1 /* 2 * linux/mm/filemap.c 3 * 4 * Copyright (C) 1994-1999 Linus Torvalds 5 */ 6 7 /* 8 * This file handles the generic file mmap semantics used by 9 * most "normal" filesystems (but you don't /have/ to use this: 10 * the NFS filesystem used to do this differently, for example) 11 */ 12 #include <linux/export.h> 13 #include <linux/compiler.h> 14 #include <linux/fs.h> 15 #include <linux/uaccess.h> 16 #include <linux/aio.h> 17 #include <linux/capability.h> 18 #include <linux/kernel_stat.h> 19 #include <linux/gfp.h> 20 #include <linux/mm.h> 21 #include <linux/swap.h> 22 #include <linux/mman.h> 23 #include <linux/pagemap.h> 24 #include <linux/file.h> 25 #include <linux/uio.h> 26 #include <linux/hash.h> 27 #include <linux/writeback.h> 28 #include <linux/backing-dev.h> 29 #include <linux/pagevec.h> 30 #include <linux/blkdev.h> 31 #include <linux/security.h> 32 #include <linux/cpuset.h> 33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */ 34 #include <linux/hugetlb.h> 35 #include <linux/memcontrol.h> 36 #include <linux/cleancache.h> 37 #include <linux/rmap.h> 38 #include "internal.h" 39 40 #define CREATE_TRACE_POINTS 41 #include <trace/events/filemap.h> 42 43 /* 44 * FIXME: remove all knowledge of the buffer layer from the core VM 45 */ 46 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 47 48 #include <asm/mman.h> 49 50 /* 51 * Shared mappings implemented 30.11.1994. It's not fully working yet, 52 * though. 53 * 54 * Shared mappings now work. 15.8.1995 Bruno. 55 * 56 * finished 'unifying' the page and buffer cache and SMP-threaded the 57 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 58 * 59 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 60 */ 61 62 /* 63 * Lock ordering: 64 * 65 * ->i_mmap_mutex (truncate_pagecache) 66 * ->private_lock (__free_pte->__set_page_dirty_buffers) 67 * ->swap_lock (exclusive_swap_page, others) 68 * ->mapping->tree_lock 69 * 70 * ->i_mutex 71 * ->i_mmap_mutex (truncate->unmap_mapping_range) 72 * 73 * ->mmap_sem 74 * ->i_mmap_mutex 75 * ->page_table_lock or pte_lock (various, mainly in memory.c) 76 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock) 77 * 78 * ->mmap_sem 79 * ->lock_page (access_process_vm) 80 * 81 * ->i_mutex (generic_perform_write) 82 * ->mmap_sem (fault_in_pages_readable->do_page_fault) 83 * 84 * bdi->wb.list_lock 85 * sb_lock (fs/fs-writeback.c) 86 * ->mapping->tree_lock (__sync_single_inode) 87 * 88 * ->i_mmap_mutex 89 * ->anon_vma.lock (vma_adjust) 90 * 91 * ->anon_vma.lock 92 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 93 * 94 * ->page_table_lock or pte_lock 95 * ->swap_lock (try_to_unmap_one) 96 * ->private_lock (try_to_unmap_one) 97 * ->tree_lock (try_to_unmap_one) 98 * ->zone.lru_lock (follow_page->mark_page_accessed) 99 * ->zone.lru_lock (check_pte_range->isolate_lru_page) 100 * ->private_lock (page_remove_rmap->set_page_dirty) 101 * ->tree_lock (page_remove_rmap->set_page_dirty) 102 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty) 103 * ->inode->i_lock (page_remove_rmap->set_page_dirty) 104 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 105 * ->inode->i_lock (zap_pte_range->set_page_dirty) 106 * ->private_lock (zap_pte_range->__set_page_dirty_buffers) 107 * 108 * ->i_mmap_mutex 109 * ->tasklist_lock (memory_failure, collect_procs_ao) 110 */ 111 112 static void page_cache_tree_delete(struct address_space *mapping, 113 struct page *page, void *shadow) 114 { 115 struct radix_tree_node *node; 116 unsigned long index; 117 unsigned int offset; 118 unsigned int tag; 119 void **slot; 120 121 VM_BUG_ON(!PageLocked(page)); 122 123 __radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot); 124 125 if (shadow) { 126 mapping->nrshadows++; 127 /* 128 * Make sure the nrshadows update is committed before 129 * the nrpages update so that final truncate racing 130 * with reclaim does not see both counters 0 at the 131 * same time and miss a shadow entry. 132 */ 133 smp_wmb(); 134 } 135 mapping->nrpages--; 136 137 if (!node) { 138 /* Clear direct pointer tags in root node */ 139 mapping->page_tree.gfp_mask &= __GFP_BITS_MASK; 140 radix_tree_replace_slot(slot, shadow); 141 return; 142 } 143 144 /* Clear tree tags for the removed page */ 145 index = page->index; 146 offset = index & RADIX_TREE_MAP_MASK; 147 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) { 148 if (test_bit(offset, node->tags[tag])) 149 radix_tree_tag_clear(&mapping->page_tree, index, tag); 150 } 151 152 /* Delete page, swap shadow entry */ 153 radix_tree_replace_slot(slot, shadow); 154 workingset_node_pages_dec(node); 155 if (shadow) 156 workingset_node_shadows_inc(node); 157 else 158 if (__radix_tree_delete_node(&mapping->page_tree, node)) 159 return; 160 161 /* 162 * Track node that only contains shadow entries. 163 * 164 * Avoid acquiring the list_lru lock if already tracked. The 165 * list_empty() test is safe as node->private_list is 166 * protected by mapping->tree_lock. 167 */ 168 if (!workingset_node_pages(node) && 169 list_empty(&node->private_list)) { 170 node->private_data = mapping; 171 list_lru_add(&workingset_shadow_nodes, &node->private_list); 172 } 173 } 174 175 /* 176 * Delete a page from the page cache and free it. Caller has to make 177 * sure the page is locked and that nobody else uses it - or that usage 178 * is safe. The caller must hold the mapping's tree_lock. 179 */ 180 void __delete_from_page_cache(struct page *page, void *shadow) 181 { 182 struct address_space *mapping = page->mapping; 183 184 trace_mm_filemap_delete_from_page_cache(page); 185 /* 186 * if we're uptodate, flush out into the cleancache, otherwise 187 * invalidate any existing cleancache entries. We can't leave 188 * stale data around in the cleancache once our page is gone 189 */ 190 if (PageUptodate(page) && PageMappedToDisk(page)) 191 cleancache_put_page(page); 192 else 193 cleancache_invalidate_page(mapping, page); 194 195 page_cache_tree_delete(mapping, page, shadow); 196 197 page->mapping = NULL; 198 /* Leave page->index set: truncation lookup relies upon it */ 199 200 __dec_zone_page_state(page, NR_FILE_PAGES); 201 if (PageSwapBacked(page)) 202 __dec_zone_page_state(page, NR_SHMEM); 203 BUG_ON(page_mapped(page)); 204 205 /* 206 * Some filesystems seem to re-dirty the page even after 207 * the VM has canceled the dirty bit (eg ext3 journaling). 208 * 209 * Fix it up by doing a final dirty accounting check after 210 * having removed the page entirely. 211 */ 212 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) { 213 dec_zone_page_state(page, NR_FILE_DIRTY); 214 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE); 215 } 216 } 217 218 /** 219 * delete_from_page_cache - delete page from page cache 220 * @page: the page which the kernel is trying to remove from page cache 221 * 222 * This must be called only on pages that have been verified to be in the page 223 * cache and locked. It will never put the page into the free list, the caller 224 * has a reference on the page. 225 */ 226 void delete_from_page_cache(struct page *page) 227 { 228 struct address_space *mapping = page->mapping; 229 void (*freepage)(struct page *); 230 231 BUG_ON(!PageLocked(page)); 232 233 freepage = mapping->a_ops->freepage; 234 spin_lock_irq(&mapping->tree_lock); 235 __delete_from_page_cache(page, NULL); 236 spin_unlock_irq(&mapping->tree_lock); 237 238 if (freepage) 239 freepage(page); 240 page_cache_release(page); 241 } 242 EXPORT_SYMBOL(delete_from_page_cache); 243 244 static int filemap_check_errors(struct address_space *mapping) 245 { 246 int ret = 0; 247 /* Check for outstanding write errors */ 248 if (test_bit(AS_ENOSPC, &mapping->flags) && 249 test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 250 ret = -ENOSPC; 251 if (test_bit(AS_EIO, &mapping->flags) && 252 test_and_clear_bit(AS_EIO, &mapping->flags)) 253 ret = -EIO; 254 return ret; 255 } 256 257 /** 258 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 259 * @mapping: address space structure to write 260 * @start: offset in bytes where the range starts 261 * @end: offset in bytes where the range ends (inclusive) 262 * @sync_mode: enable synchronous operation 263 * 264 * Start writeback against all of a mapping's dirty pages that lie 265 * within the byte offsets <start, end> inclusive. 266 * 267 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 268 * opposed to a regular memory cleansing writeback. The difference between 269 * these two operations is that if a dirty page/buffer is encountered, it must 270 * be waited upon, and not just skipped over. 271 */ 272 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 273 loff_t end, int sync_mode) 274 { 275 int ret; 276 struct writeback_control wbc = { 277 .sync_mode = sync_mode, 278 .nr_to_write = LONG_MAX, 279 .range_start = start, 280 .range_end = end, 281 }; 282 283 if (!mapping_cap_writeback_dirty(mapping)) 284 return 0; 285 286 ret = do_writepages(mapping, &wbc); 287 return ret; 288 } 289 290 static inline int __filemap_fdatawrite(struct address_space *mapping, 291 int sync_mode) 292 { 293 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 294 } 295 296 int filemap_fdatawrite(struct address_space *mapping) 297 { 298 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 299 } 300 EXPORT_SYMBOL(filemap_fdatawrite); 301 302 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 303 loff_t end) 304 { 305 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 306 } 307 EXPORT_SYMBOL(filemap_fdatawrite_range); 308 309 /** 310 * filemap_flush - mostly a non-blocking flush 311 * @mapping: target address_space 312 * 313 * This is a mostly non-blocking flush. Not suitable for data-integrity 314 * purposes - I/O may not be started against all dirty pages. 