1 /* 2 * linux/mm/filemap.c 3 * 4 * Copyright (C) 1994-1999 Linus Torvalds 5 */ 6 7 /* 8 * This file handles the generic file mmap semantics used by 9 * most "normal" filesystems (but you don't /have/ to use this: 10 * the NFS filesystem used to do this differently, for example) 11 */ 12 #include <linux/module.h> 13 #include <linux/slab.h> 14 #include <linux/compiler.h> 15 #include <linux/fs.h> 16 #include <linux/uaccess.h> 17 #include <linux/aio.h> 18 #include <linux/capability.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/mm.h> 21 #include <linux/swap.h> 22 #include <linux/mman.h> 23 #include <linux/pagemap.h> 24 #include <linux/file.h> 25 #include <linux/uio.h> 26 #include <linux/hash.h> 27 #include <linux/writeback.h> 28 #include <linux/backing-dev.h> 29 #include <linux/pagevec.h> 30 #include <linux/blkdev.h> 31 #include <linux/security.h> 32 #include <linux/syscalls.h> 33 #include <linux/cpuset.h> 34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */ 35 #include <linux/memcontrol.h> 36 #include "internal.h" 37 38 /* 39 * FIXME: remove all knowledge of the buffer layer from the core VM 40 */ 41 #include <linux/buffer_head.h> /* for generic_osync_inode */ 42 43 #include <asm/mman.h> 44 45 46 /* 47 * Shared mappings implemented 30.11.1994. It's not fully working yet, 48 * though. 49 * 50 * Shared mappings now work. 15.8.1995 Bruno. 51 * 52 * finished 'unifying' the page and buffer cache and SMP-threaded the 53 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 54 * 55 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 56 */ 57 58 /* 59 * Lock ordering: 60 * 61 * ->i_mmap_lock (vmtruncate) 62 * ->private_lock (__free_pte->__set_page_dirty_buffers) 63 * ->swap_lock (exclusive_swap_page, others) 64 * ->mapping->tree_lock 65 * 66 * ->i_mutex 67 * ->i_mmap_lock (truncate->unmap_mapping_range) 68 * 69 * ->mmap_sem 70 * ->i_mmap_lock 71 * ->page_table_lock or pte_lock (various, mainly in memory.c) 72 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock) 73 * 74 * ->mmap_sem 75 * ->lock_page (access_process_vm) 76 * 77 * ->i_mutex (generic_file_buffered_write) 78 * ->mmap_sem (fault_in_pages_readable->do_page_fault) 79 * 80 * ->i_mutex 81 * ->i_alloc_sem (various) 82 * 83 * ->inode_lock 84 * ->sb_lock (fs/fs-writeback.c) 85 * ->mapping->tree_lock (__sync_single_inode) 86 * 87 * ->i_mmap_lock 88 * ->anon_vma.lock (vma_adjust) 89 * 90 * ->anon_vma.lock 91 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 92 * 93 * ->page_table_lock or pte_lock 94 * ->swap_lock (try_to_unmap_one) 95 * ->private_lock (try_to_unmap_one) 96 * ->tree_lock (try_to_unmap_one) 97 * ->zone.lru_lock (follow_page->mark_page_accessed) 98 * ->zone.lru_lock (check_pte_range->isolate_lru_page) 99 * ->private_lock (page_remove_rmap->set_page_dirty) 100 * ->tree_lock (page_remove_rmap->set_page_dirty) 101 * ->inode_lock (page_remove_rmap->set_page_dirty) 102 * ->inode_lock (zap_pte_range->set_page_dirty) 103 * ->private_lock (zap_pte_range->__set_page_dirty_buffers) 104 * 105 * ->task->proc_lock 106 * ->dcache_lock (proc_pid_lookup) 107 */ 108 109 /* 110 * Remove a page from the page cache and free it. Caller has to make 111 * sure the page is locked and that nobody else uses it - or that usage 112 * is safe. The caller must hold a write_lock on the mapping's tree_lock. 113 */ 114 void __remove_from_page_cache(struct page *page) 115 { 116 struct address_space *mapping = page->mapping; 117 118 mem_cgroup_uncharge_page(page); 119 radix_tree_delete(&mapping->page_tree, page->index); 120 page->mapping = NULL; 121 mapping->nrpages--; 122 __dec_zone_page_state(page, NR_FILE_PAGES); 123 BUG_ON(page_mapped(page)); 124 125 /* 126 * Some filesystems seem to re-dirty the page even after 127 * the VM has canceled the dirty bit (eg ext3 journaling). 128 * 129 * Fix it up by doing a final dirty accounting check after 130 * having removed the page entirely. 131 */ 132 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) { 133 dec_zone_page_state(page, NR_FILE_DIRTY); 134 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE); 135 } 136 } 137 138 void remove_from_page_cache(struct page *page) 139 { 140 struct address_space *mapping = page->mapping; 141 142 BUG_ON(!PageLocked(page)); 143 144 write_lock_irq(&mapping->tree_lock); 145 __remove_from_page_cache(page); 146 write_unlock_irq(&mapping->tree_lock); 147 } 148 149 static int sync_page(void *word) 150 { 151 struct address_space *mapping; 152 struct page *page; 153 154 page = container_of((unsigned long *)word, struct page, flags); 155 156 /* 157 * page_mapping() is being called without PG_locked held. 158 * Some knowledge of the state and use of the page is used to 159 * reduce the requirements down to a memory barrier. 160 * The danger here is of a stale page_mapping() return value 161 * indicating a struct address_space different from the one it's 162 * associated with when it is associated with one. 163 * After smp_mb(), it's either the correct page_mapping() for 164 * the page, or an old page_mapping() and the page's own 165 * page_mapping() has gone NULL. 166 * The ->sync_page() address_space operation must tolerate 167 * page_mapping() going NULL. By an amazing coincidence, 168 * this comes about because none of the users of the page 169 * in the ->sync_page() methods make essential use of the 170 * page_mapping(), merely passing the page down to the backing 171 * device's unplug functions when it's non-NULL, which in turn 172 * ignore it for all cases but swap, where only page_private(page) is 173 * of interest. When page_mapping() does go NULL, the entire 174 * call stack gracefully ignores the page and returns. 175 * -- wli 176 */ 177 smp_mb(); 178 mapping = page_mapping(page); 179 if (mapping && mapping->a_ops && mapping->a_ops->sync_page) 180 mapping->a_ops->sync_page(page); 181 io_schedule(); 182 return 0; 183 } 184 185 static int sync_page_killable(void *word) 186 { 187 sync_page(word); 188 return fatal_signal_pending(current) ? -EINTR : 0; 189 } 190 191 /** 192 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 193 * @mapping: address space structure to write 194 * @start: offset in bytes where the range starts 195 * @end: offset in bytes where the range ends (inclusive) 196 * @sync_mode: enable synchronous operation 197 * 198 * Start writeback against all of a mapping's dirty pages that lie 199 * within the byte offsets <start, end> inclusive. 200 * 201 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 202 * opposed to a regular memory cleansing writeback. The difference between 203 * these two operations is that if a dirty page/buffer is encountered, it must 204 * be waited upon, and not just skipped over. 205 */ 206 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 207 loff_t end, int sync_mode) 208 { 209 int ret; 210 struct writeback_control wbc = { 211 .sync_mode = sync_mode, 212 .nr_to_write = mapping->nrpages * 2, 213 .range_start = start, 214 .range_end = end, 215 }; 216 217 if (!mapping_cap_writeback_dirty(mapping)) 218 return 0; 219 220 ret = do_writepages(mapping, &wbc); 221 return ret; 222 } 223 224 static inline int __filemap_fdatawrite(struct address_space *mapping, 225 int sync_mode) 226 { 227 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 228 } 229 230 int filemap_fdatawrite(struct address_space *mapping) 231 { 232 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 233 } 234 EXPORT_SYMBOL(filemap_fdatawrite); 235 236 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 237 loff_t end) 238 { 239 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 240 } 241 EXPORT_SYMBOL(filemap_fdatawrite_range); 242 243 /** 244 * filemap_flush - mostly a non-blocking flush 245 * @mapping: target address_space 246 * 247 * This is a mostly non-blocking flush. Not suitable for data-integrity 248 * purposes - I/O may not be started against all dirty pages. 249 */ 250 int filemap_flush(struct address_space *mapping) 251 { 252 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 253 } 254 EXPORT_SYMBOL(filemap_flush); 255 256 /** 257 * wait_on_page_writeback_range - wait for writeback to complete 258 * @mapping: target address_space 259 * @start: beginning page index 260 * @end: ending page index 261 * 262 * Wait for writeback to complete against pages indexed by start->end 263 * inclusive 264 */ 265 int wait_on_page_writeback_range(struct address_space *mapping, 266 pgoff_t start, pgoff_t end) 267 { 268 struct pagevec pvec; 269 int nr_pages; 270 int ret = 0; 271 pgoff_t index; 272 273 if (end < start) 274 return 0; 275 276 pagevec_init(&pvec, 0); 277 index = start; 278 while ((index <= end) && 279 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 280 PAGECACHE_TAG_WRITEBACK, 281 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) { 282 unsigned i; 283 284 for (i = 0; i < nr_pages; i++) { 285 struct page *page = pvec.pages[i]; 286 287 /* until radix tree lookup accepts end_index */ 288 if (page->index > end) 289 continue; 290 291 wait_on_page_writeback(page); 292 if (PageError(page)) 293 ret = -EIO; 294 } 295 pagevec_release(&pvec); 296 cond_resched(); 297 } 298 299 /* Check for outstanding write errors */ 300 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 301 ret = -ENOSPC; 302 if (test_and_clear_bit(AS_EIO, &mapping->flags)) 303 ret = -EIO; 304 305 return ret; 306 } 307 308 /** 309 * sync_page_range - write and wait on all pages in the passed range 310 * @inode: target inode 311 * @mapping: target address_space 312 * @pos: beginning offset in pages to write 313 * @count: number of bytes to write 314 * 315 * Write and wait upon all the pages in the passed range. This is a "data 316 * integrity" operation. It waits upon in-flight writeout before starting and 317 * waiting upon new writeout. If there was an IO error, return it. 318 * 319 * We need to re-take i_mutex during the generic_osync_inode list walk because 320 * it is otherwise livelockable. 