xref: /openbmc/linux/mm/filemap.c (revision 519a8a6c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	linux/mm/filemap.c
4  *
5  * Copyright (C) 1994-1999  Linus Torvalds
6  */
7 
8 /*
9  * This file handles the generic file mmap semantics used by
10  * most "normal" filesystems (but you don't /have/ to use this:
11  * the NFS filesystem used to do this differently, for example)
12  */
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
16 #include <linux/fs.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
22 #include <linux/mm.h>
23 #include <linux/swap.h>
24 #include <linux/mman.h>
25 #include <linux/pagemap.h>
26 #include <linux/file.h>
27 #include <linux/uio.h>
28 #include <linux/error-injection.h>
29 #include <linux/hash.h>
30 #include <linux/writeback.h>
31 #include <linux/backing-dev.h>
32 #include <linux/pagevec.h>
33 #include <linux/blkdev.h>
34 #include <linux/security.h>
35 #include <linux/cpuset.h>
36 #include <linux/hugetlb.h>
37 #include <linux/memcontrol.h>
38 #include <linux/cleancache.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/rmap.h>
41 #include <linux/delayacct.h>
42 #include <linux/psi.h>
43 #include <linux/ramfs.h>
44 #include "internal.h"
45 
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/filemap.h>
48 
49 /*
50  * FIXME: remove all knowledge of the buffer layer from the core VM
51  */
52 #include <linux/buffer_head.h> /* for try_to_free_buffers */
53 
54 #include <asm/mman.h>
55 
56 /*
57  * Shared mappings implemented 30.11.1994. It's not fully working yet,
58  * though.
59  *
60  * Shared mappings now work. 15.8.1995  Bruno.
61  *
62  * finished 'unifying' the page and buffer cache and SMP-threaded the
63  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
64  *
65  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
66  */
67 
68 /*
69  * Lock ordering:
70  *
71  *  ->i_mmap_rwsem		(truncate_pagecache)
72  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
73  *      ->swap_lock		(exclusive_swap_page, others)
74  *        ->i_pages lock
75  *
76  *  ->i_mutex
77  *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
78  *
79  *  ->mmap_lock
80  *    ->i_mmap_rwsem
81  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
82  *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
83  *
84  *  ->mmap_lock
85  *    ->lock_page		(access_process_vm)
86  *
87  *  ->i_mutex			(generic_perform_write)
88  *    ->mmap_lock		(fault_in_pages_readable->do_page_fault)
89  *
90  *  bdi->wb.list_lock
91  *    sb_lock			(fs/fs-writeback.c)
92  *    ->i_pages lock		(__sync_single_inode)
93  *
94  *  ->i_mmap_rwsem
95  *    ->anon_vma.lock		(vma_adjust)
96  *
97  *  ->anon_vma.lock
98  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
99  *
100  *  ->page_table_lock or pte_lock
101  *    ->swap_lock		(try_to_unmap_one)
102  *    ->private_lock		(try_to_unmap_one)
103  *    ->i_pages lock		(try_to_unmap_one)
104  *    ->pgdat->lru_lock		(follow_page->mark_page_accessed)
105  *    ->pgdat->lru_lock		(check_pte_range->isolate_lru_page)
106  *    ->private_lock		(page_remove_rmap->set_page_dirty)
107  *    ->i_pages lock		(page_remove_rmap->set_page_dirty)
108  *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
109  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
110  *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
111  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
112  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
113  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
114  *
115  * ->i_mmap_rwsem
116  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
117  */
118 
119 static void page_cache_delete(struct address_space *mapping,
120 				   struct page *page, void *shadow)
121 {
122 	XA_STATE(xas, &mapping->i_pages, page->index);
123 	unsigned int nr = 1;
124 
125 	mapping_set_update(&xas, mapping);
126 
127 	/* hugetlb pages are represented by a single entry in the xarray */
128 	if (!PageHuge(page)) {
129 		xas_set_order(&xas, page->index, compound_order(page));
130 		nr = compound_nr(page);
131 	}
132 
133 	VM_BUG_ON_PAGE(!PageLocked(page), page);
134 	VM_BUG_ON_PAGE(PageTail(page), page);
135 	VM_BUG_ON_PAGE(nr != 1 && shadow, page);
136 
137 	xas_store(&xas, shadow);
138 	xas_init_marks(&xas);
139 
140 	page->mapping = NULL;
141 	/* Leave page->index set: truncation lookup relies upon it */
142 
143 	if (shadow) {
144 		mapping->nrexceptional += nr;
145 		/*
146 		 * Make sure the nrexceptional update is committed before
147 		 * the nrpages update so that final truncate racing
148 		 * with reclaim does not see both counters 0 at the
149 		 * same time and miss a shadow entry.
