xref: /openbmc/linux/mm/filemap.c (revision 54a611b6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	linux/mm/filemap.c
4  *
5  * Copyright (C) 1994-1999  Linus Torvalds
6  */
7 
8 /*
9  * This file handles the generic file mmap semantics used by
10  * most "normal" filesystems (but you don't /have/ to use this:
11  * the NFS filesystem used to do this differently, for example)
12  */
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
16 #include <linux/fs.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
22 #include <linux/mm.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/mman.h>
26 #include <linux/pagemap.h>
27 #include <linux/file.h>
28 #include <linux/uio.h>
29 #include <linux/error-injection.h>
30 #include <linux/hash.h>
31 #include <linux/writeback.h>
32 #include <linux/backing-dev.h>
33 #include <linux/pagevec.h>
34 #include <linux/security.h>
35 #include <linux/cpuset.h>
36 #include <linux/hugetlb.h>
37 #include <linux/memcontrol.h>
38 #include <linux/shmem_fs.h>
39 #include <linux/rmap.h>
40 #include <linux/delayacct.h>
41 #include <linux/psi.h>
42 #include <linux/ramfs.h>
43 #include <linux/page_idle.h>
44 #include <linux/migrate.h>
45 #include <asm/pgalloc.h>
46 #include <asm/tlbflush.h>
47 #include "internal.h"
48 
49 #define CREATE_TRACE_POINTS
50 #include <trace/events/filemap.h>
51 
52 /*
53  * FIXME: remove all knowledge of the buffer layer from the core VM
54  */
55 #include <linux/buffer_head.h> /* for try_to_free_buffers */
56 
57 #include <asm/mman.h>
58 
59 /*
60  * Shared mappings implemented 30.11.1994. It's not fully working yet,
61  * though.
62  *
63  * Shared mappings now work. 15.8.1995  Bruno.
64  *
65  * finished 'unifying' the page and buffer cache and SMP-threaded the
66  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
67  *
68  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
69  */
70 
71 /*
72  * Lock ordering:
73  *
74  *  ->i_mmap_rwsem		(truncate_pagecache)
75  *    ->private_lock		(__free_pte->block_dirty_folio)
76  *      ->swap_lock		(exclusive_swap_page, others)
77  *        ->i_pages lock
78  *
79  *  ->i_rwsem
80  *    ->invalidate_lock		(acquired by fs in truncate path)
81  *      ->i_mmap_rwsem		(truncate->unmap_mapping_range)
82  *
83  *  ->mmap_lock
84  *    ->i_mmap_rwsem
85  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
86  *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
87  *
88  *  ->mmap_lock
89  *    ->invalidate_lock		(filemap_fault)
90  *      ->lock_page		(filemap_fault, access_process_vm)
91  *
92  *  ->i_rwsem			(generic_perform_write)
93  *    ->mmap_lock		(fault_in_readable->do_page_fault)
94  *
95  *  bdi->wb.list_lock
96  *    sb_lock			(fs/fs-writeback.c)
97  *    ->i_pages lock		(__sync_single_inode)
98  *
99  *  ->i_mmap_rwsem
100  *    ->anon_vma.lock		(vma_adjust)
101  *
102  *  ->anon_vma.lock
103  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
104  *
105  *  ->page_table_lock or pte_lock
106  *    ->swap_lock		(try_to_unmap_one)
107  *    ->private_lock		(try_to_unmap_one)
108  *    ->i_pages lock		(try_to_unmap_one)
109  *    ->lruvec->lru_lock	(follow_page->mark_page_accessed)
110  *    ->lruvec->lru_lock	(check_pte_range->isolate_lru_page)
111  *    ->private_lock		(page_remove_rmap->set_page_dirty)
112  *    ->i_pages lock		(page_remove_rmap->set_page_dirty)
113  *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
114  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
115  *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
116  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
117  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
118  *    ->private_lock		(zap_pte_range->block_dirty_folio)
119  *
120  * ->i_mmap_rwsem
121  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
122  */
123 
124 static void page_cache_delete(struct address_space *mapping,
125 				   struct folio *folio, void *shadow)
126 {
127 	XA_STATE(xas, &mapping->i_pages, folio->index);
128 	long nr = 1;
129 
130 	mapping_set_update(&xas, mapping);
131 
132 	/* hugetlb pages are represented by a single entry in the xarray */
133 	if (!folio_test_hugetlb(folio)) {
134 		xas_set_order(&xas, folio->index, folio_order(folio));
135 		nr = folio_nr_pages(folio);
136 	}
137 
138 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
139 
140 	xas_store(&xas, shadow);
141 	xas_init_marks(&xas);
142 
143 	folio->mapping = NULL;
144 	/* Leave page->index set: truncation lookup relies upon it */
145 	mapping->nrpages -= nr;
146 }
147 
148 static void filemap_unaccount_folio(struct address_space *mapping,
149 		struct folio *folio)
150 {
151 	long nr;
152 
153 	VM_BUG_ON_FOLIO(folio_mapped(folio), folio);
154 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) {
155 		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
156 			 current->comm, folio_pfn(folio));
157 		dump_page(&folio->page, "still mapped when deleted");
158 		dump_stack();
159 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
160 
161 		if (mapping_exiting(mapping) && !folio_test_large(folio)) {
162 			int mapcount = page_mapcount(&folio->page);
163 
164 			if (folio_ref_count(folio) >= mapcount + 2) {
165 				/*
166 				 * All vmas have already been torn down, so it's
167 				 * a good bet that actually the page is unmapped
168 				 * and we'd rather not leak it: if we're wrong,
169 				 * another bad page check should catch it later.
170 				 */
171 				page_mapcount_reset(&folio->page);
172 				folio_ref_sub(folio, mapcount);
173 			}
174 		}
175 	}
176 
177 	/* hugetlb folios do not participate in page cache accounting. */
178 	if (folio_test_hugetlb(folio))
179 		return;
180 
181 	nr = folio_nr_pages(folio);
182 
183 	__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
184 	if (folio_test_swapbacked(folio)) {
185 		__lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
186 		if (folio_test_pmd_mappable(folio))
187 			__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr);
188 	} else if (folio_test_pmd_mappable(folio)) {
189 		__lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr);
190 		filemap_nr_thps_dec(mapping);
191 	}
192 
193 	/*
194 	 * At this point folio must be either written or cleaned by
195 	 * truncate.  Dirty folio here signals a bug and loss of
196 	 * unwritten data - on ordinary filesystems.
197 	 *
198 	 * But it's harmless on in-memory filesystems like tmpfs; and can
199 	 * occur when a driver which did get_user_pages() sets page dirty
200 	 * before putting it, while the inode is being finally evicted.
201 	 *
202 	 * Below fixes dirty accounting after removing the folio entirely
203 	 * but leaves the dirty flag set: it has no effect for truncated
204 	 * folio and anyway will be cleared before returning folio to
205 	 * buddy allocator.
206 	 */
207 	if (WARN_ON_ONCE(folio_test_dirty(folio) &&
208 			 mapping_can_writeback(mapping)))
209 		folio_account_cleaned(folio, inode_to_wb(mapping->host));
210 }
211 
212 /*
213  * Delete a page from the page cache and free it. Caller has to make
214  * sure the page is locked and that nobody else uses it - or that usage
215  * is safe.  The caller must hold the i_pages lock.
216  */
217 void __filemap_remove_folio(struct folio *folio, void *shadow)
218 {
219 	struct address_space *mapping = folio->mapping;
220 
221 	trace_mm_filemap_delete_from_page_cache(folio);
222 	filemap_unaccount_folio(mapping, folio);
223 	page_cache_delete(mapping, folio, shadow);
224 }
225 
226 void filemap_free_folio(struct address_space *mapping, struct folio *folio)
227 {
228 	void (*free_folio)(struct folio *);
229 	int refs = 1;
230 
231 	free_folio = mapping->a_ops->free_folio;
232 	if (free_folio)
233 		free_folio(folio);
234 
235 	if (folio_test_large(folio) && !folio_test_hugetlb(folio))
236 		refs = folio_nr_pages(folio);
237 	folio_put_refs(folio, refs);
238 }
239 
240 /**
241  * filemap_remove_folio - Remove folio from page cache.
242  * @folio: The folio.
243  *
244  * This must be called only on folios that are locked and have been
245  * verified to be in the page cache.  It will never put the folio into
246  * the free list because the caller has a reference on the page.
247  */
248 void filemap_remove_folio(struct folio *folio)
249 {
250 	struct address_space *mapping = folio->mapping;
251 
252 	BUG_ON(!folio_test_locked(folio));
253 	spin_lock(&mapping->host->i_lock);
254 	xa_lock_irq(&mapping->i_pages);
255 	__filemap_remove_folio(folio, NULL);
256 	xa_unlock_irq(&mapping->i_pages);
257 	if (mapping_shrinkable(mapping))
258 		inode_add_lru(mapping->host);
259 	spin_unlock(&mapping->host->i_lock);
260 
261 	filemap_free_folio(mapping, folio);
262 }
263 
264 /*
265  * page_cache_delete_batch - delete several folios from page cache
266  * @mapping: the mapping to which folios belong
267  * @fbatch: batch of folios to delete
268  *
269  * The function walks over mapping->i_pages and removes folios passed in
270  * @fbatch from the mapping. The function expects @fbatch to be sorted
271  * by page index and is optimised for it to be dense.
272  * It tolerates holes in @fbatch (mapping entries at those indices are not
273  * modified).
274  *
275  * The function expects the i_pages lock to be held.
276  */
277 static void page_cache_delete_batch(struct address_space *mapping,
278 			     struct folio_batch *fbatch)
279 {
280 	XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index);
281 	long total_pages = 0;
282 	int i = 0;
283 	struct folio *folio;
284 
285 	mapping_set_update(&xas, mapping);
286 	xas_for_each(&xas, folio, ULONG_MAX) {
287 		if (i >= folio_batch_count(fbatch))
288 			break;
289 
290 		/* A swap/dax/shadow entry got inserted? Skip it. */
291 		if (xa_is_value(folio))
292 			continue;
293 		/*
294 		 * A page got inserted in our range? Skip it. We have our
295 		 * pages locked so they are protected from being removed.
296 		 * If we see a page whose index is higher than ours, it
297 		 * means our page has been removed, which shouldn't be
298 		 * possible because we're holding the PageLock.
299 		 */
300 		if (folio != fbatch->folios[i]) {
301 			VM_BUG_ON_FOLIO(folio->index >
302 					fbatch->folios[i]->index, folio);
303 			continue;
304 		}
305 
306 		WARN_ON_ONCE(!folio_test_locked(folio));
307 
308 		folio->mapping = NULL;
309 		/* Leave folio->index set: truncation lookup relies on it */
310 
311 		i++;
312 		xas_store(&xas, NULL);
313 		total_pages += folio_nr_pages(folio);
314 	}
315 	mapping->nrpages -= total_pages;
316 }
317 
318 void delete_from_page_cache_batch(struct address_space *mapping,
319 				  struct folio_batch *fbatch)
320 {
321 	int i;
322 
323 	if (!folio_batch_count(fbatch))
324 		return;
325 
326 	spin_lock(&mapping->host->i_lock);
327 	xa_lock_irq(&mapping->i_pages);
328 	for (i = 0; i < folio_batch_count(fbatch); i++) {
329 		struct folio *folio = fbatch->folios[i];
330 
331 		trace_mm_filemap_delete_from_page_cache(folio);
332 		filemap_unaccount_folio(mapping, folio);
333 	}
334 	page_cache_delete_batch(mapping, fbatch);
335 	xa_unlock_irq(&mapping->i_pages);
336 	if (mapping_shrinkable(mapping))
337 		inode_add_lru(mapping->host);
338 	spin_unlock(&mapping->host->i_lock);
339 
340 	for (i = 0; i < folio_batch_count(fbatch); i++)
341 		filemap_free_folio(mapping, fbatch->folios[i]);
342 }
343 
344 int filemap_check_errors(struct address_space *mapping)
345 {
346 	int ret = 0;
347 	/* Check for outstanding write errors */
348 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
349 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
350 		ret = -ENOSPC;
351 	if (test_bit(AS_EIO, &mapping->flags) &&
352 	    test_and_clear_bit(AS_EIO, &mapping->flags))
353 		ret = -EIO;
354 	return ret;
355 }
356 EXPORT_SYMBOL(filemap_check_errors);
357 
358 static int filemap_check_and_keep_errors(struct address_space *mapping)
359 {
360 	/* Check for outstanding write errors */
361 	if (test_bit(AS_EIO, &mapping->flags))
362 		return -EIO;
363 	if (test_bit(AS_ENOSPC, &mapping->flags))
364 		return -ENOSPC;
365 	return 0;
366 }
367 
368 /**
369  * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
370  * @mapping:	address space structure to write
371  * @wbc:	the writeback_control controlling the writeout
372  *
373  * Call writepages on the mapping using the provided wbc to control the
374  * writeout.
375  *
376  * Return: %0 on success, negative error code otherwise.
377  */
378 int filemap_fdatawrite_wbc(struct address_space *mapping,
379 			   struct writeback_control *wbc)
380 {
381 	int ret;
382 
383 	if (!mapping_can_writeback(mapping) ||
384 	    !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
385 		return 0;
386 
387 	wbc_attach_fdatawrite_inode(wbc, mapping->host);
388 	ret = do_writepages(mapping, wbc);
389 	wbc_detach_inode(wbc);
390 	return ret;
391 }
392 EXPORT_SYMBOL(filemap_fdatawrite_wbc);
393 
394 /**
395  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
396  * @mapping:	address space structure to write
397  * @start:	offset in bytes where the range starts
398  * @end:	offset in bytes where the range ends (inclusive)
399  * @sync_mode:	enable synchronous operation
400  *
401  * Start writeback against all of a mapping's dirty pages that lie
402  * within the byte offsets <start, end> inclusive.
403  *
404  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
405  * opposed to a regular memory cleansing writeback.  The difference between
406  * these two operations is that if a dirty page/buffer is encountered, it must
407  * be waited upon, and not just skipped over.
408  *
409  * Return: %0 on success, negative error code otherwise.
410  */
411 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
412 				loff_t end, int sync_mode)
413 {
414 	struct writeback_control wbc = {
415 		.sync_mode = sync_mode,
416 		.nr_to_write = LONG_MAX,
417 		.range_start = start,
418 		.range_end = end,
419 	};
420 
421 	return filemap_fdatawrite_wbc(mapping, &wbc);
422 }
423 
424 static inline int __filemap_fdatawrite(struct address_space *mapping,
425 	int sync_mode)
426 {
427 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
428 }
429 
430 int filemap_fdatawrite(struct address_space *mapping)
431 {
432 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
433 }
434 EXPORT_SYMBOL(filemap_fdatawrite);
435 
436 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
437 				loff_t end)
438 {
439 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
440 }
441 EXPORT_SYMBOL(filemap_fdatawrite_range);
442 
443 /**
444  * filemap_flush - mostly a non-blocking flush
445  * @mapping:	target address_space
446  *
447  * This is a mostly non-blocking flush.  Not suitable for data-integrity
448  * purposes - I/O may not be started against all dirty pages.
449  *
450  * Return: %0 on success, negative error code otherwise.
451  */
452 int filemap_flush(struct address_space *mapping)
453 {
454 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
455 }
456 EXPORT_SYMBOL(filemap_flush);
457 
458 /**
459  * filemap_range_has_page - check if a page exists in range.
460  * @mapping:           address space within which to check
461  * @start_byte:        offset in bytes where the range starts
462  * @end_byte:          offset in bytes where the range ends (inclusive)
463  *
464  * Find at least one page in the range supplied, usually used to check if
465  * direct writing in this range will trigger a writeback.
466  *
467  * Return: %true if at least one page exists in the specified range,
468  * %false otherwise.
469  */
470 bool filemap_range_has_page(struct address_space *mapping,
471 			   loff_t start_byte, loff_t end_byte)
472 {
473 	struct page *page;
474 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
475 	pgoff_t max = end_byte >> PAGE_SHIFT;
476 
477 	if (end_byte < start_byte)
478 		return false;
479 
480 	rcu_read_lock();
481 	for (;;) {
482 		page = xas_find(&xas, max);
483 		if (xas_retry(&xas, page))
484 			continue;
485 		/* Shadow entries don't count */
486 		if (xa_is_value(page))
487 			continue;
488 		/*
489 		 * We don't need to try to pin this page; we're about to
490 		 * release the RCU lock anyway.  It is enough to know that
491 		 * there was a page here recently.
492 		 */
493 		break;
494 	}
495 	rcu_read_unlock();
496 
497 	return page != NULL;
498 }
499 EXPORT_SYMBOL(filemap_range_has_page);
500 
501 static void __filemap_fdatawait_range(struct address_space *mapping,
502 				     loff_t start_byte, loff_t end_byte)
503 {
504 	pgoff_t index = start_byte >> PAGE_SHIFT;
505 	pgoff_t end = end_byte >> PAGE_SHIFT;
506 	struct pagevec pvec;
507 	int nr_pages;
508 
509 	if (end_byte < start_byte)
510 		return;
511 
512 	pagevec_init(&pvec);
513 	while (index <= end) {
514 		unsigned i;
515 
516 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
517 				end, PAGECACHE_TAG_WRITEBACK);
518 		if (!nr_pages)
519 			break;
520 
521 		for (i = 0; i < nr_pages; i++) {
522 			struct page *page = pvec.pages[i];
523 
524 			wait_on_page_writeback(page);
525 			ClearPageError(page);
526 		}
527 		pagevec_release(&pvec);
528 		cond_resched();
529 	}
530 }
531 
532 /**
533  * filemap_fdatawait_range - wait for writeback to complete
534  * @mapping:		address space structure to wait for
535  * @start_byte:		offset in bytes where the range starts
536  * @end_byte:		offset in bytes where the range ends (inclusive)
537  *
538  * Walk the list of under-writeback pages of the given address space
539  * in the given range and wait for all of them.  Check error status of
540  * the address space and return it.
