xref: /openbmc/linux/mm/filemap.c (revision 56bbd862)
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/hugetlb.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include <linux/rmap.h>
38 #include "internal.h"
39 
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/filemap.h>
42 
43 /*
44  * FIXME: remove all knowledge of the buffer layer from the core VM
45  */
46 #include <linux/buffer_head.h> /* for try_to_free_buffers */
47 
48 #include <asm/mman.h>
49 
50 /*
51  * Shared mappings implemented 30.11.1994. It's not fully working yet,
52  * though.
53  *
54  * Shared mappings now work. 15.8.1995  Bruno.
55  *
56  * finished 'unifying' the page and buffer cache and SMP-threaded the
57  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
58  *
59  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60  */
61 
62 /*
63  * Lock ordering:
64  *
65  *  ->i_mmap_rwsem		(truncate_pagecache)
66  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
67  *      ->swap_lock		(exclusive_swap_page, others)
68  *        ->mapping->tree_lock
69  *
70  *  ->i_mutex
71  *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
72  *
73  *  ->mmap_sem
74  *    ->i_mmap_rwsem
75  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
76  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
77  *
78  *  ->mmap_sem
79  *    ->lock_page		(access_process_vm)
80  *
81  *  ->i_mutex			(generic_perform_write)
82  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
83  *
84  *  bdi->wb.list_lock
85  *    sb_lock			(fs/fs-writeback.c)
86  *    ->mapping->tree_lock	(__sync_single_inode)
87  *
88  *  ->i_mmap_rwsem
89  *    ->anon_vma.lock		(vma_adjust)
90  *
91  *  ->anon_vma.lock
92  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
93  *
94  *  ->page_table_lock or pte_lock
95  *    ->swap_lock		(try_to_unmap_one)
96  *    ->private_lock		(try_to_unmap_one)
97  *    ->tree_lock		(try_to_unmap_one)
98  *    ->zone_lru_lock(zone)	(follow_page->mark_page_accessed)
99  *    ->zone_lru_lock(zone)	(check_pte_range->isolate_lru_page)
100  *    ->private_lock		(page_remove_rmap->set_page_dirty)
101  *    ->tree_lock		(page_remove_rmap->set_page_dirty)
102  *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
103  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
104  *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
105  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
106  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
107  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
108  *
109  * ->i_mmap_rwsem
110  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
111  */
112 
113 static int page_cache_tree_insert(struct address_space *mapping,
114 				  struct page *page, void **shadowp)
115 {
116 	struct radix_tree_node *node;
117 	void **slot;
118 	int error;
119 
120 	error = __radix_tree_create(&mapping->page_tree, page->index, 0,
121 				    &node, &slot);
122 	if (error)
123 		return error;
124 	if (*slot) {
125 		void *p;
126 
127 		p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
128 		if (!radix_tree_exceptional_entry(p))
129 			return -EEXIST;
130 
131 		mapping->nrexceptional--;
132 		if (!dax_mapping(mapping)) {
133 			if (shadowp)
134 				*shadowp = p;
135 		} else {
136 			/* DAX can replace empty locked entry with a hole */
137 			WARN_ON_ONCE(p !=
138 				dax_radix_locked_entry(0, RADIX_DAX_EMPTY));
139 			/* Wakeup waiters for exceptional entry lock */
140 			dax_wake_mapping_entry_waiter(mapping, page->index, p,
141 						      false);
142 		}
143 	}
144 	__radix_tree_replace(&mapping->page_tree, node, slot, page,
145 			     workingset_update_node, mapping);
146 	mapping->nrpages++;
147 	return 0;
148 }
149 
150 static void page_cache_tree_delete(struct address_space *mapping,
151 				   struct page *page, void *shadow)
152 {
153 	int i, nr;
154 
155 	/* hugetlb pages are represented by one entry in the radix tree */
156 	nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
157 
158 	VM_BUG_ON_PAGE(!PageLocked(page), page);
159 	VM_BUG_ON_PAGE(PageTail(page), page);
160 	VM_BUG_ON_PAGE(nr != 1 && shadow, page);
161 
162 	for (i = 0; i < nr; i++) {
163 		struct radix_tree_node *node;
164 		void **slot;
165 
166 		__radix_tree_lookup(&mapping->page_tree, page->index + i,
167 				    &node, &slot);
168 
169 		VM_BUG_ON_PAGE(!node && nr != 1, page);
170 
171 		radix_tree_clear_tags(&mapping->page_tree, node, slot);
172 		__radix_tree_replace(&mapping->page_tree, node, slot, shadow,
173 				     workingset_update_node, mapping);
174 	}
175 
176 	if (shadow) {
177 		mapping->nrexceptional += nr;
178 		/*
179 		 * Make sure the nrexceptional update is committed before
180 		 * the nrpages update so that final truncate racing
181 		 * with reclaim does not see both counters 0 at the
182 		 * same time and miss a shadow entry.
183 		 */
184 		smp_wmb();
185 	}
186 	mapping->nrpages -= nr;
187 }
188 
189 /*
190  * Delete a page from the page cache and free it. Caller has to make
191  * sure the page is locked and that nobody else uses it - or that usage
192  * is safe.  The caller must hold the mapping's tree_lock.
193  */
194 void __delete_from_page_cache(struct page *page, void *shadow)
195 {
196 	struct address_space *mapping = page->mapping;
197 	int nr = hpage_nr_pages(page);
198 
199 	trace_mm_filemap_delete_from_page_cache(page);
200 	/*
201 	 * if we're uptodate, flush out into the cleancache, otherwise
202 	 * invalidate any existing cleancache entries.  We can't leave
203 	 * stale data around in the cleancache once our page is gone
204 	 */
205 	if (PageUptodate(page) && PageMappedToDisk(page))
206 		cleancache_put_page(page);
207 	else
208 		cleancache_invalidate_page(mapping, page);
209 
210 	VM_BUG_ON_PAGE(PageTail(page), page);
211 	VM_BUG_ON_PAGE(page_mapped(page), page);
212 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
213 		int mapcount;
214 
215 		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
216 			 current->comm, page_to_pfn(page));
217 		dump_page(page, "still mapped when deleted");
218 		dump_stack();
219 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
220 
221 		mapcount = page_mapcount(page);
222 		if (mapping_exiting(mapping) &&
223 		    page_count(page) >= mapcount + 2) {
224 			/*
225 			 * All vmas have already been torn down, so it's
226 			 * a good bet that actually the page is unmapped,
227 			 * and we'd prefer not to leak it: if we're wrong,
228 			 * some other bad page check should catch it later.
229 			 */
230 			page_mapcount_reset(page);
231 			page_ref_sub(page, mapcount);
232 		}
233 	}
234 
235 	page_cache_tree_delete(mapping, page, shadow);
236 
237 	page->mapping = NULL;
238 	/* Leave page->index set: truncation lookup relies upon it */
239 
240 	/* hugetlb pages do not participate in page cache accounting. */
241 	if (!PageHuge(page))
242 		__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
243 	if (PageSwapBacked(page)) {
244 		__mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
245 		if (PageTransHuge(page))
246 			__dec_node_page_state(page, NR_SHMEM_THPS);
247 	} else {
248 		VM_BUG_ON_PAGE(PageTransHuge(page) && !PageHuge(page), page);
249 	}
250 
251 	/*
252 	 * At this point page must be either written or cleaned by truncate.
253 	 * Dirty page here signals a bug and loss of unwritten data.
254 	 *
255 	 * This fixes dirty accounting after removing the page entirely but
256 	 * leaves PageDirty set: it has no effect for truncated page and
257 	 * anyway will be cleared before returning page into buddy allocator.
258 	 */
259 	if (WARN_ON_ONCE(PageDirty(page)))
260 		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
261 }
262 
263 /**
264  * delete_from_page_cache - delete page from page cache
265  * @page: the page which the kernel is trying to remove from page cache
266  *
267  * This must be called only on pages that have been verified to be in the page
268  * cache and locked.  It will never put the page into the free list, the caller
269  * has a reference on the page.
270  */
271 void delete_from_page_cache(struct page *page)
272 {
273 	struct address_space *mapping = page_mapping(page);
274 	unsigned long flags;
275 	void (*freepage)(struct page *);
276 
277 	BUG_ON(!PageLocked(page));
278 
279 	freepage = mapping->a_ops->freepage;
280 
281 	spin_lock_irqsave(&mapping->tree_lock, flags);
282 	__delete_from_page_cache(page, NULL);
283 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
284 
285 	if (freepage)
286 		freepage(page);
287 
288 	if (PageTransHuge(page) && !PageHuge(page)) {
289 		page_ref_sub(page, HPAGE_PMD_NR);
290 		VM_BUG_ON_PAGE(page_count(page) <= 0, page);
291 	} else {
292 		put_page(page);
293 	}
294 }
295 EXPORT_SYMBOL(delete_from_page_cache);
296 
297 int filemap_check_errors(struct address_space *mapping)
298 {
299 	int ret = 0;
300 	/* Check for outstanding write errors */
301 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
302 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
303 		ret = -ENOSPC;
304 	if (test_bit(AS_EIO, &mapping->flags) &&
305 	    test_and_clear_bit(AS_EIO, &mapping->flags))
306 		ret = -EIO;
307 	return ret;
308 }
309 EXPORT_SYMBOL(filemap_check_errors);
310 
311 /**
312  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
313  * @mapping:	address space structure to write
314  * @start:	offset in bytes where the range starts
315  * @end:	offset in bytes where the range ends (inclusive)
316  * @sync_mode:	enable synchronous operation
317  *
318  * Start writeback against all of a mapping's dirty pages that lie
319  * within the byte offsets <start, end> inclusive.
320  *
321  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
322  * opposed to a regular memory cleansing writeback.  The difference between
323  * these two operations is that if a dirty page/buffer is encountered, it must
324  * be waited upon, and not just skipped over.
325  */
326 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
327 				loff_t end, int sync_mode)
328 {
329 	int ret;
330 	struct writeback_control wbc = {
331 		.sync_mode = sync_mode,
332 		.nr_to_write = LONG_MAX,
333 		.range_start = start,
334 		.range_end = end,
335 	};
336 
337 	if (!mapping_cap_writeback_dirty(mapping))
338 		return 0;
339 
340 	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
341 	ret = do_writepages(mapping, &wbc);
342 	wbc_detach_inode(&wbc);
343 	return ret;
344 }
345 
346 static inline int __filemap_fdatawrite(struct address_space *mapping,
347 	int sync_mode)
348 {
349 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
350 }
351 
352 int filemap_fdatawrite(struct address_space *mapping)
353 {
354 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
355 }
356 EXPORT_SYMBOL(filemap_fdatawrite);
357 
358 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
359 				loff_t end)
360 {
361 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
362 }
363 EXPORT_SYMBOL(filemap_fdatawrite_range);
364 
365 /**
366  * filemap_flush - mostly a non-blocking flush
367  * @mapping:	target address_space
368  *
369  * This is a mostly non-blocking flush.  Not suitable for data-integrity
370  * purposes - I/O may not be started against all dirty pages.
371  */
372 int filemap_flush(struct address_space *mapping)
373 {
374 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
375 }
376 EXPORT_SYMBOL(filemap_flush);
377 
378 static int __filemap_fdatawait_range(struct address_space *mapping,
379 				     loff_t start_byte, loff_t end_byte)
380 {
381 	pgoff_t index = start_byte >> PAGE_SHIFT;
382 	pgoff_t end = end_byte >> PAGE_SHIFT;
383 	struct pagevec pvec;
384 	int nr_pages;
385 	int ret = 0;
386 
387 	if (end_byte < start_byte)
388 		goto out;
389 
390 	pagevec_init(&pvec, 0);
391 	while ((index <= end) &&
392 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
393 			PAGECACHE_TAG_WRITEBACK,
394 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
395 		unsigned i;
396 
397 		for (i = 0; i < nr_pages; i++) {
398 			struct page *page = pvec.pages[i];
399 
400 			/* until radix tree lookup accepts end_index */
401 			if (page->index > end)
402 				continue;
403 
404 			wait_on_page_writeback(page);
405 			if (TestClearPageError(page))
406 				ret = -EIO;
407 		}
408 		pagevec_release(&pvec);
409 		cond_resched();
410 	}
411 out:
412 	return ret;
413 }
414 
415 /**
416  * filemap_fdatawait_range - wait for writeback to complete
417  * @mapping:		address space structure to wait for
418  * @start_byte:		offset in bytes where the range starts
419  * @end_byte:		offset in bytes where the range ends (inclusive)
420  *
421  * Walk the list of under-writeback pages of the given address space
422  * in the given range and wait for all of them.  Check error status of
423  * the address space and return it.
