1 /* 2 * linux/mm/filemap.c 3 * 4 * Copyright (C) 1994-1999 Linus Torvalds 5 */ 6 7 /* 8 * This file handles the generic file mmap semantics used by 9 * most "normal" filesystems (but you don't /have/ to use this: 10 * the NFS filesystem used to do this differently, for example) 11 */ 12 #include <linux/export.h> 13 #include <linux/compiler.h> 14 #include <linux/fs.h> 15 #include <linux/uaccess.h> 16 #include <linux/aio.h> 17 #include <linux/capability.h> 18 #include <linux/kernel_stat.h> 19 #include <linux/gfp.h> 20 #include <linux/mm.h> 21 #include <linux/swap.h> 22 #include <linux/mman.h> 23 #include <linux/pagemap.h> 24 #include <linux/file.h> 25 #include <linux/uio.h> 26 #include <linux/hash.h> 27 #include <linux/writeback.h> 28 #include <linux/backing-dev.h> 29 #include <linux/pagevec.h> 30 #include <linux/blkdev.h> 31 #include <linux/security.h> 32 #include <linux/cpuset.h> 33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */ 34 #include <linux/memcontrol.h> 35 #include <linux/cleancache.h> 36 #include "internal.h" 37 38 #define CREATE_TRACE_POINTS 39 #include <trace/events/filemap.h> 40 41 /* 42 * FIXME: remove all knowledge of the buffer layer from the core VM 43 */ 44 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 45 46 #include <asm/mman.h> 47 48 /* 49 * Shared mappings implemented 30.11.1994. It's not fully working yet, 50 * though. 51 * 52 * Shared mappings now work. 15.8.1995 Bruno. 53 * 54 * finished 'unifying' the page and buffer cache and SMP-threaded the 55 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 56 * 57 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 58 */ 59 60 /* 61 * Lock ordering: 62 * 63 * ->i_mmap_mutex (truncate_pagecache) 64 * ->private_lock (__free_pte->__set_page_dirty_buffers) 65 * ->swap_lock (exclusive_swap_page, others) 66 * ->mapping->tree_lock 67 * 68 * ->i_mutex 69 * ->i_mmap_mutex (truncate->unmap_mapping_range) 70 * 71 * ->mmap_sem 72 * ->i_mmap_mutex 73 * ->page_table_lock or pte_lock (various, mainly in memory.c) 74 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock) 75 * 76 * ->mmap_sem 77 * ->lock_page (access_process_vm) 78 * 79 * ->i_mutex (generic_file_buffered_write) 80 * ->mmap_sem (fault_in_pages_readable->do_page_fault) 81 * 82 * bdi->wb.list_lock 83 * sb_lock (fs/fs-writeback.c) 84 * ->mapping->tree_lock (__sync_single_inode) 85 * 86 * ->i_mmap_mutex 87 * ->anon_vma.lock (vma_adjust) 88 * 89 * ->anon_vma.lock 90 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 91 * 92 * ->page_table_lock or pte_lock 93 * ->swap_lock (try_to_unmap_one) 94 * ->private_lock (try_to_unmap_one) 95 * ->tree_lock (try_to_unmap_one) 96 * ->zone.lru_lock (follow_page->mark_page_accessed) 97 * ->zone.lru_lock (check_pte_range->isolate_lru_page) 98 * ->private_lock (page_remove_rmap->set_page_dirty) 99 * ->tree_lock (page_remove_rmap->set_page_dirty) 100 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty) 101 * ->inode->i_lock (page_remove_rmap->set_page_dirty) 102 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 103 * ->inode->i_lock (zap_pte_range->set_page_dirty) 104 * ->private_lock (zap_pte_range->__set_page_dirty_buffers) 105 * 106 * ->i_mmap_mutex 107 * ->tasklist_lock (memory_failure, collect_procs_ao) 108 */ 109 110 /* 111 * Delete a page from the page cache and free it. Caller has to make 112 * sure the page is locked and that nobody else uses it - or that usage 113 * is safe. The caller must hold the mapping's tree_lock. 114 */ 115 void __delete_from_page_cache(struct page *page) 116 { 117 struct address_space *mapping = page->mapping; 118 119 trace_mm_filemap_delete_from_page_cache(page); 120 /* 121 * if we're uptodate, flush out into the cleancache, otherwise 122 * invalidate any existing cleancache entries. We can't leave 123 * stale data around in the cleancache once our page is gone 124 */ 125 if (PageUptodate(page) && PageMappedToDisk(page)) 126 cleancache_put_page(page); 127 else 128 cleancache_invalidate_page(mapping, page); 129 130 radix_tree_delete(&mapping->page_tree, page->index); 131 page->mapping = NULL; 132 /* Leave page->index set: truncation lookup relies upon it */ 133 mapping->nrpages--; 134 __dec_zone_page_state(page, NR_FILE_PAGES); 135 if (PageSwapBacked(page)) 136 __dec_zone_page_state(page, NR_SHMEM); 137 BUG_ON(page_mapped(page)); 138 139 /* 140 * Some filesystems seem to re-dirty the page even after 141 * the VM has canceled the dirty bit (eg ext3 journaling). 142 * 143 * Fix it up by doing a final dirty accounting check after 144 * having removed the page entirely. 145 */ 146 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) { 147 dec_zone_page_state(page, NR_FILE_DIRTY); 148 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE); 149 } 150 } 151 152 /** 153 * delete_from_page_cache - delete page from page cache 154 * @page: the page which the kernel is trying to remove from page cache 155 * 156 * This must be called only on pages that have been verified to be in the page 157 * cache and locked. It will never put the page into the free list, the caller 158 * has a reference on the page. 159 */ 160 void delete_from_page_cache(struct page *page) 161 { 162 struct address_space *mapping = page->mapping; 163 void (*freepage)(struct page *); 164 165 BUG_ON(!PageLocked(page)); 166 167 freepage = mapping->a_ops->freepage; 168 spin_lock_irq(&mapping->tree_lock); 169 __delete_from_page_cache(page); 170 spin_unlock_irq(&mapping->tree_lock); 171 mem_cgroup_uncharge_cache_page(page); 172 173 if (freepage) 174 freepage(page); 175 page_cache_release(page); 176 } 177 EXPORT_SYMBOL(delete_from_page_cache); 178 179 static int sleep_on_page(void *word) 180 { 181 io_schedule(); 182 return 0; 183 } 184 185 static int sleep_on_page_killable(void *word) 186 { 187 sleep_on_page(word); 188 return fatal_signal_pending(current) ? -EINTR : 0; 189 } 190 191 static int filemap_check_errors(struct address_space *mapping) 192 { 193 int ret = 0; 194 /* Check for outstanding write errors */ 195 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 196 ret = -ENOSPC; 197 if (test_and_clear_bit(AS_EIO, &mapping->flags)) 198 ret = -EIO; 199 return ret; 200 } 201 202 /** 203 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 204 * @mapping: address space structure to write 205 * @start: offset in bytes where the range starts 206 * @end: offset in bytes where the range ends (inclusive) 207 * @sync_mode: enable synchronous operation 208 * 209 * Start writeback against all of a mapping's dirty pages that lie 210 * within the byte offsets <start, end> inclusive. 211 * 212 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 213 * opposed to a regular memory cleansing writeback. The difference between 214 * these two operations is that if a dirty page/buffer is encountered, it must 215 * be waited upon, and not just skipped over. 216 */ 217 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 218 loff_t end, int sync_mode) 219 { 220 int ret; 221 struct writeback_control wbc = { 222 .sync_mode = sync_mode, 223 .nr_to_write = LONG_MAX, 224 .range_start = start, 225 .range_end = end, 226 }; 227 228 if (!mapping_cap_writeback_dirty(mapping)) 229 return 0; 230 231 ret = do_writepages(mapping, &wbc); 232 return ret; 233 } 234 235 static inline int __filemap_fdatawrite(struct address_space *mapping, 236 int sync_mode) 237 { 238 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 239 } 240 241 int filemap_fdatawrite(struct address_space *mapping) 242 { 243 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 244 } 245 EXPORT_SYMBOL(filemap_fdatawrite); 246 247 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 248 loff_t end) 249 { 250 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 251 } 252 EXPORT_SYMBOL(filemap_fdatawrite_range); 253 254 /** 255 * filemap_flush - mostly a non-blocking flush 256 * @mapping: target address_space 257 * 258 * This is a mostly non-blocking flush. Not suitable for data-integrity 259 * purposes - I/O may not be started against all dirty pages. 260 */ 261 int filemap_flush(struct address_space *mapping) 262 { 263 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 264 } 265 EXPORT_SYMBOL(filemap_flush); 266 267 /** 268 * filemap_fdatawait_range - wait for writeback to complete 269 * @mapping: address space structure to wait for 270 * @start_byte: offset in bytes where the range starts 271 * @end_byte: offset in bytes where the range ends (inclusive) 272 * 273 * Walk the list of under-writeback pages of the given address space 274 * in the given range and wait for all of them. 275 */ 276 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 277 loff_t end_byte) 278 { 279 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT; 280 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT; 281 struct pagevec pvec; 282 int nr_pages; 283 int ret2, ret = 0; 284 285 if (end_byte < start_byte) 286 goto out; 287 288 pagevec_init(&pvec, 0); 289 while ((index <= end) && 290 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 291 PAGECACHE_TAG_WRITEBACK, 292 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) { 293 unsigned i; 294 295 for (i = 0; i < nr_pages; i++) { 296 struct page *page = pvec.pages[i]; 297 298 /* until radix tree lookup accepts end_index */ 299 if (page->index > end) 300 continue; 301 302 wait_on_page_writeback(page); 303 if (TestClearPageError(page)) 304 ret = -EIO; 305 } 306 pagevec_release(&pvec); 307 cond_resched(); 308 } 309 out: 310 ret2 = filemap_check_errors(mapping); 311 if (!ret) 312 ret = ret2; 313 314 return ret; 315 } 316 EXPORT_SYMBOL(filemap_fdatawait_range); 