150 		 */
151 		smp_wmb();
152 	}
153 	mapping->nrpages -= nr;
154 }
155 
156 static void unaccount_page_cache_page(struct address_space *mapping,
157 				      struct page *page)
158 {
159 	int nr;
160 
161 	/*
162 	 * if we're uptodate, flush out into the cleancache, otherwise
163 	 * invalidate any existing cleancache entries.  We can't leave
164 	 * stale data around in the cleancache once our page is gone
165 	 */
166 	if (PageUptodate(page) && PageMappedToDisk(page))
167 		cleancache_put_page(page);
168 	else
169 		cleancache_invalidate_page(mapping, page);
170 
171 	VM_BUG_ON_PAGE(PageTail(page), page);
172 	VM_BUG_ON_PAGE(page_mapped(page), page);
173 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
174 		int mapcount;
175 
176 		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
177 			 current->comm, page_to_pfn(page));
178 		dump_page(page, "still mapped when deleted");
179 		dump_stack();
180 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
181 
182 		mapcount = page_mapcount(page);
183 		if (mapping_exiting(mapping) &&
184 		    page_count(page) >= mapcount + 2) {
185 			/*
186 			 * All vmas have already been torn down, so it's
187 			 * a good bet that actually the page is unmapped,
188 			 * and we'd prefer not to leak it: if we're wrong,
189 			 * some other bad page check should catch it later.
190 			 */
191 			page_mapcount_reset(page);
192 			page_ref_sub(page, mapcount);
193 		}
194 	}
195 
196 	/* hugetlb pages do not participate in page cache accounting. */
197 	if (PageHuge(page))
198 		return;
199 
200 	nr = hpage_nr_pages(page);
201 
202 	__mod_lruvec_page_state(page, NR_FILE_PAGES, -nr);
203 	if (PageSwapBacked(page)) {
204 		__mod_lruvec_page_state(page, NR_SHMEM, -nr);
205 		if (PageTransHuge(page))
206 			__dec_node_page_state(page, NR_SHMEM_THPS);
207 	} else if (PageTransHuge(page)) {
208 		__dec_node_page_state(page, NR_FILE_THPS);
209 		filemap_nr_thps_dec(mapping);
210 	}
211 
212 	/*
213 	 * At this point page must be either written or cleaned by
214 	 * truncate.  Dirty page here signals a bug and loss of
215 	 * unwritten data.
216 	 *
217 	 * This fixes dirty accounting after removing the page entirely
218 	 * but leaves PageDirty set: it has no effect for truncated
219 	 * page and anyway will be cleared before returning page into
220 	 * buddy allocator.
221 	 */
222 	if (WARN_ON_ONCE(PageDirty(page)))
223 		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
224 }
225 
226 /*
227  * Delete a page from the page cache and free it. Caller has to make
228  * sure the page is locked and that nobody else uses it - or that usage
229  * is safe.  The caller must hold the i_pages lock.