315 */ 316 int filemap_flush(struct address_space *mapping) 317 { 318 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 319 } 320 EXPORT_SYMBOL(filemap_flush); 321 322 /** 323 * filemap_fdatawait_range - wait for writeback to complete 324 * @mapping: address space structure to wait for 325 * @start_byte: offset in bytes where the range starts 326 * @end_byte: offset in bytes where the range ends (inclusive) 327 * 328 * Walk the list of under-writeback pages of the given address space 329 * in the given range and wait for all of them. 330 */ 331 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 332 loff_t end_byte) 333 { 334 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT; 335 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT; 336 struct pagevec pvec; 337 int nr_pages; 338 int ret2, ret = 0; 339 340 if (end_byte < start_byte) 341 goto out; 342 343 pagevec_init(&pvec, 0); 344 while ((index <= end) && 345 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 346 PAGECACHE_TAG_WRITEBACK, 347 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) { 348 unsigned i; 349 350 for (i = 0; i < nr_pages; i++) { 351 struct page *page = pvec.pages[i]; 352 353 /* until radix tree lookup accepts end_index */ 354 if (page->index > end) 355 continue; 356 357 wait_on_page_writeback(page); 358 if (TestClearPageError(page)) 359 ret = -EIO; 360 } 361 pagevec_release(&pvec); 362 cond_resched(); 363 } 364 out: 365 ret2 = filemap_check_errors(mapping); 366 if (!ret) 367 ret = ret2; 368 369 return ret; 370 } 371 EXPORT_SYMBOL(filemap_fdatawait_range); 372 373 /** 374 * filemap_fdatawait - wait for all under-writeback pages to complete 375 * @mapping: address space structure to wait for 376 * 377 * Walk the list of under-writeback pages of the given address space 378 * and wait for all of them. 379 */ 380 int filemap_fdatawait(struct address_space *mapping) 381 { 382 loff_t i_size = i_size_read(mapping->host); 383 384 if (i_size == 0) 385 return 0; 386 387 return filemap_fdatawait_range(mapping, 0, i_size - 1); 388 } 389 EXPORT_SYMBOL(filemap_fdatawait); 390 391 int filemap_write_and_wait(struct address_space *mapping) 392 { 393 int err = 0; 394 395 if (mapping->nrpages) { 396 err = filemap_fdatawrite(mapping); 397 /* 398 * Even if the above returned error, the pages may be 399 * written partially (e.g. -ENOSPC), so we wait for it. 400 * But the -EIO is special case, it may indicate the worst 401 * thing (e.g. bug) happened, so we avoid waiting for it. 402 */ 403 if (err != -EIO) { 404 int err2 = filemap_fdatawait(mapping); 405 if (!err) 406 err = err2; 407 } 408 } else { 409 err = filemap_check_errors(mapping); 410 } 411 return err; 412 } 413 EXPORT_SYMBOL(filemap_write_and_wait); 414 415 /** 416 * filemap_write_and_wait_range - write out & wait on a file range 417 * @mapping: the address_space for the pages 418 * @lstart: offset in bytes where the range starts 419 * @lend: offset in bytes where the range ends (inclusive) 420 * 421 * Write out and wait upon file offsets lstart->lend, inclusive. 422 * 423 * Note that `lend' is inclusive (describes the last byte to be written) so 424 * that this function can be used to write to the very end-of-file (end = -1). 425 */ 426 int filemap_write_and_wait_range(struct address_space *mapping, 427 loff_t lstart, loff_t lend) 428 { 429 int err = 0; 430 431 if (mapping->nrpages) { 432 err = __filemap_fdatawrite_range(mapping, lstart, lend, 433 WB_SYNC_ALL); 434 /* See comment of filemap_write_and_wait() */ 435 if (err != -EIO) { 436 int err2 = filemap_fdatawait_range(mapping, 437 lstart, lend); 438 if (!err) 439 err = err2; 440 } 441 } else { 442 err = filemap_check_errors(mapping); 443 } 444 return err; 445 } 446 EXPORT_SYMBOL(filemap_write_and_wait_range); 447 448 /** 449 * replace_page_cache_page - replace a pagecache page with a new one 450 * @old: page to be replaced 451 * @new: page to replace with 452 * @gfp_mask: allocation mode 453 * 454 * This function replaces a page in the pagecache with a new one. On 455 * success it acquires the pagecache reference for the new page and 456 * drops it for the old page. Both the old and new pages must be 457 * locked. This function does not add the new page to the LRU, the 458 * caller must do that. 459 * 460 * The remove + add is atomic. The only way this function can fail is 461 * memory allocation failure. 462 */ 463 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask) 464 { 465 int error; 466 467 VM_BUG_ON_PAGE(!PageLocked(old), old); 468 VM_BUG_ON_PAGE(!PageLocked(new), new); 469 VM_BUG_ON_PAGE(new->mapping, new); 470 471 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM); 472 if (!error) { 473 struct address_space *mapping = old->mapping; 474 void (*freepage)(struct page *); 475 476 pgoff_t offset = old->index; 477 freepage = mapping->a_ops->freepage; 478 479 page_cache_get(new); 480 new->mapping = mapping; 481 new->index = offset; 482 483 spin_lock_irq(&mapping->tree_lock); 484 __delete_from_page_cache(old, NULL); 485 error = radix_tree_insert(&mapping->page_tree, offset, new); 486 BUG_ON(error); 487 mapping->nrpages++; 488 __inc_zone_page_state(new, NR_FILE_PAGES); 489 if (PageSwapBacked(new)) 490 __inc_zone_page_state(new, NR_SHMEM); 491 spin_unlock_irq(&mapping->tree_lock); 492 mem_cgroup_migrate(old, new, true); 493 radix_tree_preload_end(); 494 if (freepage) 495 freepage(old); 496 page_cache_release(old); 497 } 498 499 return error; 500 } 501 EXPORT_SYMBOL_GPL(replace_page_cache_page); 502 503 static int page_cache_tree_insert(struct address_space *mapping, 504 struct page *page, void **shadowp) 505 { 506 struct radix_tree_node *node; 507 void **slot; 508 int error; 509 510 error = __radix_tree_create(&mapping->page_tree, page->index, 511 &node, &slot); 512 if (error) 513 return error; 514 if (*slot) { 515 void *p; 516 517 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock); 518 if (!radix_tree_exceptional_entry(p)) 519 return -EEXIST; 520 if (shadowp) 521 *shadowp = p; 522 mapping->nrshadows--; 523 if (node) 524 workingset_node_shadows_dec(node); 525 } 526 radix_tree_replace_slot(slot, page); 527 mapping->nrpages++; 528 if (node) { 529 workingset_node_pages_inc(node); 530 /* 531 * Don't track node that contains actual pages. 532 * 533 * Avoid acquiring the list_lru lock if already 534 * untracked. The list_empty() test is safe as 535 * node->private_list is protected by 536 * mapping->tree_lock. 537 */ 538 if (!list_empty(&node->private_list)) 539 list_lru_del(&workingset_shadow_nodes, 540 &node->private_list); 541 } 542 return 0; 543 } 544 545 static int __add_to_page_cache_locked(struct page *page, 546 struct address_space *mapping, 547 pgoff_t offset, gfp_t gfp_mask, 548 void **shadowp) 549 { 550 int huge = PageHuge(page); 551 struct mem_cgroup *memcg; 552 int error; 553 554 VM_BUG_ON_PAGE(!PageLocked(page), page); 555 VM_BUG_ON_PAGE(PageSwapBacked(page), page); 556 557 if (!huge) { 558 error = mem_cgroup_try_charge(page, current->mm, 559 gfp_mask, &memcg); 560 if (error) 561 return error; 562 } 563 564 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM); 565 if (error) { 566 if (!huge) 567 mem_cgroup_cancel_charge(page, memcg); 568 return error; 569 } 570 571 page_cache_get(page); 572 page->mapping = mapping; 573 page->index = offset; 574 575 spin_lock_irq(&mapping->tree_lock); 576 error = page_cache_tree_insert(mapping, page, shadowp); 577 radix_tree_preload_end(); 578 if (unlikely(error)) 579 goto err_insert; 580 __inc_zone_page_state(page, NR_FILE_PAGES); 581 spin_unlock_irq(&mapping->tree_lock); 582 if (!huge) 583 mem_cgroup_commit_charge(page, memcg, false); 584 trace_mm_filemap_add_to_page_cache(page); 585 return 0; 586 err_insert: 587 page->mapping = NULL; 588 /* Leave page->index set: truncation relies upon it */ 589 spin_unlock_irq(&mapping->tree_lock); 590 if (!huge) 591 mem_cgroup_cancel_charge(page, memcg); 592 page_cache_release(page); 593 return error; 594 } 595 596 /** 597 * add_to_page_cache_locked - add a locked page to the pagecache 598 * @page: page to add 599 * @mapping: the page's address_space 600 * @offset: page index 601 * @gfp_mask: page allocation mode 602 * 603 * This function is used to add a page to the pagecache. It must be locked. 604 * This function does not add the page to the LRU. The caller must do that. 605 */ 606 int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 607 pgoff_t offset, gfp_t gfp_mask) 608 { 609 return __add_to_page_cache_locked(page, mapping, offset, 610 gfp_mask, NULL); 611 } 612 EXPORT_SYMBOL(add_to_page_cache_locked); 613 614 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 615 pgoff_t offset, gfp_t gfp_mask) 616 { 617 void *shadow = NULL; 618 int ret; 619 620 __set_page_locked(page); 621 ret = __add_to_page_cache_locked(page, mapping, offset, 622 gfp_mask, &shadow); 623 if (unlikely(ret)) 624 __clear_page_locked(page); 625 else { 626 /* 627 * The page might have been evicted from cache only 628 * recently, in which case it should be activated like 629 * any other repeatedly accessed page. 630 */ 631 if (shadow && workingset_refault(shadow)) { 632 SetPageActive(page); 633 workingset_activation(page); 634 } else 635 ClearPageActive(page); 636 lru_cache_add(page); 637 } 638 return ret; 639 } 640 EXPORT_SYMBOL_GPL(add_to_page_cache_lru); 641 642 #ifdef CONFIG_NUMA 643 struct page *__page_cache_alloc(gfp_t gfp) 644 { 645 int n; 646 struct page *page; 647 648 if (cpuset_do_page_mem_spread()) { 649 unsigned int cpuset_mems_cookie; 650 do { 651 cpuset_mems_cookie = read_mems_allowed_begin(); 652 n = cpuset_mem_spread_node(); 653 page = alloc_pages_exact_node(n, gfp, 0); 654 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie)); 655 656 return page; 657 } 658 return alloc_pages(gfp, 0); 659 } 660 EXPORT_SYMBOL(__page_cache_alloc); 661 #endif 662 663 /* 664 * In order to wait for pages to become available there must be 665 * waitqueues associated with pages. By using a hash table of 666 * waitqueues where the bucket discipline is to maintain all 667 * waiters on the same queue and wake all when any of the pages 668 * become available, and for the woken contexts to check to be 669 * sure the appropriate page became available, this saves space 670 * at a cost of "thundering herd" phenomena during rare hash 671 * collisions. 