED. Hence mark
2686 		 * an async read NOWAIT at that point.
2687 		 */
2688 		if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2689 			iocb->ki_flags |= IOCB_NOWAIT;
2690 
2691 		if (unlikely(iocb->ki_pos >= i_size_read(inode)))
2692 			break;
2693 
2694 		error = filemap_get_pages(iocb, iter, &fbatch);
2695 		if (error < 0)
2696 			break;
2697 
2698 		/*
2699 		 * i_size must be checked after we know the pages are Uptodate.
2700 		 *
2701 		 * Checking i_size after the check allows us to calculate
2702 		 * the correct value for "nr", which means the zero-filled
2703 		 * part of the page is not copied back to userspace (unless
2704 		 * another truncate extends the file - this is desired though).
2705 		 */
2706 		isize = i_size_read(inode);
2707 		if (unlikely(iocb->ki_pos >= isize))
2708 			goto put_folios;
2709 		end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2710 
2711 		/*
2712 		 * Once we start copying data, we don't want to be touching any
2713 		 * cachelines that might be contended:
2714 		 */
2715 		writably_mapped = mapping_writably_mapped(mapping);
2716 
2717 		/*
2718 		 * When a read accesses the same folio several times, only
2719 		 * mark it as accessed the first time.
2720 		 */
2721 		if (!pos_same_folio(iocb->ki_pos, ra->prev_pos - 1,
2722 							fbatch.folios[0]))
2723 			folio_mark_accessed(fbatch.folios[0]);
2724 
2725 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
2726 			struct folio *folio = fbatch.folios[i];
2727 			size_t fsize = folio_size(folio);
2728 			size_t offset = iocb->ki_pos & (fsize - 1);
2729 			size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2730 					     fsize - offset);
2731 			size_t copied;
2732 
2733 			if (end_offset < folio_pos(folio))
2734 				break;
2735 			if (i > 0)
2736 				folio_mark_accessed(folio);
2737 			/*
2738 			 * If users can be writing to this folio using arbitrary
2739 			 * virtual addresses, take care of potential aliasing
2740 			 * before reading the folio on the kernel side.
2741 			 */
2742 			if (writably_mapped)
2743 				flush_dcache_folio(folio);
2744 
2745 			copied = copy_folio_to_iter(folio, offset, bytes, iter);
2746 
2747 			already_read += copied;
2748 			iocb->ki_pos += copied;
2749 			ra->prev_pos = iocb->ki_pos;
2750 
2751 			if (copied < bytes) {
2752 				error = -EFAULT;
2753 				break;
2754 			}
2755 		}
2756 put_folios:
2757 		for (i = 0; i < folio_batch_count(&fbatch); i++)
2758 			folio_put(fbatch.folios[i]);
2759 		folio_batch_init(&fbatch);
2760 	} while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2761 
2762 	file_accessed(filp);
2763 
2764 	return already_read ? already_read : error;
2765 }
2766 EXPORT_SYMBOL_GPL(filemap_read);
2767 
2768 /**
2769  * generic_file_read_iter - generic filesystem read routine
2770  * @iocb:	kernel I/O control block
2771  * @iter:	destination for the data read
2772  *
2773  * This is the "read_iter()" routine for all filesystems
2774  * that can use the page cache directly.
2775  *
2776  * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2777  * be returned when no data can be read without waiting for I/O requests
2778  * to complete; it doesn't prevent readahead.
2779  *
2780  * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2781  * requests shall be made for the read or for readahead.  When no data
2782  * can be read, -EAGAIN shall be returned.  When readahead would be
2783  * triggered, a partial, possibly empty read shall be returned.
2784  *
2785  * Return:
2786  * * number of bytes copied, even for partial reads
2787  * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2788  */
2789 ssize_t
2790 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2791 {
2792 	size_t count = iov_iter_count(iter);
2793 	ssize_t retval = 0;
2794 
2795 	if (!count)
2796 		return 0; /* skip atime */
2797 
2798 	if (iocb->ki_flags & IOCB_DIRECT) {
2799 		struct file *file = iocb->ki_filp;
2800 		struct address_space *mapping = file->f_mapping;
2801 		struct inode *inode = mapping->host;
2802 
2803 		if (iocb->ki_flags & IOCB_NOWAIT) {
2804 			if (filemap_range_needs_writeback(mapping, iocb->ki_pos,
2805 						iocb->ki_pos + count - 1))
2806 				return -EAGAIN;
2807 		} else {
2808 			retval = filemap_write_and_wait_range(mapping,
2809 						iocb->ki_pos,
2810 					        iocb->ki_pos + count - 1);
2811 			if (retval < 0)
2812 				return retval;
2813 		}
2814 
2815 		file_accessed(file);
2816 
2817 		retval = mapping->a_ops->direct_IO(iocb, iter);
2818 		if (retval >= 0) {
2819 			iocb->ki_pos += retval;
2820 			count -= retval;
2821 		}
2822 		if (retval != -EIOCBQUEUED)
2823 			iov_iter_revert(iter, count - iov_iter_count(iter));
2824 
2825 		/*
2826 		 * Btrfs can have a short DIO read if we encounter
2827 		 * compressed extents, so if there was an error, or if
2828 		 * we've already read everything we wanted to, or if
2829 		 * there was a short read because we hit EOF, go ahead
2830 		 * and return.  Otherwise fallthrough to buffered io for
2831 		 * the rest of the read.  Buffered reads will not work for
2832 		 * DAX files, so don't bother trying.
