xref: /openbmc/linux/mm/filemap.c (revision 545e4006)
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/compiler.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include "internal.h"
37 
38 /*
39  * FIXME: remove all knowledge of the buffer layer from the core VM
40  */
41 #include <linux/buffer_head.h> /* for generic_osync_inode */
42 
43 #include <asm/mman.h>
44 
45 
46 /*
47  * Shared mappings implemented 30.11.1994. It's not fully working yet,
48  * though.
49  *
50  * Shared mappings now work. 15.8.1995  Bruno.
51  *
52  * finished 'unifying' the page and buffer cache and SMP-threaded the
53  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
54  *
55  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
56  */
57 
58 /*
59  * Lock ordering:
60  *
61  *  ->i_mmap_lock		(vmtruncate)
62  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
63  *      ->swap_lock		(exclusive_swap_page, others)
64  *        ->mapping->tree_lock
65  *
66  *  ->i_mutex
67  *    ->i_mmap_lock		(truncate->unmap_mapping_range)
68  *
69  *  ->mmap_sem
70  *    ->i_mmap_lock
71  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
72  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
73  *
74  *  ->mmap_sem
75  *    ->lock_page		(access_process_vm)
76  *
77  *  ->i_mutex			(generic_file_buffered_write)
78  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
79  *
80  *  ->i_mutex
81  *    ->i_alloc_sem             (various)
82  *
83  *  ->inode_lock
84  *    ->sb_lock			(fs/fs-writeback.c)
85  *    ->mapping->tree_lock	(__sync_single_inode)
86  *
87  *  ->i_mmap_lock
88  *    ->anon_vma.lock		(vma_adjust)
89  *
90  *  ->anon_vma.lock
91  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
92  *
93  *  ->page_table_lock or pte_lock
94  *    ->swap_lock		(try_to_unmap_one)
95  *    ->private_lock		(try_to_unmap_one)
96  *    ->tree_lock		(try_to_unmap_one)
97  *    ->zone.lru_lock		(follow_page->mark_page_accessed)
98  *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
99  *    ->private_lock		(page_remove_rmap->set_page_dirty)
100  *    ->tree_lock		(page_remove_rmap->set_page_dirty)
101  *    ->inode_lock		(page_remove_rmap->set_page_dirty)
102  *    ->inode_lock		(zap_pte_range->set_page_dirty)
103  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
104  *
105  *  ->task->proc_lock
106  *    ->dcache_lock		(proc_pid_lookup)
107  */
108 
109 /*
110  * Remove a page from the page cache and free it. Caller has to make
111  * sure the page is locked and that nobody else uses it - or that usage
112  * is safe.  The caller must hold a write_lock on the mapping's tree_lock.
113  */
114 void __remove_from_page_cache(struct page *page)
115 {
116 	struct address_space *mapping = page->mapping;
117 
118 	mem_cgroup_uncharge_page(page);
119 	radix_tree_delete(&mapping->page_tree, page->index);
120 	page->mapping = NULL;
121 	mapping->nrpages--;
122 	__dec_zone_page_state(page, NR_FILE_PAGES);
123 	BUG_ON(page_mapped(page));
124 
125 	/*
126 	 * Some filesystems seem to re-dirty the page even after
127 	 * the VM has canceled the dirty bit (eg ext3 journaling).
128 	 *
129 	 * Fix it up by doing a final dirty accounting check after
130 	 * having removed the page entirely.
131 	 */
132 	if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
133 		dec_zone_page_state(page, NR_FILE_DIRTY);
134 		dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
135 	}
136 }
137 
138 void remove_from_page_cache(struct page *page)
139 {
140 	struct address_space *mapping = page->mapping;
141 
142 	BUG_ON(!PageLocked(page));
143 
144 	write_lock_irq(&mapping->tree_lock);
145 	__remove_from_page_cache(page);
146 	write_unlock_irq(&mapping->tree_lock);
147 }
148 
149 static int sync_page(void *word)
150 {
151 	struct address_space *mapping;
152 	struct page *page;
153 
154 	page = container_of((unsigned long *)word, struct page, flags);
155 
156 	/*
157 	 * page_mapping() is being called without PG_locked held.
158 	 * Some knowledge of the state and use of the page is used to
159 	 * reduce the requirements down to a memory barrier.
160 	 * The danger here is of a stale page_mapping() return value
161 	 * indicating a struct address_space different from the one it's
162 	 * associated with when it is associated with one.
163 	 * After smp_mb(), it's either the correct page_mapping() for
164 	 * the page, or an old page_mapping() and the page's own
165 	 * page_mapping() has gone NULL.
166 	 * The ->sync_page() address_space operation must tolerate
167 	 * page_mapping() going NULL. By an amazing coincidence,
168 	 * this comes about because none of the users of the page
169 	 * in the ->sync_page() methods make essential use of the
170 	 * page_mapping(), merely passing the page down to the backing
171 	 * device's unplug functions when it's non-NULL, which in turn
172 	 * ignore it for all cases but swap, where only page_private(page) is
173 	 * of interest. When page_mapping() does go NULL, the entire
174 	 * call stack gracefully ignores the page and returns.
175 	 * -- wli
176 	 */
177 	smp_mb();
178 	mapping = page_mapping(page);
179 	if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
180 		mapping->a_ops->sync_page(page);
181 	io_schedule();
182 	return 0;
183 }
184 
185 static int sync_page_killable(void *word)
186 {
187 	sync_page(word);
188 	return fatal_signal_pending(current) ? -EINTR : 0;
189 }
190 
191 /**
192  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
193  * @mapping:	address space structure to write
194  * @start:	offset in bytes where the range starts
195  * @end:	offset in bytes where the range ends (inclusive)
196  * @sync_mode:	enable synchronous operation
197  *
198  * Start writeback against all of a mapping's dirty pages that lie
199  * within the byte offsets <start, end> inclusive.
200  *
201  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
202  * opposed to a regular memory cleansing writeback.  The difference between
203  * these two operations is that if a dirty page/buffer is encountered, it must
204  * be waited upon, and not just skipped over.
205  */
206 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
207 				loff_t end, int sync_mode)
208 {
209 	int ret;
210 	struct writeback_control wbc = {
211 		.sync_mode = sync_mode,
212 		.nr_to_write = mapping->nrpages * 2,
213 		.range_start = start,
214 		.range_end = end,
215 	};
216 
217 	if (!mapping_cap_writeback_dirty(mapping))
218 		return 0;
219 
220 	ret = do_writepages(mapping, &wbc);
221 	return ret;
222 }
223 
224 static inline int __filemap_fdatawrite(struct address_space *mapping,
225 	int sync_mode)
226 {
227 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
228 }
229 
230 int filemap_fdatawrite(struct address_space *mapping)
231 {
232 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
233 }
234 EXPORT_SYMBOL(filemap_fdatawrite);
235 
236 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
237 				loff_t end)
238 {
239 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
240 }
241 EXPORT_SYMBOL(filemap_fdatawrite_range);
242 
243 /**
244  * filemap_flush - mostly a non-blocking flush
245  * @mapping:	target address_space
246  *
247  * This is a mostly non-blocking flush.  Not suitable for data-integrity
248  * purposes - I/O may not be started against all dirty pages.
249  */
250 int filemap_flush(struct address_space *mapping)
251 {
252 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
253 }
254 EXPORT_SYMBOL(filemap_flush);
255 
256 /**
257  * wait_on_page_writeback_range - wait for writeback to complete
258  * @mapping:	target address_space
259  * @start:	beginning page index
260  * @end:	ending page index
261  *
262  * Wait for writeback to complete against pages indexed by start->end
263  * inclusive
264  */
265 int wait_on_page_writeback_range(struct address_space *mapping,
266 				pgoff_t start, pgoff_t end)
267 {
268 	struct pagevec pvec;
269 	int nr_pages;
270 	int ret = 0;
271 	pgoff_t index;
272 
273 	if (end < start)
274 		return 0;
275 
276 	pagevec_init(&pvec, 0);
277 	index = start;
278 	while ((index <= end) &&
279 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
280 			PAGECACHE_TAG_WRITEBACK,
281 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
282 		unsigned i;
283 
284 		for (i = 0; i < nr_pages; i++) {
285 			struct page *page = pvec.pages[i];
286 
287 			/* until radix tree lookup accepts end_index */
288 			if (page->index > end)
289 				continue;
290 
291 			wait_on_page_writeback(page);
292 			if (PageError(page))
293 				ret = -EIO;
294 		}
295 		pagevec_release(&pvec);
296 		cond_resched();
297 	}
298 
299 	/* Check for outstanding write errors */
300 	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
301 		ret = -ENOSPC;
302 	if (test_and_clear_bit(AS_EIO, &mapping->flags))
303 		ret = -EIO;
304 
305 	return ret;
306 }
307 
308 /**
309  * sync_page_range - write and wait on all pages in the passed range
310  * @inode:	target inode
311  * @mapping:	target address_space
312  * @pos:	beginning offset in pages to write
313  * @count:	number of bytes to write
314  *
315  * Write and wait upon all the pages in the passed range.  This is a "data
316  * integrity" operation.  It waits upon in-flight writeout before starting and
317  * waiting upon new writeout.  If there was an IO error, return it.
318  *
319  * We need to re-take i_mutex during the generic_osync_inode list walk because
320  * it is otherwise livelockable.
321  */
322 int sync_page_range(struct inode *inode, struct address_space *mapping,
323 			loff_t pos, loff_t count)
324 {
325 	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
326 	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
327 	int ret;
328 
329 	if (!mapping_cap_writeback_dirty(mapping) || !count)
330 		return 0;
331 	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
332 	if (ret == 0) {
333 		mutex_lock(&inode->i_mutex);
334 		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
335 		mutex_unlock(&inode->i_mutex);
336 	}
337 	if (ret == 0)
338 		ret = wait_on_page_writeback_range(mapping, start, end);
339 	return ret;
340 }
341 EXPORT_SYMBOL(sync_page_range);
342 
343 /**
344  * sync_page_range_nolock - write & wait on all pages in the passed range without locking
345  * @inode:	target inode
346  * @mapping:	target address_space
347  * @pos:	beginning offset in pages to write
348  * @count:	number of bytes to write
349  *
350  * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
351  * as it forces O_SYNC writers to different parts of the same file
352  * to be serialised right until io completion.