317 318 /** 319 * filemap_fdatawait - wait for all under-writeback pages to complete 320 * @mapping: address space structure to wait for 321 * 322 * Walk the list of under-writeback pages of the given address space 323 * and wait for all of them. 324 */ 325 int filemap_fdatawait(struct address_space *mapping) 326 { 327 loff_t i_size = i_size_read(mapping->host); 328 329 if (i_size == 0) 330 return 0; 331 332 return filemap_fdatawait_range(mapping, 0, i_size - 1); 333 } 334 EXPORT_SYMBOL(filemap_fdatawait); 335 336 int filemap_write_and_wait(struct address_space *mapping) 337 { 338 int err = 0; 339 340 if (mapping->nrpages) { 341 err = filemap_fdatawrite(mapping); 342 /* 343 * Even if the above returned error, the pages may be 344 * written partially (e.g. -ENOSPC), so we wait for it. 345 * But the -EIO is special case, it may indicate the worst 346 * thing (e.g. bug) happened, so we avoid waiting for it. 347 */ 348 if (err != -EIO) { 349 int err2 = filemap_fdatawait(mapping); 350 if (!err) 351 err = err2; 352 } 353 } else { 354 err = filemap_check_errors(mapping); 355 } 356 return err; 357 } 358 EXPORT_SYMBOL(filemap_write_and_wait); 359 360 /** 361 * filemap_write_and_wait_range - write out & wait on a file range 362 * @mapping: the address_space for the pages 363 * @lstart: offset in bytes where the range starts 364 * @lend: offset in bytes where the range ends (inclusive) 365 * 366 * Write out and wait upon file offsets lstart->lend, inclusive. 367 * 368 * Note that `lend' is inclusive (describes the last byte to be written) so 369 * that this function can be used to write to the very end-of-file (end = -1). 370 */ 371 int filemap_write_and_wait_range(struct address_space *mapping, 372 loff_t lstart, loff_t lend) 373 { 374 int err = 0; 375 376 if (mapping->nrpages) { 377 err = __filemap_fdatawrite_range(mapping, lstart, lend, 378 WB_SYNC_ALL); 379 /* See comment of filemap_write_and_wait() */ 380 if (err != -EIO) { 381 int err2 = filemap_fdatawait_range(mapping, 382 lstart, lend); 383 if (!err) 384 err = err2; 385 } 386 } else { 387 err = filemap_check_errors(mapping); 388 } 389 return err; 390 } 391 EXPORT_SYMBOL(filemap_write_and_wait_range); 392 393 /** 394 * replace_page_cache_page - replace a pagecache page with a new one 395 * @old: page to be replaced 396 * @new: page to replace with 397 * @gfp_mask: allocation mode 398 * 399 * This function replaces a page in the pagecache with a new one. On 400 * success it acquires the pagecache reference for the new page and 401 * drops it for the old page. Both the old and new pages must be 402 * locked. This function does not add the new page to the LRU, the 403 * caller must do that. 404 * 405 * The remove + add is atomic. The only way this function can fail is 406 * memory allocation failure. 407 */ 408 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask) 409 { 410 int error; 411 412 VM_BUG_ON(!PageLocked(old)); 413 VM_BUG_ON(!PageLocked(new)); 414 VM_BUG_ON(new->mapping); 415 416 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM); 417 if (!error) { 418 struct address_space *mapping = old->mapping; 419 void (*freepage)(struct page *); 420 421 pgoff_t offset = old->index; 422 freepage = mapping->a_ops->freepage; 423 424 page_cache_get(new); 425 new->mapping = mapping; 426 new->index = offset; 427 428 spin_lock_irq(&mapping->tree_lock); 429 __delete_from_page_cache(old); 430 error = radix_tree_insert(&mapping->page_tree, offset, new); 431 BUG_ON(error); 432 mapping->nrpages++; 433 __inc_zone_page_state(new, NR_FILE_PAGES); 434 if (PageSwapBacked(new)) 435 __inc_zone_page_state(new, NR_SHMEM); 436 spin_unlock_irq(&mapping->tree_lock); 437 /* mem_cgroup codes must not be called under tree_lock */ 438 mem_cgroup_replace_page_cache(old, new); 439 radix_tree_preload_end(); 440 if (freepage) 441 freepage(old); 442 page_cache_release(old); 443 } 444 445 return error; 446 } 447 EXPORT_SYMBOL_GPL(replace_page_cache_page); 448 449 /** 450 * add_to_page_cache_locked - add a locked page to the pagecache 451 * @page: page to add 452 * @mapping: the page's address_space 453 * @offset: page index 454 * @gfp_mask: page allocation mode 455 * 456 * This function is used to add a page to the pagecache. It must be locked. 457 * This function does not add the page to the LRU. The caller must do that. 458 */ 459 int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 460 pgoff_t offset, gfp_t gfp_mask) 461 { 462 int error; 463 464 VM_BUG_ON(!PageLocked(page)); 465 VM_BUG_ON(PageSwapBacked(page)); 466 467 error = mem_cgroup_cache_charge(page, current->mm, 468 gfp_mask & GFP_RECLAIM_MASK); 469 if (error) 470 return error; 471 472 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM); 473 if (error) { 474 mem_cgroup_uncharge_cache_page(page); 475 return error; 476 } 477 478 page_cache_get(page); 479 page->mapping = mapping; 480 page->index = offset; 481 482 spin_lock_irq(&mapping->tree_lock); 483 error = radix_tree_insert(&mapping->page_tree, offset, page); 484 radix_tree_preload_end(); 485 if (unlikely(error)) 486 goto err_insert; 487 mapping->nrpages++; 488 __inc_zone_page_state(page, NR_FILE_PAGES); 489 spin_unlock_irq(&mapping->tree_lock); 490 trace_mm_filemap_add_to_page_cache(page); 491 return 0; 492 err_insert: 493 page->mapping = NULL; 494 /* Leave page->index set: truncation relies upon it */ 495 spin_unlock_irq(&mapping->tree_lock); 496 mem_cgroup_uncharge_cache_page(page); 497 page_cache_release(page); 498 return error; 499 } 500 EXPORT_SYMBOL(add_to_page_cache_locked); 501 502 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 503 pgoff_t offset, gfp_t gfp_mask) 504 { 505 int ret; 506 507 ret = add_to_page_cache(page, mapping, offset, gfp_mask); 508 if (ret == 0) 509 lru_cache_add_file(page); 510 return ret; 511 } 512 EXPORT_SYMBOL_GPL(add_to_page_cache_lru); 513 514 #ifdef CONFIG_NUMA 515 struct page *__page_cache_alloc(gfp_t gfp) 516 { 517 int n; 518 struct page *page; 519 520 if (cpuset_do_page_mem_spread()) { 521 unsigned int cpuset_mems_cookie; 522 do { 523 cpuset_mems_cookie = get_mems_allowed(); 524 n = cpuset_mem_spread_node(); 525 page = alloc_pages_exact_node(n, gfp, 0); 526 } while (!put_mems_allowed(cpuset_mems_cookie) && !page); 527 528 return page; 529 } 530 return alloc_pages(gfp, 0); 531 } 532 EXPORT_SYMBOL(__page_cache_alloc); 533 #endif 534 535 /* 536 * In order to wait for pages to become available there must be 537 * waitqueues associated with pages. By using a hash table of 538 * waitqueues where the bucket discipline is to maintain all 539 * waiters on the same queue and wake all when any of the pages 540 * become available, and for the woken contexts to check to be 541 * sure the appropriate page became available, this saves space 542 * at a cost of "thundering herd" phenomena during rare hash 543 * collisions. 544 */ 545 static wait_queue_head_t *page_waitqueue(struct page *page) 546 { 547 const struct zone *zone = page_zone(page); 548 549 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)]; 550 } 551 552 static inline void wake_up_page(struct page *page, int bit) 553 { 554 __wake_up_bit(page_waitqueue(page), &page->flags, bit); 555 } 556 557 void wait_on_page_bit(struct page *page, int bit_nr) 558 { 559 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr); 560 561 if (test_bit(bit_nr, &page->flags)) 562 __wait_on_bit(page_waitqueue(page), &wait, sleep_on_page, 563 TASK_UNINTERRUPTIBLE); 564 } 565 EXPORT_SYMBOL(wait_on_page_bit); 566 567 int wait_on_page_bit_killable(struct page *page, int bit_nr) 568 { 569 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr); 570 571 if (!test_bit(bit_nr, &page->flags)) 572 return 0; 573 574 return __wait_on_bit(page_waitqueue(page), &wait, 575 sleep_on_page_killable, TASK_KILLABLE); 576 } 577 578 /** 579 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue 580 * @page: Page defining the wait queue of interest 581 * @waiter: Waiter to add to the queue 582 * 583 * Add an arbitrary @waiter to the wait queue for the nominated @page. 584 */ 585 void add_page_wait_queue(struct page *page, wait_queue_t *waiter) 586 { 587 wait_queue_head_t *q = page_waitqueue(page); 588 unsigned long flags; 589 590 spin_lock_irqsave(&q->lock, flags); 591 __add_wait_queue(q, waiter); 592 spin_unlock_irqrestore(&q->lock, flags); 593 } 594 EXPORT_SYMBOL_GPL(add_page_wait_queue); 595 596 /** 597 * unlock_page - unlock a locked page 598 * @page: the page 599 * 600 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). 601 * Also wakes sleepers in wait_on_page_writeback() because the wakeup 602 * mechananism between PageLocked pages and PageWriteback pages is shared. 603 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. 604 * 605 * The mb is necessary to enforce ordering between the clear_bit and the read 606 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()). 