230  */
231 void __delete_from_page_cache(struct page *page, void *shadow)
232 {
233 	struct address_space *mapping = page->mapping;
234 
235 	trace_mm_filemap_delete_from_page_cache(page);
236 
237 	unaccount_page_cache_page(mapping, page);
238 	page_cache_delete(mapping, page, shadow);
239 }
240 
241 static void page_cache_free_page(struct address_space *mapping,
242 				struct page *page)
243 {
244 	void (*freepage)(struct page *);
245 
246 	freepage = mapping->a_ops->freepage;
247 	if (freepage)
248 		freepage(page);
249 
250 	if (PageTransHuge(page) && !PageHuge(page)) {
251 		page_ref_sub(page, HPAGE_PMD_NR);
252 		VM_BUG_ON_PAGE(page_count(page) <= 0, page);
253 	} else {
254 		put_page(page);
255 	}
256 }
257 
258 /**
259  * delete_from_page_cache - delete page from page cache
260  * @page: the page which the kernel is trying to remove from page cache
261  *
262  * This must be called only on pages that have been verified to be in the page
263  * cache and locked.  It will never put the page into the free list, the caller
264  * has a reference on the page.
265  */
266 void delete_from_page_cache(struct page *page)
267 {
268 	struct address_space *mapping = page_mapping(page);
269 	unsigned long flags;
270 
271 	BUG_ON(!PageLocked(page));
272 	xa_lock_irqsave(&mapping->i_pages, flags);
273 	__delete_from_page_cache(page, NULL);
274 	xa_unlock_irqrestore(&mapping->i_pages, flags);
275 
276 	page_cache_free_page(mapping, page);
277 }
278 EXPORT_SYMBOL(delete_from_page_cache);
279 
280 /*
281  * page_cache_delete_batch - delete several pages from page cache
282  * @mapping: the mapping to which pages belong
283  * @pvec: pagevec with pages to delete
284  *
285  * The function walks over mapping->i_pages and removes pages passed in @pvec
286  * from the mapping. The function expects @pvec to be sorted by page index
287  * and is optimised for it to be dense.
288  * It tolerates holes in @pvec (mapping entries at those indices are not
289  * modified). The function expects only THP head pages to be present in the
290  * @pvec.
291  *
292  * The function expects the i_pages lock to be held.
293  */
294 static void page_cache_delete_batch(struct address_space *mapping,
295 			     struct pagevec *pvec)
296 {
297 	XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
298 	int total_pages = 0;
299 	int i = 0;
300 	struct page *page;
301 
302 	mapping_set_update(&xas, mapping);
303 	xas_for_each(&xas, page, ULONG_MAX) {
304 		if (i >= pagevec_count(pvec))
305 			break;
306 
307 		/* A swap/dax/shadow entry got inserted? Skip it. */
308 		if (xa_is_value(page))
309 			continue;
310 		/*
311 		 * A page got inserted in our range? Skip it. We have our
312 		 * pages locked so they are protected from being removed.
313 		 * If we see a page whose index is higher than ours, it
314 		 * means our page has been removed, which shouldn't be
315 		 * possible because we're holding the PageLock.
316 		 */
317 		if (page != pvec->pages[i]) {
318 			VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
319 					page);
320 			continue;
321 		}
322 
323 		WARN_ON_ONCE(!PageLocked(page));
324 
325 		if (page->index == xas.xa_index)
326 			page->mapping = NULL;
327 		/* Leave page->index set: truncation lookup relies on it */
328 
329 		/*
330 		 * Move to the next page in the vector if this is a regular
331 		 * page or the index is of the last sub-page of this compound
332 		 * page.