2833 		 */
2834 		if (retval < 0 || !count || IS_DAX(inode))
2835 			return retval;
2836 		if (iocb->ki_pos >= i_size_read(inode))
2837 			return retval;
2838 	}
2839 
2840 	return filemap_read(iocb, iter, retval);
2841 }
2842 EXPORT_SYMBOL(generic_file_read_iter);
2843 
2844 static inline loff_t folio_seek_hole_data(struct xa_state *xas,
2845 		struct address_space *mapping, struct folio *folio,
2846 		loff_t start, loff_t end, bool seek_data)
2847 {
2848 	const struct address_space_operations *ops = mapping->a_ops;
2849 	size_t offset, bsz = i_blocksize(mapping->host);
2850 
2851 	if (xa_is_value(folio) || folio_test_uptodate(folio))
2852 		return seek_data ? start : end;
2853 	if (!ops->is_partially_uptodate)
2854 		return seek_data ? end : start;
2855 
2856 	xas_pause(xas);
2857 	rcu_read_unlock();
2858 	folio_lock(folio);
2859 	if (unlikely(folio->mapping != mapping))
2860 		goto unlock;
2861 
2862 	offset = offset_in_folio(folio, start) & ~(bsz - 1);
2863 
2864 	do {
2865 		if (ops->is_partially_uptodate(folio, offset, bsz) ==
2866 							seek_data)
2867 			break;
2868 		start = (start + bsz) & ~(bsz - 1);
2869 		offset += bsz;
2870 	} while (offset < folio_size(folio));
2871 unlock:
2872 	folio_unlock(folio);
2873 	rcu_read_lock();
2874 	return start;
2875 }
2876 
2877 static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio)
2878 {
2879 	if (xa_is_value(folio))
2880 		return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
2881 	return folio_size(folio);
2882 }
2883 
2884 /**
2885  * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
2886  * @mapping: Address space to search.
2887  * @start: First byte to consider.
2888  * @end: Limit of search (exclusive).
2889  * @whence: Either SEEK_HOLE or SEEK_DATA.
2890  *
2891  * If the page cache knows which blocks contain holes and which blocks
2892  * contain data, your filesystem can use this function to implement
2893  * SEEK_HOLE and SEEK_DATA.  This is useful for filesystems which are
2894  * entirely memory-based such as tmpfs, and filesystems which support
2895  * unwritten extents.
2896  *
2897  * Return: The requested offset on success, or -ENXIO if @whence specifies
2898  * SEEK_DATA and there is no data after @start.  There is an implicit hole
2899  * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
2900  * and @end contain data.
2901  */
2902 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
2903 		loff_t end, int whence)
2904 {
2905 	XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
2906 	pgoff_t max = (end - 1) >> PAGE_SHIFT;
2907 	bool seek_data = (whence == SEEK_DATA);
2908 	struct folio *folio;
2909 
2910 	if (end <= start)
2911 		return -ENXIO;
2912 
2913 	rcu_read_lock();
2914 	while ((folio = find_get_entry(&xas, max, XA_PRESENT))) {
2915 		loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
2916 		size_t seek_size;
2917 
2918 		if (start < pos) {
2919 			if (!seek_data)
2920 				goto unlock;
2921 			start = pos;
2922 		}
2923 
2924 		seek_size = seek_folio_size(&xas, folio);
2925 		pos = round_up((u64)pos + 1, seek_size);
2926 		start = folio_seek_hole_data(&xas, mapping, folio, start, pos,
2927 				seek_data);
2928 		if (start < pos)
2929 			goto unlock;
2930 		if (start >= end)
2931 			break;
2932 		if (seek_size > PAGE_SIZE)
2933 			xas_set(&xas, pos >> PAGE_SHIFT);
2934 		if (!xa_is_value(folio))
2935 			folio_put(folio);
2936 	}
2937 	if (seek_data)
2938 		start = -ENXIO;
2939 unlock:
2940 	rcu_read_unlock();
2941 	if (folio && !xa_is_value(folio))
2942 		folio_put(folio);
2943 	if (start > end)
2944 		return end;
2945 	return start;
2946 }
2947 
2948 #ifdef CONFIG_MMU
2949 #define MMAP_LOTSAMISS  (100)
2950 /*
2951  * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
2952  * @vmf - the vm_fault for this fault.
2953  * @folio - the folio to lock.
2954  * @fpin - the pointer to the file we may pin (or is already pinned).
2955  *
2956  * This works similar to lock_folio_or_retry in that it can drop the
2957  * mmap_lock.  It differs in that it actually returns the folio locked
2958  * if it returns 1 and 0 if it couldn't lock the folio.  If we did have
2959  * to drop the mmap_lock then fpin will point to the pinned file and
2960  * needs to be fput()'ed at a later point.
2961  */
2962 static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio,
2963 				     struct file **fpin)
2964 {
2965 	if (folio_trylock(folio))
2966 		return 1;
2967 
2968 	/*
2969 	 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2970 	 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
2971 	 * is supposed to work. We have way too many special cases..
2972 	 */
2973 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2974 		return 0;
2975 
2976 	*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2977 	if (vmf->flags & FAULT_FLAG_KILLABLE) {
2978 		if (__folio_lock_killable(folio)) {
2979 			/*
2980 			 * We didn't have the right flags to drop the mmap_lock,
2981 			 * but all fault_handlers only check for fatal signals
2982 			 * if we return VM_FAULT_RETRY, so we need to drop the
2983 			 * mmap_lock here and return 0 if we don't have a fpin.
2984 			 */
2985 			if (*fpin == NULL)
2986 				mmap_read_unlock(vmf->vma->vm_mm);
2987 			return 0;
2988 		}
2989 	} else
2990 		__folio_lock(folio);
2991 
2992 	return 1;
2993 }
2994 
2995 /*
2996  * Synchronous readahead happens when we don't even find a page in the page
2997  * cache at all.  We don't want to perform IO under the mmap sem, so if we have
2998  * to drop the mmap sem we return the file that was pinned in order for us to do
2999  * that.  If we didn't pin a file then we return NULL.  The file that is
3000  * returned needs to be fput()'ed when we're done with it.