672 */ 673 static wait_queue_head_t *page_waitqueue(struct page *page) 674 { 675 const struct zone *zone = page_zone(page); 676 677 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)]; 678 } 679 680 static inline void wake_up_page(struct page *page, int bit) 681 { 682 __wake_up_bit(page_waitqueue(page), &page->flags, bit); 683 } 684 685 void wait_on_page_bit(struct page *page, int bit_nr) 686 { 687 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr); 688 689 if (test_bit(bit_nr, &page->flags)) 690 __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io, 691 TASK_UNINTERRUPTIBLE); 692 } 693 EXPORT_SYMBOL(wait_on_page_bit); 694 695 int wait_on_page_bit_killable(struct page *page, int bit_nr) 696 { 697 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr); 698 699 if (!test_bit(bit_nr, &page->flags)) 700 return 0; 701 702 return __wait_on_bit(page_waitqueue(page), &wait, 703 bit_wait_io, TASK_KILLABLE); 704 } 705 706 /** 707 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue 708 * @page: Page defining the wait queue of interest 709 * @waiter: Waiter to add to the queue 710 * 711 * Add an arbitrary @waiter to the wait queue for the nominated @page. 712 */ 713 void add_page_wait_queue(struct page *page, wait_queue_t *waiter) 714 { 715 wait_queue_head_t *q = page_waitqueue(page); 716 unsigned long flags; 717 718 spin_lock_irqsave(&q->lock, flags); 719 __add_wait_queue(q, waiter); 720 spin_unlock_irqrestore(&q->lock, flags); 721 } 722 EXPORT_SYMBOL_GPL(add_page_wait_queue); 723 724 /** 725 * unlock_page - unlock a locked page 726 * @page: the page 727 * 728 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). 729 * Also wakes sleepers in wait_on_page_writeback() because the wakeup 730 * mechananism between PageLocked pages and PageWriteback pages is shared. 731 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. 732 * 733 * The mb is necessary to enforce ordering between the clear_bit and the read 734 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()). 735 */ 736 void unlock_page(struct page *page) 737 { 738 VM_BUG_ON_PAGE(!PageLocked(page), page); 739 clear_bit_unlock(PG_locked, &page->flags); 740 smp_mb__after_atomic(); 741 wake_up_page(page, PG_locked); 742 } 743 EXPORT_SYMBOL(unlock_page); 744 745 /** 746 * end_page_writeback - end writeback against a page 747 * @page: the page 748 */ 749 void end_page_writeback(struct page *page) 750 { 751 /* 752 * TestClearPageReclaim could be used here but it is an atomic 753 * operation and overkill in this particular case. Failing to 754 * shuffle a page marked for immediate reclaim is too mild to 755 * justify taking an atomic operation penalty at the end of 756 * ever page writeback. 757 */ 758 if (PageReclaim(page)) { 759 ClearPageReclaim(page); 760 rotate_reclaimable_page(page); 761 } 762 763 if (!test_clear_page_writeback(page)) 764 BUG(); 765 766 smp_mb__after_atomic(); 767 wake_up_page(page, PG_writeback); 768 } 769 EXPORT_SYMBOL(end_page_writeback); 770 771 /* 772 * After completing I/O on a page, call this routine to update the page 773 * flags appropriately 774 */ 775 void page_endio(struct page *page, int rw, int err) 776 { 777 if (rw == READ) { 778 if (!err) { 779 SetPageUptodate(page); 780 } else { 781 ClearPageUptodate(page); 782 SetPageError(page); 783 } 784 unlock_page(page); 785 } else { /* rw == WRITE */ 786 if (err) { 787 SetPageError(page); 788 if (page->mapping) 789 mapping_set_error(page->mapping, err); 790 } 791 end_page_writeback(page); 792 } 793 } 794 EXPORT_SYMBOL_GPL(page_endio); 795 796 /** 797 * __lock_page - get a lock on the page, assuming we need to sleep to get it 798 * @page: the page to lock 799 */ 800 void __lock_page(struct page *page) 801 { 802 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 803 804 __wait_on_bit_lock(page_waitqueue(page), &wait, bit_wait_io, 805 TASK_UNINTERRUPTIBLE); 806 } 807 EXPORT_SYMBOL(__lock_page); 808 809 int __lock_page_killable(struct page *page) 810 { 811 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 812 813 return __wait_on_bit_lock(page_waitqueue(page), &wait, 814 bit_wait_io, TASK_KILLABLE); 815 } 816 EXPORT_SYMBOL_GPL(__lock_page_killable); 817 818 /* 819 * Return values: 820 * 1 - page is locked; mmap_sem is still held. 821 * 0 - page is not locked. 822 * mmap_sem has been released (up_read()), unless flags had both 823 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in 824 * which case mmap_sem is still held. 825 * 826 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1 827 * with the page locked and the mmap_sem unperturbed. 828 */ 829 int __lock_page_or_retry(struct page *page, struct mm_struct *mm, 830 unsigned int flags) 831 { 832 if (flags & FAULT_FLAG_ALLOW_RETRY) { 833 /* 834 * CAUTION! In this case, mmap_sem is not released 835 * even though return 0. 836 */ 837 if (flags & FAULT_FLAG_RETRY_NOWAIT) 838 return 0; 839 840 up_read(&mm->mmap_sem); 841 if (flags & FAULT_FLAG_KILLABLE) 842 wait_on_page_locked_killable(page); 843 else 844 wait_on_page_locked(page); 845 return 0; 846 } else { 847 if (flags & FAULT_FLAG_KILLABLE) { 848 int ret; 849 850 ret = __lock_page_killable(page); 851 if (ret) { 852 up_read(&mm->mmap_sem); 853 return 0; 854 } 855 } else 856 __lock_page(page); 857 return 1; 858 } 859 } 860 861 /** 862 * page_cache_next_hole - find the next hole (not-present entry) 863 * @mapping: mapping 864 * @index: index 865 * @max_scan: maximum range to search 866 * 867 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the 868 * lowest indexed hole. 869 * 870 * Returns: the index of the hole if found, otherwise returns an index 871 * outside of the set specified (in which case 'return - index >= 872 * max_scan' will be true). In rare cases of index wrap-around, 0 will 873 * be returned. 874 * 875 * page_cache_next_hole may be called under rcu_read_lock. However, 876 * like radix_tree_gang_lookup, this will not atomically search a 877 * snapshot of the tree at a single point in time. For example, if a 878 * hole is created at index 5, then subsequently a hole is created at 879 * index 10, page_cache_next_hole covering both indexes may return 10 880 * if called under rcu_read_lock. 881 */ 882 pgoff_t page_cache_next_hole(struct address_space *mapping, 883 pgoff_t index, unsigned long max_scan) 884 { 885 unsigned long i; 886 887 for (i = 0; i < max_scan; i++) { 888 struct page *page; 889 890 page = radix_tree_lookup(&mapping->page_tree, index); 891 if (!page || radix_tree_exceptional_entry(page)) 892 break; 893 index++; 894 if (index == 0) 895 break; 896 } 897 898 return index; 899 } 900 EXPORT_SYMBOL(page_cache_next_hole); 901 902 /** 903 * page_cache_prev_hole - find the prev hole (not-present entry) 904 * @mapping: mapping 905 * @index: index 906 * @max_scan: maximum range to search 907 * 908 * Search backwards in the range [max(index-max_scan+1, 0), index] for 909 * the first hole. 910 * 911 * Returns: the index of the hole if found, otherwise returns an index 912 * outside of the set specified (in which case 'index - return >= 913 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX 914 * will be returned. 915 * 916 * page_cache_prev_hole may be called under rcu_read_lock. However, 917 * like radix_tree_gang_lookup, this will not atomically search a 918 * snapshot of the tree at a single point in time. For example, if a 919 * hole is created at index 10, then subsequently a hole is created at 920 * index 5, page_cache_prev_hole covering both indexes may return 5 if 921 * called under rcu_read_lock. 922 */ 923 pgoff_t page_cache_prev_hole(struct address_space *mapping, 924 pgoff_t index, unsigned long max_scan) 925 { 926 unsigned long i; 927 928 for (i = 0; i < max_scan; i++) { 929 struct page *page; 930 931 page = radix_tree_lookup(&mapping->page_tree, index); 932 if (!page || radix_tree_exceptional_entry(page)) 933 break; 934 index--; 935 if (index == ULONG_MAX) 936 break; 937 } 938 939 return index; 940 } 941 EXPORT_SYMBOL(page_cache_prev_hole); 942 943 /** 944 * find_get_entry - find and get a page cache entry 945 * @mapping: the address_space to search 946 * @offset: the page cache index 947 * 948 * Looks up the page cache slot at @mapping & @offset. If there is a 949 * page cache page, it is returned with an increased refcount. 950 * 951 * If the slot holds a shadow entry of a previously evicted page, or a 952 * swap entry from shmem/tmpfs, it is returned. 953 * 954 * Otherwise, %NULL is returned. 955 */ 956 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset) 957 { 958 void **pagep; 959 struct page *page; 960 961 rcu_read_lock(); 962 repeat: 963 page = NULL; 964 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset); 965 if (pagep) { 966 page = radix_tree_deref_slot(pagep); 967 if (unlikely(!page)) 968 goto out; 969 if (radix_tree_exception(page)) { 970 if (radix_tree_deref_retry(page)) 971 goto repeat; 972 /* 973 * A shadow entry of a recently evicted page, 974 * or a swap entry from shmem/tmpfs. Return 975 * it without attempting to raise page count. 976 */ 977 goto out; 978 } 979 if (!page_cache_get_speculative(page)) 980 goto repeat; 981 982 /* 983 * Has the page moved? 984 * This is part of the lockless pagecache protocol. See 985 * include/linux/pagemap.h for details. 986 */ 987 if (unlikely(page != *pagep)) { 988 page_cache_release(page); 989 goto repeat; 990 } 991 } 992 out: 993 rcu_read_unlock(); 994 995 return page; 996 } 997 EXPORT_SYMBOL(find_get_entry); 998 999 /** 1000 * find_lock_entry - locate, pin and lock a page cache entry 1001 * @mapping: the address_space to search 1002 * @offset: the page cache index 1003 * 1004 * Looks up the page cache slot at @mapping & @offset. If there is a 1005 * page cache page, it is returned locked and with an increased 1006 * refcount. 