1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/filemap.c 4 * 5 * Copyright (C) 1994-1999 Linus Torvalds 6 */ 7 8 /* 9 * This file handles the generic file mmap semantics used by 10 * most "normal" filesystems (but you don't /have/ to use this: 11 * the NFS filesystem used to do this differently, for example) 12 */ 13 #include <linux/export.h> 14 #include <linux/compiler.h> 15 #include <linux/dax.h> 16 #include <linux/fs.h> 17 #include <linux/sched/signal.h> 18 #include <linux/uaccess.h> 19 #include <linux/capability.h> 20 #include <linux/kernel_stat.h> 21 #include <linux/gfp.h> 22 #include <linux/mm.h> 23 #include <linux/swap.h> 24 #include <linux/mman.h> 25 #include <linux/pagemap.h> 26 #include <linux/file.h> 27 #include <linux/uio.h> 28 #include <linux/error-injection.h> 29 #include <linux/hash.h> 30 #include <linux/writeback.h> 31 #include <linux/backing-dev.h> 32 #include <linux/pagevec.h> 33 #include <linux/blkdev.h> 34 #include <linux/security.h> 35 #include <linux/cpuset.h> 36 #include <linux/hugetlb.h> 37 #include <linux/memcontrol.h> 38 #include <linux/cleancache.h> 39 #include <linux/shmem_fs.h> 40 #include <linux/rmap.h> 41 #include <linux/delayacct.h> 42 #include <linux/psi.h> 43 #include <linux/ramfs.h> 44 #include "internal.h" 45 46 #define CREATE_TRACE_POINTS 47 #include <trace/events/filemap.h> 48 49 /* 50 * FIXME: remove all knowledge of the buffer layer from the core VM 51 */ 52 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 53 54 #include <asm/mman.h> 55 56 /* 57 * Shared mappings implemented 30.11.1994. It's not fully working yet, 58 * though. 59 * 60 * Shared mappings now work. 15.8.1995 Bruno. 61 * 62 * finished 'unifying' the page and buffer cache and SMP-threaded the 63 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 64 * 65 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 66 */ 67 68 /* 69 * Lock ordering: 70 * 71 * ->i_mmap_rwsem (truncate_pagecache) 72 * ->private_lock (__free_pte->__set_page_dirty_buffers) 73 * ->swap_lock (exclusive_swap_page, others) 74 * ->i_pages lock 75 * 76 * ->i_mutex 77 * ->i_mmap_rwsem (truncate->unmap_mapping_range) 78 * 79 * ->mmap_lock 80 * ->i_mmap_rwsem 81 * ->page_table_lock or pte_lock (various, mainly in memory.c) 82 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock) 83 * 84 * ->mmap_lock 85 * ->lock_page (access_process_vm) 86 * 87 * ->i_mutex (generic_perform_write) 88 * ->mmap_lock (fault_in_pages_readable->do_page_fault) 89 * 90 * bdi->wb.list_lock 91 * sb_lock (fs/fs-writeback.c) 92 * ->i_pages lock (__sync_single_inode) 93 * 94 * ->i_mmap_rwsem 95 * ->anon_vma.lock (vma_adjust) 96 * 97 * ->anon_vma.lock 98 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 99 * 100 * ->page_table_lock or pte_lock 101 * ->swap_lock (try_to_unmap_one) 102 * ->private_lock (try_to_unmap_one) 103 * ->i_pages lock (try_to_unmap_one) 104 * ->pgdat->lru_lock (follow_page->mark_page_accessed) 105 * ->pgdat->lru_lock (check_pte_range->isolate_lru_page) 106 * ->private_lock (page_remove_rmap->set_page_dirty) 107 * ->i_pages lock (page_remove_rmap->set_page_dirty) 108 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty) 109 * ->inode->i_lock (page_remove_rmap->set_page_dirty) 110 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg) 111 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 112 * ->inode->i_lock (zap_pte_range->set_page_dirty) 113 * ->private_lock (zap_pte_range->__set_page_dirty_buffers) 114 * 115 * ->i_mmap_rwsem 116 * ->tasklist_lock (memory_failure, collect_procs_ao) 117 */ 118 119 static void page_cache_delete(struct address_space *mapping, 120 struct page *page, void *shadow) 121 { 122 XA_STATE(xas, &mapping->i_pages, page->index); 123 unsigned int nr = 1; 124 125 mapping_set_update(&xas, mapping); 126 127 /* hugetlb pages are represented by a single entry in the xarray */ 128 if (!PageHuge(page)) { 129 xas_set_order(&xas, page->index, compound_order(page)); 130 nr = compound_nr(page); 131 } 132 133 VM_BUG_ON_PAGE(!PageLocked(page), page); 134 VM_BUG_ON_PAGE(PageTail(page), page); 135 VM_BUG_ON_PAGE(nr != 1 && shadow, page); 136 137 xas_store(&xas, shadow); 138 xas_init_marks(&xas); 139 140 page->mapping = NULL; 141 /* Leave page->index set: truncation lookup relies upon it */ 142 143 if (shadow) { 144 mapping->nrexceptional += nr; 145 /* 146 * Make sure the nrexceptional update is committed before 147 * the nrpages update so that final truncate racing 148 * with reclaim does not see both counters 0 at the 149 * same time and miss a shadow entry. 150 */ 151 smp_wmb(); 152 } 153 mapping->nrpages -= nr; 154 } 155 156 static void unaccount_page_cache_page(struct address_space *mapping, 157 struct page *page) 158 { 159 int nr; 160 161 /* 162 * if we're uptodate, flush out into the cleancache, otherwise 163 * invalidate any existing cleancache entries. We can't leave 164 * stale data around in the cleancache once our page is gone 165 */ 166 if (PageUptodate(page) && PageMappedToDisk(page)) 167 cleancache_put_page(page); 168 else 169 cleancache_invalidate_page(mapping, page); 170 171 VM_BUG_ON_PAGE(PageTail(page), page); 172 VM_BUG_ON_PAGE(page_mapped(page), page); 173 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) { 174 int mapcount; 175 176 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n", 177 current->comm, page_to_pfn(page)); 178 dump_page(page, "still mapped when deleted"); 179 dump_stack(); 180 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 181 182 mapcount = page_mapcount(page); 183 if (mapping_exiting(mapping) && 184 page_count(page) >= mapcount + 2) { 185 /* 186 * All vmas have already been torn down, so it's 187 * a good bet that actually the page is unmapped, 188 * and we'd prefer not to leak it: if we're wrong, 189 * some other bad page check should catch it later. 190 */ 191 page_mapcount_reset(page); 192 page_ref_sub(page, mapcount); 193 } 194 } 195 196 /* hugetlb pages do not participate in page cache accounting. */ 197 if (PageHuge(page)) 198 return; 199 200 nr = hpage_nr_pages(page); 201 202 __mod_lruvec_page_state(page, NR_FILE_PAGES, -nr); 203 if (PageSwapBacked(page)) { 204 __mod_lruvec_page_state(page, NR_SHMEM, -nr); 205 if (PageTransHuge(page)) 206 __dec_node_page_state(page, NR_SHMEM_THPS); 207 } else if (PageTransHuge(page)) { 208 __dec_node_page_state(page, NR_FILE_THPS); 209 filemap_nr_thps_dec(mapping); 210 } 211 212 /* 213 * At this point page must be either written or cleaned by 214 * truncate. Dirty page here signals a bug and loss of 215 * unwritten data. 216 * 217 * This fixes dirty accounting after removing the page entirely 218 * but leaves PageDirty set: it has no effect for truncated 219 * page and anyway will be cleared before returning page into 220 * buddy allocator. 221 */ 222 if (WARN_ON_ONCE(PageDirty(page))) 223 account_page_cleaned(page, mapping, inode_to_wb(mapping->host)); 224 } 225 226 /* 227 * Delete a page from the page cache and free it. Caller has to make 228 * sure the page is locked and that nobody else uses it - or that usage 229 * is safe. The caller must hold the i_pages lock. 230 */ 231 void __delete_from_page_cache(struct page *page, void *shadow) 232 { 233 struct address_space *mapping = page->mapping; 234 235 trace_mm_filemap_delete_from_page_cache(page); 236 237 unaccount_page_cache_page(mapping, page); 238 page_cache_delete(mapping, page, shadow); 239 } 240 241 static void page_cache_free_page(struct address_space *mapping, 242 struct page *page) 243 { 244 void (*freepage)(struct page *); 245 246 freepage = mapping->a_ops->freepage; 247 if (freepage) 248 freepage(page); 249 250 if (PageTransHuge(page) && !PageHuge(page)) { 251 page_ref_sub(page, HPAGE_PMD_NR); 252 VM_BUG_ON_PAGE(page_count(page) <= 0, page); 253 } else { 254 put_page(page); 255 } 256 } 257 258 /** 259 * delete_from_page_cache - delete page from page cache 260 * @page: the page which the kernel is trying to remove from page cache 261 * 262 * This must be called only on pages that have been verified to be in the page 263 * cache and locked. It will never put the page into the free list, the caller 264 * has a reference on the page. 265 */ 266 void delete_from_page_cache(struct page *page) 267 { 268 struct address_space *mapping = page_mapping(page); 269 unsigned long flags; 270 271 BUG_ON(!PageLocked(page)); 272 xa_lock_irqsave(&mapping->i_pages, flags); 273 __delete_from_page_cache(page, NULL); 274 xa_unlock_irqrestore(&mapping->i_pages, flags); 275 276 page_cache_free_page(mapping, page); 277 } 278 EXPORT_SYMBOL(delete_from_page_cache); 279 280 /* 281 * page_cache_delete_batch - delete several pages from page cache 282 * @mapping: the mapping to which pages belong 283 * @pvec: pagevec with pages to delete 284 * 285 * The function walks over mapping->i_pages and removes pages passed in @pvec 286 * from the mapping. The function expects @pvec to be sorted by page index 287 * and is optimised for it to be dense. 288 * It tolerates holes in @pvec (mapping entries at those indices are not 289 * modified). The function expects only THP head pages to be present in the 290 * @pvec. 291 * 292 * The function expects the i_pages lock to be held. 293 */ 294 static void page_cache_delete_batch(struct address_space *mapping, 295 struct pagevec *pvec) 296 { 297 XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index); 298 int total_pages = 0; 299 int i = 0; 300 struct page *page; 301 302 mapping_set_update(&xas, mapping); 303 xas_for_each(&xas, page, ULONG_MAX) { 304 if (i >= pagevec_count(pvec)) 305 break; 306 307 /* A swap/dax/shadow entry got inserted? Skip it. */ 308 if (xa_is_value(page)) 309 continue; 310 /* 311 * A page got inserted in our range? Skip it. We have our 312 * pages locked so they are protected from being removed. 313 * If we see a page whose index is higher than ours, it 314 * means our page has been removed, which shouldn't be 315 * possible because we're holding the PageLock. 316 */ 317 if (page != pvec->pages[i]) { 318 VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index, 319 page); 320 continue; 321 } 322 323 WARN_ON_ONCE(!PageLocked(page)); 324 325 if (page->index == xas.xa_index) 326 page->mapping = NULL; 327 /* Leave page->index set: truncation lookup relies on it */ 328 329 /* 330 * Move to the next page in the vector if this is a regular 331 * page or the index is of the last sub-page of this compound 332 * page. 333 */ 334 if (page->index + compound_nr(page) - 1 == xas.xa_index) 335 i++; 336 xas_store(&xas, NULL); 337 total_pages++; 338 } 339 mapping->nrpages -= total_pages; 340 } 341 342 void delete_from_page_cache_batch(struct address_space *mapping, 343 struct pagevec *pvec) 344 { 345 int i; 346 unsigned long flags; 347 348 if (!pagevec_count(pvec)) 349 return; 350 351 xa_lock_irqsave(&mapping->i_pages, flags); 352 for (i = 0; i < pagevec_count(pvec); i++) { 353 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]); 354 355 unaccount_page_cache_page(mapping, pvec->pages[i]); 356 } 357 page_cache_delete_batch(mapping, pvec); 358 xa_unlock_irqrestore(&mapping->i_pages, flags); 359 360 for (i = 0; i < pagevec_count(pvec); i++) 361 page_cache_free_page(mapping, pvec->pages[i]); 362 } 363 364 int filemap_check_errors(struct address_space *mapping) 365 { 366 int ret = 0; 367 /* Check for outstanding write errors */ 368 if (test_bit(AS_ENOSPC, &mapping->flags) && 369 test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 370 ret = -ENOSPC; 371 if (test_bit(AS_EIO, &mapping->flags) && 372 test_and_clear_bit(AS_EIO, &mapping->flags)) 373 ret = -EIO; 374 return ret; 375 } 376 EXPORT_SYMBOL(filemap_check_errors); 377 378 static int filemap_check_and_keep_errors(struct address_space *mapping) 379 { 380 /* Check for outstanding write errors */ 381 if (test_bit(AS_EIO, &mapping->flags)) 382 return -EIO; 383 if (test_bit(AS_ENOSPC, &mapping->flags)) 384 return -ENOSPC; 385 return 0; 386 } 387 388 /** 389 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 390 * @mapping: address space structure to write 391 * @start: offset in bytes where the range starts 392 * @end: offset in bytes where the range ends (inclusive) 393 * @sync_mode: enable synchronous operation 394 * 395 * Start writeback against all of a mapping's dirty pages that lie 396 * within the byte offsets <start, end> inclusive. 397 * 398 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 399 * opposed to a regular memory cleansing writeback. The difference between 400 * these two operations is that if a dirty page/buffer is encountered, it must 401 * be waited upon, and not just skipped over. 402 * 403 * Return: %0 on success, negative error code otherwise. 404 */ 405 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 406 loff_t end, int sync_mode) 407 { 408 int ret; 409 struct writeback_control wbc = { 410 .sync_mode = sync_mode, 411 .nr_to_write = LONG_MAX, 412 .range_start = start, 413 .range_end = end, 414 }; 415 416 if (!mapping_cap_writeback_dirty(mapping) || 417 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 418 return 0; 419 420 wbc_attach_fdatawrite_inode(&wbc, mapping->host); 421 ret = do_writepages(mapping, &wbc); 422 wbc_detach_inode(&wbc); 423 return ret; 424 } 425 426 static inline int __filemap_fdatawrite(struct address_space *mapping, 427 int sync_mode) 428 { 429 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 430 } 431 432 int filemap_fdatawrite(struct address_space *mapping) 433 { 434 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 435 } 436 EXPORT_SYMBOL(filemap_fdatawrite); 437 438 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 439 loff_t end) 440 { 441 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 442 } 443 EXPORT_SYMBOL(filemap_fdatawrite_range); 444 445 /** 446 * filemap_flush - mostly a non-blocking flush 447 * @mapping: target address_space 448 * 449 * This is a mostly non-blocking flush. Not suitable for data-integrity 450 * purposes - I/O may not be started against all dirty pages. 