353  */
354 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
355 			   loff_t pos, loff_t count)
356 {
357 	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
358 	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
359 	int ret;
360 
361 	if (!mapping_cap_writeback_dirty(mapping) || !count)
362 		return 0;
363 	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
364 	if (ret == 0)
365 		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
366 	if (ret == 0)
367 		ret = wait_on_page_writeback_range(mapping, start, end);
368 	return ret;
369 }
370 EXPORT_SYMBOL(sync_page_range_nolock);
371 
372 /**
373  * filemap_fdatawait - wait for all under-writeback pages to complete
374  * @mapping: address space structure to wait for
375  *
376  * Walk the list of under-writeback pages of the given address space
377  * and wait for all of them.
378  */
379 int filemap_fdatawait(struct address_space *mapping)
380 {
381 	loff_t i_size = i_size_read(mapping->host);
382 
383 	if (i_size == 0)
384 		return 0;
385 
386 	return wait_on_page_writeback_range(mapping, 0,
387 				(i_size - 1) >> PAGE_CACHE_SHIFT);
388 }
389 EXPORT_SYMBOL(filemap_fdatawait);
390 
391 int filemap_write_and_wait(struct address_space *mapping)
392 {
393 	int err = 0;
394 
395 	if (mapping->nrpages) {
396 		err = filemap_fdatawrite(mapping);
397 		/*
398 		 * Even if the above returned error, the pages may be
399 		 * written partially (e.g. -ENOSPC), so we wait for it.
400 		 * But the -EIO is special case, it may indicate the worst
401 		 * thing (e.g. bug) happened, so we avoid waiting for it.
402 		 */
403 		if (err != -EIO) {
404 			int err2 = filemap_fdatawait(mapping);
405 			if (!err)
406 				err = err2;
407 		}
408 	}
409 	return err;
410 }
411 EXPORT_SYMBOL(filemap_write_and_wait);
412 
413 /**
414  * filemap_write_and_wait_range - write out & wait on a file range
415  * @mapping:	the address_space for the pages
416  * @lstart:	offset in bytes where the range starts
417  * @lend:	offset in bytes where the range ends (inclusive)
418  *
419  * Write out and wait upon file offsets lstart->lend, inclusive.
420  *
421  * Note that `lend' is inclusive (describes the last byte to be written) so
422  * that this function can be used to write to the very end-of-file (end = -1).
423  */
424 int filemap_write_and_wait_range(struct address_space *mapping,
425 				 loff_t lstart, loff_t lend)
426 {
427 	int err = 0;
428 
429 	if (mapping->nrpages) {
430 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
431 						 WB_SYNC_ALL);
432 		/* See comment of filemap_write_and_wait() */
433 		if (err != -EIO) {
434 			int err2 = wait_on_page_writeback_range(mapping,
435 						lstart >> PAGE_CACHE_SHIFT,
436 						lend >> PAGE_CACHE_SHIFT);
437 			if (!err)
438 				err = err2;
439 		}
440 	}
441 	return err;
442 }
443 
444 /**
445  * add_to_page_cache - add newly allocated pagecache pages
446  * @page:	page to add
447  * @mapping:	the page's address_space
448  * @offset:	page index
449  * @gfp_mask:	page allocation mode
450  *
451  * This function is used to add newly allocated pagecache pages;
452  * the page is new, so we can just run SetPageLocked() against it.
453  * The other page state flags were set by rmqueue().
454  *
455  * This function does not add the page to the LRU.  The caller must do that.
456  */
457 int add_to_page_cache(struct page *page, struct address_space *mapping,
458 		pgoff_t offset, gfp_t gfp_mask)
459 {
460 	int error = mem_cgroup_cache_charge(page, current->mm,
461 					gfp_mask & ~__GFP_HIGHMEM);
462 	if (error)
463 		goto out;
464 
465 	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
466 	if (error == 0) {
467 		write_lock_irq(&mapping->tree_lock);
468 		error = radix_tree_insert(&mapping->page_tree, offset, page);
469 		if (!error) {
470 			page_cache_get(page);
471 			SetPageLocked(page);
472 			page->mapping = mapping;
473 			page->index = offset;
474 			mapping->nrpages++;
475 			__inc_zone_page_state(page, NR_FILE_PAGES);
476 		} else
477 			mem_cgroup_uncharge_page(page);
478 
479 		write_unlock_irq(&mapping->tree_lock);
480 		radix_tree_preload_end();
481 	} else
482 		mem_cgroup_uncharge_page(page);
483 out:
484 	return error;
485 }
486 EXPORT_SYMBOL(add_to_page_cache);
487 
488 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
489 				pgoff_t offset, gfp_t gfp_mask)
490 {
491 	int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
492 	if (ret == 0)
493 		lru_cache_add(page);
494 	return ret;
495 }
496 
497 #ifdef CONFIG_NUMA
498 struct page *__page_cache_alloc(gfp_t gfp)
499 {
500 	if (cpuset_do_page_mem_spread()) {
501 		int n = cpuset_mem_spread_node();
502 		return alloc_pages_node(n, gfp, 0);
503 	}
504 	return alloc_pages(gfp, 0);
505 }
506 EXPORT_SYMBOL(__page_cache_alloc);
507 #endif
508 
509 static int __sleep_on_page_lock(void *word)
510 {
511 	io_schedule();
512 	return 0;
513 }
514 
515 /*
516  * In order to wait for pages to become available there must be
517  * waitqueues associated with pages. By using a hash table of
518  * waitqueues where the bucket discipline is to maintain all
519  * waiters on the same queue and wake all when any of the pages
520  * become available, and for the woken contexts to check to be
521  * sure the appropriate page became available, this saves space
522  * at a cost of "thundering herd" phenomena during rare hash
523  * collisions.
524  */
525 static wait_queue_head_t *page_waitqueue(struct page *page)
526 {
527 	const struct zone *zone = page_zone(page);
528 
529 	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
530 }
531 
532 static inline void wake_up_page(struct page *page, int bit)
533 {
534 	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
535 }
536 
537 void wait_on_page_bit(struct page *page, int bit_nr)
538 {
539 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
540 
541 	if (test_bit(bit_nr, &page->flags))
542 		__wait_on_bit(page_waitqueue(page), &wait, sync_page,
543 							TASK_UNINTERRUPTIBLE);
544 }
545 EXPORT_SYMBOL(wait_on_page_bit);
546 
547 /**
548  * unlock_page - unlock a locked page
549  * @page: the page
550  *
551  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
552  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
553  * mechananism between PageLocked pages and PageWriteback pages is shared.
554  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
555  *
556  * The first mb is necessary to safely close the critical section opened by the
557  * TestSetPageLocked(), the second mb is necessary to enforce ordering between
558  * the clear_bit and the read of the waitqueue (to avoid SMP races with a
559  * parallel wait_on_page_locked()).
560  */
561 void unlock_page(struct page *page)
562 {
563 	smp_mb__before_clear_bit();
564 	if (!TestClearPageLocked(page))
565 		BUG();
566 	smp_mb__after_clear_bit();
567 	wake_up_page(page, PG_locked);
568 }
569 EXPORT_SYMBOL(unlock_page);
570 
571 /**
572  * end_page_writeback - end writeback against a page
573  * @page: the page
574  */
575 void end_page_writeback(struct page *page)
576 {
577 	if (TestClearPageReclaim(page))
578 		rotate_reclaimable_page(page);
579 
580 	if (!test_clear_page_writeback(page))
581 		BUG();
582 
583 	smp_mb__after_clear_bit();
584 	wake_up_page(page, PG_writeback);
585 }
586 EXPORT_SYMBOL(end_page_writeback);
587 
588 /**
589  * __lock_page - get a lock on the page, assuming we need to sleep to get it
590  * @page: the page to lock
591  *
592  * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary.  If some
593  * random driver's requestfn sets TASK_RUNNING, we could busywait.  However
594  * chances are that on the second loop, the block layer's plug list is empty,
595  * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
596  */
597 void __lock_page(struct page *page)
598 {
599 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
600 
601 	__wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
602 							TASK_UNINTERRUPTIBLE);
603 }
604 EXPORT_SYMBOL(__lock_page);
605 
606 int __lock_page_killable(struct page *page)
607 {
608 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
609 
610 	return __wait_on_bit_lock(page_waitqueue(page), &wait,
611 					sync_page_killable, TASK_KILLABLE);
612 }
613 
614 /**
615  * __lock_page_nosync - get a lock on the page, without calling sync_page()
616  * @page: the page to lock
617  *
618  * Variant of lock_page that does not require the caller to hold a reference
619  * on the page's mapping.
620  */
621 void __lock_page_nosync(struct page *page)
622 {
623 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
624 	__wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
625 							TASK_UNINTERRUPTIBLE);
626 }
627 
628 /**
629  * find_get_page - find and get a page reference
630  * @mapping: the address_space to search
631  * @offset: the page index
632  *
633  * Is there a pagecache struct page at the given (mapping, offset) tuple?
634  * If yes, increment its refcount and return it; if no, return NULL.
635  */
636 struct page * find_get_page(struct address_space *mapping, pgoff_t offset)
637 {
638 	struct page *page;
639 
640 	read_lock_irq(&mapping->tree_lock);
641 	page = radix_tree_lookup(&mapping->page_tree, offset);
642 	if (page)
643 		page_cache_get(page);
644 	read_unlock_irq(&mapping->tree_lock);
645 	return page;
646 }
647 EXPORT_SYMBOL(find_get_page);
648 
649 /**
650  * find_lock_page - locate, pin and lock a pagecache page
651  * @mapping: the address_space to search
652  * @offset: the page index
653  *
654  * Locates the desired pagecache page, locks it, increments its reference
655  * count and returns its address.
656  *
657  * Returns zero if the page was not present. find_lock_page() may sleep.
658  */
659 struct page *find_lock_page(struct address_space *mapping,
660 				pgoff_t offset)
661 {
662 	struct page *page;
663 
664 repeat:
665 	read_lock_irq(&mapping->tree_lock);
666 	page = radix_tree_lookup(&mapping->page_tree, offset);
667 	if (page) {
668 		page_cache_get(page);
669 		if (TestSetPageLocked(page)) {
670 			read_unlock_irq(&mapping->tree_lock);
671 			__lock_page(page);
672 
673 			/* Has the page been truncated while we slept? */
674 			if (unlikely(page->mapping != mapping)) {
675 				unlock_page(page);
676 				page_cache_release(page);
677 				goto repeat;
678 			}
679 			VM_BUG_ON(page->index != offset);
680 			goto out;
681 		}
682 	}
683 	read_unlock_irq(&mapping->tree_lock);
684 out:
685 	return page;
686 }
687 EXPORT_SYMBOL(find_lock_page);
688 
689 /**
690  * find_or_create_page - locate or add a pagecache page
691  * @mapping: the page's address_space
692  * @index: the page's index into the mapping
693  * @gfp_mask: page allocation mode
694  *
695  * Locates a page in the pagecache.  If the page is not present, a new page
696  * is allocated using @gfp_mask and is added to the pagecache and to the VM's
697  * LRU list.  The returned page is locked and has its reference count
698  * incremented.