3001  */
3002 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
3003 {
3004 	struct file *file = vmf->vma->vm_file;
3005 	struct file_ra_state *ra = &file->f_ra;
3006 	struct address_space *mapping = file->f_mapping;
3007 	DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
3008 	struct file *fpin = NULL;
3009 	unsigned long vm_flags = vmf->vma->vm_flags;
3010 	unsigned int mmap_miss;
3011 
3012 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3013 	/* Use the readahead code, even if readahead is disabled */
3014 	if (vm_flags & VM_HUGEPAGE) {
3015 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3016 		ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1);
3017 		ra->size = HPAGE_PMD_NR;
3018 		/*
3019 		 * Fetch two PMD folios, so we get the chance to actually
3020 		 * readahead, unless we've been told not to.
3021 		 */
3022 		if (!(vm_flags & VM_RAND_READ))
3023 			ra->size *= 2;
3024 		ra->async_size = HPAGE_PMD_NR;
3025 		page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER);
3026 		return fpin;
3027 	}
3028 #endif
3029 
3030 	/* If we don't want any read-ahead, don't bother */
3031 	if (vm_flags & VM_RAND_READ)
3032 		return fpin;
3033 	if (!ra->ra_pages)
3034 		return fpin;
3035 
3036 	if (vm_flags & VM_SEQ_READ) {
3037 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3038 		page_cache_sync_ra(&ractl, ra->ra_pages);
3039 		return fpin;
3040 	}
3041 
3042 	/* Avoid banging the cache line if not needed */
3043 	mmap_miss = READ_ONCE(ra->mmap_miss);
3044 	if (mmap_miss < MMAP_LOTSAMISS * 10)
3045 		WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
3046 
3047 	/*
3048 	 * Do we miss much more than hit in this file? If so,
3049 	 * stop bothering with read-ahead. It will only hurt.
3050 	 */
3051 	if (mmap_miss > MMAP_LOTSAMISS)
3052 		return fpin;
3053 
3054 	/*
3055 	 * mmap read-around
3056 	 */
3057 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3058 	ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
3059 	ra->size = ra->ra_pages;
3060 	ra->async_size = ra->ra_pages / 4;
3061 	ractl._index = ra->start;
3062 	page_cache_ra_order(&ractl, ra, 0);
3063 	return fpin;
3064 }
3065 
3066 /*
3067  * Asynchronous readahead happens when we find the page and PG_readahead,
3068  * so we want to possibly extend the readahead further.  We return the file that
3069  * was pinned if we have to drop the mmap_lock in order to do IO.
3070  */
3071 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
3072 					    struct folio *folio)
3073 {
3074 	struct file *file = vmf->vma->vm_file;
3075 	struct file_ra_state *ra = &file->f_ra;
3076 	DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff);
3077 	struct file *fpin = NULL;
3078 	unsigned int mmap_miss;
3079 
3080 	/* If we don't want any read-ahead, don't bother */
3081 	if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
3082 		return fpin;
3083 
3084 	mmap_miss = READ_ONCE(ra->mmap_miss);
3085 	if (mmap_miss)
3086 		WRITE_ONCE(ra->mmap_miss, --mmap_miss);
3087 
3088 	if (folio_test_readahead(folio)) {
3089 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3090 		page_cache_async_ra(&ractl, folio, ra->ra_pages);
3091 	}
3092 	return fpin;
3093 }
3094 
3095 /**
3096  * filemap_fault - read in file data for page fault handling
3097  * @vmf:	struct vm_fault containing details of the fault
3098  *
3099  * filemap_fault() is invoked via the vma operations vector for a
3100  * mapped memory region to read in file data during a page fault.
3101  *
3102  * The goto's are kind of ugly, but this streamlines the normal case of having
3103  * it in the page cache, and handles the special cases reasonably without
3104  * having a lot of duplicated code.
3105  *
3106  * vma->vm_mm->mmap_lock must be held on entry.
3107  *
3108  * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
3109  * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap().
3110  *
3111  * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
3112  * has not been released.
3113  *
3114  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
3115  *
3116  * Return: bitwise-OR of %VM_FAULT_ codes.
3117  */
3118 vm_fault_t filemap_fault(struct vm_fault *vmf)
3119 {
3120 	int error;
3121 	struct file *file = vmf->vma->vm_file;
3122 	struct file *fpin = NULL;
3123 	struct address_space *mapping = file->f_mapping;
3124 	struct inode *inode = mapping->host;
3125 	pgoff_t max_idx, index = vmf->pgoff;
3126 	struct folio *folio;
3127 	vm_fault_t ret = 0;
3128 	bool mapping_locked = false;
3129 
3130 	max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3131 	if (unlikely(index >= max_idx))
3132 		return VM_FAULT_SIGBUS;
3133 
3134 	/*
3135 	 * Do we have something in the page cache already?
3136 	 */
3137 	folio = filemap_get_folio(mapping, index);
3138 	if (likely(folio)) {
3139 		/*
3140 		 * We found the page, so try async readahead before waiting for
3141 		 * the lock.