451 * 452 * Return: %0 on success, negative error code otherwise. 453 */ 454 int filemap_flush(struct address_space *mapping) 455 { 456 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 457 } 458 EXPORT_SYMBOL(filemap_flush); 459 460 /** 461 * filemap_range_has_page - check if a page exists in range. 462 * @mapping: address space within which to check 463 * @start_byte: offset in bytes where the range starts 464 * @end_byte: offset in bytes where the range ends (inclusive) 465 * 466 * Find at least one page in the range supplied, usually used to check if 467 * direct writing in this range will trigger a writeback. 468 * 469 * Return: %true if at least one page exists in the specified range, 470 * %false otherwise. 471 */ 472 bool filemap_range_has_page(struct address_space *mapping, 473 loff_t start_byte, loff_t end_byte) 474 { 475 struct page *page; 476 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 477 pgoff_t max = end_byte >> PAGE_SHIFT; 478 479 if (end_byte < start_byte) 480 return false; 481 482 rcu_read_lock(); 483 for (;;) { 484 page = xas_find(&xas, max); 485 if (xas_retry(&xas, page)) 486 continue; 487 /* Shadow entries don't count */ 488 if (xa_is_value(page)) 489 continue; 490 /* 491 * We don't need to try to pin this page; we're about to 492 * release the RCU lock anyway. It is enough to know that 493 * there was a page here recently. 494 */ 495 break; 496 } 497 rcu_read_unlock(); 498 499 return page != NULL; 500 } 501 EXPORT_SYMBOL(filemap_range_has_page); 502 503 static void __filemap_fdatawait_range(struct address_space *mapping, 504 loff_t start_byte, loff_t end_byte) 505 { 506 pgoff_t index = start_byte >> PAGE_SHIFT; 507 pgoff_t end = end_byte >> PAGE_SHIFT; 508 struct pagevec pvec; 509 int nr_pages; 510 511 if (end_byte < start_byte) 512 return; 513 514 pagevec_init(&pvec); 515 while (index <= end) { 516 unsigned i; 517 518 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, 519 end, PAGECACHE_TAG_WRITEBACK); 520 if (!nr_pages) 521 break; 522 523 for (i = 0; i < nr_pages; i++) { 524 struct page *page = pvec.pages[i]; 525 526 wait_on_page_writeback(page); 527 ClearPageError(page); 528 } 529 pagevec_release(&pvec); 530 cond_resched(); 531 } 532 } 533 534 /** 535 * filemap_fdatawait_range - wait for writeback to complete 536 * @mapping: address space structure to wait for 537 * @start_byte: offset in bytes where the range starts 538 * @end_byte: offset in bytes where the range ends (inclusive) 539 * 540 * Walk the list of under-writeback pages of the given address space 541 * in the given range and wait for all of them. Check error status of 542 * the address space and return it. 543 * 544 * Since the error status of the address space is cleared by this function, 545 * callers are responsible for checking the return value and handling and/or 546 * reporting the error. 547 * 548 * Return: error status of the address space. 549 */ 550 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 551 loff_t end_byte) 552 { 553 __filemap_fdatawait_range(mapping, start_byte, end_byte); 554 return filemap_check_errors(mapping); 555 } 556 EXPORT_SYMBOL(filemap_fdatawait_range); 557 558 /** 559 * filemap_fdatawait_range_keep_errors - wait for writeback to complete 560 * @mapping: address space structure to wait for 561 * @start_byte: offset in bytes where the range starts 562 * @end_byte: offset in bytes where the range ends (inclusive) 563 * 564 * Walk the list of under-writeback pages of the given address space in the 565 * given range and wait for all of them. Unlike filemap_fdatawait_range(), 566 * this function does not clear error status of the address space. 567 * 568 * Use this function if callers don't handle errors themselves. Expected 569 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 570 * fsfreeze(8) 571 */ 572 int filemap_fdatawait_range_keep_errors(struct address_space *mapping, 573 loff_t start_byte, loff_t end_byte) 574 { 575 __filemap_fdatawait_range(mapping, start_byte, end_byte); 576 return filemap_check_and_keep_errors(mapping); 577 } 578 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors); 579 580 /** 581 * file_fdatawait_range - wait for writeback to complete 582 * @file: file pointing to address space structure to wait for 583 * @start_byte: offset in bytes where the range starts 584 * @end_byte: offset in bytes where the range ends (inclusive) 585 * 586 * Walk the list of under-writeback pages of the address space that file 587 * refers to, in the given range and wait for all of them. Check error 588 * status of the address space vs. the file->f_wb_err cursor and return it. 589 * 590 * Since the error status of the file is advanced by this function, 591 * callers are responsible for checking the return value and handling and/or 592 * reporting the error. 593 * 594 * Return: error status of the address space vs. the file->f_wb_err cursor. 595 */ 596 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte) 597 { 598 struct address_space *mapping = file->f_mapping; 599 600 __filemap_fdatawait_range(mapping, start_byte, end_byte); 601 return file_check_and_advance_wb_err(file); 602 } 603 EXPORT_SYMBOL(file_fdatawait_range); 604 605 /** 606 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors 607 * @mapping: address space structure to wait for 608 * 609 * Walk the list of under-writeback pages of the given address space 610 * and wait for all of them. Unlike filemap_fdatawait(), this function 611 * does not clear error status of the address space. 612 * 613 * Use this function if callers don't handle errors themselves. Expected 614 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 615 * fsfreeze(8) 616 * 617 * Return: error status of the address space. 618 */ 619 int filemap_fdatawait_keep_errors(struct address_space *mapping) 620 { 621 __filemap_fdatawait_range(mapping, 0, LLONG_MAX); 622 return filemap_check_and_keep_errors(mapping); 623 } 624 EXPORT_SYMBOL(filemap_fdatawait_keep_errors); 625 626 /* Returns true if writeback might be needed or already in progress. */ 627 static bool mapping_needs_writeback(struct address_space *mapping) 628 { 629 if (dax_mapping(mapping)) 630 return mapping->nrexceptional; 631 632 return mapping->nrpages; 633 } 634 635 /** 636 * filemap_write_and_wait_range - write out & wait on a file range 637 * @mapping: the address_space for the pages 638 * @lstart: offset in bytes where the range starts 639 * @lend: offset in bytes where the range ends (inclusive) 640 * 641 * Write out and wait upon file offsets lstart->lend, inclusive. 642 * 643 * Note that @lend is inclusive (describes the last byte to be written) so 644 * that this function can be used to write to the very end-of-file (end = -1). 645 * 646 * Return: error status of the address space. 647 */ 648 int filemap_write_and_wait_range(struct address_space *mapping, 649 loff_t lstart, loff_t lend) 650 { 651 int err = 0; 652 653 if (mapping_needs_writeback(mapping)) { 654 err = __filemap_fdatawrite_range(mapping, lstart, lend, 655 WB_SYNC_ALL); 656 /* 657 * Even if the above returned error, the pages may be 658 * written partially (e.g. -ENOSPC), so we wait for it. 659 * But the -EIO is special case, it may indicate the worst 660 * thing (e.g. bug) happened, so we avoid waiting for it. 661 */ 662 if (err != -EIO) { 663 int err2 = filemap_fdatawait_range(mapping, 664 lstart, lend); 665 if (!err) 666 err = err2; 667 } else { 668 /* Clear any previously stored errors */ 669 filemap_check_errors(mapping); 670 } 671 } else { 672 err = filemap_check_errors(mapping); 673 } 674 return err; 675 } 676 EXPORT_SYMBOL(filemap_write_and_wait_range); 677 678 void __filemap_set_wb_err(struct address_space *mapping, int err) 679 { 680 errseq_t eseq = errseq_set(&mapping->wb_err, err); 681 682 trace_filemap_set_wb_err(mapping, eseq); 683 } 684 EXPORT_SYMBOL(__filemap_set_wb_err); 685 686 /** 687 * file_check_and_advance_wb_err - report wb error (if any) that was previously 688 * and advance wb_err to current one 689 * @file: struct file on which the error is being reported 690 * 691 * When userland calls fsync (or something like nfsd does the equivalent), we 692 * want to report any writeback errors that occurred since the last fsync (or 693 * since the file was opened if there haven't been any). 694 * 695 * Grab the wb_err from the mapping. If it matches what we have in the file, 696 * then just quickly return 0. The file is all caught up. 697 * 698 * If it doesn't match, then take the mapping value, set the "seen" flag in 699 * it and try to swap it into place. If it works, or another task beat us 700 * to it with the new value, then update the f_wb_err and return the error 701 * portion. The error at this point must be reported via proper channels 702 * (a'la fsync, or NFS COMMIT operation, etc.). 703 * 704 * While we handle mapping->wb_err with atomic operations, the f_wb_err 705 * value is protected by the f_lock since we must ensure that it reflects 706 * the latest value swapped in for this file descriptor. 707 * 708 * Return: %0 on success, negative error code otherwise. 709 */ 710 int file_check_and_advance_wb_err(struct file *file) 711 { 712 int err = 0; 713 errseq_t old = READ_ONCE(file->f_wb_err); 714 struct address_space *mapping = file->f_mapping; 715 716 /* Locklessly handle the common case where nothing has changed */ 717 if (errseq_check(&mapping->wb_err, old)) { 718 /* Something changed, must use slow path */ 719 spin_lock(&file->f_lock); 720 old = file->f_wb_err; 721 err = errseq_check_and_advance(&mapping->wb_err, 722 &file->f_wb_err); 723 trace_file_check_and_advance_wb_err(file, old); 724 spin_unlock(&file->f_lock); 725 } 726 727 /* 728 * We're mostly using this function as a drop in replacement for 729 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect 730 * that the legacy code would have had on these flags. 731 */ 732 clear_bit(AS_EIO, &mapping->flags); 733 clear_bit(AS_ENOSPC, &mapping->flags); 734 return err; 735 } 736 EXPORT_SYMBOL(file_check_and_advance_wb_err); 737 738 /** 739 * file_write_and_wait_range - write out & wait on a file range 740 * @file: file pointing to address_space with pages 741 * @lstart: offset in bytes where the range starts 742 * @lend: offset in bytes where the range ends (inclusive) 743 * 744 * Write out and wait upon file offsets lstart->lend, inclusive. 745 * 746 * Note that @lend is inclusive (describes the last byte to be written) so 747 * that this function can be used to write to the very end-of-file (end = -1). 748 * 749 * After writing out and waiting on the data, we check and advance the 750 * f_wb_err cursor to the latest value, and return any errors detected there. 751 * 752 * Return: %0 on success, negative error code otherwise. 753 */ 754 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend) 755 { 756 int err = 0, err2; 757 struct address_space *mapping = file->f_mapping; 758 759 if (mapping_needs_writeback(mapping)) { 760 err = __filemap_fdatawrite_range(mapping, lstart, lend, 761 WB_SYNC_ALL); 762 /* See comment of filemap_write_and_wait() */ 763 if (err != -EIO) 764 __filemap_fdatawait_range(mapping, lstart, lend); 765 } 766 err2 = file_check_and_advance_wb_err(file); 767 if (!err) 768 err = err2; 769 return err; 770 } 771 EXPORT_SYMBOL(file_write_and_wait_range); 772 773 /** 774 * replace_page_cache_page - replace a pagecache page with a new one 775 * @old: page to be replaced 776 * @new: page to replace with 777 * @gfp_mask: allocation mode 778 * 779 * This function replaces a page in the pagecache with a new one. On 780 * success it acquires the pagecache reference for the new page and 781 * drops it for the old page. Both the old and new pages must be 782 * locked. This function does not add the new page to the LRU, the 783 * caller must do that. 784 * 785 * The remove + add is atomic. This function cannot fail. 786 * 787 * Return: %0 788 */ 789 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask) 790 { 791 struct address_space *mapping = old->mapping; 792 void (*freepage)(struct page *) = mapping->a_ops->freepage; 793 pgoff_t offset = old->index; 794 XA_STATE(xas, &mapping->i_pages, offset); 795 unsigned long flags; 796 797 VM_BUG_ON_PAGE(!PageLocked(old), old); 798 VM_BUG_ON_PAGE(!PageLocked(new), new); 799 VM_BUG_ON_PAGE(new->mapping, new); 800 801 get_page(new); 802 new->mapping = mapping; 803 new->index = offset; 804 805 mem_cgroup_migrate(old, new); 806 807 xas_lock_irqsave(&xas, flags); 808 xas_store(&xas, new); 809 810 old->mapping = NULL; 811 /* hugetlb pages do not participate in page cache accounting. */ 812 if (!PageHuge(old)) 813 __dec_lruvec_page_state(old, NR_FILE_PAGES); 814 if (!PageHuge(new)) 815 __inc_lruvec_page_state(new, NR_FILE_PAGES); 816 if (PageSwapBacked(old)) 817 __dec_lruvec_page_state(old, NR_SHMEM); 818 if (PageSwapBacked(new)) 819 __inc_lruvec_page_state(new, NR_SHMEM); 820 xas_unlock_irqrestore(&xas, flags); 821 if (freepage) 822 freepage(old); 823 put_page(old); 824 825 return 0; 826 } 827 EXPORT_SYMBOL_GPL(replace_page_cache_page); 828 829 static int __add_to_page_cache_locked(struct page *page, 830 struct address_space *mapping, 831 pgoff_t offset, gfp_t gfp_mask, 832 void **shadowp) 833 { 834 XA_STATE(xas, &mapping->i_pages, offset); 835 int huge = PageHuge(page); 836 int error; 837 void *old; 838 839 VM_BUG_ON_PAGE(!PageLocked(page), page); 840 VM_BUG_ON_PAGE(PageSwapBacked(page), page); 841 mapping_set_update(&xas, mapping); 842 843 get_page(page); 844 page->mapping = mapping; 845 page->index = offset; 846 847 if (!huge) { 848 error = mem_cgroup_charge(page, current->mm, gfp_mask); 849 if (error) 850 goto error; 851 } 852 853 do { 854 xas_lock_irq(&xas); 855 old = xas_load(&xas); 856 if (old && !xa_is_value(old)) 857 xas_set_err(&xas, -EEXIST); 858 xas_store(&xas, page); 859 if (xas_error(&xas)) 860 goto unlock; 861 862 if (xa_is_value(old)) { 863 mapping->nrexceptional--; 864 if (shadowp) 865 *shadowp = old; 866 } 867 mapping->nrpages++; 868 869 /* hugetlb pages do not participate in page cache accounting */ 870 if (!huge) 871 __inc_lruvec_page_state(page, NR_FILE_PAGES); 872 unlock: 873 xas_unlock_irq(&xas); 874 } while (xas_nomem(&xas, gfp_mask & GFP_RECLAIM_MASK)); 875 876 if (xas_error(&xas)) { 877 error = xas_error(&xas); 878 goto error; 879 } 880 881 trace_mm_filemap_add_to_page_cache(page); 882 return 0; 883 error: 884 page->mapping = NULL; 885 /* Leave page->index set: truncation relies upon it */ 886 put_page(page); 887 return error; 888 } 889 ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO); 890 891 /** 892 * add_to_page_cache_locked - add a locked page to the pagecache 893 * @page: page to add 894 * @mapping: the page's address_space 895 * @offset: page index 896 * @gfp_mask: page allocation mode 897 * 898 * This function is used to add a page to the pagecache. It must be locked. 