424  *
425  * Since the error status of the address space is cleared by this function,
426  * callers are responsible for checking the return value and handling and/or
427  * reporting the error.
428  */
429 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
430 			    loff_t end_byte)
431 {
432 	int ret, ret2;
433 
434 	ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
435 	ret2 = filemap_check_errors(mapping);
436 	if (!ret)
437 		ret = ret2;
438 
439 	return ret;
440 }
441 EXPORT_SYMBOL(filemap_fdatawait_range);
442 
443 /**
444  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
445  * @mapping: address space structure to wait for
446  *
447  * Walk the list of under-writeback pages of the given address space
448  * and wait for all of them.  Unlike filemap_fdatawait(), this function
449  * does not clear error status of the address space.
450  *
451  * Use this function if callers don't handle errors themselves.  Expected
452  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
453  * fsfreeze(8)
454  */
455 void filemap_fdatawait_keep_errors(struct address_space *mapping)
456 {
457 	loff_t i_size = i_size_read(mapping->host);
458 
459 	if (i_size == 0)
460 		return;
461 
462 	__filemap_fdatawait_range(mapping, 0, i_size - 1);
463 }
464 
465 /**
466  * filemap_fdatawait - wait for all under-writeback pages to complete
467  * @mapping: address space structure to wait for
468  *
469  * Walk the list of under-writeback pages of the given address space
470  * and wait for all of them.  Check error status of the address space
471  * and return it.
472  *
473  * Since the error status of the address space is cleared by this function,
474  * callers are responsible for checking the return value and handling and/or
475  * reporting the error.
476  */
477 int filemap_fdatawait(struct address_space *mapping)
478 {
479 	loff_t i_size = i_size_read(mapping->host);
480 
481 	if (i_size == 0)
482 		return 0;
483 
484 	return filemap_fdatawait_range(mapping, 0, i_size - 1);
485 }
486 EXPORT_SYMBOL(filemap_fdatawait);
487 
488 int filemap_write_and_wait(struct address_space *mapping)
489 {
490 	int err = 0;
491 
492 	if ((!dax_mapping(mapping) && mapping->nrpages) ||
493 	    (dax_mapping(mapping) && mapping->nrexceptional)) {
494 		err = filemap_fdatawrite(mapping);
495 		/*
496 		 * Even if the above returned error, the pages may be
497 		 * written partially (e.g. -ENOSPC), so we wait for it.
498 		 * But the -EIO is special case, it may indicate the worst
499 		 * thing (e.g. bug) happened, so we avoid waiting for it.
500 		 */
501 		if (err != -EIO) {
502 			int err2 = filemap_fdatawait(mapping);
503 			if (!err)
504 				err = err2;
505 		}
506 	} else {
507 		err = filemap_check_errors(mapping);
508 	}
509 	return err;
510 }
511 EXPORT_SYMBOL(filemap_write_and_wait);
512 
513 /**
514  * filemap_write_and_wait_range - write out & wait on a file range
515  * @mapping:	the address_space for the pages
516  * @lstart:	offset in bytes where the range starts
517  * @lend:	offset in bytes where the range ends (inclusive)
518  *
519  * Write out and wait upon file offsets lstart->lend, inclusive.
520  *
521  * Note that `lend' is inclusive (describes the last byte to be written) so
522  * that this function can be used to write to the very end-of-file (end = -1).
523  */
524 int filemap_write_and_wait_range(struct address_space *mapping,
525 				 loff_t lstart, loff_t lend)
526 {
527 	int err = 0;
528 
529 	if ((!dax_mapping(mapping) && mapping->nrpages) ||
530 	    (dax_mapping(mapping) && mapping->nrexceptional)) {
531 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
532 						 WB_SYNC_ALL);
533 		/* See comment of filemap_write_and_wait() */
534 		if (err != -EIO) {
535 			int err2 = filemap_fdatawait_range(mapping,
536 						lstart, lend);
537 			if (!err)
538 				err = err2;
539 		}
540 	} else {
541 		err = filemap_check_errors(mapping);
542 	}
543 	return err;
544 }
545 EXPORT_SYMBOL(filemap_write_and_wait_range);
546 
547 /**
548  * replace_page_cache_page - replace a pagecache page with a new one
549  * @old:	page to be replaced
550  * @new:	page to replace with
551  * @gfp_mask:	allocation mode
552  *
553  * This function replaces a page in the pagecache with a new one.  On
554  * success it acquires the pagecache reference for the new page and
555  * drops it for the old page.  Both the old and new pages must be
556  * locked.  This function does not add the new page to the LRU, the
557  * caller must do that.
558  *
559  * The remove + add is atomic.  The only way this function can fail is
560  * memory allocation failure.
561  */
562 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
563 {
564 	int error;
565 
566 	VM_BUG_ON_PAGE(!PageLocked(old), old);
567 	VM_BUG_ON_PAGE(!PageLocked(new), new);
568 	VM_BUG_ON_PAGE(new->mapping, new);
569 
570 	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
571 	if (!error) {
572 		struct address_space *mapping = old->mapping;
573 		void (*freepage)(struct page *);
574 		unsigned long flags;
575 
576 		pgoff_t offset = old->index;
577 		freepage = mapping->a_ops->freepage;
578 
579 		get_page(new);
580 		new->mapping = mapping;
581 		new->index = offset;
582 
583 		spin_lock_irqsave(&mapping->tree_lock, flags);
584 		__delete_from_page_cache(old, NULL);
585 		error = page_cache_tree_insert(mapping, new, NULL);
586 		BUG_ON(error);
587 
588 		/*
589 		 * hugetlb pages do not participate in page cache accounting.
590 		 */
591 		if (!PageHuge(new))
592 			__inc_node_page_state(new, NR_FILE_PAGES);
593 		if (PageSwapBacked(new))
594 			__inc_node_page_state(new, NR_SHMEM);
595 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
596 		mem_cgroup_migrate(old, new);
597 		radix_tree_preload_end();
598 		if (freepage)
599 			freepage(old);
600 		put_page(old);
601 	}
602 
603 	return error;
604 }
605 EXPORT_SYMBOL_GPL(replace_page_cache_page);
606 
607 static int __add_to_page_cache_locked(struct page *page,
608 				      struct address_space *mapping,
609 				      pgoff_t offset, gfp_t gfp_mask,
610 				      void **shadowp)
611 {
612 	int huge = PageHuge(page);
613 	struct mem_cgroup *memcg;
614 	int error;
615 
616 	VM_BUG_ON_PAGE(!PageLocked(page), page);
617 	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
618 
619 	if (!huge) {
620 		error = mem_cgroup_try_charge(page, current->mm,
621 					      gfp_mask, &memcg, false);
622 		if (error)
623 			return error;
624 	}
625 
626 	error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
627 	if (error) {
628 		if (!huge)
629 			mem_cgroup_cancel_charge(page, memcg, false);
630 		return error;
631 	}
632 
633 	get_page(page);
634 	page->mapping = mapping;
635 	page->index = offset;
636 
637 	spin_lock_irq(&mapping->tree_lock);
638 	error = page_cache_tree_insert(mapping, page, shadowp);
639 	radix_tree_preload_end();
640 	if (unlikely(error))
641 		goto err_insert;
642 
643 	/* hugetlb pages do not participate in page cache accounting. */
644 	if (!huge)
645 		__inc_node_page_state(page, NR_FILE_PAGES);
646 	spin_unlock_irq(&mapping->tree_lock);
647 	if (!huge)
648 		mem_cgroup_commit_charge(page, memcg, false, false);
649 	trace_mm_filemap_add_to_page_cache(page);
650 	return 0;
651 err_insert:
652 	page->mapping = NULL;
653 	/* Leave page->index set: truncation relies upon it */
654 	spin_unlock_irq(&mapping->tree_lock);
655 	if (!huge)
656 		mem_cgroup_cancel_charge(page, memcg, false);
657 	put_page(page);
658 	return error;
659 }
660 
661 /**
662  * add_to_page_cache_locked - add a locked page to the pagecache
663  * @page:	page to add
664  * @mapping:	the page's address_space
665  * @offset:	page index
666  * @gfp_mask:	page allocation mode
667  *
668  * This function is used to add a page to the pagecache. It must be locked.
669  * This function does not add the page to the LRU.  The caller must do that.
670  */
671 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
672 		pgoff_t offset, gfp_t gfp_mask)
673 {
674 	return __add_to_page_cache_locked(page, mapping, offset,
675 					  gfp_mask, NULL);
676 }
677 EXPORT_SYMBOL(add_to_page_cache_locked);
678 
679 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
680 				pgoff_t offset, gfp_t gfp_mask)
681 {
682 	void *shadow = NULL;
683 	int ret;
684 
685 	__SetPageLocked(page);
686 	ret = __add_to_page_cache_locked(page, mapping, offset,
687 					 gfp_mask, &shadow);
688 	if (unlikely(ret))
689 		__ClearPageLocked(page);
690 	else {
691 		/*
692 		 * The page might have been evicted from cache only
693 		 * recently, in which case it should be activated like
694 		 * any other repeatedly accessed page.
695 		 * The exception is pages getting rewritten; evicting other
696 		 * data from the working set, only to cache data that will
697 		 * get overwritten with something else, is a waste of memory.
698 		 */
699 		if (!(gfp_mask & __GFP_WRITE) &&
700 		    shadow && workingset_refault(shadow)) {
701 			SetPageActive(page);
702 			workingset_activation(page);
703 		} else
704 			ClearPageActive(page);
705 		lru_cache_add(page);
706 	}
707 	return ret;
708 }
709 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
710 
711 #ifdef CONFIG_NUMA
712 struct page *__page_cache_alloc(gfp_t gfp)
713 {
714 	int n;
715 	struct page *page;
716 
717 	if (cpuset_do_page_mem_spread()) {
718 		unsigned int cpuset_mems_cookie;
719 		do {
720 			cpuset_mems_cookie = read_mems_allowed_begin();
721 			n = cpuset_mem_spread_node();
722 			page = __alloc_pages_node(n, gfp, 0);
723 		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
724 
725 		return page;
726 	}
727 	return alloc_pages(gfp, 0);
728 }
729 EXPORT_SYMBOL(__page_cache_alloc);
730 #endif
731 
732 /*
733  * In order to wait for pages to become available there must be
734  * waitqueues associated with pages. By using a hash table of
735  * waitqueues where the bucket discipline is to maintain all
736  * waiters on the same queue and wake all when any of the pages
737  * become available, and for the woken contexts to check to be
738  * sure the appropriate page became available, this saves space
739  * at a cost of "thundering herd" phenomena during rare hash
740  * collisions.
741  */
742 #define PAGE_WAIT_TABLE_BITS 8
743 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
744 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
745 
746 static wait_queue_head_t *page_waitqueue(struct page *page)
747 {
748 	return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
749 }
750 
751 void __init pagecache_init(void)
752 {
753 	int i;
754 
755 	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
756 		init_waitqueue_head(&page_wait_table[i]);
757 
758 	page_writeback_init();
759 }
760 
761 struct wait_page_key {
762 	struct page *page;
763 	int bit_nr;
764 	int page_match;
765 };
766 
767 struct wait_page_queue {
768 	struct page *page;
769 	int bit_nr;
770 	wait_queue_t wait;
771 };
772 
773 static int wake_page_function(wait_queue_t *wait, unsigned mode, int sync, void *arg)
774 {
775 	struct wait_page_key *key = arg;
776 	struct wait_page_queue *wait_page
777 		= container_of(wait, struct wait_page_queue, wait);
778 
779 	if (wait_page->page != key->page)
780 	       return 0;
781 	key->page_match = 1;
782 
783 	if (wait_page->bit_nr != key->bit_nr)
784 		return 0;
785 	if (test_bit(key->bit_nr, &key->page->flags))
786 		return 0;
787 
788 	return autoremove_wake_function(wait, mode, sync, key);
789 }
790 
791 void wake_up_page_bit(struct page *page, int bit_nr)
792 {
793 	wait_queue_head_t *q = page_waitqueue(page);
794 	struct wait_page_key key;
795 	unsigned long flags;
796 
797 	key.page = page;
798 	key.bit_nr = bit_nr;
799 	key.page_match = 0;
800 
801 	spin_lock_irqsave(&q->lock, flags);
802 	__wake_up_locked_key(q, TASK_NORMAL, &key);
803 	/*
804 	 * It is possible for other pages to have collided on the waitqueue
805 	 * hash, so in that case check for a page match. That prevents a long-
806 	 * term waiter
807 	 *
808 	 * It is still possible to miss a case here, when we woke page waiters
809 	 * and removed them from the waitqueue, but there are still other
810 	 * page waiters.