321 */ 322 int sync_page_range(struct inode *inode, struct address_space *mapping, 323 loff_t pos, loff_t count) 324 { 325 pgoff_t start = pos >> PAGE_CACHE_SHIFT; 326 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT; 327 int ret; 328 329 if (!mapping_cap_writeback_dirty(mapping) || !count) 330 return 0; 331 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1); 332 if (ret == 0) { 333 mutex_lock(&inode->i_mutex); 334 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA); 335 mutex_unlock(&inode->i_mutex); 336 } 337 if (ret == 0) 338 ret = wait_on_page_writeback_range(mapping, start, end); 339 return ret; 340 } 341 EXPORT_SYMBOL(sync_page_range); 342 343 /** 344 * sync_page_range_nolock - write & wait on all pages in the passed range without locking 345 * @inode: target inode 346 * @mapping: target address_space 347 * @pos: beginning offset in pages to write 348 * @count: number of bytes to write 349 * 350 * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea 351 * as it forces O_SYNC writers to different parts of the same file 352 * to be serialised right until io completion. 353 */ 354 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping, 355 loff_t pos, loff_t count) 356 { 357 pgoff_t start = pos >> PAGE_CACHE_SHIFT; 358 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT; 359 int ret; 360 361 if (!mapping_cap_writeback_dirty(mapping) || !count) 362 return 0; 363 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1); 364 if (ret == 0) 365 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA); 366 if (ret == 0) 367 ret = wait_on_page_writeback_range(mapping, start, end); 368 return ret; 369 } 370 EXPORT_SYMBOL(sync_page_range_nolock); 371 372 /** 373 * filemap_fdatawait - wait for all under-writeback pages to complete 374 * @mapping: address space structure to wait for 375 * 376 * Walk the list of under-writeback pages of the given address space 377 * and wait for all of them. 378 */ 379 int filemap_fdatawait(struct address_space *mapping) 380 { 381 loff_t i_size = i_size_read(mapping->host); 382 383 if (i_size == 0) 384 return 0; 385 386 return wait_on_page_writeback_range(mapping, 0, 387 (i_size - 1) >> PAGE_CACHE_SHIFT); 388 } 389 EXPORT_SYMBOL(filemap_fdatawait); 390 391 int filemap_write_and_wait(struct address_space *mapping) 392 { 393 int err = 0; 394 395 if (mapping->nrpages) { 396 err = filemap_fdatawrite(mapping); 397 /* 398 * Even if the above returned error, the pages may be 399 * written partially (e.g. -ENOSPC), so we wait for it. 400 * But the -EIO is special case, it may indicate the worst 401 * thing (e.g. bug) happened, so we avoid waiting for it. 402 */ 403 if (err != -EIO) { 404 int err2 = filemap_fdatawait(mapping); 405 if (!err) 406 err = err2; 407 } 408 } 409 return err; 410 } 411 EXPORT_SYMBOL(filemap_write_and_wait); 412 413 /** 414 * filemap_write_and_wait_range - write out & wait on a file range 415 * @mapping: the address_space for the pages 416 * @lstart: offset in bytes where the range starts 417 * @lend: offset in bytes where the range ends (inclusive) 418 * 419 * Write out and wait upon file offsets lstart->lend, inclusive. 420 * 421 * Note that `lend' is inclusive (describes the last byte to be written) so 422 * that this function can be used to write to the very end-of-file (end = -1). 423 */ 424 int filemap_write_and_wait_range(struct address_space *mapping, 425 loff_t lstart, loff_t lend) 426 { 427 int err = 0; 428 429 if (mapping->nrpages) { 430 err = __filemap_fdatawrite_range(mapping, lstart, lend, 431 WB_SYNC_ALL); 432 /* See comment of filemap_write_and_wait() */ 433 if (err != -EIO) { 434 int err2 = wait_on_page_writeback_range(mapping, 435 lstart >> PAGE_CACHE_SHIFT, 436 lend >> PAGE_CACHE_SHIFT); 437 if (!err) 438 err = err2; 439 } 440 } 441 return err; 442 } 443 444 /** 445 * add_to_page_cache - add newly allocated pagecache pages 446 * @page: page to add 447 * @mapping: the page's address_space 448 * @offset: page index 449 * @gfp_mask: page allocation mode 450 * 451 * This function is used to add newly allocated pagecache pages; 452 * the page is new, so we can just run SetPageLocked() against it. 453 * The other page state flags were set by rmqueue(). 454 * 455 * This function does not add the page to the LRU. The caller must do that. 456 */ 457 int add_to_page_cache(struct page *page, struct address_space *mapping, 458 pgoff_t offset, gfp_t gfp_mask) 459 { 460 int error = mem_cgroup_cache_charge(page, current->mm, 461 gfp_mask & ~__GFP_HIGHMEM); 462 if (error) 463 goto out; 464 465 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM); 466 if (error == 0) { 467 write_lock_irq(&mapping->tree_lock); 468 error = radix_tree_insert(&mapping->page_tree, offset, page); 469 if (!error) { 470 page_cache_get(page); 471 SetPageLocked(page); 472 page->mapping = mapping; 473 page->index = offset; 474 mapping->nrpages++; 475 __inc_zone_page_state(page, NR_FILE_PAGES); 476 } else 477 mem_cgroup_uncharge_page(page); 478 479 write_unlock_irq(&mapping->tree_lock); 480 radix_tree_preload_end(); 481 } else 482 mem_cgroup_uncharge_page(page); 483 out: 484 return error; 485 } 486 EXPORT_SYMBOL(add_to_page_cache); 487 488 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 489 pgoff_t offset, gfp_t gfp_mask) 490 { 491 int ret = add_to_page_cache(page, mapping, offset, gfp_mask); 492 if (ret == 0) 493 lru_cache_add(page); 494 return ret; 495 } 496 497 #ifdef CONFIG_NUMA 498 struct page *__page_cache_alloc(gfp_t gfp) 499 { 500 if (cpuset_do_page_mem_spread()) { 501 int n = cpuset_mem_spread_node(); 502 return alloc_pages_node(n, gfp, 0); 503 } 504 return alloc_pages(gfp, 0); 505 } 506 EXPORT_SYMBOL(__page_cache_alloc); 507 #endif 508 509 static int __sleep_on_page_lock(void *word) 510 { 511 io_schedule(); 512 return 0; 513 } 514 515 /* 516 * In order to wait for pages to become available there must be 517 * waitqueues associated with pages. By using a hash table of 518 * waitqueues where the bucket discipline is to maintain all 519 * waiters on the same queue and wake all when any of the pages 520 * become available, and for the woken contexts to check to be 521 * sure the appropriate page became available, this saves space 522 * at a cost of "thundering herd" phenomena during rare hash 523 * collisions. 524 */ 525 static wait_queue_head_t *page_waitqueue(struct page *page) 526 { 527 const struct zone *zone = page_zone(page); 528 529 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)]; 530 } 531 532 static inline void wake_up_page(struct page *page, int bit) 533 { 534 __wake_up_bit(page_waitqueue(page), &page->flags, bit); 535 } 536 537 void wait_on_page_bit(struct page *page, int bit_nr) 538 { 539 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr); 540 541 if (test_bit(bit_nr, &page->flags)) 542 __wait_on_bit(page_waitqueue(page), &wait, sync_page, 543 TASK_UNINTERRUPTIBLE); 544 } 545 EXPORT_SYMBOL(wait_on_page_bit); 546 547 /** 548 * unlock_page - unlock a locked page 549 * @page: the page 550 * 551 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). 552 * Also wakes sleepers in wait_on_page_writeback() because the wakeup 553 * mechananism between PageLocked pages and PageWriteback pages is shared. 554 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. 555 * 556 * The first mb is necessary to safely close the critical section opened by the 557 * TestSetPageLocked(), the second mb is necessary to enforce ordering between 558 * the clear_bit and the read of the waitqueue (to avoid SMP races with a 559 * parallel wait_on_page_locked()). 560 */ 561 void unlock_page(struct page *page) 562 { 563 smp_mb__before_clear_bit(); 564 if (!TestClearPageLocked(page)) 565 BUG(); 566 smp_mb__after_clear_bit(); 567 wake_up_page(page, PG_locked); 568 } 569 EXPORT_SYMBOL(unlock_page); 570 571 /** 572 * end_page_writeback - end writeback against a page 573 * @page: the page 574 */ 575 void end_page_writeback(struct page *page) 576 { 577 if (TestClearPageReclaim(page)) 578 rotate_reclaimable_page(page); 579 580 if (!test_clear_page_writeback(page)) 581 BUG(); 582 583 smp_mb__after_clear_bit(); 584 wake_up_page(page, PG_writeback); 585 } 586 EXPORT_SYMBOL(end_page_writeback); 587 588 /** 589 * __lock_page - get a lock on the page, assuming we need to sleep to get it 590 * @page: the page to lock 591 * 592 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some 593 * random driver's requestfn sets TASK_RUNNING, we could busywait. However 594 * chances are that on the second loop, the block layer's plug list is empty, 595 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE. 596 */ 597 void __lock_page(struct page *page) 598 { 599 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 600 601 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page, 602 TASK_UNINTERRUPTIBLE); 603 } 604 EXPORT_SYMBOL(__lock_page); 605 606 int __lock_page_killable(struct page *page) 607 { 608 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 609 610 return __wait_on_bit_lock(page_waitqueue(page), &wait, 611 sync_page_killable, TASK_KILLABLE); 612 } 613 614 /** 615 * __lock_page_nosync - get a lock on the page, without calling sync_page() 616 * @page: the page to lock 617 * 618 * Variant of lock_page that does not require the caller to hold a reference 619 * on the page's mapping. 