899 * This function does not add the page to the LRU. The caller must do that. 900 * 901 * Return: %0 on success, negative error code otherwise. 902 */ 903 int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 904 pgoff_t offset, gfp_t gfp_mask) 905 { 906 return __add_to_page_cache_locked(page, mapping, offset, 907 gfp_mask, NULL); 908 } 909 EXPORT_SYMBOL(add_to_page_cache_locked); 910 911 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 912 pgoff_t offset, gfp_t gfp_mask) 913 { 914 void *shadow = NULL; 915 int ret; 916 917 __SetPageLocked(page); 918 ret = __add_to_page_cache_locked(page, mapping, offset, 919 gfp_mask, &shadow); 920 if (unlikely(ret)) 921 __ClearPageLocked(page); 922 else { 923 /* 924 * The page might have been evicted from cache only 925 * recently, in which case it should be activated like 926 * any other repeatedly accessed page. 927 * The exception is pages getting rewritten; evicting other 928 * data from the working set, only to cache data that will 929 * get overwritten with something else, is a waste of memory. 930 */ 931 WARN_ON_ONCE(PageActive(page)); 932 if (!(gfp_mask & __GFP_WRITE) && shadow) 933 workingset_refault(page, shadow); 934 lru_cache_add(page); 935 } 936 return ret; 937 } 938 EXPORT_SYMBOL_GPL(add_to_page_cache_lru); 939 940 #ifdef CONFIG_NUMA 941 struct page *__page_cache_alloc(gfp_t gfp) 942 { 943 int n; 944 struct page *page; 945 946 if (cpuset_do_page_mem_spread()) { 947 unsigned int cpuset_mems_cookie; 948 do { 949 cpuset_mems_cookie = read_mems_allowed_begin(); 950 n = cpuset_mem_spread_node(); 951 page = __alloc_pages_node(n, gfp, 0); 952 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie)); 953 954 return page; 955 } 956 return alloc_pages(gfp, 0); 957 } 958 EXPORT_SYMBOL(__page_cache_alloc); 959 #endif 960 961 /* 962 * In order to wait for pages to become available there must be 963 * waitqueues associated with pages. By using a hash table of 964 * waitqueues where the bucket discipline is to maintain all 965 * waiters on the same queue and wake all when any of the pages 966 * become available, and for the woken contexts to check to be 967 * sure the appropriate page became available, this saves space 968 * at a cost of "thundering herd" phenomena during rare hash 969 * collisions. 970 */ 971 #define PAGE_WAIT_TABLE_BITS 8 972 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS) 973 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned; 974 975 static wait_queue_head_t *page_waitqueue(struct page *page) 976 { 977 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)]; 978 } 979 980 void __init pagecache_init(void) 981 { 982 int i; 983 984 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++) 985 init_waitqueue_head(&page_wait_table[i]); 986 987 page_writeback_init(); 988 } 989 990 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg) 991 { 992 int ret; 993 struct wait_page_key *key = arg; 994 struct wait_page_queue *wait_page 995 = container_of(wait, struct wait_page_queue, wait); 996 997 if (!wake_page_match(wait_page, key)) 998 return 0; 999 1000 /* 1001 * If it's an exclusive wait, we get the bit for it, and 1002 * stop walking if we can't. 1003 * 1004 * If it's a non-exclusive wait, then the fact that this 1005 * wake function was called means that the bit already 1006 * was cleared, and we don't care if somebody then 1007 * re-took it. 1008 */ 1009 ret = 0; 1010 if (wait->flags & WQ_FLAG_EXCLUSIVE) { 1011 if (test_and_set_bit(key->bit_nr, &key->page->flags)) 1012 return -1; 1013 ret = 1; 1014 } 1015 wait->flags |= WQ_FLAG_WOKEN; 1016 1017 wake_up_state(wait->private, mode); 1018 1019 /* 1020 * Ok, we have successfully done what we're waiting for, 1021 * and we can unconditionally remove the wait entry. 1022 * 1023 * Note that this has to be the absolute last thing we do, 1024 * since after list_del_init(&wait->entry) the wait entry 1025 * might be de-allocated and the process might even have 1026 * exited. 1027 */ 1028 list_del_init_careful(&wait->entry); 1029 return ret; 1030 } 1031 1032 static void wake_up_page_bit(struct page *page, int bit_nr) 1033 { 1034 wait_queue_head_t *q = page_waitqueue(page); 1035 struct wait_page_key key; 1036 unsigned long flags; 1037 wait_queue_entry_t bookmark; 1038 1039 key.page = page; 1040 key.bit_nr = bit_nr; 1041 key.page_match = 0; 1042 1043 bookmark.flags = 0; 1044 bookmark.private = NULL; 1045 bookmark.func = NULL; 1046 INIT_LIST_HEAD(&bookmark.entry); 1047 1048 spin_lock_irqsave(&q->lock, flags); 1049 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); 1050 1051 while (bookmark.flags & WQ_FLAG_BOOKMARK) { 1052 /* 1053 * Take a breather from holding the lock, 1054 * allow pages that finish wake up asynchronously 1055 * to acquire the lock and remove themselves 1056 * from wait queue 1057 */ 1058 spin_unlock_irqrestore(&q->lock, flags); 1059 cpu_relax(); 1060 spin_lock_irqsave(&q->lock, flags); 1061 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); 1062 } 1063 1064 /* 1065 * It is possible for other pages to have collided on the waitqueue 1066 * hash, so in that case check for a page match. That prevents a long- 1067 * term waiter 1068 * 1069 * It is still possible to miss a case here, when we woke page waiters 1070 * and removed them from the waitqueue, but there are still other 1071 * page waiters. 1072 */ 1073 if (!waitqueue_active(q) || !key.page_match) { 1074 ClearPageWaiters(page); 1075 /* 1076 * It's possible to miss clearing Waiters here, when we woke 1077 * our page waiters, but the hashed waitqueue has waiters for 1078 * other pages on it. 1079 * 1080 * That's okay, it's a rare case. The next waker will clear it. 1081 */ 1082 } 1083 spin_unlock_irqrestore(&q->lock, flags); 1084 } 1085 1086 static void wake_up_page(struct page *page, int bit) 1087 { 1088 if (!PageWaiters(page)) 1089 return; 1090 wake_up_page_bit(page, bit); 1091 } 1092 1093 /* 1094 * A choice of three behaviors for wait_on_page_bit_common(): 1095 */ 1096 enum behavior { 1097 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like 1098 * __lock_page() waiting on then setting PG_locked. 1099 */ 1100 SHARED, /* Hold ref to page and check the bit when woken, like 1101 * wait_on_page_writeback() waiting on PG_writeback. 1102 */ 1103 DROP, /* Drop ref to page before wait, no check when woken, 1104 * like put_and_wait_on_page_locked() on PG_locked. 1105 */ 1106 }; 1107 1108 /* 1109 * Attempt to check (or get) the page bit, and mark the 1110 * waiter woken if successful. 1111 */ 1112 static inline bool trylock_page_bit_common(struct page *page, int bit_nr, 1113 struct wait_queue_entry *wait) 1114 { 1115 if (wait->flags & WQ_FLAG_EXCLUSIVE) { 1116 if (test_and_set_bit(bit_nr, &page->flags)) 1117 return false; 1118 } else if (test_bit(bit_nr, &page->flags)) 1119 return false; 1120 1121 wait->flags |= WQ_FLAG_WOKEN; 1122 return true; 1123 } 1124 1125 static inline int wait_on_page_bit_common(wait_queue_head_t *q, 1126 struct page *page, int bit_nr, int state, enum behavior behavior) 1127 { 1128 struct wait_page_queue wait_page; 1129 wait_queue_entry_t *wait = &wait_page.wait; 1130 bool thrashing = false; 1131 bool delayacct = false; 1132 unsigned long pflags; 1133 1134 if (bit_nr == PG_locked && 1135 !PageUptodate(page) && PageWorkingset(page)) { 1136 if (!PageSwapBacked(page)) { 1137 delayacct_thrashing_start(); 1138 delayacct = true; 1139 } 1140 psi_memstall_enter(&pflags); 1141 thrashing = true; 1142 } 1143 1144 init_wait(wait); 1145 wait->flags = behavior == EXCLUSIVE ? WQ_FLAG_EXCLUSIVE : 0; 1146 wait->func = wake_page_function; 1147 wait_page.page = page; 1148 wait_page.bit_nr = bit_nr; 1149 1150 /* 1151 * Do one last check whether we can get the 1152 * page bit synchronously. 1153 * 1154 * Do the SetPageWaiters() marking before that 1155 * to let any waker we _just_ missed know they 1156 * need to wake us up (otherwise they'll never 1157 * even go to the slow case that looks at the 1158 * page queue), and add ourselves to the wait 1159 * queue if we need to sleep. 1160 * 1161 * This part needs to be done under the queue 1162 * lock to avoid races. 1163 */ 1164 spin_lock_irq(&q->lock); 1165 SetPageWaiters(page); 1166 if (!trylock_page_bit_common(page, bit_nr, wait)) 1167 __add_wait_queue_entry_tail(q, wait); 1168 spin_unlock_irq(&q->lock); 1169 1170 /* 1171 * From now on, all the logic will be based on 1172 * the WQ_FLAG_WOKEN flag, and the and the page 1173 * bit testing (and setting) will be - or has 1174 * already been - done by the wake function. 1175 * 1176 * We can drop our reference to the page. 1177 */ 1178 if (behavior == DROP) 1179 put_page(page); 1180 1181 for (;;) { 1182 set_current_state(state); 1183 1184 if (signal_pending_state(state, current)) 1185 break; 1186 1187 if (wait->flags & WQ_FLAG_WOKEN) 1188 break; 1189 1190 io_schedule(); 1191 } 1192 1193 finish_wait(q, wait); 1194 1195 if (thrashing) { 1196 if (delayacct) 1197 delayacct_thrashing_end(); 1198 psi_memstall_leave(&pflags); 1199 } 1200 1201 /* 1202 * A signal could leave PageWaiters set. Clearing it here if 1203 * !waitqueue_active would be possible (by open-coding finish_wait), 1204 * but still fail to catch it in the case of wait hash collision. We 1205 * already can fail to clear wait hash collision cases, so don't 1206 * bother with signals either. 1207 */ 1208 1209 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR; 1210 } 1211 1212 void wait_on_page_bit(struct page *page, int bit_nr) 1213 { 1214 wait_queue_head_t *q = page_waitqueue(page); 1215 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED); 1216 } 1217 EXPORT_SYMBOL(wait_on_page_bit); 1218 1219 int wait_on_page_bit_killable(struct page *page, int bit_nr) 1220 { 1221 wait_queue_head_t *q = page_waitqueue(page); 1222 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED); 1223 } 1224 EXPORT_SYMBOL(wait_on_page_bit_killable); 1225 1226 static int __wait_on_page_locked_async(struct page *page, 1227 struct wait_page_queue *wait, bool set) 1228 { 1229 struct wait_queue_head *q = page_waitqueue(page); 1230 int ret = 0; 1231 1232 wait->page = page; 1233 wait->bit_nr = PG_locked; 1234 1235 spin_lock_irq(&q->lock); 1236 __add_wait_queue_entry_tail(q, &wait->wait); 1237 SetPageWaiters(page); 1238 if (set) 1239 ret = !trylock_page(page); 1240 else 1241 ret = PageLocked(page); 1242 /* 1243 * If we were succesful now, we know we're still on the 1244 * waitqueue as we're still under the lock. This means it's 1245 * safe to remove and return success, we know the callback 1246 * isn't going to trigger. 1247 */ 1248 if (!ret) 1249 __remove_wait_queue(q, &wait->wait); 1250 else 1251 ret = -EIOCBQUEUED; 1252 spin_unlock_irq(&q->lock); 1253 return ret; 1254 } 1255 1256 static int wait_on_page_locked_async(struct page *page, 1257 struct wait_page_queue *wait) 1258 { 1259 if (!PageLocked(page)) 1260 return 0; 1261 return __wait_on_page_locked_async(compound_head(page), wait, false); 1262 } 1263 1264 /** 1265 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked 1266 * @page: The page to wait for. 1267 * 1268 * The caller should hold a reference on @page. They expect the page to 1269 * become unlocked relatively soon, but do not wish to hold up migration 1270 * (for example) by holding the reference while waiting for the page to 1271 * come unlocked. After this function returns, the caller should not 1272 * dereference @page. 1273 */ 1274 void put_and_wait_on_page_locked(struct page *page) 1275 { 1276 wait_queue_head_t *q; 1277 1278 page = compound_head(page); 1279 q = page_waitqueue(page); 1280 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP); 1281 } 1282 1283 /** 1284 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue 1285 * @page: Page defining the wait queue of interest 1286 * @waiter: Waiter to add to the queue 1287 * 1288 * Add an arbitrary @waiter to the wait queue for the nominated @page. 1289 */ 1290 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter) 1291 { 1292 wait_queue_head_t *q = page_waitqueue(page); 1293 unsigned long flags; 1294 1295 spin_lock_irqsave(&q->lock, flags); 1296 __add_wait_queue_entry_tail(q, waiter); 1297 SetPageWaiters(page); 1298 spin_unlock_irqrestore(&q->lock, flags); 1299 } 1300 EXPORT_SYMBOL_GPL(add_page_wait_queue); 1301 1302 #ifndef clear_bit_unlock_is_negative_byte 1303 1304 /* 1305 * PG_waiters is the high bit in the same byte as PG_lock. 1306 * 1307 * On x86 (and on many other architectures), we can clear PG_lock and 1308 * test the sign bit at the same time. But if the architecture does 1309 * not support that special operation, we just do this all by hand 1310 * instead. 1311 * 1312 * The read of PG_waiters has to be after (or concurrently with) PG_locked 1313 * being cleared, but a memory barrier should be unnecessary since it is 1314 * in the same byte as PG_locked. 1315 */ 1316 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem) 1317 { 1318 clear_bit_unlock(nr, mem); 1319 /* smp_mb__after_atomic(); */ 1320 return test_bit(PG_waiters, mem); 1321 } 1322 1323 #endif 1324 1325 /** 1326 * unlock_page - unlock a locked page 1327 * @page: the page 1328 * 1329 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). 