xref: /openbmc/linux/mm/filemap.c (revision 55b37d9c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	linux/mm/filemap.c
4  *
5  * Copyright (C) 1994-1999  Linus Torvalds
6  */
7 
8 /*
9  * This file handles the generic file mmap semantics used by
10  * most "normal" filesystems (but you don't /have/ to use this:
11  * the NFS filesystem used to do this differently, for example)
12  */
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
16 #include <linux/fs.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
22 #include <linux/mm.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/mman.h>
26 #include <linux/pagemap.h>
27 #include <linux/file.h>
28 #include <linux/uio.h>
29 #include <linux/error-injection.h>
30 #include <linux/hash.h>
31 #include <linux/writeback.h>
32 #include <linux/backing-dev.h>
33 #include <linux/pagevec.h>
34 #include <linux/security.h>
35 #include <linux/cpuset.h>
36 #include <linux/hugetlb.h>
37 #include <linux/memcontrol.h>
38 #include <linux/shmem_fs.h>
39 #include <linux/rmap.h>
40 #include <linux/delayacct.h>
41 #include <linux/psi.h>
42 #include <linux/ramfs.h>
43 #include <linux/page_idle.h>
44 #include <linux/migrate.h>
45 #include <linux/pipe_fs_i.h>
46 #include <linux/splice.h>
47 #include <asm/pgalloc.h>
48 #include <asm/tlbflush.h>
49 #include "internal.h"
50 
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/filemap.h>
53 
54 /*
55  * FIXME: remove all knowledge of the buffer layer from the core VM
56  */
57 #include <linux/buffer_head.h> /* for try_to_free_buffers */
58 
59 #include <asm/mman.h>
60 
61 /*
62  * Shared mappings implemented 30.11.1994. It's not fully working yet,
63  * though.
64  *
65  * Shared mappings now work. 15.8.1995  Bruno.
66  *
67  * finished 'unifying' the page and buffer cache and SMP-threaded the
68  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
69  *
70  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
71  */
72 
73 /*
74  * Lock ordering:
75  *
76  *  ->i_mmap_rwsem		(truncate_pagecache)
77  *    ->private_lock		(__free_pte->block_dirty_folio)
78  *      ->swap_lock		(exclusive_swap_page, others)
79  *        ->i_pages lock
80  *
81  *  ->i_rwsem
82  *    ->invalidate_lock		(acquired by fs in truncate path)
83  *      ->i_mmap_rwsem		(truncate->unmap_mapping_range)
84  *
85  *  ->mmap_lock
86  *    ->i_mmap_rwsem
87  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
88  *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
89  *
90  *  ->mmap_lock
91  *    ->invalidate_lock		(filemap_fault)
92  *      ->lock_page		(filemap_fault, access_process_vm)
93  *
94  *  ->i_rwsem			(generic_perform_write)
95  *    ->mmap_lock		(fault_in_readable->do_page_fault)
96  *
97  *  bdi->wb.list_lock
98  *    sb_lock			(fs/fs-writeback.c)
99  *    ->i_pages lock		(__sync_single_inode)
100  *
101  *  ->i_mmap_rwsem
102  *    ->anon_vma.lock		(vma_merge)
103  *
104  *  ->anon_vma.lock
105  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
106  *
107  *  ->page_table_lock or pte_lock
108  *    ->swap_lock		(try_to_unmap_one)
109  *    ->private_lock		(try_to_unmap_one)
110  *    ->i_pages lock		(try_to_unmap_one)
111  *    ->lruvec->lru_lock	(follow_page->mark_page_accessed)
112  *    ->lruvec->lru_lock	(check_pte_range->isolate_lru_page)
113  *    ->private_lock		(page_remove_rmap->set_page_dirty)
114  *    ->i_pages lock		(page_remove_rmap->set_page_dirty)
115  *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
116  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
117  *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
118  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
119  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
120  *    ->private_lock		(zap_pte_range->block_dirty_folio)
121  *
122  * ->i_mmap_rwsem
123  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
124  */
125 
126 static void page_cache_delete(struct address_space *mapping,
127 				   struct folio *folio, void *shadow)
128 {
129 	XA_STATE(xas, &mapping->i_pages, folio->index);
130 	long nr = 1;
131 
132 	mapping_set_update(&xas, mapping);
133 
134 	/* hugetlb pages are represented by a single entry in the xarray */
135 	if (!folio_test_hugetlb(folio)) {
136 		xas_set_order(&xas, folio->index, folio_order(folio));
137 		nr = folio_nr_pages(folio);
138 	}
139 
140 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
141 
142 	xas_store(&xas, shadow);
143 	xas_init_marks(&xas);
144 
145 	folio->mapping = NULL;
146 	/* Leave page->index set: truncation lookup relies upon it */
147 	mapping->nrpages -= nr;
148 }
149 
150 static void filemap_unaccount_folio(struct address_space *mapping,
151 		struct folio *folio)
152 {
153 	long nr;
154 
155 	VM_BUG_ON_FOLIO(folio_mapped(folio), folio);
156 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) {
157 		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
158 			 current->comm, folio_pfn(folio));
159 		dump_page(&folio->page, "still mapped when deleted");
160 		dump_stack();
161 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
162 
163 		if (mapping_exiting(mapping) && !folio_test_large(folio)) {
164 			int mapcount = page_mapcount(&folio->page);
165 
166 			if (folio_ref_count(folio) >= mapcount + 2) {
167 				/*
168 				 * All vmas have already been torn down, so it's
169 				 * a good bet that actually the page is unmapped
170 				 * and we'd rather not leak it: if we're wrong,
171 				 * another bad page check should catch it later.
172 				 */
173 				page_mapcount_reset(&folio->page);
174 				folio_ref_sub(folio, mapcount);
175 			}
176 		}
177 	}
178 
179 	/* hugetlb folios do not participate in page cache accounting. */
180 	if (folio_test_hugetlb(folio))
181 		return;
182 
183 	nr = folio_nr_pages(folio);
184 
185 	__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
186 	if (folio_test_swapbacked(folio)) {
187 		__lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
188 		if (folio_test_pmd_mappable(folio))
189 			__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr);
190 	} else if (folio_test_pmd_mappable(folio)) {
191 		__lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr);
192 		filemap_nr_thps_dec(mapping);
193 	}
194 
195 	/*
196 	 * At this point folio must be either written or cleaned by
197 	 * truncate.  Dirty folio here signals a bug and loss of
198 	 * unwritten data - on ordinary filesystems.
199 	 *
200 	 * But it's harmless on in-memory filesystems like tmpfs; and can
201 	 * occur when a driver which did get_user_pages() sets page dirty
202 	 * before putting it, while the inode is being finally evicted.
203 	 *
204 	 * Below fixes dirty accounting after removing the folio entirely
205 	 * but leaves the dirty flag set: it has no effect for truncated
206 	 * folio and anyway will be cleared before returning folio to
207 	 * buddy allocator.
208 	 */
209 	if (WARN_ON_ONCE(folio_test_dirty(folio) &&
210 			 mapping_can_writeback(mapping)))
211 		folio_account_cleaned(folio, inode_to_wb(mapping->host));
212 }
213 
214 /*
215  * Delete a page from the page cache and free it. Caller has to make
216  * sure the page is locked and that nobody else uses it - or that usage
217  * is safe.  The caller must hold the i_pages lock.
218  */
219 void __filemap_remove_folio(struct folio *folio, void *shadow)
220 {
221 	struct address_space *mapping = folio->mapping;
222 
223 	trace_mm_filemap_delete_from_page_cache(folio);
224 	filemap_unaccount_folio(mapping, folio);
225 	page_cache_delete(mapping, folio, shadow);
226 }
227 
228 void filemap_free_folio(struct address_space *mapping, struct folio *folio)
229 {
230 	void (*free_folio)(struct folio *);
231 	int refs = 1;
232 
233 	free_folio = mapping->a_ops->free_folio;
234 	if (free_folio)
235 		free_folio(folio);
236 
237 	if (folio_test_large(folio) && !folio_test_hugetlb(folio))
238 		refs = folio_nr_pages(folio);
239 	folio_put_refs(folio, refs);
240 }
241 
242 /**
243  * filemap_remove_folio - Remove folio from page cache.
244  * @folio: The folio.
245  *
246  * This must be called only on folios that are locked and have been
247  * verified to be in the page cache.  It will never put the folio into
248  * the free list because the caller has a reference on the page.
249  */
250 void filemap_remove_folio(struct folio *folio)
251 {
252 	struct address_space *mapping = folio->mapping;
253 
254 	BUG_ON(!folio_test_locked(folio));
255 	spin_lock(&mapping->host->i_lock);
256 	xa_lock_irq(&mapping->i_pages);
257 	__filemap_remove_folio(folio, NULL);
258 	xa_unlock_irq(&mapping->i_pages);
259 	if (mapping_shrinkable(mapping))
260 		inode_add_lru(mapping->host);
261 	spin_unlock(&mapping->host->i_lock);
262 
263 	filemap_free_folio(mapping, folio);
264 }
265 
266 /*
267  * page_cache_delete_batch - delete several folios from page cache
268  * @mapping: the mapping to which folios belong
269  * @fbatch: batch of folios to delete
270  *
271  * The function walks over mapping->i_pages and removes folios passed in
272  * @fbatch from the mapping. The function expects @fbatch to be sorted
273  * by page index and is optimised for it to be dense.
274  * It tolerates holes in @fbatch (mapping entries at those indices are not
275  * modified).
276  *
277  * The function expects the i_pages lock to be held.
278  */
279 static void page_cache_delete_batch(struct address_space *mapping,
280 			     struct folio_batch *fbatch)
281 {
282 	XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index);
283 	long total_pages = 0;
284 	int i = 0;
285 	struct folio *folio;
286 
287 	mapping_set_update(&xas, mapping);
288 	xas_for_each(&xas, folio, ULONG_MAX) {
289 		if (i >= folio_batch_count(fbatch))
290 			break;
291 
292 		/* A swap/dax/shadow entry got inserted? Skip it. */
293 		if (xa_is_value(folio))
294 			continue;
295 		/*
296 		 * A page got inserted in our range? Skip it. We have our
297 		 * pages locked so they are protected from being removed.
298 		 * If we see a page whose index is higher than ours, it
299 		 * means our page has been removed, which shouldn't be
300 		 * possible because we're holding the PageLock.
301 		 */
302 		if (folio != fbatch->folios[i]) {
303 			VM_BUG_ON_FOLIO(folio->index >
304 					fbatch->folios[i]->index, folio);
305 			continue;
306 		}
307 
308 		WARN_ON_ONCE(!folio_test_locked(folio));
309 
310 		folio->mapping = NULL;
311 		/* Leave folio->index set: truncation lookup relies on it */
312 
313 		i++;
314 		xas_store(&xas, NULL);
315 		total_pages += folio_nr_pages(folio);
316 	}
317 	mapping->nrpages -= total_pages;
318 }
319 
320 void delete_from_page_cache_batch(struct address_space *mapping,
321 				  struct folio_batch *fbatch)
322 {
323 	int i;
324 
325 	if (!folio_batch_count(fbatch))
326 		return;
327 
328 	spin_lock(&mapping->host->i_lock);
329 	xa_lock_irq(&mapping->i_pages);
330 	for (i = 0; i < folio_batch_count(fbatch); i++) {
331 		struct folio *folio = fbatch->folios[i];
332 
333 		trace_mm_filemap_delete_from_page_cache(folio);
334 		filemap_unaccount_folio(mapping, folio);
335 	}
336 	page_cache_delete_batch(mapping, fbatch);
337 	xa_unlock_irq(&mapping->i_pages);
338 	if (mapping_shrinkable(mapping))
339 		inode_add_lru(mapping->host);
340 	spin_unlock(&mapping->host->i_lock);
341 
342 	for (i = 0; i < folio_batch_count(fbatch); i++)
343 		filemap_free_folio(mapping, fbatch->folios[i]);
344 }
345 
346 int filemap_check_errors(struct address_space *mapping)
347 {
348 	int ret = 0;
349 	/* Check for outstanding write errors */
350 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
351 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
352 		ret = -ENOSPC;
353 	if (test_bit(AS_EIO, &mapping->flags) &&
354 	    test_and_clear_bit(AS_EIO, &mapping->flags))
355 		ret = -EIO;
356 	return ret;
357 }
358 EXPORT_SYMBOL(filemap_check_errors);
359 
360 static int filemap_check_and_keep_errors(struct address_space *mapping)
361 {
362 	/* Check for outstanding write errors */
363 	if (test_bit(AS_EIO, &mapping->flags))
364 		return -EIO;
365 	if (test_bit(AS_ENOSPC, &mapping->flags))
366 		return -ENOSPC;
367 	return 0;
368 }
369 
370 /**
371  * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
372  * @mapping:	address space structure to write
373  * @wbc:	the writeback_control controlling the writeout
374  *
375  * Call writepages on the mapping using the provided wbc to control the
376  * writeout.
377  *
378  * Return: %0 on success, negative error code otherwise.
379  */
380 int filemap_fdatawrite_wbc(struct address_space *mapping,
381 			   struct writeback_control *wbc)
382 {
383 	int ret;
384 
385 	if (!mapping_can_writeback(mapping) ||
386 	    !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
387 		return 0;
388 
389 	wbc_attach_fdatawrite_inode(wbc, mapping->host);
390 	ret = do_writepages(mapping, wbc);
391 	wbc_detach_inode(wbc);
392 	return ret;
393 }
394 EXPORT_SYMBOL(filemap_fdatawrite_wbc);
395 
396 /**
397  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
398  * @mapping:	address space structure to write
399  * @start:	offset in bytes where the range starts
400  * @end:	offset in bytes where the range ends (inclusive)
401  * @sync_mode:	enable synchronous operation
402  *
403  * Start writeback against all of a mapping's dirty pages that lie
404  * within the byte offsets <start, end> inclusive.
405  *
406  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
407  * opposed to a regular memory cleansing writeback.  The difference between
408  * these two operations is that if a dirty page/buffer is encountered, it must
409  * be waited upon, and not just skipped over.
410  *
411  * Return: %0 on success, negative error code otherwise.
412  */
413 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
414 				loff_t end, int sync_mode)
415 {
416 	struct writeback_control wbc = {
417 		.sync_mode = sync_mode,
418 		.nr_to_write = LONG_MAX,
419 		.range_start = start,
420 		.range_end = end,
421 	};
422 
423 	return filemap_fdatawrite_wbc(mapping, &wbc);
424 }
425 
426 static inline int __filemap_fdatawrite(struct address_space *mapping,
427 	int sync_mode)
428 {
429 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
430 }
431 
432 int filemap_fdatawrite(struct address_space *mapping)
433 {
434 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
435 }
436 EXPORT_SYMBOL(filemap_fdatawrite);
437 
438 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
439 				loff_t end)
440 {
441 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
442 }
443 EXPORT_SYMBOL(filemap_fdatawrite_range);
444 
445 /**
446  * filemap_flush - mostly a non-blocking flush
447  * @mapping:	target address_space
448  *
449  * This is a mostly non-blocking flush.  Not suitable for data-integrity
450  * purposes - I/O may not be started against all dirty pages.
451  *
452  * Return: %0 on success, negative error code otherwise.
453  */
454 int filemap_flush(struct address_space *mapping)
455 {
456 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
457 }
458 EXPORT_SYMBOL(filemap_flush);
459 
460 /**
461  * filemap_range_has_page - check if a page exists in range.
462  * @mapping:           address space within which to check
463  * @start_byte:        offset in bytes where the range starts
464  * @end_byte:          offset in bytes where the range ends (inclusive)
465  *
466  * Find at least one page in the range supplied, usually used to check if
467  * direct writing in this range will trigger a writeback.
468  *
469  * Return: %true if at least one page exists in the specified range,
470  * %false otherwise.
471  */
472 bool filemap_range_has_page(struct address_space *mapping,
473 			   loff_t start_byte, loff_t end_byte)
474 {
475 	struct folio *folio;
476 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
477 	pgoff_t max = end_byte >> PAGE_SHIFT;
478 
479 	if (end_byte < start_byte)
480 		return false;
481 
482 	rcu_read_lock();
483 	for (;;) {
484 		folio = xas_find(&xas, max);
485 		if (xas_retry(&xas, folio))
486 			continue;
487 		/* Shadow entries don't count */
488 		if (xa_is_value(folio))
489 			continue;
490 		/*
491 		 * We don't need to try to pin this page; we're about to
492 		 * release the RCU lock anyway.  It is enough to know that
493 		 * there was a page here recently.
494 		 */
495 		break;
496 	}
497 	rcu_read_unlock();
498 
499 	return folio != NULL;
500 }
501 EXPORT_SYMBOL(filemap_range_has_page);
502 
503 static void __filemap_fdatawait_range(struct address_space *mapping,
504 				     loff_t start_byte, loff_t end_byte)
505 {
506 	pgoff_t index = start_byte >> PAGE_SHIFT;
507 	pgoff_t end = end_byte >> PAGE_SHIFT;
508 	struct folio_batch fbatch;
509 	unsigned nr_folios;
510 
511 	folio_batch_init(&fbatch);
512 
513 	while (index <= end) {
514 		unsigned i;
515 
516 		nr_folios = filemap_get_folios_tag(mapping, &index, end,
517 				PAGECACHE_TAG_WRITEBACK, &fbatch);
518 
519 		if (!nr_folios)
520 			break;
521 
522 		for (i = 0; i < nr_folios; i++) {
523 			struct folio *folio = fbatch.folios[i];
524 
525 			folio_wait_writeback(folio);
526 			folio_clear_error(folio);
527 		}
528 		folio_batch_release(&fbatch);
529 		cond_resched();
530 	}
531 }
532 
533 /**
534  * filemap_fdatawait_range - wait for writeback to complete
535  * @mapping:		address space structure to wait for
536  * @start_byte:		offset in bytes where the range starts
537  * @end_byte:		offset in bytes where the range ends (inclusive)
538  *
539  * Walk the list of under-writeback pages of the given address space
540  * in the given range and wait for all of them.  Check error status of
541  * the address space and return it.