620 */ 621 void __lock_page_nosync(struct page *page) 622 { 623 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 624 __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock, 625 TASK_UNINTERRUPTIBLE); 626 } 627 628 /** 629 * find_get_page - find and get a page reference 630 * @mapping: the address_space to search 631 * @offset: the page index 632 * 633 * Is there a pagecache struct page at the given (mapping, offset) tuple? 634 * If yes, increment its refcount and return it; if no, return NULL. 635 */ 636 struct page * find_get_page(struct address_space *mapping, pgoff_t offset) 637 { 638 struct page *page; 639 640 read_lock_irq(&mapping->tree_lock); 641 page = radix_tree_lookup(&mapping->page_tree, offset); 642 if (page) 643 page_cache_get(page); 644 read_unlock_irq(&mapping->tree_lock); 645 return page; 646 } 647 EXPORT_SYMBOL(find_get_page); 648 649 /** 650 * find_lock_page - locate, pin and lock a pagecache page 651 * @mapping: the address_space to search 652 * @offset: the page index 653 * 654 * Locates the desired pagecache page, locks it, increments its reference 655 * count and returns its address. 656 * 657 * Returns zero if the page was not present. find_lock_page() may sleep. 658 */ 659 struct page *find_lock_page(struct address_space *mapping, 660 pgoff_t offset) 661 { 662 struct page *page; 663 664 repeat: 665 read_lock_irq(&mapping->tree_lock); 666 page = radix_tree_lookup(&mapping->page_tree, offset); 667 if (page) { 668 page_cache_get(page); 669 if (TestSetPageLocked(page)) { 670 read_unlock_irq(&mapping->tree_lock); 671 __lock_page(page); 672 673 /* Has the page been truncated while we slept? */ 674 if (unlikely(page->mapping != mapping)) { 675 unlock_page(page); 676 page_cache_release(page); 677 goto repeat; 678 } 679 VM_BUG_ON(page->index != offset); 680 goto out; 681 } 682 } 683 read_unlock_irq(&mapping->tree_lock); 684 out: 685 return page; 686 } 687 EXPORT_SYMBOL(find_lock_page); 688 689 /** 690 * find_or_create_page - locate or add a pagecache page 691 * @mapping: the page's address_space 692 * @index: the page's index into the mapping 693 * @gfp_mask: page allocation mode 694 * 695 * Locates a page in the pagecache. If the page is not present, a new page 696 * is allocated using @gfp_mask and is added to the pagecache and to the VM's 697 * LRU list. The returned page is locked and has its reference count 698 * incremented. 699 * 700 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic 701 * allocation! 702 * 703 * find_or_create_page() returns the desired page's address, or zero on 704 * memory exhaustion. 705 */ 706 struct page *find_or_create_page(struct address_space *mapping, 707 pgoff_t index, gfp_t gfp_mask) 708 { 709 struct page *page; 710 int err; 711 repeat: 712 page = find_lock_page(mapping, index); 713 if (!page) { 714 page = __page_cache_alloc(gfp_mask); 715 if (!page) 716 return NULL; 717 err = add_to_page_cache_lru(page, mapping, index, gfp_mask); 718 if (unlikely(err)) { 719 page_cache_release(page); 720 page = NULL; 721 if (err == -EEXIST) 722 goto repeat; 723 } 724 } 725 return page; 726 } 727 EXPORT_SYMBOL(find_or_create_page); 728 729 /** 730 * find_get_pages - gang pagecache lookup 731 * @mapping: The address_space to search 732 * @start: The starting page index 733 * @nr_pages: The maximum number of pages 734 * @pages: Where the resulting pages are placed 735 * 736 * find_get_pages() will search for and return a group of up to 737 * @nr_pages pages in the mapping. The pages are placed at @pages. 738 * find_get_pages() takes a reference against the returned pages. 739 * 740 * The search returns a group of mapping-contiguous pages with ascending 741 * indexes. There may be holes in the indices due to not-present pages. 742 * 743 * find_get_pages() returns the number of pages which were found. 744 */ 745 unsigned find_get_pages(struct address_space *mapping, pgoff_t start, 746 unsigned int nr_pages, struct page **pages) 747 { 748 unsigned int i; 749 unsigned int ret; 750 751 read_lock_irq(&mapping->tree_lock); 752 ret = radix_tree_gang_lookup(&mapping->page_tree, 753 (void **)pages, start, nr_pages); 754 for (i = 0; i < ret; i++) 755 page_cache_get(pages[i]); 756 read_unlock_irq(&mapping->tree_lock); 757 return ret; 758 } 759 760 /** 761 * find_get_pages_contig - gang contiguous pagecache lookup 762 * @mapping: The address_space to search 763 * @index: The starting page index 764 * @nr_pages: The maximum number of pages 765 * @pages: Where the resulting pages are placed 766 * 767 * find_get_pages_contig() works exactly like find_get_pages(), except 768 * that the returned number of pages are guaranteed to be contiguous. 769 * 770 * find_get_pages_contig() returns the number of pages which were found. 771 */ 772 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, 773 unsigned int nr_pages, struct page **pages) 774 { 775 unsigned int i; 776 unsigned int ret; 777 778 read_lock_irq(&mapping->tree_lock); 779 ret = radix_tree_gang_lookup(&mapping->page_tree, 780 (void **)pages, index, nr_pages); 781 for (i = 0; i < ret; i++) { 782 if (pages[i]->mapping == NULL || pages[i]->index != index) 783 break; 784 785 page_cache_get(pages[i]); 786 index++; 787 } 788 read_unlock_irq(&mapping->tree_lock); 789 return i; 790 } 791 EXPORT_SYMBOL(find_get_pages_contig); 792 793 /** 794 * find_get_pages_tag - find and return pages that match @tag 795 * @mapping: the address_space to search 796 * @index: the starting page index 797 * @tag: the tag index 798 * @nr_pages: the maximum number of pages 799 * @pages: where the resulting pages are placed 800 * 801 * Like find_get_pages, except we only return pages which are tagged with 802 * @tag. We update @index to index the next page for the traversal. 803 */ 804 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, 805 int tag, unsigned int nr_pages, struct page **pages) 806 { 807 unsigned int i; 808 unsigned int ret; 809 810 read_lock_irq(&mapping->tree_lock); 811 ret = radix_tree_gang_lookup_tag(&mapping->page_tree, 812 (void **)pages, *index, nr_pages, tag); 813 for (i = 0; i < ret; i++) 814 page_cache_get(pages[i]); 815 if (ret) 816 *index = pages[ret - 1]->index + 1; 817 read_unlock_irq(&mapping->tree_lock); 818 return ret; 819 } 820 EXPORT_SYMBOL(find_get_pages_tag); 821 822 /** 823 * grab_cache_page_nowait - returns locked page at given index in given cache 824 * @mapping: target address_space 825 * @index: the page index 826 * 827 * Same as grab_cache_page(), but do not wait if the page is unavailable. 828 * This is intended for speculative data generators, where the data can 829 * be regenerated if the page couldn't be grabbed. This routine should 830 * be safe to call while holding the lock for another page. 831 * 832 * Clear __GFP_FS when allocating the page to avoid recursion into the fs 833 * and deadlock against the caller's locked page. 834 */ 835 struct page * 836 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index) 837 { 838 struct page *page = find_get_page(mapping, index); 839 840 if (page) { 841 if (!TestSetPageLocked(page)) 842 return page; 843 page_cache_release(page); 844 return NULL; 845 } 846 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS); 847 if (page && add_to_page_cache_lru(page, mapping, index, GFP_KERNEL)) { 848 page_cache_release(page); 849 page = NULL; 850 } 851 return page; 852 } 853 EXPORT_SYMBOL(grab_cache_page_nowait); 854 855 /* 856 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 857 * a _large_ part of the i/o request. Imagine the worst scenario: 858 * 859 * ---R__________________________________________B__________ 860 * ^ reading here ^ bad block(assume 4k) 861 * 862 * read(R) => miss => readahead(R...B) => media error => frustrating retries 863 * => failing the whole request => read(R) => read(R+1) => 864 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 865 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 866 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 867 * 868 * It is going insane. Fix it by quickly scaling down the readahead size. 869 */ 870 static void shrink_readahead_size_eio(struct file *filp, 871 struct file_ra_state *ra) 872 { 873 if (!ra->ra_pages) 874 return; 875 876 ra->ra_pages /= 4; 877 } 878 879 /** 880 * do_generic_file_read - generic file read routine 881 * @filp: the file to read 882 * @ppos: current file position 883 * @desc: read_descriptor 884 * @actor: read method 885 * 886 * This is a generic file read routine, and uses the 887 * mapping->a_ops->readpage() function for the actual low-level stuff. 888 * 889 * This is really ugly. But the goto's actually try to clarify some 890 * of the logic when it comes to error handling etc. 891 */ 892 static void do_generic_file_read(struct file *filp, loff_t *ppos, 893 read_descriptor_t *desc, read_actor_t actor) 894 { 895 struct address_space *mapping = filp->f_mapping; 896 struct inode *inode = mapping->host; 897 struct file_ra_state *ra = &filp->f_ra; 898 pgoff_t index; 899 pgoff_t last_index; 900 pgoff_t prev_index; 901 unsigned long offset; /* offset into pagecache page */ 902 unsigned int prev_offset; 903 int error; 904 905 index = *ppos >> PAGE_CACHE_SHIFT; 906 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT; 907 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1); 908 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT; 909 offset = *ppos & ~PAGE_CACHE_MASK; 910 911 for (;;) { 912 struct page *page; 913 pgoff_t end_index; 914 loff_t isize; 915 unsigned long nr, ret; 916 917 cond_resched(); 918 find_page: 919 page = find_get_page(mapping, index); 920 if (!page) { 921 page_cache_sync_readahead(mapping, 922 ra, filp, 923 index, last_index - index); 924 page = find_get_page(mapping, index); 925 if (unlikely(page == NULL)) 926 goto no_cached_page; 927 } 928 if (PageReadahead(page)) { 929 page_cache_async_readahead(mapping, 930 ra, filp, page, 931 index, last_index - index); 932 } 933 if (!PageUptodate(page)) 934 goto page_not_up_to_date; 935 page_ok: 936 /* 937 * i_size must be checked after we know the page is Uptodate. 