811 	 */
812 	if (!waitqueue_active(q) || !key.page_match) {
813 		ClearPageWaiters(page);
814 		/*
815 		 * It's possible to miss clearing Waiters here, when we woke
816 		 * our page waiters, but the hashed waitqueue has waiters for
817 		 * other pages on it.
818 		 *
819 		 * That's okay, it's a rare case. The next waker will clear it.
820 		 */
821 	}
822 	spin_unlock_irqrestore(&q->lock, flags);
823 }
824 EXPORT_SYMBOL(wake_up_page_bit);
825 
826 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
827 		struct page *page, int bit_nr, int state, bool lock)
828 {
829 	struct wait_page_queue wait_page;
830 	wait_queue_t *wait = &wait_page.wait;
831 	int ret = 0;
832 
833 	init_wait(wait);
834 	wait->func = wake_page_function;
835 	wait_page.page = page;
836 	wait_page.bit_nr = bit_nr;
837 
838 	for (;;) {
839 		spin_lock_irq(&q->lock);
840 
841 		if (likely(list_empty(&wait->task_list))) {
842 			if (lock)
843 				__add_wait_queue_tail_exclusive(q, wait);
844 			else
845 				__add_wait_queue(q, wait);
846 			SetPageWaiters(page);
847 		}
848 
849 		set_current_state(state);
850 
851 		spin_unlock_irq(&q->lock);
852 
853 		if (likely(test_bit(bit_nr, &page->flags))) {
854 			io_schedule();
855 			if (unlikely(signal_pending_state(state, current))) {
856 				ret = -EINTR;
857 				break;
858 			}
859 		}
860 
861 		if (lock) {
862 			if (!test_and_set_bit_lock(bit_nr, &page->flags))
863 				break;
864 		} else {
865 			if (!test_bit(bit_nr, &page->flags))
866 				break;
867 		}
868 	}
869 
870 	finish_wait(q, wait);
871 
872 	/*
873 	 * A signal could leave PageWaiters set. Clearing it here if
874 	 * !waitqueue_active would be possible (by open-coding finish_wait),
875 	 * but still fail to catch it in the case of wait hash collision. We
876 	 * already can fail to clear wait hash collision cases, so don't
877 	 * bother with signals either.
878 	 */
879 
880 	return ret;
881 }
882 
883 void wait_on_page_bit(struct page *page, int bit_nr)
884 {
885 	wait_queue_head_t *q = page_waitqueue(page);
886 	wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false);
887 }
888 EXPORT_SYMBOL(wait_on_page_bit);
889 
890 int wait_on_page_bit_killable(struct page *page, int bit_nr)
891 {
892 	wait_queue_head_t *q = page_waitqueue(page);
893 	return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false);
894 }
895 
896 /**
897  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
898  * @page: Page defining the wait queue of interest
899  * @waiter: Waiter to add to the queue
900  *
901  * Add an arbitrary @waiter to the wait queue for the nominated @page.
902  */
903 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
904 {
905 	wait_queue_head_t *q = page_waitqueue(page);
906 	unsigned long flags;
907 
908 	spin_lock_irqsave(&q->lock, flags);
909 	__add_wait_queue(q, waiter);
910 	SetPageWaiters(page);
911 	spin_unlock_irqrestore(&q->lock, flags);
912 }
913 EXPORT_SYMBOL_GPL(add_page_wait_queue);
914 
915 /**
916  * unlock_page - unlock a locked page
917  * @page: the page
918  *
919  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
920  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
921  * mechanism between PageLocked pages and PageWriteback pages is shared.
922  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
923  *
924  * The mb is necessary to enforce ordering between the clear_bit and the read
925  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
926  */
927 void unlock_page(struct page *page)
928 {
929 	page = compound_head(page);
930 	VM_BUG_ON_PAGE(!PageLocked(page), page);
931 	clear_bit_unlock(PG_locked, &page->flags);
932 	smp_mb__after_atomic();
933 	wake_up_page(page, PG_locked);
934 }
935 EXPORT_SYMBOL(unlock_page);
936 
937 /**
938  * end_page_writeback - end writeback against a page
939  * @page: the page
940  */
941 void end_page_writeback(struct page *page)
942 {
943 	/*
944 	 * TestClearPageReclaim could be used here but it is an atomic
945 	 * operation and overkill in this particular case. Failing to
946 	 * shuffle a page marked for immediate reclaim is too mild to
947 	 * justify taking an atomic operation penalty at the end of
948 	 * ever page writeback.
949 	 */
950 	if (PageReclaim(page)) {
951 		ClearPageReclaim(page);
952 		rotate_reclaimable_page(page);
953 	}
954 
955 	if (!test_clear_page_writeback(page))
956 		BUG();
957 
958 	smp_mb__after_atomic();
959 	wake_up_page(page, PG_writeback);
960 }
961 EXPORT_SYMBOL(end_page_writeback);
962 
963 /*
964  * After completing I/O on a page, call this routine to update the page
965  * flags appropriately
966  */
967 void page_endio(struct page *page, bool is_write, int err)
968 {
969 	if (!is_write) {
970 		if (!err) {
971 			SetPageUptodate(page);
972 		} else {
973 			ClearPageUptodate(page);
974 			SetPageError(page);
975 		}
976 		unlock_page(page);
977 	} else {
978 		if (err) {
979 			SetPageError(page);
980 			if (page->mapping)
981 				mapping_set_error(page->mapping, err);
982 		}
983 		end_page_writeback(page);
984 	}
985 }
986 EXPORT_SYMBOL_GPL(page_endio);
987 
988 /**
989  * __lock_page - get a lock on the page, assuming we need to sleep to get it
990  * @page: the page to lock
991  */
992 void __lock_page(struct page *__page)
993 {
994 	struct page *page = compound_head(__page);
995 	wait_queue_head_t *q = page_waitqueue(page);
996 	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true);
997 }
998 EXPORT_SYMBOL(__lock_page);
999 
1000 int __lock_page_killable(struct page *__page)
1001 {
1002 	struct page *page = compound_head(__page);
1003 	wait_queue_head_t *q = page_waitqueue(page);
1004 	return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true);
1005 }
1006 EXPORT_SYMBOL_GPL(__lock_page_killable);
1007 
1008 /*
1009  * Return values:
1010  * 1 - page is locked; mmap_sem is still held.
1011  * 0 - page is not locked.
1012  *     mmap_sem has been released (up_read()), unless flags had both
1013  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1014  *     which case mmap_sem is still held.
1015  *
1016  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1017  * with the page locked and the mmap_sem unperturbed.
1018  */
1019 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1020 			 unsigned int flags)
1021 {
1022 	if (flags & FAULT_FLAG_ALLOW_RETRY) {
1023 		/*
1024 		 * CAUTION! In this case, mmap_sem is not released
1025 		 * even though return 0.
1026 		 */
1027 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1028 			return 0;
1029 
1030 		up_read(&mm->mmap_sem);
1031 		if (flags & FAULT_FLAG_KILLABLE)
1032 			wait_on_page_locked_killable(page);
1033 		else
1034 			wait_on_page_locked(page);
1035 		return 0;
1036 	} else {
1037 		if (flags & FAULT_FLAG_KILLABLE) {
1038 			int ret;
1039 
1040 			ret = __lock_page_killable(page);
1041 			if (ret) {
1042 				up_read(&mm->mmap_sem);
1043 				return 0;
1044 			}
1045 		} else
1046 			__lock_page(page);
1047 		return 1;
1048 	}
1049 }
1050 
1051 /**
1052  * page_cache_next_hole - find the next hole (not-present entry)
1053  * @mapping: mapping
1054  * @index: index
1055  * @max_scan: maximum range to search
1056  *
1057  * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
1058  * lowest indexed hole.
1059  *
1060  * Returns: the index of the hole if found, otherwise returns an index
1061  * outside of the set specified (in which case 'return - index >=
1062  * max_scan' will be true). In rare cases of index wrap-around, 0 will
1063  * be returned.
1064  *
1065  * page_cache_next_hole may be called under rcu_read_lock. However,
1066  * like radix_tree_gang_lookup, this will not atomically search a
1067  * snapshot of the tree at a single point in time. For example, if a
1068  * hole is created at index 5, then subsequently a hole is created at
1069  * index 10, page_cache_next_hole covering both indexes may return 10
1070  * if called under rcu_read_lock.
1071  */
1072 pgoff_t page_cache_next_hole(struct address_space *mapping,
1073 			     pgoff_t index, unsigned long max_scan)
1074 {
1075 	unsigned long i;
1076 
1077 	for (i = 0; i < max_scan; i++) {
1078 		struct page *page;
1079 
1080 		page = radix_tree_lookup(&mapping->page_tree, index);
1081 		if (!page || radix_tree_exceptional_entry(page))
1082 			break;
1083 		index++;
1084 		if (index == 0)
1085 			break;
1086 	}
1087 
1088 	return index;
1089 }
1090 EXPORT_SYMBOL(page_cache_next_hole);
1091 
1092 /**
1093  * page_cache_prev_hole - find the prev hole (not-present entry)
1094  * @mapping: mapping
1095  * @index: index
1096  * @max_scan: maximum range to search
1097  *
1098  * Search backwards in the range [max(index-max_scan+1, 0), index] for
1099  * the first hole.
1100  *
1101  * Returns: the index of the hole if found, otherwise returns an index
1102  * outside of the set specified (in which case 'index - return >=
1103  * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1104  * will be returned.
1105  *
1106  * page_cache_prev_hole may be called under rcu_read_lock. However,
1107  * like radix_tree_gang_lookup, this will not atomically search a
1108  * snapshot of the tree at a single point in time. For example, if a
1109  * hole is created at index 10, then subsequently a hole is created at
1110  * index 5, page_cache_prev_hole covering both indexes may return 5 if
1111  * called under rcu_read_lock.
1112  */
1113 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1114 			     pgoff_t index, unsigned long max_scan)
1115 {
1116 	unsigned long i;
1117 
1118 	for (i = 0; i < max_scan; i++) {
1119 		struct page *page;
1120 
1121 		page = radix_tree_lookup(&mapping->page_tree, index);
1122 		if (!page || radix_tree_exceptional_entry(page))
1123 			break;
1124 		index--;
1125 		if (index == ULONG_MAX)
1126 			break;
1127 	}
1128 
1129 	return index;
1130 }
1131 EXPORT_SYMBOL(page_cache_prev_hole);
1132 
1133 /**
1134  * find_get_entry - find and get a page cache entry
1135  * @mapping: the address_space to search
1136  * @offset: the page cache index
1137  *
1138  * Looks up the page cache slot at @mapping & @offset.  If there is a
1139  * page cache page, it is returned with an increased refcount.
1140  *
1141  * If the slot holds a shadow entry of a previously evicted page, or a
1142  * swap entry from shmem/tmpfs, it is returned.
1143  *
1144  * Otherwise, %NULL is returned.
1145  */
1146 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1147 {
1148 	void **pagep;
1149 	struct page *head, *page;
1150 
1151 	rcu_read_lock();
1152 repeat:
1153 	page = NULL;
1154 	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1155 	if (pagep) {
1156 		page = radix_tree_deref_slot(pagep);
1157 		if (unlikely(!page))
1158 			goto out;
1159 		if (radix_tree_exception(page)) {
1160 			if (radix_tree_deref_retry(page))
1161 				goto repeat;
1162 			/*
1163 			 * A shadow entry of a recently evicted page,
1164 			 * or a swap entry from shmem/tmpfs.  Return
1165 			 * it without attempting to raise page count.