1007 * 1008 * If the slot holds a shadow entry of a previously evicted page, or a 1009 * swap entry from shmem/tmpfs, it is returned. 1010 * 1011 * Otherwise, %NULL is returned. 1012 * 1013 * find_lock_entry() may sleep. 1014 */ 1015 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset) 1016 { 1017 struct page *page; 1018 1019 repeat: 1020 page = find_get_entry(mapping, offset); 1021 if (page && !radix_tree_exception(page)) { 1022 lock_page(page); 1023 /* Has the page been truncated? */ 1024 if (unlikely(page->mapping != mapping)) { 1025 unlock_page(page); 1026 page_cache_release(page); 1027 goto repeat; 1028 } 1029 VM_BUG_ON_PAGE(page->index != offset, page); 1030 } 1031 return page; 1032 } 1033 EXPORT_SYMBOL(find_lock_entry); 1034 1035 /** 1036 * pagecache_get_page - find and get a page reference 1037 * @mapping: the address_space to search 1038 * @offset: the page index 1039 * @fgp_flags: PCG flags 1040 * @cache_gfp_mask: gfp mask to use for the page cache data page allocation 1041 * @radix_gfp_mask: gfp mask to use for radix tree node allocation 1042 * 1043 * Looks up the page cache slot at @mapping & @offset. 1044 * 1045 * PCG flags modify how the page is returned. 1046 * 1047 * FGP_ACCESSED: the page will be marked accessed 1048 * FGP_LOCK: Page is return locked 1049 * FGP_CREAT: If page is not present then a new page is allocated using 1050 * @cache_gfp_mask and added to the page cache and the VM's LRU 1051 * list. If radix tree nodes are allocated during page cache 1052 * insertion then @radix_gfp_mask is used. The page is returned 1053 * locked and with an increased refcount. Otherwise, %NULL is 1054 * returned. 1055 * 1056 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even 1057 * if the GFP flags specified for FGP_CREAT are atomic. 1058 * 1059 * If there is a page cache page, it is returned with an increased refcount. 1060 */ 1061 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset, 1062 int fgp_flags, gfp_t cache_gfp_mask, gfp_t radix_gfp_mask) 1063 { 1064 struct page *page; 1065 1066 repeat: 1067 page = find_get_entry(mapping, offset); 1068 if (radix_tree_exceptional_entry(page)) 1069 page = NULL; 1070 if (!page) 1071 goto no_page; 1072 1073 if (fgp_flags & FGP_LOCK) { 1074 if (fgp_flags & FGP_NOWAIT) { 1075 if (!trylock_page(page)) { 1076 page_cache_release(page); 1077 return NULL; 1078 } 1079 } else { 1080 lock_page(page); 1081 } 1082 1083 /* Has the page been truncated? */ 1084 if (unlikely(page->mapping != mapping)) { 1085 unlock_page(page); 1086 page_cache_release(page); 1087 goto repeat; 1088 } 1089 VM_BUG_ON_PAGE(page->index != offset, page); 1090 } 1091 1092 if (page && (fgp_flags & FGP_ACCESSED)) 1093 mark_page_accessed(page); 1094 1095 no_page: 1096 if (!page && (fgp_flags & FGP_CREAT)) { 1097 int err; 1098 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping)) 1099 cache_gfp_mask |= __GFP_WRITE; 1100 if (fgp_flags & FGP_NOFS) { 1101 cache_gfp_mask &= ~__GFP_FS; 1102 radix_gfp_mask &= ~__GFP_FS; 1103 } 1104 1105 page = __page_cache_alloc(cache_gfp_mask); 1106 if (!page) 1107 return NULL; 1108 1109 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK))) 1110 fgp_flags |= FGP_LOCK; 1111 1112 /* Init accessed so avoid atomic mark_page_accessed later */ 1113 if (fgp_flags & FGP_ACCESSED) 1114 __SetPageReferenced(page); 1115 1116 err = add_to_page_cache_lru(page, mapping, offset, radix_gfp_mask); 1117 if (unlikely(err)) { 1118 page_cache_release(page); 1119 page = NULL; 1120 if (err == -EEXIST) 1121 goto repeat; 1122 } 1123 } 1124 1125 return page; 1126 } 1127 EXPORT_SYMBOL(pagecache_get_page); 1128 1129 /** 1130 * find_get_entries - gang pagecache lookup 1131 * @mapping: The address_space to search 1132 * @start: The starting page cache index 1133 * @nr_entries: The maximum number of entries 1134 * @entries: Where the resulting entries are placed 1135 * @indices: The cache indices corresponding to the entries in @entries 1136 * 1137 * find_get_entries() will search for and return a group of up to 1138 * @nr_entries entries in the mapping. The entries are placed at 1139 * @entries. find_get_entries() takes a reference against any actual 1140 * pages it returns. 1141 * 1142 * The search returns a group of mapping-contiguous page cache entries 1143 * with ascending indexes. There may be holes in the indices due to 1144 * not-present pages. 1145 * 1146 * Any shadow entries of evicted pages, or swap entries from 1147 * shmem/tmpfs, are included in the returned array. 1148 * 1149 * find_get_entries() returns the number of pages and shadow entries 1150 * which were found. 1151 */ 1152 unsigned find_get_entries(struct address_space *mapping, 1153 pgoff_t start, unsigned int nr_entries, 1154 struct page **entries, pgoff_t *indices) 1155 { 1156 void **slot; 1157 unsigned int ret = 0; 1158 struct radix_tree_iter iter; 1159 1160 if (!nr_entries) 1161 return 0; 1162 1163 rcu_read_lock(); 1164 restart: 1165 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { 1166 struct page *page; 1167 repeat: 1168 page = radix_tree_deref_slot(slot); 1169 if (unlikely(!page)) 1170 continue; 1171 if (radix_tree_exception(page)) { 1172 if (radix_tree_deref_retry(page)) 1173 goto restart; 1174 /* 1175 * A shadow entry of a recently evicted page, 1176 * or a swap entry from shmem/tmpfs. Return 1177 * it without attempting to raise page count. 1178 */ 1179 goto export; 1180 } 1181 if (!page_cache_get_speculative(page)) 1182 goto repeat; 1183 1184 /* Has the page moved? */ 1185 if (unlikely(page != *slot)) { 1186 page_cache_release(page); 1187 goto repeat; 1188 } 1189 export: 1190 indices[ret] = iter.index; 1191 entries[ret] = page; 1192 if (++ret == nr_entries) 1193 break; 1194 } 1195 rcu_read_unlock(); 1196 return ret; 1197 } 1198 1199 /** 1200 * find_get_pages - gang pagecache lookup 1201 * @mapping: The address_space to search 1202 * @start: The starting page index 1203 * @nr_pages: The maximum number of pages 1204 * @pages: Where the resulting pages are placed 1205 * 1206 * find_get_pages() will search for and return a group of up to 1207 * @nr_pages pages in the mapping. The pages are placed at @pages. 1208 * find_get_pages() takes a reference against the returned pages. 1209 * 1210 * The search returns a group of mapping-contiguous pages with ascending 1211 * indexes. There may be holes in the indices due to not-present pages. 1212 * 1213 * find_get_pages() returns the number of pages which were found. 1214 */ 1215 unsigned find_get_pages(struct address_space *mapping, pgoff_t start, 1216 unsigned int nr_pages, struct page **pages) 1217 { 1218 struct radix_tree_iter iter; 1219 void **slot; 1220 unsigned ret = 0; 1221 1222 if (unlikely(!nr_pages)) 1223 return 0; 1224 1225 rcu_read_lock(); 1226 restart: 1227 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { 1228 struct page *page; 1229 repeat: 1230 page = radix_tree_deref_slot(slot); 1231 if (unlikely(!page)) 1232 continue; 1233 1234 if (radix_tree_exception(page)) { 1235 if (radix_tree_deref_retry(page)) { 1236 /* 1237 * Transient condition which can only trigger 1238 * when entry at index 0 moves out of or back 1239 * to root: none yet gotten, safe to restart. 1240 */ 1241 WARN_ON(iter.index); 1242 goto restart; 1243 } 1244 /* 1245 * A shadow entry of a recently evicted page, 1246 * or a swap entry from shmem/tmpfs. Skip 1247 * over it. 1248 */ 1249 continue; 1250 } 1251 1252 if (!page_cache_get_speculative(page)) 1253 goto repeat; 1254 1255 /* Has the page moved? */ 1256 if (unlikely(page != *slot)) { 1257 page_cache_release(page); 1258 goto repeat; 1259 } 1260 1261 pages[ret] = page; 1262 if (++ret == nr_pages) 1263 break; 1264 } 1265 1266 rcu_read_unlock(); 1267 return ret; 1268 } 1269 1270 /** 1271 * find_get_pages_contig - gang contiguous pagecache lookup 1272 * @mapping: The address_space to search 1273 * @index: The starting page index 1274 * @nr_pages: The maximum number of pages 1275 * @pages: Where the resulting pages are placed 1276 * 1277 * find_get_pages_contig() works exactly like find_get_pages(), except 1278 * that the returned number of pages are guaranteed to be contiguous. 1279 * 1280 * find_get_pages_contig() returns the number of pages which were found. 1281 */ 1282 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, 1283 unsigned int nr_pages, struct page **pages) 1284 { 1285 struct radix_tree_iter iter; 1286 void **slot; 1287 unsigned int ret = 0; 1288 1289 if (unlikely(!nr_pages)) 1290 return 0; 1291 1292 rcu_read_lock(); 1293 restart: 1294 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) { 1295 struct page *page; 1296 repeat: 1297 page = radix_tree_deref_slot(slot); 1298 /* The hole, there no reason to continue */ 1299 if (unlikely(!page)) 1300 break; 1301 1302 if (radix_tree_exception(page)) { 1303 if (radix_tree_deref_retry(page)) { 1304 /* 1305 * Transient condition which can only trigger 1306 * when entry at index 0 moves out of or back 1307 * to root: none yet gotten, safe to restart. 1308 */ 1309 goto restart; 1310 } 1311 /* 1312 * A shadow entry of a recently evicted page, 1313 * or a swap entry from shmem/tmpfs. Stop 1314 * looking for contiguous pages. 1315 */ 1316 break; 1317 } 1318 1319 if (!page_cache_get_speculative(page)) 1320 goto repeat; 1321 1322 /* Has the page moved? */ 1323 if (unlikely(page != *slot)) { 1324 page_cache_release(page); 1325 goto repeat; 1326 } 1327 1328 /* 1329 * must check mapping and index after taking the ref. 1330 * otherwise we can get both false positives and false 1331 * negatives, which is just confusing to the caller. 