938 * 939 * Checking i_size after the check allows us to calculate 940 * the correct value for "nr", which means the zero-filled 941 * part of the page is not copied back to userspace (unless 942 * another truncate extends the file - this is desired though). 943 */ 944 945 isize = i_size_read(inode); 946 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 947 if (unlikely(!isize || index > end_index)) { 948 page_cache_release(page); 949 goto out; 950 } 951 952 /* nr is the maximum number of bytes to copy from this page */ 953 nr = PAGE_CACHE_SIZE; 954 if (index == end_index) { 955 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 956 if (nr <= offset) { 957 page_cache_release(page); 958 goto out; 959 } 960 } 961 nr = nr - offset; 962 963 /* If users can be writing to this page using arbitrary 964 * virtual addresses, take care about potential aliasing 965 * before reading the page on the kernel side. 966 */ 967 if (mapping_writably_mapped(mapping)) 968 flush_dcache_page(page); 969 970 /* 971 * When a sequential read accesses a page several times, 972 * only mark it as accessed the first time. 973 */ 974 if (prev_index != index || offset != prev_offset) 975 mark_page_accessed(page); 976 prev_index = index; 977 978 /* 979 * Ok, we have the page, and it's up-to-date, so 980 * now we can copy it to user space... 981 * 982 * The actor routine returns how many bytes were actually used.. 983 * NOTE! This may not be the same as how much of a user buffer 984 * we filled up (we may be padding etc), so we can only update 985 * "pos" here (the actor routine has to update the user buffer 986 * pointers and the remaining count). 987 */ 988 ret = actor(desc, page, offset, nr); 989 offset += ret; 990 index += offset >> PAGE_CACHE_SHIFT; 991 offset &= ~PAGE_CACHE_MASK; 992 prev_offset = offset; 993 994 page_cache_release(page); 995 if (ret == nr && desc->count) 996 continue; 997 goto out; 998 999 page_not_up_to_date: 1000 /* Get exclusive access to the page ... */ 1001 if (lock_page_killable(page)) 1002 goto readpage_eio; 1003 1004 /* Did it get truncated before we got the lock? */ 1005 if (!page->mapping) { 1006 unlock_page(page); 1007 page_cache_release(page); 1008 continue; 1009 } 1010 1011 /* Did somebody else fill it already? */ 1012 if (PageUptodate(page)) { 1013 unlock_page(page); 1014 goto page_ok; 1015 } 1016 1017 readpage: 1018 /* Start the actual read. The read will unlock the page. */ 1019 error = mapping->a_ops->readpage(filp, page); 1020 1021 if (unlikely(error)) { 1022 if (error == AOP_TRUNCATED_PAGE) { 1023 page_cache_release(page); 1024 goto find_page; 1025 } 1026 goto readpage_error; 1027 } 1028 1029 if (!PageUptodate(page)) { 1030 if (lock_page_killable(page)) 1031 goto readpage_eio; 1032 if (!PageUptodate(page)) { 1033 if (page->mapping == NULL) { 1034 /* 1035 * invalidate_inode_pages got it 1036 */ 1037 unlock_page(page); 1038 page_cache_release(page); 1039 goto find_page; 1040 } 1041 unlock_page(page); 1042 shrink_readahead_size_eio(filp, ra); 1043 goto readpage_eio; 1044 } 1045 unlock_page(page); 1046 } 1047 1048 goto page_ok; 1049 1050 readpage_eio: 1051 error = -EIO; 1052 readpage_error: 1053 /* UHHUH! A synchronous read error occurred. Report it */ 1054 desc->error = error; 1055 page_cache_release(page); 1056 goto out; 1057 1058 no_cached_page: 1059 /* 1060 * Ok, it wasn't cached, so we need to create a new 1061 * page.. 1062 */ 1063 page = page_cache_alloc_cold(mapping); 1064 if (!page) { 1065 desc->error = -ENOMEM; 1066 goto out; 1067 } 1068 error = add_to_page_cache_lru(page, mapping, 1069 index, GFP_KERNEL); 1070 if (error) { 1071 page_cache_release(page); 1072 if (error == -EEXIST) 1073 goto find_page; 1074 desc->error = error; 1075 goto out; 1076 } 1077 goto readpage; 1078 } 1079 1080 out: 1081 ra->prev_pos = prev_index; 1082 ra->prev_pos <<= PAGE_CACHE_SHIFT; 1083 ra->prev_pos |= prev_offset; 1084 1085 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset; 1086 if (filp) 1087 file_accessed(filp); 1088 } 1089 1090 int file_read_actor(read_descriptor_t *desc, struct page *page, 1091 unsigned long offset, unsigned long size) 1092 { 1093 char *kaddr; 1094 unsigned long left, count = desc->count; 1095 1096 if (size > count) 1097 size = count; 1098 1099 /* 1100 * Faults on the destination of a read are common, so do it before 1101 * taking the kmap. 1102 */ 1103 if (!fault_in_pages_writeable(desc->arg.buf, size)) { 1104 kaddr = kmap_atomic(page, KM_USER0); 1105 left = __copy_to_user_inatomic(desc->arg.buf, 1106 kaddr + offset, size); 1107 kunmap_atomic(kaddr, KM_USER0); 1108 if (left == 0) 1109 goto success; 1110 } 1111 1112 /* Do it the slow way */ 1113 kaddr = kmap(page); 1114 left = __copy_to_user(desc->arg.buf, kaddr + offset, size); 1115 kunmap(page); 1116 1117 if (left) { 1118 size -= left; 1119 desc->error = -EFAULT; 1120 } 1121 success: 1122 desc->count = count - size; 1123 desc->written += size; 1124 desc->arg.buf += size; 1125 return size; 1126 } 1127 1128 /* 1129 * Performs necessary checks before doing a write 1130 * @iov: io vector request 1131 * @nr_segs: number of segments in the iovec 1132 * @count: number of bytes to write 1133 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE 1134 * 1135 * Adjust number of segments and amount of bytes to write (nr_segs should be 1136 * properly initialized first). Returns appropriate error code that caller 1137 * should return or zero in case that write should be allowed. 1138 */ 1139 int generic_segment_checks(const struct iovec *iov, 1140 unsigned long *nr_segs, size_t *count, int access_flags) 1141 { 1142 unsigned long seg; 1143 size_t cnt = 0; 1144 for (seg = 0; seg < *nr_segs; seg++) { 1145 const struct iovec *iv = &iov[seg]; 1146 1147 /* 1148 * If any segment has a negative length, or the cumulative 1149 * length ever wraps negative then return -EINVAL. 1150 */ 1151 cnt += iv->iov_len; 1152 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0)) 1153 return -EINVAL; 1154 if (access_ok(access_flags, iv->iov_base, iv->iov_len)) 1155 continue; 1156 if (seg == 0) 1157 return -EFAULT; 1158 *nr_segs = seg; 1159 cnt -= iv->iov_len; /* This segment is no good */ 1160 break; 1161 } 1162 *count = cnt; 1163 return 0; 1164 } 1165 EXPORT_SYMBOL(generic_segment_checks); 1166 1167 /** 1168 * generic_file_aio_read - generic filesystem read routine 1169 * @iocb: kernel I/O control block 1170 * @iov: io vector request 1171 * @nr_segs: number of segments in the iovec 1172 * @pos: current file position 1173 * 1174 * This is the "read()" routine for all filesystems 1175 * that can use the page cache directly. 1176 */ 1177 ssize_t 1178 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov, 1179 unsigned long nr_segs, loff_t pos) 1180 { 1181 struct file *filp = iocb->ki_filp; 1182 ssize_t retval; 1183 unsigned long seg; 1184 size_t count; 1185 loff_t *ppos = &iocb->ki_pos; 1186 1187 count = 0; 1188 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE); 1189 if (retval) 1190 return retval; 1191 1192 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ 1193 if (filp->f_flags & O_DIRECT) { 1194 loff_t size; 1195 struct address_space *mapping; 1196 struct inode *inode; 1197 1198 mapping = filp->f_mapping; 1199 inode = mapping->host; 1200 if (!count) 1201 goto out; /* skip atime */ 1202 size = i_size_read(inode); 1203 if (pos < size) { 1204 retval = filemap_write_and_wait(mapping); 1205 if (!retval) { 1206 retval = mapping->a_ops->direct_IO(READ, iocb, 1207 iov, pos, nr_segs); 1208 } 1209 if (retval > 0) 1210 *ppos = pos + retval; 1211 if (retval) { 1212 file_accessed(filp); 1213 goto out; 1214 } 1215 } 1216 } 1217 1218 for (seg = 0; seg < nr_segs; seg++) { 1219 read_descriptor_t desc; 1220 1221 desc.written = 0; 1222 desc.arg.buf = iov[seg].iov_base; 1223 desc.count = iov[seg].iov_len; 1224 if (desc.count == 0) 1225 continue; 1226 desc.error = 0; 1227 do_generic_file_read(filp, ppos, &desc, file_read_actor); 1228 retval += desc.written; 1229 if (desc.error) { 1230 retval = retval ?: desc.error; 1231 break; 1232 } 1233 if (desc.count > 0) 1234 break; 1235 } 1236 out: 1237 return retval; 1238 } 1239 EXPORT_SYMBOL(generic_file_aio_read); 1240 1241 static ssize_t 1242 do_readahead(struct address_space *mapping, struct file *filp, 1243 pgoff_t index, unsigned long nr) 1244 { 1245 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage) 1246 return -EINVAL; 1247 1248 force_page_cache_readahead(mapping, filp, index, 1249 max_sane_readahead(nr)); 1250 return 0; 1251 } 1252 1253 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count) 1254 { 1255 ssize_t ret; 1256 struct file *file; 1257 1258 ret = -EBADF; 1259 file = fget(fd); 1260 if (file) { 1261 if (file->f_mode & FMODE_READ) { 1262 struct address_space *mapping = file->f_mapping; 1263 pgoff_t start = offset >> PAGE_CACHE_SHIFT; 1264 pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT; 1265 unsigned long len = end - start + 1; 1266 ret = do_readahead(mapping, file, start, len); 1267 } 1268 fput(file); 1269 } 1270 return ret; 1271 } 1272 1273 #ifdef CONFIG_MMU 1274 /** 1275 * page_cache_read - adds requested page to the page cache if not already there 1276 * @file: file to read 1277 * @offset: page index 1278 * 1279 * This adds the requested page to the page cache if it isn't already there, 1280 * and schedules an I/O to read in its contents from disk. 1281 */ 1282 static int page_cache_read(struct file *file, pgoff_t offset) 1283 { 1284 struct address_space *mapping = file->f_mapping; 1285 struct page *page; 1286 int ret; 1287 1288 do { 1289 page = page_cache_alloc_cold(mapping); 1290 if (!page) 1291 return -ENOMEM; 1292 1293 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL); 1294 if (ret == 0) 1295 ret = mapping->a_ops->readpage(file, page); 1296 else if (ret == -EEXIST) 1297 ret = 0; /* losing race to add is OK */ 1298 1299 page_cache_release(page); 1300 1301 } while (ret == AOP_TRUNCATED_PAGE); 1302 1303 return ret; 1304 } 1305 1306 #define MMAP_LOTSAMISS (100) 1307 1308 /** 1309 * filemap_fault - read in file data for page fault handling 1310 * @vma: vma in which the fault was taken 1311 * @vmf: struct vm_fault containing details of the fault 1312 * 1313 * filemap_fault() is invoked via the vma operations vector for a 1314 * mapped memory region to read in file data during a page fault. 