607 */ 608 void unlock_page(struct page *page) 609 { 610 VM_BUG_ON(!PageLocked(page)); 611 clear_bit_unlock(PG_locked, &page->flags); 612 smp_mb__after_clear_bit(); 613 wake_up_page(page, PG_locked); 614 } 615 EXPORT_SYMBOL(unlock_page); 616 617 /** 618 * end_page_writeback - end writeback against a page 619 * @page: the page 620 */ 621 void end_page_writeback(struct page *page) 622 { 623 if (TestClearPageReclaim(page)) 624 rotate_reclaimable_page(page); 625 626 if (!test_clear_page_writeback(page)) 627 BUG(); 628 629 smp_mb__after_clear_bit(); 630 wake_up_page(page, PG_writeback); 631 } 632 EXPORT_SYMBOL(end_page_writeback); 633 634 /** 635 * __lock_page - get a lock on the page, assuming we need to sleep to get it 636 * @page: the page to lock 637 */ 638 void __lock_page(struct page *page) 639 { 640 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 641 642 __wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page, 643 TASK_UNINTERRUPTIBLE); 644 } 645 EXPORT_SYMBOL(__lock_page); 646 647 int __lock_page_killable(struct page *page) 648 { 649 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 650 651 return __wait_on_bit_lock(page_waitqueue(page), &wait, 652 sleep_on_page_killable, TASK_KILLABLE); 653 } 654 EXPORT_SYMBOL_GPL(__lock_page_killable); 655 656 int __lock_page_or_retry(struct page *page, struct mm_struct *mm, 657 unsigned int flags) 658 { 659 if (flags & FAULT_FLAG_ALLOW_RETRY) { 660 /* 661 * CAUTION! In this case, mmap_sem is not released 662 * even though return 0. 663 */ 664 if (flags & FAULT_FLAG_RETRY_NOWAIT) 665 return 0; 666 667 up_read(&mm->mmap_sem); 668 if (flags & FAULT_FLAG_KILLABLE) 669 wait_on_page_locked_killable(page); 670 else 671 wait_on_page_locked(page); 672 return 0; 673 } else { 674 if (flags & FAULT_FLAG_KILLABLE) { 675 int ret; 676 677 ret = __lock_page_killable(page); 678 if (ret) { 679 up_read(&mm->mmap_sem); 680 return 0; 681 } 682 } else 683 __lock_page(page); 684 return 1; 685 } 686 } 687 688 /** 689 * find_get_page - find and get a page reference 690 * @mapping: the address_space to search 691 * @offset: the page index 692 * 693 * Is there a pagecache struct page at the given (mapping, offset) tuple? 694 * If yes, increment its refcount and return it; if no, return NULL. 695 */ 696 struct page *find_get_page(struct address_space *mapping, pgoff_t offset) 697 { 698 void **pagep; 699 struct page *page; 700 701 rcu_read_lock(); 702 repeat: 703 page = NULL; 704 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset); 705 if (pagep) { 706 page = radix_tree_deref_slot(pagep); 707 if (unlikely(!page)) 708 goto out; 709 if (radix_tree_exception(page)) { 710 if (radix_tree_deref_retry(page)) 711 goto repeat; 712 /* 713 * Otherwise, shmem/tmpfs must be storing a swap entry 714 * here as an exceptional entry: so return it without 715 * attempting to raise page count. 716 */ 717 goto out; 718 } 719 if (!page_cache_get_speculative(page)) 720 goto repeat; 721 722 /* 723 * Has the page moved? 724 * This is part of the lockless pagecache protocol. See 725 * include/linux/pagemap.h for details. 726 */ 727 if (unlikely(page != *pagep)) { 728 page_cache_release(page); 729 goto repeat; 730 } 731 } 732 out: 733 rcu_read_unlock(); 734 735 return page; 736 } 737 EXPORT_SYMBOL(find_get_page); 738 739 /** 740 * find_lock_page - locate, pin and lock a pagecache page 741 * @mapping: the address_space to search 742 * @offset: the page index 743 * 744 * Locates the desired pagecache page, locks it, increments its reference 745 * count and returns its address. 746 * 747 * Returns zero if the page was not present. find_lock_page() may sleep. 748 */ 749 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset) 750 { 751 struct page *page; 752 753 repeat: 754 page = find_get_page(mapping, offset); 755 if (page && !radix_tree_exception(page)) { 756 lock_page(page); 757 /* Has the page been truncated? */ 758 if (unlikely(page->mapping != mapping)) { 759 unlock_page(page); 760 page_cache_release(page); 761 goto repeat; 762 } 763 VM_BUG_ON(page->index != offset); 764 } 765 return page; 766 } 767 EXPORT_SYMBOL(find_lock_page); 768 769 /** 770 * find_or_create_page - locate or add a pagecache page 771 * @mapping: the page's address_space 772 * @index: the page's index into the mapping 773 * @gfp_mask: page allocation mode 774 * 775 * Locates a page in the pagecache. If the page is not present, a new page 776 * is allocated using @gfp_mask and is added to the pagecache and to the VM's 777 * LRU list. The returned page is locked and has its reference count 778 * incremented. 779 * 780 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic 781 * allocation! 782 * 783 * find_or_create_page() returns the desired page's address, or zero on 784 * memory exhaustion. 785 */ 786 struct page *find_or_create_page(struct address_space *mapping, 787 pgoff_t index, gfp_t gfp_mask) 788 { 789 struct page *page; 790 int err; 791 repeat: 792 page = find_lock_page(mapping, index); 793 if (!page) { 794 page = __page_cache_alloc(gfp_mask); 795 if (!page) 796 return NULL; 797 /* 798 * We want a regular kernel memory (not highmem or DMA etc) 799 * allocation for the radix tree nodes, but we need to honour 800 * the context-specific requirements the caller has asked for. 801 * GFP_RECLAIM_MASK collects those requirements. 802 */ 803 err = add_to_page_cache_lru(page, mapping, index, 804 (gfp_mask & GFP_RECLAIM_MASK)); 805 if (unlikely(err)) { 806 page_cache_release(page); 807 page = NULL; 808 if (err == -EEXIST) 809 goto repeat; 810 } 811 } 812 return page; 813 } 814 EXPORT_SYMBOL(find_or_create_page); 815 816 /** 817 * find_get_pages - gang pagecache lookup 818 * @mapping: The address_space to search 819 * @start: The starting page index 820 * @nr_pages: The maximum number of pages 821 * @pages: Where the resulting pages are placed 822 * 823 * find_get_pages() will search for and return a group of up to 824 * @nr_pages pages in the mapping. The pages are placed at @pages. 825 * find_get_pages() takes a reference against the returned pages. 826 * 827 * The search returns a group of mapping-contiguous pages with ascending 828 * indexes. There may be holes in the indices due to not-present pages. 829 * 830 * find_get_pages() returns the number of pages which were found. 831 */ 832 unsigned find_get_pages(struct address_space *mapping, pgoff_t start, 833 unsigned int nr_pages, struct page **pages) 834 { 835 struct radix_tree_iter iter; 836 void **slot; 837 unsigned ret = 0; 838 839 if (unlikely(!nr_pages)) 840 return 0; 841 842 rcu_read_lock(); 843 restart: 844 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { 845 struct page *page; 846 repeat: 847 page = radix_tree_deref_slot(slot); 848 if (unlikely(!page)) 849 continue; 850 851 if (radix_tree_exception(page)) { 852 if (radix_tree_deref_retry(page)) { 853 /* 854 * Transient condition which can only trigger 855 * when entry at index 0 moves out of or back 856 * to root: none yet gotten, safe to restart. 857 */ 858 WARN_ON(iter.index); 859 goto restart; 860 } 861 /* 862 * Otherwise, shmem/tmpfs must be storing a swap entry 863 * here as an exceptional entry: so skip over it - 864 * we only reach this from invalidate_mapping_pages(). 865 */ 866 continue; 867 } 868 869 if (!page_cache_get_speculative(page)) 870 goto repeat; 871 872 /* Has the page moved? */ 873 if (unlikely(page != *slot)) { 874 page_cache_release(page); 875 goto repeat; 876 } 877 878 pages[ret] = page; 879 if (++ret == nr_pages) 880 break; 881 } 882 883 rcu_read_unlock(); 884 return ret; 885 } 886 887 /** 888 * find_get_pages_contig - gang contiguous pagecache lookup 889 * @mapping: The address_space to search 890 * @index: The starting page index 891 * @nr_pages: The maximum number of pages 892 * @pages: Where the resulting pages are placed 893 * 894 * find_get_pages_contig() works exactly like find_get_pages(), except 895 * that the returned number of pages are guaranteed to be contiguous. 896 * 897 * find_get_pages_contig() returns the number of pages which were found. 898 */ 899 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, 900 unsigned int nr_pages, struct page **pages) 901 { 902 struct radix_tree_iter iter; 903 void **slot; 904 unsigned int ret = 0; 905 906 if (unlikely(!nr_pages)) 907 return 0; 908 909 rcu_read_lock(); 910 restart: 911 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) { 912 struct page *page; 913 repeat: 914 page = radix_tree_deref_slot(slot); 915 /* The hole, there no reason to continue */ 916 if (unlikely(!page)) 917 break; 918 919 if (radix_tree_exception(page)) { 920 if (radix_tree_deref_retry(page)) { 921 /* 922 * Transient condition which can only trigger 923 * when entry at index 0 moves out of or back 924 * to root: none yet gotten, safe to restart. 925 */ 926 goto restart; 927 } 928 /* 929 * Otherwise, shmem/tmpfs must be storing a swap entry 930 * here as an exceptional entry: so stop looking for 931 * contiguous pages. 932 */ 933 break; 934 } 935 936 if (!page_cache_get_speculative(page)) 937 goto repeat; 938 939 /* Has the page moved? */ 940 if (unlikely(page != *slot)) { 941 page_cache_release(page); 942 goto repeat; 943 } 944 945 /* 946 * must check mapping and index after taking the ref. 947 * otherwise we can get both false positives and false 948 * negatives, which is just confusing to the caller. 949 */ 950 if (page->mapping == NULL || page->index != iter.index) { 951 page_cache_release(page); 952 break; 953 } 954 955 pages[ret] = page; 956 if (++ret == nr_pages) 957 break; 958 } 959 rcu_read_unlock(); 960 return ret; 961 } 962 EXPORT_SYMBOL(find_get_pages_contig); 963 964 /** 965 * find_get_pages_tag - find and return pages that match @tag 966 * @mapping: the address_space to search 967 * @index: the starting page index 968 * @tag: the tag index 969 * @nr_pages: the maximum number of pages 970 * @pages: where the resulting pages are placed 971 * 972 * Like find_get_pages, except we only return pages which are tagged with 973 * @tag. We update @index to index the next page for the traversal. 