3142 		 */
3143 		if (!(vmf->flags & FAULT_FLAG_TRIED))
3144 			fpin = do_async_mmap_readahead(vmf, folio);
3145 		if (unlikely(!folio_test_uptodate(folio))) {
3146 			filemap_invalidate_lock_shared(mapping);
3147 			mapping_locked = true;
3148 		}
3149 	} else {
3150 		/* No page in the page cache at all */
3151 		count_vm_event(PGMAJFAULT);
3152 		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
3153 		ret = VM_FAULT_MAJOR;
3154 		fpin = do_sync_mmap_readahead(vmf);
3155 retry_find:
3156 		/*
3157 		 * See comment in filemap_create_folio() why we need
3158 		 * invalidate_lock
3159 		 */
3160 		if (!mapping_locked) {
3161 			filemap_invalidate_lock_shared(mapping);
3162 			mapping_locked = true;
3163 		}
3164 		folio = __filemap_get_folio(mapping, index,
3165 					  FGP_CREAT|FGP_FOR_MMAP,
3166 					  vmf->gfp_mask);
3167 		if (!folio) {
3168 			if (fpin)
3169 				goto out_retry;
3170 			filemap_invalidate_unlock_shared(mapping);
3171 			return VM_FAULT_OOM;
3172 		}
3173 	}
3174 
3175 	if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin))
3176 		goto out_retry;
3177 
3178 	/* Did it get truncated? */
3179 	if (unlikely(folio->mapping != mapping)) {
3180 		folio_unlock(folio);
3181 		folio_put(folio);
3182 		goto retry_find;
3183 	}
3184 	VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
3185 
3186 	/*
3187 	 * We have a locked page in the page cache, now we need to check
3188 	 * that it's up-to-date. If not, it is going to be due to an error.
3189 	 */
3190 	if (unlikely(!folio_test_uptodate(folio))) {
3191 		/*
3192 		 * The page was in cache and uptodate and now it is not.
3193 		 * Strange but possible since we didn't hold the page lock all
3194 		 * the time. Let's drop everything get the invalidate lock and
3195 		 * try again.
3196 		 */
3197 		if (!mapping_locked) {
3198 			folio_unlock(folio);
3199 			folio_put(folio);
3200 			goto retry_find;
3201 		}
3202 		goto page_not_uptodate;
3203 	}
3204 
3205 	/*
3206 	 * We've made it this far and we had to drop our mmap_lock, now is the
3207 	 * time to return to the upper layer and have it re-find the vma and
3208 	 * redo the fault.
3209 	 */
3210 	if (fpin) {
3211 		folio_unlock(folio);
3212 		goto out_retry;
3213 	}
3214 	if (mapping_locked)
3215 		filemap_invalidate_unlock_shared(mapping);
3216 
3217 	/*
3218 	 * Found the page and have a reference on it.
3219 	 * We must recheck i_size under page lock.
3220 	 */
3221 	max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3222 	if (unlikely(index >= max_idx)) {
3223 		folio_unlock(folio);
3224 		folio_put(folio);
3225 		return VM_FAULT_SIGBUS;
3226 	}
3227 
3228 	vmf->page = folio_file_page(folio, index);
3229 	return ret | VM_FAULT_LOCKED;
3230 
3231 page_not_uptodate:
3232 	/*
3233 	 * Umm, take care of errors if the page isn't up-to-date.
3234 	 * Try to re-read it _once_. We do this synchronously,
3235 	 * because there really aren't any performance issues here
3236 	 * and we need to check for errors.
3237 	 */
3238 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3239 	error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
3240 	if (fpin)
3241 		goto out_retry;
3242 	folio_put(folio);
3243 
3244 	if (!error || error == AOP_TRUNCATED_PAGE)
3245 		goto retry_find;
3246 	filemap_invalidate_unlock_shared(mapping);
3247 
3248 	return VM_FAULT_SIGBUS;
3249 
3250 out_retry:
3251 	/*
3252 	 * We dropped the mmap_lock, we need to return to the fault handler to
3253 	 * re-find the vma and come back and find our hopefully still populated
3254 	 * page.
3255 	 */
3256 	if (folio)
3257 		folio_put(folio);
3258 	if (mapping_locked)
3259 		filemap_invalidate_unlock_shared(mapping);
3260 	if (fpin)
3261 		fput(fpin);
3262 	return ret | VM_FAULT_RETRY;
3263 }
3264 EXPORT_SYMBOL(filemap_fault);
3265 
3266 static bool filemap_map_pmd(struct vm_fault *vmf, struct page *page)
3267 {
3268 	struct mm_struct *mm = vmf->vma->vm_mm;
3269 
3270 	/* Huge page is mapped? No need to proceed. */
3271 	if (pmd_trans_huge(*vmf->pmd)) {
3272 		unlock_page(page);
3273 		put_page(page);
3274 		return true;
3275 	}
3276 
3277 	if (pmd_none(*vmf->pmd) && PageTransHuge(page)) {
3278 		vm_fault_t ret = do_set_pmd(vmf, page);
3279 		if (!ret) {
3280 			/* The page is mapped successfully, reference consumed. */
3281 			unlock_page(page);
3282 			return true;
3283 		}
3284 	}
3285 
3286 	if (pmd_none(*vmf->pmd))
3287 		pmd_install(mm, vmf->pmd, &vmf->prealloc_pte);
3288 
3289 	/* See comment in handle_pte_fault() */
3290 	if (pmd_devmap_trans_unstable(vmf->pmd)) {
3291 		unlock_page(page);
3292 		put_page(page);
3293 		return true;
3294 	}
3295 
3296 	return false;
3297 }
3298 
3299 static struct folio *next_uptodate_page(struct folio *folio,
3300 				       struct address_space *mapping,
3301 				       struct xa_state *xas, pgoff_t end_pgoff)
3302 {
3303 	unsigned long max_idx;
3304 
3305 	do {
3306 		if (!folio)
3307 			return NULL;
3308 		if (xas_retry(xas, folio))
3309 			continue;
3310 		if (xa_is_value(folio))
3311 			continue;
3312 		if (folio_test_locked(folio))
3313 			continue;