1166 			 */
1167 			goto out;
1168 		}
1169 
1170 		head = compound_head(page);
1171 		if (!page_cache_get_speculative(head))
1172 			goto repeat;
1173 
1174 		/* The page was split under us? */
1175 		if (compound_head(page) != head) {
1176 			put_page(head);
1177 			goto repeat;
1178 		}
1179 
1180 		/*
1181 		 * Has the page moved?
1182 		 * This is part of the lockless pagecache protocol. See
1183 		 * include/linux/pagemap.h for details.
1184 		 */
1185 		if (unlikely(page != *pagep)) {
1186 			put_page(head);
1187 			goto repeat;
1188 		}
1189 	}
1190 out:
1191 	rcu_read_unlock();
1192 
1193 	return page;
1194 }
1195 EXPORT_SYMBOL(find_get_entry);
1196 
1197 /**
1198  * find_lock_entry - locate, pin and lock a page cache entry
1199  * @mapping: the address_space to search
1200  * @offset: the page cache index
1201  *
1202  * Looks up the page cache slot at @mapping & @offset.  If there is a
1203  * page cache page, it is returned locked and with an increased
1204  * refcount.
1205  *
1206  * If the slot holds a shadow entry of a previously evicted page, or a
1207  * swap entry from shmem/tmpfs, it is returned.
1208  *
1209  * Otherwise, %NULL is returned.
1210  *
1211  * find_lock_entry() may sleep.
1212  */
1213 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1214 {
1215 	struct page *page;
1216 
1217 repeat:
1218 	page = find_get_entry(mapping, offset);
1219 	if (page && !radix_tree_exception(page)) {
1220 		lock_page(page);
1221 		/* Has the page been truncated? */
1222 		if (unlikely(page_mapping(page) != mapping)) {
1223 			unlock_page(page);
1224 			put_page(page);
1225 			goto repeat;
1226 		}
1227 		VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1228 	}
1229 	return page;
1230 }
1231 EXPORT_SYMBOL(find_lock_entry);
1232 
1233 /**
1234  * pagecache_get_page - find and get a page reference
1235  * @mapping: the address_space to search
1236  * @offset: the page index
1237  * @fgp_flags: PCG flags
1238  * @gfp_mask: gfp mask to use for the page cache data page allocation
1239  *
1240  * Looks up the page cache slot at @mapping & @offset.
1241  *
1242  * PCG flags modify how the page is returned.
1243  *
1244  * FGP_ACCESSED: the page will be marked accessed
1245  * FGP_LOCK: Page is return locked
1246  * FGP_CREAT: If page is not present then a new page is allocated using
1247  *		@gfp_mask and added to the page cache and the VM's LRU
1248  *		list. The page is returned locked and with an increased
1249  *		refcount. Otherwise, %NULL is returned.
1250  *
1251  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1252  * if the GFP flags specified for FGP_CREAT are atomic.
1253  *
1254  * If there is a page cache page, it is returned with an increased refcount.
1255  */
1256 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1257 	int fgp_flags, gfp_t gfp_mask)
1258 {
1259 	struct page *page;
1260 
1261 repeat:
1262 	page = find_get_entry(mapping, offset);
1263 	if (radix_tree_exceptional_entry(page))
1264 		page = NULL;
1265 	if (!page)
1266 		goto no_page;
1267 
1268 	if (fgp_flags & FGP_LOCK) {
1269 		if (fgp_flags & FGP_NOWAIT) {
1270 			if (!trylock_page(page)) {
1271 				put_page(page);
1272 				return NULL;
1273 			}
1274 		} else {
1275 			lock_page(page);
1276 		}
1277 
1278 		/* Has the page been truncated? */
1279 		if (unlikely(page->mapping != mapping)) {
1280 			unlock_page(page);
1281 			put_page(page);
1282 			goto repeat;
1283 		}
1284 		VM_BUG_ON_PAGE(page->index != offset, page);
1285 	}
1286 
1287 	if (page && (fgp_flags & FGP_ACCESSED))
1288 		mark_page_accessed(page);
1289 
1290 no_page:
1291 	if (!page && (fgp_flags & FGP_CREAT)) {
1292 		int err;
1293 		if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1294 			gfp_mask |= __GFP_WRITE;
1295 		if (fgp_flags & FGP_NOFS)
1296 			gfp_mask &= ~__GFP_FS;
1297 
1298 		page = __page_cache_alloc(gfp_mask);
1299 		if (!page)
1300 			return NULL;
1301 
1302 		if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1303 			fgp_flags |= FGP_LOCK;
1304 
1305 		/* Init accessed so avoid atomic mark_page_accessed later */
1306 		if (fgp_flags & FGP_ACCESSED)
1307 			__SetPageReferenced(page);
1308 
1309 		err = add_to_page_cache_lru(page, mapping, offset,
1310 				gfp_mask & GFP_RECLAIM_MASK);
1311 		if (unlikely(err)) {
1312 			put_page(page);
1313 			page = NULL;
1314 			if (err == -EEXIST)
1315 				goto repeat;
1316 		}
1317 	}
1318 
1319 	return page;
1320 }
1321 EXPORT_SYMBOL(pagecache_get_page);
1322 
1323 /**
1324  * find_get_entries - gang pagecache lookup
1325  * @mapping:	The address_space to search
1326  * @start:	The starting page cache index
1327  * @nr_entries:	The maximum number of entries
1328  * @entries:	Where the resulting entries are placed
1329  * @indices:	The cache indices corresponding to the entries in @entries
1330  *
1331  * find_get_entries() will search for and return a group of up to
1332  * @nr_entries entries in the mapping.  The entries are placed at
1333  * @entries.  find_get_entries() takes a reference against any actual
1334  * pages it returns.
1335  *
1336  * The search returns a group of mapping-contiguous page cache entries
1337  * with ascending indexes.  There may be holes in the indices due to
1338  * not-present pages.
1339  *
1340  * Any shadow entries of evicted pages, or swap entries from
1341  * shmem/tmpfs, are included in the returned array.
1342  *
1343  * find_get_entries() returns the number of pages and shadow entries
1344  * which were found.
1345  */
1346 unsigned find_get_entries(struct address_space *mapping,
1347 			  pgoff_t start, unsigned int nr_entries,
1348 			  struct page **entries, pgoff_t *indices)
1349 {
1350 	void **slot;
1351 	unsigned int ret = 0;
1352 	struct radix_tree_iter iter;
1353 
1354 	if (!nr_entries)
1355 		return 0;
1356 
1357 	rcu_read_lock();
1358 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1359 		struct page *head, *page;
1360 repeat:
1361 		page = radix_tree_deref_slot(slot);
1362 		if (unlikely(!page))
1363 			continue;
1364 		if (radix_tree_exception(page)) {
1365 			if (radix_tree_deref_retry(page)) {
1366 				slot = radix_tree_iter_retry(&iter);
1367 				continue;
1368 			}
1369 			/*
1370 			 * A shadow entry of a recently evicted page, a swap
1371 			 * entry from shmem/tmpfs or a DAX entry.  Return it
1372 			 * without attempting to raise page count.
1373 			 */
1374 			goto export;
1375 		}
1376 
1377 		head = compound_head(page);
1378 		if (!page_cache_get_speculative(head))
1379 			goto repeat;
1380 
1381 		/* The page was split under us? */
1382 		if (compound_head(page) != head) {
1383 			put_page(head);
1384 			goto repeat;
1385 		}
1386 
1387 		/* Has the page moved? */
1388 		if (unlikely(page != *slot)) {
1389 			put_page(head);
1390 			goto repeat;
1391 		}
1392 export:
1393 		indices[ret] = iter.index;
1394 		entries[ret] = page;
1395 		if (++ret == nr_entries)
1396 			break;
1397 	}
1398 	rcu_read_unlock();
1399 	return ret;
1400 }
1401 
1402 /**
1403  * find_get_pages - gang pagecache lookup
1404  * @mapping:	The address_space to search
1405  * @start:	The starting page index
1406  * @nr_pages:	The maximum number of pages
1407  * @pages:	Where the resulting pages are placed
1408  *
1409  * find_get_pages() will search for and return a group of up to
1410  * @nr_pages pages in the mapping.  The pages are placed at @pages.
1411  * find_get_pages() takes a reference against the returned pages.
1412  *
1413  * The search returns a group of mapping-contiguous pages with ascending
1414  * indexes.  There may be holes in the indices due to not-present pages.
1415  *
1416  * find_get_pages() returns the number of pages which were found.
1417  */
1418 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1419 			    unsigned int nr_pages, struct page **pages)
1420 {
1421 	struct radix_tree_iter iter;
1422 	void **slot;
1423 	unsigned ret = 0;
1424 
1425 	if (unlikely(!nr_pages))
1426 		return 0;
1427 
1428 	rcu_read_lock();
1429 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1430 		struct page *head, *page;
1431 repeat:
1432 		page = radix_tree_deref_slot(slot);
1433 		if (unlikely(!page))
1434 			continue;
1435 
1436 		if (radix_tree_exception(page)) {
1437 			if (radix_tree_deref_retry(page)) {
1438 				slot = radix_tree_iter_retry(&iter);
1439 				continue;
1440 			}
1441 			/*
1442 			 * A shadow entry of a recently evicted page,
1443 			 * or a swap entry from shmem/tmpfs.  Skip
1444 			 * over it.
1445 			 */
1446 			continue;
1447 		}
1448 
1449 		head = compound_head(page);
1450 		if (!page_cache_get_speculative(head))
1451 			goto repeat;
1452 
1453 		/* The page was split under us? */
1454 		if (compound_head(page) != head) {
1455 			put_page(head);
1456 			goto repeat;
1457 		}
1458 
1459 		/* Has the page moved? */
1460 		if (unlikely(page != *slot)) {
1461 			put_page(head);
1462 			goto repeat;
1463 		}
1464 
1465 		pages[ret] = page;
1466 		if (++ret == nr_pages)
1467 			break;
1468 	}
1469 
1470 	rcu_read_unlock();
1471 	return ret;
1472 }
1473 
1474 /**
1475  * find_get_pages_contig - gang contiguous pagecache lookup
1476  * @mapping:	The address_space to search
1477  * @index:	The starting page index
1478  * @nr_pages:	The maximum number of pages
1479  * @pages:	Where the resulting pages are placed
1480  *
1481  * find_get_pages_contig() works exactly like find_get_pages(), except
1482  * that the returned number of pages are guaranteed to be contiguous.
1483  *
1484  * find_get_pages_contig() returns the number of pages which were found.
1485  */
1486 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1487 			       unsigned int nr_pages, struct page **pages)
1488 {
1489 	struct radix_tree_iter iter;
1490 	void **slot;
1491 	unsigned int ret = 0;
1492 
1493 	if (unlikely(!nr_pages))
1494 		return 0;
1495 
1496 	rcu_read_lock();
1497 	radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1498 		struct page *head, *page;
1499 repeat:
1500 		page = radix_tree_deref_slot(slot);
1501 		/* The hole, there no reason to continue */
1502 		if (unlikely(!page))
1503 			break;
1504 
1505 		if (radix_tree_exception(page)) {
1506 			if (radix_tree_deref_retry(page)) {
1507 				slot = radix_tree_iter_retry(&iter);
1508 				continue;
1509 			}
1510 			/*
1511 			 * A shadow entry of a recently evicted page,
1512 			 * or a swap entry from shmem/tmpfs.  Stop
1513 			 * looking for contiguous pages.
1514 			 */
1515 			break;
1516 		}
1517 
1518 		head = compound_head(page);
1519 		if (!page_cache_get_speculative(head))
1520 			goto repeat;
1521 
1522 		/* The page was split under us? */
1523 		if (compound_head(page) != head) {
1524 			put_page(head);
1525 			goto repeat;
1526 		}
1527 
1528 		/* Has the page moved? */
1529 		if (unlikely(page != *slot)) {
1530 			put_page(head);
1531 			goto repeat;
1532 		}
1533 
1534 		/*
1535 		 * must check mapping and index after taking the ref.
1536 		 * otherwise we can get both false positives and false
1537 		 * negatives, which is just confusing to the caller.