974 */ 975 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, 976 int tag, unsigned int nr_pages, struct page **pages) 977 { 978 struct radix_tree_iter iter; 979 void **slot; 980 unsigned ret = 0; 981 982 if (unlikely(!nr_pages)) 983 return 0; 984 985 rcu_read_lock(); 986 restart: 987 radix_tree_for_each_tagged(slot, &mapping->page_tree, 988 &iter, *index, tag) { 989 struct page *page; 990 repeat: 991 page = radix_tree_deref_slot(slot); 992 if (unlikely(!page)) 993 continue; 994 995 if (radix_tree_exception(page)) { 996 if (radix_tree_deref_retry(page)) { 997 /* 998 * Transient condition which can only trigger 999 * when entry at index 0 moves out of or back 1000 * to root: none yet gotten, safe to restart. 1001 */ 1002 goto restart; 1003 } 1004 /* 1005 * This function is never used on a shmem/tmpfs 1006 * mapping, so a swap entry won't be found here. 1007 */ 1008 BUG(); 1009 } 1010 1011 if (!page_cache_get_speculative(page)) 1012 goto repeat; 1013 1014 /* Has the page moved? */ 1015 if (unlikely(page != *slot)) { 1016 page_cache_release(page); 1017 goto repeat; 1018 } 1019 1020 pages[ret] = page; 1021 if (++ret == nr_pages) 1022 break; 1023 } 1024 1025 rcu_read_unlock(); 1026 1027 if (ret) 1028 *index = pages[ret - 1]->index + 1; 1029 1030 return ret; 1031 } 1032 EXPORT_SYMBOL(find_get_pages_tag); 1033 1034 /** 1035 * grab_cache_page_nowait - returns locked page at given index in given cache 1036 * @mapping: target address_space 1037 * @index: the page index 1038 * 1039 * Same as grab_cache_page(), but do not wait if the page is unavailable. 1040 * This is intended for speculative data generators, where the data can 1041 * be regenerated if the page couldn't be grabbed. This routine should 1042 * be safe to call while holding the lock for another page. 1043 * 1044 * Clear __GFP_FS when allocating the page to avoid recursion into the fs 1045 * and deadlock against the caller's locked page. 1046 */ 1047 struct page * 1048 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index) 1049 { 1050 struct page *page = find_get_page(mapping, index); 1051 1052 if (page) { 1053 if (trylock_page(page)) 1054 return page; 1055 page_cache_release(page); 1056 return NULL; 1057 } 1058 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS); 1059 if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) { 1060 page_cache_release(page); 1061 page = NULL; 1062 } 1063 return page; 1064 } 1065 EXPORT_SYMBOL(grab_cache_page_nowait); 1066 1067 /* 1068 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 1069 * a _large_ part of the i/o request. Imagine the worst scenario: 1070 * 1071 * ---R__________________________________________B__________ 1072 * ^ reading here ^ bad block(assume 4k) 1073 * 1074 * read(R) => miss => readahead(R...B) => media error => frustrating retries 1075 * => failing the whole request => read(R) => read(R+1) => 1076 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 1077 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 1078 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 1079 * 1080 * It is going insane. Fix it by quickly scaling down the readahead size. 1081 */ 1082 static void shrink_readahead_size_eio(struct file *filp, 1083 struct file_ra_state *ra) 1084 { 1085 ra->ra_pages /= 4; 1086 } 1087 1088 /** 1089 * do_generic_file_read - generic file read routine 1090 * @filp: the file to read 1091 * @ppos: current file position 1092 * @desc: read_descriptor 1093 * @actor: read method 1094 * 1095 * This is a generic file read routine, and uses the 1096 * mapping->a_ops->readpage() function for the actual low-level stuff. 1097 * 1098 * This is really ugly. But the goto's actually try to clarify some 1099 * of the logic when it comes to error handling etc. 1100 */ 1101 static void do_generic_file_read(struct file *filp, loff_t *ppos, 1102 read_descriptor_t *desc, read_actor_t actor) 1103 { 1104 struct address_space *mapping = filp->f_mapping; 1105 struct inode *inode = mapping->host; 1106 struct file_ra_state *ra = &filp->f_ra; 1107 pgoff_t index; 1108 pgoff_t last_index; 1109 pgoff_t prev_index; 1110 unsigned long offset; /* offset into pagecache page */ 1111 unsigned int prev_offset; 1112 int error; 1113 1114 index = *ppos >> PAGE_CACHE_SHIFT; 1115 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT; 1116 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1); 1117 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT; 1118 offset = *ppos & ~PAGE_CACHE_MASK; 1119 1120 for (;;) { 1121 struct page *page; 1122 pgoff_t end_index; 1123 loff_t isize; 1124 unsigned long nr, ret; 1125 1126 cond_resched(); 1127 find_page: 1128 page = find_get_page(mapping, index); 1129 if (!page) { 1130 page_cache_sync_readahead(mapping, 1131 ra, filp, 1132 index, last_index - index); 1133 page = find_get_page(mapping, index); 1134 if (unlikely(page == NULL)) 1135 goto no_cached_page; 1136 } 1137 if (PageReadahead(page)) { 1138 page_cache_async_readahead(mapping, 1139 ra, filp, page, 1140 index, last_index - index); 1141 } 1142 if (!PageUptodate(page)) { 1143 if (inode->i_blkbits == PAGE_CACHE_SHIFT || 1144 !mapping->a_ops->is_partially_uptodate) 1145 goto page_not_up_to_date; 1146 if (!trylock_page(page)) 1147 goto page_not_up_to_date; 1148 /* Did it get truncated before we got the lock? */ 1149 if (!page->mapping) 1150 goto page_not_up_to_date_locked; 1151 if (!mapping->a_ops->is_partially_uptodate(page, 1152 desc, offset)) 1153 goto page_not_up_to_date_locked; 1154 unlock_page(page); 1155 } 1156 page_ok: 1157 /* 1158 * i_size must be checked after we know the page is Uptodate. 1159 * 1160 * Checking i_size after the check allows us to calculate 1161 * the correct value for "nr", which means the zero-filled 1162 * part of the page is not copied back to userspace (unless 1163 * another truncate extends the file - this is desired though). 1164 */ 1165 1166 isize = i_size_read(inode); 1167 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 1168 if (unlikely(!isize || index > end_index)) { 1169 page_cache_release(page); 1170 goto out; 1171 } 1172 1173 /* nr is the maximum number of bytes to copy from this page */ 1174 nr = PAGE_CACHE_SIZE; 1175 if (index == end_index) { 1176 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 1177 if (nr <= offset) { 1178 page_cache_release(page); 1179 goto out; 1180 } 1181 } 1182 nr = nr - offset; 1183 1184 /* If users can be writing to this page using arbitrary 1185 * virtual addresses, take care about potential aliasing 1186 * before reading the page on the kernel side. 1187 */ 1188 if (mapping_writably_mapped(mapping)) 1189 flush_dcache_page(page); 1190 1191 /* 1192 * When a sequential read accesses a page several times, 1193 * only mark it as accessed the first time. 1194 */ 1195 if (prev_index != index || offset != prev_offset) 1196 mark_page_accessed(page); 1197 prev_index = index; 1198 1199 /* 1200 * Ok, we have the page, and it's up-to-date, so 1201 * now we can copy it to user space... 1202 * 1203 * The actor routine returns how many bytes were actually used.. 1204 * NOTE! This may not be the same as how much of a user buffer 1205 * we filled up (we may be padding etc), so we can only update 1206 * "pos" here (the actor routine has to update the user buffer 1207 * pointers and the remaining count). 1208 */ 1209 ret = actor(desc, page, offset, nr); 1210 offset += ret; 1211 index += offset >> PAGE_CACHE_SHIFT; 1212 offset &= ~PAGE_CACHE_MASK; 1213 prev_offset = offset; 1214 1215 page_cache_release(page); 1216 if (ret == nr && desc->count) 1217 continue; 1218 goto out; 1219 1220 page_not_up_to_date: 1221 /* Get exclusive access to the page ... */ 1222 error = lock_page_killable(page); 1223 if (unlikely(error)) 1224 goto readpage_error; 1225 1226 page_not_up_to_date_locked: 1227 /* Did it get truncated before we got the lock? */ 1228 if (!page->mapping) { 1229 unlock_page(page); 1230 page_cache_release(page); 1231 continue; 1232 } 1233 1234 /* Did somebody else fill it already? */ 1235 if (PageUptodate(page)) { 1236 unlock_page(page); 1237 goto page_ok; 1238 } 1239 1240 readpage: 1241 /* 1242 * A previous I/O error may have been due to temporary 1243 * failures, eg. multipath errors. 1244 * PG_error will be set again if readpage fails. 1245 */ 1246 ClearPageError(page); 1247 /* Start the actual read. The read will unlock the page. */ 1248 error = mapping->a_ops->readpage(filp, page); 1249 1250 if (unlikely(error)) { 1251 if (error == AOP_TRUNCATED_PAGE) { 1252 page_cache_release(page); 1253 goto find_page; 1254 } 1255 goto readpage_error; 1256 } 1257 1258 if (!PageUptodate(page)) { 1259 error = lock_page_killable(page); 1260 if (unlikely(error)) 1261 goto readpage_error; 1262 if (!PageUptodate(page)) { 1263 if (page->mapping == NULL) { 1264 /* 1265 * invalidate_mapping_pages got it 1266 */ 1267 unlock_page(page); 1268 page_cache_release(page); 1269 goto find_page; 1270 } 1271 unlock_page(page); 1272 shrink_readahead_size_eio(filp, ra); 1273 error = -EIO; 1274 goto readpage_error; 1275 } 1276 unlock_page(page); 1277 } 1278 1279 goto page_ok; 1280 1281 readpage_error: 1282 /* UHHUH! A synchronous read error occurred. Report it */ 1283 desc->error = error; 1284 page_cache_release(page); 1285 goto out; 1286 1287 no_cached_page: 1288 /* 1289 * Ok, it wasn't cached, so we need to create a new 1290 * page.. 1291 */ 1292 page = page_cache_alloc_cold(mapping); 1293 if (!page) { 1294 desc->error = -ENOMEM; 1295 goto out; 1296 } 1297 error = add_to_page_cache_lru(page, mapping, 1298 index, GFP_KERNEL); 1299 if (error) { 1300 page_cache_release(page); 1301 if (error == -EEXIST) 1302 goto find_page; 1303 desc->error = error; 1304 goto out; 1305 } 1306 goto readpage; 1307 } 1308 1309 out: 1310 ra->prev_pos = prev_index; 1311 ra->prev_pos <<= PAGE_CACHE_SHIFT; 1312 ra->prev_pos |= prev_offset; 