699  *
700  * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
701  * allocation!
702  *
703  * find_or_create_page() returns the desired page's address, or zero on
704  * memory exhaustion.
705  */
706 struct page *find_or_create_page(struct address_space *mapping,
707 		pgoff_t index, gfp_t gfp_mask)
708 {
709 	struct page *page;
710 	int err;
711 repeat:
712 	page = find_lock_page(mapping, index);
713 	if (!page) {
714 		page = __page_cache_alloc(gfp_mask);
715 		if (!page)
716 			return NULL;
717 		err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
718 		if (unlikely(err)) {
719 			page_cache_release(page);
720 			page = NULL;
721 			if (err == -EEXIST)
722 				goto repeat;
723 		}
724 	}
725 	return page;
726 }
727 EXPORT_SYMBOL(find_or_create_page);
728 
729 /**
730  * find_get_pages - gang pagecache lookup
731  * @mapping:	The address_space to search
732  * @start:	The starting page index
733  * @nr_pages:	The maximum number of pages
734  * @pages:	Where the resulting pages are placed
735  *
736  * find_get_pages() will search for and return a group of up to
737  * @nr_pages pages in the mapping.  The pages are placed at @pages.
738  * find_get_pages() takes a reference against the returned pages.
739  *
740  * The search returns a group of mapping-contiguous pages with ascending
741  * indexes.  There may be holes in the indices due to not-present pages.
742  *
743  * find_get_pages() returns the number of pages which were found.
744  */
745 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
746 			    unsigned int nr_pages, struct page **pages)
747 {
748 	unsigned int i;
749 	unsigned int ret;
750 
751 	read_lock_irq(&mapping->tree_lock);
752 	ret = radix_tree_gang_lookup(&mapping->page_tree,
753 				(void **)pages, start, nr_pages);
754 	for (i = 0; i < ret; i++)
755 		page_cache_get(pages[i]);
756 	read_unlock_irq(&mapping->tree_lock);
757 	return ret;
758 }
759 
760 /**
761  * find_get_pages_contig - gang contiguous pagecache lookup
762  * @mapping:	The address_space to search
763  * @index:	The starting page index
764  * @nr_pages:	The maximum number of pages
765  * @pages:	Where the resulting pages are placed
766  *
767  * find_get_pages_contig() works exactly like find_get_pages(), except
768  * that the returned number of pages are guaranteed to be contiguous.
769  *
770  * find_get_pages_contig() returns the number of pages which were found.
771  */
772 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
773 			       unsigned int nr_pages, struct page **pages)
774 {
775 	unsigned int i;
776 	unsigned int ret;
777 
778 	read_lock_irq(&mapping->tree_lock);
779 	ret = radix_tree_gang_lookup(&mapping->page_tree,
780 				(void **)pages, index, nr_pages);
781 	for (i = 0; i < ret; i++) {
782 		if (pages[i]->mapping == NULL || pages[i]->index != index)
783 			break;
784 
785 		page_cache_get(pages[i]);
786 		index++;
787 	}
788 	read_unlock_irq(&mapping->tree_lock);
789 	return i;
790 }
791 EXPORT_SYMBOL(find_get_pages_contig);
792 
793 /**
794  * find_get_pages_tag - find and return pages that match @tag
795  * @mapping:	the address_space to search
796  * @index:	the starting page index
797  * @tag:	the tag index
798  * @nr_pages:	the maximum number of pages
799  * @pages:	where the resulting pages are placed
800  *
801  * Like find_get_pages, except we only return pages which are tagged with
802  * @tag.   We update @index to index the next page for the traversal.
803  */
804 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
805 			int tag, unsigned int nr_pages, struct page **pages)
806 {
807 	unsigned int i;
808 	unsigned int ret;
809 
810 	read_lock_irq(&mapping->tree_lock);
811 	ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
812 				(void **)pages, *index, nr_pages, tag);
813 	for (i = 0; i < ret; i++)
814 		page_cache_get(pages[i]);
815 	if (ret)
816 		*index = pages[ret - 1]->index + 1;
817 	read_unlock_irq(&mapping->tree_lock);
818 	return ret;
819 }
820 EXPORT_SYMBOL(find_get_pages_tag);
821 
822 /**
823  * grab_cache_page_nowait - returns locked page at given index in given cache
824  * @mapping: target address_space
825  * @index: the page index
826  *
827  * Same as grab_cache_page(), but do not wait if the page is unavailable.
828  * This is intended for speculative data generators, where the data can
829  * be regenerated if the page couldn't be grabbed.  This routine should
830  * be safe to call while holding the lock for another page.
831  *
832  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
833  * and deadlock against the caller's locked page.
834  */
835 struct page *
836 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
837 {
838 	struct page *page = find_get_page(mapping, index);
839 
840 	if (page) {
841 		if (!TestSetPageLocked(page))
842 			return page;
843 		page_cache_release(page);
844 		return NULL;
845 	}
846 	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
847 	if (page && add_to_page_cache_lru(page, mapping, index, GFP_KERNEL)) {
848 		page_cache_release(page);
849 		page = NULL;
850 	}
851 	return page;
852 }
853 EXPORT_SYMBOL(grab_cache_page_nowait);
854 
855 /*
856  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
857  * a _large_ part of the i/o request. Imagine the worst scenario:
858  *
859  *      ---R__________________________________________B__________
860  *         ^ reading here                             ^ bad block(assume 4k)
861  *
862  * read(R) => miss => readahead(R...B) => media error => frustrating retries
863  * => failing the whole request => read(R) => read(R+1) =>
864  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
865  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
866  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
867  *
868  * It is going insane. Fix it by quickly scaling down the readahead size.
869  */
870 static void shrink_readahead_size_eio(struct file *filp,
871 					struct file_ra_state *ra)
872 {
873 	if (!ra->ra_pages)
874 		return;
875 
876 	ra->ra_pages /= 4;
877 }
878 
879 /**
880  * do_generic_file_read - generic file read routine
881  * @filp:	the file to read
882  * @ppos:	current file position
883  * @desc:	read_descriptor
884  * @actor:	read method
885  *
886  * This is a generic file read routine, and uses the
887  * mapping->a_ops->readpage() function for the actual low-level stuff.
888  *
889  * This is really ugly. But the goto's actually try to clarify some
890  * of the logic when it comes to error handling etc.
891  */
892 static void do_generic_file_read(struct file *filp, loff_t *ppos,
893 		read_descriptor_t *desc, read_actor_t actor)
894 {
895 	struct address_space *mapping = filp->f_mapping;
896 	struct inode *inode = mapping->host;
897 	struct file_ra_state *ra = &filp->f_ra;
898 	pgoff_t index;
899 	pgoff_t last_index;
900 	pgoff_t prev_index;
901 	unsigned long offset;      /* offset into pagecache page */
902 	unsigned int prev_offset;
903 	int error;
904 
905 	index = *ppos >> PAGE_CACHE_SHIFT;
906 	prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
907 	prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
908 	last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
909 	offset = *ppos & ~PAGE_CACHE_MASK;
910 
911 	for (;;) {
912 		struct page *page;
913 		pgoff_t end_index;
914 		loff_t isize;
915 		unsigned long nr, ret;
916 
917 		cond_resched();
918 find_page:
919 		page = find_get_page(mapping, index);
920 		if (!page) {
921 			page_cache_sync_readahead(mapping,
922 					ra, filp,
923 					index, last_index - index);
924 			page = find_get_page(mapping, index);
925 			if (unlikely(page == NULL))
926 				goto no_cached_page;
927 		}
928 		if (PageReadahead(page)) {
929 			page_cache_async_readahead(mapping,
930 					ra, filp, page,
931 					index, last_index - index);
932 		}
933 		if (!PageUptodate(page))
934 			goto page_not_up_to_date;
935 page_ok:
936 		/*
937 		 * i_size must be checked after we know the page is Uptodate.
938 		 *
939 		 * Checking i_size after the check allows us to calculate
940 		 * the correct value for "nr", which means the zero-filled
941 		 * part of the page is not copied back to userspace (unless
942 		 * another truncate extends the file - this is desired though).
943 		 */
944 
945 		isize = i_size_read(inode);
946 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
947 		if (unlikely(!isize || index > end_index)) {
948 			page_cache_release(page);
949 			goto out;
950 		}
951 
952 		/* nr is the maximum number of bytes to copy from this page */
953 		nr = PAGE_CACHE_SIZE;
954 		if (index == end_index) {
955 			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
956 			if (nr <= offset) {
957 				page_cache_release(page);
958 				goto out;
959 			}
960 		}
961 		nr = nr - offset;
962 
963 		/* If users can be writing to this page using arbitrary
964 		 * virtual addresses, take care about potential aliasing
965 		 * before reading the page on the kernel side.
966 		 */
967 		if (mapping_writably_mapped(mapping))
968 			flush_dcache_page(page);
969 
970 		/*
971 		 * When a sequential read accesses a page several times,
972 		 * only mark it as accessed the first time.
973 		 */
974 		if (prev_index != index || offset != prev_offset)
975 			mark_page_accessed(page);
976 		prev_index = index;
977 
978 		/*
979 		 * Ok, we have the page, and it's up-to-date, so
980 		 * now we can copy it to user space...
981 		 *
982 		 * The actor routine returns how many bytes were actually used..
983 		 * NOTE! This may not be the same as how much of a user buffer
984 		 * we filled up (we may be padding etc), so we can only update
985 		 * "pos" here (the actor routine has to update the user buffer
986 		 * pointers and the remaining count).