541  *
542  * Since the error status of the address space is cleared by this function,
543  * callers are responsible for checking the return value and handling and/or
544  * reporting the error.
545  *
546  * Return: error status of the address space.
547  */
548 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
549 			    loff_t end_byte)
550 {
551 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
552 	return filemap_check_errors(mapping);
553 }
554 EXPORT_SYMBOL(filemap_fdatawait_range);
555 
556 /**
557  * filemap_fdatawait_range_keep_errors - wait for writeback to complete
558  * @mapping:		address space structure to wait for
559  * @start_byte:		offset in bytes where the range starts
560  * @end_byte:		offset in bytes where the range ends (inclusive)
561  *
562  * Walk the list of under-writeback pages of the given address space in the
563  * given range and wait for all of them.  Unlike filemap_fdatawait_range(),
564  * this function does not clear error status of the address space.
565  *
566  * Use this function if callers don't handle errors themselves.  Expected
567  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
568  * fsfreeze(8)
569  */
570 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
571 		loff_t start_byte, loff_t end_byte)
572 {
573 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
574 	return filemap_check_and_keep_errors(mapping);
575 }
576 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
577 
578 /**
579  * file_fdatawait_range - wait for writeback to complete
580  * @file:		file pointing to address space structure to wait for
581  * @start_byte:		offset in bytes where the range starts
582  * @end_byte:		offset in bytes where the range ends (inclusive)
583  *
584  * Walk the list of under-writeback pages of the address space that file
585  * refers to, in the given range and wait for all of them.  Check error
586  * status of the address space vs. the file->f_wb_err cursor and return it.
587  *
588  * Since the error status of the file is advanced by this function,
589  * callers are responsible for checking the return value and handling and/or
590  * reporting the error.
591  *
592  * Return: error status of the address space vs. the file->f_wb_err cursor.
593  */
594 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
595 {
596 	struct address_space *mapping = file->f_mapping;
597 
598 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
599 	return file_check_and_advance_wb_err(file);
600 }
601 EXPORT_SYMBOL(file_fdatawait_range);
602 
603 /**
604  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
605  * @mapping: address space structure to wait for
606  *
607  * Walk the list of under-writeback pages of the given address space
608  * and wait for all of them.  Unlike filemap_fdatawait(), this function
609  * does not clear error status of the address space.
610  *
611  * Use this function if callers don't handle errors themselves.  Expected
612  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
613  * fsfreeze(8)
614  *
615  * Return: error status of the address space.
616  */
617 int filemap_fdatawait_keep_errors(struct address_space *mapping)
618 {
619 	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
620 	return filemap_check_and_keep_errors(mapping);
621 }
622 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
623 
624 /* Returns true if writeback might be needed or already in progress. */
625 static bool mapping_needs_writeback(struct address_space *mapping)
626 {
627 	return mapping->nrpages;
628 }
629 
630 bool filemap_range_has_writeback(struct address_space *mapping,
631 				 loff_t start_byte, loff_t end_byte)
632 {
633 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
634 	pgoff_t max = end_byte >> PAGE_SHIFT;
635 	struct page *page;
636 
637 	if (end_byte < start_byte)
638 		return false;
639 
640 	rcu_read_lock();
641 	xas_for_each(&xas, page, max) {
642 		if (xas_retry(&xas, page))
643 			continue;
644 		if (xa_is_value(page))
645 			continue;
646 		if (PageDirty(page) || PageLocked(page) || PageWriteback(page))
647 			break;
648 	}
649 	rcu_read_unlock();
650 	return page != NULL;
651 }
652 EXPORT_SYMBOL_GPL(filemap_range_has_writeback);
653 
654 /**
655  * filemap_write_and_wait_range - write out & wait on a file range
656  * @mapping:	the address_space for the pages
657  * @lstart:	offset in bytes where the range starts
658  * @lend:	offset in bytes where the range ends (inclusive)
659  *
660  * Write out and wait upon file offsets lstart->lend, inclusive.
661  *
662  * Note that @lend is inclusive (describes the last byte to be written) so
663  * that this function can be used to write to the very end-of-file (end = -1).
664  *
665  * Return: error status of the address space.
666  */
667 int filemap_write_and_wait_range(struct address_space *mapping,
668 				 loff_t lstart, loff_t lend)
669 {
670 	int err = 0, err2;
671 
672 	if (mapping_needs_writeback(mapping)) {
673 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
674 						 WB_SYNC_ALL);
675 		/*
676 		 * Even if the above returned error, the pages may be
677 		 * written partially (e.g. -ENOSPC), so we wait for it.
678 		 * But the -EIO is special case, it may indicate the worst
679 		 * thing (e.g. bug) happened, so we avoid waiting for it.
680 		 */
681 		if (err != -EIO)
682 			__filemap_fdatawait_range(mapping, lstart, lend);
683 	}
684 	err2 = filemap_check_errors(mapping);
685 	if (!err)
686 		err = err2;
687 	return err;
688 }
689 EXPORT_SYMBOL(filemap_write_and_wait_range);
690 
691 void __filemap_set_wb_err(struct address_space *mapping, int err)
692 {
693 	errseq_t eseq = errseq_set(&mapping->wb_err, err);
694 
695 	trace_filemap_set_wb_err(mapping, eseq);
696 }
697 EXPORT_SYMBOL(__filemap_set_wb_err);
698 
699 /**
700  * file_check_and_advance_wb_err - report wb error (if any) that was previously
701  * 				   and advance wb_err to current one
702  * @file: struct file on which the error is being reported
703  *
704  * When userland calls fsync (or something like nfsd does the equivalent), we
705  * want to report any writeback errors that occurred since the last fsync (or
706  * since the file was opened if there haven't been any).
707  *
708  * Grab the wb_err from the mapping. If it matches what we have in the file,
709  * then just quickly return 0. The file is all caught up.
710  *
711  * If it doesn't match, then take the mapping value, set the "seen" flag in
712  * it and try to swap it into place. If it works, or another task beat us
713  * to it with the new value, then update the f_wb_err and return the error
714  * portion. The error at this point must be reported via proper channels
715  * (a'la fsync, or NFS COMMIT operation, etc.).
716  *
717  * While we handle mapping->wb_err with atomic operations, the f_wb_err
718  * value is protected by the f_lock since we must ensure that it reflects
719  * the latest value swapped in for this file descriptor.
720  *
721  * Return: %0 on success, negative error code otherwise.
722  */
723 int file_check_and_advance_wb_err(struct file *file)
724 {
725 	int err = 0;
726 	errseq_t old = READ_ONCE(file->f_wb_err);
727 	struct address_space *mapping = file->f_mapping;
728 
729 	/* Locklessly handle the common case where nothing has changed */
730 	if (errseq_check(&mapping->wb_err, old)) {
731 		/* Something changed, must use slow path */
732 		spin_lock(&file->f_lock);
733 		old = file->f_wb_err;
734 		err = errseq_check_and_advance(&mapping->wb_err,
735 						&file->f_wb_err);
736 		trace_file_check_and_advance_wb_err(file, old);
737 		spin_unlock(&file->f_lock);
738 	}
739 
740 	/*
741 	 * We're mostly using this function as a drop in replacement for
742 	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
743 	 * that the legacy code would have had on these flags.
744 	 */
745 	clear_bit(AS_EIO, &mapping->flags);
746 	clear_bit(AS_ENOSPC, &mapping->flags);
747 	return err;
748 }
749 EXPORT_SYMBOL(file_check_and_advance_wb_err);
750 
751 /**
752  * file_write_and_wait_range - write out & wait on a file range
753  * @file:	file pointing to address_space with pages
754  * @lstart:	offset in bytes where the range starts
755  * @lend:	offset in bytes where the range ends (inclusive)
756  *
757  * Write out and wait upon file offsets lstart->lend, inclusive.
758  *
759  * Note that @lend is inclusive (describes the last byte to be written) so
760  * that this function can be used to write to the very end-of-file (end = -1).
761  *
762  * After writing out and waiting on the data, we check and advance the
763  * f_wb_err cursor to the latest value, and return any errors detected there.
764  *
765  * Return: %0 on success, negative error code otherwise.
766  */
767 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
768 {
769 	int err = 0, err2;
770 	struct address_space *mapping = file->f_mapping;
771 
772 	if (mapping_needs_writeback(mapping)) {
773 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
774 						 WB_SYNC_ALL);
775 		/* See comment of filemap_write_and_wait() */
776 		if (err != -EIO)
777 			__filemap_fdatawait_range(mapping, lstart, lend);
778 	}
779 	err2 = file_check_and_advance_wb_err(file);
780 	if (!err)
781 		err = err2;
782 	return err;
783 }
784 EXPORT_SYMBOL(file_write_and_wait_range);
785 
786 /**
787  * replace_page_cache_page - replace a pagecache page with a new one
788  * @old:	page to be replaced
789  * @new:	page to replace with
790  *
791  * This function replaces a page in the pagecache with a new one.  On
792  * success it acquires the pagecache reference for the new page and
793  * drops it for the old page.  Both the old and new pages must be
794  * locked.  This function does not add the new page to the LRU, the
795  * caller must do that.
796  *
797  * The remove + add is atomic.  This function cannot fail.
798  */
799 void replace_page_cache_page(struct page *old, struct page *new)
800 {
801 	struct folio *fold = page_folio(old);
802 	struct folio *fnew = page_folio(new);
803 	struct address_space *mapping = old->mapping;
804 	void (*free_folio)(struct folio *) = mapping->a_ops->free_folio;
805 	pgoff_t offset = old->index;
806 	XA_STATE(xas, &mapping->i_pages, offset);
807 
808 	VM_BUG_ON_PAGE(!PageLocked(old), old);
809 	VM_BUG_ON_PAGE(!PageLocked(new), new);
810 	VM_BUG_ON_PAGE(new->mapping, new);
811 
812 	get_page(new);
813 	new->mapping = mapping;
814 	new->index = offset;
815 
816 	mem_cgroup_migrate(fold, fnew);
817 
818 	xas_lock_irq(&xas);
819 	xas_store(&xas, new);
820 
821 	old->mapping = NULL;
822 	/* hugetlb pages do not participate in page cache accounting. */
823 	if (!PageHuge(old))
824 		__dec_lruvec_page_state(old, NR_FILE_PAGES);
825 	if (!PageHuge(new))
826 		__inc_lruvec_page_state(new, NR_FILE_PAGES);
827 	if (PageSwapBacked(old))
828 		__dec_lruvec_page_state(old, NR_SHMEM);
829 	if (PageSwapBacked(new))
830 		__inc_lruvec_page_state(new, NR_SHMEM);
831 	xas_unlock_irq(&xas);
832 	if (free_folio)
833 		free_folio(fold);
834 	folio_put(fold);
835 }
836 EXPORT_SYMBOL_GPL(replace_page_cache_page);
837 
838 noinline int __filemap_add_folio(struct address_space *mapping,
839 		struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
840 {
841 	XA_STATE(xas, &mapping->i_pages, index);
842 	int huge = folio_test_hugetlb(folio);
843 	bool charged = false;
844 	long nr = 1;
845 
846 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
847 	VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
848 	mapping_set_update(&xas, mapping);
849 
850 	if (!huge) {
851 		int error = mem_cgroup_charge(folio, NULL, gfp);
852 		VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
853 		if (error)
854 			return error;
855 		charged = true;
856 		xas_set_order(&xas, index, folio_order(folio));
857 		nr = folio_nr_pages(folio);
858 	}
859 
860 	gfp &= GFP_RECLAIM_MASK;
861 	folio_ref_add(folio, nr);
862 	folio->mapping = mapping;
863 	folio->index = xas.xa_index;
864 
865 	do {
866 		unsigned int order = xa_get_order(xas.xa, xas.xa_index);
867 		void *entry, *old = NULL;
868 
869 		if (order > folio_order(folio))
870 			xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
871 					order, gfp);
872 		xas_lock_irq(&xas);
873 		xas_for_each_conflict(&xas, entry) {
874 			old = entry;
875 			if (!xa_is_value(entry)) {
876 				xas_set_err(&xas, -EEXIST);
877 				goto unlock;
878 			}
879 		}
880 
881 		if (old) {
882 			if (shadowp)
883 				*shadowp = old;
884 			/* entry may have been split before we acquired lock */
885 			order = xa_get_order(xas.xa, xas.xa_index);
886 			if (order > folio_order(folio)) {
887 				/* How to handle large swap entries? */
888 				BUG_ON(shmem_mapping(mapping));
889 				xas_split(&xas, old, order);
890 				xas_reset(&xas);
891 			}
892 		}
893 
894 		xas_store(&xas, folio);
895 		if (xas_error(&xas))
896 			goto unlock;
897 
898 		mapping->nrpages += nr;
899 
900 		/* hugetlb pages do not participate in page cache accounting */
901 		if (!huge) {
902 			__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
903 			if (folio_test_pmd_mappable(folio))
904 				__lruvec_stat_mod_folio(folio,
905 						NR_FILE_THPS, nr);
906 		}
907 unlock:
908 		xas_unlock_irq(&xas);
909 	} while (xas_nomem(&xas, gfp));
910 
911 	if (xas_error(&xas))
912 		goto error;
913 
914 	trace_mm_filemap_add_to_page_cache(folio);
915 	return 0;
916 error:
917 	if (charged)
918 		mem_cgroup_uncharge(folio);
919 	folio->mapping = NULL;
920 	/* Leave page->index set: truncation relies upon it */
921 	folio_put_refs(folio, nr);
922 	return xas_error(&xas);
923 }
924 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
925 
926 int filemap_add_folio(struct address_space *mapping, struct folio *folio,
927 				pgoff_t index, gfp_t gfp)
928 {
929 	void *shadow = NULL;
930 	int ret;
931 
932 	__folio_set_locked(folio);
933 	ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
934 	if (unlikely(ret))
935 		__folio_clear_locked(folio);
936 	else {
937 		/*
938 		 * The folio might have been evicted from cache only
939 		 * recently, in which case it should be activated like
940 		 * any other repeatedly accessed folio.
941 		 * The exception is folios getting rewritten; evicting other
942 		 * data from the working set, only to cache data that will
943 		 * get overwritten with something else, is a waste of memory.
944 		 */
945 		WARN_ON_ONCE(folio_test_active(folio));
946 		if (!(gfp & __GFP_WRITE) && shadow)
947 			workingset_refault(folio, shadow);
948 		folio_add_lru(folio);
949 	}
950 	return ret;
951 }
952 EXPORT_SYMBOL_GPL(filemap_add_folio);
953 
954 #ifdef CONFIG_NUMA
955 struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order)
956 {
957 	int n;
958 	struct folio *folio;
959 
960 	if (cpuset_do_page_mem_spread()) {
961 		unsigned int cpuset_mems_cookie;
962 		do {
963 			cpuset_mems_cookie = read_mems_allowed_begin();
964 			n = cpuset_mem_spread_node();
965 			folio = __folio_alloc_node(gfp, order, n);
966 		} while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
967 
968 		return folio;
969 	}
970 	return folio_alloc(gfp, order);
971 }
972 EXPORT_SYMBOL(filemap_alloc_folio);
973 #endif
974 
975 /*
976  * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
977  *
978  * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
979  *
980  * @mapping1: the first mapping to lock
981  * @mapping2: the second mapping to lock
982  */
983 void filemap_invalidate_lock_two(struct address_space *mapping1,
984 				 struct address_space *mapping2)
985 {
986 	if (mapping1 > mapping2)
987 		swap(mapping1, mapping2);
988 	if (mapping1)
989 		down_write(&mapping1->invalidate_lock);
990 	if (mapping2 && mapping1 != mapping2)
991 		down_write_nested(&mapping2->invalidate_lock, 1);
992 }
993 EXPORT_SYMBOL(filemap_invalidate_lock_two);
994 
995 /*
996  * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
997  *
998  * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
999  *
1000  * @mapping1: the first mapping to unlock
1001  * @mapping2: the second mapping to unlock
1002  */
1003 void filemap_invalidate_unlock_two(struct address_space *mapping1,
1004 				   struct address_space *mapping2)
1005 {
1006 	if (mapping1)
1007 		up_write(&mapping1->invalidate_lock);
1008 	if (mapping2 && mapping1 != mapping2)
1009 		up_write(&mapping2->invalidate_lock);
1010 }
1011 EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1012 
1013 /*
1014  * In order to wait for pages to become available there must be
1015  * waitqueues associated with pages. By using a hash table of
1016  * waitqueues where the bucket discipline is to maintain all
1017  * waiters on the same queue and wake all when any of the pages
1018  * become available, and for the woken contexts to check to be
1019  * sure the appropriate page became available, this saves space
1020  * at a cost of "thundering herd" phenomena during rare hash
1021  * collisions.