1330 * Also wakes sleepers in wait_on_page_writeback() because the wakeup 1331 * mechanism between PageLocked pages and PageWriteback pages is shared. 1332 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. 1333 * 1334 * Note that this depends on PG_waiters being the sign bit in the byte 1335 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to 1336 * clear the PG_locked bit and test PG_waiters at the same time fairly 1337 * portably (architectures that do LL/SC can test any bit, while x86 can 1338 * test the sign bit). 1339 */ 1340 void unlock_page(struct page *page) 1341 { 1342 BUILD_BUG_ON(PG_waiters != 7); 1343 page = compound_head(page); 1344 VM_BUG_ON_PAGE(!PageLocked(page), page); 1345 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags)) 1346 wake_up_page_bit(page, PG_locked); 1347 } 1348 EXPORT_SYMBOL(unlock_page); 1349 1350 /** 1351 * end_page_writeback - end writeback against a page 1352 * @page: the page 1353 */ 1354 void end_page_writeback(struct page *page) 1355 { 1356 /* 1357 * TestClearPageReclaim could be used here but it is an atomic 1358 * operation and overkill in this particular case. Failing to 1359 * shuffle a page marked for immediate reclaim is too mild to 1360 * justify taking an atomic operation penalty at the end of 1361 * ever page writeback. 1362 */ 1363 if (PageReclaim(page)) { 1364 ClearPageReclaim(page); 1365 rotate_reclaimable_page(page); 1366 } 1367 1368 if (!test_clear_page_writeback(page)) 1369 BUG(); 1370 1371 smp_mb__after_atomic(); 1372 wake_up_page(page, PG_writeback); 1373 } 1374 EXPORT_SYMBOL(end_page_writeback); 1375 1376 /* 1377 * After completing I/O on a page, call this routine to update the page 1378 * flags appropriately 1379 */ 1380 void page_endio(struct page *page, bool is_write, int err) 1381 { 1382 if (!is_write) { 1383 if (!err) { 1384 SetPageUptodate(page); 1385 } else { 1386 ClearPageUptodate(page); 1387 SetPageError(page); 1388 } 1389 unlock_page(page); 1390 } else { 1391 if (err) { 1392 struct address_space *mapping; 1393 1394 SetPageError(page); 1395 mapping = page_mapping(page); 1396 if (mapping) 1397 mapping_set_error(mapping, err); 1398 } 1399 end_page_writeback(page); 1400 } 1401 } 1402 EXPORT_SYMBOL_GPL(page_endio); 1403 1404 /** 1405 * __lock_page - get a lock on the page, assuming we need to sleep to get it 1406 * @__page: the page to lock 1407 */ 1408 void __lock_page(struct page *__page) 1409 { 1410 struct page *page = compound_head(__page); 1411 wait_queue_head_t *q = page_waitqueue(page); 1412 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, 1413 EXCLUSIVE); 1414 } 1415 EXPORT_SYMBOL(__lock_page); 1416 1417 int __lock_page_killable(struct page *__page) 1418 { 1419 struct page *page = compound_head(__page); 1420 wait_queue_head_t *q = page_waitqueue(page); 1421 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, 1422 EXCLUSIVE); 1423 } 1424 EXPORT_SYMBOL_GPL(__lock_page_killable); 1425 1426 int __lock_page_async(struct page *page, struct wait_page_queue *wait) 1427 { 1428 return __wait_on_page_locked_async(page, wait, true); 1429 } 1430 1431 /* 1432 * Return values: 1433 * 1 - page is locked; mmap_lock is still held. 1434 * 0 - page is not locked. 1435 * mmap_lock has been released (mmap_read_unlock(), unless flags had both 1436 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in 1437 * which case mmap_lock is still held. 1438 * 1439 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1 1440 * with the page locked and the mmap_lock unperturbed. 1441 */ 1442 int __lock_page_or_retry(struct page *page, struct mm_struct *mm, 1443 unsigned int flags) 1444 { 1445 if (fault_flag_allow_retry_first(flags)) { 1446 /* 1447 * CAUTION! In this case, mmap_lock is not released 1448 * even though return 0. 1449 */ 1450 if (flags & FAULT_FLAG_RETRY_NOWAIT) 1451 return 0; 1452 1453 mmap_read_unlock(mm); 1454 if (flags & FAULT_FLAG_KILLABLE) 1455 wait_on_page_locked_killable(page); 1456 else 1457 wait_on_page_locked(page); 1458 return 0; 1459 } else { 1460 if (flags & FAULT_FLAG_KILLABLE) { 1461 int ret; 1462 1463 ret = __lock_page_killable(page); 1464 if (ret) { 1465 mmap_read_unlock(mm); 1466 return 0; 1467 } 1468 } else 1469 __lock_page(page); 1470 return 1; 1471 } 1472 } 1473 1474 /** 1475 * page_cache_next_miss() - Find the next gap in the page cache. 1476 * @mapping: Mapping. 1477 * @index: Index. 1478 * @max_scan: Maximum range to search. 1479 * 1480 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the 1481 * gap with the lowest index. 1482 * 1483 * This function may be called under the rcu_read_lock. However, this will 1484 * not atomically search a snapshot of the cache at a single point in time. 1485 * For example, if a gap is created at index 5, then subsequently a gap is 1486 * created at index 10, page_cache_next_miss covering both indices may 1487 * return 10 if called under the rcu_read_lock. 1488 * 1489 * Return: The index of the gap if found, otherwise an index outside the 1490 * range specified (in which case 'return - index >= max_scan' will be true). 1491 * In the rare case of index wrap-around, 0 will be returned. 1492 */ 1493 pgoff_t page_cache_next_miss(struct address_space *mapping, 1494 pgoff_t index, unsigned long max_scan) 1495 { 1496 XA_STATE(xas, &mapping->i_pages, index); 1497 1498 while (max_scan--) { 1499 void *entry = xas_next(&xas); 1500 if (!entry || xa_is_value(entry)) 1501 break; 1502 if (xas.xa_index == 0) 1503 break; 1504 } 1505 1506 return xas.xa_index; 1507 } 1508 EXPORT_SYMBOL(page_cache_next_miss); 1509 1510 /** 1511 * page_cache_prev_miss() - Find the previous gap in the page cache. 1512 * @mapping: Mapping. 1513 * @index: Index. 1514 * @max_scan: Maximum range to search. 1515 * 1516 * Search the range [max(index - max_scan + 1, 0), index] for the 1517 * gap with the highest index. 1518 * 1519 * This function may be called under the rcu_read_lock. However, this will 1520 * not atomically search a snapshot of the cache at a single point in time. 1521 * For example, if a gap is created at index 10, then subsequently a gap is 1522 * created at index 5, page_cache_prev_miss() covering both indices may 1523 * return 5 if called under the rcu_read_lock. 1524 * 1525 * Return: The index of the gap if found, otherwise an index outside the 1526 * range specified (in which case 'index - return >= max_scan' will be true). 1527 * In the rare case of wrap-around, ULONG_MAX will be returned. 1528 */ 1529 pgoff_t page_cache_prev_miss(struct address_space *mapping, 1530 pgoff_t index, unsigned long max_scan) 1531 { 1532 XA_STATE(xas, &mapping->i_pages, index); 1533 1534 while (max_scan--) { 1535 void *entry = xas_prev(&xas); 1536 if (!entry || xa_is_value(entry)) 1537 break; 1538 if (xas.xa_index == ULONG_MAX) 1539 break; 1540 } 1541 1542 return xas.xa_index; 1543 } 1544 EXPORT_SYMBOL(page_cache_prev_miss); 1545 1546 /** 1547 * find_get_entry - find and get a page cache entry 1548 * @mapping: the address_space to search 1549 * @offset: the page cache index 1550 * 1551 * Looks up the page cache slot at @mapping & @offset. If there is a 1552 * page cache page, it is returned with an increased refcount. 1553 * 1554 * If the slot holds a shadow entry of a previously evicted page, or a 1555 * swap entry from shmem/tmpfs, it is returned. 1556 * 1557 * Return: the found page or shadow entry, %NULL if nothing is found. 1558 */ 1559 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset) 1560 { 1561 XA_STATE(xas, &mapping->i_pages, offset); 1562 struct page *page; 1563 1564 rcu_read_lock(); 1565 repeat: 1566 xas_reset(&xas); 1567 page = xas_load(&xas); 1568 if (xas_retry(&xas, page)) 1569 goto repeat; 1570 /* 1571 * A shadow entry of a recently evicted page, or a swap entry from 1572 * shmem/tmpfs. Return it without attempting to raise page count. 1573 */ 1574 if (!page || xa_is_value(page)) 1575 goto out; 1576 1577 if (!page_cache_get_speculative(page)) 1578 goto repeat; 1579 1580 /* 1581 * Has the page moved or been split? 1582 * This is part of the lockless pagecache protocol. See 1583 * include/linux/pagemap.h for details. 1584 */ 1585 if (unlikely(page != xas_reload(&xas))) { 1586 put_page(page); 1587 goto repeat; 1588 } 1589 page = find_subpage(page, offset); 1590 out: 1591 rcu_read_unlock(); 1592 1593 return page; 1594 } 1595 1596 /** 1597 * find_lock_entry - locate, pin and lock a page cache entry 1598 * @mapping: the address_space to search 1599 * @offset: the page cache index 1600 * 1601 * Looks up the page cache slot at @mapping & @offset. If there is a 1602 * page cache page, it is returned locked and with an increased 1603 * refcount. 1604 * 1605 * If the slot holds a shadow entry of a previously evicted page, or a 1606 * swap entry from shmem/tmpfs, it is returned. 1607 * 1608 * find_lock_entry() may sleep. 1609 * 1610 * Return: the found page or shadow entry, %NULL if nothing is found. 1611 */ 1612 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset) 1613 { 1614 struct page *page; 1615 1616 repeat: 1617 page = find_get_entry(mapping, offset); 1618 if (page && !xa_is_value(page)) { 1619 lock_page(page); 1620 /* Has the page been truncated? */ 1621 if (unlikely(page_mapping(page) != mapping)) { 1622 unlock_page(page); 1623 put_page(page); 1624 goto repeat; 1625 } 1626 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page); 1627 } 1628 return page; 1629 } 1630 EXPORT_SYMBOL(find_lock_entry); 1631 1632 /** 1633 * pagecache_get_page - Find and get a reference to a page. 1634 * @mapping: The address_space to search. 1635 * @index: The page index. 1636 * @fgp_flags: %FGP flags modify how the page is returned. 1637 * @gfp_mask: Memory allocation flags to use if %FGP_CREAT is specified. 1638 * 1639 * Looks up the page cache entry at @mapping & @index. 1640 * 1641 * @fgp_flags can be zero or more of these flags: 1642 * 1643 * * %FGP_ACCESSED - The page will be marked accessed. 1644 * * %FGP_LOCK - The page is returned locked. 1645 * * %FGP_CREAT - If no page is present then a new page is allocated using 1646 * @gfp_mask and added to the page cache and the VM's LRU list. 1647 * The page is returned locked and with an increased refcount. 1648 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the 1649 * page is already in cache. If the page was allocated, unlock it before 1650 * returning so the caller can do the same dance. 1651 * 1652 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even 1653 * if the %GFP flags specified for %FGP_CREAT are atomic. 1654 * 1655 * If there is a page cache page, it is returned with an increased refcount. 1656 * 1657 * Return: The found page or %NULL otherwise. 1658 */ 1659 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index, 1660 int fgp_flags, gfp_t gfp_mask) 1661 { 1662 struct page *page; 1663 1664 repeat: 1665 page = find_get_entry(mapping, index); 1666 if (xa_is_value(page)) 1667 page = NULL; 1668 if (!page) 1669 goto no_page; 1670 1671 if (fgp_flags & FGP_LOCK) { 1672 if (fgp_flags & FGP_NOWAIT) { 1673 if (!trylock_page(page)) { 1674 put_page(page); 1675 return NULL; 1676 } 1677 } else { 1678 lock_page(page); 1679 } 1680 1681 /* Has the page been truncated? */ 1682 if (unlikely(compound_head(page)->mapping != mapping)) { 1683 unlock_page(page); 1684 put_page(page); 1685 goto repeat; 1686 } 1687 VM_BUG_ON_PAGE(page->index != index, page); 1688 } 1689 1690 if (fgp_flags & FGP_ACCESSED) 1691 mark_page_accessed(page); 1692 1693 no_page: 1694 if (!page && (fgp_flags & FGP_CREAT)) { 1695 int err; 1696 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping)) 1697 gfp_mask |= __GFP_WRITE; 1698 if (fgp_flags & FGP_NOFS) 1699 gfp_mask &= ~__GFP_FS; 1700 1701 page = __page_cache_alloc(gfp_mask); 1702 if (!page) 1703 return NULL; 1704 1705 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP)))) 1706 fgp_flags |= FGP_LOCK; 1707 1708 /* Init accessed so avoid atomic mark_page_accessed later */ 1709 if (fgp_flags & FGP_ACCESSED) 1710 __SetPageReferenced(page); 1711 1712 err = add_to_page_cache_lru(page, mapping, index, gfp_mask); 1713 if (unlikely(err)) { 1714 put_page(page); 1715 page = NULL; 1716 if (err == -EEXIST) 1717 goto repeat; 1718 } 1719 1720 /* 1721 * add_to_page_cache_lru locks the page, and for mmap we expect 1722 * an unlocked page. 1723 */ 1724 if (page && (fgp_flags & FGP_FOR_MMAP)) 1725 unlock_page(page); 1726 } 1727 1728 return page; 1729 } 1730 EXPORT_SYMBOL(pagecache_get_page); 1731 1732 /** 1733 * find_get_entries - gang pagecache lookup 1734 * @mapping: The address_space to search 1735 * @start: The starting page cache index 1736 * @nr_entries: The maximum number of entries 1737 * @entries: Where the resulting entries are placed 1738 * @indices: The cache indices corresponding to the entries in @entries 1739 * 1740 * find_get_entries() will search for and return a group of up to 1741 * @nr_entries entries in the mapping. The entries are placed at 1742 * @entries. find_get_entries() takes a reference against any actual 1743 * pages it returns. 1744 * 1745 * The search returns a group of mapping-contiguous page cache entries 1746 * with ascending indexes. There may be holes in the indices due to 1747 * not-present pages. 1748 * 1749 * Any shadow entries of evicted pages, or swap entries from 1750 * shmem/tmpfs, are included in the returned array. 1751 * 1752 * If it finds a Transparent Huge Page, head or tail, find_get_entries() 1753 * stops at that page: the caller is likely to have a better way to handle 1754 * the compound page as a whole, and then skip its extent, than repeatedly 1755 * calling find_get_entries() to return all its tails. 1756 * 1757 * Return: the number of pages and shadow entries which were found. 