542  *
543  * Since the error status of the address space is cleared by this function,
544  * callers are responsible for checking the return value and handling and/or
545  * reporting the error.
546  *
547  * Return: error status of the address space.
548  */
549 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
550 			    loff_t end_byte)
551 {
552 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
553 	return filemap_check_errors(mapping);
554 }
555 EXPORT_SYMBOL(filemap_fdatawait_range);
556 
557 /**
558  * filemap_fdatawait_range_keep_errors - wait for writeback to complete
559  * @mapping:		address space structure to wait for
560  * @start_byte:		offset in bytes where the range starts
561  * @end_byte:		offset in bytes where the range ends (inclusive)
562  *
563  * Walk the list of under-writeback pages of the given address space in the
564  * given range and wait for all of them.  Unlike filemap_fdatawait_range(),
565  * this function does not clear error status of the address space.
566  *
567  * Use this function if callers don't handle errors themselves.  Expected
568  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
569  * fsfreeze(8)
570  */
571 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
572 		loff_t start_byte, loff_t end_byte)
573 {
574 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
575 	return filemap_check_and_keep_errors(mapping);
576 }
577 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
578 
579 /**
580  * file_fdatawait_range - wait for writeback to complete
581  * @file:		file pointing to address space structure to wait for
582  * @start_byte:		offset in bytes where the range starts
583  * @end_byte:		offset in bytes where the range ends (inclusive)
584  *
585  * Walk the list of under-writeback pages of the address space that file
586  * refers to, in the given range and wait for all of them.  Check error
587  * status of the address space vs. the file->f_wb_err cursor and return it.
588  *
589  * Since the error status of the file is advanced by this function,
590  * callers are responsible for checking the return value and handling and/or
591  * reporting the error.
592  *
593  * Return: error status of the address space vs. the file->f_wb_err cursor.
594  */
595 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
596 {
597 	struct address_space *mapping = file->f_mapping;
598 
599 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
600 	return file_check_and_advance_wb_err(file);
601 }
602 EXPORT_SYMBOL(file_fdatawait_range);
603 
604 /**
605  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
606  * @mapping: address space structure to wait for
607  *
608  * Walk the list of under-writeback pages of the given address space
609  * and wait for all of them.  Unlike filemap_fdatawait(), this function
610  * does not clear error status of the address space.
611  *
612  * Use this function if callers don't handle errors themselves.  Expected
613  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
614  * fsfreeze(8)
615  *
616  * Return: error status of the address space.
617  */
618 int filemap_fdatawait_keep_errors(struct address_space *mapping)
619 {
620 	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
621 	return filemap_check_and_keep_errors(mapping);
622 }
623 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
624 
625 /* Returns true if writeback might be needed or already in progress. */
626 static bool mapping_needs_writeback(struct address_space *mapping)
627 {
628 	return mapping->nrpages;
629 }
630 
631 bool filemap_range_has_writeback(struct address_space *mapping,
632 				 loff_t start_byte, loff_t end_byte)
633 {
634 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
635 	pgoff_t max = end_byte >> PAGE_SHIFT;
636 	struct folio *folio;
637 
638 	if (end_byte < start_byte)
639 		return false;
640 
641 	rcu_read_lock();
642 	xas_for_each(&xas, folio, max) {
643 		if (xas_retry(&xas, folio))
644 			continue;
645 		if (xa_is_value(folio))
646 			continue;
647 		if (folio_test_dirty(folio) || folio_test_locked(folio) ||
648 				folio_test_writeback(folio))
649 			break;
650 	}
651 	rcu_read_unlock();
652 	return folio != NULL;
653 }
654 EXPORT_SYMBOL_GPL(filemap_range_has_writeback);
655 
656 /**
657  * filemap_write_and_wait_range - write out & wait on a file range
658  * @mapping:	the address_space for the pages
659  * @lstart:	offset in bytes where the range starts
660  * @lend:	offset in bytes where the range ends (inclusive)
661  *
662  * Write out and wait upon file offsets lstart->lend, inclusive.
663  *
664  * Note that @lend is inclusive (describes the last byte to be written) so
665  * that this function can be used to write to the very end-of-file (end = -1).
666  *
667  * Return: error status of the address space.
668  */
669 int filemap_write_and_wait_range(struct address_space *mapping,
670 				 loff_t lstart, loff_t lend)
671 {
672 	int err = 0, err2;
673 
674 	if (lend < lstart)
675 		return 0;
676 
677 	if (mapping_needs_writeback(mapping)) {
678 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
679 						 WB_SYNC_ALL);
680 		/*
681 		 * Even if the above returned error, the pages may be
682 		 * written partially (e.g. -ENOSPC), so we wait for it.
683 		 * But the -EIO is special case, it may indicate the worst
684 		 * thing (e.g. bug) happened, so we avoid waiting for it.
685 		 */
686 		if (err != -EIO)
687 			__filemap_fdatawait_range(mapping, lstart, lend);
688 	}
689 	err2 = filemap_check_errors(mapping);
690 	if (!err)
691 		err = err2;
692 	return err;
693 }
694 EXPORT_SYMBOL(filemap_write_and_wait_range);
695 
696 void __filemap_set_wb_err(struct address_space *mapping, int err)
697 {
698 	errseq_t eseq = errseq_set(&mapping->wb_err, err);
699 
700 	trace_filemap_set_wb_err(mapping, eseq);
701 }
702 EXPORT_SYMBOL(__filemap_set_wb_err);
703 
704 /**
705  * file_check_and_advance_wb_err - report wb error (if any) that was previously
706  * 				   and advance wb_err to current one
707  * @file: struct file on which the error is being reported
708  *
709  * When userland calls fsync (or something like nfsd does the equivalent), we
710  * want to report any writeback errors that occurred since the last fsync (or
711  * since the file was opened if there haven't been any).
712  *
713  * Grab the wb_err from the mapping. If it matches what we have in the file,
714  * then just quickly return 0. The file is all caught up.
715  *
716  * If it doesn't match, then take the mapping value, set the "seen" flag in
717  * it and try to swap it into place. If it works, or another task beat us
718  * to it with the new value, then update the f_wb_err and return the error
719  * portion. The error at this point must be reported via proper channels
720  * (a'la fsync, or NFS COMMIT operation, etc.).
721  *
722  * While we handle mapping->wb_err with atomic operations, the f_wb_err
723  * value is protected by the f_lock since we must ensure that it reflects
724  * the latest value swapped in for this file descriptor.
725  *
726  * Return: %0 on success, negative error code otherwise.
727  */
728 int file_check_and_advance_wb_err(struct file *file)
729 {
730 	int err = 0;
731 	errseq_t old = READ_ONCE(file->f_wb_err);
732 	struct address_space *mapping = file->f_mapping;
733 
734 	/* Locklessly handle the common case where nothing has changed */
735 	if (errseq_check(&mapping->wb_err, old)) {
736 		/* Something changed, must use slow path */
737 		spin_lock(&file->f_lock);
738 		old = file->f_wb_err;
739 		err = errseq_check_and_advance(&mapping->wb_err,
740 						&file->f_wb_err);
741 		trace_file_check_and_advance_wb_err(file, old);
742 		spin_unlock(&file->f_lock);
743 	}
744 
745 	/*
746 	 * We're mostly using this function as a drop in replacement for
747 	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
748 	 * that the legacy code would have had on these flags.
749 	 */
750 	clear_bit(AS_EIO, &mapping->flags);
751 	clear_bit(AS_ENOSPC, &mapping->flags);
752 	return err;
753 }
754 EXPORT_SYMBOL(file_check_and_advance_wb_err);
755 
756 /**
757  * file_write_and_wait_range - write out & wait on a file range
758  * @file:	file pointing to address_space with pages
759  * @lstart:	offset in bytes where the range starts
760  * @lend:	offset in bytes where the range ends (inclusive)
761  *
762  * Write out and wait upon file offsets lstart->lend, inclusive.
763  *
764  * Note that @lend is inclusive (describes the last byte to be written) so
765  * that this function can be used to write to the very end-of-file (end = -1).
766  *
767  * After writing out and waiting on the data, we check and advance the
768  * f_wb_err cursor to the latest value, and return any errors detected there.
769  *
770  * Return: %0 on success, negative error code otherwise.
771  */
772 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
773 {
774 	int err = 0, err2;
775 	struct address_space *mapping = file->f_mapping;
776 
777 	if (lend < lstart)
778 		return 0;
779 
780 	if (mapping_needs_writeback(mapping)) {
781 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
782 						 WB_SYNC_ALL);
783 		/* See comment of filemap_write_and_wait() */
784 		if (err != -EIO)
785 			__filemap_fdatawait_range(mapping, lstart, lend);
786 	}
787 	err2 = file_check_and_advance_wb_err(file);
788 	if (!err)
789 		err = err2;
790 	return err;
791 }
792 EXPORT_SYMBOL(file_write_and_wait_range);
793 
794 /**
795  * replace_page_cache_folio - replace a pagecache folio with a new one
796  * @old:	folio to be replaced
797  * @new:	folio to replace with
798  *
799  * This function replaces a folio in the pagecache with a new one.  On
800  * success it acquires the pagecache reference for the new folio and
801  * drops it for the old folio.  Both the old and new folios must be
802  * locked.  This function does not add the new folio to the LRU, the
803  * caller must do that.
804  *
805  * The remove + add is atomic.  This function cannot fail.
806  */
807 void replace_page_cache_folio(struct folio *old, struct folio *new)
808 {
809 	struct address_space *mapping = old->mapping;
810 	void (*free_folio)(struct folio *) = mapping->a_ops->free_folio;
811 	pgoff_t offset = old->index;
812 	XA_STATE(xas, &mapping->i_pages, offset);
813 
814 	VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
815 	VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
816 	VM_BUG_ON_FOLIO(new->mapping, new);
817 
818 	folio_get(new);
819 	new->mapping = mapping;
820 	new->index = offset;
821 
822 	mem_cgroup_migrate(old, new);
823 
824 	xas_lock_irq(&xas);
825 	xas_store(&xas, new);
826 
827 	old->mapping = NULL;
828 	/* hugetlb pages do not participate in page cache accounting. */
829 	if (!folio_test_hugetlb(old))
830 		__lruvec_stat_sub_folio(old, NR_FILE_PAGES);
831 	if (!folio_test_hugetlb(new))
832 		__lruvec_stat_add_folio(new, NR_FILE_PAGES);
833 	if (folio_test_swapbacked(old))
834 		__lruvec_stat_sub_folio(old, NR_SHMEM);
835 	if (folio_test_swapbacked(new))
836 		__lruvec_stat_add_folio(new, NR_SHMEM);
837 	xas_unlock_irq(&xas);
838 	if (free_folio)
839 		free_folio(old);
840 	folio_put(old);
841 }
842 EXPORT_SYMBOL_GPL(replace_page_cache_folio);
843 
844 noinline int __filemap_add_folio(struct address_space *mapping,
845 		struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
846 {
847 	XA_STATE(xas, &mapping->i_pages, index);
848 	int huge = folio_test_hugetlb(folio);
849 	bool charged = false;
850 	long nr = 1;
851 
852 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
853 	VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
854 	mapping_set_update(&xas, mapping);
855 
856 	if (!huge) {
857 		int error = mem_cgroup_charge(folio, NULL, gfp);
858 		VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
859 		if (error)
860 			return error;
861 		charged = true;
862 		xas_set_order(&xas, index, folio_order(folio));
863 		nr = folio_nr_pages(folio);
864 	}
865 
866 	gfp &= GFP_RECLAIM_MASK;
867 	folio_ref_add(folio, nr);
868 	folio->mapping = mapping;
869 	folio->index = xas.xa_index;
870 
871 	do {
872 		unsigned int order = xa_get_order(xas.xa, xas.xa_index);
873 		void *entry, *old = NULL;
874 
875 		if (order > folio_order(folio))
876 			xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
877 					order, gfp);
878 		xas_lock_irq(&xas);
879 		xas_for_each_conflict(&xas, entry) {
880 			old = entry;
881 			if (!xa_is_value(entry)) {
882 				xas_set_err(&xas, -EEXIST);
883 				goto unlock;
884 			}
885 		}
886 
887 		if (old) {
888 			if (shadowp)
889 				*shadowp = old;
890 			/* entry may have been split before we acquired lock */
891 			order = xa_get_order(xas.xa, xas.xa_index);
892 			if (order > folio_order(folio)) {
893 				/* How to handle large swap entries? */
894 				BUG_ON(shmem_mapping(mapping));
895 				xas_split(&xas, old, order);
896 				xas_reset(&xas);
897 			}
898 		}
899 
900 		xas_store(&xas, folio);
901 		if (xas_error(&xas))
902 			goto unlock;
903 
904 		mapping->nrpages += nr;
905 
906 		/* hugetlb pages do not participate in page cache accounting */
907 		if (!huge) {
908 			__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
909 			if (folio_test_pmd_mappable(folio))
910 				__lruvec_stat_mod_folio(folio,
911 						NR_FILE_THPS, nr);
912 		}
913 unlock:
914 		xas_unlock_irq(&xas);
915 	} while (xas_nomem(&xas, gfp));
916 
917 	if (xas_error(&xas))
918 		goto error;
919 
920 	trace_mm_filemap_add_to_page_cache(folio);
921 	return 0;
922 error:
923 	if (charged)
924 		mem_cgroup_uncharge(folio);
925 	folio->mapping = NULL;
926 	/* Leave page->index set: truncation relies upon it */
927 	folio_put_refs(folio, nr);
928 	return xas_error(&xas);
929 }
930 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
931 
932 int filemap_add_folio(struct address_space *mapping, struct folio *folio,
933 				pgoff_t index, gfp_t gfp)
934 {
935 	void *shadow = NULL;
936 	int ret;
937 
938 	__folio_set_locked(folio);
939 	ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
940 	if (unlikely(ret))
941 		__folio_clear_locked(folio);
942 	else {
943 		/*
944 		 * The folio might have been evicted from cache only
945 		 * recently, in which case it should be activated like
946 		 * any other repeatedly accessed folio.
947 		 * The exception is folios getting rewritten; evicting other
948 		 * data from the working set, only to cache data that will
949 		 * get overwritten with something else, is a waste of memory.
950 		 */
951 		WARN_ON_ONCE(folio_test_active(folio));
952 		if (!(gfp & __GFP_WRITE) && shadow)
953 			workingset_refault(folio, shadow);
954 		folio_add_lru(folio);
955 	}
956 	return ret;
957 }
958 EXPORT_SYMBOL_GPL(filemap_add_folio);
959 
960 #ifdef CONFIG_NUMA
961 struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order)
962 {
963 	int n;
964 	struct folio *folio;
965 
966 	if (cpuset_do_page_mem_spread()) {
967 		unsigned int cpuset_mems_cookie;
968 		do {
969 			cpuset_mems_cookie = read_mems_allowed_begin();
970 			n = cpuset_mem_spread_node();
971 			folio = __folio_alloc_node(gfp, order, n);
972 		} while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
973 
974 		return folio;
975 	}
976 	return folio_alloc(gfp, order);
977 }
978 EXPORT_SYMBOL(filemap_alloc_folio);
979 #endif
980 
981 /*
982  * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
983  *
984  * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
985  *
986  * @mapping1: the first mapping to lock
987  * @mapping2: the second mapping to lock
988  */
989 void filemap_invalidate_lock_two(struct address_space *mapping1,
990 				 struct address_space *mapping2)
991 {
992 	if (mapping1 > mapping2)
993 		swap(mapping1, mapping2);
994 	if (mapping1)
995 		down_write(&mapping1->invalidate_lock);
996 	if (mapping2 && mapping1 != mapping2)
997 		down_write_nested(&mapping2->invalidate_lock, 1);
998 }
999 EXPORT_SYMBOL(filemap_invalidate_lock_two);
1000 
1001 /*
1002  * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
1003  *
1004  * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1005  *
1006  * @mapping1: the first mapping to unlock
1007  * @mapping2: the second mapping to unlock
1008  */
1009 void filemap_invalidate_unlock_two(struct address_space *mapping1,
1010 				   struct address_space *mapping2)
1011 {
1012 	if (mapping1)
1013 		up_write(&mapping1->invalidate_lock);
1014 	if (mapping2 && mapping1 != mapping2)
1015 		up_write(&mapping2->invalidate_lock);
1016 }
1017 EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1018 
1019 /*
1020  * In order to wait for pages to become available there must be
1021  * waitqueues associated with pages. By using a hash table of
1022  * waitqueues where the bucket discipline is to maintain all
1023  * waiters on the same queue and wake all when any of the pages
1024  * become available, and for the woken contexts to check to be
1025  * sure the appropriate page became available, this saves space
1026  * at a cost of "thundering herd" phenomena during rare hash
1027  * collisions.
1028  */
1029 #define PAGE_WAIT_TABLE_BITS 8
1030 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1031 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1032 
1033 static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1034 {
1035 	return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
1036 }
1037 
1038 void __init pagecache_init(void)
1039 {
1040 	int i;
1041 
1042 	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1043 		init_waitqueue_head(&folio_wait_table[i]);
1044 
1045 	page_writeback_init();
1046 }
1047 
1048 /*
1049  * The page wait code treats the "wait->flags" somewhat unusually, because
1050  * we have multiple different kinds of waits, not just the usual "exclusive"
1051  * one.
1052  *
1053  * We have:
1054  *
1055  *  (a) no special bits set:
1056  *
1057  *	We're just waiting for the bit to be released, and when a waker
1058  *	calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1059  *	and remove it from the wait queue.
1060  *
1061  *	Simple and straightforward.
1062  *
1063  *  (b) WQ_FLAG_EXCLUSIVE:
1064  *
1065  *	The waiter is waiting to get the lock, and only one waiter should
1066  *	be woken up to avoid any thundering herd behavior. We'll set the
1067  *	WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1068  *
1069  *	This is the traditional exclusive wait.
1070  *
1071  *  (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1072  *
1073  *	The waiter is waiting to get the bit, and additionally wants the
1074  *	lock to be transferred to it for fair lock behavior. If the lock
1075  *	cannot be taken, we stop walking the wait queue without waking
1076  *	the waiter.