1022  */
1023 #define PAGE_WAIT_TABLE_BITS 8
1024 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1025 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1026 
1027 static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1028 {
1029 	return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
1030 }
1031 
1032 void __init pagecache_init(void)
1033 {
1034 	int i;
1035 
1036 	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1037 		init_waitqueue_head(&folio_wait_table[i]);
1038 
1039 	page_writeback_init();
1040 }
1041 
1042 /*
1043  * The page wait code treats the "wait->flags" somewhat unusually, because
1044  * we have multiple different kinds of waits, not just the usual "exclusive"
1045  * one.
1046  *
1047  * We have:
1048  *
1049  *  (a) no special bits set:
1050  *
1051  *	We're just waiting for the bit to be released, and when a waker
1052  *	calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1053  *	and remove it from the wait queue.
1054  *
1055  *	Simple and straightforward.
1056  *
1057  *  (b) WQ_FLAG_EXCLUSIVE:
1058  *
1059  *	The waiter is waiting to get the lock, and only one waiter should
1060  *	be woken up to avoid any thundering herd behavior. We'll set the
1061  *	WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1062  *
1063  *	This is the traditional exclusive wait.
1064  *
1065  *  (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1066  *
1067  *	The waiter is waiting to get the bit, and additionally wants the
1068  *	lock to be transferred to it for fair lock behavior. If the lock
1069  *	cannot be taken, we stop walking the wait queue without waking
1070  *	the waiter.
1071  *
1072  *	This is the "fair lock handoff" case, and in addition to setting
1073  *	WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1074  *	that it now has the lock.
1075  */
1076 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1077 {
1078 	unsigned int flags;
1079 	struct wait_page_key *key = arg;
1080 	struct wait_page_queue *wait_page
1081 		= container_of(wait, struct wait_page_queue, wait);
1082 
1083 	if (!wake_page_match(wait_page, key))
1084 		return 0;
1085 
1086 	/*
1087 	 * If it's a lock handoff wait, we get the bit for it, and
1088 	 * stop walking (and do not wake it up) if we can't.
1089 	 */
1090 	flags = wait->flags;
1091 	if (flags & WQ_FLAG_EXCLUSIVE) {
1092 		if (test_bit(key->bit_nr, &key->folio->flags))
1093 			return -1;
1094 		if (flags & WQ_FLAG_CUSTOM) {
1095 			if (test_and_set_bit(key->bit_nr, &key->folio->flags))
1096 				return -1;
1097 			flags |= WQ_FLAG_DONE;
1098 		}
1099 	}
1100 
1101 	/*
1102 	 * We are holding the wait-queue lock, but the waiter that
1103 	 * is waiting for this will be checking the flags without
1104 	 * any locking.
1105 	 *
1106 	 * So update the flags atomically, and wake up the waiter
1107 	 * afterwards to avoid any races. This store-release pairs
1108 	 * with the load-acquire in folio_wait_bit_common().
1109 	 */
1110 	smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1111 	wake_up_state(wait->private, mode);
1112 
1113 	/*
1114 	 * Ok, we have successfully done what we're waiting for,
1115 	 * and we can unconditionally remove the wait entry.
1116 	 *
1117 	 * Note that this pairs with the "finish_wait()" in the
1118 	 * waiter, and has to be the absolute last thing we do.
1119 	 * After this list_del_init(&wait->entry) the wait entry
1120 	 * might be de-allocated and the process might even have
1121 	 * exited.
1122 	 */
1123 	list_del_init_careful(&wait->entry);
1124 	return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1125 }
1126 
1127 static void folio_wake_bit(struct folio *folio, int bit_nr)
1128 {
1129 	wait_queue_head_t *q = folio_waitqueue(folio);
1130 	struct wait_page_key key;
1131 	unsigned long flags;
1132 	wait_queue_entry_t bookmark;
1133 
1134 	key.folio = folio;
1135 	key.bit_nr = bit_nr;
1136 	key.page_match = 0;
1137 
1138 	bookmark.flags = 0;
1139 	bookmark.private = NULL;
1140 	bookmark.func = NULL;
1141 	INIT_LIST_HEAD(&bookmark.entry);
1142 
1143 	spin_lock_irqsave(&q->lock, flags);
1144 	__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1145 
1146 	while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1147 		/*
1148 		 * Take a breather from holding the lock,
1149 		 * allow pages that finish wake up asynchronously
1150 		 * to acquire the lock and remove themselves
1151 		 * from wait queue
1152 		 */
1153 		spin_unlock_irqrestore(&q->lock, flags);
1154 		cpu_relax();
1155 		spin_lock_irqsave(&q->lock, flags);
1156 		__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1157 	}
1158 
1159 	/*
1160 	 * It's possible to miss clearing waiters here, when we woke our page
1161 	 * waiters, but the hashed waitqueue has waiters for other pages on it.
1162 	 * That's okay, it's a rare case. The next waker will clear it.
1163 	 *
1164 	 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE,
1165 	 * other), the flag may be cleared in the course of freeing the page;
1166 	 * but that is not required for correctness.
1167 	 */
1168 	if (!waitqueue_active(q) || !key.page_match)
1169 		folio_clear_waiters(folio);
1170 
1171 	spin_unlock_irqrestore(&q->lock, flags);
1172 }
1173 
1174 static void folio_wake(struct folio *folio, int bit)
1175 {
1176 	if (!folio_test_waiters(folio))
1177 		return;
1178 	folio_wake_bit(folio, bit);
1179 }
1180 
1181 /*
1182  * A choice of three behaviors for folio_wait_bit_common():
1183  */
1184 enum behavior {
1185 	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
1186 			 * __folio_lock() waiting on then setting PG_locked.
1187 			 */
1188 	SHARED,		/* Hold ref to page and check the bit when woken, like
1189 			 * folio_wait_writeback() waiting on PG_writeback.
1190 			 */
1191 	DROP,		/* Drop ref to page before wait, no check when woken,
1192 			 * like folio_put_wait_locked() on PG_locked.
1193 			 */
1194 };
1195 
1196 /*
1197  * Attempt to check (or get) the folio flag, and mark us done
1198  * if successful.
1199  */
1200 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
1201 					struct wait_queue_entry *wait)
1202 {
1203 	if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1204 		if (test_and_set_bit(bit_nr, &folio->flags))
1205 			return false;
1206 	} else if (test_bit(bit_nr, &folio->flags))
1207 		return false;
1208 
1209 	wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1210 	return true;
1211 }
1212 
1213 /* How many times do we accept lock stealing from under a waiter? */
1214 int sysctl_page_lock_unfairness = 5;
1215 
1216 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1217 		int state, enum behavior behavior)
1218 {
1219 	wait_queue_head_t *q = folio_waitqueue(folio);
1220 	int unfairness = sysctl_page_lock_unfairness;
1221 	struct wait_page_queue wait_page;
1222 	wait_queue_entry_t *wait = &wait_page.wait;
1223 	bool thrashing = false;
1224 	unsigned long pflags;
1225 	bool in_thrashing;
1226 
1227 	if (bit_nr == PG_locked &&
1228 	    !folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1229 		delayacct_thrashing_start(&in_thrashing);
1230 		psi_memstall_enter(&pflags);
1231 		thrashing = true;
1232 	}
1233 
1234 	init_wait(wait);
1235 	wait->func = wake_page_function;
1236 	wait_page.folio = folio;
1237 	wait_page.bit_nr = bit_nr;
1238 
1239 repeat:
1240 	wait->flags = 0;
1241 	if (behavior == EXCLUSIVE) {
1242 		wait->flags = WQ_FLAG_EXCLUSIVE;
1243 		if (--unfairness < 0)
1244 			wait->flags |= WQ_FLAG_CUSTOM;
1245 	}
1246 
1247 	/*
1248 	 * Do one last check whether we can get the
1249 	 * page bit synchronously.
1250 	 *
1251 	 * Do the folio_set_waiters() marking before that
1252 	 * to let any waker we _just_ missed know they
1253 	 * need to wake us up (otherwise they'll never
1254 	 * even go to the slow case that looks at the
1255 	 * page queue), and add ourselves to the wait
1256 	 * queue if we need to sleep.
1257 	 *
1258 	 * This part needs to be done under the queue
1259 	 * lock to avoid races.
1260 	 */
1261 	spin_lock_irq(&q->lock);
1262 	folio_set_waiters(folio);
1263 	if (!folio_trylock_flag(folio, bit_nr, wait))
1264 		__add_wait_queue_entry_tail(q, wait);
1265 	spin_unlock_irq(&q->lock);
1266 
1267 	/*
1268 	 * From now on, all the logic will be based on
1269 	 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1270 	 * see whether the page bit testing has already
1271 	 * been done by the wake function.
1272 	 *
1273 	 * We can drop our reference to the folio.
1274 	 */
1275 	if (behavior == DROP)
1276 		folio_put(folio);
1277 
1278 	/*
1279 	 * Note that until the "finish_wait()", or until
1280 	 * we see the WQ_FLAG_WOKEN flag, we need to
1281 	 * be very careful with the 'wait->flags', because
1282 	 * we may race with a waker that sets them.
1283 	 */
1284 	for (;;) {
1285 		unsigned int flags;
1286 
1287 		set_current_state(state);
1288 
1289 		/* Loop until we've been woken or interrupted */
1290 		flags = smp_load_acquire(&wait->flags);
1291 		if (!(flags & WQ_FLAG_WOKEN)) {
1292 			if (signal_pending_state(state, current))
1293 				break;
1294 
1295 			io_schedule();
1296 			continue;
1297 		}
1298 
1299 		/* If we were non-exclusive, we're done */
1300 		if (behavior != EXCLUSIVE)
1301 			break;
1302 
1303 		/* If the waker got the lock for us, we're done */
1304 		if (flags & WQ_FLAG_DONE)
1305 			break;
1306 
1307 		/*
1308 		 * Otherwise, if we're getting the lock, we need to
1309 		 * try to get it ourselves.
1310 		 *
1311 		 * And if that fails, we'll have to retry this all.
1312 		 */
1313 		if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
1314 			goto repeat;
1315 
1316 		wait->flags |= WQ_FLAG_DONE;
1317 		break;
1318 	}
1319 
1320 	/*
1321 	 * If a signal happened, this 'finish_wait()' may remove the last
1322 	 * waiter from the wait-queues, but the folio waiters bit will remain
1323 	 * set. That's ok. The next wakeup will take care of it, and trying
1324 	 * to do it here would be difficult and prone to races.
1325 	 */
1326 	finish_wait(q, wait);
1327 
1328 	if (thrashing) {
1329 		delayacct_thrashing_end(&in_thrashing);
1330 		psi_memstall_leave(&pflags);
1331 	}
1332 
1333 	/*
1334 	 * NOTE! The wait->flags weren't stable until we've done the
1335 	 * 'finish_wait()', and we could have exited the loop above due
1336 	 * to a signal, and had a wakeup event happen after the signal
1337 	 * test but before the 'finish_wait()'.
1338 	 *
1339 	 * So only after the finish_wait() can we reliably determine
1340 	 * if we got woken up or not, so we can now figure out the final
1341 	 * return value based on that state without races.
1342 	 *
1343 	 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1344 	 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1345 	 */
1346 	if (behavior == EXCLUSIVE)
1347 		return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1348 
1349 	return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1350 }
1351 
1352 #ifdef CONFIG_MIGRATION
1353 /**
1354  * migration_entry_wait_on_locked - Wait for a migration entry to be removed
1355  * @entry: migration swap entry.
1356  * @ptep: mapped pte pointer. Will return with the ptep unmapped. Only required
1357  *        for pte entries, pass NULL for pmd entries.
1358  * @ptl: already locked ptl. This function will drop the lock.
1359  *
1360  * Wait for a migration entry referencing the given page to be removed. This is
1361  * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except
1362  * this can be called without taking a reference on the page. Instead this
1363  * should be called while holding the ptl for the migration entry referencing
1364  * the page.
1365  *
1366  * Returns after unmapping and unlocking the pte/ptl with pte_unmap_unlock().
1367  *
1368  * This follows the same logic as folio_wait_bit_common() so see the comments
1369  * there.
1370  */
1371 void migration_entry_wait_on_locked(swp_entry_t entry, pte_t *ptep,
1372 				spinlock_t *ptl)
1373 {
1374 	struct wait_page_queue wait_page;
1375 	wait_queue_entry_t *wait = &wait_page.wait;
1376 	bool thrashing = false;
1377 	unsigned long pflags;
1378 	bool in_thrashing;
1379 	wait_queue_head_t *q;
1380 	struct folio *folio = page_folio(pfn_swap_entry_to_page(entry));
1381 
1382 	q = folio_waitqueue(folio);
1383 	if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1384 		delayacct_thrashing_start(&in_thrashing);
1385 		psi_memstall_enter(&pflags);
1386 		thrashing = true;
1387 	}
1388 
1389 	init_wait(wait);
1390 	wait->func = wake_page_function;
1391 	wait_page.folio = folio;
1392 	wait_page.bit_nr = PG_locked;
1393 	wait->flags = 0;
1394 
1395 	spin_lock_irq(&q->lock);
1396 	folio_set_waiters(folio);
1397 	if (!folio_trylock_flag(folio, PG_locked, wait))
1398 		__add_wait_queue_entry_tail(q, wait);
1399 	spin_unlock_irq(&q->lock);
1400 
1401 	/*
1402 	 * If a migration entry exists for the page the migration path must hold
1403 	 * a valid reference to the page, and it must take the ptl to remove the
1404 	 * migration entry. So the page is valid until the ptl is dropped.
1405 	 */
1406 	if (ptep)
1407 		pte_unmap_unlock(ptep, ptl);
1408 	else
1409 		spin_unlock(ptl);
1410 
1411 	for (;;) {
1412 		unsigned int flags;
1413 
1414 		set_current_state(TASK_UNINTERRUPTIBLE);
1415 
1416 		/* Loop until we've been woken or interrupted */
1417 		flags = smp_load_acquire(&wait->flags);
1418 		if (!(flags & WQ_FLAG_WOKEN)) {
1419 			if (signal_pending_state(TASK_UNINTERRUPTIBLE, current))
1420 				break;
1421 
1422 			io_schedule();
1423 			continue;
1424 		}
1425 		break;
1426 	}
1427 
1428 	finish_wait(q, wait);
1429 
1430 	if (thrashing) {
1431 		delayacct_thrashing_end(&in_thrashing);
1432 		psi_memstall_leave(&pflags);
1433 	}
1434 }
1435 #endif
1436 
1437 void folio_wait_bit(struct folio *folio, int bit_nr)
1438 {
1439 	folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1440 }
1441 EXPORT_SYMBOL(folio_wait_bit);
1442 
1443 int folio_wait_bit_killable(struct folio *folio, int bit_nr)
1444 {
1445 	return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
1446 }
1447 EXPORT_SYMBOL(folio_wait_bit_killable);
1448 
1449 /**
1450  * folio_put_wait_locked - Drop a reference and wait for it to be unlocked
1451  * @folio: The folio to wait for.
1452  * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1453  *
1454  * The caller should hold a reference on @folio.  They expect the page to
1455  * become unlocked relatively soon, but do not wish to hold up migration
1456  * (for example) by holding the reference while waiting for the folio to
1457  * come unlocked.  After this function returns, the caller should not
1458  * dereference @folio.
1459  *
1460  * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal.
1461  */
1462 int folio_put_wait_locked(struct folio *folio, int state)
1463 {
1464 	return folio_wait_bit_common(folio, PG_locked, state, DROP);
1465 }
1466 
1467 /**
1468  * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue
1469  * @folio: Folio defining the wait queue of interest
1470  * @waiter: Waiter to add to the queue
1471  *
1472  * Add an arbitrary @waiter to the wait queue for the nominated @folio.
1473  */
1474 void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter)
1475 {
1476 	wait_queue_head_t *q = folio_waitqueue(folio);
1477 	unsigned long flags;
1478 
1479 	spin_lock_irqsave(&q->lock, flags);
1480 	__add_wait_queue_entry_tail(q, waiter);
1481 	folio_set_waiters(folio);
1482 	spin_unlock_irqrestore(&q->lock, flags);
1483 }
1484 EXPORT_SYMBOL_GPL(folio_add_wait_queue);
1485 
1486 #ifndef clear_bit_unlock_is_negative_byte
1487 
1488 /*
1489  * PG_waiters is the high bit in the same byte as PG_lock.
1490  *
1491  * On x86 (and on many other architectures), we can clear PG_lock and
1492  * test the sign bit at the same time. But if the architecture does
1493  * not support that special operation, we just do this all by hand
1494  * instead.
1495  *
1496  * The read of PG_waiters has to be after (or concurrently with) PG_locked
1497  * being cleared, but a memory barrier should be unnecessary since it is
1498  * in the same byte as PG_locked.
1499  */
1500 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1501 {
1502 	clear_bit_unlock(nr, mem);
1503 	/* smp_mb__after_atomic(); */
1504 	return test_bit(PG_waiters, mem);
1505 }
1506 
1507 #endif
1508 
1509 /**
1510  * folio_unlock - Unlock a locked folio.