1313 1314 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset; 1315 file_accessed(filp); 1316 } 1317 1318 int file_read_actor(read_descriptor_t *desc, struct page *page, 1319 unsigned long offset, unsigned long size) 1320 { 1321 char *kaddr; 1322 unsigned long left, count = desc->count; 1323 1324 if (size > count) 1325 size = count; 1326 1327 /* 1328 * Faults on the destination of a read are common, so do it before 1329 * taking the kmap. 1330 */ 1331 if (!fault_in_pages_writeable(desc->arg.buf, size)) { 1332 kaddr = kmap_atomic(page); 1333 left = __copy_to_user_inatomic(desc->arg.buf, 1334 kaddr + offset, size); 1335 kunmap_atomic(kaddr); 1336 if (left == 0) 1337 goto success; 1338 } 1339 1340 /* Do it the slow way */ 1341 kaddr = kmap(page); 1342 left = __copy_to_user(desc->arg.buf, kaddr + offset, size); 1343 kunmap(page); 1344 1345 if (left) { 1346 size -= left; 1347 desc->error = -EFAULT; 1348 } 1349 success: 1350 desc->count = count - size; 1351 desc->written += size; 1352 desc->arg.buf += size; 1353 return size; 1354 } 1355 1356 /* 1357 * Performs necessary checks before doing a write 1358 * @iov: io vector request 1359 * @nr_segs: number of segments in the iovec 1360 * @count: number of bytes to write 1361 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE 1362 * 1363 * Adjust number of segments and amount of bytes to write (nr_segs should be 1364 * properly initialized first). Returns appropriate error code that caller 1365 * should return or zero in case that write should be allowed. 1366 */ 1367 int generic_segment_checks(const struct iovec *iov, 1368 unsigned long *nr_segs, size_t *count, int access_flags) 1369 { 1370 unsigned long seg; 1371 size_t cnt = 0; 1372 for (seg = 0; seg < *nr_segs; seg++) { 1373 const struct iovec *iv = &iov[seg]; 1374 1375 /* 1376 * If any segment has a negative length, or the cumulative 1377 * length ever wraps negative then return -EINVAL. 1378 */ 1379 cnt += iv->iov_len; 1380 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0)) 1381 return -EINVAL; 1382 if (access_ok(access_flags, iv->iov_base, iv->iov_len)) 1383 continue; 1384 if (seg == 0) 1385 return -EFAULT; 1386 *nr_segs = seg; 1387 cnt -= iv->iov_len; /* This segment is no good */ 1388 break; 1389 } 1390 *count = cnt; 1391 return 0; 1392 } 1393 EXPORT_SYMBOL(generic_segment_checks); 1394 1395 /** 1396 * generic_file_aio_read - generic filesystem read routine 1397 * @iocb: kernel I/O control block 1398 * @iov: io vector request 1399 * @nr_segs: number of segments in the iovec 1400 * @pos: current file position 1401 * 1402 * This is the "read()" routine for all filesystems 1403 * that can use the page cache directly. 1404 */ 1405 ssize_t 1406 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov, 1407 unsigned long nr_segs, loff_t pos) 1408 { 1409 struct file *filp = iocb->ki_filp; 1410 ssize_t retval; 1411 unsigned long seg = 0; 1412 size_t count; 1413 loff_t *ppos = &iocb->ki_pos; 1414 1415 count = 0; 1416 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE); 1417 if (retval) 1418 return retval; 1419 1420 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ 1421 if (filp->f_flags & O_DIRECT) { 1422 loff_t size; 1423 struct address_space *mapping; 1424 struct inode *inode; 1425 1426 mapping = filp->f_mapping; 1427 inode = mapping->host; 1428 if (!count) 1429 goto out; /* skip atime */ 1430 size = i_size_read(inode); 1431 if (pos < size) { 1432 retval = filemap_write_and_wait_range(mapping, pos, 1433 pos + iov_length(iov, nr_segs) - 1); 1434 if (!retval) { 1435 retval = mapping->a_ops->direct_IO(READ, iocb, 1436 iov, pos, nr_segs); 1437 } 1438 if (retval > 0) { 1439 *ppos = pos + retval; 1440 count -= retval; 1441 } 1442 1443 /* 1444 * Btrfs can have a short DIO read if we encounter 1445 * compressed extents, so if there was an error, or if 1446 * we've already read everything we wanted to, or if 1447 * there was a short read because we hit EOF, go ahead 1448 * and return. Otherwise fallthrough to buffered io for 1449 * the rest of the read. 1450 */ 1451 if (retval < 0 || !count || *ppos >= size) { 1452 file_accessed(filp); 1453 goto out; 1454 } 1455 } 1456 } 1457 1458 count = retval; 1459 for (seg = 0; seg < nr_segs; seg++) { 1460 read_descriptor_t desc; 1461 loff_t offset = 0; 1462 1463 /* 1464 * If we did a short DIO read we need to skip the section of the 1465 * iov that we've already read data into. 1466 */ 1467 if (count) { 1468 if (count > iov[seg].iov_len) { 1469 count -= iov[seg].iov_len; 1470 continue; 1471 } 1472 offset = count; 1473 count = 0; 1474 } 1475 1476 desc.written = 0; 1477 desc.arg.buf = iov[seg].iov_base + offset; 1478 desc.count = iov[seg].iov_len - offset; 1479 if (desc.count == 0) 1480 continue; 1481 desc.error = 0; 1482 do_generic_file_read(filp, ppos, &desc, file_read_actor); 1483 retval += desc.written; 1484 if (desc.error) { 1485 retval = retval ?: desc.error; 1486 break; 1487 } 1488 if (desc.count > 0) 1489 break; 1490 } 1491 out: 1492 return retval; 1493 } 1494 EXPORT_SYMBOL(generic_file_aio_read); 1495 1496 #ifdef CONFIG_MMU 1497 /** 1498 * page_cache_read - adds requested page to the page cache if not already there 1499 * @file: file to read 1500 * @offset: page index 1501 * 1502 * This adds the requested page to the page cache if it isn't already there, 1503 * and schedules an I/O to read in its contents from disk. 1504 */ 1505 static int page_cache_read(struct file *file, pgoff_t offset) 1506 { 1507 struct address_space *mapping = file->f_mapping; 1508 struct page *page; 1509 int ret; 1510 1511 do { 1512 page = page_cache_alloc_cold(mapping); 1513 if (!page) 1514 return -ENOMEM; 1515 1516 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL); 1517 if (ret == 0) 1518 ret = mapping->a_ops->readpage(file, page); 1519 else if (ret == -EEXIST) 1520 ret = 0; /* losing race to add is OK */ 1521 1522 page_cache_release(page); 1523 1524 } while (ret == AOP_TRUNCATED_PAGE); 1525 1526 return ret; 1527 } 1528 1529 #define MMAP_LOTSAMISS (100) 1530 1531 /* 1532 * Synchronous readahead happens when we don't even find 1533 * a page in the page cache at all. 1534 */ 1535 static void do_sync_mmap_readahead(struct vm_area_struct *vma, 1536 struct file_ra_state *ra, 1537 struct file *file, 1538 pgoff_t offset) 1539 { 1540 unsigned long ra_pages; 1541 struct address_space *mapping = file->f_mapping; 1542 1543 /* If we don't want any read-ahead, don't bother */ 1544 if (vma->vm_flags & VM_RAND_READ) 1545 return; 1546 if (!ra->ra_pages) 1547 return; 1548 1549 if (vma->vm_flags & VM_SEQ_READ) { 1550 page_cache_sync_readahead(mapping, ra, file, offset, 1551 ra->ra_pages); 1552 return; 1553 } 1554 1555 /* Avoid banging the cache line if not needed */ 1556 if (ra->mmap_miss < MMAP_LOTSAMISS * 10) 1557 ra->mmap_miss++; 1558 1559 /* 1560 * Do we miss much more than hit in this file? If so, 1561 * stop bothering with read-ahead. It will only hurt. 1562 */ 1563 if (ra->mmap_miss > MMAP_LOTSAMISS) 1564 return; 1565 1566 /* 1567 * mmap read-around 1568 */ 1569 ra_pages = max_sane_readahead(ra->ra_pages); 1570 ra->start = max_t(long, 0, offset - ra_pages / 2); 1571 ra->size = ra_pages; 1572 ra->async_size = ra_pages / 4; 1573 ra_submit(ra, mapping, file); 1574 } 1575 1576 /* 1577 * Asynchronous readahead happens when we find the page and PG_readahead, 1578 * so we want to possibly extend the readahead further.. 1579 */ 1580 static void do_async_mmap_readahead(struct vm_area_struct *vma, 1581 struct file_ra_state *ra, 1582 struct file *file, 1583 struct page *page, 1584 pgoff_t offset) 1585 { 1586 struct address_space *mapping = file->f_mapping; 1587 1588 /* If we don't want any read-ahead, don't bother */ 1589 if (vma->vm_flags & VM_RAND_READ) 1590 return; 1591 if (ra->mmap_miss > 0) 1592 ra->mmap_miss--; 1593 if (PageReadahead(page)) 1594 page_cache_async_readahead(mapping, ra, file, 1595 page, offset, ra->ra_pages); 1596 } 1597 1598 /** 1599 * filemap_fault - read in file data for page fault handling 1600 * @vma: vma in which the fault was taken 1601 * @vmf: struct vm_fault containing details of the fault 1602 * 1603 * filemap_fault() is invoked via the vma operations vector for a 1604 * mapped memory region to read in file data during a page fault. 1605 * 1606 * The goto's are kind of ugly, but this streamlines the normal case of having 1607 * it in the page cache, and handles the special cases reasonably without 1608 * having a lot of duplicated code. 1609 */ 1610 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1611 { 1612 int error; 1613 struct file *file = vma->vm_file; 1614 struct address_space *mapping = file->f_mapping; 1615 struct file_ra_state *ra = &file->f_ra; 1616 struct inode *inode = mapping->host; 1617 pgoff_t offset = vmf->pgoff; 1618 struct page *page; 1619 bool memcg_oom; 1620 pgoff_t size; 1621 int ret = 0; 1622 1623 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1624 if (offset >= size) 1625 return VM_FAULT_SIGBUS; 1626 1627 /* 1628 * Do we have something in the page cache already? Either 1629 * way, try readahead, but disable the memcg OOM killer for it 1630 * as readahead is optional and no errors are propagated up 1631 * the fault stack. The OOM killer is enabled while trying to 1632 * instantiate the faulting page individually below. 