1077  *
1078  *	This is the "fair lock handoff" case, and in addition to setting
1079  *	WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1080  *	that it now has the lock.
1081  */
1082 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1083 {
1084 	unsigned int flags;
1085 	struct wait_page_key *key = arg;
1086 	struct wait_page_queue *wait_page
1087 		= container_of(wait, struct wait_page_queue, wait);
1088 
1089 	if (!wake_page_match(wait_page, key))
1090 		return 0;
1091 
1092 	/*
1093 	 * If it's a lock handoff wait, we get the bit for it, and
1094 	 * stop walking (and do not wake it up) if we can't.
1095 	 */
1096 	flags = wait->flags;
1097 	if (flags & WQ_FLAG_EXCLUSIVE) {
1098 		if (test_bit(key->bit_nr, &key->folio->flags))
1099 			return -1;
1100 		if (flags & WQ_FLAG_CUSTOM) {
1101 			if (test_and_set_bit(key->bit_nr, &key->folio->flags))
1102 				return -1;
1103 			flags |= WQ_FLAG_DONE;
1104 		}
1105 	}
1106 
1107 	/*
1108 	 * We are holding the wait-queue lock, but the waiter that
1109 	 * is waiting for this will be checking the flags without
1110 	 * any locking.
1111 	 *
1112 	 * So update the flags atomically, and wake up the waiter
1113 	 * afterwards to avoid any races. This store-release pairs
1114 	 * with the load-acquire in folio_wait_bit_common().
1115 	 */
1116 	smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1117 	wake_up_state(wait->private, mode);
1118 
1119 	/*
1120 	 * Ok, we have successfully done what we're waiting for,
1121 	 * and we can unconditionally remove the wait entry.
1122 	 *
1123 	 * Note that this pairs with the "finish_wait()" in the
1124 	 * waiter, and has to be the absolute last thing we do.
1125 	 * After this list_del_init(&wait->entry) the wait entry
1126 	 * might be de-allocated and the process might even have
1127 	 * exited.
1128 	 */
1129 	list_del_init_careful(&wait->entry);
1130 	return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1131 }
1132 
1133 static void folio_wake_bit(struct folio *folio, int bit_nr)
1134 {
1135 	wait_queue_head_t *q = folio_waitqueue(folio);
1136 	struct wait_page_key key;
1137 	unsigned long flags;
1138 	wait_queue_entry_t bookmark;
1139 
1140 	key.folio = folio;
1141 	key.bit_nr = bit_nr;
1142 	key.page_match = 0;
1143 
1144 	bookmark.flags = 0;
1145 	bookmark.private = NULL;
1146 	bookmark.func = NULL;
1147 	INIT_LIST_HEAD(&bookmark.entry);
1148 
1149 	spin_lock_irqsave(&q->lock, flags);
1150 	__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1151 
1152 	while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1153 		/*
1154 		 * Take a breather from holding the lock,
1155 		 * allow pages that finish wake up asynchronously
1156 		 * to acquire the lock and remove themselves
1157 		 * from wait queue
1158 		 */
1159 		spin_unlock_irqrestore(&q->lock, flags);
1160 		cpu_relax();
1161 		spin_lock_irqsave(&q->lock, flags);
1162 		__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1163 	}
1164 
1165 	/*
1166 	 * It's possible to miss clearing waiters here, when we woke our page
1167 	 * waiters, but the hashed waitqueue has waiters for other pages on it.
1168 	 * That's okay, it's a rare case. The next waker will clear it.
1169 	 *
1170 	 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE,
1171 	 * other), the flag may be cleared in the course of freeing the page;
1172 	 * but that is not required for correctness.
1173 	 */
1174 	if (!waitqueue_active(q) || !key.page_match)
1175 		folio_clear_waiters(folio);
1176 
1177 	spin_unlock_irqrestore(&q->lock, flags);
1178 }
1179 
1180 static void folio_wake(struct folio *folio, int bit)
1181 {
1182 	if (!folio_test_waiters(folio))
1183 		return;
1184 	folio_wake_bit(folio, bit);
1185 }
1186 
1187 /*
1188  * A choice of three behaviors for folio_wait_bit_common():
1189  */
1190 enum behavior {
1191 	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
1192 			 * __folio_lock() waiting on then setting PG_locked.
1193 			 */
1194 	SHARED,		/* Hold ref to page and check the bit when woken, like
1195 			 * folio_wait_writeback() waiting on PG_writeback.
1196 			 */
1197 	DROP,		/* Drop ref to page before wait, no check when woken,
1198 			 * like folio_put_wait_locked() on PG_locked.
1199 			 */
1200 };
1201 
1202 /*
1203  * Attempt to check (or get) the folio flag, and mark us done
1204  * if successful.
1205  */
1206 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
1207 					struct wait_queue_entry *wait)
1208 {
1209 	if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1210 		if (test_and_set_bit(bit_nr, &folio->flags))
1211 			return false;
1212 	} else if (test_bit(bit_nr, &folio->flags))
1213 		return false;
1214 
1215 	wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1216 	return true;
1217 }
1218 
1219 /* How many times do we accept lock stealing from under a waiter? */
1220 int sysctl_page_lock_unfairness = 5;
1221 
1222 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1223 		int state, enum behavior behavior)
1224 {
1225 	wait_queue_head_t *q = folio_waitqueue(folio);
1226 	int unfairness = sysctl_page_lock_unfairness;
1227 	struct wait_page_queue wait_page;
1228 	wait_queue_entry_t *wait = &wait_page.wait;
1229 	bool thrashing = false;
1230 	unsigned long pflags;
1231 	bool in_thrashing;
1232 
1233 	if (bit_nr == PG_locked &&
1234 	    !folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1235 		delayacct_thrashing_start(&in_thrashing);
1236 		psi_memstall_enter(&pflags);
1237 		thrashing = true;
1238 	}
1239 
1240 	init_wait(wait);
1241 	wait->func = wake_page_function;
1242 	wait_page.folio = folio;
1243 	wait_page.bit_nr = bit_nr;
1244 
1245 repeat:
1246 	wait->flags = 0;
1247 	if (behavior == EXCLUSIVE) {
1248 		wait->flags = WQ_FLAG_EXCLUSIVE;
1249 		if (--unfairness < 0)
1250 			wait->flags |= WQ_FLAG_CUSTOM;
1251 	}
1252 
1253 	/*
1254 	 * Do one last check whether we can get the
1255 	 * page bit synchronously.
1256 	 *
1257 	 * Do the folio_set_waiters() marking before that
1258 	 * to let any waker we _just_ missed know they
1259 	 * need to wake us up (otherwise they'll never
1260 	 * even go to the slow case that looks at the
1261 	 * page queue), and add ourselves to the wait
1262 	 * queue if we need to sleep.
1263 	 *
1264 	 * This part needs to be done under the queue
1265 	 * lock to avoid races.
1266 	 */
1267 	spin_lock_irq(&q->lock);
1268 	folio_set_waiters(folio);
1269 	if (!folio_trylock_flag(folio, bit_nr, wait))
1270 		__add_wait_queue_entry_tail(q, wait);
1271 	spin_unlock_irq(&q->lock);
1272 
1273 	/*
1274 	 * From now on, all the logic will be based on
1275 	 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1276 	 * see whether the page bit testing has already
1277 	 * been done by the wake function.
1278 	 *
1279 	 * We can drop our reference to the folio.
1280 	 */
1281 	if (behavior == DROP)
1282 		folio_put(folio);
1283 
1284 	/*
1285 	 * Note that until the "finish_wait()", or until
1286 	 * we see the WQ_FLAG_WOKEN flag, we need to
1287 	 * be very careful with the 'wait->flags', because
1288 	 * we may race with a waker that sets them.
1289 	 */
1290 	for (;;) {
1291 		unsigned int flags;
1292 
1293 		set_current_state(state);
1294 
1295 		/* Loop until we've been woken or interrupted */
1296 		flags = smp_load_acquire(&wait->flags);
1297 		if (!(flags & WQ_FLAG_WOKEN)) {
1298 			if (signal_pending_state(state, current))
1299 				break;
1300 
1301 			io_schedule();
1302 			continue;
1303 		}
1304 
1305 		/* If we were non-exclusive, we're done */
1306 		if (behavior != EXCLUSIVE)
1307 			break;
1308 
1309 		/* If the waker got the lock for us, we're done */
1310 		if (flags & WQ_FLAG_DONE)
1311 			break;
1312 
1313 		/*
1314 		 * Otherwise, if we're getting the lock, we need to
1315 		 * try to get it ourselves.
1316 		 *
1317 		 * And if that fails, we'll have to retry this all.
1318 		 */
1319 		if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
1320 			goto repeat;
1321 
1322 		wait->flags |= WQ_FLAG_DONE;
1323 		break;
1324 	}
1325 
1326 	/*
1327 	 * If a signal happened, this 'finish_wait()' may remove the last
1328 	 * waiter from the wait-queues, but the folio waiters bit will remain
1329 	 * set. That's ok. The next wakeup will take care of it, and trying
1330 	 * to do it here would be difficult and prone to races.
1331 	 */
1332 	finish_wait(q, wait);
1333 
1334 	if (thrashing) {
1335 		delayacct_thrashing_end(&in_thrashing);
1336 		psi_memstall_leave(&pflags);
1337 	}
1338 
1339 	/*
1340 	 * NOTE! The wait->flags weren't stable until we've done the
1341 	 * 'finish_wait()', and we could have exited the loop above due
1342 	 * to a signal, and had a wakeup event happen after the signal
1343 	 * test but before the 'finish_wait()'.
1344 	 *
1345 	 * So only after the finish_wait() can we reliably determine
1346 	 * if we got woken up or not, so we can now figure out the final
1347 	 * return value based on that state without races.
1348 	 *
1349 	 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1350 	 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1351 	 */
1352 	if (behavior == EXCLUSIVE)
1353 		return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1354 
1355 	return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1356 }
1357 
1358 #ifdef CONFIG_MIGRATION
1359 /**
1360  * migration_entry_wait_on_locked - Wait for a migration entry to be removed
1361  * @entry: migration swap entry.
1362  * @ptep: mapped pte pointer. Will return with the ptep unmapped. Only required
1363  *        for pte entries, pass NULL for pmd entries.
1364  * @ptl: already locked ptl. This function will drop the lock.
1365  *
1366  * Wait for a migration entry referencing the given page to be removed. This is
1367  * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except
1368  * this can be called without taking a reference on the page. Instead this
1369  * should be called while holding the ptl for the migration entry referencing
1370  * the page.
1371  *
1372  * Returns after unmapping and unlocking the pte/ptl with pte_unmap_unlock().
1373  *
1374  * This follows the same logic as folio_wait_bit_common() so see the comments
1375  * there.
1376  */
1377 void migration_entry_wait_on_locked(swp_entry_t entry, pte_t *ptep,
1378 				spinlock_t *ptl)
1379 {
1380 	struct wait_page_queue wait_page;
1381 	wait_queue_entry_t *wait = &wait_page.wait;
1382 	bool thrashing = false;
1383 	unsigned long pflags;
1384 	bool in_thrashing;
1385 	wait_queue_head_t *q;
1386 	struct folio *folio = page_folio(pfn_swap_entry_to_page(entry));
1387 
1388 	q = folio_waitqueue(folio);
1389 	if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1390 		delayacct_thrashing_start(&in_thrashing);
1391 		psi_memstall_enter(&pflags);
1392 		thrashing = true;
1393 	}
1394 
1395 	init_wait(wait);
1396 	wait->func = wake_page_function;
1397 	wait_page.folio = folio;
1398 	wait_page.bit_nr = PG_locked;
1399 	wait->flags = 0;
1400 
1401 	spin_lock_irq(&q->lock);
1402 	folio_set_waiters(folio);
1403 	if (!folio_trylock_flag(folio, PG_locked, wait))
1404 		__add_wait_queue_entry_tail(q, wait);
1405 	spin_unlock_irq(&q->lock);
1406 
1407 	/*
1408 	 * If a migration entry exists for the page the migration path must hold
1409 	 * a valid reference to the page, and it must take the ptl to remove the
1410 	 * migration entry. So the page is valid until the ptl is dropped.
1411 	 */
1412 	if (ptep)
1413 		pte_unmap_unlock(ptep, ptl);
1414 	else
1415 		spin_unlock(ptl);
1416 
1417 	for (;;) {
1418 		unsigned int flags;
1419 
1420 		set_current_state(TASK_UNINTERRUPTIBLE);
1421 
1422 		/* Loop until we've been woken or interrupted */
1423 		flags = smp_load_acquire(&wait->flags);
1424 		if (!(flags & WQ_FLAG_WOKEN)) {
1425 			if (signal_pending_state(TASK_UNINTERRUPTIBLE, current))
1426 				break;
1427 
1428 			io_schedule();
1429 			continue;
1430 		}
1431 		break;
1432 	}
1433 
1434 	finish_wait(q, wait);
1435 
1436 	if (thrashing) {
1437 		delayacct_thrashing_end(&in_thrashing);
1438 		psi_memstall_leave(&pflags);
1439 	}
1440 }
1441 #endif
1442 
1443 void folio_wait_bit(struct folio *folio, int bit_nr)
1444 {
1445 	folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1446 }
1447 EXPORT_SYMBOL(folio_wait_bit);
1448 
1449 int folio_wait_bit_killable(struct folio *folio, int bit_nr)
1450 {
1451 	return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
1452 }
1453 EXPORT_SYMBOL(folio_wait_bit_killable);
1454 
1455 /**
1456  * folio_put_wait_locked - Drop a reference and wait for it to be unlocked
1457  * @folio: The folio to wait for.
1458  * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1459  *
1460  * The caller should hold a reference on @folio.  They expect the page to
1461  * become unlocked relatively soon, but do not wish to hold up migration
1462  * (for example) by holding the reference while waiting for the folio to
1463  * come unlocked.  After this function returns, the caller should not
1464  * dereference @folio.
1465  *
1466  * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal.
1467  */
1468 static int folio_put_wait_locked(struct folio *folio, int state)
1469 {
1470 	return folio_wait_bit_common(folio, PG_locked, state, DROP);
1471 }
1472 
1473 /**
1474  * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue
1475  * @folio: Folio defining the wait queue of interest
1476  * @waiter: Waiter to add to the queue
1477  *
1478  * Add an arbitrary @waiter to the wait queue for the nominated @folio.
1479  */
1480 void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter)
1481 {
1482 	wait_queue_head_t *q = folio_waitqueue(folio);
1483 	unsigned long flags;
1484 
1485 	spin_lock_irqsave(&q->lock, flags);
1486 	__add_wait_queue_entry_tail(q, waiter);
1487 	folio_set_waiters(folio);
1488 	spin_unlock_irqrestore(&q->lock, flags);
1489 }
1490 EXPORT_SYMBOL_GPL(folio_add_wait_queue);
1491 
1492 #ifndef clear_bit_unlock_is_negative_byte
1493 
1494 /*
1495  * PG_waiters is the high bit in the same byte as PG_lock.
1496  *
1497  * On x86 (and on many other architectures), we can clear PG_lock and
1498  * test the sign bit at the same time. But if the architecture does
1499  * not support that special operation, we just do this all by hand
1500  * instead.
1501  *
1502  * The read of PG_waiters has to be after (or concurrently with) PG_locked
1503  * being cleared, but a memory barrier should be unnecessary since it is
1504  * in the same byte as PG_locked.
1505  */
1506 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1507 {
1508 	clear_bit_unlock(nr, mem);
1509 	/* smp_mb__after_atomic(); */
1510 	return test_bit(PG_waiters, mem);
1511 }
1512 
1513 #endif
1514 
1515 /**
1516  * folio_unlock - Unlock a locked folio.
1517  * @folio: The folio.
1518  *
1519  * Unlocks the folio and wakes up any thread sleeping on the page lock.
1520  *
1521  * Context: May be called from interrupt or process context.  May not be
1522  * called from NMI context.
1523  */
1524 void folio_unlock(struct folio *folio)
1525 {
1526 	/* Bit 7 allows x86 to check the byte's sign bit */
1527 	BUILD_BUG_ON(PG_waiters != 7);
1528 	BUILD_BUG_ON(PG_locked > 7);
1529 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1530 	if (clear_bit_unlock_is_negative_byte(PG_locked, folio_flags(folio, 0)))
1531 		folio_wake_bit(folio, PG_locked);
1532 }
1533 EXPORT_SYMBOL(folio_unlock);
1534 
1535 /**
1536  * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1537  * @folio: The folio.
1538  *
1539  * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1540  * it.  The folio reference held for PG_private_2 being set is released.
1541  *
1542  * This is, for example, used when a netfs folio is being written to a local
1543  * disk cache, thereby allowing writes to the cache for the same folio to be
1544  * serialised.
1545  */
1546 void folio_end_private_2(struct folio *folio)
1547 {
1548 	VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1549 	clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
1550 	folio_wake_bit(folio, PG_private_2);
1551 	folio_put(folio);
1552 }
1553 EXPORT_SYMBOL(folio_end_private_2);
1554 
1555 /**
1556  * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1557  * @folio: The folio to wait on.
1558  *
1559  * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio.
1560  */
1561 void folio_wait_private_2(struct folio *folio)
1562 {
1563 	while (folio_test_private_2(folio))
1564 		folio_wait_bit(folio, PG_private_2);
1565 }
1566 EXPORT_SYMBOL(folio_wait_private_2);
1567 
1568 /**
1569  * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1570  * @folio: The folio to wait on.
1571  *
1572  * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio or until a
1573  * fatal signal is received by the calling task.
1574  *
1575  * Return:
1576  * - 0 if successful.
1577  * - -EINTR if a fatal signal was encountered.
1578  */
1579 int folio_wait_private_2_killable(struct folio *folio)
1580 {
1581 	int ret = 0;
1582 
1583 	while (folio_test_private_2(folio)) {
1584 		ret = folio_wait_bit_killable(folio, PG_private_2);
1585 		if (ret < 0)
1586 			break;
1587 	}
1588 
1589 	return ret;
1590 }
1591 EXPORT_SYMBOL(folio_wait_private_2_killable);
1592 
1593 /**
1594  * folio_end_writeback - End writeback against a folio.