1315 * 1316 * The goto's are kind of ugly, but this streamlines the normal case of having 1317 * it in the page cache, and handles the special cases reasonably without 1318 * having a lot of duplicated code. 1319 */ 1320 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1321 { 1322 int error; 1323 struct file *file = vma->vm_file; 1324 struct address_space *mapping = file->f_mapping; 1325 struct file_ra_state *ra = &file->f_ra; 1326 struct inode *inode = mapping->host; 1327 struct page *page; 1328 pgoff_t size; 1329 int did_readaround = 0; 1330 int ret = 0; 1331 1332 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1333 if (vmf->pgoff >= size) 1334 return VM_FAULT_SIGBUS; 1335 1336 /* If we don't want any read-ahead, don't bother */ 1337 if (VM_RandomReadHint(vma)) 1338 goto no_cached_page; 1339 1340 /* 1341 * Do we have something in the page cache already? 1342 */ 1343 retry_find: 1344 page = find_lock_page(mapping, vmf->pgoff); 1345 /* 1346 * For sequential accesses, we use the generic readahead logic. 1347 */ 1348 if (VM_SequentialReadHint(vma)) { 1349 if (!page) { 1350 page_cache_sync_readahead(mapping, ra, file, 1351 vmf->pgoff, 1); 1352 page = find_lock_page(mapping, vmf->pgoff); 1353 if (!page) 1354 goto no_cached_page; 1355 } 1356 if (PageReadahead(page)) { 1357 page_cache_async_readahead(mapping, ra, file, page, 1358 vmf->pgoff, 1); 1359 } 1360 } 1361 1362 if (!page) { 1363 unsigned long ra_pages; 1364 1365 ra->mmap_miss++; 1366 1367 /* 1368 * Do we miss much more than hit in this file? If so, 1369 * stop bothering with read-ahead. It will only hurt. 1370 */ 1371 if (ra->mmap_miss > MMAP_LOTSAMISS) 1372 goto no_cached_page; 1373 1374 /* 1375 * To keep the pgmajfault counter straight, we need to 1376 * check did_readaround, as this is an inner loop. 1377 */ 1378 if (!did_readaround) { 1379 ret = VM_FAULT_MAJOR; 1380 count_vm_event(PGMAJFAULT); 1381 } 1382 did_readaround = 1; 1383 ra_pages = max_sane_readahead(file->f_ra.ra_pages); 1384 if (ra_pages) { 1385 pgoff_t start = 0; 1386 1387 if (vmf->pgoff > ra_pages / 2) 1388 start = vmf->pgoff - ra_pages / 2; 1389 do_page_cache_readahead(mapping, file, start, ra_pages); 1390 } 1391 page = find_lock_page(mapping, vmf->pgoff); 1392 if (!page) 1393 goto no_cached_page; 1394 } 1395 1396 if (!did_readaround) 1397 ra->mmap_miss--; 1398 1399 /* 1400 * We have a locked page in the page cache, now we need to check 1401 * that it's up-to-date. If not, it is going to be due to an error. 1402 */ 1403 if (unlikely(!PageUptodate(page))) 1404 goto page_not_uptodate; 1405 1406 /* Must recheck i_size under page lock */ 1407 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1408 if (unlikely(vmf->pgoff >= size)) { 1409 unlock_page(page); 1410 page_cache_release(page); 1411 return VM_FAULT_SIGBUS; 1412 } 1413 1414 /* 1415 * Found the page and have a reference on it. 1416 */ 1417 mark_page_accessed(page); 1418 ra->prev_pos = (loff_t)page->index << PAGE_CACHE_SHIFT; 1419 vmf->page = page; 1420 return ret | VM_FAULT_LOCKED; 1421 1422 no_cached_page: 1423 /* 1424 * We're only likely to ever get here if MADV_RANDOM is in 1425 * effect. 1426 */ 1427 error = page_cache_read(file, vmf->pgoff); 1428 1429 /* 1430 * The page we want has now been added to the page cache. 1431 * In the unlikely event that someone removed it in the 1432 * meantime, we'll just come back here and read it again. 1433 */ 1434 if (error >= 0) 1435 goto retry_find; 1436 1437 /* 1438 * An error return from page_cache_read can result if the 1439 * system is low on memory, or a problem occurs while trying 1440 * to schedule I/O. 1441 */ 1442 if (error == -ENOMEM) 1443 return VM_FAULT_OOM; 1444 return VM_FAULT_SIGBUS; 1445 1446 page_not_uptodate: 1447 /* IO error path */ 1448 if (!did_readaround) { 1449 ret = VM_FAULT_MAJOR; 1450 count_vm_event(PGMAJFAULT); 1451 } 1452 1453 /* 1454 * Umm, take care of errors if the page isn't up-to-date. 1455 * Try to re-read it _once_. We do this synchronously, 1456 * because there really aren't any performance issues here 1457 * and we need to check for errors. 1458 */ 1459 ClearPageError(page); 1460 error = mapping->a_ops->readpage(file, page); 1461 if (!error) { 1462 wait_on_page_locked(page); 1463 if (!PageUptodate(page)) 1464 error = -EIO; 1465 } 1466 page_cache_release(page); 1467 1468 if (!error || error == AOP_TRUNCATED_PAGE) 1469 goto retry_find; 1470 1471 /* Things didn't work out. Return zero to tell the mm layer so. */ 1472 shrink_readahead_size_eio(file, ra); 1473 return VM_FAULT_SIGBUS; 1474 } 1475 EXPORT_SYMBOL(filemap_fault); 1476 1477 struct vm_operations_struct generic_file_vm_ops = { 1478 .fault = filemap_fault, 1479 }; 1480 1481 /* This is used for a general mmap of a disk file */ 1482 1483 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 1484 { 1485 struct address_space *mapping = file->f_mapping; 1486 1487 if (!mapping->a_ops->readpage) 1488 return -ENOEXEC; 1489 file_accessed(file); 1490 vma->vm_ops = &generic_file_vm_ops; 1491 vma->vm_flags |= VM_CAN_NONLINEAR; 1492 return 0; 1493 } 1494 1495 /* 1496 * This is for filesystems which do not implement ->writepage. 1497 */ 1498 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 1499 { 1500 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 1501 return -EINVAL; 1502 return generic_file_mmap(file, vma); 1503 } 1504 #else 1505 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 1506 { 1507 return -ENOSYS; 1508 } 1509 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) 1510 { 1511 return -ENOSYS; 1512 } 1513 #endif /* CONFIG_MMU */ 1514 1515 EXPORT_SYMBOL(generic_file_mmap); 1516 EXPORT_SYMBOL(generic_file_readonly_mmap); 1517 1518 static struct page *__read_cache_page(struct address_space *mapping, 1519 pgoff_t index, 1520 int (*filler)(void *,struct page*), 1521 void *data) 1522 { 1523 struct page *page; 1524 int err; 1525 repeat: 1526 page = find_get_page(mapping, index); 1527 if (!page) { 1528 page = page_cache_alloc_cold(mapping); 1529 if (!page) 1530 return ERR_PTR(-ENOMEM); 1531 err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL); 1532 if (unlikely(err)) { 1533 page_cache_release(page); 1534 if (err == -EEXIST) 1535 goto repeat; 1536 /* Presumably ENOMEM for radix tree node */ 1537 return ERR_PTR(err); 1538 } 1539 err = filler(data, page); 1540 if (err < 0) { 1541 page_cache_release(page); 1542 page = ERR_PTR(err); 1543 } 1544 } 1545 return page; 1546 } 1547 1548 /** 1549 * read_cache_page_async - read into page cache, fill it if needed 1550 * @mapping: the page's address_space 1551 * @index: the page index 1552 * @filler: function to perform the read 1553 * @data: destination for read data 1554 * 1555 * Same as read_cache_page, but don't wait for page to become unlocked 1556 * after submitting it to the filler. 1557 * 1558 * Read into the page cache. If a page already exists, and PageUptodate() is 1559 * not set, try to fill the page but don't wait for it to become unlocked. 1560 * 1561 * If the page does not get brought uptodate, return -EIO. 1562 */ 1563 struct page *read_cache_page_async(struct address_space *mapping, 1564 pgoff_t index, 1565 int (*filler)(void *,struct page*), 1566 void *data) 1567 { 1568 struct page *page; 1569 int err; 1570 1571 retry: 1572 page = __read_cache_page(mapping, index, filler, data); 1573 if (IS_ERR(page)) 1574 return page; 1575 if (PageUptodate(page)) 1576 goto out; 1577 1578 lock_page(page); 1579 if (!page->mapping) { 1580 unlock_page(page); 1581 page_cache_release(page); 1582 goto retry; 1583 } 1584 if (PageUptodate(page)) { 1585 unlock_page(page); 1586 goto out; 1587 } 1588 err = filler(data, page); 1589 if (err < 0) { 1590 page_cache_release(page); 1591 return ERR_PTR(err); 1592 } 1593 out: 1594 mark_page_accessed(page); 1595 return page; 1596 } 1597 EXPORT_SYMBOL(read_cache_page_async); 1598 1599 /** 1600 * read_cache_page - read into page cache, fill it if needed 1601 * @mapping: the page's address_space 1602 * @index: the page index 1603 * @filler: function to perform the read 1604 * @data: destination for read data 1605 * 1606 * Read into the page cache. If a page already exists, and PageUptodate() is 1607 * not set, try to fill the page then wait for it to become unlocked. 