1511  * @folio: The folio.
1512  *
1513  * Unlocks the folio and wakes up any thread sleeping on the page lock.
1514  *
1515  * Context: May be called from interrupt or process context.  May not be
1516  * called from NMI context.
1517  */
1518 void folio_unlock(struct folio *folio)
1519 {
1520 	/* Bit 7 allows x86 to check the byte's sign bit */
1521 	BUILD_BUG_ON(PG_waiters != 7);
1522 	BUILD_BUG_ON(PG_locked > 7);
1523 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1524 	if (clear_bit_unlock_is_negative_byte(PG_locked, folio_flags(folio, 0)))
1525 		folio_wake_bit(folio, PG_locked);
1526 }
1527 EXPORT_SYMBOL(folio_unlock);
1528 
1529 /**
1530  * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1531  * @folio: The folio.
1532  *
1533  * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1534  * it.  The folio reference held for PG_private_2 being set is released.
1535  *
1536  * This is, for example, used when a netfs folio is being written to a local
1537  * disk cache, thereby allowing writes to the cache for the same folio to be
1538  * serialised.
1539  */
1540 void folio_end_private_2(struct folio *folio)
1541 {
1542 	VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1543 	clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
1544 	folio_wake_bit(folio, PG_private_2);
1545 	folio_put(folio);
1546 }
1547 EXPORT_SYMBOL(folio_end_private_2);
1548 
1549 /**
1550  * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1551  * @folio: The folio to wait on.
1552  *
1553  * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio.
1554  */
1555 void folio_wait_private_2(struct folio *folio)
1556 {
1557 	while (folio_test_private_2(folio))
1558 		folio_wait_bit(folio, PG_private_2);
1559 }
1560 EXPORT_SYMBOL(folio_wait_private_2);
1561 
1562 /**
1563  * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1564  * @folio: The folio to wait on.
1565  *
1566  * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio or until a
1567  * fatal signal is received by the calling task.
1568  *
1569  * Return:
1570  * - 0 if successful.
1571  * - -EINTR if a fatal signal was encountered.
1572  */
1573 int folio_wait_private_2_killable(struct folio *folio)
1574 {
1575 	int ret = 0;
1576 
1577 	while (folio_test_private_2(folio)) {
1578 		ret = folio_wait_bit_killable(folio, PG_private_2);
1579 		if (ret < 0)
1580 			break;
1581 	}
1582 
1583 	return ret;
1584 }
1585 EXPORT_SYMBOL(folio_wait_private_2_killable);
1586 
1587 /**
1588  * folio_end_writeback - End writeback against a folio.
1589  * @folio: The folio.
1590  */
1591 void folio_end_writeback(struct folio *folio)
1592 {
1593 	/*
1594 	 * folio_test_clear_reclaim() could be used here but it is an
1595 	 * atomic operation and overkill in this particular case. Failing
1596 	 * to shuffle a folio marked for immediate reclaim is too mild
1597 	 * a gain to justify taking an atomic operation penalty at the
1598 	 * end of every folio writeback.
1599 	 */
1600 	if (folio_test_reclaim(folio)) {
1601 		folio_clear_reclaim(folio);
1602 		folio_rotate_reclaimable(folio);
1603 	}
1604 
1605 	/*
1606 	 * Writeback does not hold a folio reference of its own, relying
1607 	 * on truncation to wait for the clearing of PG_writeback.
1608 	 * But here we must make sure that the folio is not freed and
1609 	 * reused before the folio_wake().
1610 	 */
1611 	folio_get(folio);
1612 	if (!__folio_end_writeback(folio))
1613 		BUG();
1614 
1615 	smp_mb__after_atomic();
1616 	folio_wake(folio, PG_writeback);
1617 	acct_reclaim_writeback(folio);
1618 	folio_put(folio);
1619 }
1620 EXPORT_SYMBOL(folio_end_writeback);
1621 
1622 /*
1623  * After completing I/O on a page, call this routine to update the page
1624  * flags appropriately
1625  */
1626 void page_endio(struct page *page, bool is_write, int err)
1627 {
1628 	struct folio *folio = page_folio(page);
1629 
1630 	if (!is_write) {
1631 		if (!err) {
1632 			folio_mark_uptodate(folio);
1633 		} else {
1634 			folio_clear_uptodate(folio);
1635 			folio_set_error(folio);
1636 		}
1637 		folio_unlock(folio);
1638 	} else {
1639 		if (err) {
1640 			struct address_space *mapping;
1641 
1642 			folio_set_error(folio);
1643 			mapping = folio_mapping(folio);
1644 			if (mapping)
1645 				mapping_set_error(mapping, err);
1646 		}
1647 		folio_end_writeback(folio);
1648 	}
1649 }
1650 EXPORT_SYMBOL_GPL(page_endio);
1651 
1652 /**
1653  * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1654  * @folio: The folio to lock
1655  */
1656 void __folio_lock(struct folio *folio)
1657 {
1658 	folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
1659 				EXCLUSIVE);
1660 }
1661 EXPORT_SYMBOL(__folio_lock);
1662 
1663 int __folio_lock_killable(struct folio *folio)
1664 {
1665 	return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
1666 					EXCLUSIVE);
1667 }
1668 EXPORT_SYMBOL_GPL(__folio_lock_killable);
1669 
1670 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
1671 {
1672 	struct wait_queue_head *q = folio_waitqueue(folio);
1673 	int ret = 0;
1674 
1675 	wait->folio = folio;
1676 	wait->bit_nr = PG_locked;
1677 
1678 	spin_lock_irq(&q->lock);
1679 	__add_wait_queue_entry_tail(q, &wait->wait);
1680 	folio_set_waiters(folio);
1681 	ret = !folio_trylock(folio);
1682 	/*
1683 	 * If we were successful now, we know we're still on the
1684 	 * waitqueue as we're still under the lock. This means it's
1685 	 * safe to remove and return success, we know the callback
1686 	 * isn't going to trigger.
1687 	 */
1688 	if (!ret)
1689 		__remove_wait_queue(q, &wait->wait);
1690 	else
1691 		ret = -EIOCBQUEUED;
1692 	spin_unlock_irq(&q->lock);
1693 	return ret;
1694 }
1695 
1696 /*
1697  * Return values:
1698  * true - folio is locked; mmap_lock is still held.
1699  * false - folio is not locked.
1700  *     mmap_lock has been released (mmap_read_unlock(), unless flags had both
1701  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1702  *     which case mmap_lock is still held.
1703  *
1704  * If neither ALLOW_RETRY nor KILLABLE are set, will always return true
1705  * with the folio locked and the mmap_lock unperturbed.
1706  */
1707 bool __folio_lock_or_retry(struct folio *folio, struct mm_struct *mm,
1708 			 unsigned int flags)
1709 {
1710 	if (fault_flag_allow_retry_first(flags)) {
1711 		/*
1712 		 * CAUTION! In this case, mmap_lock is not released
1713 		 * even though return 0.
1714 		 */
1715 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1716 			return false;
1717 
1718 		mmap_read_unlock(mm);
1719 		if (flags & FAULT_FLAG_KILLABLE)
1720 			folio_wait_locked_killable(folio);
1721 		else
1722 			folio_wait_locked(folio);
1723 		return false;
1724 	}
1725 	if (flags & FAULT_FLAG_KILLABLE) {
1726 		bool ret;
1727 
1728 		ret = __folio_lock_killable(folio);
1729 		if (ret) {
1730 			mmap_read_unlock(mm);
1731 			return false;
1732 		}
1733 	} else {
1734 		__folio_lock(folio);
1735 	}
1736 
1737 	return true;
1738 }
1739 
1740 /**
1741  * page_cache_next_miss() - Find the next gap in the page cache.
1742  * @mapping: Mapping.
1743  * @index: Index.
1744  * @max_scan: Maximum range to search.
1745  *
1746  * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1747  * gap with the lowest index.
1748  *
1749  * This function may be called under the rcu_read_lock.  However, this will
1750  * not atomically search a snapshot of the cache at a single point in time.
1751  * For example, if a gap is created at index 5, then subsequently a gap is
1752  * created at index 10, page_cache_next_miss covering both indices may
1753  * return 10 if called under the rcu_read_lock.
1754  *
1755  * Return: The index of the gap if found, otherwise an index outside the
1756  * range specified (in which case 'return - index >= max_scan' will be true).
1757  * In the rare case of index wrap-around, 0 will be returned.
1758  */
1759 pgoff_t page_cache_next_miss(struct address_space *mapping,
1760 			     pgoff_t index, unsigned long max_scan)
1761 {
1762 	XA_STATE(xas, &mapping->i_pages, index);
1763 
1764 	while (max_scan--) {
1765 		void *entry = xas_next(&xas);
1766 		if (!entry || xa_is_value(entry))
1767 			break;
1768 		if (xas.xa_index == 0)
1769 			break;
1770 	}
1771 
1772 	return xas.xa_index;
1773 }
1774 EXPORT_SYMBOL(page_cache_next_miss);
1775 
1776 /**
1777  * page_cache_prev_miss() - Find the previous gap in the page cache.
1778  * @mapping: Mapping.
1779  * @index: Index.
1780  * @max_scan: Maximum range to search.
1781  *
1782  * Search the range [max(index - max_scan + 1, 0), index] for the
1783  * gap with the highest index.
1784  *
1785  * This function may be called under the rcu_read_lock.  However, this will
1786  * not atomically search a snapshot of the cache at a single point in time.
1787  * For example, if a gap is created at index 10, then subsequently a gap is
1788  * created at index 5, page_cache_prev_miss() covering both indices may
1789  * return 5 if called under the rcu_read_lock.
1790  *
1791  * Return: The index of the gap if found, otherwise an index outside the
1792  * range specified (in which case 'index - return >= max_scan' will be true).
1793  * In the rare case of wrap-around, ULONG_MAX will be returned.
1794  */
1795 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1796 			     pgoff_t index, unsigned long max_scan)
1797 {
1798 	XA_STATE(xas, &mapping->i_pages, index);
1799 
1800 	while (max_scan--) {
1801 		void *entry = xas_prev(&xas);
1802 		if (!entry || xa_is_value(entry))
1803 			break;
1804 		if (xas.xa_index == ULONG_MAX)
1805 			break;
1806 	}
1807 
1808 	return xas.xa_index;
1809 }
1810 EXPORT_SYMBOL(page_cache_prev_miss);
1811 
1812 /*
1813  * Lockless page cache protocol:
1814  * On the lookup side:
1815  * 1. Load the folio from i_pages
1816  * 2. Increment the refcount if it's not zero
1817  * 3. If the folio is not found by xas_reload(), put the refcount and retry
1818  *
1819  * On the removal side:
1820  * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1821  * B. Remove the page from i_pages
1822  * C. Return the page to the page allocator
1823  *
1824  * This means that any page may have its reference count temporarily
1825  * increased by a speculative page cache (or fast GUP) lookup as it can
1826  * be allocated by another user before the RCU grace period expires.
1827  * Because the refcount temporarily acquired here may end up being the
1828  * last refcount on the page, any page allocation must be freeable by
1829  * folio_put().
1830  */
1831 
1832 /*
1833  * mapping_get_entry - Get a page cache entry.
1834  * @mapping: the address_space to search
1835  * @index: The page cache index.
1836  *
1837  * Looks up the page cache entry at @mapping & @index.  If it is a folio,
1838  * it is returned with an increased refcount.  If it is a shadow entry
1839  * of a previously evicted folio, or a swap entry from shmem/tmpfs,
1840  * it is returned without further action.
1841  *
1842  * Return: The folio, swap or shadow entry, %NULL if nothing is found.
1843  */
1844 static void *mapping_get_entry(struct address_space *mapping, pgoff_t index)
1845 {
1846 	XA_STATE(xas, &mapping->i_pages, index);
1847 	struct folio *folio;
1848 
1849 	rcu_read_lock();
1850 repeat:
1851 	xas_reset(&xas);
1852 	folio = xas_load(&xas);
1853 	if (xas_retry(&xas, folio))
1854 		goto repeat;
1855 	/*
1856 	 * A shadow entry of a recently evicted page, or a swap entry from
1857 	 * shmem/tmpfs.  Return it without attempting to raise page count.
1858 	 */
1859 	if (!folio || xa_is_value(folio))
1860 		goto out;
1861 
1862 	if (!folio_try_get_rcu(folio))
1863 		goto repeat;
1864 
1865 	if (unlikely(folio != xas_reload(&xas))) {
1866 		folio_put(folio);
1867 		goto repeat;
1868 	}
1869 out:
1870 	rcu_read_unlock();
1871 
1872 	return folio;
1873 }
1874 
1875 /**
1876  * __filemap_get_folio - Find and get a reference to a folio.
1877  * @mapping: The address_space to search.
1878  * @index: The page index.
1879  * @fgp_flags: %FGP flags modify how the folio is returned.
1880  * @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
1881  *
1882  * Looks up the page cache entry at @mapping & @index.
1883  *
1884  * @fgp_flags can be zero or more of these flags:
1885  *
1886  * * %FGP_ACCESSED - The folio will be marked accessed.
1887  * * %FGP_LOCK - The folio is returned locked.
1888  * * %FGP_ENTRY - If there is a shadow / swap / DAX entry, return it
1889  *   instead of allocating a new folio to replace it.
1890  * * %FGP_CREAT - If no page is present then a new page is allocated using
1891  *   @gfp and added to the page cache and the VM's LRU list.
1892  *   The page is returned locked and with an increased refcount.
1893  * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1894  *   page is already in cache.  If the page was allocated, unlock it before
1895  *   returning so the caller can do the same dance.
1896  * * %FGP_WRITE - The page will be written to by the caller.
1897  * * %FGP_NOFS - __GFP_FS will get cleared in gfp.
1898  * * %FGP_NOWAIT - Don't get blocked by page lock.
1899  * * %FGP_STABLE - Wait for the folio to be stable (finished writeback)
1900  *
1901  * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1902  * if the %GFP flags specified for %FGP_CREAT are atomic.
1903  *
1904  * If there is a page cache page, it is returned with an increased refcount.
1905  *
1906  * Return: The found folio or %NULL otherwise.
1907  */
1908 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
1909 		int fgp_flags, gfp_t gfp)
1910 {
1911 	struct folio *folio;
1912 
1913 repeat:
1914 	folio = mapping_get_entry(mapping, index);
1915 	if (xa_is_value(folio)) {
1916 		if (fgp_flags & FGP_ENTRY)
1917 			return folio;
1918 		folio = NULL;
1919 	}
1920 	if (!folio)
1921 		goto no_page;
1922 
1923 	if (fgp_flags & FGP_LOCK) {
1924 		if (fgp_flags & FGP_NOWAIT) {
1925 			if (!folio_trylock(folio)) {
1926 				folio_put(folio);
1927 				return NULL;
1928 			}
1929 		} else {
1930 			folio_lock(folio);
1931 		}
1932 
1933 		/* Has the page been truncated? */
1934 		if (unlikely(folio->mapping != mapping)) {
1935 			folio_unlock(folio);
1936 			folio_put(folio);
1937 			goto repeat;
1938 		}
1939 		VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
1940 	}
1941 
1942 	if (fgp_flags & FGP_ACCESSED)
1943 		folio_mark_accessed(folio);
1944 	else if (fgp_flags & FGP_WRITE) {
1945 		/* Clear idle flag for buffer write */
1946 		if (folio_test_idle(folio))
1947 			folio_clear_idle(folio);
1948 	}
1949 
1950 	if (fgp_flags & FGP_STABLE)
1951 		folio_wait_stable(folio);
1952 no_page:
1953 	if (!folio && (fgp_flags & FGP_CREAT)) {
1954 		int err;
1955 		if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1956 			gfp |= __GFP_WRITE;
1957 		if (fgp_flags & FGP_NOFS)
1958 			gfp &= ~__GFP_FS;
1959 		if (fgp_flags & FGP_NOWAIT) {
1960 			gfp &= ~GFP_KERNEL;
1961 			gfp |= GFP_NOWAIT | __GFP_NOWARN;
1962 		}
1963 
1964 		folio = filemap_alloc_folio(gfp, 0);
1965 		if (!folio)
1966 			return NULL;
1967 
1968 		if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1969 			fgp_flags |= FGP_LOCK;
1970 
1971 		/* Init accessed so avoid atomic mark_page_accessed later */
1972 		if (fgp_flags & FGP_ACCESSED)
1973 			__folio_set_referenced(folio);
1974 
1975 		err = filemap_add_folio(mapping, folio, index, gfp);
1976 		if (unlikely(err)) {
1977 			folio_put(folio);
1978 			folio = NULL;
1979 			if (err == -EEXIST)
1980 				goto repeat;
1981 		}
1982 
1983 		/*
1984 		 * filemap_add_folio locks the page, and for mmap
1985 		 * we expect an unlocked page.
1986 		 */
1987 		if (folio && (fgp_flags & FGP_FOR_MMAP))
1988 			folio_unlock(folio);
1989 	}
1990 
1991 	return folio;
1992 }
1993 EXPORT_SYMBOL(__filemap_get_folio);
1994 
1995 static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max,
1996 		xa_mark_t mark)
1997 {
1998 	struct folio *folio;
1999 
2000 retry:
2001 	if (mark == XA_PRESENT)
2002 		folio = xas_find(xas, max);
2003 	else
2004 		folio = xas_find_marked(xas, max, mark);
2005 
2006 	if (xas_retry(xas, folio))
2007 		goto retry;
2008 	/*
2009 	 * A shadow entry of a recently evicted page, a swap
2010 	 * entry from shmem/tmpfs or a DAX entry.  Return it
2011 	 * without attempting to raise page count.