1538 		 */
1539 		if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1540 			put_page(page);
1541 			break;
1542 		}
1543 
1544 		pages[ret] = page;
1545 		if (++ret == nr_pages)
1546 			break;
1547 	}
1548 	rcu_read_unlock();
1549 	return ret;
1550 }
1551 EXPORT_SYMBOL(find_get_pages_contig);
1552 
1553 /**
1554  * find_get_pages_tag - find and return pages that match @tag
1555  * @mapping:	the address_space to search
1556  * @index:	the starting page index
1557  * @tag:	the tag index
1558  * @nr_pages:	the maximum number of pages
1559  * @pages:	where the resulting pages are placed
1560  *
1561  * Like find_get_pages, except we only return pages which are tagged with
1562  * @tag.   We update @index to index the next page for the traversal.
1563  */
1564 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1565 			int tag, unsigned int nr_pages, struct page **pages)
1566 {
1567 	struct radix_tree_iter iter;
1568 	void **slot;
1569 	unsigned ret = 0;
1570 
1571 	if (unlikely(!nr_pages))
1572 		return 0;
1573 
1574 	rcu_read_lock();
1575 	radix_tree_for_each_tagged(slot, &mapping->page_tree,
1576 				   &iter, *index, tag) {
1577 		struct page *head, *page;
1578 repeat:
1579 		page = radix_tree_deref_slot(slot);
1580 		if (unlikely(!page))
1581 			continue;
1582 
1583 		if (radix_tree_exception(page)) {
1584 			if (radix_tree_deref_retry(page)) {
1585 				slot = radix_tree_iter_retry(&iter);
1586 				continue;
1587 			}
1588 			/*
1589 			 * A shadow entry of a recently evicted page.
1590 			 *
1591 			 * Those entries should never be tagged, but
1592 			 * this tree walk is lockless and the tags are
1593 			 * looked up in bulk, one radix tree node at a
1594 			 * time, so there is a sizable window for page
1595 			 * reclaim to evict a page we saw tagged.
1596 			 *
1597 			 * Skip over it.
1598 			 */
1599 			continue;
1600 		}
1601 
1602 		head = compound_head(page);
1603 		if (!page_cache_get_speculative(head))
1604 			goto repeat;
1605 
1606 		/* The page was split under us? */
1607 		if (compound_head(page) != head) {
1608 			put_page(head);
1609 			goto repeat;
1610 		}
1611 
1612 		/* Has the page moved? */
1613 		if (unlikely(page != *slot)) {
1614 			put_page(head);
1615 			goto repeat;
1616 		}
1617 
1618 		pages[ret] = page;
1619 		if (++ret == nr_pages)
1620 			break;
1621 	}
1622 
1623 	rcu_read_unlock();
1624 
1625 	if (ret)
1626 		*index = pages[ret - 1]->index + 1;
1627 
1628 	return ret;
1629 }
1630 EXPORT_SYMBOL(find_get_pages_tag);
1631 
1632 /**
1633  * find_get_entries_tag - find and return entries that match @tag
1634  * @mapping:	the address_space to search
1635  * @start:	the starting page cache index
1636  * @tag:	the tag index
1637  * @nr_entries:	the maximum number of entries
1638  * @entries:	where the resulting entries are placed
1639  * @indices:	the cache indices corresponding to the entries in @entries
1640  *
1641  * Like find_get_entries, except we only return entries which are tagged with
1642  * @tag.
1643  */
1644 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1645 			int tag, unsigned int nr_entries,
1646 			struct page **entries, pgoff_t *indices)
1647 {
1648 	void **slot;
1649 	unsigned int ret = 0;
1650 	struct radix_tree_iter iter;
1651 
1652 	if (!nr_entries)
1653 		return 0;
1654 
1655 	rcu_read_lock();
1656 	radix_tree_for_each_tagged(slot, &mapping->page_tree,
1657 				   &iter, start, tag) {
1658 		struct page *head, *page;
1659 repeat:
1660 		page = radix_tree_deref_slot(slot);
1661 		if (unlikely(!page))
1662 			continue;
1663 		if (radix_tree_exception(page)) {
1664 			if (radix_tree_deref_retry(page)) {
1665 				slot = radix_tree_iter_retry(&iter);
1666 				continue;
1667 			}
1668 
1669 			/*
1670 			 * A shadow entry of a recently evicted page, a swap
1671 			 * entry from shmem/tmpfs or a DAX entry.  Return it
1672 			 * without attempting to raise page count.
1673 			 */
1674 			goto export;
1675 		}
1676 
1677 		head = compound_head(page);
1678 		if (!page_cache_get_speculative(head))
1679 			goto repeat;
1680 
1681 		/* The page was split under us? */
1682 		if (compound_head(page) != head) {
1683 			put_page(head);
1684 			goto repeat;
1685 		}
1686 
1687 		/* Has the page moved? */
1688 		if (unlikely(page != *slot)) {
1689 			put_page(head);
1690 			goto repeat;
1691 		}
1692 export:
1693 		indices[ret] = iter.index;
1694 		entries[ret] = page;
1695 		if (++ret == nr_entries)
1696 			break;
1697 	}
1698 	rcu_read_unlock();
1699 	return ret;
1700 }
1701 EXPORT_SYMBOL(find_get_entries_tag);
1702 
1703 /*
1704  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1705  * a _large_ part of the i/o request. Imagine the worst scenario:
1706  *
1707  *      ---R__________________________________________B__________
1708  *         ^ reading here                             ^ bad block(assume 4k)
1709  *
1710  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1711  * => failing the whole request => read(R) => read(R+1) =>
1712  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1713  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1714  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1715  *
1716  * It is going insane. Fix it by quickly scaling down the readahead size.
1717  */
1718 static void shrink_readahead_size_eio(struct file *filp,
1719 					struct file_ra_state *ra)
1720 {
1721 	ra->ra_pages /= 4;
1722 }
1723 
1724 /**
1725  * do_generic_file_read - generic file read routine
1726  * @filp:	the file to read
1727  * @ppos:	current file position
1728  * @iter:	data destination
1729  * @written:	already copied
1730  *
1731  * This is a generic file read routine, and uses the
1732  * mapping->a_ops->readpage() function for the actual low-level stuff.
1733  *
1734  * This is really ugly. But the goto's actually try to clarify some
1735  * of the logic when it comes to error handling etc.
1736  */
1737 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1738 		struct iov_iter *iter, ssize_t written)
1739 {
1740 	struct address_space *mapping = filp->f_mapping;
1741 	struct inode *inode = mapping->host;
1742 	struct file_ra_state *ra = &filp->f_ra;
1743 	pgoff_t index;
1744 	pgoff_t last_index;
1745 	pgoff_t prev_index;
1746 	unsigned long offset;      /* offset into pagecache page */
1747 	unsigned int prev_offset;
1748 	int error = 0;
1749 
1750 	if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
1751 		return 0;
1752 	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
1753 
1754 	index = *ppos >> PAGE_SHIFT;
1755 	prev_index = ra->prev_pos >> PAGE_SHIFT;
1756 	prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1757 	last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1758 	offset = *ppos & ~PAGE_MASK;
1759 
1760 	for (;;) {
1761 		struct page *page;
1762 		pgoff_t end_index;
1763 		loff_t isize;
1764 		unsigned long nr, ret;
1765 
1766 		cond_resched();
1767 find_page:
1768 		page = find_get_page(mapping, index);
1769 		if (!page) {
1770 			page_cache_sync_readahead(mapping,
1771 					ra, filp,
1772 					index, last_index - index);
1773 			page = find_get_page(mapping, index);
1774 			if (unlikely(page == NULL))
1775 				goto no_cached_page;
1776 		}
1777 		if (PageReadahead(page)) {
1778 			page_cache_async_readahead(mapping,
1779 					ra, filp, page,
1780 					index, last_index - index);
1781 		}
1782 		if (!PageUptodate(page)) {
1783 			/*
1784 			 * See comment in do_read_cache_page on why
1785 			 * wait_on_page_locked is used to avoid unnecessarily
1786 			 * serialisations and why it's safe.
1787 			 */
1788 			error = wait_on_page_locked_killable(page);
1789 			if (unlikely(error))
1790 				goto readpage_error;
1791 			if (PageUptodate(page))
1792 				goto page_ok;
1793 
1794 			if (inode->i_blkbits == PAGE_SHIFT ||
1795 					!mapping->a_ops->is_partially_uptodate)
1796 				goto page_not_up_to_date;
1797 			/* pipes can't handle partially uptodate pages */
1798 			if (unlikely(iter->type & ITER_PIPE))
1799 				goto page_not_up_to_date;
1800 			if (!trylock_page(page))
1801 				goto page_not_up_to_date;
1802 			/* Did it get truncated before we got the lock? */
1803 			if (!page->mapping)
1804 				goto page_not_up_to_date_locked;
1805 			if (!mapping->a_ops->is_partially_uptodate(page,
1806 							offset, iter->count))
1807 				goto page_not_up_to_date_locked;
1808 			unlock_page(page);
1809 		}
1810 page_ok:
1811 		/*
1812 		 * i_size must be checked after we know the page is Uptodate.
1813 		 *
1814 		 * Checking i_size after the check allows us to calculate
1815 		 * the correct value for "nr", which means the zero-filled
1816 		 * part of the page is not copied back to userspace (unless
1817 		 * another truncate extends the file - this is desired though).
1818 		 */
1819 
1820 		isize = i_size_read(inode);
1821 		end_index = (isize - 1) >> PAGE_SHIFT;
1822 		if (unlikely(!isize || index > end_index)) {
1823 			put_page(page);
1824 			goto out;
1825 		}
1826 
1827 		/* nr is the maximum number of bytes to copy from this page */
1828 		nr = PAGE_SIZE;
1829 		if (index == end_index) {
1830 			nr = ((isize - 1) & ~PAGE_MASK) + 1;
1831 			if (nr <= offset) {
1832 				put_page(page);
1833 				goto out;
1834 			}
1835 		}
1836 		nr = nr - offset;
1837 
1838 		/* If users can be writing to this page using arbitrary
1839 		 * virtual addresses, take care about potential aliasing
1840 		 * before reading the page on the kernel side.
1841 		 */
1842 		if (mapping_writably_mapped(mapping))
1843 			flush_dcache_page(page);
1844 
1845 		/*
1846 		 * When a sequential read accesses a page several times,
1847 		 * only mark it as accessed the first time.
1848 		 */
1849 		if (prev_index != index || offset != prev_offset)
1850 			mark_page_accessed(page);
1851 		prev_index = index;
1852 
1853 		/*
1854 		 * Ok, we have the page, and it's up-to-date, so
1855 		 * now we can copy it to user space...
1856 		 */
1857 
1858 		ret = copy_page_to_iter(page, offset, nr, iter);
1859 		offset += ret;
1860 		index += offset >> PAGE_SHIFT;
1861 		offset &= ~PAGE_MASK;
1862 		prev_offset = offset;
1863 
1864 		put_page(page);
1865 		written += ret;
1866 		if (!iov_iter_count(iter))
1867 			goto out;
1868 		if (ret < nr) {
1869 			error = -EFAULT;
1870 			goto out;
1871 		}
1872 		continue;
1873 
1874 page_not_up_to_date:
1875 		/* Get exclusive access to the page ... */
1876 		error = lock_page_killable(page);
1877 		if (unlikely(error))
1878 			goto readpage_error;
1879 
1880 page_not_up_to_date_locked:
1881 		/* Did it get truncated before we got the lock? */
1882 		if (!page->mapping) {
1883 			unlock_page(page);
1884 			put_page(page);
1885 			continue;
1886 		}
1887 
1888 		/* Did somebody else fill it already? */
1889 		if (PageUptodate(page)) {
1890 			unlock_page(page);
1891 			goto page_ok;
1892 		}
1893 
1894 readpage:
1895 		/*
1896 		 * A previous I/O error may have been due to temporary
1897 		 * failures, eg. multipath errors.
1898 		 * PG_error will be set again if readpage fails.