1332 */ 1333 if (page->mapping == NULL || page->index != iter.index) { 1334 page_cache_release(page); 1335 break; 1336 } 1337 1338 pages[ret] = page; 1339 if (++ret == nr_pages) 1340 break; 1341 } 1342 rcu_read_unlock(); 1343 return ret; 1344 } 1345 EXPORT_SYMBOL(find_get_pages_contig); 1346 1347 /** 1348 * find_get_pages_tag - find and return pages that match @tag 1349 * @mapping: the address_space to search 1350 * @index: the starting page index 1351 * @tag: the tag index 1352 * @nr_pages: the maximum number of pages 1353 * @pages: where the resulting pages are placed 1354 * 1355 * Like find_get_pages, except we only return pages which are tagged with 1356 * @tag. We update @index to index the next page for the traversal. 1357 */ 1358 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, 1359 int tag, unsigned int nr_pages, struct page **pages) 1360 { 1361 struct radix_tree_iter iter; 1362 void **slot; 1363 unsigned ret = 0; 1364 1365 if (unlikely(!nr_pages)) 1366 return 0; 1367 1368 rcu_read_lock(); 1369 restart: 1370 radix_tree_for_each_tagged(slot, &mapping->page_tree, 1371 &iter, *index, tag) { 1372 struct page *page; 1373 repeat: 1374 page = radix_tree_deref_slot(slot); 1375 if (unlikely(!page)) 1376 continue; 1377 1378 if (radix_tree_exception(page)) { 1379 if (radix_tree_deref_retry(page)) { 1380 /* 1381 * Transient condition which can only trigger 1382 * when entry at index 0 moves out of or back 1383 * to root: none yet gotten, safe to restart. 1384 */ 1385 goto restart; 1386 } 1387 /* 1388 * A shadow entry of a recently evicted page. 1389 * 1390 * Those entries should never be tagged, but 1391 * this tree walk is lockless and the tags are 1392 * looked up in bulk, one radix tree node at a 1393 * time, so there is a sizable window for page 1394 * reclaim to evict a page we saw tagged. 1395 * 1396 * Skip over it. 1397 */ 1398 continue; 1399 } 1400 1401 if (!page_cache_get_speculative(page)) 1402 goto repeat; 1403 1404 /* Has the page moved? */ 1405 if (unlikely(page != *slot)) { 1406 page_cache_release(page); 1407 goto repeat; 1408 } 1409 1410 pages[ret] = page; 1411 if (++ret == nr_pages) 1412 break; 1413 } 1414 1415 rcu_read_unlock(); 1416 1417 if (ret) 1418 *index = pages[ret - 1]->index + 1; 1419 1420 return ret; 1421 } 1422 EXPORT_SYMBOL(find_get_pages_tag); 1423 1424 /* 1425 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 1426 * a _large_ part of the i/o request. Imagine the worst scenario: 1427 * 1428 * ---R__________________________________________B__________ 1429 * ^ reading here ^ bad block(assume 4k) 1430 * 1431 * read(R) => miss => readahead(R...B) => media error => frustrating retries 1432 * => failing the whole request => read(R) => read(R+1) => 1433 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 1434 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 1435 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 1436 * 1437 * It is going insane. Fix it by quickly scaling down the readahead size. 1438 */ 1439 static void shrink_readahead_size_eio(struct file *filp, 1440 struct file_ra_state *ra) 1441 { 1442 ra->ra_pages /= 4; 1443 } 1444 1445 /** 1446 * do_generic_file_read - generic file read routine 1447 * @filp: the file to read 1448 * @ppos: current file position 1449 * @iter: data destination 1450 * @written: already copied 1451 * 1452 * This is a generic file read routine, and uses the 1453 * mapping->a_ops->readpage() function for the actual low-level stuff. 1454 * 1455 * This is really ugly. But the goto's actually try to clarify some 1456 * of the logic when it comes to error handling etc. 1457 */ 1458 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos, 1459 struct iov_iter *iter, ssize_t written) 1460 { 1461 struct address_space *mapping = filp->f_mapping; 1462 struct inode *inode = mapping->host; 1463 struct file_ra_state *ra = &filp->f_ra; 1464 pgoff_t index; 1465 pgoff_t last_index; 1466 pgoff_t prev_index; 1467 unsigned long offset; /* offset into pagecache page */ 1468 unsigned int prev_offset; 1469 int error = 0; 1470 1471 index = *ppos >> PAGE_CACHE_SHIFT; 1472 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT; 1473 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1); 1474 last_index = (*ppos + iter->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT; 1475 offset = *ppos & ~PAGE_CACHE_MASK; 1476 1477 for (;;) { 1478 struct page *page; 1479 pgoff_t end_index; 1480 loff_t isize; 1481 unsigned long nr, ret; 1482 1483 cond_resched(); 1484 find_page: 1485 page = find_get_page(mapping, index); 1486 if (!page) { 1487 page_cache_sync_readahead(mapping, 1488 ra, filp, 1489 index, last_index - index); 1490 page = find_get_page(mapping, index); 1491 if (unlikely(page == NULL)) 1492 goto no_cached_page; 1493 } 1494 if (PageReadahead(page)) { 1495 page_cache_async_readahead(mapping, 1496 ra, filp, page, 1497 index, last_index - index); 1498 } 1499 if (!PageUptodate(page)) { 1500 if (inode->i_blkbits == PAGE_CACHE_SHIFT || 1501 !mapping->a_ops->is_partially_uptodate) 1502 goto page_not_up_to_date; 1503 if (!trylock_page(page)) 1504 goto page_not_up_to_date; 1505 /* Did it get truncated before we got the lock? */ 1506 if (!page->mapping) 1507 goto page_not_up_to_date_locked; 1508 if (!mapping->a_ops->is_partially_uptodate(page, 1509 offset, iter->count)) 1510 goto page_not_up_to_date_locked; 1511 unlock_page(page); 1512 } 1513 page_ok: 1514 /* 1515 * i_size must be checked after we know the page is Uptodate. 1516 * 1517 * Checking i_size after the check allows us to calculate 1518 * the correct value for "nr", which means the zero-filled 1519 * part of the page is not copied back to userspace (unless 1520 * another truncate extends the file - this is desired though). 1521 */ 1522 1523 isize = i_size_read(inode); 1524 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 1525 if (unlikely(!isize || index > end_index)) { 1526 page_cache_release(page); 1527 goto out; 1528 } 1529 1530 /* nr is the maximum number of bytes to copy from this page */ 1531 nr = PAGE_CACHE_SIZE; 1532 if (index == end_index) { 1533 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 1534 if (nr <= offset) { 1535 page_cache_release(page); 1536 goto out; 1537 } 1538 } 1539 nr = nr - offset; 1540 1541 /* If users can be writing to this page using arbitrary 1542 * virtual addresses, take care about potential aliasing 1543 * before reading the page on the kernel side. 1544 */ 1545 if (mapping_writably_mapped(mapping)) 1546 flush_dcache_page(page); 1547 1548 /* 1549 * When a sequential read accesses a page several times, 1550 * only mark it as accessed the first time. 1551 */ 1552 if (prev_index != index || offset != prev_offset) 1553 mark_page_accessed(page); 1554 prev_index = index; 1555 1556 /* 1557 * Ok, we have the page, and it's up-to-date, so 1558 * now we can copy it to user space... 1559 */ 1560 1561 ret = copy_page_to_iter(page, offset, nr, iter); 1562 offset += ret; 1563 index += offset >> PAGE_CACHE_SHIFT; 1564 offset &= ~PAGE_CACHE_MASK; 1565 prev_offset = offset; 1566 1567 page_cache_release(page); 1568 written += ret; 1569 if (!iov_iter_count(iter)) 1570 goto out; 1571 if (ret < nr) { 1572 error = -EFAULT; 1573 goto out; 1574 } 1575 continue; 1576 1577 page_not_up_to_date: 1578 /* Get exclusive access to the page ... */ 1579 error = lock_page_killable(page); 1580 if (unlikely(error)) 1581 goto readpage_error; 1582 1583 page_not_up_to_date_locked: 1584 /* Did it get truncated before we got the lock? */ 1585 if (!page->mapping) { 1586 unlock_page(page); 1587 page_cache_release(page); 1588 continue; 1589 } 1590 1591 /* Did somebody else fill it already? */ 1592 if (PageUptodate(page)) { 1593 unlock_page(page); 1594 goto page_ok; 1595 } 1596 1597 readpage: 1598 /* 1599 * A previous I/O error may have been due to temporary 1600 * failures, eg. multipath errors. 1601 * PG_error will be set again if readpage fails. 1602 */ 1603 ClearPageError(page); 1604 /* Start the actual read. The read will unlock the page. */ 1605 error = mapping->a_ops->readpage(filp, page); 1606 1607 if (unlikely(error)) { 1608 if (error == AOP_TRUNCATED_PAGE) { 1609 page_cache_release(page); 1610 error = 0; 1611 goto find_page; 1612 } 1613 goto readpage_error; 1614 } 1615 1616 if (!PageUptodate(page)) { 1617 error = lock_page_killable(page); 1618 if (unlikely(error)) 1619 goto readpage_error; 1620 if (!PageUptodate(page)) { 1621 if (page->mapping == NULL) { 1622 /* 1623 * invalidate_mapping_pages got it 1624 */ 1625 unlock_page(page); 1626 page_cache_release(page); 1627 goto find_page; 1628 } 1629 unlock_page(page); 1630 shrink_readahead_size_eio(filp, ra); 1631 error = -EIO; 1632 goto readpage_error; 1633 } 1634 unlock_page(page); 1635 } 1636 1637 goto page_ok; 1638 1639 readpage_error: 1640 /* UHHUH! A synchronous read error occurred. Report it */ 1641 page_cache_release(page); 1642 goto out; 1643 1644 no_cached_page: 1645 /* 1646 * Ok, it wasn't cached, so we need to create a new 1647 * page.. 1648 */ 1649 page = page_cache_alloc_cold(mapping); 1650 if (!page) { 1651 error = -ENOMEM; 1652 goto out; 1653 } 1654 error = add_to_page_cache_lru(page, mapping, 1655 index, GFP_KERNEL); 1656 if (error) { 1657 page_cache_release(page); 1658 if (error == -EEXIST) { 1659 error = 0; 1660 goto find_page; 1661 } 1662 goto out; 1663 } 1664 goto readpage; 1665 } 1666 1667 out: 1668 ra->prev_pos = prev_index; 1669 ra->prev_pos <<= PAGE_CACHE_SHIFT; 1670 ra->prev_pos |= prev_offset; 1671 1672 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset; 1673 file_accessed(filp); 1674 return written ? written : error; 1675 } 1676 1677 /** 1678 * generic_file_read_iter - generic filesystem read routine 1679 * @iocb: kernel I/O control block 1680 * @iter: destination for the data read 1681 * 1682 * This is the "read_iter()" routine for all filesystems 1683 * that can use the page cache directly. 