2012 	 */
2013 	if (!folio || xa_is_value(folio))
2014 		return folio;
2015 
2016 	if (!folio_try_get_rcu(folio))
2017 		goto reset;
2018 
2019 	if (unlikely(folio != xas_reload(xas))) {
2020 		folio_put(folio);
2021 		goto reset;
2022 	}
2023 
2024 	return folio;
2025 reset:
2026 	xas_reset(xas);
2027 	goto retry;
2028 }
2029 
2030 /**
2031  * find_get_entries - gang pagecache lookup
2032  * @mapping:	The address_space to search
2033  * @start:	The starting page cache index
2034  * @end:	The final page index (inclusive).
2035  * @fbatch:	Where the resulting entries are placed.
2036  * @indices:	The cache indices corresponding to the entries in @entries
2037  *
2038  * find_get_entries() will search for and return a batch of entries in
2039  * the mapping.  The entries are placed in @fbatch.  find_get_entries()
2040  * takes a reference on any actual folios it returns.
2041  *
2042  * The entries have ascending indexes.  The indices may not be consecutive
2043  * due to not-present entries or large folios.
2044  *
2045  * Any shadow entries of evicted folios, or swap entries from
2046  * shmem/tmpfs, are included in the returned array.
2047  *
2048  * Return: The number of entries which were found.
2049  */
2050 unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
2051 		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2052 {
2053 	XA_STATE(xas, &mapping->i_pages, start);
2054 	struct folio *folio;
2055 
2056 	rcu_read_lock();
2057 	while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2058 		indices[fbatch->nr] = xas.xa_index;
2059 		if (!folio_batch_add(fbatch, folio))
2060 			break;
2061 	}
2062 	rcu_read_unlock();
2063 
2064 	return folio_batch_count(fbatch);
2065 }
2066 
2067 /**
2068  * find_lock_entries - Find a batch of pagecache entries.
2069  * @mapping:	The address_space to search.
2070  * @start:	The starting page cache index.
2071  * @end:	The final page index (inclusive).
2072  * @fbatch:	Where the resulting entries are placed.
2073  * @indices:	The cache indices of the entries in @fbatch.
2074  *
2075  * find_lock_entries() will return a batch of entries from @mapping.
2076  * Swap, shadow and DAX entries are included.  Folios are returned
2077  * locked and with an incremented refcount.  Folios which are locked
2078  * by somebody else or under writeback are skipped.  Folios which are
2079  * partially outside the range are not returned.
2080  *
2081  * The entries have ascending indexes.  The indices may not be consecutive
2082  * due to not-present entries, large folios, folios which could not be
2083  * locked or folios under writeback.
2084  *
2085  * Return: The number of entries which were found.
2086  */
2087 unsigned find_lock_entries(struct address_space *mapping, pgoff_t start,
2088 		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2089 {
2090 	XA_STATE(xas, &mapping->i_pages, start);
2091 	struct folio *folio;
2092 
2093 	rcu_read_lock();
2094 	while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2095 		if (!xa_is_value(folio)) {
2096 			if (folio->index < start)
2097 				goto put;
2098 			if (folio->index + folio_nr_pages(folio) - 1 > end)
2099 				goto put;
2100 			if (!folio_trylock(folio))
2101 				goto put;
2102 			if (folio->mapping != mapping ||
2103 			    folio_test_writeback(folio))
2104 				goto unlock;
2105 			VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index),
2106 					folio);
2107 		}
2108 		indices[fbatch->nr] = xas.xa_index;
2109 		if (!folio_batch_add(fbatch, folio))
2110 			break;
2111 		continue;
2112 unlock:
2113 		folio_unlock(folio);
2114 put:
2115 		folio_put(folio);
2116 	}
2117 	rcu_read_unlock();
2118 
2119 	return folio_batch_count(fbatch);
2120 }
2121 
2122 /**
2123  * filemap_get_folios - Get a batch of folios
2124  * @mapping:	The address_space to search
2125  * @start:	The starting page index
2126  * @end:	The final page index (inclusive)
2127  * @fbatch:	The batch to fill.
2128  *
2129  * Search for and return a batch of folios in the mapping starting at
2130  * index @start and up to index @end (inclusive).  The folios are returned
2131  * in @fbatch with an elevated reference count.
2132  *
2133  * The first folio may start before @start; if it does, it will contain
2134  * @start.  The final folio may extend beyond @end; if it does, it will
2135  * contain @end.  The folios have ascending indices.  There may be gaps
2136  * between the folios if there are indices which have no folio in the
2137  * page cache.  If folios are added to or removed from the page cache
2138  * while this is running, they may or may not be found by this call.
2139  *
2140  * Return: The number of folios which were found.
2141  * We also update @start to index the next folio for the traversal.
2142  */
2143 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
2144 		pgoff_t end, struct folio_batch *fbatch)
2145 {
2146 	XA_STATE(xas, &mapping->i_pages, *start);
2147 	struct folio *folio;
2148 
2149 	rcu_read_lock();
2150 	while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2151 		/* Skip over shadow, swap and DAX entries */
2152 		if (xa_is_value(folio))
2153 			continue;
2154 		if (!folio_batch_add(fbatch, folio)) {
2155 			unsigned long nr = folio_nr_pages(folio);
2156 
2157 			if (folio_test_hugetlb(folio))
2158 				nr = 1;
2159 			*start = folio->index + nr;
2160 			goto out;
2161 		}
2162 	}
2163 
2164 	/*
2165 	 * We come here when there is no page beyond @end. We take care to not
2166 	 * overflow the index @start as it confuses some of the callers. This
2167 	 * breaks the iteration when there is a page at index -1 but that is
2168 	 * already broken anyway.
2169 	 */
2170 	if (end == (pgoff_t)-1)
2171 		*start = (pgoff_t)-1;
2172 	else
2173 		*start = end + 1;
2174 out:
2175 	rcu_read_unlock();
2176 
2177 	return folio_batch_count(fbatch);
2178 }
2179 EXPORT_SYMBOL(filemap_get_folios);
2180 
2181 static inline
2182 bool folio_more_pages(struct folio *folio, pgoff_t index, pgoff_t max)
2183 {
2184 	if (!folio_test_large(folio) || folio_test_hugetlb(folio))
2185 		return false;
2186 	if (index >= max)
2187 		return false;
2188 	return index < folio->index + folio_nr_pages(folio) - 1;
2189 }
2190 
2191 /**
2192  * filemap_get_folios_contig - Get a batch of contiguous folios
2193  * @mapping:	The address_space to search
2194  * @start:	The starting page index
2195  * @end:	The final page index (inclusive)
2196  * @fbatch:	The batch to fill
2197  *
2198  * filemap_get_folios_contig() works exactly like filemap_get_folios(),
2199  * except the returned folios are guaranteed to be contiguous. This may
2200  * not return all contiguous folios if the batch gets filled up.
2201  *
2202  * Return: The number of folios found.
2203  * Also update @start to be positioned for traversal of the next folio.
2204  */
2205 
2206 unsigned filemap_get_folios_contig(struct address_space *mapping,
2207 		pgoff_t *start, pgoff_t end, struct folio_batch *fbatch)
2208 {
2209 	XA_STATE(xas, &mapping->i_pages, *start);
2210 	unsigned long nr;
2211 	struct folio *folio;
2212 
2213 	rcu_read_lock();
2214 
2215 	for (folio = xas_load(&xas); folio && xas.xa_index <= end;
2216 			folio = xas_next(&xas)) {
2217 		if (xas_retry(&xas, folio))
2218 			continue;
2219 		/*
2220 		 * If the entry has been swapped out, we can stop looking.
2221 		 * No current caller is looking for DAX entries.
2222 		 */
2223 		if (xa_is_value(folio))
2224 			goto update_start;
2225 
2226 		if (!folio_try_get_rcu(folio))
2227 			goto retry;
2228 
2229 		if (unlikely(folio != xas_reload(&xas)))
2230 			goto put_folio;
2231 
2232 		if (!folio_batch_add(fbatch, folio)) {
2233 			nr = folio_nr_pages(folio);
2234 
2235 			if (folio_test_hugetlb(folio))
2236 				nr = 1;
2237 			*start = folio->index + nr;
2238 			goto out;
2239 		}
2240 		continue;
2241 put_folio:
2242 		folio_put(folio);
2243 
2244 retry:
2245 		xas_reset(&xas);
2246 	}
2247 
2248 update_start:
2249 	nr = folio_batch_count(fbatch);
2250 
2251 	if (nr) {
2252 		folio = fbatch->folios[nr - 1];
2253 		if (folio_test_hugetlb(folio))
2254 			*start = folio->index + 1;
2255 		else
2256 			*start = folio->index + folio_nr_pages(folio);
2257 	}
2258 out:
2259 	rcu_read_unlock();
2260 	return folio_batch_count(fbatch);
2261 }
2262 EXPORT_SYMBOL(filemap_get_folios_contig);
2263 
2264 /**
2265  * find_get_pages_range_tag - Find and return head pages matching @tag.
2266  * @mapping:	the address_space to search
2267  * @index:	the starting page index
2268  * @end:	The final page index (inclusive)
2269  * @tag:	the tag index
2270  * @nr_pages:	the maximum number of pages
2271  * @pages:	where the resulting pages are placed
2272  *
2273  * Like find_get_pages_range(), except we only return head pages which are
2274  * tagged with @tag.  @index is updated to the index immediately after the
2275  * last page we return, ready for the next iteration.
2276  *
2277  * Return: the number of pages which were found.
2278  */
2279 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
2280 			pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
2281 			struct page **pages)
2282 {
2283 	XA_STATE(xas, &mapping->i_pages, *index);
2284 	struct folio *folio;
2285 	unsigned ret = 0;
2286 
2287 	if (unlikely(!nr_pages))
2288 		return 0;
2289 
2290 	rcu_read_lock();
2291 	while ((folio = find_get_entry(&xas, end, tag))) {
2292 		/*
2293 		 * Shadow entries should never be tagged, but this iteration
2294 		 * is lockless so there is a window for page reclaim to evict
2295 		 * a page we saw tagged.  Skip over it.
2296 		 */
2297 		if (xa_is_value(folio))
2298 			continue;
2299 
2300 		pages[ret] = &folio->page;
2301 		if (++ret == nr_pages) {
2302 			*index = folio->index + folio_nr_pages(folio);
2303 			goto out;
2304 		}
2305 	}
2306 
2307 	/*
2308 	 * We come here when we got to @end. We take care to not overflow the
2309 	 * index @index as it confuses some of the callers. This breaks the
2310 	 * iteration when there is a page at index -1 but that is already
2311 	 * broken anyway.
2312 	 */
2313 	if (end == (pgoff_t)-1)
2314 		*index = (pgoff_t)-1;
2315 	else
2316 		*index = end + 1;
2317 out:
2318 	rcu_read_unlock();
2319 
2320 	return ret;
2321 }
2322 EXPORT_SYMBOL(find_get_pages_range_tag);
2323 
2324 /*
2325  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2326  * a _large_ part of the i/o request. Imagine the worst scenario:
2327  *
2328  *      ---R__________________________________________B__________
2329  *         ^ reading here                             ^ bad block(assume 4k)
2330  *
2331  * read(R) => miss => readahead(R...B) => media error => frustrating retries
2332  * => failing the whole request => read(R) => read(R+1) =>
2333  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2334  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2335  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2336  *
2337  * It is going insane. Fix it by quickly scaling down the readahead size.
2338  */
2339 static void shrink_readahead_size_eio(struct file_ra_state *ra)
2340 {
2341 	ra->ra_pages /= 4;
2342 }
2343 
2344 /*
2345  * filemap_get_read_batch - Get a batch of folios for read
2346  *
2347  * Get a batch of folios which represent a contiguous range of bytes in
2348  * the file.  No exceptional entries will be returned.  If @index is in
2349  * the middle of a folio, the entire folio will be returned.  The last
2350  * folio in the batch may have the readahead flag set or the uptodate flag
2351  * clear so that the caller can take the appropriate action.
2352  */
2353 static void filemap_get_read_batch(struct address_space *mapping,
2354 		pgoff_t index, pgoff_t max, struct folio_batch *fbatch)
2355 {
2356 	XA_STATE(xas, &mapping->i_pages, index);
2357 	struct folio *folio;
2358 
2359 	rcu_read_lock();
2360 	for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2361 		if (xas_retry(&xas, folio))
2362 			continue;
2363 		if (xas.xa_index > max || xa_is_value(folio))
2364 			break;
2365 		if (xa_is_sibling(folio))
2366 			break;
2367 		if (!folio_try_get_rcu(folio))
2368 			goto retry;
2369 
2370 		if (unlikely(folio != xas_reload(&xas)))
2371 			goto put_folio;
2372 
2373 		if (!folio_batch_add(fbatch, folio))
2374 			break;
2375 		if (!folio_test_uptodate(folio))
2376 			break;
2377 		if (folio_test_readahead(folio))
2378 			break;
2379 		xas_advance(&xas, folio->index + folio_nr_pages(folio) - 1);
2380 		continue;
2381 put_folio:
2382 		folio_put(folio);
2383 retry:
2384 		xas_reset(&xas);
2385 	}
2386 	rcu_read_unlock();
2387 }
2388 
2389 static int filemap_read_folio(struct file *file, filler_t filler,
2390 		struct folio *folio)
2391 {
2392 	int error;
2393 
2394 	/*
2395 	 * A previous I/O error may have been due to temporary failures,
2396 	 * eg. multipath errors.  PG_error will be set again if read_folio
2397 	 * fails.
2398 	 */
2399 	folio_clear_error(folio);
2400 	/* Start the actual read. The read will unlock the page. */
2401 	error = filler(file, folio);
2402 	if (error)
2403 		return error;
2404 
2405 	error = folio_wait_locked_killable(folio);
2406 	if (error)
2407 		return error;
2408 	if (folio_test_uptodate(folio))
2409 		return 0;
2410 	if (file)
2411 		shrink_readahead_size_eio(&file->f_ra);
2412 	return -EIO;
2413 }
2414 
2415 static bool filemap_range_uptodate(struct address_space *mapping,
2416 		loff_t pos, struct iov_iter *iter, struct folio *folio)
2417 {
2418 	int count;
2419 
2420 	if (folio_test_uptodate(folio))
2421 		return true;
2422 	/* pipes can't handle partially uptodate pages */
2423 	if (iov_iter_is_pipe(iter))
2424 		return false;
2425 	if (!mapping->a_ops->is_partially_uptodate)
2426 		return false;
2427 	if (mapping->host->i_blkbits >= folio_shift(folio))
2428 		return false;
2429 
2430 	count = iter->count;
2431 	if (folio_pos(folio) > pos) {
2432 		count -= folio_pos(folio) - pos;
2433 		pos = 0;
2434 	} else {
2435 		pos -= folio_pos(folio);
2436 	}
2437 
2438 	return mapping->a_ops->is_partially_uptodate(folio, pos, count);
2439 }
2440 
2441 static int filemap_update_page(struct kiocb *iocb,
2442 		struct address_space *mapping, struct iov_iter *iter,
2443 		struct folio *folio)
2444 {
2445 	int error;
2446 
2447 	if (iocb->ki_flags & IOCB_NOWAIT) {
2448 		if (!filemap_invalidate_trylock_shared(mapping))
2449 			return -EAGAIN;
2450 	} else {
2451 		filemap_invalidate_lock_shared(mapping);
2452 	}
2453 
2454 	if (!folio_trylock(folio)) {
2455 		error = -EAGAIN;
2456 		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2457 			goto unlock_mapping;
2458 		if (!(iocb->ki_flags & IOCB_WAITQ)) {
2459 			filemap_invalidate_unlock_shared(mapping);
2460 			/*
2461 			 * This is where we usually end up waiting for a
2462 			 * previously submitted readahead to finish.
2463 			 */
2464 			folio_put_wait_locked(folio, TASK_KILLABLE);
2465 			return AOP_TRUNCATED_PAGE;
2466 		}
2467 		error = __folio_lock_async(folio, iocb->ki_waitq);
2468 		if (error)
2469 			goto unlock_mapping;
2470 	}
2471 
2472 	error = AOP_TRUNCATED_PAGE;
2473 	if (!folio->mapping)
2474 		goto unlock;
2475 
2476 	error = 0;
2477 	if (filemap_range_uptodate(mapping, iocb->ki_pos, iter, folio))
2478 		goto unlock;
2479 
2480 	error = -EAGAIN;
2481 	if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2482 		goto unlock;
2483 
2484 	error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio,
2485 			folio);
2486 	goto unlock_mapping;
2487 unlock:
2488 	folio_unlock(folio);
2489 unlock_mapping:
2490 	filemap_invalidate_unlock_shared(mapping);
2491 	if (error == AOP_TRUNCATED_PAGE)
2492 		folio_put(folio);
2493 	return error;
2494 }
2495 
2496 static int filemap_create_folio(struct file *file,
2497 		struct address_space *mapping, pgoff_t index,
2498 		struct folio_batch *fbatch)
2499 {
2500 	struct folio *folio;
2501 	int error;
2502 
2503 	folio = filemap_alloc_folio(mapping_gfp_mask(mapping), 0);
2504 	if (!folio)
2505 		return -ENOMEM;
2506 
2507 	/*
2508 	 * Protect against truncate / hole punch. Grabbing invalidate_lock
2509 	 * here assures we cannot instantiate and bring uptodate new
2510 	 * pagecache folios after evicting page cache during truncate
2511 	 * and before actually freeing blocks.	Note that we could
2512 	 * release invalidate_lock after inserting the folio into
2513 	 * the page cache as the locked folio would then be enough to
2514 	 * synchronize with hole punching. But there are code paths
2515 	 * such as filemap_update_page() filling in partially uptodate
2516 	 * pages or ->readahead() that need to hold invalidate_lock
2517 	 * while mapping blocks for IO so let's hold the lock here as
2518 	 * well to keep locking rules simple.