1608 * 1609 * If the page does not get brought uptodate, return -EIO. 1610 */ 1611 struct page *read_cache_page(struct address_space *mapping, 1612 pgoff_t index, 1613 int (*filler)(void *,struct page*), 1614 void *data) 1615 { 1616 struct page *page; 1617 1618 page = read_cache_page_async(mapping, index, filler, data); 1619 if (IS_ERR(page)) 1620 goto out; 1621 wait_on_page_locked(page); 1622 if (!PageUptodate(page)) { 1623 page_cache_release(page); 1624 page = ERR_PTR(-EIO); 1625 } 1626 out: 1627 return page; 1628 } 1629 EXPORT_SYMBOL(read_cache_page); 1630 1631 /* 1632 * The logic we want is 1633 * 1634 * if suid or (sgid and xgrp) 1635 * remove privs 1636 */ 1637 int should_remove_suid(struct dentry *dentry) 1638 { 1639 mode_t mode = dentry->d_inode->i_mode; 1640 int kill = 0; 1641 1642 /* suid always must be killed */ 1643 if (unlikely(mode & S_ISUID)) 1644 kill = ATTR_KILL_SUID; 1645 1646 /* 1647 * sgid without any exec bits is just a mandatory locking mark; leave 1648 * it alone. If some exec bits are set, it's a real sgid; kill it. 1649 */ 1650 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP))) 1651 kill |= ATTR_KILL_SGID; 1652 1653 if (unlikely(kill && !capable(CAP_FSETID))) 1654 return kill; 1655 1656 return 0; 1657 } 1658 EXPORT_SYMBOL(should_remove_suid); 1659 1660 static int __remove_suid(struct dentry *dentry, int kill) 1661 { 1662 struct iattr newattrs; 1663 1664 newattrs.ia_valid = ATTR_FORCE | kill; 1665 return notify_change(dentry, &newattrs); 1666 } 1667 1668 int remove_suid(struct dentry *dentry) 1669 { 1670 int killsuid = should_remove_suid(dentry); 1671 int killpriv = security_inode_need_killpriv(dentry); 1672 int error = 0; 1673 1674 if (killpriv < 0) 1675 return killpriv; 1676 if (killpriv) 1677 error = security_inode_killpriv(dentry); 1678 if (!error && killsuid) 1679 error = __remove_suid(dentry, killsuid); 1680 1681 return error; 1682 } 1683 EXPORT_SYMBOL(remove_suid); 1684 1685 static size_t __iovec_copy_from_user_inatomic(char *vaddr, 1686 const struct iovec *iov, size_t base, size_t bytes) 1687 { 1688 size_t copied = 0, left = 0; 1689 1690 while (bytes) { 1691 char __user *buf = iov->iov_base + base; 1692 int copy = min(bytes, iov->iov_len - base); 1693 1694 base = 0; 1695 left = __copy_from_user_inatomic_nocache(vaddr, buf, copy); 1696 copied += copy; 1697 bytes -= copy; 1698 vaddr += copy; 1699 iov++; 1700 1701 if (unlikely(left)) 1702 break; 1703 } 1704 return copied - left; 1705 } 1706 1707 /* 1708 * Copy as much as we can into the page and return the number of bytes which 1709 * were sucessfully copied. If a fault is encountered then return the number of 1710 * bytes which were copied. 1711 */ 1712 size_t iov_iter_copy_from_user_atomic(struct page *page, 1713 struct iov_iter *i, unsigned long offset, size_t bytes) 1714 { 1715 char *kaddr; 1716 size_t copied; 1717 1718 BUG_ON(!in_atomic()); 1719 kaddr = kmap_atomic(page, KM_USER0); 1720 if (likely(i->nr_segs == 1)) { 1721 int left; 1722 char __user *buf = i->iov->iov_base + i->iov_offset; 1723 left = __copy_from_user_inatomic_nocache(kaddr + offset, 1724 buf, bytes); 1725 copied = bytes - left; 1726 } else { 1727 copied = __iovec_copy_from_user_inatomic(kaddr + offset, 1728 i->iov, i->iov_offset, bytes); 1729 } 1730 kunmap_atomic(kaddr, KM_USER0); 1731 1732 return copied; 1733 } 1734 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic); 1735 1736 /* 1737 * This has the same sideeffects and return value as 1738 * iov_iter_copy_from_user_atomic(). 1739 * The difference is that it attempts to resolve faults. 1740 * Page must not be locked. 1741 */ 1742 size_t iov_iter_copy_from_user(struct page *page, 1743 struct iov_iter *i, unsigned long offset, size_t bytes) 1744 { 1745 char *kaddr; 1746 size_t copied; 1747 1748 kaddr = kmap(page); 1749 if (likely(i->nr_segs == 1)) { 1750 int left; 1751 char __user *buf = i->iov->iov_base + i->iov_offset; 1752 left = __copy_from_user_nocache(kaddr + offset, buf, bytes); 1753 copied = bytes - left; 1754 } else { 1755 copied = __iovec_copy_from_user_inatomic(kaddr + offset, 1756 i->iov, i->iov_offset, bytes); 1757 } 1758 kunmap(page); 1759 return copied; 1760 } 1761 EXPORT_SYMBOL(iov_iter_copy_from_user); 1762 1763 void iov_iter_advance(struct iov_iter *i, size_t bytes) 1764 { 1765 BUG_ON(i->count < bytes); 1766 1767 if (likely(i->nr_segs == 1)) { 1768 i->iov_offset += bytes; 1769 i->count -= bytes; 1770 } else { 1771 const struct iovec *iov = i->iov; 1772 size_t base = i->iov_offset; 1773 1774 /* 1775 * The !iov->iov_len check ensures we skip over unlikely 1776 * zero-length segments (without overruning the iovec). 1777 */ 1778 while (bytes || unlikely(!iov->iov_len && i->count)) { 1779 int copy; 1780 1781 copy = min(bytes, iov->iov_len - base); 1782 BUG_ON(!i->count || i->count < copy); 1783 i->count -= copy; 1784 bytes -= copy; 1785 base += copy; 1786 if (iov->iov_len == base) { 1787 iov++; 1788 base = 0; 1789 } 1790 } 1791 i->iov = iov; 1792 i->iov_offset = base; 1793 } 1794 } 1795 EXPORT_SYMBOL(iov_iter_advance); 1796 1797 /* 1798 * Fault in the first iovec of the given iov_iter, to a maximum length 1799 * of bytes. Returns 0 on success, or non-zero if the memory could not be 1800 * accessed (ie. because it is an invalid address). 1801 * 1802 * writev-intensive code may want this to prefault several iovecs -- that 1803 * would be possible (callers must not rely on the fact that _only_ the 1804 * first iovec will be faulted with the current implementation). 1805 */ 1806 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes) 1807 { 1808 char __user *buf = i->iov->iov_base + i->iov_offset; 1809 bytes = min(bytes, i->iov->iov_len - i->iov_offset); 1810 return fault_in_pages_readable(buf, bytes); 1811 } 1812 EXPORT_SYMBOL(iov_iter_fault_in_readable); 1813 1814 /* 1815 * Return the count of just the current iov_iter segment. 1816 */ 1817 size_t iov_iter_single_seg_count(struct iov_iter *i) 1818 { 1819 const struct iovec *iov = i->iov; 1820 if (i->nr_segs == 1) 1821 return i->count; 1822 else 1823 return min(i->count, iov->iov_len - i->iov_offset); 1824 } 1825 EXPORT_SYMBOL(iov_iter_single_seg_count); 1826 1827 /* 1828 * Performs necessary checks before doing a write 1829 * 1830 * Can adjust writing position or amount of bytes to write. 1831 * Returns appropriate error code that caller should return or 1832 * zero in case that write should be allowed. 1833 */ 1834 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk) 1835 { 1836 struct inode *inode = file->f_mapping->host; 1837 unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; 1838 1839 if (unlikely(*pos < 0)) 1840 return -EINVAL; 1841 1842 if (!isblk) { 1843 /* FIXME: this is for backwards compatibility with 2.4 */ 1844 if (file->f_flags & O_APPEND) 1845 *pos = i_size_read(inode); 1846 1847 if (limit != RLIM_INFINITY) { 1848 if (*pos >= limit) { 1849 send_sig(SIGXFSZ, current, 0); 1850 return -EFBIG; 1851 } 1852 if (*count > limit - (typeof(limit))*pos) { 1853 *count = limit - (typeof(limit))*pos; 1854 } 1855 } 1856 } 1857 1858 /* 1859 * LFS rule 1860 */ 1861 if (unlikely(*pos + *count > MAX_NON_LFS && 1862 !(file->f_flags & O_LARGEFILE))) { 1863 if (*pos >= MAX_NON_LFS) { 1864 return -EFBIG; 1865 } 1866 if (*count > MAX_NON_LFS - (unsigned long)*pos) { 1867 *count = MAX_NON_LFS - (unsigned long)*pos; 1868 } 1869 } 1870 1871 /* 1872 * Are we about to exceed the fs block limit ? 1873 * 1874 * If we have written data it becomes a short write. If we have 1875 * exceeded without writing data we send a signal and return EFBIG. 1876 * Linus frestrict idea will clean these up nicely.. 1877 */ 1878 if (likely(!isblk)) { 1879 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) { 1880 if (*count || *pos > inode->i_sb->s_maxbytes) { 1881 return -EFBIG; 1882 } 1883 /* zero-length writes at ->s_maxbytes are OK */ 1884 } 1885 1886 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes)) 1887 *count = inode->i_sb->s_maxbytes - *pos; 1888 } else { 1889 #ifdef CONFIG_BLOCK 1890 loff_t isize; 1891 if (bdev_read_only(I_BDEV(inode))) 1892 return -EPERM; 1893 isize = i_size_read(inode); 1894 if (*pos >= isize) { 1895 if (*count || *pos > isize) 1896 return -ENOSPC; 1897 } 1898 1899 if (*pos + *count > isize) 1900 *count = isize - *pos; 1901 #else 1902 return -EPERM; 1903 #endif 1904 } 1905 return 0; 1906 } 1907 EXPORT_SYMBOL(generic_write_checks); 1908 1909 int pagecache_write_begin(struct file *file, struct address_space *mapping, 1910 loff_t pos, unsigned len, unsigned flags, 1911 struct page **pagep, void **fsdata) 1912 { 1913 const struct address_space_operations *aops = mapping->a_ops; 1914 1915 if (aops->write_begin) { 1916 return aops->write_begin(file, mapping, pos, len, flags, 1917 pagep, fsdata); 1918 } else { 1919 int ret; 1920 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 1921 unsigned offset = pos & (PAGE_CACHE_SIZE - 1); 1922 struct inode *inode = mapping->host; 1923 struct page *page; 1924 again: 1925 page = __grab_cache_page(mapping, index); 1926 *pagep = page; 1927 if (!page) 1928 return -ENOMEM; 1929 1930 if (flags & AOP_FLAG_UNINTERRUPTIBLE && !PageUptodate(page)) { 1931 /* 1932 * There is no way to resolve a short write situation 1933 * for a !Uptodate page (except by double copying in 1934 * the caller done by generic_perform_write_2copy). 