1684 */ 1685 ssize_t 1686 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 1687 { 1688 struct file *file = iocb->ki_filp; 1689 ssize_t retval = 0; 1690 loff_t *ppos = &iocb->ki_pos; 1691 loff_t pos = *ppos; 1692 1693 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ 1694 if (file->f_flags & O_DIRECT) { 1695 struct address_space *mapping = file->f_mapping; 1696 struct inode *inode = mapping->host; 1697 size_t count = iov_iter_count(iter); 1698 loff_t size; 1699 1700 if (!count) 1701 goto out; /* skip atime */ 1702 size = i_size_read(inode); 1703 retval = filemap_write_and_wait_range(mapping, pos, 1704 pos + count - 1); 1705 if (!retval) { 1706 struct iov_iter data = *iter; 1707 retval = mapping->a_ops->direct_IO(READ, iocb, &data, pos); 1708 } 1709 1710 if (retval > 0) { 1711 *ppos = pos + retval; 1712 iov_iter_advance(iter, retval); 1713 } 1714 1715 /* 1716 * Btrfs can have a short DIO read if we encounter 1717 * compressed extents, so if there was an error, or if 1718 * we've already read everything we wanted to, or if 1719 * there was a short read because we hit EOF, go ahead 1720 * and return. Otherwise fallthrough to buffered io for 1721 * the rest of the read. 1722 */ 1723 if (retval < 0 || !iov_iter_count(iter) || *ppos >= size) { 1724 file_accessed(file); 1725 goto out; 1726 } 1727 } 1728 1729 retval = do_generic_file_read(file, ppos, iter, retval); 1730 out: 1731 return retval; 1732 } 1733 EXPORT_SYMBOL(generic_file_read_iter); 1734 1735 #ifdef CONFIG_MMU 1736 /** 1737 * page_cache_read - adds requested page to the page cache if not already there 1738 * @file: file to read 1739 * @offset: page index 1740 * 1741 * This adds the requested page to the page cache if it isn't already there, 1742 * and schedules an I/O to read in its contents from disk. 1743 */ 1744 static int page_cache_read(struct file *file, pgoff_t offset) 1745 { 1746 struct address_space *mapping = file->f_mapping; 1747 struct page *page; 1748 int ret; 1749 1750 do { 1751 page = page_cache_alloc_cold(mapping); 1752 if (!page) 1753 return -ENOMEM; 1754 1755 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL); 1756 if (ret == 0) 1757 ret = mapping->a_ops->readpage(file, page); 1758 else if (ret == -EEXIST) 1759 ret = 0; /* losing race to add is OK */ 1760 1761 page_cache_release(page); 1762 1763 } while (ret == AOP_TRUNCATED_PAGE); 1764 1765 return ret; 1766 } 1767 1768 #define MMAP_LOTSAMISS (100) 1769 1770 /* 1771 * Synchronous readahead happens when we don't even find 1772 * a page in the page cache at all. 1773 */ 1774 static void do_sync_mmap_readahead(struct vm_area_struct *vma, 1775 struct file_ra_state *ra, 1776 struct file *file, 1777 pgoff_t offset) 1778 { 1779 unsigned long ra_pages; 1780 struct address_space *mapping = file->f_mapping; 1781 1782 /* If we don't want any read-ahead, don't bother */ 1783 if (vma->vm_flags & VM_RAND_READ) 1784 return; 1785 if (!ra->ra_pages) 1786 return; 1787 1788 if (vma->vm_flags & VM_SEQ_READ) { 1789 page_cache_sync_readahead(mapping, ra, file, offset, 1790 ra->ra_pages); 1791 return; 1792 } 1793 1794 /* Avoid banging the cache line if not needed */ 1795 if (ra->mmap_miss < MMAP_LOTSAMISS * 10) 1796 ra->mmap_miss++; 1797 1798 /* 1799 * Do we miss much more than hit in this file? If so, 1800 * stop bothering with read-ahead. It will only hurt. 1801 */ 1802 if (ra->mmap_miss > MMAP_LOTSAMISS) 1803 return; 1804 1805 /* 1806 * mmap read-around 1807 */ 1808 ra_pages = max_sane_readahead(ra->ra_pages); 1809 ra->start = max_t(long, 0, offset - ra_pages / 2); 1810 ra->size = ra_pages; 1811 ra->async_size = ra_pages / 4; 1812 ra_submit(ra, mapping, file); 1813 } 1814 1815 /* 1816 * Asynchronous readahead happens when we find the page and PG_readahead, 1817 * so we want to possibly extend the readahead further.. 1818 */ 1819 static void do_async_mmap_readahead(struct vm_area_struct *vma, 1820 struct file_ra_state *ra, 1821 struct file *file, 1822 struct page *page, 1823 pgoff_t offset) 1824 { 1825 struct address_space *mapping = file->f_mapping; 1826 1827 /* If we don't want any read-ahead, don't bother */ 1828 if (vma->vm_flags & VM_RAND_READ) 1829 return; 1830 if (ra->mmap_miss > 0) 1831 ra->mmap_miss--; 1832 if (PageReadahead(page)) 1833 page_cache_async_readahead(mapping, ra, file, 1834 page, offset, ra->ra_pages); 1835 } 1836 1837 /** 1838 * filemap_fault - read in file data for page fault handling 1839 * @vma: vma in which the fault was taken 1840 * @vmf: struct vm_fault containing details of the fault 1841 * 1842 * filemap_fault() is invoked via the vma operations vector for a 1843 * mapped memory region to read in file data during a page fault. 1844 * 1845 * The goto's are kind of ugly, but this streamlines the normal case of having 1846 * it in the page cache, and handles the special cases reasonably without 1847 * having a lot of duplicated code. 1848 * 1849 * vma->vm_mm->mmap_sem must be held on entry. 1850 * 1851 * If our return value has VM_FAULT_RETRY set, it's because 1852 * lock_page_or_retry() returned 0. 1853 * The mmap_sem has usually been released in this case. 1854 * See __lock_page_or_retry() for the exception. 1855 * 1856 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem 1857 * has not been released. 1858 * 1859 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. 1860 */ 1861 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1862 { 1863 int error; 1864 struct file *file = vma->vm_file; 1865 struct address_space *mapping = file->f_mapping; 1866 struct file_ra_state *ra = &file->f_ra; 1867 struct inode *inode = mapping->host; 1868 pgoff_t offset = vmf->pgoff; 1869 struct page *page; 1870 loff_t size; 1871 int ret = 0; 1872 1873 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE); 1874 if (offset >= size >> PAGE_CACHE_SHIFT) 1875 return VM_FAULT_SIGBUS; 1876 1877 /* 1878 * Do we have something in the page cache already? 1879 */ 1880 page = find_get_page(mapping, offset); 1881 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) { 1882 /* 1883 * We found the page, so try async readahead before 1884 * waiting for the lock. 1885 */ 1886 do_async_mmap_readahead(vma, ra, file, page, offset); 1887 } else if (!page) { 1888 /* No page in the page cache at all */ 1889 do_sync_mmap_readahead(vma, ra, file, offset); 1890 count_vm_event(PGMAJFAULT); 1891 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT); 1892 ret = VM_FAULT_MAJOR; 1893 retry_find: 1894 page = find_get_page(mapping, offset); 1895 if (!page) 1896 goto no_cached_page; 1897 } 1898 1899 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) { 1900 page_cache_release(page); 1901 return ret | VM_FAULT_RETRY; 1902 } 1903 1904 /* Did it get truncated? */ 1905 if (unlikely(page->mapping != mapping)) { 1906 unlock_page(page); 1907 put_page(page); 1908 goto retry_find; 1909 } 1910 VM_BUG_ON_PAGE(page->index != offset, page); 1911 1912 /* 1913 * We have a locked page in the page cache, now we need to check 1914 * that it's up-to-date. If not, it is going to be due to an error. 1915 */ 1916 if (unlikely(!PageUptodate(page))) 1917 goto page_not_uptodate; 1918 1919 /* 1920 * Found the page and have a reference on it. 1921 * We must recheck i_size under page lock. 1922 */ 1923 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE); 1924 if (unlikely(offset >= size >> PAGE_CACHE_SHIFT)) { 1925 unlock_page(page); 1926 page_cache_release(page); 1927 return VM_FAULT_SIGBUS; 1928 } 1929 1930 vmf->page = page; 1931 return ret | VM_FAULT_LOCKED; 1932 1933 no_cached_page: 1934 /* 1935 * We're only likely to ever get here if MADV_RANDOM is in 1936 * effect. 1937 */ 1938 error = page_cache_read(file, offset); 1939 1940 /* 1941 * The page we want has now been added to the page cache. 1942 * In the unlikely event that someone removed it in the 1943 * meantime, we'll just come back here and read it again. 1944 */ 1945 if (error >= 0) 1946 goto retry_find; 1947 1948 /* 1949 * An error return from page_cache_read can result if the 1950 * system is low on memory, or a problem occurs while trying 1951 * to schedule I/O. 1952 */ 1953 if (error == -ENOMEM) 1954 return VM_FAULT_OOM; 1955 return VM_FAULT_SIGBUS; 1956 1957 page_not_uptodate: 1958 /* 1959 * Umm, take care of errors if the page isn't up-to-date. 1960 * Try to re-read it _once_. We do this synchronously, 1961 * because there really aren't any performance issues here 1962 * and we need to check for errors. 1963 */ 1964 ClearPageError(page); 1965 error = mapping->a_ops->readpage(file, page); 1966 if (!error) { 1967 wait_on_page_locked(page); 1968 if (!PageUptodate(page)) 1969 error = -EIO; 1970 } 1971 page_cache_release(page); 1972 1973 if (!error || error == AOP_TRUNCATED_PAGE) 1974 goto retry_find; 1975 1976 /* Things didn't work out. Return zero to tell the mm layer so. */ 1977 shrink_readahead_size_eio(file, ra); 1978 return VM_FAULT_SIGBUS; 1979 } 1980 EXPORT_SYMBOL(filemap_fault); 1981 1982 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf) 1983 { 1984 struct radix_tree_iter iter; 1985 void **slot; 1986 struct file *file = vma->vm_file; 1987 struct address_space *mapping = file->f_mapping; 1988 loff_t size; 1989 struct page *page; 1990 unsigned long address = (unsigned long) vmf->virtual_address; 1991 unsigned long addr; 1992 pte_t *pte; 1993 1994 rcu_read_lock(); 1995 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) { 1996 if (iter.index > vmf->max_pgoff) 1997 break; 1998 repeat: 1999 page = radix_tree_deref_slot(slot); 2000 if (unlikely(!page)) 2001 goto next; 2002 if (radix_tree_exception(page)) { 2003 if (radix_tree_deref_retry(page)) 2004 break; 2005 else 2006 goto next; 2007 } 2008 2009 if (!page_cache_get_speculative(page)) 2010 goto repeat; 2011 2012 /* Has the page moved? */ 2013 if (unlikely(page != *slot)) { 2014 page_cache_release(page); 2015 goto repeat; 2016 } 2017 2018 if (!PageUptodate(page) || 2019 PageReadahead(page) || 2020 PageHWPoison(page)) 2021 goto skip; 2022 if (!trylock_page(page)) 2023 goto skip; 2024 2025 if (page->mapping != mapping || !PageUptodate(page)) 2026 goto unlock; 2027 2028 size = round_up(i_size_read(mapping->host), PAGE_CACHE_SIZE); 2029 if (page->index >= size >> PAGE_CACHE_SHIFT) 2030 goto unlock; 2031 2032 pte = vmf->pte + page->index - vmf->pgoff; 2033 if (!pte_none(*pte)) 2034 goto unlock; 2035 2036 if (file->f_ra.mmap_miss > 0) 2037 file->f_ra.mmap_miss--; 2038 addr = address + (page->index - vmf->pgoff) * PAGE_SIZE; 2039 do_set_pte(vma, addr, page, pte, false, false); 2040 unlock_page(page); 2041 goto next; 2042 unlock: 2043 unlock_page(page); 2044 skip: 2045 page_cache_release(page); 2046 next: 2047 if (iter.index == vmf->max_pgoff) 2048 break; 2049 } 2050 rcu_read_unlock(); 2051 } 2052 EXPORT_SYMBOL(filemap_map_pages); 2053 2054 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 2055 { 2056 struct page *page = vmf->page; 2057 struct inode *inode = file_inode(vma->vm_file); 2058 int ret = VM_FAULT_LOCKED; 2059 2060 sb_start_pagefault(inode->i_sb); 2061 file_update_time(vma->vm_file); 2062 lock_page(page); 2063 if (page->mapping != inode->i_mapping) { 2064 unlock_page(page); 2065 ret = VM_FAULT_NOPAGE; 2066 goto out; 2067 } 2068 /* 2069 * We mark the page dirty already here so that when freeze is in 2070 * progress, we are guaranteed that writeback during freezing will 2071 * see the dirty page and writeprotect it again. 