3314 		if (!folio_try_get_rcu(folio))
3315 			continue;
3316 		/* Has the page moved or been split? */
3317 		if (unlikely(folio != xas_reload(xas)))
3318 			goto skip;
3319 		if (!folio_test_uptodate(folio) || folio_test_readahead(folio))
3320 			goto skip;
3321 		if (!folio_trylock(folio))
3322 			goto skip;
3323 		if (folio->mapping != mapping)
3324 			goto unlock;
3325 		if (!folio_test_uptodate(folio))
3326 			goto unlock;
3327 		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3328 		if (xas->xa_index >= max_idx)
3329 			goto unlock;
3330 		return folio;
3331 unlock:
3332 		folio_unlock(folio);
3333 skip:
3334 		folio_put(folio);
3335 	} while ((folio = xas_next_entry(xas, end_pgoff)) != NULL);
3336 
3337 	return NULL;
3338 }
3339 
3340 static inline struct folio *first_map_page(struct address_space *mapping,
3341 					  struct xa_state *xas,
3342 					  pgoff_t end_pgoff)
3343 {
3344 	return next_uptodate_page(xas_find(xas, end_pgoff),
3345 				  mapping, xas, end_pgoff);
3346 }
3347 
3348 static inline struct folio *next_map_page(struct address_space *mapping,
3349 					 struct xa_state *xas,
3350 					 pgoff_t end_pgoff)
3351 {
3352 	return next_uptodate_page(xas_next_entry(xas, end_pgoff),
3353 				  mapping, xas, end_pgoff);
3354 }
3355 
3356 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3357 			     pgoff_t start_pgoff, pgoff_t end_pgoff)
3358 {
3359 	struct vm_area_struct *vma = vmf->vma;
3360 	struct file *file = vma->vm_file;
3361 	struct address_space *mapping = file->f_mapping;
3362 	pgoff_t last_pgoff = start_pgoff;
3363 	unsigned long addr;
3364 	XA_STATE(xas, &mapping->i_pages, start_pgoff);
3365 	struct folio *folio;
3366 	struct page *page;
3367 	unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss);
3368 	vm_fault_t ret = 0;
3369 
3370 	rcu_read_lock();
3371 	folio = first_map_page(mapping, &xas, end_pgoff);
3372 	if (!folio)
3373 		goto out;
3374 
3375 	if (filemap_map_pmd(vmf, &folio->page)) {
3376 		ret = VM_FAULT_NOPAGE;
3377 		goto out;
3378 	}
3379 
3380 	addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3381 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3382 	do {
3383 again:
3384 		page = folio_file_page(folio, xas.xa_index);
3385 		if (PageHWPoison(page))
3386 			goto unlock;
3387 
3388 		if (mmap_miss > 0)
3389 			mmap_miss--;
3390 
3391 		addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3392 		vmf->pte += xas.xa_index - last_pgoff;
3393 		last_pgoff = xas.xa_index;
3394 
3395 		/*
3396 		 * NOTE: If there're PTE markers, we'll leave them to be
3397 		 * handled in the specific fault path, and it'll prohibit the
3398 		 * fault-around logic.
3399 		 */
3400 		if (!pte_none(*vmf->pte))
3401 			goto unlock;
3402 
3403 		/* We're about to handle the fault */
3404 		if (vmf->address == addr)
3405 			ret = VM_FAULT_NOPAGE;
3406 
3407 		do_set_pte(vmf, page, addr);
3408 		/* no need to invalidate: a not-present page won't be cached */
3409 		update_mmu_cache(vma, addr, vmf->pte);
3410 		if (folio_more_pages(folio, xas.xa_index, end_pgoff)) {
3411 			xas.xa_index++;
3412 			folio_ref_inc(folio);
3413 			goto again;
3414 		}
3415 		folio_unlock(folio);
3416 		continue;
3417 unlock:
3418 		if (folio_more_pages(folio, xas.xa_index, end_pgoff)) {
3419 			xas.xa_index++;
3420 			goto again;
3421 		}
3422 		folio_unlock(folio);
3423 		folio_put(folio);
3424 	} while ((folio = next_map_page(mapping, &xas, end_pgoff)) != NULL);
3425 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3426 out:
3427 	rcu_read_unlock();
3428 	WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss);
3429 	return ret;
3430 }
3431 EXPORT_SYMBOL(filemap_map_pages);
3432 
3433 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3434 {
3435 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3436 	struct folio *folio = page_folio(vmf->page);
3437 	vm_fault_t ret = VM_FAULT_LOCKED;
3438 
3439 	sb_start_pagefault(mapping->host->i_sb);
3440 	file_update_time(vmf->vma->vm_file);
3441 	folio_lock(folio);
3442 	if (folio->mapping != mapping) {
3443 		folio_unlock(folio);
3444 		ret = VM_FAULT_NOPAGE;
3445 		goto out;
3446 	}
3447 	/*
3448 	 * We mark the folio dirty already here so that when freeze is in
3449 	 * progress, we are guaranteed that writeback during freezing will
3450 	 * see the dirty folio and writeprotect it again.
3451 	 */
3452 	folio_mark_dirty(folio);
3453 	folio_wait_stable(folio);
3454 out:
3455 	sb_end_pagefault(mapping->host->i_sb);
3456 	return ret;
3457 }
3458 
3459 const struct vm_operations_struct generic_file_vm_ops = {
3460 	.fault		= filemap_fault,
3461 	.map_pages	= filemap_map_pages,
3462 	.page_mkwrite	= filemap_page_mkwrite,
3463 };
3464 
3465 /* This is used for a general mmap of a disk file */
3466 
3467 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3468 {
3469 	struct address_space *mapping = file->f_mapping;
3470 
3471 	if (!mapping->a_ops->read_folio)
3472 		return -ENOEXEC;
3473 	file_accessed(file);
3474 	vma->vm_ops = &generic_file_vm_ops;
3475 	return 0;
3476 }
3477 
3478 /*
3479  * This is for filesystems which do not implement ->writepage.