1935 * 1936 * Instead, we have to bring it uptodate here. 1937 */ 1938 ret = aops->readpage(file, page); 1939 page_cache_release(page); 1940 if (ret) { 1941 if (ret == AOP_TRUNCATED_PAGE) 1942 goto again; 1943 return ret; 1944 } 1945 goto again; 1946 } 1947 1948 ret = aops->prepare_write(file, page, offset, offset+len); 1949 if (ret) { 1950 unlock_page(page); 1951 page_cache_release(page); 1952 if (pos + len > inode->i_size) 1953 vmtruncate(inode, inode->i_size); 1954 } 1955 return ret; 1956 } 1957 } 1958 EXPORT_SYMBOL(pagecache_write_begin); 1959 1960 int pagecache_write_end(struct file *file, struct address_space *mapping, 1961 loff_t pos, unsigned len, unsigned copied, 1962 struct page *page, void *fsdata) 1963 { 1964 const struct address_space_operations *aops = mapping->a_ops; 1965 int ret; 1966 1967 if (aops->write_end) { 1968 mark_page_accessed(page); 1969 ret = aops->write_end(file, mapping, pos, len, copied, 1970 page, fsdata); 1971 } else { 1972 unsigned offset = pos & (PAGE_CACHE_SIZE - 1); 1973 struct inode *inode = mapping->host; 1974 1975 flush_dcache_page(page); 1976 ret = aops->commit_write(file, page, offset, offset+len); 1977 unlock_page(page); 1978 mark_page_accessed(page); 1979 page_cache_release(page); 1980 1981 if (ret < 0) { 1982 if (pos + len > inode->i_size) 1983 vmtruncate(inode, inode->i_size); 1984 } else if (ret > 0) 1985 ret = min_t(size_t, copied, ret); 1986 else 1987 ret = copied; 1988 } 1989 1990 return ret; 1991 } 1992 EXPORT_SYMBOL(pagecache_write_end); 1993 1994 ssize_t 1995 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov, 1996 unsigned long *nr_segs, loff_t pos, loff_t *ppos, 1997 size_t count, size_t ocount) 1998 { 1999 struct file *file = iocb->ki_filp; 2000 struct address_space *mapping = file->f_mapping; 2001 struct inode *inode = mapping->host; 2002 ssize_t written; 2003 size_t write_len; 2004 pgoff_t end; 2005 2006 if (count != ocount) 2007 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count); 2008 2009 /* 2010 * Unmap all mmappings of the file up-front. 2011 * 2012 * This will cause any pte dirty bits to be propagated into the 2013 * pageframes for the subsequent filemap_write_and_wait(). 2014 */ 2015 write_len = iov_length(iov, *nr_segs); 2016 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT; 2017 if (mapping_mapped(mapping)) 2018 unmap_mapping_range(mapping, pos, write_len, 0); 2019 2020 written = filemap_write_and_wait(mapping); 2021 if (written) 2022 goto out; 2023 2024 /* 2025 * After a write we want buffered reads to be sure to go to disk to get 2026 * the new data. We invalidate clean cached page from the region we're 2027 * about to write. We do this *before* the write so that we can return 2028 * -EIO without clobbering -EIOCBQUEUED from ->direct_IO(). 2029 */ 2030 if (mapping->nrpages) { 2031 written = invalidate_inode_pages2_range(mapping, 2032 pos >> PAGE_CACHE_SHIFT, end); 2033 if (written) 2034 goto out; 2035 } 2036 2037 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs); 2038 2039 /* 2040 * Finally, try again to invalidate clean pages which might have been 2041 * cached by non-direct readahead, or faulted in by get_user_pages() 2042 * if the source of the write was an mmap'ed region of the file 2043 * we're writing. Either one is a pretty crazy thing to do, 2044 * so we don't support it 100%. If this invalidation 2045 * fails, tough, the write still worked... 2046 */ 2047 if (mapping->nrpages) { 2048 invalidate_inode_pages2_range(mapping, 2049 pos >> PAGE_CACHE_SHIFT, end); 2050 } 2051 2052 if (written > 0) { 2053 loff_t end = pos + written; 2054 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 2055 i_size_write(inode, end); 2056 mark_inode_dirty(inode); 2057 } 2058 *ppos = end; 2059 } 2060 2061 /* 2062 * Sync the fs metadata but not the minor inode changes and 2063 * of course not the data as we did direct DMA for the IO. 2064 * i_mutex is held, which protects generic_osync_inode() from 2065 * livelocking. AIO O_DIRECT ops attempt to sync metadata here. 2066 */ 2067 out: 2068 if ((written >= 0 || written == -EIOCBQUEUED) && 2069 ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 2070 int err = generic_osync_inode(inode, mapping, OSYNC_METADATA); 2071 if (err < 0) 2072 written = err; 2073 } 2074 return written; 2075 } 2076 EXPORT_SYMBOL(generic_file_direct_write); 2077 2078 /* 2079 * Find or create a page at the given pagecache position. Return the locked 2080 * page. This function is specifically for buffered writes. 2081 */ 2082 struct page *__grab_cache_page(struct address_space *mapping, pgoff_t index) 2083 { 2084 int status; 2085 struct page *page; 2086 repeat: 2087 page = find_lock_page(mapping, index); 2088 if (likely(page)) 2089 return page; 2090 2091 page = page_cache_alloc(mapping); 2092 if (!page) 2093 return NULL; 2094 status = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL); 2095 if (unlikely(status)) { 2096 page_cache_release(page); 2097 if (status == -EEXIST) 2098 goto repeat; 2099 return NULL; 2100 } 2101 return page; 2102 } 2103 EXPORT_SYMBOL(__grab_cache_page); 2104 2105 static ssize_t generic_perform_write_2copy(struct file *file, 2106 struct iov_iter *i, loff_t pos) 2107 { 2108 struct address_space *mapping = file->f_mapping; 2109 const struct address_space_operations *a_ops = mapping->a_ops; 2110 struct inode *inode = mapping->host; 2111 long status = 0; 2112 ssize_t written = 0; 2113 2114 do { 2115 struct page *src_page; 2116 struct page *page; 2117 pgoff_t index; /* Pagecache index for current page */ 2118 unsigned long offset; /* Offset into pagecache page */ 2119 unsigned long bytes; /* Bytes to write to page */ 2120 size_t copied; /* Bytes copied from user */ 2121 2122 offset = (pos & (PAGE_CACHE_SIZE - 1)); 2123 index = pos >> PAGE_CACHE_SHIFT; 2124 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset, 2125 iov_iter_count(i)); 2126 2127 /* 2128 * a non-NULL src_page indicates that we're doing the 2129 * copy via get_user_pages and kmap. 2130 */ 2131 src_page = NULL; 2132 2133 /* 2134 * Bring in the user page that we will copy from _first_. 2135 * Otherwise there's a nasty deadlock on copying from the 2136 * same page as we're writing to, without it being marked 2137 * up-to-date. 2138 * 2139 * Not only is this an optimisation, but it is also required 2140 * to check that the address is actually valid, when atomic 2141 * usercopies are used, below. 2142 */ 2143 if (unlikely(iov_iter_fault_in_readable(i, bytes))) { 2144 status = -EFAULT; 2145 break; 2146 } 2147 2148 page = __grab_cache_page(mapping, index); 2149 if (!page) { 2150 status = -ENOMEM; 2151 break; 2152 } 2153 2154 /* 2155 * non-uptodate pages cannot cope with short copies, and we 2156 * cannot take a pagefault with the destination page locked. 2157 * So pin the source page to copy it. 2158 */ 2159 if (!PageUptodate(page) && !segment_eq(get_fs(), KERNEL_DS)) { 2160 unlock_page(page); 2161 2162 src_page = alloc_page(GFP_KERNEL); 2163 if (!src_page) { 2164 page_cache_release(page); 2165 status = -ENOMEM; 2166 break; 2167 } 2168 2169 /* 2170 * Cannot get_user_pages with a page locked for the 2171 * same reason as we can't take a page fault with a 2172 * page locked (as explained below). 2173 */ 2174 copied = iov_iter_copy_from_user(src_page, i, 2175 offset, bytes); 2176 if (unlikely(copied == 0)) { 2177 status = -EFAULT; 2178 page_cache_release(page); 2179 page_cache_release(src_page); 2180 break; 2181 } 2182 bytes = copied; 2183 2184 lock_page(page); 2185 /* 2186 * Can't handle the page going uptodate here, because 2187 * that means we would use non-atomic usercopies, which 2188 * zero out the tail of the page, which can cause 2189 * zeroes to become transiently visible. We could just 2190 * use a non-zeroing copy, but the APIs aren't too 2191 * consistent. 2192 */ 2193 if (unlikely(!page->mapping || PageUptodate(page))) { 2194 unlock_page(page); 2195 page_cache_release(page); 2196 page_cache_release(src_page); 2197 continue; 2198 } 2199 } 2200 2201 status = a_ops->prepare_write(file, page, offset, offset+bytes); 2202 if (unlikely(status)) 2203 goto fs_write_aop_error; 2204 2205 if (!src_page) { 2206 /* 2207 * Must not enter the pagefault handler here, because 2208 * we hold the page lock, so we might recursively 2209 * deadlock on the same lock, or get an ABBA deadlock 2210 * against a different lock, or against the mmap_sem 2211 * (which nests outside the page lock). So increment 2212 * preempt count, and use _atomic usercopies. 2213 * 2214 * The page is uptodate so we are OK to encounter a 2215 * short copy: if unmodified parts of the page are 2216 * marked dirty and written out to disk, it doesn't 2217 * really matter. 2218 */ 2219 pagefault_disable(); 2220 copied = iov_iter_copy_from_user_atomic(page, i, 2221 offset, bytes); 2222 pagefault_enable(); 2223 } else { 2224 void *src, *dst; 2225 src = kmap_atomic(src_page, KM_USER0); 2226 dst = kmap_atomic(page, KM_USER1); 2227 memcpy(dst + offset, src + offset, bytes); 2228 kunmap_atomic(dst, KM_USER1); 2229 kunmap_atomic(src, KM_USER0); 2230 copied = bytes; 2231 } 2232 flush_dcache_page(page); 2233 2234 status = a_ops->commit_write(file, page, offset, offset+bytes); 2235 if (unlikely(status < 0)) 2236 goto fs_write_aop_error; 2237 if (unlikely(status > 0)) /* filesystem did partial write */ 2238 copied = min_t(size_t, copied, status); 2239 2240 unlock_page(page); 2241 mark_page_accessed(page); 2242 page_cache_release(page); 2243 if (src_page) 2244 page_cache_release(src_page); 2245 2246 iov_iter_advance(i, copied); 2247 pos += copied; 2248 written += copied; 2249 2250 balance_dirty_pages_ratelimited(mapping); 2251 cond_resched(); 2252 continue; 2253 2254 fs_write_aop_error: 2255 unlock_page(page); 2256 page_cache_release(page); 2257 if (src_page) 2258 page_cache_release(src_page); 2259 2260 /* 2261 * prepare_write() may have instantiated a few blocks 2262 * outside i_size. Trim these off again. Don't need 2263 * i_size_read because we hold i_mutex. 