1633 */ 1634 page = find_get_page(mapping, offset); 1635 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) { 1636 /* 1637 * We found the page, so try async readahead before 1638 * waiting for the lock. 1639 */ 1640 memcg_oom = mem_cgroup_toggle_oom(false); 1641 do_async_mmap_readahead(vma, ra, file, page, offset); 1642 mem_cgroup_toggle_oom(memcg_oom); 1643 } else if (!page) { 1644 /* No page in the page cache at all */ 1645 memcg_oom = mem_cgroup_toggle_oom(false); 1646 do_sync_mmap_readahead(vma, ra, file, offset); 1647 mem_cgroup_toggle_oom(memcg_oom); 1648 count_vm_event(PGMAJFAULT); 1649 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT); 1650 ret = VM_FAULT_MAJOR; 1651 retry_find: 1652 page = find_get_page(mapping, offset); 1653 if (!page) 1654 goto no_cached_page; 1655 } 1656 1657 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) { 1658 page_cache_release(page); 1659 return ret | VM_FAULT_RETRY; 1660 } 1661 1662 /* Did it get truncated? */ 1663 if (unlikely(page->mapping != mapping)) { 1664 unlock_page(page); 1665 put_page(page); 1666 goto retry_find; 1667 } 1668 VM_BUG_ON(page->index != offset); 1669 1670 /* 1671 * We have a locked page in the page cache, now we need to check 1672 * that it's up-to-date. If not, it is going to be due to an error. 1673 */ 1674 if (unlikely(!PageUptodate(page))) 1675 goto page_not_uptodate; 1676 1677 /* 1678 * Found the page and have a reference on it. 1679 * We must recheck i_size under page lock. 1680 */ 1681 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1682 if (unlikely(offset >= size)) { 1683 unlock_page(page); 1684 page_cache_release(page); 1685 return VM_FAULT_SIGBUS; 1686 } 1687 1688 vmf->page = page; 1689 return ret | VM_FAULT_LOCKED; 1690 1691 no_cached_page: 1692 /* 1693 * We're only likely to ever get here if MADV_RANDOM is in 1694 * effect. 1695 */ 1696 error = page_cache_read(file, offset); 1697 1698 /* 1699 * The page we want has now been added to the page cache. 1700 * In the unlikely event that someone removed it in the 1701 * meantime, we'll just come back here and read it again. 1702 */ 1703 if (error >= 0) 1704 goto retry_find; 1705 1706 /* 1707 * An error return from page_cache_read can result if the 1708 * system is low on memory, or a problem occurs while trying 1709 * to schedule I/O. 1710 */ 1711 if (error == -ENOMEM) 1712 return VM_FAULT_OOM; 1713 return VM_FAULT_SIGBUS; 1714 1715 page_not_uptodate: 1716 /* 1717 * Umm, take care of errors if the page isn't up-to-date. 1718 * Try to re-read it _once_. We do this synchronously, 1719 * because there really aren't any performance issues here 1720 * and we need to check for errors. 1721 */ 1722 ClearPageError(page); 1723 error = mapping->a_ops->readpage(file, page); 1724 if (!error) { 1725 wait_on_page_locked(page); 1726 if (!PageUptodate(page)) 1727 error = -EIO; 1728 } 1729 page_cache_release(page); 1730 1731 if (!error || error == AOP_TRUNCATED_PAGE) 1732 goto retry_find; 1733 1734 /* Things didn't work out. Return zero to tell the mm layer so. */ 1735 shrink_readahead_size_eio(file, ra); 1736 return VM_FAULT_SIGBUS; 1737 } 1738 EXPORT_SYMBOL(filemap_fault); 1739 1740 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 1741 { 1742 struct page *page = vmf->page; 1743 struct inode *inode = file_inode(vma->vm_file); 1744 int ret = VM_FAULT_LOCKED; 1745 1746 sb_start_pagefault(inode->i_sb); 1747 file_update_time(vma->vm_file); 1748 lock_page(page); 1749 if (page->mapping != inode->i_mapping) { 1750 unlock_page(page); 1751 ret = VM_FAULT_NOPAGE; 1752 goto out; 1753 } 1754 /* 1755 * We mark the page dirty already here so that when freeze is in 1756 * progress, we are guaranteed that writeback during freezing will 1757 * see the dirty page and writeprotect it again. 1758 */ 1759 set_page_dirty(page); 1760 wait_for_stable_page(page); 1761 out: 1762 sb_end_pagefault(inode->i_sb); 1763 return ret; 1764 } 1765 EXPORT_SYMBOL(filemap_page_mkwrite); 1766 1767 const struct vm_operations_struct generic_file_vm_ops = { 1768 .fault = filemap_fault, 1769 .page_mkwrite = filemap_page_mkwrite, 1770 .remap_pages = generic_file_remap_pages, 1771 }; 1772 1773 /* This is used for a general mmap of a disk file */ 1774 1775 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 1776 { 1777 struct address_space *mapping = file->f_mapping; 1778 1779 if (!mapping->a_ops->readpage) 1780 return -ENOEXEC; 1781 file_accessed(file); 1782 vma->vm_ops = &generic_file_vm_ops; 1783 return 0; 1784 } 1785 1786 /* 1787 * This is for filesystems which do not implement ->writepage. 1788 */ 1789 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 1790 { 1791 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 1792 return -EINVAL; 1793 return generic_file_mmap(file, vma); 1794 } 1795 #else 1796 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 1797 { 1798 return -ENOSYS; 1799 } 1800 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) 1801 { 1802 return -ENOSYS; 1803 } 1804 #endif /* CONFIG_MMU */ 1805 1806 EXPORT_SYMBOL(generic_file_mmap); 1807 EXPORT_SYMBOL(generic_file_readonly_mmap); 1808 1809 static struct page *__read_cache_page(struct address_space *mapping, 1810 pgoff_t index, 1811 int (*filler)(void *, struct page *), 1812 void *data, 1813 gfp_t gfp) 1814 { 1815 struct page *page; 1816 int err; 1817 repeat: 1818 page = find_get_page(mapping, index); 1819 if (!page) { 1820 page = __page_cache_alloc(gfp | __GFP_COLD); 1821 if (!page) 1822 return ERR_PTR(-ENOMEM); 1823 err = add_to_page_cache_lru(page, mapping, index, gfp); 1824 if (unlikely(err)) { 1825 page_cache_release(page); 1826 if (err == -EEXIST) 1827 goto repeat; 1828 /* Presumably ENOMEM for radix tree node */ 1829 return ERR_PTR(err); 1830 } 1831 err = filler(data, page); 1832 if (err < 0) { 1833 page_cache_release(page); 1834 page = ERR_PTR(err); 1835 } 1836 } 1837 return page; 1838 } 1839 1840 static struct page *do_read_cache_page(struct address_space *mapping, 1841 pgoff_t index, 1842 int (*filler)(void *, struct page *), 1843 void *data, 1844 gfp_t gfp) 1845 1846 { 1847 struct page *page; 1848 int err; 1849 1850 retry: 1851 page = __read_cache_page(mapping, index, filler, data, gfp); 1852 if (IS_ERR(page)) 1853 return page; 1854 if (PageUptodate(page)) 1855 goto out; 1856 1857 lock_page(page); 1858 if (!page->mapping) { 1859 unlock_page(page); 1860 page_cache_release(page); 1861 goto retry; 1862 } 1863 if (PageUptodate(page)) { 1864 unlock_page(page); 1865 goto out; 1866 } 1867 err = filler(data, page); 1868 if (err < 0) { 1869 page_cache_release(page); 1870 return ERR_PTR(err); 1871 } 1872 out: 1873 mark_page_accessed(page); 1874 return page; 1875 } 1876 1877 /** 1878 * read_cache_page_async - read into page cache, fill it if needed 1879 * @mapping: the page's address_space 1880 * @index: the page index 1881 * @filler: function to perform the read 1882 * @data: first arg to filler(data, page) function, often left as NULL 1883 * 1884 * Same as read_cache_page, but don't wait for page to become unlocked 1885 * after submitting it to the filler. 1886 * 1887 * Read into the page cache. If a page already exists, and PageUptodate() is 1888 * not set, try to fill the page but don't wait for it to become unlocked. 1889 * 1890 * If the page does not get brought uptodate, return -EIO. 1891 */ 1892 struct page *read_cache_page_async(struct address_space *mapping, 1893 pgoff_t index, 1894 int (*filler)(void *, struct page *), 1895 void *data) 1896 { 1897 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping)); 1898 } 1899 EXPORT_SYMBOL(read_cache_page_async); 1900 1901 static struct page *wait_on_page_read(struct page *page) 1902 { 1903 if (!IS_ERR(page)) { 1904 wait_on_page_locked(page); 1905 if (!PageUptodate(page)) { 1906 page_cache_release(page); 1907 page = ERR_PTR(-EIO); 1908 } 1909 } 1910 return page; 1911 } 1912 1913 /** 1914 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 1915 * @mapping: the page's address_space 1916 * @index: the page index 1917 * @gfp: the page allocator flags to use if allocating 1918 * 1919 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 1920 * any new page allocations done using the specified allocation flags. 1921 * 1922 * If the page does not get brought uptodate, return -EIO. 1923 */ 1924 struct page *read_cache_page_gfp(struct address_space *mapping, 1925 pgoff_t index, 1926 gfp_t gfp) 1927 { 1928 filler_t *filler = (filler_t *)mapping->a_ops->readpage; 1929 1930 return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp)); 1931 } 1932 EXPORT_SYMBOL(read_cache_page_gfp); 1933 1934 /** 1935 * read_cache_page - read into page cache, fill it if needed 1936 * @mapping: the page's address_space 1937 * @index: the page index 1938 * @filler: function to perform the read 1939 * @data: first arg to filler(data, page) function, often left as NULL 1940 * 1941 * Read into the page cache. If a page already exists, and PageUptodate() is 1942 * not set, try to fill the page then wait for it to become unlocked. 1943 * 1944 * If the page does not get brought uptodate, return -EIO. 1945 */ 1946 struct page *read_cache_page(struct address_space *mapping, 1947 pgoff_t index, 1948 int (*filler)(void *, struct page *), 1949 void *data) 1950 { 1951 return wait_on_page_read(read_cache_page_async(mapping, index, filler, data)); 1952 } 1953 EXPORT_SYMBOL(read_cache_page); 1954 1955 static size_t __iovec_copy_from_user_inatomic(char *vaddr, 1956 const struct iovec *iov, size_t base, size_t bytes) 1957 { 1958 size_t copied = 0, left = 0; 1959 1960 while (bytes) { 1961 char __user *buf = iov->iov_base + base; 1962 int copy = min(bytes, iov->iov_len - base); 1963 1964 base = 0; 1965 left = __copy_from_user_inatomic(vaddr, buf, copy); 1966 copied += copy; 1967 bytes -= copy; 1968 vaddr += copy; 1969 iov++; 1970 1971 if (unlikely(left)) 1972 break; 1973 } 1974 return copied - left; 1975 } 1976 1977 /* 1978 * Copy as much as we can into the page and return the number of bytes which 1979 * were successfully copied. If a fault is encountered then return the number of 1980 * bytes which were copied. 