1899 		 */
1900 		ClearPageError(page);
1901 		/* Start the actual read. The read will unlock the page. */
1902 		error = mapping->a_ops->readpage(filp, page);
1903 
1904 		if (unlikely(error)) {
1905 			if (error == AOP_TRUNCATED_PAGE) {
1906 				put_page(page);
1907 				error = 0;
1908 				goto find_page;
1909 			}
1910 			goto readpage_error;
1911 		}
1912 
1913 		if (!PageUptodate(page)) {
1914 			error = lock_page_killable(page);
1915 			if (unlikely(error))
1916 				goto readpage_error;
1917 			if (!PageUptodate(page)) {
1918 				if (page->mapping == NULL) {
1919 					/*
1920 					 * invalidate_mapping_pages got it
1921 					 */
1922 					unlock_page(page);
1923 					put_page(page);
1924 					goto find_page;
1925 				}
1926 				unlock_page(page);
1927 				shrink_readahead_size_eio(filp, ra);
1928 				error = -EIO;
1929 				goto readpage_error;
1930 			}
1931 			unlock_page(page);
1932 		}
1933 
1934 		goto page_ok;
1935 
1936 readpage_error:
1937 		/* UHHUH! A synchronous read error occurred. Report it */
1938 		put_page(page);
1939 		goto out;
1940 
1941 no_cached_page:
1942 		/*
1943 		 * Ok, it wasn't cached, so we need to create a new
1944 		 * page..
1945 		 */
1946 		page = page_cache_alloc_cold(mapping);
1947 		if (!page) {
1948 			error = -ENOMEM;
1949 			goto out;
1950 		}
1951 		error = add_to_page_cache_lru(page, mapping, index,
1952 				mapping_gfp_constraint(mapping, GFP_KERNEL));
1953 		if (error) {
1954 			put_page(page);
1955 			if (error == -EEXIST) {
1956 				error = 0;
1957 				goto find_page;
1958 			}
1959 			goto out;
1960 		}
1961 		goto readpage;
1962 	}
1963 
1964 out:
1965 	ra->prev_pos = prev_index;
1966 	ra->prev_pos <<= PAGE_SHIFT;
1967 	ra->prev_pos |= prev_offset;
1968 
1969 	*ppos = ((loff_t)index << PAGE_SHIFT) + offset;
1970 	file_accessed(filp);
1971 	return written ? written : error;
1972 }
1973 
1974 /**
1975  * generic_file_read_iter - generic filesystem read routine
1976  * @iocb:	kernel I/O control block
1977  * @iter:	destination for the data read
1978  *
1979  * This is the "read_iter()" routine for all filesystems
1980  * that can use the page cache directly.
1981  */
1982 ssize_t
1983 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1984 {
1985 	struct file *file = iocb->ki_filp;
1986 	ssize_t retval = 0;
1987 	size_t count = iov_iter_count(iter);
1988 
1989 	if (!count)
1990 		goto out; /* skip atime */
1991 
1992 	if (iocb->ki_flags & IOCB_DIRECT) {
1993 		struct address_space *mapping = file->f_mapping;
1994 		struct inode *inode = mapping->host;
1995 		struct iov_iter data = *iter;
1996 		loff_t size;
1997 
1998 		size = i_size_read(inode);
1999 		retval = filemap_write_and_wait_range(mapping, iocb->ki_pos,
2000 					iocb->ki_pos + count - 1);
2001 		if (retval < 0)
2002 			goto out;
2003 
2004 		file_accessed(file);
2005 
2006 		retval = mapping->a_ops->direct_IO(iocb, &data);
2007 		if (retval >= 0) {
2008 			iocb->ki_pos += retval;
2009 			iov_iter_advance(iter, retval);
2010 		}
2011 
2012 		/*
2013 		 * Btrfs can have a short DIO read if we encounter
2014 		 * compressed extents, so if there was an error, or if
2015 		 * we've already read everything we wanted to, or if
2016 		 * there was a short read because we hit EOF, go ahead
2017 		 * and return.  Otherwise fallthrough to buffered io for
2018 		 * the rest of the read.  Buffered reads will not work for
2019 		 * DAX files, so don't bother trying.
2020 		 */
2021 		if (retval < 0 || !iov_iter_count(iter) || iocb->ki_pos >= size ||
2022 		    IS_DAX(inode))
2023 			goto out;
2024 	}
2025 
2026 	retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval);
2027 out:
2028 	return retval;
2029 }
2030 EXPORT_SYMBOL(generic_file_read_iter);
2031 
2032 #ifdef CONFIG_MMU
2033 /**
2034  * page_cache_read - adds requested page to the page cache if not already there
2035  * @file:	file to read
2036  * @offset:	page index
2037  * @gfp_mask:	memory allocation flags
2038  *
2039  * This adds the requested page to the page cache if it isn't already there,
2040  * and schedules an I/O to read in its contents from disk.
2041  */
2042 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
2043 {
2044 	struct address_space *mapping = file->f_mapping;
2045 	struct page *page;
2046 	int ret;
2047 
2048 	do {
2049 		page = __page_cache_alloc(gfp_mask|__GFP_COLD);
2050 		if (!page)
2051 			return -ENOMEM;
2052 
2053 		ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
2054 		if (ret == 0)
2055 			ret = mapping->a_ops->readpage(file, page);
2056 		else if (ret == -EEXIST)
2057 			ret = 0; /* losing race to add is OK */
2058 
2059 		put_page(page);
2060 
2061 	} while (ret == AOP_TRUNCATED_PAGE);
2062 
2063 	return ret;
2064 }
2065 
2066 #define MMAP_LOTSAMISS  (100)
2067 
2068 /*
2069  * Synchronous readahead happens when we don't even find
2070  * a page in the page cache at all.
2071  */
2072 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2073 				   struct file_ra_state *ra,
2074 				   struct file *file,
2075 				   pgoff_t offset)
2076 {
2077 	struct address_space *mapping = file->f_mapping;
2078 
2079 	/* If we don't want any read-ahead, don't bother */
2080 	if (vma->vm_flags & VM_RAND_READ)
2081 		return;
2082 	if (!ra->ra_pages)
2083 		return;
2084 
2085 	if (vma->vm_flags & VM_SEQ_READ) {
2086 		page_cache_sync_readahead(mapping, ra, file, offset,
2087 					  ra->ra_pages);
2088 		return;
2089 	}
2090 
2091 	/* Avoid banging the cache line if not needed */
2092 	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2093 		ra->mmap_miss++;
2094 
2095 	/*
2096 	 * Do we miss much more than hit in this file? If so,
2097 	 * stop bothering with read-ahead. It will only hurt.
2098 	 */
2099 	if (ra->mmap_miss > MMAP_LOTSAMISS)
2100 		return;
2101 
2102 	/*
2103 	 * mmap read-around
2104 	 */
2105 	ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2106 	ra->size = ra->ra_pages;
2107 	ra->async_size = ra->ra_pages / 4;
2108 	ra_submit(ra, mapping, file);
2109 }
2110 
2111 /*
2112  * Asynchronous readahead happens when we find the page and PG_readahead,
2113  * so we want to possibly extend the readahead further..
2114  */
2115 static void do_async_mmap_readahead(struct vm_area_struct *vma,
2116 				    struct file_ra_state *ra,
2117 				    struct file *file,
2118 				    struct page *page,
2119 				    pgoff_t offset)
2120 {
2121 	struct address_space *mapping = file->f_mapping;
2122 
2123 	/* If we don't want any read-ahead, don't bother */
2124 	if (vma->vm_flags & VM_RAND_READ)
2125 		return;
2126 	if (ra->mmap_miss > 0)
2127 		ra->mmap_miss--;
2128 	if (PageReadahead(page))
2129 		page_cache_async_readahead(mapping, ra, file,
2130 					   page, offset, ra->ra_pages);
2131 }
2132 
2133 /**
2134  * filemap_fault - read in file data for page fault handling
2135  * @vma:	vma in which the fault was taken
2136  * @vmf:	struct vm_fault containing details of the fault
2137  *
2138  * filemap_fault() is invoked via the vma operations vector for a
2139  * mapped memory region to read in file data during a page fault.
2140  *
2141  * The goto's are kind of ugly, but this streamlines the normal case of having
2142  * it in the page cache, and handles the special cases reasonably without
2143  * having a lot of duplicated code.
2144  *
2145  * vma->vm_mm->mmap_sem must be held on entry.
2146  *
2147  * If our return value has VM_FAULT_RETRY set, it's because
2148  * lock_page_or_retry() returned 0.
2149  * The mmap_sem has usually been released in this case.
2150  * See __lock_page_or_retry() for the exception.
2151  *
2152  * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2153  * has not been released.
2154  *
2155  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2156  */
2157 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2158 {
2159 	int error;
2160 	struct file *file = vma->vm_file;
2161 	struct address_space *mapping = file->f_mapping;
2162 	struct file_ra_state *ra = &file->f_ra;
2163 	struct inode *inode = mapping->host;
2164 	pgoff_t offset = vmf->pgoff;
2165 	struct page *page;
2166 	loff_t size;
2167 	int ret = 0;
2168 
2169 	size = round_up(i_size_read(inode), PAGE_SIZE);
2170 	if (offset >= size >> PAGE_SHIFT)
2171 		return VM_FAULT_SIGBUS;
2172 
2173 	/*
2174 	 * Do we have something in the page cache already?
2175 	 */
2176 	page = find_get_page(mapping, offset);
2177 	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2178 		/*
2179 		 * We found the page, so try async readahead before
2180 		 * waiting for the lock.
2181 		 */
2182 		do_async_mmap_readahead(vma, ra, file, page, offset);
2183 	} else if (!page) {
2184 		/* No page in the page cache at all */
2185 		do_sync_mmap_readahead(vma, ra, file, offset);
2186 		count_vm_event(PGMAJFAULT);
2187 		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
2188 		ret = VM_FAULT_MAJOR;
2189 retry_find:
2190 		page = find_get_page(mapping, offset);
2191 		if (!page)
2192 			goto no_cached_page;
2193 	}
2194 
2195 	if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
2196 		put_page(page);
2197 		return ret | VM_FAULT_RETRY;
2198 	}
2199 
2200 	/* Did it get truncated? */
2201 	if (unlikely(page->mapping != mapping)) {
2202 		unlock_page(page);
2203 		put_page(page);
2204 		goto retry_find;
2205 	}
2206 	VM_BUG_ON_PAGE(page->index != offset, page);
2207 
2208 	/*
2209 	 * We have a locked page in the page cache, now we need to check
2210 	 * that it's up-to-date. If not, it is going to be due to an error.
2211 	 */
2212 	if (unlikely(!PageUptodate(page)))
2213 		goto page_not_uptodate;
2214 
2215 	/*
2216 	 * Found the page and have a reference on it.
2217 	 * We must recheck i_size under page lock.
2218 	 */
2219 	size = round_up(i_size_read(inode), PAGE_SIZE);
2220 	if (unlikely(offset >= size >> PAGE_SHIFT)) {
2221 		unlock_page(page);
2222 		put_page(page);
2223 		return VM_FAULT_SIGBUS;
2224 	}
2225 
2226 	vmf->page = page;
2227 	return ret | VM_FAULT_LOCKED;
2228 
2229 no_cached_page:
2230 	/*
2231 	 * We're only likely to ever get here if MADV_RANDOM is in
2232 	 * effect.
2233 	 */
2234 	error = page_cache_read(file, offset, vmf->gfp_mask);
2235 
2236 	/*
2237 	 * The page we want has now been added to the page cache.
2238 	 * In the unlikely event that someone removed it in the
2239 	 * meantime, we'll just come back here and read it again.
2240 	 */
2241 	if (error >= 0)
2242 		goto retry_find;
2243 
2244 	/*
2245 	 * An error return from page_cache_read can result if the
2246 	 * system is low on memory, or a problem occurs while trying
2247 	 * to schedule I/O.
2248 	 */
2249 	if (error == -ENOMEM)
2250 		return VM_FAULT_OOM;
2251 	return VM_FAULT_SIGBUS;
2252 
2253 page_not_uptodate:
2254 	/*
2255 	 * Umm, take care of errors if the page isn't up-to-date.
2256 	 * Try to re-read it _once_. We do this synchronously,
2257 	 * because there really aren't any performance issues here
2258 	 * and we need to check for errors.