1758 */ 1759 unsigned find_get_entries(struct address_space *mapping, 1760 pgoff_t start, unsigned int nr_entries, 1761 struct page **entries, pgoff_t *indices) 1762 { 1763 XA_STATE(xas, &mapping->i_pages, start); 1764 struct page *page; 1765 unsigned int ret = 0; 1766 1767 if (!nr_entries) 1768 return 0; 1769 1770 rcu_read_lock(); 1771 xas_for_each(&xas, page, ULONG_MAX) { 1772 if (xas_retry(&xas, page)) 1773 continue; 1774 /* 1775 * A shadow entry of a recently evicted page, a swap 1776 * entry from shmem/tmpfs or a DAX entry. Return it 1777 * without attempting to raise page count. 1778 */ 1779 if (xa_is_value(page)) 1780 goto export; 1781 1782 if (!page_cache_get_speculative(page)) 1783 goto retry; 1784 1785 /* Has the page moved or been split? */ 1786 if (unlikely(page != xas_reload(&xas))) 1787 goto put_page; 1788 1789 /* 1790 * Terminate early on finding a THP, to allow the caller to 1791 * handle it all at once; but continue if this is hugetlbfs. 1792 */ 1793 if (PageTransHuge(page) && !PageHuge(page)) { 1794 page = find_subpage(page, xas.xa_index); 1795 nr_entries = ret + 1; 1796 } 1797 export: 1798 indices[ret] = xas.xa_index; 1799 entries[ret] = page; 1800 if (++ret == nr_entries) 1801 break; 1802 continue; 1803 put_page: 1804 put_page(page); 1805 retry: 1806 xas_reset(&xas); 1807 } 1808 rcu_read_unlock(); 1809 return ret; 1810 } 1811 1812 /** 1813 * find_get_pages_range - gang pagecache lookup 1814 * @mapping: The address_space to search 1815 * @start: The starting page index 1816 * @end: The final page index (inclusive) 1817 * @nr_pages: The maximum number of pages 1818 * @pages: Where the resulting pages are placed 1819 * 1820 * find_get_pages_range() will search for and return a group of up to @nr_pages 1821 * pages in the mapping starting at index @start and up to index @end 1822 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes 1823 * a reference against the returned pages. 1824 * 1825 * The search returns a group of mapping-contiguous pages with ascending 1826 * indexes. There may be holes in the indices due to not-present pages. 1827 * We also update @start to index the next page for the traversal. 1828 * 1829 * Return: the number of pages which were found. If this number is 1830 * smaller than @nr_pages, the end of specified range has been 1831 * reached. 1832 */ 1833 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start, 1834 pgoff_t end, unsigned int nr_pages, 1835 struct page **pages) 1836 { 1837 XA_STATE(xas, &mapping->i_pages, *start); 1838 struct page *page; 1839 unsigned ret = 0; 1840 1841 if (unlikely(!nr_pages)) 1842 return 0; 1843 1844 rcu_read_lock(); 1845 xas_for_each(&xas, page, end) { 1846 if (xas_retry(&xas, page)) 1847 continue; 1848 /* Skip over shadow, swap and DAX entries */ 1849 if (xa_is_value(page)) 1850 continue; 1851 1852 if (!page_cache_get_speculative(page)) 1853 goto retry; 1854 1855 /* Has the page moved or been split? */ 1856 if (unlikely(page != xas_reload(&xas))) 1857 goto put_page; 1858 1859 pages[ret] = find_subpage(page, xas.xa_index); 1860 if (++ret == nr_pages) { 1861 *start = xas.xa_index + 1; 1862 goto out; 1863 } 1864 continue; 1865 put_page: 1866 put_page(page); 1867 retry: 1868 xas_reset(&xas); 1869 } 1870 1871 /* 1872 * We come here when there is no page beyond @end. We take care to not 1873 * overflow the index @start as it confuses some of the callers. This 1874 * breaks the iteration when there is a page at index -1 but that is 1875 * already broken anyway. 1876 */ 1877 if (end == (pgoff_t)-1) 1878 *start = (pgoff_t)-1; 1879 else 1880 *start = end + 1; 1881 out: 1882 rcu_read_unlock(); 1883 1884 return ret; 1885 } 1886 1887 /** 1888 * find_get_pages_contig - gang contiguous pagecache lookup 1889 * @mapping: The address_space to search 1890 * @index: The starting page index 1891 * @nr_pages: The maximum number of pages 1892 * @pages: Where the resulting pages are placed 1893 * 1894 * find_get_pages_contig() works exactly like find_get_pages(), except 1895 * that the returned number of pages are guaranteed to be contiguous. 1896 * 1897 * Return: the number of pages which were found. 1898 */ 1899 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, 1900 unsigned int nr_pages, struct page **pages) 1901 { 1902 XA_STATE(xas, &mapping->i_pages, index); 1903 struct page *page; 1904 unsigned int ret = 0; 1905 1906 if (unlikely(!nr_pages)) 1907 return 0; 1908 1909 rcu_read_lock(); 1910 for (page = xas_load(&xas); page; page = xas_next(&xas)) { 1911 if (xas_retry(&xas, page)) 1912 continue; 1913 /* 1914 * If the entry has been swapped out, we can stop looking. 1915 * No current caller is looking for DAX entries. 1916 */ 1917 if (xa_is_value(page)) 1918 break; 1919 1920 if (!page_cache_get_speculative(page)) 1921 goto retry; 1922 1923 /* Has the page moved or been split? */ 1924 if (unlikely(page != xas_reload(&xas))) 1925 goto put_page; 1926 1927 pages[ret] = find_subpage(page, xas.xa_index); 1928 if (++ret == nr_pages) 1929 break; 1930 continue; 1931 put_page: 1932 put_page(page); 1933 retry: 1934 xas_reset(&xas); 1935 } 1936 rcu_read_unlock(); 1937 return ret; 1938 } 1939 EXPORT_SYMBOL(find_get_pages_contig); 1940 1941 /** 1942 * find_get_pages_range_tag - find and return pages in given range matching @tag 1943 * @mapping: the address_space to search 1944 * @index: the starting page index 1945 * @end: The final page index (inclusive) 1946 * @tag: the tag index 1947 * @nr_pages: the maximum number of pages 1948 * @pages: where the resulting pages are placed 1949 * 1950 * Like find_get_pages, except we only return pages which are tagged with 1951 * @tag. We update @index to index the next page for the traversal. 1952 * 1953 * Return: the number of pages which were found. 1954 */ 1955 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index, 1956 pgoff_t end, xa_mark_t tag, unsigned int nr_pages, 1957 struct page **pages) 1958 { 1959 XA_STATE(xas, &mapping->i_pages, *index); 1960 struct page *page; 1961 unsigned ret = 0; 1962 1963 if (unlikely(!nr_pages)) 1964 return 0; 1965 1966 rcu_read_lock(); 1967 xas_for_each_marked(&xas, page, end, tag) { 1968 if (xas_retry(&xas, page)) 1969 continue; 1970 /* 1971 * Shadow entries should never be tagged, but this iteration 1972 * is lockless so there is a window for page reclaim to evict 1973 * a page we saw tagged. Skip over it. 1974 */ 1975 if (xa_is_value(page)) 1976 continue; 1977 1978 if (!page_cache_get_speculative(page)) 1979 goto retry; 1980 1981 /* Has the page moved or been split? */ 1982 if (unlikely(page != xas_reload(&xas))) 1983 goto put_page; 1984 1985 pages[ret] = find_subpage(page, xas.xa_index); 1986 if (++ret == nr_pages) { 1987 *index = xas.xa_index + 1; 1988 goto out; 1989 } 1990 continue; 1991 put_page: 1992 put_page(page); 1993 retry: 1994 xas_reset(&xas); 1995 } 1996 1997 /* 1998 * We come here when we got to @end. We take care to not overflow the 1999 * index @index as it confuses some of the callers. This breaks the 2000 * iteration when there is a page at index -1 but that is already 2001 * broken anyway. 2002 */ 2003 if (end == (pgoff_t)-1) 2004 *index = (pgoff_t)-1; 2005 else 2006 *index = end + 1; 2007 out: 2008 rcu_read_unlock(); 2009 2010 return ret; 2011 } 2012 EXPORT_SYMBOL(find_get_pages_range_tag); 2013 2014 /* 2015 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 2016 * a _large_ part of the i/o request. Imagine the worst scenario: 2017 * 2018 * ---R__________________________________________B__________ 2019 * ^ reading here ^ bad block(assume 4k) 2020 * 2021 * read(R) => miss => readahead(R...B) => media error => frustrating retries 2022 * => failing the whole request => read(R) => read(R+1) => 2023 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 2024 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 2025 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 2026 * 2027 * It is going insane. Fix it by quickly scaling down the readahead size. 2028 */ 2029 static void shrink_readahead_size_eio(struct file_ra_state *ra) 2030 { 2031 ra->ra_pages /= 4; 2032 } 2033 2034 /** 2035 * generic_file_buffered_read - generic file read routine 2036 * @iocb: the iocb to read 2037 * @iter: data destination 2038 * @written: already copied 2039 * 2040 * This is a generic file read routine, and uses the 2041 * mapping->a_ops->readpage() function for the actual low-level stuff. 2042 * 2043 * This is really ugly. But the goto's actually try to clarify some 2044 * of the logic when it comes to error handling etc. 2045 * 2046 * Return: 2047 * * total number of bytes copied, including those the were already @written 2048 * * negative error code if nothing was copied 2049 */ 2050 ssize_t generic_file_buffered_read(struct kiocb *iocb, 2051 struct iov_iter *iter, ssize_t written) 2052 { 2053 struct file *filp = iocb->ki_filp; 2054 struct address_space *mapping = filp->f_mapping; 2055 struct inode *inode = mapping->host; 2056 struct file_ra_state *ra = &filp->f_ra; 2057 loff_t *ppos = &iocb->ki_pos; 2058 pgoff_t index; 2059 pgoff_t last_index; 2060 pgoff_t prev_index; 2061 unsigned long offset; /* offset into pagecache page */ 2062 unsigned int prev_offset; 2063 int error = 0; 2064 2065 if (unlikely(*ppos >= inode->i_sb->s_maxbytes)) 2066 return 0; 2067 iov_iter_truncate(iter, inode->i_sb->s_maxbytes); 2068 2069 index = *ppos >> PAGE_SHIFT; 2070 prev_index = ra->prev_pos >> PAGE_SHIFT; 2071 prev_offset = ra->prev_pos & (PAGE_SIZE-1); 2072 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT; 2073 offset = *ppos & ~PAGE_MASK; 2074 2075 for (;;) { 2076 struct page *page; 2077 pgoff_t end_index; 2078 loff_t isize; 2079 unsigned long nr, ret; 2080 2081 cond_resched(); 2082 find_page: 2083 if (fatal_signal_pending(current)) { 2084 error = -EINTR; 2085 goto out; 2086 } 2087 2088 page = find_get_page(mapping, index); 2089 if (!page) { 2090 if (iocb->ki_flags & IOCB_NOIO) 2091 goto would_block; 2092 page_cache_sync_readahead(mapping, 2093 ra, filp, 2094 index, last_index - index); 2095 page = find_get_page(mapping, index); 2096 if (unlikely(page == NULL)) 2097 goto no_cached_page; 2098 } 2099 if (PageReadahead(page)) { 2100 if (iocb->ki_flags & IOCB_NOIO) { 2101 put_page(page); 2102 goto out; 2103 } 2104 page_cache_async_readahead(mapping, 2105 ra, filp, page, 2106 index, last_index - index); 2107 } 2108 if (!PageUptodate(page)) { 2109 /* 2110 * See comment in do_read_cache_page on why 2111 * wait_on_page_locked is used to avoid unnecessarily 2112 * serialisations and why it's safe. 2113 */ 2114 if (iocb->ki_flags & IOCB_WAITQ) { 2115 if (written) { 2116 put_page(page); 2117 goto out; 2118 } 2119 error = wait_on_page_locked_async(page, 2120 iocb->ki_waitq); 2121 } else { 2122 if (iocb->ki_flags & IOCB_NOWAIT) { 2123 put_page(page); 2124 goto would_block; 2125 } 2126 error = wait_on_page_locked_killable(page); 2127 } 2128 if (unlikely(error)) 2129 goto readpage_error; 2130 if (PageUptodate(page)) 2131 goto page_ok; 2132 2133 if (inode->i_blkbits == PAGE_SHIFT || 2134 !mapping->a_ops->is_partially_uptodate) 2135 goto page_not_up_to_date; 2136 /* pipes can't handle partially uptodate pages */ 2137 if (unlikely(iov_iter_is_pipe(iter))) 2138 goto page_not_up_to_date; 2139 if (!trylock_page(page)) 2140 goto page_not_up_to_date; 2141 /* Did it get truncated before we got the lock? */ 2142 if (!page->mapping) 2143 goto page_not_up_to_date_locked; 2144 if (!mapping->a_ops->is_partially_uptodate(page, 2145 offset, iter->count)) 2146 goto page_not_up_to_date_locked; 2147 unlock_page(page); 2148 } 2149 page_ok: 2150 /* 2151 * i_size must be checked after we know the page is Uptodate. 2152 * 2153 * Checking i_size after the check allows us to calculate 2154 * the correct value for "nr", which means the zero-filled 2155 * part of the page is not copied back to userspace (unless 2156 * another truncate extends the file - this is desired though). 2157 */ 2158 2159 isize = i_size_read(inode); 2160 end_index = (isize - 1) >> PAGE_SHIFT; 2161 if (unlikely(!isize || index > end_index)) { 2162 put_page(page); 2163 goto out; 2164 } 2165 2166 /* nr is the maximum number of bytes to copy from this page */ 2167 nr = PAGE_SIZE; 2168 if (index == end_index) { 2169 nr = ((isize - 1) & ~PAGE_MASK) + 1; 2170 if (nr <= offset) { 2171 put_page(page); 2172 goto out; 2173 } 2174 } 2175 nr = nr - offset; 2176 2177 /* If users can be writing to this page using arbitrary 2178 * virtual addresses, take care about potential aliasing 2179 * before reading the page on the kernel side. 2180 */ 2181 if (mapping_writably_mapped(mapping)) 2182 flush_dcache_page(page); 2183 2184 /* 2185 * When a sequential read accesses a page several times, 2186 * only mark it as accessed the first time. 2187 */ 2188 if (prev_index != index || offset != prev_offset) 2189 mark_page_accessed(page); 2190 prev_index = index; 2191 2192 /* 2193 * Ok, we have the page, and it's up-to-date, so 2194 * now we can copy it to user space... 2195 */ 2196 2197 ret = copy_page_to_iter(page, offset, nr, iter); 2198 offset += ret; 2199 index += offset >> PAGE_SHIFT; 2200 offset &= ~PAGE_MASK; 2201 prev_offset = offset; 2202 2203 put_page(page); 2204 written += ret; 2205 if (!iov_iter_count(iter)) 2206 goto out; 2207 if (ret < nr) { 2208 error = -EFAULT; 2209 goto out; 2210 } 2211 continue; 2212 2213 page_not_up_to_date: 2214 /* Get exclusive access to the page ... */ 2215 if (iocb->ki_flags & IOCB_WAITQ) 2216 error = lock_page_async(page, iocb->ki_waitq); 2217 else 2218 error = lock_page_killable(page); 2219 if (unlikely(error)) 2220 goto readpage_error; 2221 2222 page_not_up_to_date_locked: 2223 /* Did it get truncated before we got the lock? */ 2224 if (!page->mapping) { 2225 unlock_page(page); 2226 put_page(page); 2227 continue; 2228 } 2229 2230 /* Did somebody else fill it already? */ 2231 if (PageUptodate(page)) { 2232 unlock_page(page); 2233 goto page_ok; 2234 } 2235 2236 readpage: 2237 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT)) { 2238 unlock_page(page); 2239 put_page(page); 2240 goto would_block; 2241 } 2242 /* 2243 * A previous I/O error may have been due to temporary 2244 * failures, eg. multipath errors. 