3480  */
3481 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3482 {
3483 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
3484 		return -EINVAL;
3485 	return generic_file_mmap(file, vma);
3486 }
3487 #else
3488 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3489 {
3490 	return VM_FAULT_SIGBUS;
3491 }
3492 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3493 {
3494 	return -ENOSYS;
3495 }
3496 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3497 {
3498 	return -ENOSYS;
3499 }
3500 #endif /* CONFIG_MMU */
3501 
3502 EXPORT_SYMBOL(filemap_page_mkwrite);
3503 EXPORT_SYMBOL(generic_file_mmap);
3504 EXPORT_SYMBOL(generic_file_readonly_mmap);
3505 
3506 static struct folio *do_read_cache_folio(struct address_space *mapping,
3507 		pgoff_t index, filler_t filler, struct file *file, gfp_t gfp)
3508 {
3509 	struct folio *folio;
3510 	int err;
3511 
3512 	if (!filler)
3513 		filler = mapping->a_ops->read_folio;
3514 repeat:
3515 	folio = filemap_get_folio(mapping, index);
3516 	if (!folio) {
3517 		folio = filemap_alloc_folio(gfp, 0);
3518 		if (!folio)
3519 			return ERR_PTR(-ENOMEM);
3520 		err = filemap_add_folio(mapping, folio, index, gfp);
3521 		if (unlikely(err)) {
3522 			folio_put(folio);
3523 			if (err == -EEXIST)
3524 				goto repeat;
3525 			/* Presumably ENOMEM for xarray node */
3526 			return ERR_PTR(err);
3527 		}
3528 
3529 		goto filler;
3530 	}
3531 	if (folio_test_uptodate(folio))
3532 		goto out;
3533 
3534 	if (!folio_trylock(folio)) {
3535 		folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE);
3536 		goto repeat;
3537 	}
3538 
3539 	/* Folio was truncated from mapping */
3540 	if (!folio->mapping) {
3541 		folio_unlock(folio);
3542 		folio_put(folio);
3543 		goto repeat;
3544 	}
3545 
3546 	/* Someone else locked and filled the page in a very small window */
3547 	if (folio_test_uptodate(folio)) {
3548 		folio_unlock(folio);
3549 		goto out;
3550 	}
3551 
3552 filler:
3553 	err = filemap_read_folio(file, filler, folio);
3554 	if (err) {
3555 		folio_put(folio);
3556 		if (err == AOP_TRUNCATED_PAGE)
3557 			goto repeat;
3558 		return ERR_PTR(err);
3559 	}
3560 
3561 out:
3562 	folio_mark_accessed(folio);
3563 	return folio;
3564 }
3565 
3566 /**
3567  * read_cache_folio - Read into page cache, fill it if needed.
3568  * @mapping: The address_space to read from.
3569  * @index: The index to read.
3570  * @filler: Function to perform the read, or NULL to use aops->read_folio().
3571  * @file: Passed to filler function, may be NULL if not required.
3572  *
3573  * Read one page into the page cache.  If it succeeds, the folio returned
3574  * will contain @index, but it may not be the first page of the folio.
3575  *
3576  * If the filler function returns an error, it will be returned to the
3577  * caller.
3578  *
3579  * Context: May sleep.  Expects mapping->invalidate_lock to be held.
3580  * Return: An uptodate folio on success, ERR_PTR() on failure.
3581  */
3582 struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index,
3583 		filler_t filler, struct file *file)
3584 {
3585 	return do_read_cache_folio(mapping, index, filler, file,
3586 			mapping_gfp_mask(mapping));
3587 }
3588 EXPORT_SYMBOL(read_cache_folio);
3589 
3590 static struct page *do_read_cache_page(struct address_space *mapping,
3591 		pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp)
3592 {
3593 	struct folio *folio;
3594 
3595 	folio = do_read_cache_folio(mapping, index, filler, file, gfp);
3596 	if (IS_ERR(folio))
3597 		return &folio->page;
3598 	return folio_file_page(folio, index);
3599 }
3600 
3601 struct page *read_cache_page(struct address_space *mapping,
3602 			pgoff_t index, filler_t *filler, struct file *file)
3603 {
3604 	return do_read_cache_page(mapping, index, filler, file,
3605 			mapping_gfp_mask(mapping));
3606 }
3607 EXPORT_SYMBOL(read_cache_page);
3608 
3609 /**
3610  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3611  * @mapping:	the page's address_space
3612  * @index:	the page index
3613  * @gfp:	the page allocator flags to use if allocating
3614  *
3615  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3616  * any new page allocations done using the specified allocation flags.
3617  *
3618  * If the page does not get brought uptodate, return -EIO.
3619  *
3620  * The function expects mapping->invalidate_lock to be already held.
3621  *
3622  * Return: up to date page on success, ERR_PTR() on failure.
3623  */
3624 struct page *read_cache_page_gfp(struct address_space *mapping,
3625 				pgoff_t index,
3626 				gfp_t gfp)
3627 {
3628 	return do_read_cache_page(mapping, index, NULL, NULL, gfp);
3629 }
3630 EXPORT_SYMBOL(read_cache_page_gfp);
3631 
3632 /*
3633  * Warn about a page cache invalidation failure during a direct I/O write.