987 		 */
988 		ret = actor(desc, page, offset, nr);
989 		offset += ret;
990 		index += offset >> PAGE_CACHE_SHIFT;
991 		offset &= ~PAGE_CACHE_MASK;
992 		prev_offset = offset;
993 
994 		page_cache_release(page);
995 		if (ret == nr && desc->count)
996 			continue;
997 		goto out;
998 
999 page_not_up_to_date:
1000 		/* Get exclusive access to the page ... */
1001 		if (lock_page_killable(page))
1002 			goto readpage_eio;
1003 
1004 		/* Did it get truncated before we got the lock? */
1005 		if (!page->mapping) {
1006 			unlock_page(page);
1007 			page_cache_release(page);
1008 			continue;
1009 		}
1010 
1011 		/* Did somebody else fill it already? */
1012 		if (PageUptodate(page)) {
1013 			unlock_page(page);
1014 			goto page_ok;
1015 		}
1016 
1017 readpage:
1018 		/* Start the actual read. The read will unlock the page. */
1019 		error = mapping->a_ops->readpage(filp, page);
1020 
1021 		if (unlikely(error)) {
1022 			if (error == AOP_TRUNCATED_PAGE) {
1023 				page_cache_release(page);
1024 				goto find_page;
1025 			}
1026 			goto readpage_error;
1027 		}
1028 
1029 		if (!PageUptodate(page)) {
1030 			if (lock_page_killable(page))
1031 				goto readpage_eio;
1032 			if (!PageUptodate(page)) {
1033 				if (page->mapping == NULL) {
1034 					/*
1035 					 * invalidate_inode_pages got it
1036 					 */
1037 					unlock_page(page);
1038 					page_cache_release(page);
1039 					goto find_page;
1040 				}
1041 				unlock_page(page);
1042 				shrink_readahead_size_eio(filp, ra);
1043 				goto readpage_eio;
1044 			}
1045 			unlock_page(page);
1046 		}
1047 
1048 		goto page_ok;
1049 
1050 readpage_eio:
1051 		error = -EIO;
1052 readpage_error:
1053 		/* UHHUH! A synchronous read error occurred. Report it */
1054 		desc->error = error;
1055 		page_cache_release(page);
1056 		goto out;
1057 
1058 no_cached_page:
1059 		/*
1060 		 * Ok, it wasn't cached, so we need to create a new
1061 		 * page..
1062 		 */
1063 		page = page_cache_alloc_cold(mapping);
1064 		if (!page) {
1065 			desc->error = -ENOMEM;
1066 			goto out;
1067 		}
1068 		error = add_to_page_cache_lru(page, mapping,
1069 						index, GFP_KERNEL);
1070 		if (error) {
1071 			page_cache_release(page);
1072 			if (error == -EEXIST)
1073 				goto find_page;
1074 			desc->error = error;
1075 			goto out;
1076 		}
1077 		goto readpage;
1078 	}
1079 
1080 out:
1081 	ra->prev_pos = prev_index;
1082 	ra->prev_pos <<= PAGE_CACHE_SHIFT;
1083 	ra->prev_pos |= prev_offset;
1084 
1085 	*ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1086 	if (filp)
1087 		file_accessed(filp);
1088 }
1089 
1090 int file_read_actor(read_descriptor_t *desc, struct page *page,
1091 			unsigned long offset, unsigned long size)
1092 {
1093 	char *kaddr;
1094 	unsigned long left, count = desc->count;
1095 
1096 	if (size > count)
1097 		size = count;
1098 
1099 	/*
1100 	 * Faults on the destination of a read are common, so do it before
1101 	 * taking the kmap.
1102 	 */
1103 	if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1104 		kaddr = kmap_atomic(page, KM_USER0);
1105 		left = __copy_to_user_inatomic(desc->arg.buf,
1106 						kaddr + offset, size);
1107 		kunmap_atomic(kaddr, KM_USER0);
1108 		if (left == 0)
1109 			goto success;
1110 	}
1111 
1112 	/* Do it the slow way */
1113 	kaddr = kmap(page);
1114 	left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1115 	kunmap(page);
1116 
1117 	if (left) {
1118 		size -= left;
1119 		desc->error = -EFAULT;
1120 	}
1121 success:
1122 	desc->count = count - size;
1123 	desc->written += size;
1124 	desc->arg.buf += size;
1125 	return size;
1126 }
1127 
1128 /*
1129  * Performs necessary checks before doing a write
1130  * @iov:	io vector request
1131  * @nr_segs:	number of segments in the iovec
1132  * @count:	number of bytes to write
1133  * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1134  *
1135  * Adjust number of segments and amount of bytes to write (nr_segs should be
1136  * properly initialized first). Returns appropriate error code that caller
1137  * should return or zero in case that write should be allowed.
1138  */
1139 int generic_segment_checks(const struct iovec *iov,
1140 			unsigned long *nr_segs, size_t *count, int access_flags)
1141 {
1142 	unsigned long   seg;
1143 	size_t cnt = 0;
1144 	for (seg = 0; seg < *nr_segs; seg++) {
1145 		const struct iovec *iv = &iov[seg];
1146 
1147 		/*
1148 		 * If any segment has a negative length, or the cumulative
1149 		 * length ever wraps negative then return -EINVAL.
1150 		 */
1151 		cnt += iv->iov_len;
1152 		if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1153 			return -EINVAL;
1154 		if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1155 			continue;
1156 		if (seg == 0)
1157 			return -EFAULT;
1158 		*nr_segs = seg;
1159 		cnt -= iv->iov_len;	/* This segment is no good */
1160 		break;
1161 	}
1162 	*count = cnt;
1163 	return 0;
1164 }
1165 EXPORT_SYMBOL(generic_segment_checks);
1166 
1167 /**
1168  * generic_file_aio_read - generic filesystem read routine
1169  * @iocb:	kernel I/O control block
1170  * @iov:	io vector request
1171  * @nr_segs:	number of segments in the iovec
1172  * @pos:	current file position
1173  *
1174  * This is the "read()" routine for all filesystems
1175  * that can use the page cache directly.
1176  */
1177 ssize_t
1178 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1179 		unsigned long nr_segs, loff_t pos)
1180 {
1181 	struct file *filp = iocb->ki_filp;
1182 	ssize_t retval;
1183 	unsigned long seg;
1184 	size_t count;
1185 	loff_t *ppos = &iocb->ki_pos;
1186 
1187 	count = 0;
1188 	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1189 	if (retval)
1190 		return retval;
1191 
1192 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1193 	if (filp->f_flags & O_DIRECT) {
1194 		loff_t size;
1195 		struct address_space *mapping;
1196 		struct inode *inode;
1197 
1198 		mapping = filp->f_mapping;
1199 		inode = mapping->host;
1200 		if (!count)
1201 			goto out; /* skip atime */
1202 		size = i_size_read(inode);
1203 		if (pos < size) {
1204 			retval = filemap_write_and_wait(mapping);
1205 			if (!retval) {
1206 				retval = mapping->a_ops->direct_IO(READ, iocb,
1207 							iov, pos, nr_segs);
1208 			}
1209 			if (retval > 0)
1210 				*ppos = pos + retval;
1211 			if (retval) {
1212 				file_accessed(filp);
1213 				goto out;
1214 			}
1215 		}
1216 	}
1217 
1218 	for (seg = 0; seg < nr_segs; seg++) {
1219 		read_descriptor_t desc;
1220 
1221 		desc.written = 0;
1222 		desc.arg.buf = iov[seg].iov_base;
1223 		desc.count = iov[seg].iov_len;
1224 		if (desc.count == 0)
1225 			continue;
1226 		desc.error = 0;
1227 		do_generic_file_read(filp, ppos, &desc, file_read_actor);
1228 		retval += desc.written;
1229 		if (desc.error) {
1230 			retval = retval ?: desc.error;
1231 			break;
1232 		}
1233 		if (desc.count > 0)
1234 			break;
1235 	}
1236 out:
1237 	return retval;
1238 }
1239 EXPORT_SYMBOL(generic_file_aio_read);
1240 
1241 static ssize_t
1242 do_readahead(struct address_space *mapping, struct file *filp,
1243 	     pgoff_t index, unsigned long nr)
1244 {
1245 	if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1246 		return -EINVAL;
1247 
1248 	force_page_cache_readahead(mapping, filp, index,
1249 					max_sane_readahead(nr));
1250 	return 0;
1251 }
1252 
1253 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1254 {
1255 	ssize_t ret;
1256 	struct file *file;
1257 
1258 	ret = -EBADF;
1259 	file = fget(fd);
1260 	if (file) {
1261 		if (file->f_mode & FMODE_READ) {
1262 			struct address_space *mapping = file->f_mapping;
1263 			pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1264 			pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1265 			unsigned long len = end - start + 1;
1266 			ret = do_readahead(mapping, file, start, len);
1267 		}
1268 		fput(file);
1269 	}
1270 	return ret;
1271 }
1272 
1273 #ifdef CONFIG_MMU
1274 /**
1275  * page_cache_read - adds requested page to the page cache if not already there
1276  * @file:	file to read
1277  * @offset:	page index
1278  *
1279  * This adds the requested page to the page cache if it isn't already there,
1280  * and schedules an I/O to read in its contents from disk.
1281  */
1282 static int page_cache_read(struct file *file, pgoff_t offset)
1283 {
1284 	struct address_space *mapping = file->f_mapping;
1285 	struct page *page;
1286 	int ret;
1287 
1288 	do {
1289 		page = page_cache_alloc_cold(mapping);
1290 		if (!page)
1291 			return -ENOMEM;
1292 
1293 		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1294 		if (ret == 0)
1295 			ret = mapping->a_ops->readpage(file, page);
1296 		else if (ret == -EEXIST)
1297 			ret = 0; /* losing race to add is OK */
1298 
1299 		page_cache_release(page);
1300 
1301 	} while (ret == AOP_TRUNCATED_PAGE);
1302 
1303 	return ret;
1304 }
1305 
1306 #define MMAP_LOTSAMISS  (100)
1307 
1308 /**
1309  * filemap_fault - read in file data for page fault handling
1310  * @vma:	vma in which the fault was taken
1311  * @vmf:	struct vm_fault containing details of the fault
1312  *
1313  * filemap_fault() is invoked via the vma operations vector for a
1314  * mapped memory region to read in file data during a page fault.
1315  *
1316  * The goto's are kind of ugly, but this streamlines the normal case of having
1317  * it in the page cache, and handles the special cases reasonably without
1318  * having a lot of duplicated code.
1319  */
1320 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1321 {
1322 	int error;
1323 	struct file *file = vma->vm_file;
1324 	struct address_space *mapping = file->f_mapping;
1325 	struct file_ra_state *ra = &file->f_ra;
1326 	struct inode *inode = mapping->host;
1327 	struct page *page;
1328 	pgoff_t size;
1329 	int did_readaround = 0;
1330 	int ret = 0;
1331 
1332 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1333 	if (vmf->pgoff >= size)
1334 		return VM_FAULT_SIGBUS;
1335 
1336 	/* If we don't want any read-ahead, don't bother */
1337 	if (VM_RandomReadHint(vma))
1338 		goto no_cached_page;
1339 
1340 	/*
1341 	 * Do we have something in the page cache already?
1342 	 */
1343 retry_find:
1344 	page = find_lock_page(mapping, vmf->pgoff);
1345 	/*
1346 	 * For sequential accesses, we use the generic readahead logic.