2245 * PG_error will be set again if readpage fails. 2246 */ 2247 ClearPageError(page); 2248 /* Start the actual read. The read will unlock the page. */ 2249 error = mapping->a_ops->readpage(filp, page); 2250 2251 if (unlikely(error)) { 2252 if (error == AOP_TRUNCATED_PAGE) { 2253 put_page(page); 2254 error = 0; 2255 goto find_page; 2256 } 2257 goto readpage_error; 2258 } 2259 2260 if (!PageUptodate(page)) { 2261 error = lock_page_killable(page); 2262 if (unlikely(error)) 2263 goto readpage_error; 2264 if (!PageUptodate(page)) { 2265 if (page->mapping == NULL) { 2266 /* 2267 * invalidate_mapping_pages got it 2268 */ 2269 unlock_page(page); 2270 put_page(page); 2271 goto find_page; 2272 } 2273 unlock_page(page); 2274 shrink_readahead_size_eio(ra); 2275 error = -EIO; 2276 goto readpage_error; 2277 } 2278 unlock_page(page); 2279 } 2280 2281 goto page_ok; 2282 2283 readpage_error: 2284 /* UHHUH! A synchronous read error occurred. Report it */ 2285 put_page(page); 2286 goto out; 2287 2288 no_cached_page: 2289 /* 2290 * Ok, it wasn't cached, so we need to create a new 2291 * page.. 2292 */ 2293 page = page_cache_alloc(mapping); 2294 if (!page) { 2295 error = -ENOMEM; 2296 goto out; 2297 } 2298 error = add_to_page_cache_lru(page, mapping, index, 2299 mapping_gfp_constraint(mapping, GFP_KERNEL)); 2300 if (error) { 2301 put_page(page); 2302 if (error == -EEXIST) { 2303 error = 0; 2304 goto find_page; 2305 } 2306 goto out; 2307 } 2308 goto readpage; 2309 } 2310 2311 would_block: 2312 error = -EAGAIN; 2313 out: 2314 ra->prev_pos = prev_index; 2315 ra->prev_pos <<= PAGE_SHIFT; 2316 ra->prev_pos |= prev_offset; 2317 2318 *ppos = ((loff_t)index << PAGE_SHIFT) + offset; 2319 file_accessed(filp); 2320 return written ? written : error; 2321 } 2322 EXPORT_SYMBOL_GPL(generic_file_buffered_read); 2323 2324 /** 2325 * generic_file_read_iter - generic filesystem read routine 2326 * @iocb: kernel I/O control block 2327 * @iter: destination for the data read 2328 * 2329 * This is the "read_iter()" routine for all filesystems 2330 * that can use the page cache directly. 2331 * 2332 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall 2333 * be returned when no data can be read without waiting for I/O requests 2334 * to complete; it doesn't prevent readahead. 2335 * 2336 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O 2337 * requests shall be made for the read or for readahead. When no data 2338 * can be read, -EAGAIN shall be returned. When readahead would be 2339 * triggered, a partial, possibly empty read shall be returned. 2340 * 2341 * Return: 2342 * * number of bytes copied, even for partial reads 2343 * * negative error code (or 0 if IOCB_NOIO) if nothing was read 2344 */ 2345 ssize_t 2346 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 2347 { 2348 size_t count = iov_iter_count(iter); 2349 ssize_t retval = 0; 2350 2351 if (!count) 2352 goto out; /* skip atime */ 2353 2354 if (iocb->ki_flags & IOCB_DIRECT) { 2355 struct file *file = iocb->ki_filp; 2356 struct address_space *mapping = file->f_mapping; 2357 struct inode *inode = mapping->host; 2358 loff_t size; 2359 2360 size = i_size_read(inode); 2361 if (iocb->ki_flags & IOCB_NOWAIT) { 2362 if (filemap_range_has_page(mapping, iocb->ki_pos, 2363 iocb->ki_pos + count - 1)) 2364 return -EAGAIN; 2365 } else { 2366 retval = filemap_write_and_wait_range(mapping, 2367 iocb->ki_pos, 2368 iocb->ki_pos + count - 1); 2369 if (retval < 0) 2370 goto out; 2371 } 2372 2373 file_accessed(file); 2374 2375 retval = mapping->a_ops->direct_IO(iocb, iter); 2376 if (retval >= 0) { 2377 iocb->ki_pos += retval; 2378 count -= retval; 2379 } 2380 iov_iter_revert(iter, count - iov_iter_count(iter)); 2381 2382 /* 2383 * Btrfs can have a short DIO read if we encounter 2384 * compressed extents, so if there was an error, or if 2385 * we've already read everything we wanted to, or if 2386 * there was a short read because we hit EOF, go ahead 2387 * and return. Otherwise fallthrough to buffered io for 2388 * the rest of the read. Buffered reads will not work for 2389 * DAX files, so don't bother trying. 2390 */ 2391 if (retval < 0 || !count || iocb->ki_pos >= size || 2392 IS_DAX(inode)) 2393 goto out; 2394 } 2395 2396 retval = generic_file_buffered_read(iocb, iter, retval); 2397 out: 2398 return retval; 2399 } 2400 EXPORT_SYMBOL(generic_file_read_iter); 2401 2402 #ifdef CONFIG_MMU 2403 #define MMAP_LOTSAMISS (100) 2404 /* 2405 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock 2406 * @vmf - the vm_fault for this fault. 2407 * @page - the page to lock. 2408 * @fpin - the pointer to the file we may pin (or is already pinned). 2409 * 2410 * This works similar to lock_page_or_retry in that it can drop the mmap_lock. 2411 * It differs in that it actually returns the page locked if it returns 1 and 0 2412 * if it couldn't lock the page. If we did have to drop the mmap_lock then fpin 2413 * will point to the pinned file and needs to be fput()'ed at a later point. 2414 */ 2415 static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page, 2416 struct file **fpin) 2417 { 2418 if (trylock_page(page)) 2419 return 1; 2420 2421 /* 2422 * NOTE! This will make us return with VM_FAULT_RETRY, but with 2423 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT 2424 * is supposed to work. We have way too many special cases.. 2425 */ 2426 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 2427 return 0; 2428 2429 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin); 2430 if (vmf->flags & FAULT_FLAG_KILLABLE) { 2431 if (__lock_page_killable(page)) { 2432 /* 2433 * We didn't have the right flags to drop the mmap_lock, 2434 * but all fault_handlers only check for fatal signals 2435 * if we return VM_FAULT_RETRY, so we need to drop the 2436 * mmap_lock here and return 0 if we don't have a fpin. 2437 */ 2438 if (*fpin == NULL) 2439 mmap_read_unlock(vmf->vma->vm_mm); 2440 return 0; 2441 } 2442 } else 2443 __lock_page(page); 2444 return 1; 2445 } 2446 2447 2448 /* 2449 * Synchronous readahead happens when we don't even find a page in the page 2450 * cache at all. We don't want to perform IO under the mmap sem, so if we have 2451 * to drop the mmap sem we return the file that was pinned in order for us to do 2452 * that. If we didn't pin a file then we return NULL. The file that is 2453 * returned needs to be fput()'ed when we're done with it. 2454 */ 2455 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf) 2456 { 2457 struct file *file = vmf->vma->vm_file; 2458 struct file_ra_state *ra = &file->f_ra; 2459 struct address_space *mapping = file->f_mapping; 2460 struct file *fpin = NULL; 2461 pgoff_t offset = vmf->pgoff; 2462 2463 /* If we don't want any read-ahead, don't bother */ 2464 if (vmf->vma->vm_flags & VM_RAND_READ) 2465 return fpin; 2466 if (!ra->ra_pages) 2467 return fpin; 2468 2469 if (vmf->vma->vm_flags & VM_SEQ_READ) { 2470 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 2471 page_cache_sync_readahead(mapping, ra, file, offset, 2472 ra->ra_pages); 2473 return fpin; 2474 } 2475 2476 /* Avoid banging the cache line if not needed */ 2477 if (ra->mmap_miss < MMAP_LOTSAMISS * 10) 2478 ra->mmap_miss++; 2479 2480 /* 2481 * Do we miss much more than hit in this file? If so, 2482 * stop bothering with read-ahead. It will only hurt. 2483 */ 2484 if (ra->mmap_miss > MMAP_LOTSAMISS) 2485 return fpin; 2486 2487 /* 2488 * mmap read-around 2489 */ 2490 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 2491 ra->start = max_t(long, 0, offset - ra->ra_pages / 2); 2492 ra->size = ra->ra_pages; 2493 ra->async_size = ra->ra_pages / 4; 2494 ra_submit(ra, mapping, file); 2495 return fpin; 2496 } 2497 2498 /* 2499 * Asynchronous readahead happens when we find the page and PG_readahead, 2500 * so we want to possibly extend the readahead further. We return the file that 2501 * was pinned if we have to drop the mmap_lock in order to do IO. 2502 */ 2503 static struct file *do_async_mmap_readahead(struct vm_fault *vmf, 2504 struct page *page) 2505 { 2506 struct file *file = vmf->vma->vm_file; 2507 struct file_ra_state *ra = &file->f_ra; 2508 struct address_space *mapping = file->f_mapping; 2509 struct file *fpin = NULL; 2510 pgoff_t offset = vmf->pgoff; 2511 2512 /* If we don't want any read-ahead, don't bother */ 2513 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages) 2514 return fpin; 2515 if (ra->mmap_miss > 0) 2516 ra->mmap_miss--; 2517 if (PageReadahead(page)) { 2518 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 2519 page_cache_async_readahead(mapping, ra, file, 2520 page, offset, ra->ra_pages); 2521 } 2522 return fpin; 2523 } 2524 2525 /** 2526 * filemap_fault - read in file data for page fault handling 2527 * @vmf: struct vm_fault containing details of the fault 2528 * 2529 * filemap_fault() is invoked via the vma operations vector for a 2530 * mapped memory region to read in file data during a page fault. 2531 * 2532 * The goto's are kind of ugly, but this streamlines the normal case of having 2533 * it in the page cache, and handles the special cases reasonably without 2534 * having a lot of duplicated code. 2535 * 2536 * vma->vm_mm->mmap_lock must be held on entry. 2537 * 2538 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock 2539 * may be dropped before doing I/O or by lock_page_maybe_drop_mmap(). 2540 * 2541 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock 2542 * has not been released. 2543 * 2544 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. 2545 * 2546 * Return: bitwise-OR of %VM_FAULT_ codes. 2547 */ 2548 vm_fault_t filemap_fault(struct vm_fault *vmf) 2549 { 2550 int error; 2551 struct file *file = vmf->vma->vm_file; 2552 struct file *fpin = NULL; 2553 struct address_space *mapping = file->f_mapping; 2554 struct file_ra_state *ra = &file->f_ra; 2555 struct inode *inode = mapping->host; 2556 pgoff_t offset = vmf->pgoff; 2557 pgoff_t max_off; 2558 struct page *page; 2559 vm_fault_t ret = 0; 2560 2561 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2562 if (unlikely(offset >= max_off)) 2563 return VM_FAULT_SIGBUS; 2564 2565 /* 2566 * Do we have something in the page cache already? 2567 */ 2568 page = find_get_page(mapping, offset); 2569 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) { 2570 /* 2571 * We found the page, so try async readahead before 2572 * waiting for the lock. 2573 */ 2574 fpin = do_async_mmap_readahead(vmf, page); 2575 } else if (!page) { 2576 /* No page in the page cache at all */ 2577 count_vm_event(PGMAJFAULT); 2578 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); 2579 ret = VM_FAULT_MAJOR; 2580 fpin = do_sync_mmap_readahead(vmf); 2581 retry_find: 2582 page = pagecache_get_page(mapping, offset, 2583 FGP_CREAT|FGP_FOR_MMAP, 2584 vmf->gfp_mask); 2585 if (!page) { 2586 if (fpin) 2587 goto out_retry; 2588 return VM_FAULT_OOM; 2589 } 2590 } 2591 2592 if (!lock_page_maybe_drop_mmap(vmf, page, &fpin)) 2593 goto out_retry; 2594 2595 /* Did it get truncated? */ 2596 if (unlikely(compound_head(page)->mapping != mapping)) { 2597 unlock_page(page); 2598 put_page(page); 2599 goto retry_find; 2600 } 2601 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page); 2602 2603 /* 2604 * We have a locked page in the page cache, now we need to check 2605 * that it's up-to-date. If not, it is going to be due to an error. 2606 */ 2607 if (unlikely(!PageUptodate(page))) 2608 goto page_not_uptodate; 2609 2610 /* 2611 * We've made it this far and we had to drop our mmap_lock, now is the 2612 * time to return to the upper layer and have it re-find the vma and 2613 * redo the fault. 2614 */ 2615 if (fpin) { 2616 unlock_page(page); 2617 goto out_retry; 2618 } 2619 2620 /* 2621 * Found the page and have a reference on it. 2622 * We must recheck i_size under page lock. 2623 */ 2624 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2625 if (unlikely(offset >= max_off)) { 2626 unlock_page(page); 2627 put_page(page); 2628 return VM_FAULT_SIGBUS; 2629 } 2630 2631 vmf->page = page; 2632 return ret | VM_FAULT_LOCKED; 2633 2634 page_not_uptodate: 2635 /* 2636 * Umm, take care of errors if the page isn't up-to-date. 2637 * Try to re-read it _once_. We do this synchronously, 2638 * because there really aren't any performance issues here 2639 * and we need to check for errors. 2640 */ 2641 ClearPageError(page); 2642 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 2643 error = mapping->a_ops->readpage(file, page); 2644 if (!error) { 2645 wait_on_page_locked(page); 2646 if (!PageUptodate(page)) 2647 error = -EIO; 2648 } 2649 if (fpin) 2650 goto out_retry; 2651 put_page(page); 2652 2653 if (!error || error == AOP_TRUNCATED_PAGE) 2654 goto retry_find; 2655 2656 shrink_readahead_size_eio(ra); 2657 return VM_FAULT_SIGBUS; 2658 2659 out_retry: 2660 /* 2661 * We dropped the mmap_lock, we need to return to the fault handler to 2662 * re-find the vma and come back and find our hopefully still populated 2663 * page. 2664 */ 2665 if (page) 2666 put_page(page); 2667 if (fpin) 2668 fput(fpin); 2669 return ret | VM_FAULT_RETRY; 2670 } 2671 EXPORT_SYMBOL(filemap_fault); 2672 2673 void filemap_map_pages(struct vm_fault *vmf, 2674 pgoff_t start_pgoff, pgoff_t end_pgoff) 2675 { 2676 struct file *file = vmf->vma->vm_file; 2677 struct address_space *mapping = file->f_mapping; 2678 pgoff_t last_pgoff = start_pgoff; 2679 unsigned long max_idx; 2680 XA_STATE(xas, &mapping->i_pages, start_pgoff); 2681 struct page *page; 2682 2683 rcu_read_lock(); 2684 xas_for_each(&xas, page, end_pgoff) { 2685 if (xas_retry(&xas, page)) 2686 continue; 2687 if (xa_is_value(page)) 2688 goto next; 2689 2690 /* 2691 * Check for a locked page first, as a speculative 2692 * reference may adversely influence page migration. 