1595  * @folio: The folio.
1596  */
1597 void folio_end_writeback(struct folio *folio)
1598 {
1599 	/*
1600 	 * folio_test_clear_reclaim() could be used here but it is an
1601 	 * atomic operation and overkill in this particular case. Failing
1602 	 * to shuffle a folio marked for immediate reclaim is too mild
1603 	 * a gain to justify taking an atomic operation penalty at the
1604 	 * end of every folio writeback.
1605 	 */
1606 	if (folio_test_reclaim(folio)) {
1607 		folio_clear_reclaim(folio);
1608 		folio_rotate_reclaimable(folio);
1609 	}
1610 
1611 	/*
1612 	 * Writeback does not hold a folio reference of its own, relying
1613 	 * on truncation to wait for the clearing of PG_writeback.
1614 	 * But here we must make sure that the folio is not freed and
1615 	 * reused before the folio_wake().
1616 	 */
1617 	folio_get(folio);
1618 	if (!__folio_end_writeback(folio))
1619 		BUG();
1620 
1621 	smp_mb__after_atomic();
1622 	folio_wake(folio, PG_writeback);
1623 	acct_reclaim_writeback(folio);
1624 	folio_put(folio);
1625 }
1626 EXPORT_SYMBOL(folio_end_writeback);
1627 
1628 /*
1629  * After completing I/O on a page, call this routine to update the page
1630  * flags appropriately
1631  */
1632 void page_endio(struct page *page, bool is_write, int err)
1633 {
1634 	struct folio *folio = page_folio(page);
1635 
1636 	if (!is_write) {
1637 		if (!err) {
1638 			folio_mark_uptodate(folio);
1639 		} else {
1640 			folio_clear_uptodate(folio);
1641 			folio_set_error(folio);
1642 		}
1643 		folio_unlock(folio);
1644 	} else {
1645 		if (err) {
1646 			struct address_space *mapping;
1647 
1648 			folio_set_error(folio);
1649 			mapping = folio_mapping(folio);
1650 			if (mapping)
1651 				mapping_set_error(mapping, err);
1652 		}
1653 		folio_end_writeback(folio);
1654 	}
1655 }
1656 EXPORT_SYMBOL_GPL(page_endio);
1657 
1658 /**
1659  * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1660  * @folio: The folio to lock
1661  */
1662 void __folio_lock(struct folio *folio)
1663 {
1664 	folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
1665 				EXCLUSIVE);
1666 }
1667 EXPORT_SYMBOL(__folio_lock);
1668 
1669 int __folio_lock_killable(struct folio *folio)
1670 {
1671 	return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
1672 					EXCLUSIVE);
1673 }
1674 EXPORT_SYMBOL_GPL(__folio_lock_killable);
1675 
1676 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
1677 {
1678 	struct wait_queue_head *q = folio_waitqueue(folio);
1679 	int ret = 0;
1680 
1681 	wait->folio = folio;
1682 	wait->bit_nr = PG_locked;
1683 
1684 	spin_lock_irq(&q->lock);
1685 	__add_wait_queue_entry_tail(q, &wait->wait);
1686 	folio_set_waiters(folio);
1687 	ret = !folio_trylock(folio);
1688 	/*
1689 	 * If we were successful now, we know we're still on the
1690 	 * waitqueue as we're still under the lock. This means it's
1691 	 * safe to remove and return success, we know the callback
1692 	 * isn't going to trigger.
1693 	 */
1694 	if (!ret)
1695 		__remove_wait_queue(q, &wait->wait);
1696 	else
1697 		ret = -EIOCBQUEUED;
1698 	spin_unlock_irq(&q->lock);
1699 	return ret;
1700 }
1701 
1702 /*
1703  * Return values:
1704  * true - folio is locked; mmap_lock is still held.
1705  * false - folio is not locked.
1706  *     mmap_lock has been released (mmap_read_unlock(), unless flags had both
1707  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1708  *     which case mmap_lock is still held.
1709  *
1710  * If neither ALLOW_RETRY nor KILLABLE are set, will always return true
1711  * with the folio locked and the mmap_lock unperturbed.
1712  */
1713 bool __folio_lock_or_retry(struct folio *folio, struct mm_struct *mm,
1714 			 unsigned int flags)
1715 {
1716 	if (fault_flag_allow_retry_first(flags)) {
1717 		/*
1718 		 * CAUTION! In this case, mmap_lock is not released
1719 		 * even though return 0.
1720 		 */
1721 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1722 			return false;
1723 
1724 		mmap_read_unlock(mm);
1725 		if (flags & FAULT_FLAG_KILLABLE)
1726 			folio_wait_locked_killable(folio);
1727 		else
1728 			folio_wait_locked(folio);
1729 		return false;
1730 	}
1731 	if (flags & FAULT_FLAG_KILLABLE) {
1732 		bool ret;
1733 
1734 		ret = __folio_lock_killable(folio);
1735 		if (ret) {
1736 			mmap_read_unlock(mm);
1737 			return false;
1738 		}
1739 	} else {
1740 		__folio_lock(folio);
1741 	}
1742 
1743 	return true;
1744 }
1745 
1746 /**
1747  * page_cache_next_miss() - Find the next gap in the page cache.
1748  * @mapping: Mapping.
1749  * @index: Index.
1750  * @max_scan: Maximum range to search.
1751  *
1752  * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1753  * gap with the lowest index.
1754  *
1755  * This function may be called under the rcu_read_lock.  However, this will
1756  * not atomically search a snapshot of the cache at a single point in time.
1757  * For example, if a gap is created at index 5, then subsequently a gap is
1758  * created at index 10, page_cache_next_miss covering both indices may
1759  * return 10 if called under the rcu_read_lock.
1760  *
1761  * Return: The index of the gap if found, otherwise an index outside the
1762  * range specified (in which case 'return - index >= max_scan' will be true).
1763  * In the rare case of index wrap-around, 0 will be returned.
1764  */
1765 pgoff_t page_cache_next_miss(struct address_space *mapping,
1766 			     pgoff_t index, unsigned long max_scan)
1767 {
1768 	XA_STATE(xas, &mapping->i_pages, index);
1769 
1770 	while (max_scan--) {
1771 		void *entry = xas_next(&xas);
1772 		if (!entry || xa_is_value(entry))
1773 			break;
1774 		if (xas.xa_index == 0)
1775 			break;
1776 	}
1777 
1778 	return xas.xa_index;
1779 }
1780 EXPORT_SYMBOL(page_cache_next_miss);
1781 
1782 /**
1783  * page_cache_prev_miss() - Find the previous gap in the page cache.
1784  * @mapping: Mapping.
1785  * @index: Index.
1786  * @max_scan: Maximum range to search.
1787  *
1788  * Search the range [max(index - max_scan + 1, 0), index] for the
1789  * gap with the highest index.
1790  *
1791  * This function may be called under the rcu_read_lock.  However, this will
1792  * not atomically search a snapshot of the cache at a single point in time.
1793  * For example, if a gap is created at index 10, then subsequently a gap is
1794  * created at index 5, page_cache_prev_miss() covering both indices may
1795  * return 5 if called under the rcu_read_lock.
1796  *
1797  * Return: The index of the gap if found, otherwise an index outside the
1798  * range specified (in which case 'index - return >= max_scan' will be true).
1799  * In the rare case of wrap-around, ULONG_MAX will be returned.
1800  */
1801 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1802 			     pgoff_t index, unsigned long max_scan)
1803 {
1804 	XA_STATE(xas, &mapping->i_pages, index);
1805 
1806 	while (max_scan--) {
1807 		void *entry = xas_prev(&xas);
1808 		if (!entry || xa_is_value(entry))
1809 			break;
1810 		if (xas.xa_index == ULONG_MAX)
1811 			break;
1812 	}
1813 
1814 	return xas.xa_index;
1815 }
1816 EXPORT_SYMBOL(page_cache_prev_miss);
1817 
1818 /*
1819  * Lockless page cache protocol:
1820  * On the lookup side:
1821  * 1. Load the folio from i_pages
1822  * 2. Increment the refcount if it's not zero
1823  * 3. If the folio is not found by xas_reload(), put the refcount and retry
1824  *
1825  * On the removal side:
1826  * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1827  * B. Remove the page from i_pages
1828  * C. Return the page to the page allocator
1829  *
1830  * This means that any page may have its reference count temporarily
1831  * increased by a speculative page cache (or fast GUP) lookup as it can
1832  * be allocated by another user before the RCU grace period expires.
1833  * Because the refcount temporarily acquired here may end up being the
1834  * last refcount on the page, any page allocation must be freeable by
1835  * folio_put().
1836  */
1837 
1838 /*
1839  * filemap_get_entry - Get a page cache entry.
1840  * @mapping: the address_space to search
1841  * @index: The page cache index.
1842  *
1843  * Looks up the page cache entry at @mapping & @index.  If it is a folio,
1844  * it is returned with an increased refcount.  If it is a shadow entry
1845  * of a previously evicted folio, or a swap entry from shmem/tmpfs,
1846  * it is returned without further action.
1847  *
1848  * Return: The folio, swap or shadow entry, %NULL if nothing is found.
1849  */
1850 void *filemap_get_entry(struct address_space *mapping, pgoff_t index)
1851 {
1852 	XA_STATE(xas, &mapping->i_pages, index);
1853 	struct folio *folio;
1854 
1855 	rcu_read_lock();
1856 repeat:
1857 	xas_reset(&xas);
1858 	folio = xas_load(&xas);
1859 	if (xas_retry(&xas, folio))
1860 		goto repeat;
1861 	/*
1862 	 * A shadow entry of a recently evicted page, or a swap entry from
1863 	 * shmem/tmpfs.  Return it without attempting to raise page count.
1864 	 */
1865 	if (!folio || xa_is_value(folio))
1866 		goto out;
1867 
1868 	if (!folio_try_get_rcu(folio))
1869 		goto repeat;
1870 
1871 	if (unlikely(folio != xas_reload(&xas))) {
1872 		folio_put(folio);
1873 		goto repeat;
1874 	}
1875 out:
1876 	rcu_read_unlock();
1877 
1878 	return folio;
1879 }
1880 
1881 /**
1882  * __filemap_get_folio - Find and get a reference to a folio.
1883  * @mapping: The address_space to search.
1884  * @index: The page index.
1885  * @fgp_flags: %FGP flags modify how the folio is returned.
1886  * @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
1887  *
1888  * Looks up the page cache entry at @mapping & @index.
1889  *
1890  * @fgp_flags can be zero or more of these flags:
1891  *
1892  * * %FGP_ACCESSED - The folio will be marked accessed.
1893  * * %FGP_LOCK - The folio is returned locked.
1894  * * %FGP_CREAT - If no page is present then a new page is allocated using
1895  *   @gfp and added to the page cache and the VM's LRU list.
1896  *   The page is returned locked and with an increased refcount.
1897  * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1898  *   page is already in cache.  If the page was allocated, unlock it before
1899  *   returning so the caller can do the same dance.
1900  * * %FGP_WRITE - The page will be written to by the caller.
1901  * * %FGP_NOFS - __GFP_FS will get cleared in gfp.
1902  * * %FGP_NOWAIT - Don't get blocked by page lock.
1903  * * %FGP_STABLE - Wait for the folio to be stable (finished writeback)
1904  *
1905  * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1906  * if the %GFP flags specified for %FGP_CREAT are atomic.
1907  *
1908  * If there is a page cache page, it is returned with an increased refcount.
1909  *
1910  * Return: The found folio or an ERR_PTR() otherwise.
1911  */
1912 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
1913 		int fgp_flags, gfp_t gfp)
1914 {
1915 	struct folio *folio;
1916 
1917 repeat:
1918 	folio = filemap_get_entry(mapping, index);
1919 	if (xa_is_value(folio))
1920 		folio = NULL;
1921 	if (!folio)
1922 		goto no_page;
1923 
1924 	if (fgp_flags & FGP_LOCK) {
1925 		if (fgp_flags & FGP_NOWAIT) {
1926 			if (!folio_trylock(folio)) {
1927 				folio_put(folio);
1928 				return ERR_PTR(-EAGAIN);
1929 			}
1930 		} else {
1931 			folio_lock(folio);
1932 		}
1933 
1934 		/* Has the page been truncated? */
1935 		if (unlikely(folio->mapping != mapping)) {
1936 			folio_unlock(folio);
1937 			folio_put(folio);
1938 			goto repeat;
1939 		}
1940 		VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
1941 	}
1942 
1943 	if (fgp_flags & FGP_ACCESSED)
1944 		folio_mark_accessed(folio);
1945 	else if (fgp_flags & FGP_WRITE) {
1946 		/* Clear idle flag for buffer write */
1947 		if (folio_test_idle(folio))
1948 			folio_clear_idle(folio);
1949 	}
1950 
1951 	if (fgp_flags & FGP_STABLE)
1952 		folio_wait_stable(folio);
1953 no_page:
1954 	if (!folio && (fgp_flags & FGP_CREAT)) {
1955 		int err;
1956 		if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1957 			gfp |= __GFP_WRITE;
1958 		if (fgp_flags & FGP_NOFS)
1959 			gfp &= ~__GFP_FS;
1960 		if (fgp_flags & FGP_NOWAIT) {
1961 			gfp &= ~GFP_KERNEL;
1962 			gfp |= GFP_NOWAIT | __GFP_NOWARN;
1963 		}
1964 
1965 		folio = filemap_alloc_folio(gfp, 0);
1966 		if (!folio)
1967 			return ERR_PTR(-ENOMEM);
1968 
1969 		if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1970 			fgp_flags |= FGP_LOCK;
1971 
1972 		/* Init accessed so avoid atomic mark_page_accessed later */
1973 		if (fgp_flags & FGP_ACCESSED)
1974 			__folio_set_referenced(folio);
1975 
1976 		err = filemap_add_folio(mapping, folio, index, gfp);
1977 		if (unlikely(err)) {
1978 			folio_put(folio);
1979 			folio = NULL;
1980 			if (err == -EEXIST)
1981 				goto repeat;
1982 		}
1983 
1984 		/*
1985 		 * filemap_add_folio locks the page, and for mmap
1986 		 * we expect an unlocked page.
1987 		 */
1988 		if (folio && (fgp_flags & FGP_FOR_MMAP))
1989 			folio_unlock(folio);
1990 	}
1991 
1992 	if (!folio)
1993 		return ERR_PTR(-ENOENT);
1994 	return folio;
1995 }
1996 EXPORT_SYMBOL(__filemap_get_folio);
1997 
1998 static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max,
1999 		xa_mark_t mark)
2000 {
2001 	struct folio *folio;
2002 
2003 retry:
2004 	if (mark == XA_PRESENT)
2005 		folio = xas_find(xas, max);
2006 	else
2007 		folio = xas_find_marked(xas, max, mark);
2008 
2009 	if (xas_retry(xas, folio))
2010 		goto retry;
2011 	/*
2012 	 * A shadow entry of a recently evicted page, a swap
2013 	 * entry from shmem/tmpfs or a DAX entry.  Return it
2014 	 * without attempting to raise page count.
2015 	 */
2016 	if (!folio || xa_is_value(folio))
2017 		return folio;
2018 
2019 	if (!folio_try_get_rcu(folio))
2020 		goto reset;
2021 
2022 	if (unlikely(folio != xas_reload(xas))) {
2023 		folio_put(folio);
2024 		goto reset;
2025 	}
2026 
2027 	return folio;
2028 reset:
2029 	xas_reset(xas);
2030 	goto retry;
2031 }
2032 
2033 /**
2034  * find_get_entries - gang pagecache lookup
2035  * @mapping:	The address_space to search
2036  * @start:	The starting page cache index
2037  * @end:	The final page index (inclusive).
2038  * @fbatch:	Where the resulting entries are placed.
2039  * @indices:	The cache indices corresponding to the entries in @entries
2040  *
2041  * find_get_entries() will search for and return a batch of entries in
2042  * the mapping.  The entries are placed in @fbatch.  find_get_entries()
2043  * takes a reference on any actual folios it returns.
2044  *
2045  * The entries have ascending indexes.  The indices may not be consecutive
2046  * due to not-present entries or large folios.
2047  *
2048  * Any shadow entries of evicted folios, or swap entries from
2049  * shmem/tmpfs, are included in the returned array.
2050  *
2051  * Return: The number of entries which were found.
2052  */
2053 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
2054 		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2055 {
2056 	XA_STATE(xas, &mapping->i_pages, *start);
2057 	struct folio *folio;
2058 
2059 	rcu_read_lock();
2060 	while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2061 		indices[fbatch->nr] = xas.xa_index;
2062 		if (!folio_batch_add(fbatch, folio))
2063 			break;
2064 	}
2065 	rcu_read_unlock();
2066 
2067 	if (folio_batch_count(fbatch)) {
2068 		unsigned long nr = 1;
2069 		int idx = folio_batch_count(fbatch) - 1;
2070 
2071 		folio = fbatch->folios[idx];
2072 		if (!xa_is_value(folio) && !folio_test_hugetlb(folio))
2073 			nr = folio_nr_pages(folio);
2074 		*start = indices[idx] + nr;
2075 	}
2076 	return folio_batch_count(fbatch);
2077 }
2078 
2079 /**
2080  * find_lock_entries - Find a batch of pagecache entries.
2081  * @mapping:	The address_space to search.
2082  * @start:	The starting page cache index.
2083  * @end:	The final page index (inclusive).
2084  * @fbatch:	Where the resulting entries are placed.
2085  * @indices:	The cache indices of the entries in @fbatch.
2086  *
2087  * find_lock_entries() will return a batch of entries from @mapping.
2088  * Swap, shadow and DAX entries are included.  Folios are returned
2089  * locked and with an incremented refcount.  Folios which are locked
2090  * by somebody else or under writeback are skipped.  Folios which are
2091  * partially outside the range are not returned.
2092  *
2093  * The entries have ascending indexes.  The indices may not be consecutive
2094  * due to not-present entries, large folios, folios which could not be
2095  * locked or folios under writeback.