1347 	 */
1348 	if (VM_SequentialReadHint(vma)) {
1349 		if (!page) {
1350 			page_cache_sync_readahead(mapping, ra, file,
1351 							   vmf->pgoff, 1);
1352 			page = find_lock_page(mapping, vmf->pgoff);
1353 			if (!page)
1354 				goto no_cached_page;
1355 		}
1356 		if (PageReadahead(page)) {
1357 			page_cache_async_readahead(mapping, ra, file, page,
1358 							   vmf->pgoff, 1);
1359 		}
1360 	}
1361 
1362 	if (!page) {
1363 		unsigned long ra_pages;
1364 
1365 		ra->mmap_miss++;
1366 
1367 		/*
1368 		 * Do we miss much more than hit in this file? If so,
1369 		 * stop bothering with read-ahead. It will only hurt.
1370 		 */
1371 		if (ra->mmap_miss > MMAP_LOTSAMISS)
1372 			goto no_cached_page;
1373 
1374 		/*
1375 		 * To keep the pgmajfault counter straight, we need to
1376 		 * check did_readaround, as this is an inner loop.
1377 		 */
1378 		if (!did_readaround) {
1379 			ret = VM_FAULT_MAJOR;
1380 			count_vm_event(PGMAJFAULT);
1381 		}
1382 		did_readaround = 1;
1383 		ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1384 		if (ra_pages) {
1385 			pgoff_t start = 0;
1386 
1387 			if (vmf->pgoff > ra_pages / 2)
1388 				start = vmf->pgoff - ra_pages / 2;
1389 			do_page_cache_readahead(mapping, file, start, ra_pages);
1390 		}
1391 		page = find_lock_page(mapping, vmf->pgoff);
1392 		if (!page)
1393 			goto no_cached_page;
1394 	}
1395 
1396 	if (!did_readaround)
1397 		ra->mmap_miss--;
1398 
1399 	/*
1400 	 * We have a locked page in the page cache, now we need to check
1401 	 * that it's up-to-date. If not, it is going to be due to an error.
1402 	 */
1403 	if (unlikely(!PageUptodate(page)))
1404 		goto page_not_uptodate;
1405 
1406 	/* Must recheck i_size under page lock */
1407 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1408 	if (unlikely(vmf->pgoff >= size)) {
1409 		unlock_page(page);
1410 		page_cache_release(page);
1411 		return VM_FAULT_SIGBUS;
1412 	}
1413 
1414 	/*
1415 	 * Found the page and have a reference on it.
1416 	 */
1417 	mark_page_accessed(page);
1418 	ra->prev_pos = (loff_t)page->index << PAGE_CACHE_SHIFT;
1419 	vmf->page = page;
1420 	return ret | VM_FAULT_LOCKED;
1421 
1422 no_cached_page:
1423 	/*
1424 	 * We're only likely to ever get here if MADV_RANDOM is in
1425 	 * effect.
1426 	 */
1427 	error = page_cache_read(file, vmf->pgoff);
1428 
1429 	/*
1430 	 * The page we want has now been added to the page cache.
1431 	 * In the unlikely event that someone removed it in the
1432 	 * meantime, we'll just come back here and read it again.
1433 	 */
1434 	if (error >= 0)
1435 		goto retry_find;
1436 
1437 	/*
1438 	 * An error return from page_cache_read can result if the
1439 	 * system is low on memory, or a problem occurs while trying
1440 	 * to schedule I/O.
1441 	 */
1442 	if (error == -ENOMEM)
1443 		return VM_FAULT_OOM;
1444 	return VM_FAULT_SIGBUS;
1445 
1446 page_not_uptodate:
1447 	/* IO error path */
1448 	if (!did_readaround) {
1449 		ret = VM_FAULT_MAJOR;
1450 		count_vm_event(PGMAJFAULT);
1451 	}
1452 
1453 	/*
1454 	 * Umm, take care of errors if the page isn't up-to-date.
1455 	 * Try to re-read it _once_. We do this synchronously,
1456 	 * because there really aren't any performance issues here
1457 	 * and we need to check for errors.
1458 	 */
1459 	ClearPageError(page);
1460 	error = mapping->a_ops->readpage(file, page);
1461 	if (!error) {
1462 		wait_on_page_locked(page);
1463 		if (!PageUptodate(page))
1464 			error = -EIO;
1465 	}
1466 	page_cache_release(page);
1467 
1468 	if (!error || error == AOP_TRUNCATED_PAGE)
1469 		goto retry_find;
1470 
1471 	/* Things didn't work out. Return zero to tell the mm layer so. */
1472 	shrink_readahead_size_eio(file, ra);
1473 	return VM_FAULT_SIGBUS;
1474 }
1475 EXPORT_SYMBOL(filemap_fault);
1476 
1477 struct vm_operations_struct generic_file_vm_ops = {
1478 	.fault		= filemap_fault,
1479 };
1480 
1481 /* This is used for a general mmap of a disk file */
1482 
1483 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1484 {
1485 	struct address_space *mapping = file->f_mapping;
1486 
1487 	if (!mapping->a_ops->readpage)
1488 		return -ENOEXEC;
1489 	file_accessed(file);
1490 	vma->vm_ops = &generic_file_vm_ops;
1491 	vma->vm_flags |= VM_CAN_NONLINEAR;
1492 	return 0;
1493 }
1494 
1495 /*
1496  * This is for filesystems which do not implement ->writepage.
1497  */
1498 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1499 {
1500 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1501 		return -EINVAL;
1502 	return generic_file_mmap(file, vma);
1503 }
1504 #else
1505 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1506 {
1507 	return -ENOSYS;
1508 }
1509 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1510 {
1511 	return -ENOSYS;
1512 }
1513 #endif /* CONFIG_MMU */
1514 
1515 EXPORT_SYMBOL(generic_file_mmap);
1516 EXPORT_SYMBOL(generic_file_readonly_mmap);
1517 
1518 static struct page *__read_cache_page(struct address_space *mapping,
1519 				pgoff_t index,
1520 				int (*filler)(void *,struct page*),
1521 				void *data)
1522 {
1523 	struct page *page;
1524 	int err;
1525 repeat:
1526 	page = find_get_page(mapping, index);
1527 	if (!page) {
1528 		page = page_cache_alloc_cold(mapping);
1529 		if (!page)
1530 			return ERR_PTR(-ENOMEM);
1531 		err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1532 		if (unlikely(err)) {
1533 			page_cache_release(page);
1534 			if (err == -EEXIST)
1535 				goto repeat;
1536 			/* Presumably ENOMEM for radix tree node */
1537 			return ERR_PTR(err);
1538 		}
1539 		err = filler(data, page);
1540 		if (err < 0) {
1541 			page_cache_release(page);
1542 			page = ERR_PTR(err);
1543 		}
1544 	}
1545 	return page;
1546 }
1547 
1548 /**
1549  * read_cache_page_async - read into page cache, fill it if needed
1550  * @mapping:	the page's address_space
1551  * @index:	the page index
1552  * @filler:	function to perform the read
1553  * @data:	destination for read data
1554  *
1555  * Same as read_cache_page, but don't wait for page to become unlocked
1556  * after submitting it to the filler.
1557  *
1558  * Read into the page cache. If a page already exists, and PageUptodate() is
1559  * not set, try to fill the page but don't wait for it to become unlocked.
1560  *
1561  * If the page does not get brought uptodate, return -EIO.
1562  */
1563 struct page *read_cache_page_async(struct address_space *mapping,
1564 				pgoff_t index,
1565 				int (*filler)(void *,struct page*),
1566 				void *data)
1567 {
1568 	struct page *page;
1569 	int err;
1570 
1571 retry:
1572 	page = __read_cache_page(mapping, index, filler, data);
1573 	if (IS_ERR(page))
1574 		return page;
1575 	if (PageUptodate(page))
1576 		goto out;
1577 
1578 	lock_page(page);
1579 	if (!page->mapping) {
1580 		unlock_page(page);
1581 		page_cache_release(page);
1582 		goto retry;
1583 	}
1584 	if (PageUptodate(page)) {
1585 		unlock_page(page);
1586 		goto out;
1587 	}
1588 	err = filler(data, page);
1589 	if (err < 0) {
1590 		page_cache_release(page);
1591 		return ERR_PTR(err);
1592 	}
1593 out:
1594 	mark_page_accessed(page);
1595 	return page;
1596 }
1597 EXPORT_SYMBOL(read_cache_page_async);
1598 
1599 /**
1600  * read_cache_page - read into page cache, fill it if needed
1601  * @mapping:	the page's address_space
1602  * @index:	the page index
1603  * @filler:	function to perform the read
1604  * @data:	destination for read data
1605  *
1606  * Read into the page cache. If a page already exists, and PageUptodate() is
1607  * not set, try to fill the page then wait for it to become unlocked.
1608  *
1609  * If the page does not get brought uptodate, return -EIO.
1610  */
1611 struct page *read_cache_page(struct address_space *mapping,
1612 				pgoff_t index,
1613 				int (*filler)(void *,struct page*),
1614 				void *data)
1615 {
1616 	struct page *page;
1617 
1618 	page = read_cache_page_async(mapping, index, filler, data);
1619 	if (IS_ERR(page))
1620 		goto out;
1621 	wait_on_page_locked(page);
1622 	if (!PageUptodate(page)) {
1623 		page_cache_release(page);
1624 		page = ERR_PTR(-EIO);
1625 	}
1626  out:
1627 	return page;
1628 }
1629 EXPORT_SYMBOL(read_cache_page);
1630 
1631 /*
1632  * The logic we want is
1633  *
1634  *	if suid or (sgid and xgrp)
1635  *		remove privs
1636  */
1637 int should_remove_suid(struct dentry *dentry)
1638 {
1639 	mode_t mode = dentry->d_inode->i_mode;
1640 	int kill = 0;
1641 
1642 	/* suid always must be killed */
1643 	if (unlikely(mode & S_ISUID))
1644 		kill = ATTR_KILL_SUID;
1645 
1646 	/*
1647 	 * sgid without any exec bits is just a mandatory locking mark; leave
1648 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1649 	 */
1650 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1651 		kill |= ATTR_KILL_SGID;
1652 
1653 	if (unlikely(kill && !capable(CAP_FSETID)))
1654 		return kill;
1655 
1656 	return 0;
1657 }
1658 EXPORT_SYMBOL(should_remove_suid);
1659 
1660 static int __remove_suid(struct dentry *dentry, int kill)
1661 {
1662 	struct iattr newattrs;
1663 
1664 	newattrs.ia_valid = ATTR_FORCE | kill;
1665 	return notify_change(dentry, &newattrs);
1666 }
1667 
1668 int remove_suid(struct dentry *dentry)
1669 {
1670 	int killsuid = should_remove_suid(dentry);
1671 	int killpriv = security_inode_need_killpriv(dentry);
1672 	int error = 0;
1673 
1674 	if (killpriv < 0)
1675 		return killpriv;
1676 	if (killpriv)
1677 		error = security_inode_killpriv(dentry);
1678 	if (!error && killsuid)
1679 		error = __remove_suid(dentry, killsuid);
1680 
1681 	return error;
1682 }
1683 EXPORT_SYMBOL(remove_suid);
1684 
1685 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1686 			const struct iovec *iov, size_t base, size_t bytes)
1687 {
1688 	size_t copied = 0, left = 0;
1689 
1690 	while (bytes) {
1691 		char __user *buf = iov->iov_base + base;
1692 		int copy = min(bytes, iov->iov_len - base);
1693 
1694 		base = 0;
1695 		left = __copy_from_user_inatomic_nocache(vaddr, buf, copy);
1696 		copied += copy;
1697 		bytes -= copy;
1698 		vaddr += copy;
1699 		iov++;
1700 
1701 		if (unlikely(left))
1702 			break;
1703 	}
1704 	return copied - left;
1705 }
1706 
1707 /*
1708  * Copy as much as we can into the page and return the number of bytes which
1709  * were sucessfully copied.  If a fault is encountered then return the number of
1710  * bytes which were copied.