2693 */ 2694 if (PageLocked(page)) 2695 goto next; 2696 if (!page_cache_get_speculative(page)) 2697 goto next; 2698 2699 /* Has the page moved or been split? */ 2700 if (unlikely(page != xas_reload(&xas))) 2701 goto skip; 2702 page = find_subpage(page, xas.xa_index); 2703 2704 if (!PageUptodate(page) || 2705 PageReadahead(page) || 2706 PageHWPoison(page)) 2707 goto skip; 2708 if (!trylock_page(page)) 2709 goto skip; 2710 2711 if (page->mapping != mapping || !PageUptodate(page)) 2712 goto unlock; 2713 2714 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 2715 if (page->index >= max_idx) 2716 goto unlock; 2717 2718 if (file->f_ra.mmap_miss > 0) 2719 file->f_ra.mmap_miss--; 2720 2721 vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT; 2722 if (vmf->pte) 2723 vmf->pte += xas.xa_index - last_pgoff; 2724 last_pgoff = xas.xa_index; 2725 if (alloc_set_pte(vmf, page)) 2726 goto unlock; 2727 unlock_page(page); 2728 goto next; 2729 unlock: 2730 unlock_page(page); 2731 skip: 2732 put_page(page); 2733 next: 2734 /* Huge page is mapped? No need to proceed. */ 2735 if (pmd_trans_huge(*vmf->pmd)) 2736 break; 2737 } 2738 rcu_read_unlock(); 2739 } 2740 EXPORT_SYMBOL(filemap_map_pages); 2741 2742 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 2743 { 2744 struct page *page = vmf->page; 2745 struct inode *inode = file_inode(vmf->vma->vm_file); 2746 vm_fault_t ret = VM_FAULT_LOCKED; 2747 2748 sb_start_pagefault(inode->i_sb); 2749 file_update_time(vmf->vma->vm_file); 2750 lock_page(page); 2751 if (page->mapping != inode->i_mapping) { 2752 unlock_page(page); 2753 ret = VM_FAULT_NOPAGE; 2754 goto out; 2755 } 2756 /* 2757 * We mark the page dirty already here so that when freeze is in 2758 * progress, we are guaranteed that writeback during freezing will 2759 * see the dirty page and writeprotect it again. 2760 */ 2761 set_page_dirty(page); 2762 wait_for_stable_page(page); 2763 out: 2764 sb_end_pagefault(inode->i_sb); 2765 return ret; 2766 } 2767 2768 const struct vm_operations_struct generic_file_vm_ops = { 2769 .fault = filemap_fault, 2770 .map_pages = filemap_map_pages, 2771 .page_mkwrite = filemap_page_mkwrite, 2772 }; 2773 2774 /* This is used for a general mmap of a disk file */ 2775 2776 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 2777 { 2778 struct address_space *mapping = file->f_mapping; 2779 2780 if (!mapping->a_ops->readpage) 2781 return -ENOEXEC; 2782 file_accessed(file); 2783 vma->vm_ops = &generic_file_vm_ops; 2784 return 0; 2785 } 2786 2787 /* 2788 * This is for filesystems which do not implement ->writepage. 2789 */ 2790 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 2791 { 2792 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 2793 return -EINVAL; 2794 return generic_file_mmap(file, vma); 2795 } 2796 #else 2797 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 2798 { 2799 return VM_FAULT_SIGBUS; 2800 } 2801 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 2802 { 2803 return -ENOSYS; 2804 } 2805 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) 2806 { 2807 return -ENOSYS; 2808 } 2809 #endif /* CONFIG_MMU */ 2810 2811 EXPORT_SYMBOL(filemap_page_mkwrite); 2812 EXPORT_SYMBOL(generic_file_mmap); 2813 EXPORT_SYMBOL(generic_file_readonly_mmap); 2814 2815 static struct page *wait_on_page_read(struct page *page) 2816 { 2817 if (!IS_ERR(page)) { 2818 wait_on_page_locked(page); 2819 if (!PageUptodate(page)) { 2820 put_page(page); 2821 page = ERR_PTR(-EIO); 2822 } 2823 } 2824 return page; 2825 } 2826 2827 static struct page *do_read_cache_page(struct address_space *mapping, 2828 pgoff_t index, 2829 int (*filler)(void *, struct page *), 2830 void *data, 2831 gfp_t gfp) 2832 { 2833 struct page *page; 2834 int err; 2835 repeat: 2836 page = find_get_page(mapping, index); 2837 if (!page) { 2838 page = __page_cache_alloc(gfp); 2839 if (!page) 2840 return ERR_PTR(-ENOMEM); 2841 err = add_to_page_cache_lru(page, mapping, index, gfp); 2842 if (unlikely(err)) { 2843 put_page(page); 2844 if (err == -EEXIST) 2845 goto repeat; 2846 /* Presumably ENOMEM for xarray node */ 2847 return ERR_PTR(err); 2848 } 2849 2850 filler: 2851 if (filler) 2852 err = filler(data, page); 2853 else 2854 err = mapping->a_ops->readpage(data, page); 2855 2856 if (err < 0) { 2857 put_page(page); 2858 return ERR_PTR(err); 2859 } 2860 2861 page = wait_on_page_read(page); 2862 if (IS_ERR(page)) 2863 return page; 2864 goto out; 2865 } 2866 if (PageUptodate(page)) 2867 goto out; 2868 2869 /* 2870 * Page is not up to date and may be locked due one of the following 2871 * case a: Page is being filled and the page lock is held 2872 * case b: Read/write error clearing the page uptodate status 2873 * case c: Truncation in progress (page locked) 2874 * case d: Reclaim in progress 2875 * 2876 * Case a, the page will be up to date when the page is unlocked. 2877 * There is no need to serialise on the page lock here as the page 2878 * is pinned so the lock gives no additional protection. Even if the 2879 * the page is truncated, the data is still valid if PageUptodate as 2880 * it's a race vs truncate race. 2881 * Case b, the page will not be up to date 2882 * Case c, the page may be truncated but in itself, the data may still 2883 * be valid after IO completes as it's a read vs truncate race. The 2884 * operation must restart if the page is not uptodate on unlock but 2885 * otherwise serialising on page lock to stabilise the mapping gives 2886 * no additional guarantees to the caller as the page lock is 2887 * released before return. 2888 * Case d, similar to truncation. If reclaim holds the page lock, it 2889 * will be a race with remove_mapping that determines if the mapping 2890 * is valid on unlock but otherwise the data is valid and there is 2891 * no need to serialise with page lock. 2892 * 2893 * As the page lock gives no additional guarantee, we optimistically 2894 * wait on the page to be unlocked and check if it's up to date and 2895 * use the page if it is. Otherwise, the page lock is required to 2896 * distinguish between the different cases. The motivation is that we 2897 * avoid spurious serialisations and wakeups when multiple processes 2898 * wait on the same page for IO to complete. 2899 */ 2900 wait_on_page_locked(page); 2901 if (PageUptodate(page)) 2902 goto out; 2903 2904 /* Distinguish between all the cases under the safety of the lock */ 2905 lock_page(page); 2906 2907 /* Case c or d, restart the operation */ 2908 if (!page->mapping) { 2909 unlock_page(page); 2910 put_page(page); 2911 goto repeat; 2912 } 2913 2914 /* Someone else locked and filled the page in a very small window */ 2915 if (PageUptodate(page)) { 2916 unlock_page(page); 2917 goto out; 2918 } 2919 2920 /* 2921 * A previous I/O error may have been due to temporary 2922 * failures. 2923 * Clear page error before actual read, PG_error will be 2924 * set again if read page fails. 2925 */ 2926 ClearPageError(page); 2927 goto filler; 2928 2929 out: 2930 mark_page_accessed(page); 2931 return page; 2932 } 2933 2934 /** 2935 * read_cache_page - read into page cache, fill it if needed 2936 * @mapping: the page's address_space 2937 * @index: the page index 2938 * @filler: function to perform the read 2939 * @data: first arg to filler(data, page) function, often left as NULL 2940 * 2941 * Read into the page cache. If a page already exists, and PageUptodate() is 2942 * not set, try to fill the page and wait for it to become unlocked. 2943 * 2944 * If the page does not get brought uptodate, return -EIO. 2945 * 2946 * Return: up to date page on success, ERR_PTR() on failure. 2947 */ 2948 struct page *read_cache_page(struct address_space *mapping, 2949 pgoff_t index, 2950 int (*filler)(void *, struct page *), 2951 void *data) 2952 { 2953 return do_read_cache_page(mapping, index, filler, data, 2954 mapping_gfp_mask(mapping)); 2955 } 2956 EXPORT_SYMBOL(read_cache_page); 2957 2958 /** 2959 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 2960 * @mapping: the page's address_space 2961 * @index: the page index 2962 * @gfp: the page allocator flags to use if allocating 2963 * 2964 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 2965 * any new page allocations done using the specified allocation flags. 2966 * 2967 * If the page does not get brought uptodate, return -EIO. 2968 * 2969 * Return: up to date page on success, ERR_PTR() on failure. 2970 */ 2971 struct page *read_cache_page_gfp(struct address_space *mapping, 2972 pgoff_t index, 2973 gfp_t gfp) 2974 { 2975 return do_read_cache_page(mapping, index, NULL, NULL, gfp); 2976 } 2977 EXPORT_SYMBOL(read_cache_page_gfp); 2978 2979 /* 2980 * Don't operate on ranges the page cache doesn't support, and don't exceed the 2981 * LFS limits. If pos is under the limit it becomes a short access. If it 2982 * exceeds the limit we return -EFBIG. 2983 */ 2984 static int generic_write_check_limits(struct file *file, loff_t pos, 2985 loff_t *count) 2986 { 2987 struct inode *inode = file->f_mapping->host; 2988 loff_t max_size = inode->i_sb->s_maxbytes; 2989 loff_t limit = rlimit(RLIMIT_FSIZE); 2990 2991 if (limit != RLIM_INFINITY) { 2992 if (pos >= limit) { 2993 send_sig(SIGXFSZ, current, 0); 2994 return -EFBIG; 2995 } 2996 *count = min(*count, limit - pos); 2997 } 2998 2999 if (!(file->f_flags & O_LARGEFILE)) 3000 max_size = MAX_NON_LFS; 3001 3002 if (unlikely(pos >= max_size)) 3003 return -EFBIG; 3004 3005 *count = min(*count, max_size - pos); 3006 3007 return 0; 3008 } 3009 3010 /* 3011 * Performs necessary checks before doing a write 3012 * 3013 * Can adjust writing position or amount of bytes to write. 3014 * Returns appropriate error code that caller should return or 3015 * zero in case that write should be allowed. 3016 */ 3017 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from) 3018 { 3019 struct file *file = iocb->ki_filp; 3020 struct inode *inode = file->f_mapping->host; 3021 loff_t count; 3022 int ret; 3023 3024 if (IS_SWAPFILE(inode)) 3025 return -ETXTBSY; 3026 3027 if (!iov_iter_count(from)) 3028 return 0; 3029 3030 /* FIXME: this is for backwards compatibility with 2.4 */ 3031 if (iocb->ki_flags & IOCB_APPEND) 3032 iocb->ki_pos = i_size_read(inode); 3033 3034 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT)) 3035 return -EINVAL; 3036 3037 count = iov_iter_count(from); 3038 ret = generic_write_check_limits(file, iocb->ki_pos, &count); 3039 if (ret) 3040 return ret; 3041 3042 iov_iter_truncate(from, count); 3043 return iov_iter_count(from); 3044 } 3045 EXPORT_SYMBOL(generic_write_checks); 3046 3047 /* 3048 * Performs necessary checks before doing a clone. 3049 * 3050 * Can adjust amount of bytes to clone via @req_count argument. 3051 * Returns appropriate error code that caller should return or 3052 * zero in case the clone should be allowed. 3053 */ 3054 int generic_remap_checks(struct file *file_in, loff_t pos_in, 3055 struct file *file_out, loff_t pos_out, 3056 loff_t *req_count, unsigned int remap_flags) 3057 { 3058 struct inode *inode_in = file_in->f_mapping->host; 3059 struct inode *inode_out = file_out->f_mapping->host; 3060 uint64_t count = *req_count; 3061 uint64_t bcount; 3062 loff_t size_in, size_out; 3063 loff_t bs = inode_out->i_sb->s_blocksize; 3064 int ret; 3065 3066 /* The start of both ranges must be aligned to an fs block. */ 3067 if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_out, bs)) 3068 return -EINVAL; 3069 3070 /* Ensure offsets don't wrap. */ 3071 if (pos_in + count < pos_in || pos_out + count < pos_out) 3072 return -EINVAL; 3073 3074 size_in = i_size_read(inode_in); 3075 size_out = i_size_read(inode_out); 3076 3077 /* Dedupe requires both ranges to be within EOF. */ 3078 if ((remap_flags & REMAP_FILE_DEDUP) && 3079 (pos_in >= size_in || pos_in + count > size_in || 3080 pos_out >= size_out || pos_out + count > size_out)) 3081 return -EINVAL; 3082 3083 /* Ensure the infile range is within the infile. */ 3084 if (pos_in >= size_in) 3085 return -EINVAL; 3086 count = min(count, size_in - (uint64_t)pos_in); 3087 3088 ret = generic_write_check_limits(file_out, pos_out, &count); 3089 if (ret) 3090 return ret; 3091 3092 /* 3093 * If the user wanted us to link to the infile's EOF, round up to the 3094 * next block boundary for this check. 3095 * 3096 * Otherwise, make sure the count is also block-aligned, having 3097 * already confirmed the starting offsets' block alignment. 3098 */ 3099 if (pos_in + count == size_in) { 3100 bcount = ALIGN(size_in, bs) - pos_in; 3101 } else { 3102 if (!IS_ALIGNED(count, bs)) 3103 count = ALIGN_DOWN(count, bs); 3104 bcount = count; 3105 } 3106 3107 /* Don't allow overlapped cloning within the same file. */ 3108 if (inode_in == inode_out && 3109 pos_out + bcount > pos_in && 3110 pos_out < pos_in + bcount) 3111 return -EINVAL; 3112 3113 /* 3114 * We shortened the request but the caller can't deal with that, so 3115 * bounce the request back to userspace. 3116 */ 3117 if (*req_count != count && !(remap_flags & REMAP_FILE_CAN_SHORTEN)) 3118 return -EINVAL; 3119 3120 *req_count = count; 3121 return 0; 3122 } 3123 3124 3125 /* 3126 * Performs common checks before doing a file copy/clone 3127 * from @file_in to @file_out. 3128 */ 3129 int generic_file_rw_checks(struct file *file_in, struct file *file_out) 3130 { 3131 struct inode *inode_in = file_inode(file_in); 3132 struct inode *inode_out = file_inode(file_out); 3133 3134 /* Don't copy dirs, pipes, sockets... */ 3135 if (S_ISDIR(inode_in->i_mode) || S_ISDIR(inode_out->i_mode)) 3136 return -EISDIR; 3137 if (!S_ISREG(inode_in->i_mode) || !S_ISREG(inode_out->i_mode)) 3138 return -EINVAL; 3139 3140 if (!(file_in->f_mode & FMODE_READ) || 3141 !(file_out->f_mode & FMODE_WRITE) || 3142 (file_out->f_flags & O_APPEND)) 3143 return -EBADF; 3144 3145 return 0; 3146 } 3147 3148 /* 3149 * Performs necessary checks before doing a file copy 3150 * 3151 * Can adjust amount of bytes to copy via @req_count argument. 3152 * Returns appropriate error code that caller should return or 3153 * zero in case the copy should be allowed. 