2096  *
2097  * Return: The number of entries which were found.
2098  */
2099 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
2100 		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2101 {
2102 	XA_STATE(xas, &mapping->i_pages, *start);
2103 	struct folio *folio;
2104 
2105 	rcu_read_lock();
2106 	while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2107 		if (!xa_is_value(folio)) {
2108 			if (folio->index < *start)
2109 				goto put;
2110 			if (folio->index + folio_nr_pages(folio) - 1 > end)
2111 				goto put;
2112 			if (!folio_trylock(folio))
2113 				goto put;
2114 			if (folio->mapping != mapping ||
2115 			    folio_test_writeback(folio))
2116 				goto unlock;
2117 			VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index),
2118 					folio);
2119 		}
2120 		indices[fbatch->nr] = xas.xa_index;
2121 		if (!folio_batch_add(fbatch, folio))
2122 			break;
2123 		continue;
2124 unlock:
2125 		folio_unlock(folio);
2126 put:
2127 		folio_put(folio);
2128 	}
2129 	rcu_read_unlock();
2130 
2131 	if (folio_batch_count(fbatch)) {
2132 		unsigned long nr = 1;
2133 		int idx = folio_batch_count(fbatch) - 1;
2134 
2135 		folio = fbatch->folios[idx];
2136 		if (!xa_is_value(folio) && !folio_test_hugetlb(folio))
2137 			nr = folio_nr_pages(folio);
2138 		*start = indices[idx] + nr;
2139 	}
2140 	return folio_batch_count(fbatch);
2141 }
2142 
2143 /**
2144  * filemap_get_folios - Get a batch of folios
2145  * @mapping:	The address_space to search
2146  * @start:	The starting page index
2147  * @end:	The final page index (inclusive)
2148  * @fbatch:	The batch to fill.
2149  *
2150  * Search for and return a batch of folios in the mapping starting at
2151  * index @start and up to index @end (inclusive).  The folios are returned
2152  * in @fbatch with an elevated reference count.
2153  *
2154  * The first folio may start before @start; if it does, it will contain
2155  * @start.  The final folio may extend beyond @end; if it does, it will
2156  * contain @end.  The folios have ascending indices.  There may be gaps
2157  * between the folios if there are indices which have no folio in the
2158  * page cache.  If folios are added to or removed from the page cache
2159  * while this is running, they may or may not be found by this call.
2160  *
2161  * Return: The number of folios which were found.
2162  * We also update @start to index the next folio for the traversal.
2163  */
2164 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
2165 		pgoff_t end, struct folio_batch *fbatch)
2166 {
2167 	XA_STATE(xas, &mapping->i_pages, *start);
2168 	struct folio *folio;
2169 
2170 	rcu_read_lock();
2171 	while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2172 		/* Skip over shadow, swap and DAX entries */
2173 		if (xa_is_value(folio))
2174 			continue;
2175 		if (!folio_batch_add(fbatch, folio)) {
2176 			unsigned long nr = folio_nr_pages(folio);
2177 
2178 			if (folio_test_hugetlb(folio))
2179 				nr = 1;
2180 			*start = folio->index + nr;
2181 			goto out;
2182 		}
2183 	}
2184 
2185 	/*
2186 	 * We come here when there is no page beyond @end. We take care to not
2187 	 * overflow the index @start as it confuses some of the callers. This
2188 	 * breaks the iteration when there is a page at index -1 but that is
2189 	 * already broken anyway.
2190 	 */
2191 	if (end == (pgoff_t)-1)
2192 		*start = (pgoff_t)-1;
2193 	else
2194 		*start = end + 1;
2195 out:
2196 	rcu_read_unlock();
2197 
2198 	return folio_batch_count(fbatch);
2199 }
2200 EXPORT_SYMBOL(filemap_get_folios);
2201 
2202 static inline
2203 bool folio_more_pages(struct folio *folio, pgoff_t index, pgoff_t max)
2204 {
2205 	if (!folio_test_large(folio) || folio_test_hugetlb(folio))
2206 		return false;
2207 	if (index >= max)
2208 		return false;
2209 	return index < folio->index + folio_nr_pages(folio) - 1;
2210 }
2211 
2212 /**
2213  * filemap_get_folios_contig - Get a batch of contiguous folios
2214  * @mapping:	The address_space to search
2215  * @start:	The starting page index
2216  * @end:	The final page index (inclusive)
2217  * @fbatch:	The batch to fill
2218  *
2219  * filemap_get_folios_contig() works exactly like filemap_get_folios(),
2220  * except the returned folios are guaranteed to be contiguous. This may
2221  * not return all contiguous folios if the batch gets filled up.
2222  *
2223  * Return: The number of folios found.
2224  * Also update @start to be positioned for traversal of the next folio.
2225  */
2226 
2227 unsigned filemap_get_folios_contig(struct address_space *mapping,
2228 		pgoff_t *start, pgoff_t end, struct folio_batch *fbatch)
2229 {
2230 	XA_STATE(xas, &mapping->i_pages, *start);
2231 	unsigned long nr;
2232 	struct folio *folio;
2233 
2234 	rcu_read_lock();
2235 
2236 	for (folio = xas_load(&xas); folio && xas.xa_index <= end;
2237 			folio = xas_next(&xas)) {
2238 		if (xas_retry(&xas, folio))
2239 			continue;
2240 		/*
2241 		 * If the entry has been swapped out, we can stop looking.
2242 		 * No current caller is looking for DAX entries.
2243 		 */
2244 		if (xa_is_value(folio))
2245 			goto update_start;
2246 
2247 		if (!folio_try_get_rcu(folio))
2248 			goto retry;
2249 
2250 		if (unlikely(folio != xas_reload(&xas)))
2251 			goto put_folio;
2252 
2253 		if (!folio_batch_add(fbatch, folio)) {
2254 			nr = folio_nr_pages(folio);
2255 
2256 			if (folio_test_hugetlb(folio))
2257 				nr = 1;
2258 			*start = folio->index + nr;
2259 			goto out;
2260 		}
2261 		continue;
2262 put_folio:
2263 		folio_put(folio);
2264 
2265 retry:
2266 		xas_reset(&xas);
2267 	}
2268 
2269 update_start:
2270 	nr = folio_batch_count(fbatch);
2271 
2272 	if (nr) {
2273 		folio = fbatch->folios[nr - 1];
2274 		if (folio_test_hugetlb(folio))
2275 			*start = folio->index + 1;
2276 		else
2277 			*start = folio->index + folio_nr_pages(folio);
2278 	}
2279 out:
2280 	rcu_read_unlock();
2281 	return folio_batch_count(fbatch);
2282 }
2283 EXPORT_SYMBOL(filemap_get_folios_contig);
2284 
2285 /**
2286  * filemap_get_folios_tag - Get a batch of folios matching @tag
2287  * @mapping:    The address_space to search
2288  * @start:      The starting page index
2289  * @end:        The final page index (inclusive)
2290  * @tag:        The tag index
2291  * @fbatch:     The batch to fill
2292  *
2293  * Same as filemap_get_folios(), but only returning folios tagged with @tag.
2294  *
2295  * Return: The number of folios found.
2296  * Also update @start to index the next folio for traversal.
2297  */
2298 unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start,
2299 			pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch)
2300 {
2301 	XA_STATE(xas, &mapping->i_pages, *start);
2302 	struct folio *folio;
2303 
2304 	rcu_read_lock();
2305 	while ((folio = find_get_entry(&xas, end, tag)) != NULL) {
2306 		/*
2307 		 * Shadow entries should never be tagged, but this iteration
2308 		 * is lockless so there is a window for page reclaim to evict
2309 		 * a page we saw tagged. Skip over it.
2310 		 */
2311 		if (xa_is_value(folio))
2312 			continue;
2313 		if (!folio_batch_add(fbatch, folio)) {
2314 			unsigned long nr = folio_nr_pages(folio);
2315 
2316 			if (folio_test_hugetlb(folio))
2317 				nr = 1;
2318 			*start = folio->index + nr;
2319 			goto out;
2320 		}
2321 	}
2322 	/*
2323 	 * We come here when there is no page beyond @end. We take care to not
2324 	 * overflow the index @start as it confuses some of the callers. This
2325 	 * breaks the iteration when there is a page at index -1 but that is
2326 	 * already broke anyway.
2327 	 */
2328 	if (end == (pgoff_t)-1)
2329 		*start = (pgoff_t)-1;
2330 	else
2331 		*start = end + 1;
2332 out:
2333 	rcu_read_unlock();
2334 
2335 	return folio_batch_count(fbatch);
2336 }
2337 EXPORT_SYMBOL(filemap_get_folios_tag);
2338 
2339 /*
2340  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2341  * a _large_ part of the i/o request. Imagine the worst scenario:
2342  *
2343  *      ---R__________________________________________B__________
2344  *         ^ reading here                             ^ bad block(assume 4k)
2345  *
2346  * read(R) => miss => readahead(R...B) => media error => frustrating retries
2347  * => failing the whole request => read(R) => read(R+1) =>
2348  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2349  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2350  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2351  *
2352  * It is going insane. Fix it by quickly scaling down the readahead size.
2353  */
2354 static void shrink_readahead_size_eio(struct file_ra_state *ra)
2355 {
2356 	ra->ra_pages /= 4;
2357 }
2358 
2359 /*
2360  * filemap_get_read_batch - Get a batch of folios for read
2361  *
2362  * Get a batch of folios which represent a contiguous range of bytes in
2363  * the file.  No exceptional entries will be returned.  If @index is in
2364  * the middle of a folio, the entire folio will be returned.  The last
2365  * folio in the batch may have the readahead flag set or the uptodate flag
2366  * clear so that the caller can take the appropriate action.
2367  */
2368 static void filemap_get_read_batch(struct address_space *mapping,
2369 		pgoff_t index, pgoff_t max, struct folio_batch *fbatch)
2370 {
2371 	XA_STATE(xas, &mapping->i_pages, index);
2372 	struct folio *folio;
2373 
2374 	rcu_read_lock();
2375 	for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2376 		if (xas_retry(&xas, folio))
2377 			continue;
2378 		if (xas.xa_index > max || xa_is_value(folio))
2379 			break;
2380 		if (xa_is_sibling(folio))
2381 			break;
2382 		if (!folio_try_get_rcu(folio))
2383 			goto retry;
2384 
2385 		if (unlikely(folio != xas_reload(&xas)))
2386 			goto put_folio;
2387 
2388 		if (!folio_batch_add(fbatch, folio))
2389 			break;
2390 		if (!folio_test_uptodate(folio))
2391 			break;
2392 		if (folio_test_readahead(folio))
2393 			break;
2394 		xas_advance(&xas, folio->index + folio_nr_pages(folio) - 1);
2395 		continue;
2396 put_folio:
2397 		folio_put(folio);
2398 retry:
2399 		xas_reset(&xas);
2400 	}
2401 	rcu_read_unlock();
2402 }
2403 
2404 static int filemap_read_folio(struct file *file, filler_t filler,
2405 		struct folio *folio)
2406 {
2407 	bool workingset = folio_test_workingset(folio);
2408 	unsigned long pflags;
2409 	int error;
2410 
2411 	/*
2412 	 * A previous I/O error may have been due to temporary failures,
2413 	 * eg. multipath errors.  PG_error will be set again if read_folio
2414 	 * fails.
2415 	 */
2416 	folio_clear_error(folio);
2417 
2418 	/* Start the actual read. The read will unlock the page. */
2419 	if (unlikely(workingset))
2420 		psi_memstall_enter(&pflags);
2421 	error = filler(file, folio);
2422 	if (unlikely(workingset))
2423 		psi_memstall_leave(&pflags);
2424 	if (error)
2425 		return error;
2426 
2427 	error = folio_wait_locked_killable(folio);
2428 	if (error)
2429 		return error;
2430 	if (folio_test_uptodate(folio))
2431 		return 0;
2432 	if (file)
2433 		shrink_readahead_size_eio(&file->f_ra);
2434 	return -EIO;
2435 }
2436 
2437 static bool filemap_range_uptodate(struct address_space *mapping,
2438 		loff_t pos, size_t count, struct folio *folio,
2439 		bool need_uptodate)
2440 {
2441 	if (folio_test_uptodate(folio))
2442 		return true;
2443 	/* pipes can't handle partially uptodate pages */
2444 	if (need_uptodate)
2445 		return false;
2446 	if (!mapping->a_ops->is_partially_uptodate)
2447 		return false;
2448 	if (mapping->host->i_blkbits >= folio_shift(folio))
2449 		return false;
2450 
2451 	if (folio_pos(folio) > pos) {
2452 		count -= folio_pos(folio) - pos;
2453 		pos = 0;
2454 	} else {
2455 		pos -= folio_pos(folio);
2456 	}
2457 
2458 	return mapping->a_ops->is_partially_uptodate(folio, pos, count);
2459 }
2460 
2461 static int filemap_update_page(struct kiocb *iocb,
2462 		struct address_space *mapping, size_t count,
2463 		struct folio *folio, bool need_uptodate)
2464 {
2465 	int error;
2466 
2467 	if (iocb->ki_flags & IOCB_NOWAIT) {
2468 		if (!filemap_invalidate_trylock_shared(mapping))
2469 			return -EAGAIN;
2470 	} else {
2471 		filemap_invalidate_lock_shared(mapping);
2472 	}
2473 
2474 	if (!folio_trylock(folio)) {
2475 		error = -EAGAIN;
2476 		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2477 			goto unlock_mapping;
2478 		if (!(iocb->ki_flags & IOCB_WAITQ)) {
2479 			filemap_invalidate_unlock_shared(mapping);
2480 			/*
2481 			 * This is where we usually end up waiting for a
2482 			 * previously submitted readahead to finish.
2483 			 */
2484 			folio_put_wait_locked(folio, TASK_KILLABLE);
2485 			return AOP_TRUNCATED_PAGE;
2486 		}
2487 		error = __folio_lock_async(folio, iocb->ki_waitq);
2488 		if (error)
2489 			goto unlock_mapping;
2490 	}
2491 
2492 	error = AOP_TRUNCATED_PAGE;
2493 	if (!folio->mapping)
2494 		goto unlock;
2495 
2496 	error = 0;
2497 	if (filemap_range_uptodate(mapping, iocb->ki_pos, count, folio,
2498 				   need_uptodate))
2499 		goto unlock;
2500 
2501 	error = -EAGAIN;
2502 	if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2503 		goto unlock;
2504 
2505 	error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio,
2506 			folio);
2507 	goto unlock_mapping;
2508 unlock:
2509 	folio_unlock(folio);
2510 unlock_mapping:
2511 	filemap_invalidate_unlock_shared(mapping);
2512 	if (error == AOP_TRUNCATED_PAGE)
2513 		folio_put(folio);
2514 	return error;
2515 }
2516 
2517 static int filemap_create_folio(struct file *file,
2518 		struct address_space *mapping, pgoff_t index,
2519 		struct folio_batch *fbatch)
2520 {
2521 	struct folio *folio;
2522 	int error;
2523 
2524 	folio = filemap_alloc_folio(mapping_gfp_mask(mapping), 0);
2525 	if (!folio)
2526 		return -ENOMEM;
2527 
2528 	/*
2529 	 * Protect against truncate / hole punch. Grabbing invalidate_lock
2530 	 * here assures we cannot instantiate and bring uptodate new
2531 	 * pagecache folios after evicting page cache during truncate
2532 	 * and before actually freeing blocks.	Note that we could
2533 	 * release invalidate_lock after inserting the folio into
2534 	 * the page cache as the locked folio would then be enough to
2535 	 * synchronize with hole punching. But there are code paths
2536 	 * such as filemap_update_page() filling in partially uptodate
2537 	 * pages or ->readahead() that need to hold invalidate_lock
2538 	 * while mapping blocks for IO so let's hold the lock here as
2539 	 * well to keep locking rules simple.
2540 	 */
2541 	filemap_invalidate_lock_shared(mapping);
2542 	error = filemap_add_folio(mapping, folio, index,
2543 			mapping_gfp_constraint(mapping, GFP_KERNEL));
2544 	if (error == -EEXIST)
2545 		error = AOP_TRUNCATED_PAGE;
2546 	if (error)
2547 		goto error;
2548 
2549 	error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
2550 	if (error)
2551 		goto error;
2552 
2553 	filemap_invalidate_unlock_shared(mapping);
2554 	folio_batch_add(fbatch, folio);
2555 	return 0;
2556 error:
2557 	filemap_invalidate_unlock_shared(mapping);
2558 	folio_put(folio);
2559 	return error;
2560 }
2561 
2562 static int filemap_readahead(struct kiocb *iocb, struct file *file,
2563 		struct address_space *mapping, struct folio *folio,
2564 		pgoff_t last_index)
2565 {
2566 	DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index);
2567 
2568 	if (iocb->ki_flags & IOCB_NOIO)
2569 		return -EAGAIN;
2570 	page_cache_async_ra(&ractl, folio, last_index - folio->index);
2571 	return 0;
2572 }
2573 
2574 static int filemap_get_pages(struct kiocb *iocb, size_t count,
2575 		struct folio_batch *fbatch, bool need_uptodate)
2576 {
2577 	struct file *filp = iocb->ki_filp;
2578 	struct address_space *mapping = filp->f_mapping;
2579 	struct file_ra_state *ra = &filp->f_ra;
2580 	pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2581 	pgoff_t last_index;
2582 	struct folio *folio;
2583 	int err = 0;
2584 
2585 	/* "last_index" is the index of the page beyond the end of the read */
2586 	last_index = DIV_ROUND_UP(iocb->ki_pos + count, PAGE_SIZE);
2587 retry:
2588 	if (fatal_signal_pending(current))
2589 		return -EINTR;
2590 
2591 	filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2592 	if (!folio_batch_count(fbatch)) {
2593 		if (iocb->ki_flags & IOCB_NOIO)
2594 			return -EAGAIN;
2595 		page_cache_sync_readahead(mapping, ra, filp, index,
2596 				last_index - index);
2597 		filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2598 	}
2599 	if (!folio_batch_count(fbatch)) {
2600 		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2601 			return -EAGAIN;
2602 		err = filemap_create_folio(filp, mapping,
2603 				iocb->ki_pos >> PAGE_SHIFT, fbatch);
2604 		if (err == AOP_TRUNCATED_PAGE)
2605 			goto retry;
2606 		return err;
2607 	}
2608 
2609 	folio = fbatch->folios[folio_batch_count(fbatch) - 1];
2610 	if (folio_test_readahead(folio)) {
2611 		err = filemap_readahead(iocb, filp, mapping, folio, last_index);
2612 		if (err)
2613 			goto err;
2614 	}
2615 	if (!folio_test_uptodate(folio)) {
2616 		if ((iocb->ki_flags & IOCB_WAITQ) &&
2617 		    folio_batch_count(fbatch) > 1)
2618 			iocb->ki_flags |= IOCB_NOWAIT;
2619 		err = filemap_update_page(iocb, mapping, count, folio,
2620 					  need_uptodate);
2621 		if (err)
2622 			goto err;
2623 	}
2624 
2625 	return 0;
2626 err:
2627 	if (err < 0)
2628 		folio_put(folio);
2629 	if (likely(--fbatch->nr))
2630 		return 0;
2631 	if (err == AOP_TRUNCATED_PAGE)
2632 		goto retry;
2633 	return err;
2634 }
2635 
2636 static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio)
2637 {
2638 	unsigned int shift = folio_shift(folio);
2639 
2640 	return (pos1 >> shift == pos2 >> shift);
2641 }
2642 
2643 /**
2644  * filemap_read - Read data from the page cache.