1711  */
1712 size_t iov_iter_copy_from_user_atomic(struct page *page,
1713 		struct iov_iter *i, unsigned long offset, size_t bytes)
1714 {
1715 	char *kaddr;
1716 	size_t copied;
1717 
1718 	BUG_ON(!in_atomic());
1719 	kaddr = kmap_atomic(page, KM_USER0);
1720 	if (likely(i->nr_segs == 1)) {
1721 		int left;
1722 		char __user *buf = i->iov->iov_base + i->iov_offset;
1723 		left = __copy_from_user_inatomic_nocache(kaddr + offset,
1724 							buf, bytes);
1725 		copied = bytes - left;
1726 	} else {
1727 		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1728 						i->iov, i->iov_offset, bytes);
1729 	}
1730 	kunmap_atomic(kaddr, KM_USER0);
1731 
1732 	return copied;
1733 }
1734 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1735 
1736 /*
1737  * This has the same sideeffects and return value as
1738  * iov_iter_copy_from_user_atomic().
1739  * The difference is that it attempts to resolve faults.
1740  * Page must not be locked.
1741  */
1742 size_t iov_iter_copy_from_user(struct page *page,
1743 		struct iov_iter *i, unsigned long offset, size_t bytes)
1744 {
1745 	char *kaddr;
1746 	size_t copied;
1747 
1748 	kaddr = kmap(page);
1749 	if (likely(i->nr_segs == 1)) {
1750 		int left;
1751 		char __user *buf = i->iov->iov_base + i->iov_offset;
1752 		left = __copy_from_user_nocache(kaddr + offset, buf, bytes);
1753 		copied = bytes - left;
1754 	} else {
1755 		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1756 						i->iov, i->iov_offset, bytes);
1757 	}
1758 	kunmap(page);
1759 	return copied;
1760 }
1761 EXPORT_SYMBOL(iov_iter_copy_from_user);
1762 
1763 void iov_iter_advance(struct iov_iter *i, size_t bytes)
1764 {
1765 	BUG_ON(i->count < bytes);
1766 
1767 	if (likely(i->nr_segs == 1)) {
1768 		i->iov_offset += bytes;
1769 		i->count -= bytes;
1770 	} else {
1771 		const struct iovec *iov = i->iov;
1772 		size_t base = i->iov_offset;
1773 
1774 		/*
1775 		 * The !iov->iov_len check ensures we skip over unlikely
1776 		 * zero-length segments (without overruning the iovec).
1777 		 */
1778 		while (bytes || unlikely(!iov->iov_len && i->count)) {
1779 			int copy;
1780 
1781 			copy = min(bytes, iov->iov_len - base);
1782 			BUG_ON(!i->count || i->count < copy);
1783 			i->count -= copy;
1784 			bytes -= copy;
1785 			base += copy;
1786 			if (iov->iov_len == base) {
1787 				iov++;
1788 				base = 0;
1789 			}
1790 		}
1791 		i->iov = iov;
1792 		i->iov_offset = base;
1793 	}
1794 }
1795 EXPORT_SYMBOL(iov_iter_advance);
1796 
1797 /*
1798  * Fault in the first iovec of the given iov_iter, to a maximum length
1799  * of bytes. Returns 0 on success, or non-zero if the memory could not be
1800  * accessed (ie. because it is an invalid address).
1801  *
1802  * writev-intensive code may want this to prefault several iovecs -- that
1803  * would be possible (callers must not rely on the fact that _only_ the
1804  * first iovec will be faulted with the current implementation).
1805  */
1806 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
1807 {
1808 	char __user *buf = i->iov->iov_base + i->iov_offset;
1809 	bytes = min(bytes, i->iov->iov_len - i->iov_offset);
1810 	return fault_in_pages_readable(buf, bytes);
1811 }
1812 EXPORT_SYMBOL(iov_iter_fault_in_readable);
1813 
1814 /*
1815  * Return the count of just the current iov_iter segment.
1816  */
1817 size_t iov_iter_single_seg_count(struct iov_iter *i)
1818 {
1819 	const struct iovec *iov = i->iov;
1820 	if (i->nr_segs == 1)
1821 		return i->count;
1822 	else
1823 		return min(i->count, iov->iov_len - i->iov_offset);
1824 }
1825 EXPORT_SYMBOL(iov_iter_single_seg_count);
1826 
1827 /*
1828  * Performs necessary checks before doing a write
1829  *
1830  * Can adjust writing position or amount of bytes to write.
1831  * Returns appropriate error code that caller should return or
1832  * zero in case that write should be allowed.
1833  */
1834 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1835 {
1836 	struct inode *inode = file->f_mapping->host;
1837 	unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1838 
1839         if (unlikely(*pos < 0))
1840                 return -EINVAL;
1841 
1842 	if (!isblk) {
1843 		/* FIXME: this is for backwards compatibility with 2.4 */
1844 		if (file->f_flags & O_APPEND)
1845                         *pos = i_size_read(inode);
1846 
1847 		if (limit != RLIM_INFINITY) {
1848 			if (*pos >= limit) {
1849 				send_sig(SIGXFSZ, current, 0);
1850 				return -EFBIG;
1851 			}
1852 			if (*count > limit - (typeof(limit))*pos) {
1853 				*count = limit - (typeof(limit))*pos;
1854 			}
1855 		}
1856 	}
1857 
1858 	/*
1859 	 * LFS rule
1860 	 */
1861 	if (unlikely(*pos + *count > MAX_NON_LFS &&
1862 				!(file->f_flags & O_LARGEFILE))) {
1863 		if (*pos >= MAX_NON_LFS) {
1864 			return -EFBIG;
1865 		}
1866 		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1867 			*count = MAX_NON_LFS - (unsigned long)*pos;
1868 		}
1869 	}
1870 
1871 	/*
1872 	 * Are we about to exceed the fs block limit ?
1873 	 *
1874 	 * If we have written data it becomes a short write.  If we have
1875 	 * exceeded without writing data we send a signal and return EFBIG.
1876 	 * Linus frestrict idea will clean these up nicely..
1877 	 */
1878 	if (likely(!isblk)) {
1879 		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
1880 			if (*count || *pos > inode->i_sb->s_maxbytes) {
1881 				return -EFBIG;
1882 			}
1883 			/* zero-length writes at ->s_maxbytes are OK */
1884 		}
1885 
1886 		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
1887 			*count = inode->i_sb->s_maxbytes - *pos;
1888 	} else {
1889 #ifdef CONFIG_BLOCK
1890 		loff_t isize;
1891 		if (bdev_read_only(I_BDEV(inode)))
1892 			return -EPERM;
1893 		isize = i_size_read(inode);
1894 		if (*pos >= isize) {
1895 			if (*count || *pos > isize)
1896 				return -ENOSPC;
1897 		}
1898 
1899 		if (*pos + *count > isize)
1900 			*count = isize - *pos;
1901 #else
1902 		return -EPERM;
1903 #endif
1904 	}
1905 	return 0;
1906 }
1907 EXPORT_SYMBOL(generic_write_checks);
1908 
1909 int pagecache_write_begin(struct file *file, struct address_space *mapping,
1910 				loff_t pos, unsigned len, unsigned flags,
1911 				struct page **pagep, void **fsdata)
1912 {
1913 	const struct address_space_operations *aops = mapping->a_ops;
1914 
1915 	if (aops->write_begin) {
1916 		return aops->write_begin(file, mapping, pos, len, flags,
1917 							pagep, fsdata);
1918 	} else {
1919 		int ret;
1920 		pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1921 		unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
1922 		struct inode *inode = mapping->host;
1923 		struct page *page;
1924 again:
1925 		page = __grab_cache_page(mapping, index);
1926 		*pagep = page;
1927 		if (!page)
1928 			return -ENOMEM;
1929 
1930 		if (flags & AOP_FLAG_UNINTERRUPTIBLE && !PageUptodate(page)) {
1931 			/*
1932 			 * There is no way to resolve a short write situation
1933 			 * for a !Uptodate page (except by double copying in
1934 			 * the caller done by generic_perform_write_2copy).
1935 			 *
1936 			 * Instead, we have to bring it uptodate here.