3634  */
3635 void dio_warn_stale_pagecache(struct file *filp)
3636 {
3637 	static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3638 	char pathname[128];
3639 	char *path;
3640 
3641 	errseq_set(&filp->f_mapping->wb_err, -EIO);
3642 	if (__ratelimit(&_rs)) {
3643 		path = file_path(filp, pathname, sizeof(pathname));
3644 		if (IS_ERR(path))
3645 			path = "(unknown)";
3646 		pr_crit("Page cache invalidation failure on direct I/O.  Possible data corruption due to collision with buffered I/O!\n");
3647 		pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3648 			current->comm);
3649 	}
3650 }
3651 
3652 ssize_t
3653 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3654 {
3655 	struct file	*file = iocb->ki_filp;
3656 	struct address_space *mapping = file->f_mapping;
3657 	struct inode	*inode = mapping->host;
3658 	loff_t		pos = iocb->ki_pos;
3659 	ssize_t		written;
3660 	size_t		write_len;
3661 	pgoff_t		end;
3662 
3663 	write_len = iov_iter_count(from);
3664 	end = (pos + write_len - 1) >> PAGE_SHIFT;
3665 
3666 	if (iocb->ki_flags & IOCB_NOWAIT) {
3667 		/* If there are pages to writeback, return */
3668 		if (filemap_range_has_page(file->f_mapping, pos,
3669 					   pos + write_len - 1))
3670 			return -EAGAIN;
3671 	} else {
3672 		written = filemap_write_and_wait_range(mapping, pos,
3673 							pos + write_len - 1);
3674 		if (written)
3675 			goto out;
3676 	}
3677 
3678 	/*
3679 	 * After a write we want buffered reads to be sure to go to disk to get
3680 	 * the new data.  We invalidate clean cached page from the region we're
3681 	 * about to write.  We do this *before* the write so that we can return
3682 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
3683 	 */
3684 	written = invalidate_inode_pages2_range(mapping,
3685 					pos >> PAGE_SHIFT, end);
3686 	/*
3687 	 * If a page can not be invalidated, return 0 to fall back
3688 	 * to buffered write.
3689 	 */
3690 	if (written) {
3691 		if (written == -EBUSY)
3692 			return 0;
3693 		goto out;
3694 	}
3695 
3696 	written = mapping->a_ops->direct_IO(iocb, from);
3697 
3698 	/*
3699 	 * Finally, try again to invalidate clean pages which might have been
3700 	 * cached by non-direct readahead, or faulted in by get_user_pages()
3701 	 * if the source of the write was an mmap'ed region of the file
3702 	 * we're writing.  Either one is a pretty crazy thing to do,
3703 	 * so we don't support it 100%.  If this invalidation
3704 	 * fails, tough, the write still worked...
3705 	 *
3706 	 * Most of the time we do not need this since dio_complete() will do
3707 	 * the invalidation for us. However there are some file systems that
3708 	 * do not end up with dio_complete() being called, so let's not break
3709 	 * them by removing it completely.
3710 	 *
3711 	 * Noticeable example is a blkdev_direct_IO().
3712 	 *
3713 	 * Skip invalidation for async writes or if mapping has no pages.
3714 	 */
3715 	if (written > 0 && mapping->nrpages &&
3716 	    invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3717 		dio_warn_stale_pagecache(file);
3718 
3719 	if (written > 0) {
3720 		pos += written;
3721 		write_len -= written;
3722 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3723 			i_size_write(inode, pos);
3724 			mark_inode_dirty(inode);
3725 		}
3726 		iocb->ki_pos = pos;
3727 	}
3728 	if (written != -EIOCBQUEUED)
3729 		iov_iter_revert(from, write_len - iov_iter_count(from));
3730 out:
3731 	return written;
3732 }
3733 EXPORT_SYMBOL(generic_file_direct_write);
3734 
3735 ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i)
3736 {
3737 	struct file *file = iocb->ki_filp;
3738 	loff_t pos = iocb->ki_pos;
3739 	struct address_space *mapping = file->f_mapping;
3740 	const struct address_space_operations *a_ops = mapping->a_ops;
3741 	long status = 0;
3742 	ssize_t written = 0;
3743 
3744 	do {
3745 		struct page *page;
3746 		unsigned long offset;	/* Offset into pagecache page */
3747 		unsigned long bytes;	/* Bytes to write to page */
3748 		size_t copied;		/* Bytes copied from user */
3749 		void *fsdata = NULL;
3750 
3751 		offset = (pos & (PAGE_SIZE - 1));
3752 		bytes = min_t(unsigned long, PAGE_SIZE - offset,
3753 						iov_iter_count(i));
3754 
3755 again:
3756 		/*
3757 		 * Bring in the user page that we will copy from _first_.
3758 		 * Otherwise there's a nasty deadlock on copying from the
3759 		 * same page as we're writing to, without it being marked
3760 		 * up-to-date.
3761 		 */
3762 		if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
3763 			status = -EFAULT;
3764 			break;
3765 		}
3766 
3767 		if (fatal_signal_pending(current)) {
3768 			status = -EINTR;
3769 			break;
3770 		}
3771 
3772 		status = a_ops->write_begin(file, mapping, pos, bytes,
3773 						&page, &fsdata);
3774 		if (unlikely(status < 0))
3775 			break;
3776 
3777 		if (mapping_writably_mapped(mapping))
3778 			flush_dcache_page(page);
3779 
3780 		copied = copy_page_from_iter_atomic(page, offset, bytes, i);
3781 		flush_dcache_page(page);
3782 
3783 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
3784 						page, fsdata);
3785 		if (unlikely(status != copied)) {
3786 			iov_iter_revert(i, copied - max(status, 0L));
3787 			if (unlikely(status < 0))
3788 				break;
3789 		}
3790 		cond_resched();
3791 
3792 		if (unlikely(status == 0)) {
3793 			/*
3794 			 * A short copy made ->write_end() reject the
3795 			 * thing entirely.  Might be memory poisoning
3796 			 * halfway through, might be a race with munmap,
3797 			 * might be severe memory pressure.
3798 			 */
3799 			if (copied)
3800 				bytes = copied;
3801 			goto again;
3802 		}
3803 		pos += status;
3804 		written += status;
3805 
3806 		balance_dirty_pages_ratelimited(mapping);
3807 	} while (iov_iter_count(i));
3808 
3809 	return written ? written : status;
3810 }
3811 EXPORT_SYMBOL(generic_perform_write);
3812 
3813 /**
3814  * __generic_file_write_iter - write data to a file
3815  * @iocb:	IO state structure (file, offset, etc.)
3816  * @from:	iov_iter with data to write
3817  *
3818  * This function does all the work needed for actually writing data to a
3819  * file. It does all basic checks, removes SUID from the file, updates
3820  * modification times and calls proper subroutines depending on whether we
3821  * do direct IO or a standard buffered write.