2259 	 */
2260 	ClearPageError(page);
2261 	error = mapping->a_ops->readpage(file, page);
2262 	if (!error) {
2263 		wait_on_page_locked(page);
2264 		if (!PageUptodate(page))
2265 			error = -EIO;
2266 	}
2267 	put_page(page);
2268 
2269 	if (!error || error == AOP_TRUNCATED_PAGE)
2270 		goto retry_find;
2271 
2272 	/* Things didn't work out. Return zero to tell the mm layer so. */
2273 	shrink_readahead_size_eio(file, ra);
2274 	return VM_FAULT_SIGBUS;
2275 }
2276 EXPORT_SYMBOL(filemap_fault);
2277 
2278 void filemap_map_pages(struct vm_fault *vmf,
2279 		pgoff_t start_pgoff, pgoff_t end_pgoff)
2280 {
2281 	struct radix_tree_iter iter;
2282 	void **slot;
2283 	struct file *file = vmf->vma->vm_file;
2284 	struct address_space *mapping = file->f_mapping;
2285 	pgoff_t last_pgoff = start_pgoff;
2286 	loff_t size;
2287 	struct page *head, *page;
2288 
2289 	rcu_read_lock();
2290 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2291 			start_pgoff) {
2292 		if (iter.index > end_pgoff)
2293 			break;
2294 repeat:
2295 		page = radix_tree_deref_slot(slot);
2296 		if (unlikely(!page))
2297 			goto next;
2298 		if (radix_tree_exception(page)) {
2299 			if (radix_tree_deref_retry(page)) {
2300 				slot = radix_tree_iter_retry(&iter);
2301 				continue;
2302 			}
2303 			goto next;
2304 		}
2305 
2306 		head = compound_head(page);
2307 		if (!page_cache_get_speculative(head))
2308 			goto repeat;
2309 
2310 		/* The page was split under us? */
2311 		if (compound_head(page) != head) {
2312 			put_page(head);
2313 			goto repeat;
2314 		}
2315 
2316 		/* Has the page moved? */
2317 		if (unlikely(page != *slot)) {
2318 			put_page(head);
2319 			goto repeat;
2320 		}
2321 
2322 		if (!PageUptodate(page) ||
2323 				PageReadahead(page) ||
2324 				PageHWPoison(page))
2325 			goto skip;
2326 		if (!trylock_page(page))
2327 			goto skip;
2328 
2329 		if (page->mapping != mapping || !PageUptodate(page))
2330 			goto unlock;
2331 
2332 		size = round_up(i_size_read(mapping->host), PAGE_SIZE);
2333 		if (page->index >= size >> PAGE_SHIFT)
2334 			goto unlock;
2335 
2336 		if (file->f_ra.mmap_miss > 0)
2337 			file->f_ra.mmap_miss--;
2338 
2339 		vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2340 		if (vmf->pte)
2341 			vmf->pte += iter.index - last_pgoff;
2342 		last_pgoff = iter.index;
2343 		if (alloc_set_pte(vmf, NULL, page))
2344 			goto unlock;
2345 		unlock_page(page);
2346 		goto next;
2347 unlock:
2348 		unlock_page(page);
2349 skip:
2350 		put_page(page);
2351 next:
2352 		/* Huge page is mapped? No need to proceed. */
2353 		if (pmd_trans_huge(*vmf->pmd))
2354 			break;
2355 		if (iter.index == end_pgoff)
2356 			break;
2357 	}
2358 	rcu_read_unlock();
2359 }
2360 EXPORT_SYMBOL(filemap_map_pages);
2361 
2362 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2363 {
2364 	struct page *page = vmf->page;
2365 	struct inode *inode = file_inode(vma->vm_file);
2366 	int ret = VM_FAULT_LOCKED;
2367 
2368 	sb_start_pagefault(inode->i_sb);
2369 	file_update_time(vma->vm_file);
2370 	lock_page(page);
2371 	if (page->mapping != inode->i_mapping) {
2372 		unlock_page(page);
2373 		ret = VM_FAULT_NOPAGE;
2374 		goto out;
2375 	}
2376 	/*
2377 	 * We mark the page dirty already here so that when freeze is in
2378 	 * progress, we are guaranteed that writeback during freezing will
2379 	 * see the dirty page and writeprotect it again.
2380 	 */
2381 	set_page_dirty(page);
2382 	wait_for_stable_page(page);
2383 out:
2384 	sb_end_pagefault(inode->i_sb);
2385 	return ret;
2386 }
2387 EXPORT_SYMBOL(filemap_page_mkwrite);
2388 
2389 const struct vm_operations_struct generic_file_vm_ops = {
2390 	.fault		= filemap_fault,
2391 	.map_pages	= filemap_map_pages,
2392 	.page_mkwrite	= filemap_page_mkwrite,
2393 };
2394 
2395 /* This is used for a general mmap of a disk file */
2396 
2397 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2398 {
2399 	struct address_space *mapping = file->f_mapping;
2400 
2401 	if (!mapping->a_ops->readpage)
2402 		return -ENOEXEC;
2403 	file_accessed(file);
2404 	vma->vm_ops = &generic_file_vm_ops;
2405 	return 0;
2406 }
2407 
2408 /*
2409  * This is for filesystems which do not implement ->writepage.
2410  */
2411 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2412 {
2413 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2414 		return -EINVAL;
2415 	return generic_file_mmap(file, vma);
2416 }
2417 #else
2418 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2419 {
2420 	return -ENOSYS;
2421 }
2422 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2423 {
2424 	return -ENOSYS;
2425 }
2426 #endif /* CONFIG_MMU */
2427 
2428 EXPORT_SYMBOL(generic_file_mmap);
2429 EXPORT_SYMBOL(generic_file_readonly_mmap);
2430 
2431 static struct page *wait_on_page_read(struct page *page)
2432 {
2433 	if (!IS_ERR(page)) {
2434 		wait_on_page_locked(page);
2435 		if (!PageUptodate(page)) {
2436 			put_page(page);
2437 			page = ERR_PTR(-EIO);
2438 		}
2439 	}
2440 	return page;
2441 }
2442 
2443 static struct page *do_read_cache_page(struct address_space *mapping,
2444 				pgoff_t index,
2445 				int (*filler)(void *, struct page *),
2446 				void *data,
2447 				gfp_t gfp)
2448 {
2449 	struct page *page;
2450 	int err;
2451 repeat:
2452 	page = find_get_page(mapping, index);
2453 	if (!page) {
2454 		page = __page_cache_alloc(gfp | __GFP_COLD);
2455 		if (!page)
2456 			return ERR_PTR(-ENOMEM);
2457 		err = add_to_page_cache_lru(page, mapping, index, gfp);
2458 		if (unlikely(err)) {
2459 			put_page(page);
2460 			if (err == -EEXIST)
2461 				goto repeat;
2462 			/* Presumably ENOMEM for radix tree node */
2463 			return ERR_PTR(err);
2464 		}
2465 
2466 filler:
2467 		err = filler(data, page);
2468 		if (err < 0) {
2469 			put_page(page);
2470 			return ERR_PTR(err);
2471 		}
2472 
2473 		page = wait_on_page_read(page);
2474 		if (IS_ERR(page))
2475 			return page;
2476 		goto out;
2477 	}
2478 	if (PageUptodate(page))
2479 		goto out;
2480 
2481 	/*
2482 	 * Page is not up to date and may be locked due one of the following
2483 	 * case a: Page is being filled and the page lock is held
2484 	 * case b: Read/write error clearing the page uptodate status
2485 	 * case c: Truncation in progress (page locked)
2486 	 * case d: Reclaim in progress
2487 	 *
2488 	 * Case a, the page will be up to date when the page is unlocked.
2489 	 *    There is no need to serialise on the page lock here as the page
2490 	 *    is pinned so the lock gives no additional protection. Even if the
2491 	 *    the page is truncated, the data is still valid if PageUptodate as
2492 	 *    it's a race vs truncate race.
2493 	 * Case b, the page will not be up to date
2494 	 * Case c, the page may be truncated but in itself, the data may still
2495 	 *    be valid after IO completes as it's a read vs truncate race. The
2496 	 *    operation must restart if the page is not uptodate on unlock but
2497 	 *    otherwise serialising on page lock to stabilise the mapping gives
2498 	 *    no additional guarantees to the caller as the page lock is
2499 	 *    released before return.
2500 	 * Case d, similar to truncation. If reclaim holds the page lock, it
2501 	 *    will be a race with remove_mapping that determines if the mapping
2502 	 *    is valid on unlock but otherwise the data is valid and there is
2503 	 *    no need to serialise with page lock.
2504 	 *
2505 	 * As the page lock gives no additional guarantee, we optimistically
2506 	 * wait on the page to be unlocked and check if it's up to date and
2507 	 * use the page if it is. Otherwise, the page lock is required to
2508 	 * distinguish between the different cases. The motivation is that we
2509 	 * avoid spurious serialisations and wakeups when multiple processes
2510 	 * wait on the same page for IO to complete.
2511 	 */
2512 	wait_on_page_locked(page);
2513 	if (PageUptodate(page))
2514 		goto out;
2515 
2516 	/* Distinguish between all the cases under the safety of the lock */
2517 	lock_page(page);
2518 
2519 	/* Case c or d, restart the operation */
2520 	if (!page->mapping) {
2521 		unlock_page(page);
2522 		put_page(page);
2523 		goto repeat;
2524 	}
2525 
2526 	/* Someone else locked and filled the page in a very small window */
2527 	if (PageUptodate(page)) {
2528 		unlock_page(page);
2529 		goto out;
2530 	}
2531 	goto filler;
2532 
2533 out:
2534 	mark_page_accessed(page);
2535 	return page;
2536 }
2537 
2538 /**
2539  * read_cache_page - read into page cache, fill it if needed
2540  * @mapping:	the page's address_space
2541  * @index:	the page index
2542  * @filler:	function to perform the read
2543  * @data:	first arg to filler(data, page) function, often left as NULL
2544  *
2545  * Read into the page cache. If a page already exists, and PageUptodate() is
2546  * not set, try to fill the page and wait for it to become unlocked.
2547  *
2548  * If the page does not get brought uptodate, return -EIO.
2549  */
2550 struct page *read_cache_page(struct address_space *mapping,
2551 				pgoff_t index,
2552 				int (*filler)(void *, struct page *),
2553 				void *data)
2554 {
2555 	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2556 }
2557 EXPORT_SYMBOL(read_cache_page);
2558 
2559 /**
2560  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2561  * @mapping:	the page's address_space
2562  * @index:	the page index
2563  * @gfp:	the page allocator flags to use if allocating
2564  *
2565  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2566  * any new page allocations done using the specified allocation flags.
2567  *
2568  * If the page does not get brought uptodate, return -EIO.
2569  */
2570 struct page *read_cache_page_gfp(struct address_space *mapping,
2571 				pgoff_t index,
2572 				gfp_t gfp)
2573 {
2574 	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2575 
2576 	return do_read_cache_page(mapping, index, filler, NULL, gfp);
2577 }
2578 EXPORT_SYMBOL(read_cache_page_gfp);
2579 
2580 /*
2581  * Performs necessary checks before doing a write
2582  *
2583  * Can adjust writing position or amount of bytes to write.
2584  * Returns appropriate error code that caller should return or
2585  * zero in case that write should be allowed.
2586  */
2587 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2588 {
2589 	struct file *file = iocb->ki_filp;
2590 	struct inode *inode = file->f_mapping->host;
2591 	unsigned long limit = rlimit(RLIMIT_FSIZE);
2592 	loff_t pos;
2593 
2594 	if (!iov_iter_count(from))
2595 		return 0;
2596 
2597 	/* FIXME: this is for backwards compatibility with 2.4 */
2598 	if (iocb->ki_flags & IOCB_APPEND)
2599 		iocb->ki_pos = i_size_read(inode);
2600 
2601 	pos = iocb->ki_pos;
2602 
2603 	if (limit != RLIM_INFINITY) {
2604 		if (iocb->ki_pos >= limit) {
2605 			send_sig(SIGXFSZ, current, 0);
2606 			return -EFBIG;
2607 		}
2608 		iov_iter_truncate(from, limit - (unsigned long)pos);
2609 	}
2610 
2611 	/*
2612 	 * LFS rule
2613 	 */
2614 	if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2615 				!(file->f_flags & O_LARGEFILE))) {
2616 		if (pos >= MAX_NON_LFS)
2617 			return -EFBIG;
2618 		iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2619 	}
2620 
2621 	/*
2622 	 * Are we about to exceed the fs block limit ?
2623 	 *
2624 	 * If we have written data it becomes a short write.  If we have
2625 	 * exceeded without writing data we send a signal and return EFBIG.
2626 	 * Linus frestrict idea will clean these up nicely..