2645  * @iocb: The iocb to read.
2646  * @iter: Destination for the data.
2647  * @already_read: Number of bytes already read by the caller.
2648  *
2649  * Copies data from the page cache.  If the data is not currently present,
2650  * uses the readahead and read_folio address_space operations to fetch it.
2651  *
2652  * Return: Total number of bytes copied, including those already read by
2653  * the caller.  If an error happens before any bytes are copied, returns
2654  * a negative error number.
2655  */
2656 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2657 		ssize_t already_read)
2658 {
2659 	struct file *filp = iocb->ki_filp;
2660 	struct file_ra_state *ra = &filp->f_ra;
2661 	struct address_space *mapping = filp->f_mapping;
2662 	struct inode *inode = mapping->host;
2663 	struct folio_batch fbatch;
2664 	int i, error = 0;
2665 	bool writably_mapped;
2666 	loff_t isize, end_offset;
2667 
2668 	if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2669 		return 0;
2670 	if (unlikely(!iov_iter_count(iter)))
2671 		return 0;
2672 
2673 	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2674 	folio_batch_init(&fbatch);
2675 
2676 	do {
2677 		cond_resched();
2678 
2679 		/*
2680 		 * If we've already successfully copied some data, then we
2681 		 * can no longer safely return -EIOCBQUEUED. Hence mark
2682 		 * an async read NOWAIT at that point.
2683 		 */
2684 		if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2685 			iocb->ki_flags |= IOCB_NOWAIT;
2686 
2687 		if (unlikely(iocb->ki_pos >= i_size_read(inode)))
2688 			break;
2689 
2690 		error = filemap_get_pages(iocb, iter->count, &fbatch,
2691 					  iov_iter_is_pipe(iter));
2692 		if (error < 0)
2693 			break;
2694 
2695 		/*
2696 		 * i_size must be checked after we know the pages are Uptodate.
2697 		 *
2698 		 * Checking i_size after the check allows us to calculate
2699 		 * the correct value for "nr", which means the zero-filled
2700 		 * part of the page is not copied back to userspace (unless
2701 		 * another truncate extends the file - this is desired though).
2702 		 */
2703 		isize = i_size_read(inode);
2704 		if (unlikely(iocb->ki_pos >= isize))
2705 			goto put_folios;
2706 		end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2707 
2708 		/*
2709 		 * Once we start copying data, we don't want to be touching any
2710 		 * cachelines that might be contended:
2711 		 */
2712 		writably_mapped = mapping_writably_mapped(mapping);
2713 
2714 		/*
2715 		 * When a read accesses the same folio several times, only
2716 		 * mark it as accessed the first time.
2717 		 */
2718 		if (!pos_same_folio(iocb->ki_pos, ra->prev_pos - 1,
2719 							fbatch.folios[0]))
2720 			folio_mark_accessed(fbatch.folios[0]);
2721 
2722 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
2723 			struct folio *folio = fbatch.folios[i];
2724 			size_t fsize = folio_size(folio);
2725 			size_t offset = iocb->ki_pos & (fsize - 1);
2726 			size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2727 					     fsize - offset);
2728 			size_t copied;
2729 
2730 			if (end_offset < folio_pos(folio))
2731 				break;
2732 			if (i > 0)
2733 				folio_mark_accessed(folio);
2734 			/*
2735 			 * If users can be writing to this folio using arbitrary
2736 			 * virtual addresses, take care of potential aliasing
2737 			 * before reading the folio on the kernel side.
2738 			 */
2739 			if (writably_mapped)
2740 				flush_dcache_folio(folio);
2741 
2742 			copied = copy_folio_to_iter(folio, offset, bytes, iter);
2743 
2744 			already_read += copied;
2745 			iocb->ki_pos += copied;
2746 			ra->prev_pos = iocb->ki_pos;
2747 
2748 			if (copied < bytes) {
2749 				error = -EFAULT;
2750 				break;
2751 			}
2752 		}
2753 put_folios:
2754 		for (i = 0; i < folio_batch_count(&fbatch); i++)
2755 			folio_put(fbatch.folios[i]);
2756 		folio_batch_init(&fbatch);
2757 	} while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2758 
2759 	file_accessed(filp);
2760 
2761 	return already_read ? already_read : error;
2762 }
2763 EXPORT_SYMBOL_GPL(filemap_read);
2764 
2765 /**
2766  * generic_file_read_iter - generic filesystem read routine
2767  * @iocb:	kernel I/O control block
2768  * @iter:	destination for the data read
2769  *
2770  * This is the "read_iter()" routine for all filesystems
2771  * that can use the page cache directly.
2772  *
2773  * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2774  * be returned when no data can be read without waiting for I/O requests
2775  * to complete; it doesn't prevent readahead.
2776  *
2777  * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2778  * requests shall be made for the read or for readahead.  When no data
2779  * can be read, -EAGAIN shall be returned.  When readahead would be
2780  * triggered, a partial, possibly empty read shall be returned.
2781  *
2782  * Return:
2783  * * number of bytes copied, even for partial reads
2784  * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2785  */
2786 ssize_t
2787 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2788 {
2789 	size_t count = iov_iter_count(iter);
2790 	ssize_t retval = 0;
2791 
2792 	if (!count)
2793 		return 0; /* skip atime */
2794 
2795 	if (iocb->ki_flags & IOCB_DIRECT) {
2796 		struct file *file = iocb->ki_filp;
2797 		struct address_space *mapping = file->f_mapping;
2798 		struct inode *inode = mapping->host;
2799 
2800 		if (iocb->ki_flags & IOCB_NOWAIT) {
2801 			if (filemap_range_needs_writeback(mapping, iocb->ki_pos,
2802 						iocb->ki_pos + count - 1))
2803 				return -EAGAIN;
2804 		} else {
2805 			retval = filemap_write_and_wait_range(mapping,
2806 						iocb->ki_pos,
2807 					        iocb->ki_pos + count - 1);
2808 			if (retval < 0)
2809 				return retval;
2810 		}
2811 
2812 		file_accessed(file);
2813 
2814 		retval = mapping->a_ops->direct_IO(iocb, iter);
2815 		if (retval >= 0) {
2816 			iocb->ki_pos += retval;
2817 			count -= retval;
2818 		}
2819 		if (retval != -EIOCBQUEUED)
2820 			iov_iter_revert(iter, count - iov_iter_count(iter));
2821 
2822 		/*
2823 		 * Btrfs can have a short DIO read if we encounter
2824 		 * compressed extents, so if there was an error, or if
2825 		 * we've already read everything we wanted to, or if
2826 		 * there was a short read because we hit EOF, go ahead
2827 		 * and return.  Otherwise fallthrough to buffered io for
2828 		 * the rest of the read.  Buffered reads will not work for
2829 		 * DAX files, so don't bother trying.
2830 		 */
2831 		if (retval < 0 || !count || IS_DAX(inode))
2832 			return retval;
2833 		if (iocb->ki_pos >= i_size_read(inode))
2834 			return retval;
2835 	}
2836 
2837 	return filemap_read(iocb, iter, retval);
2838 }
2839 EXPORT_SYMBOL(generic_file_read_iter);
2840 
2841 /*
2842  * Splice subpages from a folio into a pipe.
2843  */
2844 size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
2845 			      struct folio *folio, loff_t fpos, size_t size)
2846 {
2847 	struct page *page;
2848 	size_t spliced = 0, offset = offset_in_folio(folio, fpos);
2849 
2850 	page = folio_page(folio, offset / PAGE_SIZE);
2851 	size = min(size, folio_size(folio) - offset);
2852 	offset %= PAGE_SIZE;
2853 
2854 	while (spliced < size &&
2855 	       !pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
2856 		struct pipe_buffer *buf = pipe_head_buf(pipe);
2857 		size_t part = min_t(size_t, PAGE_SIZE - offset, size - spliced);
2858 
2859 		*buf = (struct pipe_buffer) {
2860 			.ops	= &page_cache_pipe_buf_ops,
2861 			.page	= page,
2862 			.offset	= offset,
2863 			.len	= part,
2864 		};
2865 		folio_get(folio);
2866 		pipe->head++;
2867 		page++;
2868 		spliced += part;
2869 		offset = 0;
2870 	}
2871 
2872 	return spliced;
2873 }
2874 
2875 /*
2876  * Splice folios from the pagecache of a buffered (ie. non-O_DIRECT) file into
2877  * a pipe.
2878  */
2879 ssize_t filemap_splice_read(struct file *in, loff_t *ppos,
2880 			    struct pipe_inode_info *pipe,
2881 			    size_t len, unsigned int flags)
2882 {
2883 	struct folio_batch fbatch;
2884 	struct kiocb iocb;
2885 	size_t total_spliced = 0, used, npages;
2886 	loff_t isize, end_offset;
2887 	bool writably_mapped;
2888 	int i, error = 0;
2889 
2890 	init_sync_kiocb(&iocb, in);
2891 	iocb.ki_pos = *ppos;
2892 
2893 	/* Work out how much data we can actually add into the pipe */
2894 	used = pipe_occupancy(pipe->head, pipe->tail);
2895 	npages = max_t(ssize_t, pipe->max_usage - used, 0);
2896 	len = min_t(size_t, len, npages * PAGE_SIZE);
2897 
2898 	folio_batch_init(&fbatch);
2899 
2900 	do {
2901 		cond_resched();
2902 
2903 		if (*ppos >= i_size_read(file_inode(in)))
2904 			break;
2905 
2906 		iocb.ki_pos = *ppos;
2907 		error = filemap_get_pages(&iocb, len, &fbatch, true);
2908 		if (error < 0)
2909 			break;
2910 
2911 		/*
2912 		 * i_size must be checked after we know the pages are Uptodate.
2913 		 *
2914 		 * Checking i_size after the check allows us to calculate
2915 		 * the correct value for "nr", which means the zero-filled
2916 		 * part of the page is not copied back to userspace (unless
2917 		 * another truncate extends the file - this is desired though).
2918 		 */
2919 		isize = i_size_read(file_inode(in));
2920 		if (unlikely(*ppos >= isize))
2921 			break;
2922 		end_offset = min_t(loff_t, isize, *ppos + len);
2923 
2924 		/*
2925 		 * Once we start copying data, we don't want to be touching any
2926 		 * cachelines that might be contended:
2927 		 */
2928 		writably_mapped = mapping_writably_mapped(in->f_mapping);
2929 
2930 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
2931 			struct folio *folio = fbatch.folios[i];
2932 			size_t n;
2933 
2934 			if (folio_pos(folio) >= end_offset)
2935 				goto out;
2936 			folio_mark_accessed(folio);
2937 
2938 			/*
2939 			 * If users can be writing to this folio using arbitrary
2940 			 * virtual addresses, take care of potential aliasing
2941 			 * before reading the folio on the kernel side.
2942 			 */
2943 			if (writably_mapped)
2944 				flush_dcache_folio(folio);
2945 
2946 			n = min_t(loff_t, len, isize - *ppos);
2947 			n = splice_folio_into_pipe(pipe, folio, *ppos, n);
2948 			if (!n)
2949 				goto out;
2950 			len -= n;
2951 			total_spliced += n;
2952 			*ppos += n;
2953 			in->f_ra.prev_pos = *ppos;
2954 			if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
2955 				goto out;
2956 		}
2957 
2958 		folio_batch_release(&fbatch);
2959 	} while (len);
2960 
2961 out:
2962 	folio_batch_release(&fbatch);
2963 	file_accessed(in);
2964 
2965 	return total_spliced ? total_spliced : error;
2966 }
2967 EXPORT_SYMBOL(filemap_splice_read);
2968 
2969 static inline loff_t folio_seek_hole_data(struct xa_state *xas,
2970 		struct address_space *mapping, struct folio *folio,
2971 		loff_t start, loff_t end, bool seek_data)
2972 {
2973 	const struct address_space_operations *ops = mapping->a_ops;
2974 	size_t offset, bsz = i_blocksize(mapping->host);
2975 
2976 	if (xa_is_value(folio) || folio_test_uptodate(folio))
2977 		return seek_data ? start : end;
2978 	if (!ops->is_partially_uptodate)
2979 		return seek_data ? end : start;
2980 
2981 	xas_pause(xas);
2982 	rcu_read_unlock();
2983 	folio_lock(folio);
2984 	if (unlikely(folio->mapping != mapping))
2985 		goto unlock;
2986 
2987 	offset = offset_in_folio(folio, start) & ~(bsz - 1);
2988 
2989 	do {
2990 		if (ops->is_partially_uptodate(folio, offset, bsz) ==
2991 							seek_data)
2992 			break;
2993 		start = (start + bsz) & ~(bsz - 1);
2994 		offset += bsz;
2995 	} while (offset < folio_size(folio));
2996 unlock:
2997 	folio_unlock(folio);
2998 	rcu_read_lock();
2999 	return start;
3000 }
3001 
3002 static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio)
3003 {
3004 	if (xa_is_value(folio))
3005 		return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
3006 	return folio_size(folio);
3007 }
3008 
3009 /**
3010  * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
3011  * @mapping: Address space to search.
3012  * @start: First byte to consider.
3013  * @end: Limit of search (exclusive).
3014  * @whence: Either SEEK_HOLE or SEEK_DATA.
3015  *
3016  * If the page cache knows which blocks contain holes and which blocks
3017  * contain data, your filesystem can use this function to implement
3018  * SEEK_HOLE and SEEK_DATA.  This is useful for filesystems which are
3019  * entirely memory-based such as tmpfs, and filesystems which support
3020  * unwritten extents.
3021  *
3022  * Return: The requested offset on success, or -ENXIO if @whence specifies
3023  * SEEK_DATA and there is no data after @start.  There is an implicit hole
3024  * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
3025  * and @end contain data.
3026  */
3027 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
3028 		loff_t end, int whence)
3029 {
3030 	XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
3031 	pgoff_t max = (end - 1) >> PAGE_SHIFT;
3032 	bool seek_data = (whence == SEEK_DATA);
3033 	struct folio *folio;
3034 
3035 	if (end <= start)
3036 		return -ENXIO;
3037 
3038 	rcu_read_lock();
3039 	while ((folio = find_get_entry(&xas, max, XA_PRESENT))) {
3040 		loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
3041 		size_t seek_size;
3042 
3043 		if (start < pos) {
3044 			if (!seek_data)
3045 				goto unlock;
3046 			start = pos;
3047 		}
3048 
3049 		seek_size = seek_folio_size(&xas, folio);
3050 		pos = round_up((u64)pos + 1, seek_size);
3051 		start = folio_seek_hole_data(&xas, mapping, folio, start, pos,
3052 				seek_data);
3053 		if (start < pos)
3054 			goto unlock;
3055 		if (start >= end)
3056 			break;
3057 		if (seek_size > PAGE_SIZE)
3058 			xas_set(&xas, pos >> PAGE_SHIFT);
3059 		if (!xa_is_value(folio))
3060 			folio_put(folio);
3061 	}
3062 	if (seek_data)
3063 		start = -ENXIO;
3064 unlock:
3065 	rcu_read_unlock();
3066 	if (folio && !xa_is_value(folio))
3067 		folio_put(folio);
3068 	if (start > end)
3069 		return end;
3070 	return start;
3071 }
3072 
3073 #ifdef CONFIG_MMU
3074 #define MMAP_LOTSAMISS  (100)
3075 /*
3076  * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
3077  * @vmf - the vm_fault for this fault.
3078  * @folio - the folio to lock.
3079  * @fpin - the pointer to the file we may pin (or is already pinned).
3080  *
3081  * This works similar to lock_folio_or_retry in that it can drop the
3082  * mmap_lock.  It differs in that it actually returns the folio locked
3083  * if it returns 1 and 0 if it couldn't lock the folio.  If we did have
3084  * to drop the mmap_lock then fpin will point to the pinned file and
3085  * needs to be fput()'ed at a later point.
3086  */
3087 static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio,
3088 				     struct file **fpin)
3089 {
3090 	if (folio_trylock(folio))
3091 		return 1;
3092 
3093 	/*
3094 	 * NOTE! This will make us return with VM_FAULT_RETRY, but with
3095 	 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
3096 	 * is supposed to work. We have way too many special cases..
3097 	 */
3098 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
3099 		return 0;
3100 
3101 	*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
3102 	if (vmf->flags & FAULT_FLAG_KILLABLE) {
3103 		if (__folio_lock_killable(folio)) {
3104 			/*
3105 			 * We didn't have the right flags to drop the mmap_lock,
3106 			 * but all fault_handlers only check for fatal signals
3107 			 * if we return VM_FAULT_RETRY, so we need to drop the
3108 			 * mmap_lock here and return 0 if we don't have a fpin.