2519 	 */
2520 	filemap_invalidate_lock_shared(mapping);
2521 	error = filemap_add_folio(mapping, folio, index,
2522 			mapping_gfp_constraint(mapping, GFP_KERNEL));
2523 	if (error == -EEXIST)
2524 		error = AOP_TRUNCATED_PAGE;
2525 	if (error)
2526 		goto error;
2527 
2528 	error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
2529 	if (error)
2530 		goto error;
2531 
2532 	filemap_invalidate_unlock_shared(mapping);
2533 	folio_batch_add(fbatch, folio);
2534 	return 0;
2535 error:
2536 	filemap_invalidate_unlock_shared(mapping);
2537 	folio_put(folio);
2538 	return error;
2539 }
2540 
2541 static int filemap_readahead(struct kiocb *iocb, struct file *file,
2542 		struct address_space *mapping, struct folio *folio,
2543 		pgoff_t last_index)
2544 {
2545 	DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index);
2546 
2547 	if (iocb->ki_flags & IOCB_NOIO)
2548 		return -EAGAIN;
2549 	page_cache_async_ra(&ractl, folio, last_index - folio->index);
2550 	return 0;
2551 }
2552 
2553 static int filemap_get_pages(struct kiocb *iocb, struct iov_iter *iter,
2554 		struct folio_batch *fbatch)
2555 {
2556 	struct file *filp = iocb->ki_filp;
2557 	struct address_space *mapping = filp->f_mapping;
2558 	struct file_ra_state *ra = &filp->f_ra;
2559 	pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2560 	pgoff_t last_index;
2561 	struct folio *folio;
2562 	int err = 0;
2563 
2564 	last_index = DIV_ROUND_UP(iocb->ki_pos + iter->count, PAGE_SIZE);
2565 retry:
2566 	if (fatal_signal_pending(current))
2567 		return -EINTR;
2568 
2569 	filemap_get_read_batch(mapping, index, last_index, fbatch);
2570 	if (!folio_batch_count(fbatch)) {
2571 		if (iocb->ki_flags & IOCB_NOIO)
2572 			return -EAGAIN;
2573 		page_cache_sync_readahead(mapping, ra, filp, index,
2574 				last_index - index);
2575 		filemap_get_read_batch(mapping, index, last_index, fbatch);
2576 	}
2577 	if (!folio_batch_count(fbatch)) {
2578 		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2579 			return -EAGAIN;
2580 		err = filemap_create_folio(filp, mapping,
2581 				iocb->ki_pos >> PAGE_SHIFT, fbatch);
2582 		if (err == AOP_TRUNCATED_PAGE)
2583 			goto retry;
2584 		return err;
2585 	}
2586 
2587 	folio = fbatch->folios[folio_batch_count(fbatch) - 1];
2588 	if (folio_test_readahead(folio)) {
2589 		err = filemap_readahead(iocb, filp, mapping, folio, last_index);
2590 		if (err)
2591 			goto err;
2592 	}
2593 	if (!folio_test_uptodate(folio)) {
2594 		if ((iocb->ki_flags & IOCB_WAITQ) &&
2595 		    folio_batch_count(fbatch) > 1)
2596 			iocb->ki_flags |= IOCB_NOWAIT;
2597 		err = filemap_update_page(iocb, mapping, iter, folio);
2598 		if (err)
2599 			goto err;
2600 	}
2601 
2602 	return 0;
2603 err:
2604 	if (err < 0)
2605 		folio_put(folio);
2606 	if (likely(--fbatch->nr))
2607 		return 0;
2608 	if (err == AOP_TRUNCATED_PAGE)
2609 		goto retry;
2610 	return err;
2611 }
2612 
2613 static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio)
2614 {
2615 	unsigned int shift = folio_shift(folio);
2616 
2617 	return (pos1 >> shift == pos2 >> shift);
2618 }
2619 
2620 /**
2621  * filemap_read - Read data from the page cache.
2622  * @iocb: The iocb to read.
2623  * @iter: Destination for the data.
2624  * @already_read: Number of bytes already read by the caller.
2625  *
2626  * Copies data from the page cache.  If the data is not currently present,
2627  * uses the readahead and read_folio address_space operations to fetch it.
2628  *
2629  * Return: Total number of bytes copied, including those already read by
2630  * the caller.  If an error happens before any bytes are copied, returns
2631  * a negative error number.
2632  */
2633 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2634 		ssize_t already_read)
2635 {
2636 	struct file *filp = iocb->ki_filp;
2637 	struct file_ra_state *ra = &filp->f_ra;
2638 	struct address_space *mapping = filp->f_mapping;
2639 	struct inode *inode = mapping->host;
2640 	struct folio_batch fbatch;
2641 	int i, error = 0;
2642 	bool writably_mapped;
2643 	loff_t isize, end_offset;
2644 
2645 	if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2646 		return 0;
2647 	if (unlikely(!iov_iter_count(iter)))
2648 		return 0;
2649 
2650 	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2651 	folio_batch_init(&fbatch);
2652 
2653 	do {
2654 		cond_resched();
2655 
2656 		/*
2657 		 * If we've already successfully copied some data, then we
2658 		 * can no longer safely return -EIOCBQUEUED. Hence mark
2659 		 * an async read NOWAIT at that point.
2660 		 */
2661 		if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2662 			iocb->ki_flags |= IOCB_NOWAIT;
2663 
2664 		if (unlikely(iocb->ki_pos >= i_size_read(inode)))
2665 			break;
2666 
2667 		error = filemap_get_pages(iocb, iter, &fbatch);
2668 		if (error < 0)
2669 			break;
2670 
2671 		/*
2672 		 * i_size must be checked after we know the pages are Uptodate.
2673 		 *
2674 		 * Checking i_size after the check allows us to calculate
2675 		 * the correct value for "nr", which means the zero-filled
2676 		 * part of the page is not copied back to userspace (unless
2677 		 * another truncate extends the file - this is desired though).
2678 		 */
2679 		isize = i_size_read(inode);
2680 		if (unlikely(iocb->ki_pos >= isize))
2681 			goto put_folios;
2682 		end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2683 
2684 		/*
2685 		 * Once we start copying data, we don't want to be touching any
2686 		 * cachelines that might be contended:
2687 		 */
2688 		writably_mapped = mapping_writably_mapped(mapping);
2689 
2690 		/*
2691 		 * When a read accesses the same folio several times, only
2692 		 * mark it as accessed the first time.
2693 		 */
2694 		if (!pos_same_folio(iocb->ki_pos, ra->prev_pos - 1,
2695 							fbatch.folios[0]))
2696 			folio_mark_accessed(fbatch.folios[0]);
2697 
2698 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
2699 			struct folio *folio = fbatch.folios[i];
2700 			size_t fsize = folio_size(folio);
2701 			size_t offset = iocb->ki_pos & (fsize - 1);
2702 			size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2703 					     fsize - offset);
2704 			size_t copied;
2705 
2706 			if (end_offset < folio_pos(folio))
2707 				break;
2708 			if (i > 0)
2709 				folio_mark_accessed(folio);
2710 			/*
2711 			 * If users can be writing to this folio using arbitrary
2712 			 * virtual addresses, take care of potential aliasing
2713 			 * before reading the folio on the kernel side.
2714 			 */
2715 			if (writably_mapped)
2716 				flush_dcache_folio(folio);
2717 
2718 			copied = copy_folio_to_iter(folio, offset, bytes, iter);
2719 
2720 			already_read += copied;
2721 			iocb->ki_pos += copied;
2722 			ra->prev_pos = iocb->ki_pos;
2723 
2724 			if (copied < bytes) {
2725 				error = -EFAULT;
2726 				break;
2727 			}
2728 		}
2729 put_folios:
2730 		for (i = 0; i < folio_batch_count(&fbatch); i++)
2731 			folio_put(fbatch.folios[i]);
2732 		folio_batch_init(&fbatch);
2733 	} while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2734 
2735 	file_accessed(filp);
2736 
2737 	return already_read ? already_read : error;
2738 }
2739 EXPORT_SYMBOL_GPL(filemap_read);
2740 
2741 /**
2742  * generic_file_read_iter - generic filesystem read routine
2743  * @iocb:	kernel I/O control block
2744  * @iter:	destination for the data read
2745  *
2746  * This is the "read_iter()" routine for all filesystems
2747  * that can use the page cache directly.
2748  *
2749  * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2750  * be returned when no data can be read without waiting for I/O requests
2751  * to complete; it doesn't prevent readahead.
2752  *
2753  * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2754  * requests shall be made for the read or for readahead.  When no data
2755  * can be read, -EAGAIN shall be returned.  When readahead would be
2756  * triggered, a partial, possibly empty read shall be returned.
2757  *
2758  * Return:
2759  * * number of bytes copied, even for partial reads
2760  * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2761  */
2762 ssize_t
2763 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2764 {
2765 	size_t count = iov_iter_count(iter);
2766 	ssize_t retval = 0;
2767 
2768 	if (!count)
2769 		return 0; /* skip atime */
2770 
2771 	if (iocb->ki_flags & IOCB_DIRECT) {
2772 		struct file *file = iocb->ki_filp;
2773 		struct address_space *mapping = file->f_mapping;
2774 		struct inode *inode = mapping->host;
2775 
2776 		if (iocb->ki_flags & IOCB_NOWAIT) {
2777 			if (filemap_range_needs_writeback(mapping, iocb->ki_pos,
2778 						iocb->ki_pos + count - 1))
2779 				return -EAGAIN;
2780 		} else {
2781 			retval = filemap_write_and_wait_range(mapping,
2782 						iocb->ki_pos,
2783 					        iocb->ki_pos + count - 1);
2784 			if (retval < 0)
2785 				return retval;
2786 		}
2787 
2788 		file_accessed(file);
2789 
2790 		retval = mapping->a_ops->direct_IO(iocb, iter);
2791 		if (retval >= 0) {
2792 			iocb->ki_pos += retval;
2793 			count -= retval;
2794 		}
2795 		if (retval != -EIOCBQUEUED)
2796 			iov_iter_revert(iter, count - iov_iter_count(iter));
2797 
2798 		/*
2799 		 * Btrfs can have a short DIO read if we encounter
2800 		 * compressed extents, so if there was an error, or if
2801 		 * we've already read everything we wanted to, or if
2802 		 * there was a short read because we hit EOF, go ahead
2803 		 * and return.  Otherwise fallthrough to buffered io for
2804 		 * the rest of the read.  Buffered reads will not work for
2805 		 * DAX files, so don't bother trying.
2806 		 */
2807 		if (retval < 0 || !count || IS_DAX(inode))
2808 			return retval;
2809 		if (iocb->ki_pos >= i_size_read(inode))
2810 			return retval;
2811 	}
2812 
2813 	return filemap_read(iocb, iter, retval);
2814 }
2815 EXPORT_SYMBOL(generic_file_read_iter);
2816 
2817 static inline loff_t folio_seek_hole_data(struct xa_state *xas,
2818 		struct address_space *mapping, struct folio *folio,
2819 		loff_t start, loff_t end, bool seek_data)
2820 {
2821 	const struct address_space_operations *ops = mapping->a_ops;
2822 	size_t offset, bsz = i_blocksize(mapping->host);
2823 
2824 	if (xa_is_value(folio) || folio_test_uptodate(folio))
2825 		return seek_data ? start : end;
2826 	if (!ops->is_partially_uptodate)
2827 		return seek_data ? end : start;
2828 
2829 	xas_pause(xas);
2830 	rcu_read_unlock();
2831 	folio_lock(folio);
2832 	if (unlikely(folio->mapping != mapping))
2833 		goto unlock;
2834 
2835 	offset = offset_in_folio(folio, start) & ~(bsz - 1);
2836 
2837 	do {
2838 		if (ops->is_partially_uptodate(folio, offset, bsz) ==
2839 							seek_data)
2840 			break;
2841 		start = (start + bsz) & ~(bsz - 1);
2842 		offset += bsz;
2843 	} while (offset < folio_size(folio));
2844 unlock:
2845 	folio_unlock(folio);
2846 	rcu_read_lock();
2847 	return start;
2848 }
2849 
2850 static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio)
2851 {
2852 	if (xa_is_value(folio))
2853 		return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
2854 	return folio_size(folio);
2855 }
2856 
2857 /**
2858  * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
2859  * @mapping: Address space to search.
2860  * @start: First byte to consider.
2861  * @end: Limit of search (exclusive).
2862  * @whence: Either SEEK_HOLE or SEEK_DATA.
2863  *
2864  * If the page cache knows which blocks contain holes and which blocks
2865  * contain data, your filesystem can use this function to implement
2866  * SEEK_HOLE and SEEK_DATA.  This is useful for filesystems which are
2867  * entirely memory-based such as tmpfs, and filesystems which support
2868  * unwritten extents.
2869  *
2870  * Return: The requested offset on success, or -ENXIO if @whence specifies
2871  * SEEK_DATA and there is no data after @start.  There is an implicit hole
2872  * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
2873  * and @end contain data.
2874  */
2875 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
2876 		loff_t end, int whence)
2877 {
2878 	XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
2879 	pgoff_t max = (end - 1) >> PAGE_SHIFT;
2880 	bool seek_data = (whence == SEEK_DATA);
2881 	struct folio *folio;
2882 
2883 	if (end <= start)
2884 		return -ENXIO;
2885 
2886 	rcu_read_lock();
2887 	while ((folio = find_get_entry(&xas, max, XA_PRESENT))) {
2888 		loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
2889 		size_t seek_size;
2890 
2891 		if (start < pos) {
2892 			if (!seek_data)
2893 				goto unlock;
2894 			start = pos;
2895 		}
2896 
2897 		seek_size = seek_folio_size(&xas, folio);
2898 		pos = round_up((u64)pos + 1, seek_size);
2899 		start = folio_seek_hole_data(&xas, mapping, folio, start, pos,
2900 				seek_data);
2901 		if (start < pos)
2902 			goto unlock;
2903 		if (start >= end)
2904 			break;
2905 		if (seek_size > PAGE_SIZE)
2906 			xas_set(&xas, pos >> PAGE_SHIFT);
2907 		if (!xa_is_value(folio))
2908 			folio_put(folio);
2909 	}
2910 	if (seek_data)
2911 		start = -ENXIO;
2912 unlock:
2913 	rcu_read_unlock();
2914 	if (folio && !xa_is_value(folio))
2915 		folio_put(folio);
2916 	if (start > end)
2917 		return end;
2918 	return start;
2919 }
2920 
2921 #ifdef CONFIG_MMU
2922 #define MMAP_LOTSAMISS  (100)
2923 /*
2924  * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
2925  * @vmf - the vm_fault for this fault.
2926  * @folio - the folio to lock.
2927  * @fpin - the pointer to the file we may pin (or is already pinned).
2928  *
2929  * This works similar to lock_folio_or_retry in that it can drop the
2930  * mmap_lock.  It differs in that it actually returns the folio locked
2931  * if it returns 1 and 0 if it couldn't lock the folio.  If we did have
2932  * to drop the mmap_lock then fpin will point to the pinned file and
2933  * needs to be fput()'ed at a later point.
2934  */
2935 static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio,
2936 				     struct file **fpin)
2937 {
2938 	if (folio_trylock(folio))
2939 		return 1;
2940 
2941 	/*
2942 	 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2943 	 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
2944 	 * is supposed to work. We have way too many special cases..
2945 	 */
2946 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2947 		return 0;
2948 
2949 	*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2950 	if (vmf->flags & FAULT_FLAG_KILLABLE) {
2951 		if (__folio_lock_killable(folio)) {
2952 			/*
2953 			 * We didn't have the right flags to drop the mmap_lock,
2954 			 * but all fault_handlers only check for fatal signals
2955 			 * if we return VM_FAULT_RETRY, so we need to drop the
2956 			 * mmap_lock here and return 0 if we don't have a fpin.
2957 			 */
2958 			if (*fpin == NULL)
2959 				mmap_read_unlock(vmf->vma->vm_mm);
2960 			return 0;
2961 		}
2962 	} else
2963 		__folio_lock(folio);
2964 
2965 	return 1;
2966 }
2967 
2968 /*
2969  * Synchronous readahead happens when we don't even find a page in the page
2970  * cache at all.  We don't want to perform IO under the mmap sem, so if we have
2971  * to drop the mmap sem we return the file that was pinned in order for us to do
2972  * that.  If we didn't pin a file then we return NULL.  The file that is
2973  * returned needs to be fput()'ed when we're done with it.