1937 			 */
1938 			ret = aops->readpage(file, page);
1939 			page_cache_release(page);
1940 			if (ret) {
1941 				if (ret == AOP_TRUNCATED_PAGE)
1942 					goto again;
1943 				return ret;
1944 			}
1945 			goto again;
1946 		}
1947 
1948 		ret = aops->prepare_write(file, page, offset, offset+len);
1949 		if (ret) {
1950 			unlock_page(page);
1951 			page_cache_release(page);
1952 			if (pos + len > inode->i_size)
1953 				vmtruncate(inode, inode->i_size);
1954 		}
1955 		return ret;
1956 	}
1957 }
1958 EXPORT_SYMBOL(pagecache_write_begin);
1959 
1960 int pagecache_write_end(struct file *file, struct address_space *mapping,
1961 				loff_t pos, unsigned len, unsigned copied,
1962 				struct page *page, void *fsdata)
1963 {
1964 	const struct address_space_operations *aops = mapping->a_ops;
1965 	int ret;
1966 
1967 	if (aops->write_end) {
1968 		mark_page_accessed(page);
1969 		ret = aops->write_end(file, mapping, pos, len, copied,
1970 							page, fsdata);
1971 	} else {
1972 		unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
1973 		struct inode *inode = mapping->host;
1974 
1975 		flush_dcache_page(page);
1976 		ret = aops->commit_write(file, page, offset, offset+len);
1977 		unlock_page(page);
1978 		mark_page_accessed(page);
1979 		page_cache_release(page);
1980 
1981 		if (ret < 0) {
1982 			if (pos + len > inode->i_size)
1983 				vmtruncate(inode, inode->i_size);
1984 		} else if (ret > 0)
1985 			ret = min_t(size_t, copied, ret);
1986 		else
1987 			ret = copied;
1988 	}
1989 
1990 	return ret;
1991 }
1992 EXPORT_SYMBOL(pagecache_write_end);
1993 
1994 ssize_t
1995 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
1996 		unsigned long *nr_segs, loff_t pos, loff_t *ppos,
1997 		size_t count, size_t ocount)
1998 {
1999 	struct file	*file = iocb->ki_filp;
2000 	struct address_space *mapping = file->f_mapping;
2001 	struct inode	*inode = mapping->host;
2002 	ssize_t		written;
2003 	size_t		write_len;
2004 	pgoff_t		end;
2005 
2006 	if (count != ocount)
2007 		*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2008 
2009 	/*
2010 	 * Unmap all mmappings of the file up-front.
2011 	 *
2012 	 * This will cause any pte dirty bits to be propagated into the
2013 	 * pageframes for the subsequent filemap_write_and_wait().
2014 	 */
2015 	write_len = iov_length(iov, *nr_segs);
2016 	end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2017 	if (mapping_mapped(mapping))
2018 		unmap_mapping_range(mapping, pos, write_len, 0);
2019 
2020 	written = filemap_write_and_wait(mapping);
2021 	if (written)
2022 		goto out;
2023 
2024 	/*
2025 	 * After a write we want buffered reads to be sure to go to disk to get
2026 	 * the new data.  We invalidate clean cached page from the region we're
2027 	 * about to write.  We do this *before* the write so that we can return
2028 	 * -EIO without clobbering -EIOCBQUEUED from ->direct_IO().
2029 	 */
2030 	if (mapping->nrpages) {
2031 		written = invalidate_inode_pages2_range(mapping,
2032 					pos >> PAGE_CACHE_SHIFT, end);
2033 		if (written)
2034 			goto out;
2035 	}
2036 
2037 	written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2038 
2039 	/*
2040 	 * Finally, try again to invalidate clean pages which might have been
2041 	 * cached by non-direct readahead, or faulted in by get_user_pages()
2042 	 * if the source of the write was an mmap'ed region of the file
2043 	 * we're writing.  Either one is a pretty crazy thing to do,
2044 	 * so we don't support it 100%.  If this invalidation
2045 	 * fails, tough, the write still worked...
2046 	 */
2047 	if (mapping->nrpages) {
2048 		invalidate_inode_pages2_range(mapping,
2049 					      pos >> PAGE_CACHE_SHIFT, end);
2050 	}
2051 
2052 	if (written > 0) {
2053 		loff_t end = pos + written;
2054 		if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2055 			i_size_write(inode,  end);
2056 			mark_inode_dirty(inode);
2057 		}
2058 		*ppos = end;
2059 	}
2060 
2061 	/*
2062 	 * Sync the fs metadata but not the minor inode changes and
2063 	 * of course not the data as we did direct DMA for the IO.
2064 	 * i_mutex is held, which protects generic_osync_inode() from
2065 	 * livelocking.  AIO O_DIRECT ops attempt to sync metadata here.
2066 	 */
2067 out:
2068 	if ((written >= 0 || written == -EIOCBQUEUED) &&
2069 	    ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2070 		int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
2071 		if (err < 0)
2072 			written = err;
2073 	}
2074 	return written;
2075 }
2076 EXPORT_SYMBOL(generic_file_direct_write);
2077 
2078 /*
2079  * Find or create a page at the given pagecache position. Return the locked
2080  * page. This function is specifically for buffered writes.
2081  */
2082 struct page *__grab_cache_page(struct address_space *mapping, pgoff_t index)
2083 {
2084 	int status;
2085 	struct page *page;
2086 repeat:
2087 	page = find_lock_page(mapping, index);
2088 	if (likely(page))
2089 		return page;
2090 
2091 	page = page_cache_alloc(mapping);
2092 	if (!page)
2093 		return NULL;
2094 	status = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
2095 	if (unlikely(status)) {
2096 		page_cache_release(page);
2097 		if (status == -EEXIST)
2098 			goto repeat;
2099 		return NULL;
2100 	}
2101 	return page;
2102 }
2103 EXPORT_SYMBOL(__grab_cache_page);
2104 
2105 static ssize_t generic_perform_write_2copy(struct file *file,
2106 				struct iov_iter *i, loff_t pos)
2107 {
2108 	struct address_space *mapping = file->f_mapping;
2109 	const struct address_space_operations *a_ops = mapping->a_ops;
2110 	struct inode *inode = mapping->host;
2111 	long status = 0;
2112 	ssize_t written = 0;
2113 
2114 	do {
2115 		struct page *src_page;
2116 		struct page *page;
2117 		pgoff_t index;		/* Pagecache index for current page */
2118 		unsigned long offset;	/* Offset into pagecache page */
2119 		unsigned long bytes;	/* Bytes to write to page */
2120 		size_t copied;		/* Bytes copied from user */
2121 
2122 		offset = (pos & (PAGE_CACHE_SIZE - 1));
2123 		index = pos >> PAGE_CACHE_SHIFT;
2124 		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2125 						iov_iter_count(i));
2126 
2127 		/*
2128 		 * a non-NULL src_page indicates that we're doing the
2129 		 * copy via get_user_pages and kmap.
2130 		 */
2131 		src_page = NULL;
2132 
2133 		/*
2134 		 * Bring in the user page that we will copy from _first_.
2135 		 * Otherwise there's a nasty deadlock on copying from the
2136 		 * same page as we're writing to, without it being marked
2137 		 * up-to-date.
2138 		 *
2139 		 * Not only is this an optimisation, but it is also required
2140 		 * to check that the address is actually valid, when atomic
2141 		 * usercopies are used, below.
2142 		 */
2143 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2144 			status = -EFAULT;
2145 			break;
2146 		}
2147 
2148 		page = __grab_cache_page(mapping, index);
2149 		if (!page) {
2150 			status = -ENOMEM;
2151 			break;
2152 		}
2153 
2154 		/*
2155 		 * non-uptodate pages cannot cope with short copies, and we
2156 		 * cannot take a pagefault with the destination page locked.
2157 		 * So pin the source page to copy it.
2158 		 */
2159 		if (!PageUptodate(page) && !segment_eq(get_fs(), KERNEL_DS)) {
2160 			unlock_page(page);
2161 
2162 			src_page = alloc_page(GFP_KERNEL);
2163 			if (!src_page) {
2164 				page_cache_release(page);
2165 				status = -ENOMEM;
2166 				break;
2167 			}
2168 
2169 			/*
2170 			 * Cannot get_user_pages with a page locked for the
2171 			 * same reason as we can't take a page fault with a
2172 			 * page locked (as explained below).
2173 			 */
2174 			copied = iov_iter_copy_from_user(src_page, i,
2175 								offset, bytes);
2176 			if (unlikely(copied == 0)) {
2177 				status = -EFAULT;
2178 				page_cache_release(page);
2179 				page_cache_release(src_page);
2180 				break;
2181 			}
2182 			bytes = copied;
2183 
2184 			lock_page(page);
2185 			/*
2186 			 * Can't handle the page going uptodate here, because
2187 			 * that means we would use non-atomic usercopies, which
2188 			 * zero out the tail of the page, which can cause
2189 			 * zeroes to become transiently visible. We could just
2190 			 * use a non-zeroing copy, but the APIs aren't too
2191 			 * consistent.
2192 			 */
2193 			if (unlikely(!page->mapping || PageUptodate(page))) {
2194 				unlock_page(page);
2195 				page_cache_release(page);
2196 				page_cache_release(src_page);
2197 				continue;
2198 			}
2199 		}
2200 
2201 		status = a_ops->prepare_write(file, page, offset, offset+bytes);
2202 		if (unlikely(status))
2203 			goto fs_write_aop_error;
2204 
2205 		if (!src_page) {
2206 			/*
2207 			 * Must not enter the pagefault handler here, because
2208 			 * we hold the page lock, so we might recursively
2209 			 * deadlock on the same lock, or get an ABBA deadlock
2210 			 * against a different lock, or against the mmap_sem
2211 			 * (which nests outside the page lock).  So increment
2212 			 * preempt count, and use _atomic usercopies.
2213 			 *
2214 			 * The page is uptodate so we are OK to encounter a
2215 			 * short copy: if unmodified parts of the page are
2216 			 * marked dirty and written out to disk, it doesn't
2217 			 * really matter.
2218 			 */
2219 			pagefault_disable();
2220 			copied = iov_iter_copy_from_user_atomic(page, i,
2221 								offset, bytes);
2222 			pagefault_enable();
2223 		} else {
2224 			void *src, *dst;
2225 			src = kmap_atomic(src_page, KM_USER0);
2226 			dst = kmap_atomic(page, KM_USER1);
2227 			memcpy(dst + offset, src + offset, bytes);
2228 			kunmap_atomic(dst, KM_USER1);
2229 			kunmap_atomic(src, KM_USER0);
2230 			copied = bytes;
2231 		}
2232 		flush_dcache_page(page);
2233 
2234 		status = a_ops->commit_write(file, page, offset, offset+bytes);
2235 		if (unlikely(status < 0))
2236 			goto fs_write_aop_error;
2237 		if (unlikely(status > 0)) /* filesystem did partial write */
2238 			copied = min_t(size_t, copied, status);
2239 
2240 		unlock_page(page);
2241 		mark_page_accessed(page);
2242 		page_cache_release(page);
2243 		if (src_page)
2244 			page_cache_release(src_page);
2245 
2246 		iov_iter_advance(i, copied);
2247 		pos += copied;
2248 		written += copied;
2249 
2250 		balance_dirty_pages_ratelimited(mapping);
2251 		cond_resched();
2252 		continue;
2253 
2254 fs_write_aop_error:
2255 		unlock_page(page);
2256 		page_cache_release(page);
2257 		if (src_page)
2258 			page_cache_release(src_page);
2259 
2260 		/*
2261 		 * prepare_write() may have instantiated a few blocks
2262 		 * outside i_size.  Trim these off again. Don't need
2263 		 * i_size_read because we hold i_mutex.