1981 */ 1982 size_t iov_iter_copy_from_user_atomic(struct page *page, 1983 struct iov_iter *i, unsigned long offset, size_t bytes) 1984 { 1985 char *kaddr; 1986 size_t copied; 1987 1988 BUG_ON(!in_atomic()); 1989 kaddr = kmap_atomic(page); 1990 if (likely(i->nr_segs == 1)) { 1991 int left; 1992 char __user *buf = i->iov->iov_base + i->iov_offset; 1993 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes); 1994 copied = bytes - left; 1995 } else { 1996 copied = __iovec_copy_from_user_inatomic(kaddr + offset, 1997 i->iov, i->iov_offset, bytes); 1998 } 1999 kunmap_atomic(kaddr); 2000 2001 return copied; 2002 } 2003 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic); 2004 2005 /* 2006 * This has the same sideeffects and return value as 2007 * iov_iter_copy_from_user_atomic(). 2008 * The difference is that it attempts to resolve faults. 2009 * Page must not be locked. 2010 */ 2011 size_t iov_iter_copy_from_user(struct page *page, 2012 struct iov_iter *i, unsigned long offset, size_t bytes) 2013 { 2014 char *kaddr; 2015 size_t copied; 2016 2017 kaddr = kmap(page); 2018 if (likely(i->nr_segs == 1)) { 2019 int left; 2020 char __user *buf = i->iov->iov_base + i->iov_offset; 2021 left = __copy_from_user(kaddr + offset, buf, bytes); 2022 copied = bytes - left; 2023 } else { 2024 copied = __iovec_copy_from_user_inatomic(kaddr + offset, 2025 i->iov, i->iov_offset, bytes); 2026 } 2027 kunmap(page); 2028 return copied; 2029 } 2030 EXPORT_SYMBOL(iov_iter_copy_from_user); 2031 2032 void iov_iter_advance(struct iov_iter *i, size_t bytes) 2033 { 2034 BUG_ON(i->count < bytes); 2035 2036 if (likely(i->nr_segs == 1)) { 2037 i->iov_offset += bytes; 2038 i->count -= bytes; 2039 } else { 2040 const struct iovec *iov = i->iov; 2041 size_t base = i->iov_offset; 2042 unsigned long nr_segs = i->nr_segs; 2043 2044 /* 2045 * The !iov->iov_len check ensures we skip over unlikely 2046 * zero-length segments (without overruning the iovec). 2047 */ 2048 while (bytes || unlikely(i->count && !iov->iov_len)) { 2049 int copy; 2050 2051 copy = min(bytes, iov->iov_len - base); 2052 BUG_ON(!i->count || i->count < copy); 2053 i->count -= copy; 2054 bytes -= copy; 2055 base += copy; 2056 if (iov->iov_len == base) { 2057 iov++; 2058 nr_segs--; 2059 base = 0; 2060 } 2061 } 2062 i->iov = iov; 2063 i->iov_offset = base; 2064 i->nr_segs = nr_segs; 2065 } 2066 } 2067 EXPORT_SYMBOL(iov_iter_advance); 2068 2069 /* 2070 * Fault in the first iovec of the given iov_iter, to a maximum length 2071 * of bytes. Returns 0 on success, or non-zero if the memory could not be 2072 * accessed (ie. because it is an invalid address). 2073 * 2074 * writev-intensive code may want this to prefault several iovecs -- that 2075 * would be possible (callers must not rely on the fact that _only_ the 2076 * first iovec will be faulted with the current implementation). 2077 */ 2078 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes) 2079 { 2080 char __user *buf = i->iov->iov_base + i->iov_offset; 2081 bytes = min(bytes, i->iov->iov_len - i->iov_offset); 2082 return fault_in_pages_readable(buf, bytes); 2083 } 2084 EXPORT_SYMBOL(iov_iter_fault_in_readable); 2085 2086 /* 2087 * Return the count of just the current iov_iter segment. 2088 */ 2089 size_t iov_iter_single_seg_count(const struct iov_iter *i) 2090 { 2091 const struct iovec *iov = i->iov; 2092 if (i->nr_segs == 1) 2093 return i->count; 2094 else 2095 return min(i->count, iov->iov_len - i->iov_offset); 2096 } 2097 EXPORT_SYMBOL(iov_iter_single_seg_count); 2098 2099 /* 2100 * Performs necessary checks before doing a write 2101 * 2102 * Can adjust writing position or amount of bytes to write. 2103 * Returns appropriate error code that caller should return or 2104 * zero in case that write should be allowed. 2105 */ 2106 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk) 2107 { 2108 struct inode *inode = file->f_mapping->host; 2109 unsigned long limit = rlimit(RLIMIT_FSIZE); 2110 2111 if (unlikely(*pos < 0)) 2112 return -EINVAL; 2113 2114 if (!isblk) { 2115 /* FIXME: this is for backwards compatibility with 2.4 */ 2116 if (file->f_flags & O_APPEND) 2117 *pos = i_size_read(inode); 2118 2119 if (limit != RLIM_INFINITY) { 2120 if (*pos >= limit) { 2121 send_sig(SIGXFSZ, current, 0); 2122 return -EFBIG; 2123 } 2124 if (*count > limit - (typeof(limit))*pos) { 2125 *count = limit - (typeof(limit))*pos; 2126 } 2127 } 2128 } 2129 2130 /* 2131 * LFS rule 2132 */ 2133 if (unlikely(*pos + *count > MAX_NON_LFS && 2134 !(file->f_flags & O_LARGEFILE))) { 2135 if (*pos >= MAX_NON_LFS) { 2136 return -EFBIG; 2137 } 2138 if (*count > MAX_NON_LFS - (unsigned long)*pos) { 2139 *count = MAX_NON_LFS - (unsigned long)*pos; 2140 } 2141 } 2142 2143 /* 2144 * Are we about to exceed the fs block limit ? 2145 * 2146 * If we have written data it becomes a short write. If we have 2147 * exceeded without writing data we send a signal and return EFBIG. 2148 * Linus frestrict idea will clean these up nicely.. 2149 */ 2150 if (likely(!isblk)) { 2151 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) { 2152 if (*count || *pos > inode->i_sb->s_maxbytes) { 2153 return -EFBIG; 2154 } 2155 /* zero-length writes at ->s_maxbytes are OK */ 2156 } 2157 2158 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes)) 2159 *count = inode->i_sb->s_maxbytes - *pos; 2160 } else { 2161 #ifdef CONFIG_BLOCK 2162 loff_t isize; 2163 if (bdev_read_only(I_BDEV(inode))) 2164 return -EPERM; 2165 isize = i_size_read(inode); 2166 if (*pos >= isize) { 2167 if (*count || *pos > isize) 2168 return -ENOSPC; 2169 } 2170 2171 if (*pos + *count > isize) 2172 *count = isize - *pos; 2173 #else 2174 return -EPERM; 2175 #endif 2176 } 2177 return 0; 2178 } 2179 EXPORT_SYMBOL(generic_write_checks); 2180 2181 int pagecache_write_begin(struct file *file, struct address_space *mapping, 2182 loff_t pos, unsigned len, unsigned flags, 2183 struct page **pagep, void **fsdata) 2184 { 2185 const struct address_space_operations *aops = mapping->a_ops; 2186 2187 return aops->write_begin(file, mapping, pos, len, flags, 2188 pagep, fsdata); 2189 } 2190 EXPORT_SYMBOL(pagecache_write_begin); 2191 2192 int pagecache_write_end(struct file *file, struct address_space *mapping, 2193 loff_t pos, unsigned len, unsigned copied, 2194 struct page *page, void *fsdata) 2195 { 2196 const struct address_space_operations *aops = mapping->a_ops; 2197 2198 mark_page_accessed(page); 2199 return aops->write_end(file, mapping, pos, len, copied, page, fsdata); 2200 } 2201 EXPORT_SYMBOL(pagecache_write_end); 2202 2203 ssize_t 2204 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov, 2205 unsigned long *nr_segs, loff_t pos, loff_t *ppos, 2206 size_t count, size_t ocount) 2207 { 2208 struct file *file = iocb->ki_filp; 2209 struct address_space *mapping = file->f_mapping; 2210 struct inode *inode = mapping->host; 2211 ssize_t written; 2212 size_t write_len; 2213 pgoff_t end; 2214 2215 if (count != ocount) 2216 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count); 2217 2218 write_len = iov_length(iov, *nr_segs); 2219 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT; 2220 2221 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1); 2222 if (written) 2223 goto out; 2224 2225 /* 2226 * After a write we want buffered reads to be sure to go to disk to get 2227 * the new data. We invalidate clean cached page from the region we're 2228 * about to write. We do this *before* the write so that we can return 2229 * without clobbering -EIOCBQUEUED from ->direct_IO(). 2230 */ 2231 if (mapping->nrpages) { 2232 written = invalidate_inode_pages2_range(mapping, 2233 pos >> PAGE_CACHE_SHIFT, end); 2234 /* 2235 * If a page can not be invalidated, return 0 to fall back 2236 * to buffered write. 2237 */ 2238 if (written) { 2239 if (written == -EBUSY) 2240 return 0; 2241 goto out; 2242 } 2243 } 2244 2245 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs); 2246 2247 /* 2248 * Finally, try again to invalidate clean pages which might have been 2249 * cached by non-direct readahead, or faulted in by get_user_pages() 2250 * if the source of the write was an mmap'ed region of the file 2251 * we're writing. Either one is a pretty crazy thing to do, 2252 * so we don't support it 100%. If this invalidation 2253 * fails, tough, the write still worked... 2254 */ 2255 if (mapping->nrpages) { 2256 invalidate_inode_pages2_range(mapping, 2257 pos >> PAGE_CACHE_SHIFT, end); 2258 } 2259 2260 if (written > 0) { 2261 pos += written; 2262 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 2263 i_size_write(inode, pos); 2264 mark_inode_dirty(inode); 2265 } 2266 *ppos = pos; 2267 } 2268 out: 2269 return written; 2270 } 2271 EXPORT_SYMBOL(generic_file_direct_write); 2272 2273 /* 2274 * Find or create a page at the given pagecache position. Return the locked 2275 * page. This function is specifically for buffered writes. 