3822  *
3823  * It expects i_rwsem to be grabbed unless we work on a block device or similar
3824  * object which does not need locking at all.
3825  *
3826  * This function does *not* take care of syncing data in case of O_SYNC write.
3827  * A caller has to handle it. This is mainly due to the fact that we want to
3828  * avoid syncing under i_rwsem.
3829  *
3830  * Return:
3831  * * number of bytes written, even for truncated writes
3832  * * negative error code if no data has been written at all
3833  */
3834 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3835 {
3836 	struct file *file = iocb->ki_filp;
3837 	struct address_space *mapping = file->f_mapping;
3838 	struct inode 	*inode = mapping->host;
3839 	ssize_t		written = 0;
3840 	ssize_t		err;
3841 	ssize_t		status;
3842 
3843 	/* We can write back this queue in page reclaim */
3844 	current->backing_dev_info = inode_to_bdi(inode);
3845 	err = file_remove_privs(file);
3846 	if (err)
3847 		goto out;
3848 
3849 	err = file_update_time(file);
3850 	if (err)
3851 		goto out;
3852 
3853 	if (iocb->ki_flags & IOCB_DIRECT) {
3854 		loff_t pos, endbyte;
3855 
3856 		written = generic_file_direct_write(iocb, from);
3857 		/*
3858 		 * If the write stopped short of completing, fall back to
3859 		 * buffered writes.  Some filesystems do this for writes to
3860 		 * holes, for example.  For DAX files, a buffered write will
3861 		 * not succeed (even if it did, DAX does not handle dirty
3862 		 * page-cache pages correctly).
3863 		 */
3864 		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3865 			goto out;
3866 
3867 		pos = iocb->ki_pos;
3868 		status = generic_perform_write(iocb, from);
3869 		/*
3870 		 * If generic_perform_write() returned a synchronous error
3871 		 * then we want to return the number of bytes which were
3872 		 * direct-written, or the error code if that was zero.  Note
3873 		 * that this differs from normal direct-io semantics, which
3874 		 * will return -EFOO even if some bytes were written.
3875 		 */
3876 		if (unlikely(status < 0)) {
3877 			err = status;
3878 			goto out;
3879 		}
3880 		/*
3881 		 * We need to ensure that the page cache pages are written to
3882 		 * disk and invalidated to preserve the expected O_DIRECT
3883 		 * semantics.
3884 		 */
3885 		endbyte = pos + status - 1;
3886 		err = filemap_write_and_wait_range(mapping, pos, endbyte);
3887 		if (err == 0) {
3888 			iocb->ki_pos = endbyte + 1;
3889 			written += status;
3890 			invalidate_mapping_pages(mapping,
3891 						 pos >> PAGE_SHIFT,
3892 						 endbyte >> PAGE_SHIFT);
3893 		} else {
3894 			/*
3895 			 * We don't know how much we wrote, so just return
3896 			 * the number of bytes which were direct-written
3897 			 */
3898 		}
3899 	} else {
3900 		written = generic_perform_write(iocb, from);
3901 		if (likely(written > 0))
3902 			iocb->ki_pos += written;
3903 	}
3904 out:
3905 	current->backing_dev_info = NULL;
3906 	return written ? written : err;
3907 }
3908 EXPORT_SYMBOL(__generic_file_write_iter);
3909 
3910 /**
3911  * generic_file_write_iter - write data to a file
3912  * @iocb:	IO state structure
3913  * @from:	iov_iter with data to write
3914  *
3915  * This is a wrapper around __generic_file_write_iter() to be used by most
3916  * filesystems. It takes care of syncing the file in case of O_SYNC file
3917  * and acquires i_rwsem as needed.
3918  * Return:
3919  * * negative error code if no data has been written at all of
3920  *   vfs_fsync_range() failed for a synchronous write
3921  * * number of bytes written, even for truncated writes
3922  */
3923 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3924 {
3925 	struct file *file = iocb->ki_filp;
3926 	struct inode *inode = file->f_mapping->host;
3927 	ssize_t ret;
3928 
3929 	inode_lock(inode);
3930 	ret = generic_write_checks(iocb, from);
3931 	if (ret > 0)
3932 		ret = __generic_file_write_iter(iocb, from);
3933 	inode_unlock(inode);
3934 
3935 	if (ret > 0)
3936 		ret = generic_write_sync(iocb, ret);
3937 	return ret;
3938 }
3939 EXPORT_SYMBOL(generic_file_write_iter);
3940 
3941 /**
3942  * filemap_release_folio() - Release fs-specific metadata on a folio.
3943  * @folio: The folio which the kernel is trying to free.
3944  * @gfp: Memory allocation flags (and I/O mode).
3945  *
3946  * The address_space is trying to release any data attached to a folio
3947  * (presumably at folio->private).
3948  *
3949  * This will also be called if the private_2 flag is set on a page,
3950  * indicating that the folio has other metadata associated with it.
3951  *
3952  * The @gfp argument specifies whether I/O may be performed to release
3953  * this page (__GFP_IO), and whether the call may block
3954  * (__GFP_RECLAIM & __GFP_FS).
3955  *
3956  * Return: %true if the release was successful, otherwise %false.
3957  */
3958 bool filemap_release_folio(struct folio *folio, gfp_t gfp)
3959 {
3960 	struct address_space * const mapping = folio->mapping;
3961 
3962 	BUG_ON(!folio_test_locked(folio));
3963 	if (folio_test_writeback(folio))
3964 		return false;
3965 
3966 	if (mapping && mapping->a_ops->release_folio)
3967 		return mapping->a_ops->release_folio(folio, gfp);
3968 	return try_to_free_buffers(folio);
3969 }
3970 EXPORT_SYMBOL(filemap_release_folio);
3971