333 		 */
334 		if (page->index + compound_nr(page) - 1 == xas.xa_index)
335 			i++;
336 		xas_store(&xas, NULL);
337 		total_pages++;
338 	}
339 	mapping->nrpages -= total_pages;
340 }
341 
342 void delete_from_page_cache_batch(struct address_space *mapping,
343 				  struct pagevec *pvec)
344 {
345 	int i;
346 	unsigned long flags;
347 
348 	if (!pagevec_count(pvec))
349 		return;
350 
351 	xa_lock_irqsave(&mapping->i_pages, flags);
352 	for (i = 0; i < pagevec_count(pvec); i++) {
353 		trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
354 
355 		unaccount_page_cache_page(mapping, pvec->pages[i]);
356 	}
357 	page_cache_delete_batch(mapping, pvec);
358 	xa_unlock_irqrestore(&mapping->i_pages, flags);
359 
360 	for (i = 0; i < pagevec_count(pvec); i++)
361 		page_cache_free_page(mapping, pvec->pages[i]);
362 }
363 
364 int filemap_check_errors(struct address_space *mapping)
365 {
366 	int ret = 0;
367 	/* Check for outstanding write errors */
368 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
369 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
370 		ret = -ENOSPC;
371 	if (test_bit(AS_EIO, &mapping->flags) &&
372 	    test_and_clear_bit(AS_EIO, &mapping->flags))
373 		ret = -EIO;
374 	return ret;
375 }
376 EXPORT_SYMBOL(filemap_check_errors);
377 
378 static int filemap_check_and_keep_errors(struct address_space *mapping)
379 {
380 	/* Check for outstanding write errors */
381 	if (test_bit(AS_EIO, &mapping->flags))
382 		return -EIO;
383 	if (test_bit(AS_ENOSPC, &mapping->flags))
384 		return -ENOSPC;
385 	return 0;
386 }
387 
388 /**
389  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
390  * @mapping:	address space structure to write
391  * @start:	offset in bytes where the range starts
392  * @end:	offset in bytes where the range ends (inclusive)
393  * @sync_mode:	enable synchronous operation
394  *
395  * Start writeback against all of a mapping's dirty pages that lie
396  * within the byte offsets <start, end> inclusive.
397  *
398  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
399  * opposed to a regular memory cleansing writeback.  The difference between
400  * these two operations is that if a dirty page/buffer is encountered, it must
401  * be waited upon, and not just skipped over.
402  *
403  * Return: %0 on success, negative error code otherwise.
404  */
405 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
406 				loff_t end, int sync_mode)
407 {
408 	int ret;
409 	struct writeback_control wbc = {
410 		.sync_mode = sync_mode,
411 		.nr_to_write = LONG_MAX,
412 		.range_start = start,
413 		.range_end = end,
414 	};
415 
416 	if (!mapping_cap_writeback_dirty(mapping) ||
417 	    !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
418 		return 0;
419 
420 	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
421 	ret = do_writepages(mapping, &wbc);
422 	wbc_detach_inode(&wbc);
423 	return ret;
424 }
425 
426 static inline int __filemap_fdatawrite(struct address_space *mapping,
427 	int sync_mode)
428 {
429 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
430 }
431 
432 int filemap_fdatawrite(struct address_space *mapping)
433 {
434 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
435 }
436 EXPORT_SYMBOL(filemap_fdatawrite);
437 
438 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
439 				loff_t end)
440 {
441 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
442 }
443 EXPORT_SYMBOL(filemap_fdatawrite_range);
444 
445 /**
446  * filemap_flush - mostly a non-blocking flush
447  * @mapping:	target address_space
448  *
449  * This is a mostly non-blocking flush.  Not suitable for data-integrity
450  * purposes - I/O may not be started against all dirty pages.
451  *
452  * Return: %0 on success, negative error code otherwise.
453  */
454 int filemap_flush(struct address_space *mapping)
455 {
456 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
457 }
458 EXPORT_SYMBOL(filemap_flush);
459 
460 /**
461  * filemap_range_has_page - check if a page exists in range.
462  * @mapping:           address space within which to check
463  * @start_byte:        offset in bytes where the range starts
464  * @end_byte:          offset in bytes where the range ends (inclusive)
465  *
466  * Find at least one page in the range supplied, usually used to check if
467  * direct writing in this range will trigger a writeback.
468  *
469  * Return: %true if at least one page exists in the specified range,
470  * %false otherwise.
471  */
472 bool filemap_range_has_page(struct address_space *mapping,
473 			   loff_t start_byte, loff_t end_byte)
474 {
475 	struct page *page;
476 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
477 	pgoff_t max = end_byte >> PAGE_SHIFT;
478 
479 	if (end_byte < start_byte)
480 		return false;
481 
482 	rcu_read_lock();
483 	for (;;) {
484 		page = xas_find(&xas, max);
485 		if (xas_retry(&xas, page))
486 			continue;
487 		/* Shadow entries don't count */
488 		if (xa_is_value(page))
489 			continue;
490 		/*
491 		 * We don't need to try to pin this page; we're about to
492 		 * release the RCU lock anyway.  It is enough to know that
493 		 * there was a page here recently.