2974  */
2975 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
2976 {
2977 	struct file *file = vmf->vma->vm_file;
2978 	struct file_ra_state *ra = &file->f_ra;
2979 	struct address_space *mapping = file->f_mapping;
2980 	DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
2981 	struct file *fpin = NULL;
2982 	unsigned long vm_flags = vmf->vma->vm_flags;
2983 	unsigned int mmap_miss;
2984 
2985 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2986 	/* Use the readahead code, even if readahead is disabled */
2987 	if (vm_flags & VM_HUGEPAGE) {
2988 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2989 		ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1);
2990 		ra->size = HPAGE_PMD_NR;
2991 		/*
2992 		 * Fetch two PMD folios, so we get the chance to actually
2993 		 * readahead, unless we've been told not to.
2994 		 */
2995 		if (!(vm_flags & VM_RAND_READ))
2996 			ra->size *= 2;
2997 		ra->async_size = HPAGE_PMD_NR;
2998 		page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER);
2999 		return fpin;
3000 	}
3001 #endif
3002 
3003 	/* If we don't want any read-ahead, don't bother */
3004 	if (vm_flags & VM_RAND_READ)
3005 		return fpin;
3006 	if (!ra->ra_pages)
3007 		return fpin;
3008 
3009 	if (vm_flags & VM_SEQ_READ) {
3010 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3011 		page_cache_sync_ra(&ractl, ra->ra_pages);
3012 		return fpin;
3013 	}
3014 
3015 	/* Avoid banging the cache line if not needed */
3016 	mmap_miss = READ_ONCE(ra->mmap_miss);
3017 	if (mmap_miss < MMAP_LOTSAMISS * 10)
3018 		WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
3019 
3020 	/*
3021 	 * Do we miss much more than hit in this file? If so,
3022 	 * stop bothering with read-ahead. It will only hurt.
3023 	 */
3024 	if (mmap_miss > MMAP_LOTSAMISS)
3025 		return fpin;
3026 
3027 	/*
3028 	 * mmap read-around
3029 	 */
3030 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3031 	ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
3032 	ra->size = ra->ra_pages;
3033 	ra->async_size = ra->ra_pages / 4;
3034 	ractl._index = ra->start;
3035 	page_cache_ra_order(&ractl, ra, 0);
3036 	return fpin;
3037 }
3038 
3039 /*
3040  * Asynchronous readahead happens when we find the page and PG_readahead,
3041  * so we want to possibly extend the readahead further.  We return the file that
3042  * was pinned if we have to drop the mmap_lock in order to do IO.
3043  */
3044 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
3045 					    struct folio *folio)
3046 {
3047 	struct file *file = vmf->vma->vm_file;
3048 	struct file_ra_state *ra = &file->f_ra;
3049 	DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff);
3050 	struct file *fpin = NULL;
3051 	unsigned int mmap_miss;
3052 
3053 	/* If we don't want any read-ahead, don't bother */
3054 	if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
3055 		return fpin;
3056 
3057 	mmap_miss = READ_ONCE(ra->mmap_miss);
3058 	if (mmap_miss)
3059 		WRITE_ONCE(ra->mmap_miss, --mmap_miss);
3060 
3061 	if (folio_test_readahead(folio)) {
3062 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3063 		page_cache_async_ra(&ractl, folio, ra->ra_pages);
3064 	}
3065 	return fpin;
3066 }
3067 
3068 /**
3069  * filemap_fault - read in file data for page fault handling
3070  * @vmf:	struct vm_fault containing details of the fault
3071  *
3072  * filemap_fault() is invoked via the vma operations vector for a
3073  * mapped memory region to read in file data during a page fault.
3074  *
3075  * The goto's are kind of ugly, but this streamlines the normal case of having
3076  * it in the page cache, and handles the special cases reasonably without
3077  * having a lot of duplicated code.
3078  *
3079  * vma->vm_mm->mmap_lock must be held on entry.
3080  *
3081  * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
3082  * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap().
3083  *
3084  * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
3085  * has not been released.
3086  *
3087  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
3088  *
3089  * Return: bitwise-OR of %VM_FAULT_ codes.
3090  */
3091 vm_fault_t filemap_fault(struct vm_fault *vmf)
3092 {
3093 	int error;
3094 	struct file *file = vmf->vma->vm_file;
3095 	struct file *fpin = NULL;
3096 	struct address_space *mapping = file->f_mapping;
3097 	struct inode *inode = mapping->host;
3098 	pgoff_t max_idx, index = vmf->pgoff;
3099 	struct folio *folio;
3100 	vm_fault_t ret = 0;
3101 	bool mapping_locked = false;
3102 
3103 	max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3104 	if (unlikely(index >= max_idx))
3105 		return VM_FAULT_SIGBUS;
3106 
3107 	/*
3108 	 * Do we have something in the page cache already?
3109 	 */
3110 	folio = filemap_get_folio(mapping, index);
3111 	if (likely(folio)) {
3112 		/*
3113 		 * We found the page, so try async readahead before waiting for
3114 		 * the lock.
3115 		 */
3116 		if (!(vmf->flags & FAULT_FLAG_TRIED))
3117 			fpin = do_async_mmap_readahead(vmf, folio);
3118 		if (unlikely(!folio_test_uptodate(folio))) {
3119 			filemap_invalidate_lock_shared(mapping);
3120 			mapping_locked = true;
3121 		}
3122 	} else {
3123 		/* No page in the page cache at all */
3124 		count_vm_event(PGMAJFAULT);
3125 		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
3126 		ret = VM_FAULT_MAJOR;
3127 		fpin = do_sync_mmap_readahead(vmf);
3128 retry_find:
3129 		/*
3130 		 * See comment in filemap_create_folio() why we need
3131 		 * invalidate_lock
3132 		 */
3133 		if (!mapping_locked) {
3134 			filemap_invalidate_lock_shared(mapping);
3135 			mapping_locked = true;
3136 		}
3137 		folio = __filemap_get_folio(mapping, index,
3138 					  FGP_CREAT|FGP_FOR_MMAP,
3139 					  vmf->gfp_mask);
3140 		if (!folio) {
3141 			if (fpin)
3142 				goto out_retry;
3143 			filemap_invalidate_unlock_shared(mapping);
3144 			return VM_FAULT_OOM;
3145 		}
3146 	}
3147 
3148 	if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin))
3149 		goto out_retry;
3150 
3151 	/* Did it get truncated? */
3152 	if (unlikely(folio->mapping != mapping)) {
3153 		folio_unlock(folio);
3154 		folio_put(folio);
3155 		goto retry_find;
3156 	}
3157 	VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
3158 
3159 	/*
3160 	 * We have a locked page in the page cache, now we need to check
3161 	 * that it's up-to-date. If not, it is going to be due to an error.
3162 	 */
3163 	if (unlikely(!folio_test_uptodate(folio))) {
3164 		/*
3165 		 * The page was in cache and uptodate and now it is not.
3166 		 * Strange but possible since we didn't hold the page lock all
3167 		 * the time. Let's drop everything get the invalidate lock and
3168 		 * try again.
3169 		 */
3170 		if (!mapping_locked) {
3171 			folio_unlock(folio);
3172 			folio_put(folio);
3173 			goto retry_find;
3174 		}
3175 		goto page_not_uptodate;
3176 	}
3177 
3178 	/*
3179 	 * We've made it this far and we had to drop our mmap_lock, now is the
3180 	 * time to return to the upper layer and have it re-find the vma and
3181 	 * redo the fault.
3182 	 */
3183 	if (fpin) {
3184 		folio_unlock(folio);
3185 		goto out_retry;
3186 	}
3187 	if (mapping_locked)
3188 		filemap_invalidate_unlock_shared(mapping);
3189 
3190 	/*
3191 	 * Found the page and have a reference on it.
3192 	 * We must recheck i_size under page lock.
3193 	 */
3194 	max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3195 	if (unlikely(index >= max_idx)) {
3196 		folio_unlock(folio);
3197 		folio_put(folio);
3198 		return VM_FAULT_SIGBUS;
3199 	}
3200 
3201 	vmf->page = folio_file_page(folio, index);
3202 	return ret | VM_FAULT_LOCKED;
3203 
3204 page_not_uptodate:
3205 	/*
3206 	 * Umm, take care of errors if the page isn't up-to-date.
3207 	 * Try to re-read it _once_. We do this synchronously,
3208 	 * because there really aren't any performance issues here
3209 	 * and we need to check for errors.
3210 	 */
3211 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3212 	error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
3213 	if (fpin)
3214 		goto out_retry;
3215 	folio_put(folio);
3216 
3217 	if (!error || error == AOP_TRUNCATED_PAGE)
3218 		goto retry_find;
3219 	filemap_invalidate_unlock_shared(mapping);
3220 
3221 	return VM_FAULT_SIGBUS;
3222 
3223 out_retry:
3224 	/*
3225 	 * We dropped the mmap_lock, we need to return to the fault handler to
3226 	 * re-find the vma and come back and find our hopefully still populated
3227 	 * page.
3228 	 */
3229 	if (folio)
3230 		folio_put(folio);
3231 	if (mapping_locked)
3232 		filemap_invalidate_unlock_shared(mapping);
3233 	if (fpin)
3234 		fput(fpin);
3235 	return ret | VM_FAULT_RETRY;
3236 }
3237 EXPORT_SYMBOL(filemap_fault);
3238 
3239 static bool filemap_map_pmd(struct vm_fault *vmf, struct page *page)
3240 {
3241 	struct mm_struct *mm = vmf->vma->vm_mm;
3242 
3243 	/* Huge page is mapped? No need to proceed. */
3244 	if (pmd_trans_huge(*vmf->pmd)) {
3245 		unlock_page(page);
3246 		put_page(page);
3247 		return true;
3248 	}
3249 
3250 	if (pmd_none(*vmf->pmd) && PageTransHuge(page)) {
3251 		vm_fault_t ret = do_set_pmd(vmf, page);
3252 		if (!ret) {
3253 			/* The page is mapped successfully, reference consumed. */
3254 			unlock_page(page);
3255 			return true;
3256 		}
3257 	}
3258 
3259 	if (pmd_none(*vmf->pmd))
3260 		pmd_install(mm, vmf->pmd, &vmf->prealloc_pte);
3261 
3262 	/* See comment in handle_pte_fault() */
3263 	if (pmd_devmap_trans_unstable(vmf->pmd)) {
3264 		unlock_page(page);
3265 		put_page(page);
3266 		return true;
3267 	}
3268 
3269 	return false;
3270 }
3271 
3272 static struct folio *next_uptodate_page(struct folio *folio,
3273 				       struct address_space *mapping,
3274 				       struct xa_state *xas, pgoff_t end_pgoff)
3275 {
3276 	unsigned long max_idx;
3277 
3278 	do {
3279 		if (!folio)
3280 			return NULL;
3281 		if (xas_retry(xas, folio))
3282 			continue;
3283 		if (xa_is_value(folio))
3284 			continue;
3285 		if (folio_test_locked(folio))
3286 			continue;
3287 		if (!folio_try_get_rcu(folio))
3288 			continue;
3289 		/* Has the page moved or been split? */
3290 		if (unlikely(folio != xas_reload(xas)))
3291 			goto skip;
3292 		if (!folio_test_uptodate(folio) || folio_test_readahead(folio))
3293 			goto skip;
3294 		if (!folio_trylock(folio))
3295 			goto skip;
3296 		if (folio->mapping != mapping)
3297 			goto unlock;
3298 		if (!folio_test_uptodate(folio))
3299 			goto unlock;
3300 		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3301 		if (xas->xa_index >= max_idx)
3302 			goto unlock;
3303 		return folio;
3304 unlock:
3305 		folio_unlock(folio);
3306 skip:
3307 		folio_put(folio);
3308 	} while ((folio = xas_next_entry(xas, end_pgoff)) != NULL);
3309 
3310 	return NULL;
3311 }
3312 
3313 static inline struct folio *first_map_page(struct address_space *mapping,
3314 					  struct xa_state *xas,
3315 					  pgoff_t end_pgoff)
3316 {
3317 	return next_uptodate_page(xas_find(xas, end_pgoff),
3318 				  mapping, xas, end_pgoff);
3319 }
3320 
3321 static inline struct folio *next_map_page(struct address_space *mapping,
3322 					 struct xa_state *xas,
3323 					 pgoff_t end_pgoff)
3324 {
3325 	return next_uptodate_page(xas_next_entry(xas, end_pgoff),
3326 				  mapping, xas, end_pgoff);
3327 }
3328 
3329 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3330 			     pgoff_t start_pgoff, pgoff_t end_pgoff)
3331 {
3332 	struct vm_area_struct *vma = vmf->vma;
3333 	struct file *file = vma->vm_file;
3334 	struct address_space *mapping = file->f_mapping;
3335 	pgoff_t last_pgoff = start_pgoff;
3336 	unsigned long addr;
3337 	XA_STATE(xas, &mapping->i_pages, start_pgoff);
3338 	struct folio *folio;
3339 	struct page *page;
3340 	unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss);
3341 	vm_fault_t ret = 0;
3342 
3343 	rcu_read_lock();
3344 	folio = first_map_page(mapping, &xas, end_pgoff);
3345 	if (!folio)
3346 		goto out;
3347 
3348 	if (filemap_map_pmd(vmf, &folio->page)) {
3349 		ret = VM_FAULT_NOPAGE;
3350 		goto out;
3351 	}
3352 
3353 	addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3354 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3355 	do {
3356 again:
3357 		page = folio_file_page(folio, xas.xa_index);
3358 		if (PageHWPoison(page))
3359 			goto unlock;
3360 
3361 		if (mmap_miss > 0)
3362 			mmap_miss--;
3363 
3364 		addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3365 		vmf->pte += xas.xa_index - last_pgoff;
3366 		last_pgoff = xas.xa_index;
3367 
3368 		/*
3369 		 * NOTE: If there're PTE markers, we'll leave them to be
3370 		 * handled in the specific fault path, and it'll prohibit the
3371 		 * fault-around logic.
3372 		 */
3373 		if (!pte_none(*vmf->pte))
3374 			goto unlock;
3375 
3376 		/* We're about to handle the fault */
3377 		if (vmf->address == addr)
3378 			ret = VM_FAULT_NOPAGE;
3379 
3380 		do_set_pte(vmf, page, addr);
3381 		/* no need to invalidate: a not-present page won't be cached */
3382 		update_mmu_cache(vma, addr, vmf->pte);
3383 		if (folio_more_pages(folio, xas.xa_index, end_pgoff)) {
3384 			xas.xa_index++;
3385 			folio_ref_inc(folio);
3386 			goto again;
3387 		}
3388 		folio_unlock(folio);
3389 		continue;
3390 unlock:
3391 		if (folio_more_pages(folio, xas.xa_index, end_pgoff)) {
3392 			xas.xa_index++;
3393 			goto again;
3394 		}
3395 		folio_unlock(folio);
3396 		folio_put(folio);
3397 	} while ((folio = next_map_page(mapping, &xas, end_pgoff)) != NULL);
3398 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3399 out:
3400 	rcu_read_unlock();
3401 	WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss);
3402 	return ret;
3403 }
3404 EXPORT_SYMBOL(filemap_map_pages);
3405 
3406 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3407 {
3408 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3409 	struct folio *folio = page_folio(vmf->page);
3410 	vm_fault_t ret = VM_FAULT_LOCKED;
3411 
3412 	sb_start_pagefault(mapping->host->i_sb);
3413 	file_update_time(vmf->vma->vm_file);
3414 	folio_lock(folio);
3415 	if (folio->mapping != mapping) {
3416 		folio_unlock(folio);
3417 		ret = VM_FAULT_NOPAGE;
3418 		goto out;
3419 	}
3420 	/*
3421 	 * We mark the folio dirty already here so that when freeze is in
3422 	 * progress, we are guaranteed that writeback during freezing will
3423 	 * see the dirty folio and writeprotect it again.
3424 	 */
3425 	folio_mark_dirty(folio);
3426 	folio_wait_stable(folio);
3427 out:
3428 	sb_end_pagefault(mapping->host->i_sb);
3429 	return ret;
3430 }
3431 
3432 const struct vm_operations_struct generic_file_vm_ops = {
3433 	.fault		= filemap_fault,
3434 	.map_pages	= filemap_map_pages,
3435 	.page_mkwrite	= filemap_page_mkwrite,
3436 };
3437 
3438 /* This is used for a general mmap of a disk file */
3439 
3440 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3441 {
3442 	struct address_space *mapping = file->f_mapping;
3443 
3444 	if (!mapping->a_ops->read_folio)
3445 		return -ENOEXEC;
3446 	file_accessed(file);
3447 	vma->vm_ops = &generic_file_vm_ops;
3448 	return 0;
3449 }
3450 
3451 /*
3452  * This is for filesystems which do not implement ->writepage.