2627 	 */
2628 	if (unlikely(pos >= inode->i_sb->s_maxbytes))
2629 		return -EFBIG;
2630 
2631 	iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2632 	return iov_iter_count(from);
2633 }
2634 EXPORT_SYMBOL(generic_write_checks);
2635 
2636 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2637 				loff_t pos, unsigned len, unsigned flags,
2638 				struct page **pagep, void **fsdata)
2639 {
2640 	const struct address_space_operations *aops = mapping->a_ops;
2641 
2642 	return aops->write_begin(file, mapping, pos, len, flags,
2643 							pagep, fsdata);
2644 }
2645 EXPORT_SYMBOL(pagecache_write_begin);
2646 
2647 int pagecache_write_end(struct file *file, struct address_space *mapping,
2648 				loff_t pos, unsigned len, unsigned copied,
2649 				struct page *page, void *fsdata)
2650 {
2651 	const struct address_space_operations *aops = mapping->a_ops;
2652 
2653 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2654 }
2655 EXPORT_SYMBOL(pagecache_write_end);
2656 
2657 ssize_t
2658 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
2659 {
2660 	struct file	*file = iocb->ki_filp;
2661 	struct address_space *mapping = file->f_mapping;
2662 	struct inode	*inode = mapping->host;
2663 	loff_t		pos = iocb->ki_pos;
2664 	ssize_t		written;
2665 	size_t		write_len;
2666 	pgoff_t		end;
2667 	struct iov_iter data;
2668 
2669 	write_len = iov_iter_count(from);
2670 	end = (pos + write_len - 1) >> PAGE_SHIFT;
2671 
2672 	written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2673 	if (written)
2674 		goto out;
2675 
2676 	/*
2677 	 * After a write we want buffered reads to be sure to go to disk to get
2678 	 * the new data.  We invalidate clean cached page from the region we're
2679 	 * about to write.  We do this *before* the write so that we can return
2680 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2681 	 */
2682 	if (mapping->nrpages) {
2683 		written = invalidate_inode_pages2_range(mapping,
2684 					pos >> PAGE_SHIFT, end);
2685 		/*
2686 		 * If a page can not be invalidated, return 0 to fall back
2687 		 * to buffered write.
2688 		 */
2689 		if (written) {
2690 			if (written == -EBUSY)
2691 				return 0;
2692 			goto out;
2693 		}
2694 	}
2695 
2696 	data = *from;
2697 	written = mapping->a_ops->direct_IO(iocb, &data);
2698 
2699 	/*
2700 	 * Finally, try again to invalidate clean pages which might have been
2701 	 * cached by non-direct readahead, or faulted in by get_user_pages()
2702 	 * if the source of the write was an mmap'ed region of the file
2703 	 * we're writing.  Either one is a pretty crazy thing to do,
2704 	 * so we don't support it 100%.  If this invalidation
2705 	 * fails, tough, the write still worked...
2706 	 */
2707 	if (mapping->nrpages) {
2708 		invalidate_inode_pages2_range(mapping,
2709 					      pos >> PAGE_SHIFT, end);
2710 	}
2711 
2712 	if (written > 0) {
2713 		pos += written;
2714 		iov_iter_advance(from, written);
2715 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2716 			i_size_write(inode, pos);
2717 			mark_inode_dirty(inode);
2718 		}
2719 		iocb->ki_pos = pos;
2720 	}
2721 out:
2722 	return written;
2723 }
2724 EXPORT_SYMBOL(generic_file_direct_write);
2725 
2726 /*
2727  * Find or create a page at the given pagecache position. Return the locked
2728  * page. This function is specifically for buffered writes.
2729  */
2730 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2731 					pgoff_t index, unsigned flags)
2732 {
2733 	struct page *page;
2734 	int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
2735 
2736 	if (flags & AOP_FLAG_NOFS)
2737 		fgp_flags |= FGP_NOFS;
2738 
2739 	page = pagecache_get_page(mapping, index, fgp_flags,
2740 			mapping_gfp_mask(mapping));
2741 	if (page)
2742 		wait_for_stable_page(page);
2743 
2744 	return page;
2745 }
2746 EXPORT_SYMBOL(grab_cache_page_write_begin);
2747 
2748 ssize_t generic_perform_write(struct file *file,
2749 				struct iov_iter *i, loff_t pos)
2750 {
2751 	struct address_space *mapping = file->f_mapping;
2752 	const struct address_space_operations *a_ops = mapping->a_ops;
2753 	long status = 0;
2754 	ssize_t written = 0;
2755 	unsigned int flags = 0;
2756 
2757 	/*
2758 	 * Copies from kernel address space cannot fail (NFSD is a big user).
2759 	 */
2760 	if (!iter_is_iovec(i))
2761 		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2762 
2763 	do {
2764 		struct page *page;
2765 		unsigned long offset;	/* Offset into pagecache page */
2766 		unsigned long bytes;	/* Bytes to write to page */
2767 		size_t copied;		/* Bytes copied from user */
2768 		void *fsdata;
2769 
2770 		offset = (pos & (PAGE_SIZE - 1));
2771 		bytes = min_t(unsigned long, PAGE_SIZE - offset,
2772 						iov_iter_count(i));
2773 
2774 again:
2775 		/*
2776 		 * Bring in the user page that we will copy from _first_.
2777 		 * Otherwise there's a nasty deadlock on copying from the
2778 		 * same page as we're writing to, without it being marked
2779 		 * up-to-date.
2780 		 *
2781 		 * Not only is this an optimisation, but it is also required
2782 		 * to check that the address is actually valid, when atomic
2783 		 * usercopies are used, below.
2784 		 */
2785 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2786 			status = -EFAULT;
2787 			break;
2788 		}
2789 
2790 		if (fatal_signal_pending(current)) {
2791 			status = -EINTR;
2792 			break;
2793 		}
2794 
2795 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2796 						&page, &fsdata);
2797 		if (unlikely(status < 0))
2798 			break;
2799 
2800 		if (mapping_writably_mapped(mapping))
2801 			flush_dcache_page(page);
2802 
2803 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2804 		flush_dcache_page(page);
2805 
2806 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2807 						page, fsdata);
2808 		if (unlikely(status < 0))
2809 			break;
2810 		copied = status;
2811 
2812 		cond_resched();
2813 
2814 		iov_iter_advance(i, copied);
2815 		if (unlikely(copied == 0)) {
2816 			/*
2817 			 * If we were unable to copy any data at all, we must
2818 			 * fall back to a single segment length write.
2819 			 *
2820 			 * If we didn't fallback here, we could livelock
2821 			 * because not all segments in the iov can be copied at
2822 			 * once without a pagefault.
2823 			 */
2824 			bytes = min_t(unsigned long, PAGE_SIZE - offset,
2825 						iov_iter_single_seg_count(i));
2826 			goto again;
2827 		}
2828 		pos += copied;
2829 		written += copied;
2830 
2831 		balance_dirty_pages_ratelimited(mapping);
2832 	} while (iov_iter_count(i));
2833 
2834 	return written ? written : status;
2835 }
2836 EXPORT_SYMBOL(generic_perform_write);
2837 
2838 /**
2839  * __generic_file_write_iter - write data to a file
2840  * @iocb:	IO state structure (file, offset, etc.)
2841  * @from:	iov_iter with data to write
2842  *
2843  * This function does all the work needed for actually writing data to a
2844  * file. It does all basic checks, removes SUID from the file, updates
2845  * modification times and calls proper subroutines depending on whether we
2846  * do direct IO or a standard buffered write.
2847  *
2848  * It expects i_mutex to be grabbed unless we work on a block device or similar
2849  * object which does not need locking at all.
2850  *
2851  * This function does *not* take care of syncing data in case of O_SYNC write.
2852  * A caller has to handle it. This is mainly due to the fact that we want to
2853  * avoid syncing under i_mutex.
2854  */
2855 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2856 {
2857 	struct file *file = iocb->ki_filp;
2858 	struct address_space * mapping = file->f_mapping;
2859 	struct inode 	*inode = mapping->host;
2860 	ssize_t		written = 0;
2861 	ssize_t		err;
2862 	ssize_t		status;
2863 
2864 	/* We can write back this queue in page reclaim */
2865 	current->backing_dev_info = inode_to_bdi(inode);
2866 	err = file_remove_privs(file);
2867 	if (err)
2868 		goto out;
2869 
2870 	err = file_update_time(file);
2871 	if (err)
2872 		goto out;
2873 
2874 	if (iocb->ki_flags & IOCB_DIRECT) {
2875 		loff_t pos, endbyte;
2876 
2877 		written = generic_file_direct_write(iocb, from);
2878 		/*
2879 		 * If the write stopped short of completing, fall back to
2880 		 * buffered writes.  Some filesystems do this for writes to
2881 		 * holes, for example.  For DAX files, a buffered write will
2882 		 * not succeed (even if it did, DAX does not handle dirty
2883 		 * page-cache pages correctly).
2884 		 */
2885 		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2886 			goto out;
2887 
2888 		status = generic_perform_write(file, from, pos = iocb->ki_pos);
2889 		/*
2890 		 * If generic_perform_write() returned a synchronous error
2891 		 * then we want to return the number of bytes which were
2892 		 * direct-written, or the error code if that was zero.  Note
2893 		 * that this differs from normal direct-io semantics, which
2894 		 * will return -EFOO even if some bytes were written.
2895 		 */
2896 		if (unlikely(status < 0)) {
2897 			err = status;
2898 			goto out;
2899 		}
2900 		/*
2901 		 * We need to ensure that the page cache pages are written to
2902 		 * disk and invalidated to preserve the expected O_DIRECT
2903 		 * semantics.
2904 		 */
2905 		endbyte = pos + status - 1;
2906 		err = filemap_write_and_wait_range(mapping, pos, endbyte);
2907 		if (err == 0) {
2908 			iocb->ki_pos = endbyte + 1;
2909 			written += status;
2910 			invalidate_mapping_pages(mapping,
2911 						 pos >> PAGE_SHIFT,
2912 						 endbyte >> PAGE_SHIFT);
2913 		} else {
2914 			/*
2915 			 * We don't know how much we wrote, so just return
2916 			 * the number of bytes which were direct-written
2917 			 */
2918 		}
2919 	} else {
2920 		written = generic_perform_write(file, from, iocb->ki_pos);
2921 		if (likely(written > 0))
2922 			iocb->ki_pos += written;
2923 	}
2924 out:
2925 	current->backing_dev_info = NULL;
2926 	return written ? written : err;
2927 }
2928 EXPORT_SYMBOL(__generic_file_write_iter);
2929 
2930 /**
2931  * generic_file_write_iter - write data to a file
2932  * @iocb:	IO state structure
2933  * @from:	iov_iter with data to write
2934  *
2935  * This is a wrapper around __generic_file_write_iter() to be used by most
2936  * filesystems. It takes care of syncing the file in case of O_SYNC file
2937  * and acquires i_mutex as needed.
2938  */
2939 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2940 {
2941 	struct file *file = iocb->ki_filp;
2942 	struct inode *inode = file->f_mapping->host;
2943 	ssize_t ret;
2944 
2945 	inode_lock(inode);
2946 	ret = generic_write_checks(iocb, from);
2947 	if (ret > 0)
2948 		ret = __generic_file_write_iter(iocb, from);
2949 	inode_unlock(inode);
2950 
2951 	if (ret > 0)
2952 		ret = generic_write_sync(iocb, ret);
2953 	return ret;
2954 }
2955 EXPORT_SYMBOL(generic_file_write_iter);
2956 
2957 /**
2958  * try_to_release_page() - release old fs-specific metadata on a page
2959  *
2960  * @page: the page which the kernel is trying to free
2961  * @gfp_mask: memory allocation flags (and I/O mode)
2962  *
2963  * The address_space is to try to release any data against the page
2964  * (presumably at page->private).  If the release was successful, return `1'.
2965  * Otherwise return zero.
2966  *
2967  * This may also be called if PG_fscache is set on a page, indicating that the
2968  * page is known to the local caching routines.
2969  *
2970  * The @gfp_mask argument specifies whether I/O may be performed to release
2971  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
2972  *
2973  */
2974 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2975 {
2976 	struct address_space * const mapping = page->mapping;
2977 
2978 	BUG_ON(!PageLocked(page));
2979 	if (PageWriteback(page))
2980 		return 0;
2981 
2982 	if (mapping && mapping->a_ops->releasepage)
2983 		return mapping->a_ops->releasepage(page, gfp_mask);
2984 	return try_to_free_buffers(page);
2985 }
2986 
2987 EXPORT_SYMBOL(try_to_release_page);
2988