494 		 */
495 		break;
496 	}
497 	rcu_read_unlock();
498 
499 	return page != NULL;
500 }
501 EXPORT_SYMBOL(filemap_range_has_page);
502 
503 static void __filemap_fdatawait_range(struct address_space *mapping,
504 				     loff_t start_byte, loff_t end_byte)
505 {
506 	pgoff_t index = start_byte >> PAGE_SHIFT;
507 	pgoff_t end = end_byte >> PAGE_SHIFT;
508 	struct pagevec pvec;
509 	int nr_pages;
510 
511 	if (end_byte < start_byte)
512 		return;
513 
514 	pagevec_init(&pvec);
515 	while (index <= end) {
516 		unsigned i;
517 
518 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
519 				end, PAGECACHE_TAG_WRITEBACK);
520 		if (!nr_pages)
521 			break;
522 
523 		for (i = 0; i < nr_pages; i++) {
524 			struct page *page = pvec.pages[i];
525 
526 			wait_on_page_writeback(page);
527 			ClearPageError(page);
528 		}
529 		pagevec_release(&pvec);
530 		cond_resched();
531 	}
532 }
533 
534 /**
535  * filemap_fdatawait_range - wait for writeback to complete
536  * @mapping:		address space structure to wait for
537  * @start_byte:		offset in bytes where the range starts
538  * @end_byte:		offset in bytes where the range ends (inclusive)
539  *
540  * Walk the list of under-writeback pages of the given address space
541  * in the given range and wait for all of them.  Check error status of
542  * the address space and return it.
543  *
544  * Since the error status of the address space is cleared by this function,
545  * callers are responsible for checking the return value and handling and/or
546  * reporting the error.
547  *
548  * Return: error status of the address space.
549  */
550 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
551 			    loff_t end_byte)
552 {
553 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
554 	return filemap_check_errors(mapping);
555 }
556 EXPORT_SYMBOL(filemap_fdatawait_range);
557 
558 /**
559  * filemap_fdatawait_range_keep_errors - wait for writeback to complete
560  * @mapping:		address space structure to wait for
561  * @start_byte:		offset in bytes where the range starts
562  * @end_byte:		offset in bytes where the range ends (inclusive)
563  *
564  * Walk the list of under-writeback pages of the given address space in the
565  * given range and wait for all of them.  Unlike filemap_fdatawait_range(),
566  * this function does not clear error status of the address space.
567  *
568  * Use this function if callers don't handle errors themselves.  Expected
569  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
570  * fsfreeze(8)
571  */
572 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
573 		loff_t start_byte, loff_t end_byte)
574 {
575 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
576 	return filemap_check_and_keep_errors(mapping);
577 }
578 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
579 
580 /**
581  * file_fdatawait_range - wait for writeback to complete
582  * @file:		file pointing to address space structure to wait for
583  * @start_byte:		offset in bytes where the range starts
584  * @end_byte:		offset in bytes where the range ends (inclusive)
585  *
586  * Walk the list of under-writeback pages of the address space that file
587  * refers to, in the given range and wait for all of them.  Check error
588  * status of the address space vs. the file->f_wb_err cursor and return it.
589  *
590  * Since the error status of the file is advanced by this function,
591  * callers are responsible for checking the return value and handling and/or
592  * reporting the error.
593  *
594  * Return: error status of the address space vs. the file->f_wb_err cursor.
595  */
596 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
597 {
598 	struct address_space *mapping = file->f_mapping;
599 
600 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
601 	return file_check_and_advance_wb_err(file);
602 }
603 EXPORT_SYMBOL(file_fdatawait_range);
604 
605 /**
606  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
607  * @mapping: address space structure to wait for
608  *
609  * Walk the list of under-writeback pages of the given address space
610  * and wait for all of them.  Unlike filemap_fdatawait(), this function
611  * does not clear error status of the address space.