3109 			 */
3110 			if (*fpin == NULL)
3111 				mmap_read_unlock(vmf->vma->vm_mm);
3112 			return 0;
3113 		}
3114 	} else
3115 		__folio_lock(folio);
3116 
3117 	return 1;
3118 }
3119 
3120 /*
3121  * Synchronous readahead happens when we don't even find a page in the page
3122  * cache at all.  We don't want to perform IO under the mmap sem, so if we have
3123  * to drop the mmap sem we return the file that was pinned in order for us to do
3124  * that.  If we didn't pin a file then we return NULL.  The file that is
3125  * returned needs to be fput()'ed when we're done with it.
3126  */
3127 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
3128 {
3129 	struct file *file = vmf->vma->vm_file;
3130 	struct file_ra_state *ra = &file->f_ra;
3131 	struct address_space *mapping = file->f_mapping;
3132 	DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
3133 	struct file *fpin = NULL;
3134 	unsigned long vm_flags = vmf->vma->vm_flags;
3135 	unsigned int mmap_miss;
3136 
3137 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3138 	/* Use the readahead code, even if readahead is disabled */
3139 	if (vm_flags & VM_HUGEPAGE) {
3140 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3141 		ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1);
3142 		ra->size = HPAGE_PMD_NR;
3143 		/*
3144 		 * Fetch two PMD folios, so we get the chance to actually
3145 		 * readahead, unless we've been told not to.
3146 		 */
3147 		if (!(vm_flags & VM_RAND_READ))
3148 			ra->size *= 2;
3149 		ra->async_size = HPAGE_PMD_NR;
3150 		page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER);
3151 		return fpin;
3152 	}
3153 #endif
3154 
3155 	/* If we don't want any read-ahead, don't bother */
3156 	if (vm_flags & VM_RAND_READ)
3157 		return fpin;
3158 	if (!ra->ra_pages)
3159 		return fpin;
3160 
3161 	if (vm_flags & VM_SEQ_READ) {
3162 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3163 		page_cache_sync_ra(&ractl, ra->ra_pages);
3164 		return fpin;
3165 	}
3166 
3167 	/* Avoid banging the cache line if not needed */
3168 	mmap_miss = READ_ONCE(ra->mmap_miss);
3169 	if (mmap_miss < MMAP_LOTSAMISS * 10)
3170 		WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
3171 
3172 	/*
3173 	 * Do we miss much more than hit in this file? If so,
3174 	 * stop bothering with read-ahead. It will only hurt.
3175 	 */
3176 	if (mmap_miss > MMAP_LOTSAMISS)
3177 		return fpin;
3178 
3179 	/*
3180 	 * mmap read-around
3181 	 */
3182 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3183 	ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
3184 	ra->size = ra->ra_pages;
3185 	ra->async_size = ra->ra_pages / 4;
3186 	ractl._index = ra->start;
3187 	page_cache_ra_order(&ractl, ra, 0);
3188 	return fpin;
3189 }
3190 
3191 /*
3192  * Asynchronous readahead happens when we find the page and PG_readahead,
3193  * so we want to possibly extend the readahead further.  We return the file that
3194  * was pinned if we have to drop the mmap_lock in order to do IO.
3195  */
3196 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
3197 					    struct folio *folio)
3198 {
3199 	struct file *file = vmf->vma->vm_file;
3200 	struct file_ra_state *ra = &file->f_ra;
3201 	DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff);
3202 	struct file *fpin = NULL;
3203 	unsigned int mmap_miss;
3204 
3205 	/* If we don't want any read-ahead, don't bother */
3206 	if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
3207 		return fpin;
3208 
3209 	mmap_miss = READ_ONCE(ra->mmap_miss);
3210 	if (mmap_miss)
3211 		WRITE_ONCE(ra->mmap_miss, --mmap_miss);
3212 
3213 	if (folio_test_readahead(folio)) {
3214 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3215 		page_cache_async_ra(&ractl, folio, ra->ra_pages);
3216 	}
3217 	return fpin;
3218 }
3219 
3220 /**
3221  * filemap_fault - read in file data for page fault handling
3222  * @vmf:	struct vm_fault containing details of the fault
3223  *
3224  * filemap_fault() is invoked via the vma operations vector for a
3225  * mapped memory region to read in file data during a page fault.
3226  *
3227  * The goto's are kind of ugly, but this streamlines the normal case of having
3228  * it in the page cache, and handles the special cases reasonably without
3229  * having a lot of duplicated code.
3230  *
3231  * vma->vm_mm->mmap_lock must be held on entry.
3232  *
3233  * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
3234  * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap().
3235  *
3236  * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
3237  * has not been released.
3238  *
3239  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
3240  *
3241  * Return: bitwise-OR of %VM_FAULT_ codes.
3242  */
3243 vm_fault_t filemap_fault(struct vm_fault *vmf)
3244 {
3245 	int error;
3246 	struct file *file = vmf->vma->vm_file;
3247 	struct file *fpin = NULL;
3248 	struct address_space *mapping = file->f_mapping;
3249 	struct inode *inode = mapping->host;
3250 	pgoff_t max_idx, index = vmf->pgoff;
3251 	struct folio *folio;
3252 	vm_fault_t ret = 0;
3253 	bool mapping_locked = false;
3254 
3255 	max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3256 	if (unlikely(index >= max_idx))
3257 		return VM_FAULT_SIGBUS;
3258 
3259 	/*
3260 	 * Do we have something in the page cache already?
3261 	 */
3262 	folio = filemap_get_folio(mapping, index);
3263 	if (likely(!IS_ERR(folio))) {
3264 		/*
3265 		 * We found the page, so try async readahead before waiting for
3266 		 * the lock.
3267 		 */
3268 		if (!(vmf->flags & FAULT_FLAG_TRIED))
3269 			fpin = do_async_mmap_readahead(vmf, folio);
3270 		if (unlikely(!folio_test_uptodate(folio))) {
3271 			filemap_invalidate_lock_shared(mapping);
3272 			mapping_locked = true;
3273 		}
3274 	} else {
3275 		/* No page in the page cache at all */
3276 		count_vm_event(PGMAJFAULT);
3277 		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
3278 		ret = VM_FAULT_MAJOR;
3279 		fpin = do_sync_mmap_readahead(vmf);
3280 retry_find:
3281 		/*
3282 		 * See comment in filemap_create_folio() why we need
3283 		 * invalidate_lock
3284 		 */
3285 		if (!mapping_locked) {
3286 			filemap_invalidate_lock_shared(mapping);
3287 			mapping_locked = true;
3288 		}
3289 		folio = __filemap_get_folio(mapping, index,
3290 					  FGP_CREAT|FGP_FOR_MMAP,
3291 					  vmf->gfp_mask);
3292 		if (IS_ERR(folio)) {
3293 			if (fpin)
3294 				goto out_retry;
3295 			filemap_invalidate_unlock_shared(mapping);
3296 			return VM_FAULT_OOM;
3297 		}
3298 	}
3299 
3300 	if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin))
3301 		goto out_retry;
3302 
3303 	/* Did it get truncated? */
3304 	if (unlikely(folio->mapping != mapping)) {
3305 		folio_unlock(folio);
3306 		folio_put(folio);
3307 		goto retry_find;
3308 	}
3309 	VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
3310 
3311 	/*
3312 	 * We have a locked page in the page cache, now we need to check
3313 	 * that it's up-to-date. If not, it is going to be due to an error.
3314 	 */
3315 	if (unlikely(!folio_test_uptodate(folio))) {
3316 		/*
3317 		 * The page was in cache and uptodate and now it is not.
3318 		 * Strange but possible since we didn't hold the page lock all
3319 		 * the time. Let's drop everything get the invalidate lock and
3320 		 * try again.
3321 		 */
3322 		if (!mapping_locked) {
3323 			folio_unlock(folio);
3324 			folio_put(folio);
3325 			goto retry_find;
3326 		}
3327 		goto page_not_uptodate;
3328 	}
3329 
3330 	/*
3331 	 * We've made it this far and we had to drop our mmap_lock, now is the
3332 	 * time to return to the upper layer and have it re-find the vma and
3333 	 * redo the fault.
3334 	 */
3335 	if (fpin) {
3336 		folio_unlock(folio);
3337 		goto out_retry;
3338 	}
3339 	if (mapping_locked)
3340 		filemap_invalidate_unlock_shared(mapping);
3341 
3342 	/*
3343 	 * Found the page and have a reference on it.
3344 	 * We must recheck i_size under page lock.
3345 	 */
3346 	max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3347 	if (unlikely(index >= max_idx)) {
3348 		folio_unlock(folio);
3349 		folio_put(folio);
3350 		return VM_FAULT_SIGBUS;
3351 	}
3352 
3353 	vmf->page = folio_file_page(folio, index);
3354 	return ret | VM_FAULT_LOCKED;
3355 
3356 page_not_uptodate:
3357 	/*
3358 	 * Umm, take care of errors if the page isn't up-to-date.
3359 	 * Try to re-read it _once_. We do this synchronously,
3360 	 * because there really aren't any performance issues here
3361 	 * and we need to check for errors.
3362 	 */
3363 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3364 	error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
3365 	if (fpin)
3366 		goto out_retry;
3367 	folio_put(folio);
3368 
3369 	if (!error || error == AOP_TRUNCATED_PAGE)
3370 		goto retry_find;
3371 	filemap_invalidate_unlock_shared(mapping);
3372 
3373 	return VM_FAULT_SIGBUS;
3374 
3375 out_retry:
3376 	/*
3377 	 * We dropped the mmap_lock, we need to return to the fault handler to
3378 	 * re-find the vma and come back and find our hopefully still populated
3379 	 * page.
3380 	 */
3381 	if (!IS_ERR(folio))
3382 		folio_put(folio);
3383 	if (mapping_locked)
3384 		filemap_invalidate_unlock_shared(mapping);
3385 	if (fpin)
3386 		fput(fpin);
3387 	return ret | VM_FAULT_RETRY;
3388 }
3389 EXPORT_SYMBOL(filemap_fault);
3390 
3391 static bool filemap_map_pmd(struct vm_fault *vmf, struct folio *folio,
3392 		pgoff_t start)
3393 {
3394 	struct mm_struct *mm = vmf->vma->vm_mm;
3395 
3396 	/* Huge page is mapped? No need to proceed. */
3397 	if (pmd_trans_huge(*vmf->pmd)) {
3398 		folio_unlock(folio);
3399 		folio_put(folio);
3400 		return true;
3401 	}
3402 
3403 	if (pmd_none(*vmf->pmd) && folio_test_pmd_mappable(folio)) {
3404 		struct page *page = folio_file_page(folio, start);
3405 		vm_fault_t ret = do_set_pmd(vmf, page);
3406 		if (!ret) {
3407 			/* The page is mapped successfully, reference consumed. */
3408 			folio_unlock(folio);
3409 			return true;
3410 		}
3411 	}
3412 
3413 	if (pmd_none(*vmf->pmd))
3414 		pmd_install(mm, vmf->pmd, &vmf->prealloc_pte);
3415 
3416 	/* See comment in handle_pte_fault() */
3417 	if (pmd_devmap_trans_unstable(vmf->pmd)) {
3418 		folio_unlock(folio);
3419 		folio_put(folio);
3420 		return true;
3421 	}
3422 
3423 	return false;
3424 }
3425 
3426 static struct folio *next_uptodate_page(struct folio *folio,
3427 				       struct address_space *mapping,
3428 				       struct xa_state *xas, pgoff_t end_pgoff)
3429 {
3430 	unsigned long max_idx;
3431 
3432 	do {
3433 		if (!folio)
3434 			return NULL;
3435 		if (xas_retry(xas, folio))
3436 			continue;
3437 		if (xa_is_value(folio))
3438 			continue;
3439 		if (folio_test_locked(folio))
3440 			continue;
3441 		if (!folio_try_get_rcu(folio))
3442 			continue;
3443 		/* Has the page moved or been split? */
3444 		if (unlikely(folio != xas_reload(xas)))
3445 			goto skip;
3446 		if (!folio_test_uptodate(folio) || folio_test_readahead(folio))
3447 			goto skip;
3448 		if (!folio_trylock(folio))
3449 			goto skip;
3450 		if (folio->mapping != mapping)
3451 			goto unlock;
3452 		if (!folio_test_uptodate(folio))
3453 			goto unlock;
3454 		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3455 		if (xas->xa_index >= max_idx)
3456 			goto unlock;
3457 		return folio;
3458 unlock:
3459 		folio_unlock(folio);
3460 skip:
3461 		folio_put(folio);
3462 	} while ((folio = xas_next_entry(xas, end_pgoff)) != NULL);
3463 
3464 	return NULL;
3465 }
3466 
3467 static inline struct folio *first_map_page(struct address_space *mapping,
3468 					  struct xa_state *xas,
3469 					  pgoff_t end_pgoff)
3470 {
3471 	return next_uptodate_page(xas_find(xas, end_pgoff),
3472 				  mapping, xas, end_pgoff);
3473 }
3474 
3475 static inline struct folio *next_map_page(struct address_space *mapping,
3476 					 struct xa_state *xas,
3477 					 pgoff_t end_pgoff)
3478 {
3479 	return next_uptodate_page(xas_next_entry(xas, end_pgoff),
3480 				  mapping, xas, end_pgoff);
3481 }
3482 
3483 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3484 			     pgoff_t start_pgoff, pgoff_t end_pgoff)
3485 {
3486 	struct vm_area_struct *vma = vmf->vma;
3487 	struct file *file = vma->vm_file;
3488 	struct address_space *mapping = file->f_mapping;
3489 	pgoff_t last_pgoff = start_pgoff;
3490 	unsigned long addr;
3491 	XA_STATE(xas, &mapping->i_pages, start_pgoff);
3492 	struct folio *folio;
3493 	struct page *page;
3494 	unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss);
3495 	vm_fault_t ret = 0;
3496 
3497 	rcu_read_lock();
3498 	folio = first_map_page(mapping, &xas, end_pgoff);
3499 	if (!folio)
3500 		goto out;
3501 
3502 	if (filemap_map_pmd(vmf, folio, start_pgoff)) {
3503 		ret = VM_FAULT_NOPAGE;
3504 		goto out;
3505 	}
3506 
3507 	addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3508 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3509 	do {
3510 again:
3511 		page = folio_file_page(folio, xas.xa_index);
3512 		if (PageHWPoison(page))
3513 			goto unlock;
3514 
3515 		if (mmap_miss > 0)
3516 			mmap_miss--;
3517 
3518 		addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3519 		vmf->pte += xas.xa_index - last_pgoff;
3520 		last_pgoff = xas.xa_index;
3521 
3522 		/*
3523 		 * NOTE: If there're PTE markers, we'll leave them to be
3524 		 * handled in the specific fault path, and it'll prohibit the
3525 		 * fault-around logic.
3526 		 */
3527 		if (!pte_none(*vmf->pte))
3528 			goto unlock;
3529 
3530 		/* We're about to handle the fault */
3531 		if (vmf->address == addr)
3532 			ret = VM_FAULT_NOPAGE;
3533 
3534 		do_set_pte(vmf, page, addr);
3535 		/* no need to invalidate: a not-present page won't be cached */
3536 		update_mmu_cache(vma, addr, vmf->pte);
3537 		if (folio_more_pages(folio, xas.xa_index, end_pgoff)) {
3538 			xas.xa_index++;
3539 			folio_ref_inc(folio);
3540 			goto again;
3541 		}
3542 		folio_unlock(folio);
3543 		continue;
3544 unlock:
3545 		if (folio_more_pages(folio, xas.xa_index, end_pgoff)) {
3546 			xas.xa_index++;
3547 			goto again;
3548 		}
3549 		folio_unlock(folio);
3550 		folio_put(folio);
3551 	} while ((folio = next_map_page(mapping, &xas, end_pgoff)) != NULL);
3552 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3553 out:
3554 	rcu_read_unlock();
3555 	WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss);
3556 	return ret;
3557 }
3558 EXPORT_SYMBOL(filemap_map_pages);
3559 
3560 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3561 {
3562 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3563 	struct folio *folio = page_folio(vmf->page);
3564 	vm_fault_t ret = VM_FAULT_LOCKED;
3565 
3566 	sb_start_pagefault(mapping->host->i_sb);
3567 	file_update_time(vmf->vma->vm_file);
3568 	folio_lock(folio);
3569 	if (folio->mapping != mapping) {
3570 		folio_unlock(folio);
3571 		ret = VM_FAULT_NOPAGE;
3572 		goto out;
3573 	}
3574 	/*
3575 	 * We mark the folio dirty already here so that when freeze is in
3576 	 * progress, we are guaranteed that writeback during freezing will
3577 	 * see the dirty folio and writeprotect it again.
3578 	 */
3579 	folio_mark_dirty(folio);
3580 	folio_wait_stable(folio);
3581 out:
3582 	sb_end_pagefault(mapping->host->i_sb);
3583 	return ret;
3584 }
3585 
3586 const struct vm_operations_struct generic_file_vm_ops = {
3587 	.fault		= filemap_fault,
3588 	.map_pages	= filemap_map_pages,
3589 	.page_mkwrite	= filemap_page_mkwrite,
3590 };
3591 
3592 /* This is used for a general mmap of a disk file */
3593 
3594 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3595 {
3596 	struct address_space *mapping = file->f_mapping;
3597 
3598 	if (!mapping->a_ops->read_folio)
3599 		return -ENOEXEC;
3600 	file_accessed(file);
3601 	vma->vm_ops = &generic_file_vm_ops;
3602 	return 0;
3603 }
3604 
3605 /*
3606  * This is for filesystems which do not implement ->writepage.