2072 */ 2073 set_page_dirty(page); 2074 wait_for_stable_page(page); 2075 out: 2076 sb_end_pagefault(inode->i_sb); 2077 return ret; 2078 } 2079 EXPORT_SYMBOL(filemap_page_mkwrite); 2080 2081 const struct vm_operations_struct generic_file_vm_ops = { 2082 .fault = filemap_fault, 2083 .map_pages = filemap_map_pages, 2084 .page_mkwrite = filemap_page_mkwrite, 2085 .remap_pages = generic_file_remap_pages, 2086 }; 2087 2088 /* This is used for a general mmap of a disk file */ 2089 2090 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 2091 { 2092 struct address_space *mapping = file->f_mapping; 2093 2094 if (!mapping->a_ops->readpage) 2095 return -ENOEXEC; 2096 file_accessed(file); 2097 vma->vm_ops = &generic_file_vm_ops; 2098 return 0; 2099 } 2100 2101 /* 2102 * This is for filesystems which do not implement ->writepage. 2103 */ 2104 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 2105 { 2106 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 2107 return -EINVAL; 2108 return generic_file_mmap(file, vma); 2109 } 2110 #else 2111 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 2112 { 2113 return -ENOSYS; 2114 } 2115 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) 2116 { 2117 return -ENOSYS; 2118 } 2119 #endif /* CONFIG_MMU */ 2120 2121 EXPORT_SYMBOL(generic_file_mmap); 2122 EXPORT_SYMBOL(generic_file_readonly_mmap); 2123 2124 static struct page *wait_on_page_read(struct page *page) 2125 { 2126 if (!IS_ERR(page)) { 2127 wait_on_page_locked(page); 2128 if (!PageUptodate(page)) { 2129 page_cache_release(page); 2130 page = ERR_PTR(-EIO); 2131 } 2132 } 2133 return page; 2134 } 2135 2136 static struct page *__read_cache_page(struct address_space *mapping, 2137 pgoff_t index, 2138 int (*filler)(void *, struct page *), 2139 void *data, 2140 gfp_t gfp) 2141 { 2142 struct page *page; 2143 int err; 2144 repeat: 2145 page = find_get_page(mapping, index); 2146 if (!page) { 2147 page = __page_cache_alloc(gfp | __GFP_COLD); 2148 if (!page) 2149 return ERR_PTR(-ENOMEM); 2150 err = add_to_page_cache_lru(page, mapping, index, gfp); 2151 if (unlikely(err)) { 2152 page_cache_release(page); 2153 if (err == -EEXIST) 2154 goto repeat; 2155 /* Presumably ENOMEM for radix tree node */ 2156 return ERR_PTR(err); 2157 } 2158 err = filler(data, page); 2159 if (err < 0) { 2160 page_cache_release(page); 2161 page = ERR_PTR(err); 2162 } else { 2163 page = wait_on_page_read(page); 2164 } 2165 } 2166 return page; 2167 } 2168 2169 static struct page *do_read_cache_page(struct address_space *mapping, 2170 pgoff_t index, 2171 int (*filler)(void *, struct page *), 2172 void *data, 2173 gfp_t gfp) 2174 2175 { 2176 struct page *page; 2177 int err; 2178 2179 retry: 2180 page = __read_cache_page(mapping, index, filler, data, gfp); 2181 if (IS_ERR(page)) 2182 return page; 2183 if (PageUptodate(page)) 2184 goto out; 2185 2186 lock_page(page); 2187 if (!page->mapping) { 2188 unlock_page(page); 2189 page_cache_release(page); 2190 goto retry; 2191 } 2192 if (PageUptodate(page)) { 2193 unlock_page(page); 2194 goto out; 2195 } 2196 err = filler(data, page); 2197 if (err < 0) { 2198 page_cache_release(page); 2199 return ERR_PTR(err); 2200 } else { 2201 page = wait_on_page_read(page); 2202 if (IS_ERR(page)) 2203 return page; 2204 } 2205 out: 2206 mark_page_accessed(page); 2207 return page; 2208 } 2209 2210 /** 2211 * read_cache_page - read into page cache, fill it if needed 2212 * @mapping: the page's address_space 2213 * @index: the page index 2214 * @filler: function to perform the read 2215 * @data: first arg to filler(data, page) function, often left as NULL 2216 * 2217 * Read into the page cache. If a page already exists, and PageUptodate() is 2218 * not set, try to fill the page and wait for it to become unlocked. 2219 * 2220 * If the page does not get brought uptodate, return -EIO. 2221 */ 2222 struct page *read_cache_page(struct address_space *mapping, 2223 pgoff_t index, 2224 int (*filler)(void *, struct page *), 2225 void *data) 2226 { 2227 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping)); 2228 } 2229 EXPORT_SYMBOL(read_cache_page); 2230 2231 /** 2232 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 2233 * @mapping: the page's address_space 2234 * @index: the page index 2235 * @gfp: the page allocator flags to use if allocating 2236 * 2237 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 2238 * any new page allocations done using the specified allocation flags. 2239 * 2240 * If the page does not get brought uptodate, return -EIO. 2241 */ 2242 struct page *read_cache_page_gfp(struct address_space *mapping, 2243 pgoff_t index, 2244 gfp_t gfp) 2245 { 2246 filler_t *filler = (filler_t *)mapping->a_ops->readpage; 2247 2248 return do_read_cache_page(mapping, index, filler, NULL, gfp); 2249 } 2250 EXPORT_SYMBOL(read_cache_page_gfp); 2251 2252 /* 2253 * Performs necessary checks before doing a write 2254 * 2255 * Can adjust writing position or amount of bytes to write. 2256 * Returns appropriate error code that caller should return or 2257 * zero in case that write should be allowed. 2258 */ 2259 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk) 2260 { 2261 struct inode *inode = file->f_mapping->host; 2262 unsigned long limit = rlimit(RLIMIT_FSIZE); 2263 2264 if (unlikely(*pos < 0)) 2265 return -EINVAL; 2266 2267 if (!isblk) { 2268 /* FIXME: this is for backwards compatibility with 2.4 */ 2269 if (file->f_flags & O_APPEND) 2270 *pos = i_size_read(inode); 2271 2272 if (limit != RLIM_INFINITY) { 2273 if (*pos >= limit) { 2274 send_sig(SIGXFSZ, current, 0); 2275 return -EFBIG; 2276 } 2277 if (*count > limit - (typeof(limit))*pos) { 2278 *count = limit - (typeof(limit))*pos; 2279 } 2280 } 2281 } 2282 2283 /* 2284 * LFS rule 2285 */ 2286 if (unlikely(*pos + *count > MAX_NON_LFS && 2287 !(file->f_flags & O_LARGEFILE))) { 2288 if (*pos >= MAX_NON_LFS) { 2289 return -EFBIG; 2290 } 2291 if (*count > MAX_NON_LFS - (unsigned long)*pos) { 2292 *count = MAX_NON_LFS - (unsigned long)*pos; 2293 } 2294 } 2295 2296 /* 2297 * Are we about to exceed the fs block limit ? 2298 * 2299 * If we have written data it becomes a short write. If we have 2300 * exceeded without writing data we send a signal and return EFBIG. 2301 * Linus frestrict idea will clean these up nicely.. 2302 */ 2303 if (likely(!isblk)) { 2304 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) { 2305 if (*count || *pos > inode->i_sb->s_maxbytes) { 2306 return -EFBIG; 2307 } 2308 /* zero-length writes at ->s_maxbytes are OK */ 2309 } 2310 2311 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes)) 2312 *count = inode->i_sb->s_maxbytes - *pos; 2313 } else { 2314 #ifdef CONFIG_BLOCK 2315 loff_t isize; 2316 if (bdev_read_only(I_BDEV(inode))) 2317 return -EPERM; 2318 isize = i_size_read(inode); 2319 if (*pos >= isize) { 2320 if (*count || *pos > isize) 2321 return -ENOSPC; 2322 } 2323 2324 if (*pos + *count > isize) 2325 *count = isize - *pos; 2326 #else 2327 return -EPERM; 2328 #endif 2329 } 2330 return 0; 2331 } 2332 EXPORT_SYMBOL(generic_write_checks); 2333 2334 int pagecache_write_begin(struct file *file, struct address_space *mapping, 2335 loff_t pos, unsigned len, unsigned flags, 2336 struct page **pagep, void **fsdata) 2337 { 2338 const struct address_space_operations *aops = mapping->a_ops; 2339 2340 return aops->write_begin(file, mapping, pos, len, flags, 2341 pagep, fsdata); 2342 } 2343 EXPORT_SYMBOL(pagecache_write_begin); 2344 2345 int pagecache_write_end(struct file *file, struct address_space *mapping, 2346 loff_t pos, unsigned len, unsigned copied, 2347 struct page *page, void *fsdata) 2348 { 2349 const struct address_space_operations *aops = mapping->a_ops; 2350 2351 return aops->write_end(file, mapping, pos, len, copied, page, fsdata); 2352 } 2353 EXPORT_SYMBOL(pagecache_write_end); 2354 2355 ssize_t 2356 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from, loff_t pos) 2357 { 2358 struct file *file = iocb->ki_filp; 2359 struct address_space *mapping = file->f_mapping; 2360 struct inode *inode = mapping->host; 2361 ssize_t written; 2362 size_t write_len; 2363 pgoff_t end; 2364 struct iov_iter data; 2365 2366 write_len = iov_iter_count(from); 2367 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT; 2368 2369 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1); 2370 if (written) 2371 goto out; 2372 2373 /* 2374 * After a write we want buffered reads to be sure to go to disk to get 2375 * the new data. We invalidate clean cached page from the region we're 2376 * about to write. We do this *before* the write so that we can return 2377 * without clobbering -EIOCBQUEUED from ->direct_IO(). 