612  *
613  * Use this function if callers don't handle errors themselves.  Expected
614  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
615  * fsfreeze(8)
616  *
617  * Return: error status of the address space.
618  */
619 int filemap_fdatawait_keep_errors(struct address_space *mapping)
620 {
621 	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
622 	return filemap_check_and_keep_errors(mapping);
623 }
624 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
625 
626 /* Returns true if writeback might be needed or already in progress. */
627 static bool mapping_needs_writeback(struct address_space *mapping)
628 {
629 	if (dax_mapping(mapping))
630 		return mapping->nrexceptional;
631 
632 	return mapping->nrpages;
633 }
634 
635 /**
636  * filemap_write_and_wait_range - write out & wait on a file range
637  * @mapping:	the address_space for the pages
638  * @lstart:	offset in bytes where the range starts
639  * @lend:	offset in bytes where the range ends (inclusive)
640  *
641  * Write out and wait upon file offsets lstart->lend, inclusive.
642  *
643  * Note that @lend is inclusive (describes the last byte to be written) so
644  * that this function can be used to write to the very end-of-file (end = -1).
645  *
646  * Return: error status of the address space.
647  */
648 int filemap_write_and_wait_range(struct address_space *mapping,
649 				 loff_t lstart, loff_t lend)
650 {
651 	int err = 0;
652 
653 	if (mapping_needs_writeback(mapping)) {
654 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
655 						 WB_SYNC_ALL);
656 		/*
657 		 * Even if the above returned error, the pages may be
658 		 * written partially (e.g. -ENOSPC), so we wait for it.
659 		 * But the -EIO is special case, it may indicate the worst
660 		 * thing (e.g. bug) happened, so we avoid waiting for it.
661 		 */
662 		if (err != -EIO) {
663 			int err2 = filemap_fdatawait_range(mapping,
664 						lstart, lend);
665 			if (!err)
666 				err = err2;
667 		} else {
668 			/* Clear any previously stored errors */
669 			filemap_check_errors(mapping);
670 		}
671 	} else {
672 		err = filemap_check_errors(mapping);
673 	}
674 	return err;
675 }
676 EXPORT_SYMBOL(filemap_write_and_wait_range);
677 
678 void __filemap_set_wb_err(struct address_space *mapping, int err)
679 {
680 	errseq_t eseq = errseq_set(&mapping->wb_err, err);
681 
682 	trace_filemap_set_wb_err(mapping, eseq);
683 }
684 EXPORT_SYMBOL(__filemap_set_wb_err);
685 
686 /**
687  * file_check_and_advance_wb_err - report wb error (if any) that was previously
688  * 				   and advance wb_err to current one
689  * @file: struct file on which the error is being reported
690  *
691  * When userland calls fsync (or something like nfsd does the equivalent), we
692  * want to report any writeback errors that occurred since the last fsync (or
693  * since the file was opened if there haven't been any).
694  *
695  * Grab the wb_err from the mapping. If it matches what we have in the file,
696  * then just quickly return 0. The file is all caught up.
697  *
698  * If it doesn't match, then take the mapping value, set the "seen" flag in
699  * it and try to swap it into place. If it works, or another task beat us
700  * to it with the new value, then update the f_wb_err and return the error
701  * portion. The error at this point must be reported via proper channels
702  * (a'la fsync, or NFS COMMIT operation, etc.).
703  *
704  * While we handle mapping->wb_err with atomic operations, the f_wb_err
705  * value is protected by the f_lock since we must ensure that it reflects
706  * the latest value swapped in for this file descriptor.
707  *
708  * Return: %0 on success, negative error code otherwise.