3453  */
3454 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3455 {
3456 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
3457 		return -EINVAL;
3458 	return generic_file_mmap(file, vma);
3459 }
3460 #else
3461 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3462 {
3463 	return VM_FAULT_SIGBUS;
3464 }
3465 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3466 {
3467 	return -ENOSYS;
3468 }
3469 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3470 {
3471 	return -ENOSYS;
3472 }
3473 #endif /* CONFIG_MMU */
3474 
3475 EXPORT_SYMBOL(filemap_page_mkwrite);
3476 EXPORT_SYMBOL(generic_file_mmap);
3477 EXPORT_SYMBOL(generic_file_readonly_mmap);
3478 
3479 static struct folio *do_read_cache_folio(struct address_space *mapping,
3480 		pgoff_t index, filler_t filler, struct file *file, gfp_t gfp)
3481 {
3482 	struct folio *folio;
3483 	int err;
3484 
3485 	if (!filler)
3486 		filler = mapping->a_ops->read_folio;
3487 repeat:
3488 	folio = filemap_get_folio(mapping, index);
3489 	if (!folio) {
3490 		folio = filemap_alloc_folio(gfp, 0);
3491 		if (!folio)
3492 			return ERR_PTR(-ENOMEM);
3493 		err = filemap_add_folio(mapping, folio, index, gfp);
3494 		if (unlikely(err)) {
3495 			folio_put(folio);
3496 			if (err == -EEXIST)
3497 				goto repeat;
3498 			/* Presumably ENOMEM for xarray node */
3499 			return ERR_PTR(err);
3500 		}
3501 
3502 		goto filler;
3503 	}
3504 	if (folio_test_uptodate(folio))
3505 		goto out;
3506 
3507 	if (!folio_trylock(folio)) {
3508 		folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE);
3509 		goto repeat;
3510 	}
3511 
3512 	/* Folio was truncated from mapping */
3513 	if (!folio->mapping) {
3514 		folio_unlock(folio);
3515 		folio_put(folio);
3516 		goto repeat;
3517 	}
3518 
3519 	/* Someone else locked and filled the page in a very small window */
3520 	if (folio_test_uptodate(folio)) {
3521 		folio_unlock(folio);
3522 		goto out;
3523 	}
3524 
3525 filler:
3526 	err = filemap_read_folio(file, filler, folio);
3527 	if (err) {
3528 		folio_put(folio);
3529 		if (err == AOP_TRUNCATED_PAGE)
3530 			goto repeat;
3531 		return ERR_PTR(err);
3532 	}
3533 
3534 out:
3535 	folio_mark_accessed(folio);
3536 	return folio;
3537 }
3538 
3539 /**
3540  * read_cache_folio - Read into page cache, fill it if needed.
3541  * @mapping: The address_space to read from.
3542  * @index: The index to read.
3543  * @filler: Function to perform the read, or NULL to use aops->read_folio().
3544  * @file: Passed to filler function, may be NULL if not required.
3545  *
3546  * Read one page into the page cache.  If it succeeds, the folio returned
3547  * will contain @index, but it may not be the first page of the folio.
3548  *
3549  * If the filler function returns an error, it will be returned to the
3550  * caller.
3551  *
3552  * Context: May sleep.  Expects mapping->invalidate_lock to be held.
3553  * Return: An uptodate folio on success, ERR_PTR() on failure.
3554  */
3555 struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index,
3556 		filler_t filler, struct file *file)
3557 {
3558 	return do_read_cache_folio(mapping, index, filler, file,
3559 			mapping_gfp_mask(mapping));
3560 }
3561 EXPORT_SYMBOL(read_cache_folio);
3562 
3563 static struct page *do_read_cache_page(struct address_space *mapping,
3564 		pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp)
3565 {
3566 	struct folio *folio;
3567 
3568 	folio = do_read_cache_folio(mapping, index, filler, file, gfp);
3569 	if (IS_ERR(folio))
3570 		return &folio->page;
3571 	return folio_file_page(folio, index);
3572 }
3573 
3574 struct page *read_cache_page(struct address_space *mapping,
3575 			pgoff_t index, filler_t *filler, struct file *file)
3576 {
3577 	return do_read_cache_page(mapping, index, filler, file,
3578 			mapping_gfp_mask(mapping));
3579 }
3580 EXPORT_SYMBOL(read_cache_page);
3581 
3582 /**
3583  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3584  * @mapping:	the page's address_space
3585  * @index:	the page index
3586  * @gfp:	the page allocator flags to use if allocating
3587  *
3588  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3589  * any new page allocations done using the specified allocation flags.
3590  *
3591  * If the page does not get brought uptodate, return -EIO.
3592  *
3593  * The function expects mapping->invalidate_lock to be already held.
3594  *
3595  * Return: up to date page on success, ERR_PTR() on failure.
3596  */
3597 struct page *read_cache_page_gfp(struct address_space *mapping,
3598 				pgoff_t index,
3599 				gfp_t gfp)
3600 {
3601 	return do_read_cache_page(mapping, index, NULL, NULL, gfp);
3602 }
3603 EXPORT_SYMBOL(read_cache_page_gfp);
3604 
3605 /*
3606  * Warn about a page cache invalidation failure during a direct I/O write.
3607  */
3608 void dio_warn_stale_pagecache(struct file *filp)
3609 {
3610 	static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3611 	char pathname[128];
3612 	char *path;
3613 
3614 	errseq_set(&filp->f_mapping->wb_err, -EIO);
3615 	if (__ratelimit(&_rs)) {
3616 		path = file_path(filp, pathname, sizeof(pathname));
3617 		if (IS_ERR(path))
3618 			path = "(unknown)";
3619 		pr_crit("Page cache invalidation failure on direct I/O.  Possible data corruption due to collision with buffered I/O!\n");
3620 		pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3621 			current->comm);
3622 	}
3623 }
3624 
3625 ssize_t
3626 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3627 {
3628 	struct file	*file = iocb->ki_filp;
3629 	struct address_space *mapping = file->f_mapping;
3630 	struct inode	*inode = mapping->host;
3631 	loff_t		pos = iocb->ki_pos;
3632 	ssize_t		written;
3633 	size_t		write_len;
3634 	pgoff_t		end;
3635 
3636 	write_len = iov_iter_count(from);
3637 	end = (pos + write_len - 1) >> PAGE_SHIFT;
3638 
3639 	if (iocb->ki_flags & IOCB_NOWAIT) {
3640 		/* If there are pages to writeback, return */
3641 		if (filemap_range_has_page(file->f_mapping, pos,
3642 					   pos + write_len - 1))
3643 			return -EAGAIN;
3644 	} else {
3645 		written = filemap_write_and_wait_range(mapping, pos,
3646 							pos + write_len - 1);
3647 		if (written)
3648 			goto out;
3649 	}
3650 
3651 	/*
3652 	 * After a write we want buffered reads to be sure to go to disk to get
3653 	 * the new data.  We invalidate clean cached page from the region we're
3654 	 * about to write.  We do this *before* the write so that we can return
3655 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
3656 	 */
3657 	written = invalidate_inode_pages2_range(mapping,
3658 					pos >> PAGE_SHIFT, end);
3659 	/*
3660 	 * If a page can not be invalidated, return 0 to fall back
3661 	 * to buffered write.
3662 	 */
3663 	if (written) {
3664 		if (written == -EBUSY)
3665 			return 0;
3666 		goto out;
3667 	}
3668 
3669 	written = mapping->a_ops->direct_IO(iocb, from);
3670 
3671 	/*
3672 	 * Finally, try again to invalidate clean pages which might have been
3673 	 * cached by non-direct readahead, or faulted in by get_user_pages()
3674 	 * if the source of the write was an mmap'ed region of the file
3675 	 * we're writing.  Either one is a pretty crazy thing to do,
3676 	 * so we don't support it 100%.  If this invalidation
3677 	 * fails, tough, the write still worked...
3678 	 *
3679 	 * Most of the time we do not need this since dio_complete() will do
3680 	 * the invalidation for us. However there are some file systems that
3681 	 * do not end up with dio_complete() being called, so let's not break
3682 	 * them by removing it completely.
3683 	 *
3684 	 * Noticeable example is a blkdev_direct_IO().
3685 	 *
3686 	 * Skip invalidation for async writes or if mapping has no pages.
3687 	 */
3688 	if (written > 0 && mapping->nrpages &&
3689 	    invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3690 		dio_warn_stale_pagecache(file);
3691 
3692 	if (written > 0) {
3693 		pos += written;
3694 		write_len -= written;
3695 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3696 			i_size_write(inode, pos);
3697 			mark_inode_dirty(inode);
3698 		}
3699 		iocb->ki_pos = pos;
3700 	}
3701 	if (written != -EIOCBQUEUED)
3702 		iov_iter_revert(from, write_len - iov_iter_count(from));
3703 out:
3704 	return written;
3705 }
3706 EXPORT_SYMBOL(generic_file_direct_write);
3707 
3708 ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i)
3709 {
3710 	struct file *file = iocb->ki_filp;
3711 	loff_t pos = iocb->ki_pos;
3712 	struct address_space *mapping = file->f_mapping;
3713 	const struct address_space_operations *a_ops = mapping->a_ops;
3714 	long status = 0;
3715 	ssize_t written = 0;
3716 
3717 	do {
3718 		struct page *page;
3719 		unsigned long offset;	/* Offset into pagecache page */
3720 		unsigned long bytes;	/* Bytes to write to page */
3721 		size_t copied;		/* Bytes copied from user */
3722 		void *fsdata;
3723 
3724 		offset = (pos & (PAGE_SIZE - 1));
3725 		bytes = min_t(unsigned long, PAGE_SIZE - offset,
3726 						iov_iter_count(i));
3727 
3728 again:
3729 		/*
3730 		 * Bring in the user page that we will copy from _first_.
3731 		 * Otherwise there's a nasty deadlock on copying from the
3732 		 * same page as we're writing to, without it being marked
3733 		 * up-to-date.
3734 		 */
3735 		if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
3736 			status = -EFAULT;
3737 			break;
3738 		}
3739 
3740 		if (fatal_signal_pending(current)) {
3741 			status = -EINTR;
3742 			break;
3743 		}
3744 
3745 		status = a_ops->write_begin(file, mapping, pos, bytes,
3746 						&page, &fsdata);
3747 		if (unlikely(status < 0))
3748 			break;
3749 
3750 		if (mapping_writably_mapped(mapping))
3751 			flush_dcache_page(page);
3752 
3753 		copied = copy_page_from_iter_atomic(page, offset, bytes, i);
3754 		flush_dcache_page(page);
3755 
3756 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
3757 						page, fsdata);
3758 		if (unlikely(status != copied)) {
3759 			iov_iter_revert(i, copied - max(status, 0L));
3760 			if (unlikely(status < 0))
3761 				break;
3762 		}
3763 		cond_resched();
3764 
3765 		if (unlikely(status == 0)) {
3766 			/*
3767 			 * A short copy made ->write_end() reject the
3768 			 * thing entirely.  Might be memory poisoning
3769 			 * halfway through, might be a race with munmap,
3770 			 * might be severe memory pressure.
3771 			 */
3772 			if (copied)
3773 				bytes = copied;
3774 			goto again;
3775 		}
3776 		pos += status;
3777 		written += status;
3778 
3779 		balance_dirty_pages_ratelimited(mapping);
3780 	} while (iov_iter_count(i));
3781 
3782 	return written ? written : status;
3783 }
3784 EXPORT_SYMBOL(generic_perform_write);
3785 
3786 /**
3787  * __generic_file_write_iter - write data to a file
3788  * @iocb:	IO state structure (file, offset, etc.)
3789  * @from:	iov_iter with data to write
3790  *
3791  * This function does all the work needed for actually writing data to a
3792  * file. It does all basic checks, removes SUID from the file, updates
3793  * modification times and calls proper subroutines depending on whether we
3794  * do direct IO or a standard buffered write.
3795  *
3796  * It expects i_rwsem to be grabbed unless we work on a block device or similar
3797  * object which does not need locking at all.
3798  *
3799  * This function does *not* take care of syncing data in case of O_SYNC write.
3800  * A caller has to handle it. This is mainly due to the fact that we want to
3801  * avoid syncing under i_rwsem.
3802  *
3803  * Return:
3804  * * number of bytes written, even for truncated writes
3805  * * negative error code if no data has been written at all
3806  */
3807 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3808 {
3809 	struct file *file = iocb->ki_filp;
3810 	struct address_space *mapping = file->f_mapping;
3811 	struct inode 	*inode = mapping->host;
3812 	ssize_t		written = 0;
3813 	ssize_t		err;
3814 	ssize_t		status;
3815 
3816 	/* We can write back this queue in page reclaim */
3817 	current->backing_dev_info = inode_to_bdi(inode);
3818 	err = file_remove_privs(file);
3819 	if (err)
3820 		goto out;
3821 
3822 	err = file_update_time(file);
3823 	if (err)
3824 		goto out;
3825 
3826 	if (iocb->ki_flags & IOCB_DIRECT) {
3827 		loff_t pos, endbyte;
3828 
3829 		written = generic_file_direct_write(iocb, from);
3830 		/*
3831 		 * If the write stopped short of completing, fall back to
3832 		 * buffered writes.  Some filesystems do this for writes to
3833 		 * holes, for example.  For DAX files, a buffered write will
3834 		 * not succeed (even if it did, DAX does not handle dirty
3835 		 * page-cache pages correctly).
3836 		 */
3837 		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3838 			goto out;
3839 
3840 		pos = iocb->ki_pos;
3841 		status = generic_perform_write(iocb, from);
3842 		/*
3843 		 * If generic_perform_write() returned a synchronous error
3844 		 * then we want to return the number of bytes which were
3845 		 * direct-written, or the error code if that was zero.  Note
3846 		 * that this differs from normal direct-io semantics, which
3847 		 * will return -EFOO even if some bytes were written.
3848 		 */
3849 		if (unlikely(status < 0)) {
3850 			err = status;
3851 			goto out;
3852 		}
3853 		/*
3854 		 * We need to ensure that the page cache pages are written to
3855 		 * disk and invalidated to preserve the expected O_DIRECT
3856 		 * semantics.
3857 		 */
3858 		endbyte = pos + status - 1;
3859 		err = filemap_write_and_wait_range(mapping, pos, endbyte);
3860 		if (err == 0) {
3861 			iocb->ki_pos = endbyte + 1;
3862 			written += status;
3863 			invalidate_mapping_pages(mapping,
3864 						 pos >> PAGE_SHIFT,
3865 						 endbyte >> PAGE_SHIFT);
3866 		} else {
3867 			/*
3868 			 * We don't know how much we wrote, so just return
3869 			 * the number of bytes which were direct-written
3870 			 */
3871 		}
3872 	} else {
3873 		written = generic_perform_write(iocb, from);
3874 		if (likely(written > 0))
3875 			iocb->ki_pos += written;
3876 	}
3877 out:
3878 	current->backing_dev_info = NULL;
3879 	return written ? written : err;
3880 }
3881 EXPORT_SYMBOL(__generic_file_write_iter);
3882 
3883 /**
3884  * generic_file_write_iter - write data to a file
3885  * @iocb:	IO state structure
3886  * @from:	iov_iter with data to write
3887  *
3888  * This is a wrapper around __generic_file_write_iter() to be used by most
3889  * filesystems. It takes care of syncing the file in case of O_SYNC file
3890  * and acquires i_rwsem as needed.
3891  * Return:
3892  * * negative error code if no data has been written at all of
3893  *   vfs_fsync_range() failed for a synchronous write
3894  * * number of bytes written, even for truncated writes
3895  */
3896 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3897 {
3898 	struct file *file = iocb->ki_filp;
3899 	struct inode *inode = file->f_mapping->host;
3900 	ssize_t ret;
3901 
3902 	inode_lock(inode);
3903 	ret = generic_write_checks(iocb, from);
3904 	if (ret > 0)
3905 		ret = __generic_file_write_iter(iocb, from);
3906 	inode_unlock(inode);
3907 
3908 	if (ret > 0)
3909 		ret = generic_write_sync(iocb, ret);
3910 	return ret;
3911 }
3912 EXPORT_SYMBOL(generic_file_write_iter);
3913 
3914 /**
3915  * filemap_release_folio() - Release fs-specific metadata on a folio.
3916  * @folio: The folio which the kernel is trying to free.
3917  * @gfp: Memory allocation flags (and I/O mode).
3918  *
3919  * The address_space is trying to release any data attached to a folio
3920  * (presumably at folio->private).
3921  *
3922  * This will also be called if the private_2 flag is set on a page,
3923  * indicating that the folio has other metadata associated with it.
3924  *
3925  * The @gfp argument specifies whether I/O may be performed to release
3926  * this page (__GFP_IO), and whether the call may block
3927  * (__GFP_RECLAIM & __GFP_FS).
3928  *
3929  * Return: %true if the release was successful, otherwise %false.
3930  */
3931 bool filemap_release_folio(struct folio *folio, gfp_t gfp)
3932 {
3933 	struct address_space * const mapping = folio->mapping;
3934 
3935 	BUG_ON(!folio_test_locked(folio));
3936 	if (folio_test_writeback(folio))
3937 		return false;
3938 
3939 	if (mapping && mapping->a_ops->release_folio)
3940 		return mapping->a_ops->release_folio(folio, gfp);
3941 	return try_to_free_buffers(folio);
3942 }
3943 EXPORT_SYMBOL(filemap_release_folio);
3944