2378 */ 2379 if (mapping->nrpages) { 2380 written = invalidate_inode_pages2_range(mapping, 2381 pos >> PAGE_CACHE_SHIFT, end); 2382 /* 2383 * If a page can not be invalidated, return 0 to fall back 2384 * to buffered write. 2385 */ 2386 if (written) { 2387 if (written == -EBUSY) 2388 return 0; 2389 goto out; 2390 } 2391 } 2392 2393 data = *from; 2394 written = mapping->a_ops->direct_IO(WRITE, iocb, &data, pos); 2395 2396 /* 2397 * Finally, try again to invalidate clean pages which might have been 2398 * cached by non-direct readahead, or faulted in by get_user_pages() 2399 * if the source of the write was an mmap'ed region of the file 2400 * we're writing. Either one is a pretty crazy thing to do, 2401 * so we don't support it 100%. If this invalidation 2402 * fails, tough, the write still worked... 2403 */ 2404 if (mapping->nrpages) { 2405 invalidate_inode_pages2_range(mapping, 2406 pos >> PAGE_CACHE_SHIFT, end); 2407 } 2408 2409 if (written > 0) { 2410 pos += written; 2411 iov_iter_advance(from, written); 2412 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 2413 i_size_write(inode, pos); 2414 mark_inode_dirty(inode); 2415 } 2416 iocb->ki_pos = pos; 2417 } 2418 out: 2419 return written; 2420 } 2421 EXPORT_SYMBOL(generic_file_direct_write); 2422 2423 /* 2424 * Find or create a page at the given pagecache position. Return the locked 2425 * page. This function is specifically for buffered writes. 2426 */ 2427 struct page *grab_cache_page_write_begin(struct address_space *mapping, 2428 pgoff_t index, unsigned flags) 2429 { 2430 struct page *page; 2431 int fgp_flags = FGP_LOCK|FGP_ACCESSED|FGP_WRITE|FGP_CREAT; 2432 2433 if (flags & AOP_FLAG_NOFS) 2434 fgp_flags |= FGP_NOFS; 2435 2436 page = pagecache_get_page(mapping, index, fgp_flags, 2437 mapping_gfp_mask(mapping), 2438 GFP_KERNEL); 2439 if (page) 2440 wait_for_stable_page(page); 2441 2442 return page; 2443 } 2444 EXPORT_SYMBOL(grab_cache_page_write_begin); 2445 2446 ssize_t generic_perform_write(struct file *file, 2447 struct iov_iter *i, loff_t pos) 2448 { 2449 struct address_space *mapping = file->f_mapping; 2450 const struct address_space_operations *a_ops = mapping->a_ops; 2451 long status = 0; 2452 ssize_t written = 0; 2453 unsigned int flags = 0; 2454 2455 /* 2456 * Copies from kernel address space cannot fail (NFSD is a big user). 2457 */ 2458 if (segment_eq(get_fs(), KERNEL_DS)) 2459 flags |= AOP_FLAG_UNINTERRUPTIBLE; 2460 2461 do { 2462 struct page *page; 2463 unsigned long offset; /* Offset into pagecache page */ 2464 unsigned long bytes; /* Bytes to write to page */ 2465 size_t copied; /* Bytes copied from user */ 2466 void *fsdata; 2467 2468 offset = (pos & (PAGE_CACHE_SIZE - 1)); 2469 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset, 2470 iov_iter_count(i)); 2471 2472 again: 2473 /* 2474 * Bring in the user page that we will copy from _first_. 2475 * Otherwise there's a nasty deadlock on copying from the 2476 * same page as we're writing to, without it being marked 2477 * up-to-date. 2478 * 2479 * Not only is this an optimisation, but it is also required 2480 * to check that the address is actually valid, when atomic 2481 * usercopies are used, below. 2482 */ 2483 if (unlikely(iov_iter_fault_in_readable(i, bytes))) { 2484 status = -EFAULT; 2485 break; 2486 } 2487 2488 status = a_ops->write_begin(file, mapping, pos, bytes, flags, 2489 &page, &fsdata); 2490 if (unlikely(status < 0)) 2491 break; 2492 2493 if (mapping_writably_mapped(mapping)) 2494 flush_dcache_page(page); 2495 2496 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); 2497 flush_dcache_page(page); 2498 2499 status = a_ops->write_end(file, mapping, pos, bytes, copied, 2500 page, fsdata); 2501 if (unlikely(status < 0)) 2502 break; 2503 copied = status; 2504 2505 cond_resched(); 2506 2507 iov_iter_advance(i, copied); 2508 if (unlikely(copied == 0)) { 2509 /* 2510 * If we were unable to copy any data at all, we must 2511 * fall back to a single segment length write. 2512 * 2513 * If we didn't fallback here, we could livelock 2514 * because not all segments in the iov can be copied at 2515 * once without a pagefault. 2516 */ 2517 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset, 2518 iov_iter_single_seg_count(i)); 2519 goto again; 2520 } 2521 pos += copied; 2522 written += copied; 2523 2524 balance_dirty_pages_ratelimited(mapping); 2525 if (fatal_signal_pending(current)) { 2526 status = -EINTR; 2527 break; 2528 } 2529 } while (iov_iter_count(i)); 2530 2531 return written ? written : status; 2532 } 2533 EXPORT_SYMBOL(generic_perform_write); 2534 2535 /** 2536 * __generic_file_write_iter - write data to a file 2537 * @iocb: IO state structure (file, offset, etc.) 2538 * @from: iov_iter with data to write 2539 * 2540 * This function does all the work needed for actually writing data to a 2541 * file. It does all basic checks, removes SUID from the file, updates 2542 * modification times and calls proper subroutines depending on whether we 2543 * do direct IO or a standard buffered write. 2544 * 2545 * It expects i_mutex to be grabbed unless we work on a block device or similar 2546 * object which does not need locking at all. 2547 * 2548 * This function does *not* take care of syncing data in case of O_SYNC write. 2549 * A caller has to handle it. This is mainly due to the fact that we want to 2550 * avoid syncing under i_mutex. 2551 */ 2552 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 2553 { 2554 struct file *file = iocb->ki_filp; 2555 struct address_space * mapping = file->f_mapping; 2556 struct inode *inode = mapping->host; 2557 loff_t pos = iocb->ki_pos; 2558 ssize_t written = 0; 2559 ssize_t err; 2560 ssize_t status; 2561 size_t count = iov_iter_count(from); 2562 2563 /* We can write back this queue in page reclaim */ 2564 current->backing_dev_info = mapping->backing_dev_info; 2565 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode)); 2566 if (err) 2567 goto out; 2568 2569 if (count == 0) 2570 goto out; 2571 2572 iov_iter_truncate(from, count); 2573 2574 err = file_remove_suid(file); 2575 if (err) 2576 goto out; 2577 2578 err = file_update_time(file); 2579 if (err) 2580 goto out; 2581 2582 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ 2583 if (unlikely(file->f_flags & O_DIRECT)) { 2584 loff_t endbyte; 2585 2586 written = generic_file_direct_write(iocb, from, pos); 2587 if (written < 0 || written == count) 2588 goto out; 2589 2590 /* 2591 * direct-io write to a hole: fall through to buffered I/O 2592 * for completing the rest of the request. 2593 */ 2594 pos += written; 2595 count -= written; 2596 2597 status = generic_perform_write(file, from, pos); 2598 /* 2599 * If generic_perform_write() returned a synchronous error 2600 * then we want to return the number of bytes which were 2601 * direct-written, or the error code if that was zero. Note 2602 * that this differs from normal direct-io semantics, which 2603 * will return -EFOO even if some bytes were written. 2604 */ 2605 if (unlikely(status < 0)) { 2606 err = status; 2607 goto out; 2608 } 2609 iocb->ki_pos = pos + status; 2610 /* 2611 * We need to ensure that the page cache pages are written to 2612 * disk and invalidated to preserve the expected O_DIRECT 2613 * semantics. 2614 */ 2615 endbyte = pos + status - 1; 2616 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte); 2617 if (err == 0) { 2618 written += status; 2619 invalidate_mapping_pages(mapping, 2620 pos >> PAGE_CACHE_SHIFT, 2621 endbyte >> PAGE_CACHE_SHIFT); 2622 } else { 2623 /* 2624 * We don't know how much we wrote, so just return 2625 * the number of bytes which were direct-written 2626 */ 2627 } 2628 } else { 2629 written = generic_perform_write(file, from, pos); 2630 if (likely(written >= 0)) 2631 iocb->ki_pos = pos + written; 2632 } 2633 out: 2634 current->backing_dev_info = NULL; 2635 return written ? written : err; 2636 } 2637 EXPORT_SYMBOL(__generic_file_write_iter); 2638 2639 /** 2640 * generic_file_write_iter - write data to a file 2641 * @iocb: IO state structure 2642 * @from: iov_iter with data to write 2643 * 2644 * This is a wrapper around __generic_file_write_iter() to be used by most 2645 * filesystems. It takes care of syncing the file in case of O_SYNC file 2646 * and acquires i_mutex as needed. 2647 */ 2648 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 2649 { 2650 struct file *file = iocb->ki_filp; 2651 struct inode *inode = file->f_mapping->host; 2652 ssize_t ret; 2653 2654 mutex_lock(&inode->i_mutex); 2655 ret = __generic_file_write_iter(iocb, from); 2656 mutex_unlock(&inode->i_mutex); 2657 2658 if (ret > 0) { 2659 ssize_t err; 2660 2661 err = generic_write_sync(file, iocb->ki_pos - ret, ret); 2662 if (err < 0) 2663 ret = err; 2664 } 2665 return ret; 2666 } 2667 EXPORT_SYMBOL(generic_file_write_iter); 2668 2669 /** 2670 * try_to_release_page() - release old fs-specific metadata on a page 2671 * 2672 * @page: the page which the kernel is trying to free 2673 * @gfp_mask: memory allocation flags (and I/O mode) 2674 * 2675 * The address_space is to try to release any data against the page 2676 * (presumably at page->private). If the release was successful, return `1'. 2677 * Otherwise return zero. 2678 * 2679 * This may also be called if PG_fscache is set on a page, indicating that the 2680 * page is known to the local caching routines. 2681 * 2682 * The @gfp_mask argument specifies whether I/O may be performed to release 2683 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS). 2684 * 2685 */ 2686 int try_to_release_page(struct page *page, gfp_t gfp_mask) 2687 { 2688 struct address_space * const mapping = page->mapping; 2689 2690 BUG_ON(!PageLocked(page)); 2691 if (PageWriteback(page)) 2692 return 0; 2693 2694 if (mapping && mapping->a_ops->releasepage) 2695 return mapping->a_ops->releasepage(page, gfp_mask); 2696 return try_to_free_buffers(page); 2697 } 2698 2699 EXPORT_SYMBOL(try_to_release_page); 2700