3154 */ 3155 int generic_copy_file_checks(struct file *file_in, loff_t pos_in, 3156 struct file *file_out, loff_t pos_out, 3157 size_t *req_count, unsigned int flags) 3158 { 3159 struct inode *inode_in = file_inode(file_in); 3160 struct inode *inode_out = file_inode(file_out); 3161 uint64_t count = *req_count; 3162 loff_t size_in; 3163 int ret; 3164 3165 ret = generic_file_rw_checks(file_in, file_out); 3166 if (ret) 3167 return ret; 3168 3169 /* Don't touch certain kinds of inodes */ 3170 if (IS_IMMUTABLE(inode_out)) 3171 return -EPERM; 3172 3173 if (IS_SWAPFILE(inode_in) || IS_SWAPFILE(inode_out)) 3174 return -ETXTBSY; 3175 3176 /* Ensure offsets don't wrap. */ 3177 if (pos_in + count < pos_in || pos_out + count < pos_out) 3178 return -EOVERFLOW; 3179 3180 /* Shorten the copy to EOF */ 3181 size_in = i_size_read(inode_in); 3182 if (pos_in >= size_in) 3183 count = 0; 3184 else 3185 count = min(count, size_in - (uint64_t)pos_in); 3186 3187 ret = generic_write_check_limits(file_out, pos_out, &count); 3188 if (ret) 3189 return ret; 3190 3191 /* Don't allow overlapped copying within the same file. */ 3192 if (inode_in == inode_out && 3193 pos_out + count > pos_in && 3194 pos_out < pos_in + count) 3195 return -EINVAL; 3196 3197 *req_count = count; 3198 return 0; 3199 } 3200 3201 int pagecache_write_begin(struct file *file, struct address_space *mapping, 3202 loff_t pos, unsigned len, unsigned flags, 3203 struct page **pagep, void **fsdata) 3204 { 3205 const struct address_space_operations *aops = mapping->a_ops; 3206 3207 return aops->write_begin(file, mapping, pos, len, flags, 3208 pagep, fsdata); 3209 } 3210 EXPORT_SYMBOL(pagecache_write_begin); 3211 3212 int pagecache_write_end(struct file *file, struct address_space *mapping, 3213 loff_t pos, unsigned len, unsigned copied, 3214 struct page *page, void *fsdata) 3215 { 3216 const struct address_space_operations *aops = mapping->a_ops; 3217 3218 return aops->write_end(file, mapping, pos, len, copied, page, fsdata); 3219 } 3220 EXPORT_SYMBOL(pagecache_write_end); 3221 3222 /* 3223 * Warn about a page cache invalidation failure during a direct I/O write. 3224 */ 3225 void dio_warn_stale_pagecache(struct file *filp) 3226 { 3227 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST); 3228 char pathname[128]; 3229 struct inode *inode = file_inode(filp); 3230 char *path; 3231 3232 errseq_set(&inode->i_mapping->wb_err, -EIO); 3233 if (__ratelimit(&_rs)) { 3234 path = file_path(filp, pathname, sizeof(pathname)); 3235 if (IS_ERR(path)) 3236 path = "(unknown)"; 3237 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n"); 3238 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid, 3239 current->comm); 3240 } 3241 } 3242 3243 ssize_t 3244 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) 3245 { 3246 struct file *file = iocb->ki_filp; 3247 struct address_space *mapping = file->f_mapping; 3248 struct inode *inode = mapping->host; 3249 loff_t pos = iocb->ki_pos; 3250 ssize_t written; 3251 size_t write_len; 3252 pgoff_t end; 3253 3254 write_len = iov_iter_count(from); 3255 end = (pos + write_len - 1) >> PAGE_SHIFT; 3256 3257 if (iocb->ki_flags & IOCB_NOWAIT) { 3258 /* If there are pages to writeback, return */ 3259 if (filemap_range_has_page(inode->i_mapping, pos, 3260 pos + write_len - 1)) 3261 return -EAGAIN; 3262 } else { 3263 written = filemap_write_and_wait_range(mapping, pos, 3264 pos + write_len - 1); 3265 if (written) 3266 goto out; 3267 } 3268 3269 /* 3270 * After a write we want buffered reads to be sure to go to disk to get 3271 * the new data. We invalidate clean cached page from the region we're 3272 * about to write. We do this *before* the write so that we can return 3273 * without clobbering -EIOCBQUEUED from ->direct_IO(). 3274 */ 3275 written = invalidate_inode_pages2_range(mapping, 3276 pos >> PAGE_SHIFT, end); 3277 /* 3278 * If a page can not be invalidated, return 0 to fall back 3279 * to buffered write. 3280 */ 3281 if (written) { 3282 if (written == -EBUSY) 3283 return 0; 3284 goto out; 3285 } 3286 3287 written = mapping->a_ops->direct_IO(iocb, from); 3288 3289 /* 3290 * Finally, try again to invalidate clean pages which might have been 3291 * cached by non-direct readahead, or faulted in by get_user_pages() 3292 * if the source of the write was an mmap'ed region of the file 3293 * we're writing. Either one is a pretty crazy thing to do, 3294 * so we don't support it 100%. If this invalidation 3295 * fails, tough, the write still worked... 3296 * 3297 * Most of the time we do not need this since dio_complete() will do 3298 * the invalidation for us. However there are some file systems that 3299 * do not end up with dio_complete() being called, so let's not break 3300 * them by removing it completely. 3301 * 3302 * Noticeable example is a blkdev_direct_IO(). 3303 * 3304 * Skip invalidation for async writes or if mapping has no pages. 3305 */ 3306 if (written > 0 && mapping->nrpages && 3307 invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end)) 3308 dio_warn_stale_pagecache(file); 3309 3310 if (written > 0) { 3311 pos += written; 3312 write_len -= written; 3313 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 3314 i_size_write(inode, pos); 3315 mark_inode_dirty(inode); 3316 } 3317 iocb->ki_pos = pos; 3318 } 3319 iov_iter_revert(from, write_len - iov_iter_count(from)); 3320 out: 3321 return written; 3322 } 3323 EXPORT_SYMBOL(generic_file_direct_write); 3324 3325 /* 3326 * Find or create a page at the given pagecache position. Return the locked 3327 * page. This function is specifically for buffered writes. 3328 */ 3329 struct page *grab_cache_page_write_begin(struct address_space *mapping, 3330 pgoff_t index, unsigned flags) 3331 { 3332 struct page *page; 3333 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT; 3334 3335 if (flags & AOP_FLAG_NOFS) 3336 fgp_flags |= FGP_NOFS; 3337 3338 page = pagecache_get_page(mapping, index, fgp_flags, 3339 mapping_gfp_mask(mapping)); 3340 if (page) 3341 wait_for_stable_page(page); 3342 3343 return page; 3344 } 3345 EXPORT_SYMBOL(grab_cache_page_write_begin); 3346 3347 ssize_t generic_perform_write(struct file *file, 3348 struct iov_iter *i, loff_t pos) 3349 { 3350 struct address_space *mapping = file->f_mapping; 3351 const struct address_space_operations *a_ops = mapping->a_ops; 3352 long status = 0; 3353 ssize_t written = 0; 3354 unsigned int flags = 0; 3355 3356 do { 3357 struct page *page; 3358 unsigned long offset; /* Offset into pagecache page */ 3359 unsigned long bytes; /* Bytes to write to page */ 3360 size_t copied; /* Bytes copied from user */ 3361 void *fsdata; 3362 3363 offset = (pos & (PAGE_SIZE - 1)); 3364 bytes = min_t(unsigned long, PAGE_SIZE - offset, 3365 iov_iter_count(i)); 3366 3367 again: 3368 /* 3369 * Bring in the user page that we will copy from _first_. 3370 * Otherwise there's a nasty deadlock on copying from the 3371 * same page as we're writing to, without it being marked 3372 * up-to-date. 3373 * 3374 * Not only is this an optimisation, but it is also required 3375 * to check that the address is actually valid, when atomic 3376 * usercopies are used, below. 3377 */ 3378 if (unlikely(iov_iter_fault_in_readable(i, bytes))) { 3379 status = -EFAULT; 3380 break; 3381 } 3382 3383 if (fatal_signal_pending(current)) { 3384 status = -EINTR; 3385 break; 3386 } 3387 3388 status = a_ops->write_begin(file, mapping, pos, bytes, flags, 3389 &page, &fsdata); 3390 if (unlikely(status < 0)) 3391 break; 3392 3393 if (mapping_writably_mapped(mapping)) 3394 flush_dcache_page(page); 3395 3396 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); 3397 flush_dcache_page(page); 3398 3399 status = a_ops->write_end(file, mapping, pos, bytes, copied, 3400 page, fsdata); 3401 if (unlikely(status < 0)) 3402 break; 3403 copied = status; 3404 3405 cond_resched(); 3406 3407 iov_iter_advance(i, copied); 3408 if (unlikely(copied == 0)) { 3409 /* 3410 * If we were unable to copy any data at all, we must 3411 * fall back to a single segment length write. 3412 * 3413 * If we didn't fallback here, we could livelock 3414 * because not all segments in the iov can be copied at 3415 * once without a pagefault. 3416 */ 3417 bytes = min_t(unsigned long, PAGE_SIZE - offset, 3418 iov_iter_single_seg_count(i)); 3419 goto again; 3420 } 3421 pos += copied; 3422 written += copied; 3423 3424 balance_dirty_pages_ratelimited(mapping); 3425 } while (iov_iter_count(i)); 3426 3427 return written ? written : status; 3428 } 3429 EXPORT_SYMBOL(generic_perform_write); 3430 3431 /** 3432 * __generic_file_write_iter - write data to a file 3433 * @iocb: IO state structure (file, offset, etc.) 3434 * @from: iov_iter with data to write 3435 * 3436 * This function does all the work needed for actually writing data to a 3437 * file. It does all basic checks, removes SUID from the file, updates 3438 * modification times and calls proper subroutines depending on whether we 3439 * do direct IO or a standard buffered write. 3440 * 3441 * It expects i_mutex to be grabbed unless we work on a block device or similar 3442 * object which does not need locking at all. 3443 * 3444 * This function does *not* take care of syncing data in case of O_SYNC write. 3445 * A caller has to handle it. This is mainly due to the fact that we want to 3446 * avoid syncing under i_mutex. 3447 * 3448 * Return: 3449 * * number of bytes written, even for truncated writes 3450 * * negative error code if no data has been written at all 3451 */ 3452 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3453 { 3454 struct file *file = iocb->ki_filp; 3455 struct address_space * mapping = file->f_mapping; 3456 struct inode *inode = mapping->host; 3457 ssize_t written = 0; 3458 ssize_t err; 3459 ssize_t status; 3460 3461 /* We can write back this queue in page reclaim */ 3462 current->backing_dev_info = inode_to_bdi(inode); 3463 err = file_remove_privs(file); 3464 if (err) 3465 goto out; 3466 3467 err = file_update_time(file); 3468 if (err) 3469 goto out; 3470 3471 if (iocb->ki_flags & IOCB_DIRECT) { 3472 loff_t pos, endbyte; 3473 3474 written = generic_file_direct_write(iocb, from); 3475 /* 3476 * If the write stopped short of completing, fall back to 3477 * buffered writes. Some filesystems do this for writes to 3478 * holes, for example. For DAX files, a buffered write will 3479 * not succeed (even if it did, DAX does not handle dirty 3480 * page-cache pages correctly). 3481 */ 3482 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode)) 3483 goto out; 3484 3485 status = generic_perform_write(file, from, pos = iocb->ki_pos); 3486 /* 3487 * If generic_perform_write() returned a synchronous error 3488 * then we want to return the number of bytes which were 3489 * direct-written, or the error code if that was zero. Note 3490 * that this differs from normal direct-io semantics, which 3491 * will return -EFOO even if some bytes were written. 3492 */ 3493 if (unlikely(status < 0)) { 3494 err = status; 3495 goto out; 3496 } 3497 /* 3498 * We need to ensure that the page cache pages are written to 3499 * disk and invalidated to preserve the expected O_DIRECT 3500 * semantics. 3501 */ 3502 endbyte = pos + status - 1; 3503 err = filemap_write_and_wait_range(mapping, pos, endbyte); 3504 if (err == 0) { 3505 iocb->ki_pos = endbyte + 1; 3506 written += status; 3507 invalidate_mapping_pages(mapping, 3508 pos >> PAGE_SHIFT, 3509 endbyte >> PAGE_SHIFT); 3510 } else { 3511 /* 3512 * We don't know how much we wrote, so just return 3513 * the number of bytes which were direct-written 3514 */ 3515 } 3516 } else { 3517 written = generic_perform_write(file, from, iocb->ki_pos); 3518 if (likely(written > 0)) 3519 iocb->ki_pos += written; 3520 } 3521 out: 3522 current->backing_dev_info = NULL; 3523 return written ? written : err; 3524 } 3525 EXPORT_SYMBOL(__generic_file_write_iter); 3526 3527 /** 3528 * generic_file_write_iter - write data to a file 3529 * @iocb: IO state structure 3530 * @from: iov_iter with data to write 3531 * 3532 * This is a wrapper around __generic_file_write_iter() to be used by most 3533 * filesystems. It takes care of syncing the file in case of O_SYNC file 3534 * and acquires i_mutex as needed. 3535 * Return: 3536 * * negative error code if no data has been written at all of 3537 * vfs_fsync_range() failed for a synchronous write 3538 * * number of bytes written, even for truncated writes 3539 */ 3540 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3541 { 3542 struct file *file = iocb->ki_filp; 3543 struct inode *inode = file->f_mapping->host; 3544 ssize_t ret; 3545 3546 inode_lock(inode); 3547 ret = generic_write_checks(iocb, from); 3548 if (ret > 0) 3549 ret = __generic_file_write_iter(iocb, from); 3550 inode_unlock(inode); 3551 3552 if (ret > 0) 3553 ret = generic_write_sync(iocb, ret); 3554 return ret; 3555 } 3556 EXPORT_SYMBOL(generic_file_write_iter); 3557 3558 /** 3559 * try_to_release_page() - release old fs-specific metadata on a page 3560 * 3561 * @page: the page which the kernel is trying to free 3562 * @gfp_mask: memory allocation flags (and I/O mode) 3563 * 3564 * The address_space is to try to release any data against the page 3565 * (presumably at page->private). 3566 * 3567 * This may also be called if PG_fscache is set on a page, indicating that the 3568 * page is known to the local caching routines. 3569 * 3570 * The @gfp_mask argument specifies whether I/O may be performed to release 3571 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS). 3572 * 3573 * Return: %1 if the release was successful, otherwise return zero. 3574 */ 3575 int try_to_release_page(struct page *page, gfp_t gfp_mask) 3576 { 3577 struct address_space * const mapping = page->mapping; 3578 3579 BUG_ON(!PageLocked(page)); 3580 if (PageWriteback(page)) 3581 return 0; 3582 3583 if (mapping && mapping->a_ops->releasepage) 3584 return mapping->a_ops->releasepage(page, gfp_mask); 3585 return try_to_free_buffers(page); 3586 } 3587 3588 EXPORT_SYMBOL(try_to_release_page); 3589