2264 */ 2265 if (pos + bytes > inode->i_size) 2266 vmtruncate(inode, inode->i_size); 2267 break; 2268 } while (iov_iter_count(i)); 2269 2270 return written ? written : status; 2271 } 2272 2273 static ssize_t generic_perform_write(struct file *file, 2274 struct iov_iter *i, loff_t pos) 2275 { 2276 struct address_space *mapping = file->f_mapping; 2277 const struct address_space_operations *a_ops = mapping->a_ops; 2278 long status = 0; 2279 ssize_t written = 0; 2280 unsigned int flags = 0; 2281 2282 /* 2283 * Copies from kernel address space cannot fail (NFSD is a big user). 2284 */ 2285 if (segment_eq(get_fs(), KERNEL_DS)) 2286 flags |= AOP_FLAG_UNINTERRUPTIBLE; 2287 2288 do { 2289 struct page *page; 2290 pgoff_t index; /* Pagecache index for current page */ 2291 unsigned long offset; /* Offset into pagecache page */ 2292 unsigned long bytes; /* Bytes to write to page */ 2293 size_t copied; /* Bytes copied from user */ 2294 void *fsdata; 2295 2296 offset = (pos & (PAGE_CACHE_SIZE - 1)); 2297 index = pos >> PAGE_CACHE_SHIFT; 2298 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset, 2299 iov_iter_count(i)); 2300 2301 again: 2302 2303 /* 2304 * Bring in the user page that we will copy from _first_. 2305 * Otherwise there's a nasty deadlock on copying from the 2306 * same page as we're writing to, without it being marked 2307 * up-to-date. 2308 * 2309 * Not only is this an optimisation, but it is also required 2310 * to check that the address is actually valid, when atomic 2311 * usercopies are used, below. 2312 */ 2313 if (unlikely(iov_iter_fault_in_readable(i, bytes))) { 2314 status = -EFAULT; 2315 break; 2316 } 2317 2318 status = a_ops->write_begin(file, mapping, pos, bytes, flags, 2319 &page, &fsdata); 2320 if (unlikely(status)) 2321 break; 2322 2323 pagefault_disable(); 2324 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); 2325 pagefault_enable(); 2326 flush_dcache_page(page); 2327 2328 status = a_ops->write_end(file, mapping, pos, bytes, copied, 2329 page, fsdata); 2330 if (unlikely(status < 0)) 2331 break; 2332 copied = status; 2333 2334 cond_resched(); 2335 2336 iov_iter_advance(i, copied); 2337 if (unlikely(copied == 0)) { 2338 /* 2339 * If we were unable to copy any data at all, we must 2340 * fall back to a single segment length write. 2341 * 2342 * If we didn't fallback here, we could livelock 2343 * because not all segments in the iov can be copied at 2344 * once without a pagefault. 2345 */ 2346 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset, 2347 iov_iter_single_seg_count(i)); 2348 goto again; 2349 } 2350 pos += copied; 2351 written += copied; 2352 2353 balance_dirty_pages_ratelimited(mapping); 2354 2355 } while (iov_iter_count(i)); 2356 2357 return written ? written : status; 2358 } 2359 2360 ssize_t 2361 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov, 2362 unsigned long nr_segs, loff_t pos, loff_t *ppos, 2363 size_t count, ssize_t written) 2364 { 2365 struct file *file = iocb->ki_filp; 2366 struct address_space *mapping = file->f_mapping; 2367 const struct address_space_operations *a_ops = mapping->a_ops; 2368 struct inode *inode = mapping->host; 2369 ssize_t status; 2370 struct iov_iter i; 2371 2372 iov_iter_init(&i, iov, nr_segs, count, written); 2373 if (a_ops->write_begin) 2374 status = generic_perform_write(file, &i, pos); 2375 else 2376 status = generic_perform_write_2copy(file, &i, pos); 2377 2378 if (likely(status >= 0)) { 2379 written += status; 2380 *ppos = pos + status; 2381 2382 /* 2383 * For now, when the user asks for O_SYNC, we'll actually give 2384 * O_DSYNC 2385 */ 2386 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 2387 if (!a_ops->writepage || !is_sync_kiocb(iocb)) 2388 status = generic_osync_inode(inode, mapping, 2389 OSYNC_METADATA|OSYNC_DATA); 2390 } 2391 } 2392 2393 /* 2394 * If we get here for O_DIRECT writes then we must have fallen through 2395 * to buffered writes (block instantiation inside i_size). So we sync 2396 * the file data here, to try to honour O_DIRECT expectations. 2397 */ 2398 if (unlikely(file->f_flags & O_DIRECT) && written) 2399 status = filemap_write_and_wait(mapping); 2400 2401 return written ? written : status; 2402 } 2403 EXPORT_SYMBOL(generic_file_buffered_write); 2404 2405 static ssize_t 2406 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov, 2407 unsigned long nr_segs, loff_t *ppos) 2408 { 2409 struct file *file = iocb->ki_filp; 2410 struct address_space * mapping = file->f_mapping; 2411 size_t ocount; /* original count */ 2412 size_t count; /* after file limit checks */ 2413 struct inode *inode = mapping->host; 2414 loff_t pos; 2415 ssize_t written; 2416 ssize_t err; 2417 2418 ocount = 0; 2419 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ); 2420 if (err) 2421 return err; 2422 2423 count = ocount; 2424 pos = *ppos; 2425 2426 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE); 2427 2428 /* We can write back this queue in page reclaim */ 2429 current->backing_dev_info = mapping->backing_dev_info; 2430 written = 0; 2431 2432 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode)); 2433 if (err) 2434 goto out; 2435 2436 if (count == 0) 2437 goto out; 2438 2439 err = remove_suid(file->f_path.dentry); 2440 if (err) 2441 goto out; 2442 2443 file_update_time(file); 2444 2445 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ 2446 if (unlikely(file->f_flags & O_DIRECT)) { 2447 loff_t endbyte; 2448 ssize_t written_buffered; 2449 2450 written = generic_file_direct_write(iocb, iov, &nr_segs, pos, 2451 ppos, count, ocount); 2452 if (written < 0 || written == count) 2453 goto out; 2454 /* 2455 * direct-io write to a hole: fall through to buffered I/O 2456 * for completing the rest of the request. 2457 */ 2458 pos += written; 2459 count -= written; 2460 written_buffered = generic_file_buffered_write(iocb, iov, 2461 nr_segs, pos, ppos, count, 2462 written); 2463 /* 2464 * If generic_file_buffered_write() retuned a synchronous error 2465 * then we want to return the number of bytes which were 2466 * direct-written, or the error code if that was zero. Note 2467 * that this differs from normal direct-io semantics, which 2468 * will return -EFOO even if some bytes were written. 2469 */ 2470 if (written_buffered < 0) { 2471 err = written_buffered; 2472 goto out; 2473 } 2474 2475 /* 2476 * We need to ensure that the page cache pages are written to 2477 * disk and invalidated to preserve the expected O_DIRECT 2478 * semantics. 2479 */ 2480 endbyte = pos + written_buffered - written - 1; 2481 err = do_sync_mapping_range(file->f_mapping, pos, endbyte, 2482 SYNC_FILE_RANGE_WAIT_BEFORE| 2483 SYNC_FILE_RANGE_WRITE| 2484 SYNC_FILE_RANGE_WAIT_AFTER); 2485 if (err == 0) { 2486 written = written_buffered; 2487 invalidate_mapping_pages(mapping, 2488 pos >> PAGE_CACHE_SHIFT, 2489 endbyte >> PAGE_CACHE_SHIFT); 2490 } else { 2491 /* 2492 * We don't know how much we wrote, so just return 2493 * the number of bytes which were direct-written 2494 */ 2495 } 2496 } else { 2497 written = generic_file_buffered_write(iocb, iov, nr_segs, 2498 pos, ppos, count, written); 2499 } 2500 out: 2501 current->backing_dev_info = NULL; 2502 return written ? written : err; 2503 } 2504 2505 ssize_t generic_file_aio_write_nolock(struct kiocb *iocb, 2506 const struct iovec *iov, unsigned long nr_segs, loff_t pos) 2507 { 2508 struct file *file = iocb->ki_filp; 2509 struct address_space *mapping = file->f_mapping; 2510 struct inode *inode = mapping->host; 2511 ssize_t ret; 2512 2513 BUG_ON(iocb->ki_pos != pos); 2514 2515 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs, 2516 &iocb->ki_pos); 2517 2518 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 2519 ssize_t err; 2520 2521 err = sync_page_range_nolock(inode, mapping, pos, ret); 2522 if (err < 0) 2523 ret = err; 2524 } 2525 return ret; 2526 } 2527 EXPORT_SYMBOL(generic_file_aio_write_nolock); 2528 2529 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov, 2530 unsigned long nr_segs, loff_t pos) 2531 { 2532 struct file *file = iocb->ki_filp; 2533 struct address_space *mapping = file->f_mapping; 2534 struct inode *inode = mapping->host; 2535 ssize_t ret; 2536 2537 BUG_ON(iocb->ki_pos != pos); 2538 2539 mutex_lock(&inode->i_mutex); 2540 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs, 2541 &iocb->ki_pos); 2542 mutex_unlock(&inode->i_mutex); 2543 2544 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 2545 ssize_t err; 2546 2547 err = sync_page_range(inode, mapping, pos, ret); 2548 if (err < 0) 2549 ret = err; 2550 } 2551 return ret; 2552 } 2553 EXPORT_SYMBOL(generic_file_aio_write); 2554 2555 /** 2556 * try_to_release_page() - release old fs-specific metadata on a page 2557 * 2558 * @page: the page which the kernel is trying to free 2559 * @gfp_mask: memory allocation flags (and I/O mode) 2560 * 2561 * The address_space is to try to release any data against the page 2562 * (presumably at page->private). If the release was successful, return `1'. 2563 * Otherwise return zero. 2564 * 2565 * The @gfp_mask argument specifies whether I/O may be performed to release 2566 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT). 2567 * 2568 * NOTE: @gfp_mask may go away, and this function may become non-blocking. 2569 */ 2570 int try_to_release_page(struct page *page, gfp_t gfp_mask) 2571 { 2572 struct address_space * const mapping = page->mapping; 2573 2574 BUG_ON(!PageLocked(page)); 2575 if (PageWriteback(page)) 2576 return 0; 2577 2578 if (mapping && mapping->a_ops->releasepage) 2579 return mapping->a_ops->releasepage(page, gfp_mask); 2580 return try_to_free_buffers(page); 2581 } 2582 2583 EXPORT_SYMBOL(try_to_release_page); 2584