3607  */
3608 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3609 {
3610 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
3611 		return -EINVAL;
3612 	return generic_file_mmap(file, vma);
3613 }
3614 #else
3615 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3616 {
3617 	return VM_FAULT_SIGBUS;
3618 }
3619 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3620 {
3621 	return -ENOSYS;
3622 }
3623 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3624 {
3625 	return -ENOSYS;
3626 }
3627 #endif /* CONFIG_MMU */
3628 
3629 EXPORT_SYMBOL(filemap_page_mkwrite);
3630 EXPORT_SYMBOL(generic_file_mmap);
3631 EXPORT_SYMBOL(generic_file_readonly_mmap);
3632 
3633 static struct folio *do_read_cache_folio(struct address_space *mapping,
3634 		pgoff_t index, filler_t filler, struct file *file, gfp_t gfp)
3635 {
3636 	struct folio *folio;
3637 	int err;
3638 
3639 	if (!filler)
3640 		filler = mapping->a_ops->read_folio;
3641 repeat:
3642 	folio = filemap_get_folio(mapping, index);
3643 	if (IS_ERR(folio)) {
3644 		folio = filemap_alloc_folio(gfp, 0);
3645 		if (!folio)
3646 			return ERR_PTR(-ENOMEM);
3647 		err = filemap_add_folio(mapping, folio, index, gfp);
3648 		if (unlikely(err)) {
3649 			folio_put(folio);
3650 			if (err == -EEXIST)
3651 				goto repeat;
3652 			/* Presumably ENOMEM for xarray node */
3653 			return ERR_PTR(err);
3654 		}
3655 
3656 		goto filler;
3657 	}
3658 	if (folio_test_uptodate(folio))
3659 		goto out;
3660 
3661 	if (!folio_trylock(folio)) {
3662 		folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE);
3663 		goto repeat;
3664 	}
3665 
3666 	/* Folio was truncated from mapping */
3667 	if (!folio->mapping) {
3668 		folio_unlock(folio);
3669 		folio_put(folio);
3670 		goto repeat;
3671 	}
3672 
3673 	/* Someone else locked and filled the page in a very small window */
3674 	if (folio_test_uptodate(folio)) {
3675 		folio_unlock(folio);
3676 		goto out;
3677 	}
3678 
3679 filler:
3680 	err = filemap_read_folio(file, filler, folio);
3681 	if (err) {
3682 		folio_put(folio);
3683 		if (err == AOP_TRUNCATED_PAGE)
3684 			goto repeat;
3685 		return ERR_PTR(err);
3686 	}
3687 
3688 out:
3689 	folio_mark_accessed(folio);
3690 	return folio;
3691 }
3692 
3693 /**
3694  * read_cache_folio - Read into page cache, fill it if needed.
3695  * @mapping: The address_space to read from.
3696  * @index: The index to read.
3697  * @filler: Function to perform the read, or NULL to use aops->read_folio().
3698  * @file: Passed to filler function, may be NULL if not required.
3699  *
3700  * Read one page into the page cache.  If it succeeds, the folio returned
3701  * will contain @index, but it may not be the first page of the folio.
3702  *
3703  * If the filler function returns an error, it will be returned to the
3704  * caller.
3705  *
3706  * Context: May sleep.  Expects mapping->invalidate_lock to be held.
3707  * Return: An uptodate folio on success, ERR_PTR() on failure.
3708  */
3709 struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index,
3710 		filler_t filler, struct file *file)
3711 {
3712 	return do_read_cache_folio(mapping, index, filler, file,
3713 			mapping_gfp_mask(mapping));
3714 }
3715 EXPORT_SYMBOL(read_cache_folio);
3716 
3717 /**
3718  * mapping_read_folio_gfp - Read into page cache, using specified allocation flags.
3719  * @mapping:	The address_space for the folio.
3720  * @index:	The index that the allocated folio will contain.
3721  * @gfp:	The page allocator flags to use if allocating.
3722  *
3723  * This is the same as "read_cache_folio(mapping, index, NULL, NULL)", but with
3724  * any new memory allocations done using the specified allocation flags.
3725  *
3726  * The most likely error from this function is EIO, but ENOMEM is
3727  * possible and so is EINTR.  If ->read_folio returns another error,
3728  * that will be returned to the caller.
3729  *
3730  * The function expects mapping->invalidate_lock to be already held.
3731  *
3732  * Return: Uptodate folio on success, ERR_PTR() on failure.
3733  */
3734 struct folio *mapping_read_folio_gfp(struct address_space *mapping,
3735 		pgoff_t index, gfp_t gfp)
3736 {
3737 	return do_read_cache_folio(mapping, index, NULL, NULL, gfp);
3738 }
3739 EXPORT_SYMBOL(mapping_read_folio_gfp);
3740 
3741 static struct page *do_read_cache_page(struct address_space *mapping,
3742 		pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp)
3743 {
3744 	struct folio *folio;
3745 
3746 	folio = do_read_cache_folio(mapping, index, filler, file, gfp);
3747 	if (IS_ERR(folio))
3748 		return &folio->page;
3749 	return folio_file_page(folio, index);
3750 }
3751 
3752 struct page *read_cache_page(struct address_space *mapping,
3753 			pgoff_t index, filler_t *filler, struct file *file)
3754 {
3755 	return do_read_cache_page(mapping, index, filler, file,
3756 			mapping_gfp_mask(mapping));
3757 }
3758 EXPORT_SYMBOL(read_cache_page);
3759 
3760 /**
3761  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3762  * @mapping:	the page's address_space
3763  * @index:	the page index
3764  * @gfp:	the page allocator flags to use if allocating
3765  *
3766  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3767  * any new page allocations done using the specified allocation flags.
3768  *
3769  * If the page does not get brought uptodate, return -EIO.
3770  *
3771  * The function expects mapping->invalidate_lock to be already held.
3772  *
3773  * Return: up to date page on success, ERR_PTR() on failure.
3774  */
3775 struct page *read_cache_page_gfp(struct address_space *mapping,
3776 				pgoff_t index,
3777 				gfp_t gfp)
3778 {
3779 	return do_read_cache_page(mapping, index, NULL, NULL, gfp);
3780 }
3781 EXPORT_SYMBOL(read_cache_page_gfp);
3782 
3783 /*
3784  * Warn about a page cache invalidation failure during a direct I/O write.
3785  */
3786 void dio_warn_stale_pagecache(struct file *filp)
3787 {
3788 	static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3789 	char pathname[128];
3790 	char *path;
3791 
3792 	errseq_set(&filp->f_mapping->wb_err, -EIO);
3793 	if (__ratelimit(&_rs)) {
3794 		path = file_path(filp, pathname, sizeof(pathname));
3795 		if (IS_ERR(path))
3796 			path = "(unknown)";
3797 		pr_crit("Page cache invalidation failure on direct I/O.  Possible data corruption due to collision with buffered I/O!\n");
3798 		pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3799 			current->comm);
3800 	}
3801 }
3802 
3803 ssize_t
3804 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3805 {
3806 	struct file	*file = iocb->ki_filp;
3807 	struct address_space *mapping = file->f_mapping;
3808 	struct inode	*inode = mapping->host;
3809 	loff_t		pos = iocb->ki_pos;
3810 	ssize_t		written;
3811 	size_t		write_len;
3812 	pgoff_t		end;
3813 
3814 	write_len = iov_iter_count(from);
3815 	end = (pos + write_len - 1) >> PAGE_SHIFT;
3816 
3817 	if (iocb->ki_flags & IOCB_NOWAIT) {
3818 		/* If there are pages to writeback, return */
3819 		if (filemap_range_has_page(file->f_mapping, pos,
3820 					   pos + write_len - 1))
3821 			return -EAGAIN;
3822 	} else {
3823 		written = filemap_write_and_wait_range(mapping, pos,
3824 							pos + write_len - 1);
3825 		if (written)
3826 			goto out;
3827 	}
3828 
3829 	/*
3830 	 * After a write we want buffered reads to be sure to go to disk to get
3831 	 * the new data.  We invalidate clean cached page from the region we're
3832 	 * about to write.  We do this *before* the write so that we can return
3833 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
3834 	 */
3835 	written = invalidate_inode_pages2_range(mapping,
3836 					pos >> PAGE_SHIFT, end);
3837 	/*
3838 	 * If a page can not be invalidated, return 0 to fall back
3839 	 * to buffered write.
3840 	 */
3841 	if (written) {
3842 		if (written == -EBUSY)
3843 			return 0;
3844 		goto out;
3845 	}
3846 
3847 	written = mapping->a_ops->direct_IO(iocb, from);
3848 
3849 	/*
3850 	 * Finally, try again to invalidate clean pages which might have been
3851 	 * cached by non-direct readahead, or faulted in by get_user_pages()
3852 	 * if the source of the write was an mmap'ed region of the file
3853 	 * we're writing.  Either one is a pretty crazy thing to do,
3854 	 * so we don't support it 100%.  If this invalidation
3855 	 * fails, tough, the write still worked...
3856 	 *
3857 	 * Most of the time we do not need this since dio_complete() will do
3858 	 * the invalidation for us. However there are some file systems that
3859 	 * do not end up with dio_complete() being called, so let's not break
3860 	 * them by removing it completely.
3861 	 *
3862 	 * Noticeable example is a blkdev_direct_IO().
3863 	 *
3864 	 * Skip invalidation for async writes or if mapping has no pages.
3865 	 */
3866 	if (written > 0 && mapping->nrpages &&
3867 	    invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3868 		dio_warn_stale_pagecache(file);
3869 
3870 	if (written > 0) {
3871 		pos += written;
3872 		write_len -= written;
3873 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3874 			i_size_write(inode, pos);
3875 			mark_inode_dirty(inode);
3876 		}
3877 		iocb->ki_pos = pos;
3878 	}
3879 	if (written != -EIOCBQUEUED)
3880 		iov_iter_revert(from, write_len - iov_iter_count(from));
3881 out:
3882 	return written;
3883 }
3884 EXPORT_SYMBOL(generic_file_direct_write);
3885 
3886 ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i)
3887 {
3888 	struct file *file = iocb->ki_filp;
3889 	loff_t pos = iocb->ki_pos;
3890 	struct address_space *mapping = file->f_mapping;
3891 	const struct address_space_operations *a_ops = mapping->a_ops;
3892 	long status = 0;
3893 	ssize_t written = 0;
3894 
3895 	do {
3896 		struct page *page;
3897 		unsigned long offset;	/* Offset into pagecache page */
3898 		unsigned long bytes;	/* Bytes to write to page */
3899 		size_t copied;		/* Bytes copied from user */
3900 		void *fsdata = NULL;
3901 
3902 		offset = (pos & (PAGE_SIZE - 1));
3903 		bytes = min_t(unsigned long, PAGE_SIZE - offset,
3904 						iov_iter_count(i));
3905 
3906 again:
3907 		/*
3908 		 * Bring in the user page that we will copy from _first_.
3909 		 * Otherwise there's a nasty deadlock on copying from the
3910 		 * same page as we're writing to, without it being marked
3911 		 * up-to-date.
3912 		 */
3913 		if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
3914 			status = -EFAULT;
3915 			break;
3916 		}
3917 
3918 		if (fatal_signal_pending(current)) {
3919 			status = -EINTR;
3920 			break;
3921 		}
3922 
3923 		status = a_ops->write_begin(file, mapping, pos, bytes,
3924 						&page, &fsdata);
3925 		if (unlikely(status < 0))
3926 			break;
3927 
3928 		if (mapping_writably_mapped(mapping))
3929 			flush_dcache_page(page);
3930 
3931 		copied = copy_page_from_iter_atomic(page, offset, bytes, i);
3932 		flush_dcache_page(page);
3933 
3934 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
3935 						page, fsdata);
3936 		if (unlikely(status != copied)) {
3937 			iov_iter_revert(i, copied - max(status, 0L));
3938 			if (unlikely(status < 0))
3939 				break;
3940 		}
3941 		cond_resched();
3942 
3943 		if (unlikely(status == 0)) {
3944 			/*
3945 			 * A short copy made ->write_end() reject the
3946 			 * thing entirely.  Might be memory poisoning
3947 			 * halfway through, might be a race with munmap,
3948 			 * might be severe memory pressure.
3949 			 */
3950 			if (copied)
3951 				bytes = copied;
3952 			goto again;
3953 		}
3954 		pos += status;
3955 		written += status;
3956 
3957 		balance_dirty_pages_ratelimited(mapping);
3958 	} while (iov_iter_count(i));
3959 
3960 	return written ? written : status;
3961 }
3962 EXPORT_SYMBOL(generic_perform_write);
3963 
3964 /**
3965  * __generic_file_write_iter - write data to a file
3966  * @iocb:	IO state structure (file, offset, etc.)
3967  * @from:	iov_iter with data to write
3968  *
3969  * This function does all the work needed for actually writing data to a
3970  * file. It does all basic checks, removes SUID from the file, updates
3971  * modification times and calls proper subroutines depending on whether we
3972  * do direct IO or a standard buffered write.
3973  *
3974  * It expects i_rwsem to be grabbed unless we work on a block device or similar
3975  * object which does not need locking at all.
3976  *
3977  * This function does *not* take care of syncing data in case of O_SYNC write.
3978  * A caller has to handle it. This is mainly due to the fact that we want to
3979  * avoid syncing under i_rwsem.
3980  *
3981  * Return:
3982  * * number of bytes written, even for truncated writes
3983  * * negative error code if no data has been written at all
3984  */
3985 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3986 {
3987 	struct file *file = iocb->ki_filp;
3988 	struct address_space *mapping = file->f_mapping;
3989 	struct inode 	*inode = mapping->host;
3990 	ssize_t		written = 0;
3991 	ssize_t		err;
3992 	ssize_t		status;
3993 
3994 	/* We can write back this queue in page reclaim */
3995 	current->backing_dev_info = inode_to_bdi(inode);
3996 	err = file_remove_privs(file);
3997 	if (err)
3998 		goto out;
3999 
4000 	err = file_update_time(file);
4001 	if (err)
4002 		goto out;
4003 
4004 	if (iocb->ki_flags & IOCB_DIRECT) {
4005 		loff_t pos, endbyte;
4006 
4007 		written = generic_file_direct_write(iocb, from);
4008 		/*
4009 		 * If the write stopped short of completing, fall back to
4010 		 * buffered writes.  Some filesystems do this for writes to
4011 		 * holes, for example.  For DAX files, a buffered write will
4012 		 * not succeed (even if it did, DAX does not handle dirty
4013 		 * page-cache pages correctly).
4014 		 */
4015 		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
4016 			goto out;
4017 
4018 		pos = iocb->ki_pos;
4019 		status = generic_perform_write(iocb, from);
4020 		/*
4021 		 * If generic_perform_write() returned a synchronous error
4022 		 * then we want to return the number of bytes which were
4023 		 * direct-written, or the error code if that was zero.  Note
4024 		 * that this differs from normal direct-io semantics, which
4025 		 * will return -EFOO even if some bytes were written.
4026 		 */
4027 		if (unlikely(status < 0)) {
4028 			err = status;
4029 			goto out;
4030 		}
4031 		/*
4032 		 * We need to ensure that the page cache pages are written to
4033 		 * disk and invalidated to preserve the expected O_DIRECT
4034 		 * semantics.
4035 		 */
4036 		endbyte = pos + status - 1;
4037 		err = filemap_write_and_wait_range(mapping, pos, endbyte);
4038 		if (err == 0) {
4039 			iocb->ki_pos = endbyte + 1;
4040 			written += status;
4041 			invalidate_mapping_pages(mapping,
4042 						 pos >> PAGE_SHIFT,
4043 						 endbyte >> PAGE_SHIFT);
4044 		} else {
4045 			/*
4046 			 * We don't know how much we wrote, so just return
4047 			 * the number of bytes which were direct-written
4048 			 */
4049 		}
4050 	} else {
4051 		written = generic_perform_write(iocb, from);
4052 		if (likely(written > 0))
4053 			iocb->ki_pos += written;
4054 	}
4055 out:
4056 	current->backing_dev_info = NULL;
4057 	return written ? written : err;
4058 }
4059 EXPORT_SYMBOL(__generic_file_write_iter);
4060 
4061 /**
4062  * generic_file_write_iter - write data to a file
4063  * @iocb:	IO state structure
4064  * @from:	iov_iter with data to write
4065  *
4066  * This is a wrapper around __generic_file_write_iter() to be used by most
4067  * filesystems. It takes care of syncing the file in case of O_SYNC file
4068  * and acquires i_rwsem as needed.
4069  * Return:
4070  * * negative error code if no data has been written at all of
4071  *   vfs_fsync_range() failed for a synchronous write
4072  * * number of bytes written, even for truncated writes
4073  */
4074 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4075 {
4076 	struct file *file = iocb->ki_filp;
4077 	struct inode *inode = file->f_mapping->host;
4078 	ssize_t ret;
4079 
4080 	inode_lock(inode);
4081 	ret = generic_write_checks(iocb, from);
4082 	if (ret > 0)
4083 		ret = __generic_file_write_iter(iocb, from);
4084 	inode_unlock(inode);
4085 
4086 	if (ret > 0)
4087 		ret = generic_write_sync(iocb, ret);
4088 	return ret;
4089 }
4090 EXPORT_SYMBOL(generic_file_write_iter);
4091 
4092 /**
4093  * filemap_release_folio() - Release fs-specific metadata on a folio.
4094  * @folio: The folio which the kernel is trying to free.
4095  * @gfp: Memory allocation flags (and I/O mode).
4096  *
4097  * The address_space is trying to release any data attached to a folio
4098  * (presumably at folio->private).
4099  *
4100  * This will also be called if the private_2 flag is set on a page,
4101  * indicating that the folio has other metadata associated with it.
4102  *
4103  * The @gfp argument specifies whether I/O may be performed to release
4104  * this page (__GFP_IO), and whether the call may block
4105  * (__GFP_RECLAIM & __GFP_FS).
4106  *
4107  * Return: %true if the release was successful, otherwise %false.
4108  */
4109 bool filemap_release_folio(struct folio *folio, gfp_t gfp)
4110 {
4111 	struct address_space * const mapping = folio->mapping;
4112 
4113 	BUG_ON(!folio_test_locked(folio));
4114 	if (folio_test_writeback(folio))
4115 		return false;
4116 
4117 	if (mapping && mapping->a_ops->release_folio)
4118 		return mapping->a_ops->release_folio(folio, gfp);
4119 	return try_to_free_buffers(folio);
4120 }
4121 EXPORT_SYMBOL(filemap_release_folio);
4122