2264 		 */
2265 		if (pos + bytes > inode->i_size)
2266 			vmtruncate(inode, inode->i_size);
2267 		break;
2268 	} while (iov_iter_count(i));
2269 
2270 	return written ? written : status;
2271 }
2272 
2273 static ssize_t generic_perform_write(struct file *file,
2274 				struct iov_iter *i, loff_t pos)
2275 {
2276 	struct address_space *mapping = file->f_mapping;
2277 	const struct address_space_operations *a_ops = mapping->a_ops;
2278 	long status = 0;
2279 	ssize_t written = 0;
2280 	unsigned int flags = 0;
2281 
2282 	/*
2283 	 * Copies from kernel address space cannot fail (NFSD is a big user).
2284 	 */
2285 	if (segment_eq(get_fs(), KERNEL_DS))
2286 		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2287 
2288 	do {
2289 		struct page *page;
2290 		pgoff_t index;		/* Pagecache index for current page */
2291 		unsigned long offset;	/* Offset into pagecache page */
2292 		unsigned long bytes;	/* Bytes to write to page */
2293 		size_t copied;		/* Bytes copied from user */
2294 		void *fsdata;
2295 
2296 		offset = (pos & (PAGE_CACHE_SIZE - 1));
2297 		index = pos >> PAGE_CACHE_SHIFT;
2298 		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2299 						iov_iter_count(i));
2300 
2301 again:
2302 
2303 		/*
2304 		 * Bring in the user page that we will copy from _first_.
2305 		 * Otherwise there's a nasty deadlock on copying from the
2306 		 * same page as we're writing to, without it being marked
2307 		 * up-to-date.
2308 		 *
2309 		 * Not only is this an optimisation, but it is also required
2310 		 * to check that the address is actually valid, when atomic
2311 		 * usercopies are used, below.
2312 		 */
2313 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2314 			status = -EFAULT;
2315 			break;
2316 		}
2317 
2318 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2319 						&page, &fsdata);
2320 		if (unlikely(status))
2321 			break;
2322 
2323 		pagefault_disable();
2324 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2325 		pagefault_enable();
2326 		flush_dcache_page(page);
2327 
2328 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2329 						page, fsdata);
2330 		if (unlikely(status < 0))
2331 			break;
2332 		copied = status;
2333 
2334 		cond_resched();
2335 
2336 		iov_iter_advance(i, copied);
2337 		if (unlikely(copied == 0)) {
2338 			/*
2339 			 * If we were unable to copy any data at all, we must
2340 			 * fall back to a single segment length write.
2341 			 *
2342 			 * If we didn't fallback here, we could livelock
2343 			 * because not all segments in the iov can be copied at
2344 			 * once without a pagefault.
2345 			 */
2346 			bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2347 						iov_iter_single_seg_count(i));
2348 			goto again;
2349 		}
2350 		pos += copied;
2351 		written += copied;
2352 
2353 		balance_dirty_pages_ratelimited(mapping);
2354 
2355 	} while (iov_iter_count(i));
2356 
2357 	return written ? written : status;
2358 }
2359 
2360 ssize_t
2361 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2362 		unsigned long nr_segs, loff_t pos, loff_t *ppos,
2363 		size_t count, ssize_t written)
2364 {
2365 	struct file *file = iocb->ki_filp;
2366 	struct address_space *mapping = file->f_mapping;
2367 	const struct address_space_operations *a_ops = mapping->a_ops;
2368 	struct inode *inode = mapping->host;
2369 	ssize_t status;
2370 	struct iov_iter i;
2371 
2372 	iov_iter_init(&i, iov, nr_segs, count, written);
2373 	if (a_ops->write_begin)
2374 		status = generic_perform_write(file, &i, pos);
2375 	else
2376 		status = generic_perform_write_2copy(file, &i, pos);
2377 
2378 	if (likely(status >= 0)) {
2379 		written += status;
2380 		*ppos = pos + status;
2381 
2382 		/*
2383 		 * For now, when the user asks for O_SYNC, we'll actually give
2384 		 * O_DSYNC
2385 		 */
2386 		if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2387 			if (!a_ops->writepage || !is_sync_kiocb(iocb))
2388 				status = generic_osync_inode(inode, mapping,
2389 						OSYNC_METADATA|OSYNC_DATA);
2390 		}
2391   	}
2392 
2393 	/*
2394 	 * If we get here for O_DIRECT writes then we must have fallen through
2395 	 * to buffered writes (block instantiation inside i_size).  So we sync
2396 	 * the file data here, to try to honour O_DIRECT expectations.
2397 	 */
2398 	if (unlikely(file->f_flags & O_DIRECT) && written)
2399 		status = filemap_write_and_wait(mapping);
2400 
2401 	return written ? written : status;
2402 }
2403 EXPORT_SYMBOL(generic_file_buffered_write);
2404 
2405 static ssize_t
2406 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2407 				unsigned long nr_segs, loff_t *ppos)
2408 {
2409 	struct file *file = iocb->ki_filp;
2410 	struct address_space * mapping = file->f_mapping;
2411 	size_t ocount;		/* original count */
2412 	size_t count;		/* after file limit checks */
2413 	struct inode 	*inode = mapping->host;
2414 	loff_t		pos;
2415 	ssize_t		written;
2416 	ssize_t		err;
2417 
2418 	ocount = 0;
2419 	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2420 	if (err)
2421 		return err;
2422 
2423 	count = ocount;
2424 	pos = *ppos;
2425 
2426 	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2427 
2428 	/* We can write back this queue in page reclaim */
2429 	current->backing_dev_info = mapping->backing_dev_info;
2430 	written = 0;
2431 
2432 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2433 	if (err)
2434 		goto out;
2435 
2436 	if (count == 0)
2437 		goto out;
2438 
2439 	err = remove_suid(file->f_path.dentry);
2440 	if (err)
2441 		goto out;
2442 
2443 	file_update_time(file);
2444 
2445 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2446 	if (unlikely(file->f_flags & O_DIRECT)) {
2447 		loff_t endbyte;
2448 		ssize_t written_buffered;
2449 
2450 		written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2451 							ppos, count, ocount);
2452 		if (written < 0 || written == count)
2453 			goto out;
2454 		/*
2455 		 * direct-io write to a hole: fall through to buffered I/O
2456 		 * for completing the rest of the request.
2457 		 */
2458 		pos += written;
2459 		count -= written;
2460 		written_buffered = generic_file_buffered_write(iocb, iov,
2461 						nr_segs, pos, ppos, count,
2462 						written);
2463 		/*
2464 		 * If generic_file_buffered_write() retuned a synchronous error
2465 		 * then we want to return the number of bytes which were
2466 		 * direct-written, or the error code if that was zero.  Note
2467 		 * that this differs from normal direct-io semantics, which
2468 		 * will return -EFOO even if some bytes were written.
2469 		 */
2470 		if (written_buffered < 0) {
2471 			err = written_buffered;
2472 			goto out;
2473 		}
2474 
2475 		/*
2476 		 * We need to ensure that the page cache pages are written to
2477 		 * disk and invalidated to preserve the expected O_DIRECT
2478 		 * semantics.
2479 		 */
2480 		endbyte = pos + written_buffered - written - 1;
2481 		err = do_sync_mapping_range(file->f_mapping, pos, endbyte,
2482 					    SYNC_FILE_RANGE_WAIT_BEFORE|
2483 					    SYNC_FILE_RANGE_WRITE|
2484 					    SYNC_FILE_RANGE_WAIT_AFTER);
2485 		if (err == 0) {
2486 			written = written_buffered;
2487 			invalidate_mapping_pages(mapping,
2488 						 pos >> PAGE_CACHE_SHIFT,
2489 						 endbyte >> PAGE_CACHE_SHIFT);
2490 		} else {
2491 			/*
2492 			 * We don't know how much we wrote, so just return
2493 			 * the number of bytes which were direct-written
2494 			 */
2495 		}
2496 	} else {
2497 		written = generic_file_buffered_write(iocb, iov, nr_segs,
2498 				pos, ppos, count, written);
2499 	}
2500 out:
2501 	current->backing_dev_info = NULL;
2502 	return written ? written : err;
2503 }
2504 
2505 ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
2506 		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
2507 {
2508 	struct file *file = iocb->ki_filp;
2509 	struct address_space *mapping = file->f_mapping;
2510 	struct inode *inode = mapping->host;
2511 	ssize_t ret;
2512 
2513 	BUG_ON(iocb->ki_pos != pos);
2514 
2515 	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2516 			&iocb->ki_pos);
2517 
2518 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2519 		ssize_t err;
2520 
2521 		err = sync_page_range_nolock(inode, mapping, pos, ret);
2522 		if (err < 0)
2523 			ret = err;
2524 	}
2525 	return ret;
2526 }
2527 EXPORT_SYMBOL(generic_file_aio_write_nolock);
2528 
2529 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2530 		unsigned long nr_segs, loff_t pos)
2531 {
2532 	struct file *file = iocb->ki_filp;
2533 	struct address_space *mapping = file->f_mapping;
2534 	struct inode *inode = mapping->host;
2535 	ssize_t ret;
2536 
2537 	BUG_ON(iocb->ki_pos != pos);
2538 
2539 	mutex_lock(&inode->i_mutex);
2540 	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2541 			&iocb->ki_pos);
2542 	mutex_unlock(&inode->i_mutex);
2543 
2544 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2545 		ssize_t err;
2546 
2547 		err = sync_page_range(inode, mapping, pos, ret);
2548 		if (err < 0)
2549 			ret = err;
2550 	}
2551 	return ret;
2552 }
2553 EXPORT_SYMBOL(generic_file_aio_write);
2554 
2555 /**
2556  * try_to_release_page() - release old fs-specific metadata on a page
2557  *
2558  * @page: the page which the kernel is trying to free
2559  * @gfp_mask: memory allocation flags (and I/O mode)
2560  *
2561  * The address_space is to try to release any data against the page
2562  * (presumably at page->private).  If the release was successful, return `1'.
2563  * Otherwise return zero.
2564  *
2565  * The @gfp_mask argument specifies whether I/O may be performed to release
2566  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
2567  *
2568  * NOTE: @gfp_mask may go away, and this function may become non-blocking.
2569  */
2570 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2571 {
2572 	struct address_space * const mapping = page->mapping;
2573 
2574 	BUG_ON(!PageLocked(page));
2575 	if (PageWriteback(page))
2576 		return 0;
2577 
2578 	if (mapping && mapping->a_ops->releasepage)
2579 		return mapping->a_ops->releasepage(page, gfp_mask);
2580 	return try_to_free_buffers(page);
2581 }
2582 
2583 EXPORT_SYMBOL(try_to_release_page);
2584