2276 */ 2277 struct page *grab_cache_page_write_begin(struct address_space *mapping, 2278 pgoff_t index, unsigned flags) 2279 { 2280 int status; 2281 gfp_t gfp_mask; 2282 struct page *page; 2283 gfp_t gfp_notmask = 0; 2284 2285 gfp_mask = mapping_gfp_mask(mapping); 2286 if (mapping_cap_account_dirty(mapping)) 2287 gfp_mask |= __GFP_WRITE; 2288 if (flags & AOP_FLAG_NOFS) 2289 gfp_notmask = __GFP_FS; 2290 repeat: 2291 page = find_lock_page(mapping, index); 2292 if (page) 2293 goto found; 2294 2295 page = __page_cache_alloc(gfp_mask & ~gfp_notmask); 2296 if (!page) 2297 return NULL; 2298 status = add_to_page_cache_lru(page, mapping, index, 2299 GFP_KERNEL & ~gfp_notmask); 2300 if (unlikely(status)) { 2301 page_cache_release(page); 2302 if (status == -EEXIST) 2303 goto repeat; 2304 return NULL; 2305 } 2306 found: 2307 wait_for_stable_page(page); 2308 return page; 2309 } 2310 EXPORT_SYMBOL(grab_cache_page_write_begin); 2311 2312 static ssize_t generic_perform_write(struct file *file, 2313 struct iov_iter *i, loff_t pos) 2314 { 2315 struct address_space *mapping = file->f_mapping; 2316 const struct address_space_operations *a_ops = mapping->a_ops; 2317 long status = 0; 2318 ssize_t written = 0; 2319 unsigned int flags = 0; 2320 2321 /* 2322 * Copies from kernel address space cannot fail (NFSD is a big user). 2323 */ 2324 if (segment_eq(get_fs(), KERNEL_DS)) 2325 flags |= AOP_FLAG_UNINTERRUPTIBLE; 2326 2327 do { 2328 struct page *page; 2329 unsigned long offset; /* Offset into pagecache page */ 2330 unsigned long bytes; /* Bytes to write to page */ 2331 size_t copied; /* Bytes copied from user */ 2332 void *fsdata; 2333 2334 offset = (pos & (PAGE_CACHE_SIZE - 1)); 2335 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset, 2336 iov_iter_count(i)); 2337 2338 again: 2339 /* 2340 * Bring in the user page that we will copy from _first_. 2341 * Otherwise there's a nasty deadlock on copying from the 2342 * same page as we're writing to, without it being marked 2343 * up-to-date. 2344 * 2345 * Not only is this an optimisation, but it is also required 2346 * to check that the address is actually valid, when atomic 2347 * usercopies are used, below. 2348 */ 2349 if (unlikely(iov_iter_fault_in_readable(i, bytes))) { 2350 status = -EFAULT; 2351 break; 2352 } 2353 2354 status = a_ops->write_begin(file, mapping, pos, bytes, flags, 2355 &page, &fsdata); 2356 if (unlikely(status)) 2357 break; 2358 2359 if (mapping_writably_mapped(mapping)) 2360 flush_dcache_page(page); 2361 2362 pagefault_disable(); 2363 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); 2364 pagefault_enable(); 2365 flush_dcache_page(page); 2366 2367 mark_page_accessed(page); 2368 status = a_ops->write_end(file, mapping, pos, bytes, copied, 2369 page, fsdata); 2370 if (unlikely(status < 0)) 2371 break; 2372 copied = status; 2373 2374 cond_resched(); 2375 2376 iov_iter_advance(i, copied); 2377 if (unlikely(copied == 0)) { 2378 /* 2379 * If we were unable to copy any data at all, we must 2380 * fall back to a single segment length write. 2381 * 2382 * If we didn't fallback here, we could livelock 2383 * because not all segments in the iov can be copied at 2384 * once without a pagefault. 2385 */ 2386 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset, 2387 iov_iter_single_seg_count(i)); 2388 goto again; 2389 } 2390 pos += copied; 2391 written += copied; 2392 2393 balance_dirty_pages_ratelimited(mapping); 2394 if (fatal_signal_pending(current)) { 2395 status = -EINTR; 2396 break; 2397 } 2398 } while (iov_iter_count(i)); 2399 2400 return written ? written : status; 2401 } 2402 2403 ssize_t 2404 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov, 2405 unsigned long nr_segs, loff_t pos, loff_t *ppos, 2406 size_t count, ssize_t written) 2407 { 2408 struct file *file = iocb->ki_filp; 2409 ssize_t status; 2410 struct iov_iter i; 2411 2412 iov_iter_init(&i, iov, nr_segs, count, written); 2413 status = generic_perform_write(file, &i, pos); 2414 2415 if (likely(status >= 0)) { 2416 written += status; 2417 *ppos = pos + status; 2418 } 2419 2420 return written ? written : status; 2421 } 2422 EXPORT_SYMBOL(generic_file_buffered_write); 2423 2424 /** 2425 * __generic_file_aio_write - write data to a file 2426 * @iocb: IO state structure (file, offset, etc.) 2427 * @iov: vector with data to write 2428 * @nr_segs: number of segments in the vector 2429 * @ppos: position where to write 2430 * 2431 * This function does all the work needed for actually writing data to a 2432 * file. It does all basic checks, removes SUID from the file, updates 2433 * modification times and calls proper subroutines depending on whether we 2434 * do direct IO or a standard buffered write. 2435 * 2436 * It expects i_mutex to be grabbed unless we work on a block device or similar 2437 * object which does not need locking at all. 2438 * 2439 * This function does *not* take care of syncing data in case of O_SYNC write. 2440 * A caller has to handle it. This is mainly due to the fact that we want to 2441 * avoid syncing under i_mutex. 2442 */ 2443 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov, 2444 unsigned long nr_segs, loff_t *ppos) 2445 { 2446 struct file *file = iocb->ki_filp; 2447 struct address_space * mapping = file->f_mapping; 2448 size_t ocount; /* original count */ 2449 size_t count; /* after file limit checks */ 2450 struct inode *inode = mapping->host; 2451 loff_t pos; 2452 ssize_t written; 2453 ssize_t err; 2454 2455 ocount = 0; 2456 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ); 2457 if (err) 2458 return err; 2459 2460 count = ocount; 2461 pos = *ppos; 2462 2463 /* We can write back this queue in page reclaim */ 2464 current->backing_dev_info = mapping->backing_dev_info; 2465 written = 0; 2466 2467 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode)); 2468 if (err) 2469 goto out; 2470 2471 if (count == 0) 2472 goto out; 2473 2474 err = file_remove_suid(file); 2475 if (err) 2476 goto out; 2477 2478 err = file_update_time(file); 2479 if (err) 2480 goto out; 2481 2482 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ 2483 if (unlikely(file->f_flags & O_DIRECT)) { 2484 loff_t endbyte; 2485 ssize_t written_buffered; 2486 2487 written = generic_file_direct_write(iocb, iov, &nr_segs, pos, 2488 ppos, count, ocount); 2489 if (written < 0 || written == count) 2490 goto out; 2491 /* 2492 * direct-io write to a hole: fall through to buffered I/O 2493 * for completing the rest of the request. 2494 */ 2495 pos += written; 2496 count -= written; 2497 written_buffered = generic_file_buffered_write(iocb, iov, 2498 nr_segs, pos, ppos, count, 2499 written); 2500 /* 2501 * If generic_file_buffered_write() retuned a synchronous error 2502 * then we want to return the number of bytes which were 2503 * direct-written, or the error code if that was zero. Note 2504 * that this differs from normal direct-io semantics, which 2505 * will return -EFOO even if some bytes were written. 2506 */ 2507 if (written_buffered < 0) { 2508 err = written_buffered; 2509 goto out; 2510 } 2511 2512 /* 2513 * We need to ensure that the page cache pages are written to 2514 * disk and invalidated to preserve the expected O_DIRECT 2515 * semantics. 2516 */ 2517 endbyte = pos + written_buffered - written - 1; 2518 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte); 2519 if (err == 0) { 2520 written = written_buffered; 2521 invalidate_mapping_pages(mapping, 2522 pos >> PAGE_CACHE_SHIFT, 2523 endbyte >> PAGE_CACHE_SHIFT); 2524 } else { 2525 /* 2526 * We don't know how much we wrote, so just return 2527 * the number of bytes which were direct-written 2528 */ 2529 } 2530 } else { 2531 written = generic_file_buffered_write(iocb, iov, nr_segs, 2532 pos, ppos, count, written); 2533 } 2534 out: 2535 current->backing_dev_info = NULL; 2536 return written ? written : err; 2537 } 2538 EXPORT_SYMBOL(__generic_file_aio_write); 2539 2540 /** 2541 * generic_file_aio_write - write data to a file 2542 * @iocb: IO state structure 2543 * @iov: vector with data to write 2544 * @nr_segs: number of segments in the vector 2545 * @pos: position in file where to write 2546 * 2547 * This is a wrapper around __generic_file_aio_write() to be used by most 2548 * filesystems. It takes care of syncing the file in case of O_SYNC file 2549 * and acquires i_mutex as needed. 2550 */ 2551 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov, 2552 unsigned long nr_segs, loff_t pos) 2553 { 2554 struct file *file = iocb->ki_filp; 2555 struct inode *inode = file->f_mapping->host; 2556 ssize_t ret; 2557 2558 BUG_ON(iocb->ki_pos != pos); 2559 2560 mutex_lock(&inode->i_mutex); 2561 ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos); 2562 mutex_unlock(&inode->i_mutex); 2563 2564 if (ret > 0) { 2565 ssize_t err; 2566 2567 err = generic_write_sync(file, pos, ret); 2568 if (err < 0 && ret > 0) 2569 ret = err; 2570 } 2571 return ret; 2572 } 2573 EXPORT_SYMBOL(generic_file_aio_write); 2574 2575 /** 2576 * try_to_release_page() - release old fs-specific metadata on a page 2577 * 2578 * @page: the page which the kernel is trying to free 2579 * @gfp_mask: memory allocation flags (and I/O mode) 2580 * 2581 * The address_space is to try to release any data against the page 2582 * (presumably at page->private). If the release was successful, return `1'. 2583 * Otherwise return zero. 2584 * 2585 * This may also be called if PG_fscache is set on a page, indicating that the 2586 * page is known to the local caching routines. 2587 * 2588 * The @gfp_mask argument specifies whether I/O may be performed to release 2589 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS). 2590 * 2591 */ 2592 int try_to_release_page(struct page *page, gfp_t gfp_mask) 2593 { 2594 struct address_space * const mapping = page->mapping; 2595 2596 BUG_ON(!PageLocked(page)); 2597 if (PageWriteback(page)) 2598 return 0; 2599 2600 if (mapping && mapping->a_ops->releasepage) 2601 return mapping->a_ops->releasepage(page, gfp_mask); 2602 return try_to_free_buffers(page); 2603 } 2604 2605 EXPORT_SYMBOL(try_to_release_page); 2606