709  */
710 int file_check_and_advance_wb_err(struct file *file)
711 {
712 	int err = 0;
713 	errseq_t old = READ_ONCE(file->f_wb_err);
714 	struct address_space *mapping = file->f_mapping;
715 
716 	/* Locklessly handle the common case where nothing has changed */
717 	if (errseq_check(&mapping->wb_err, old)) {
718 		/* Something changed, must use slow path */
719 		spin_lock(&file->f_lock);
720 		old = file->f_wb_err;
721 		err = errseq_check_and_advance(&mapping->wb_err,
722 						&file->f_wb_err);
723 		trace_file_check_and_advance_wb_err(file, old);
724 		spin_unlock(&file->f_lock);
725 	}
726 
727 	/*
728 	 * We're mostly using this function as a drop in replacement for
729 	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
730 	 * that the legacy code would have had on these flags.
731 	 */
732 	clear_bit(AS_EIO, &mapping->flags);
733 	clear_bit(AS_ENOSPC, &mapping->flags);
734 	return err;
735 }
736 EXPORT_SYMBOL(file_check_and_advance_wb_err);
737 
738 /**
739  * file_write_and_wait_range - write out & wait on a file range
740  * @file:	file pointing to address_space with pages
741  * @lstart:	offset in bytes where the range starts
742  * @lend:	offset in bytes where the range ends (inclusive)
743  *
744  * Write out and wait upon file offsets lstart->lend, inclusive.
745  *
746  * Note that @lend is inclusive (describes the last byte to be written) so
747  * that this function can be used to write to the very end-of-file (end = -1).
748  *
749  * After writing out and waiting on the data, we check and advance the
750  * f_wb_err cursor to the latest value, and return any errors detected there.
751  *
752  * Return: %0 on success, negative error code otherwise.
753  */
754 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
755 {
756 	int err = 0, err2;
757 	struct address_space *mapping = file->f_mapping;
758 
759 	if (mapping_needs_writeback(mapping)) {
760 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
761 						 WB_SYNC_ALL);
762 		/* See comment of filemap_write_and_wait() */
763 		if (err != -EIO)
764 			__filemap_fdatawait_range(mapping, lstart, lend);
765 	}
766 	err2 = file_check_and_advance_wb_err(file);
767 	if (!err)
768 		err = err2;
769 	return err;
770 }
771 EXPORT_SYMBOL(file_write_and_wait_range);
772 
773 /**
774  * replace_page_cache_page - replace a pagecache page with a new one
775  * @old:	page to be replaced
776  * @new:	page to replace with
777  * @gfp_mask:	allocation mode
778  *
779  * This function replaces a page in the pagecache with a new one.  On
780  * success it acquires the pagecache reference for the new page and
781  * drops it for the old page.  Both the old and new pages must be
782  * locked.  This function does not add the new page to the LRU, the
783  * caller must do that.
784  *
785  * The remove + add is atomic.  This function cannot fail.
786  *
787  * Return: %0
788  */
789 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
790 {
791 	struct address_space *mapping = old->mapping;
792 	void (*freepage)(struct page *) = mapping->a_ops->freepage;
793 	pgoff_t offset = old->index;
794 	XA_STATE(xas, &mapping->i_pages, offset);
795 	unsigned long flags;
796 
797 	VM_BUG_ON_PAGE(!PageLocked(old), old);
798 	VM_BUG_ON_PAGE(!PageLocked(new), new);
799 	VM_BUG_ON_PAGE(new->mapping, new);
800 
801 	get_page(new);
802 	new->mapping = mapping;
803 	new->index = offset;
804 
805 	mem_cgroup_migrate(old, new);
806 
807 	xas_lock_irqsave(&xas, flags);
808 	xas_store(&xas, new);
809 
810 	old->mapping = NULL;
811 	/* hugetlb pages do not participate in page cache accounting. */
812 	if (!PageHuge(old))
813 		__dec_lruvec_page_state(old, NR_FILE_PAGES);
814 	if (!PageHuge(new))
815 		__inc_lruvec_page_state(new, NR_FILE_PAGES);
816 	if (PageSwapBacked(old))
817 		__dec_lruvec_page_state(old, NR_SHMEM);
818 	if (PageSwapBacked(new))
819 		__inc_lruvec_page_state(new, NR_SHMEM);
820 	xas_unlock_irqrestore(&xas, flags);
821 	if (freepage)
822 		freepage(old);
823 	put_page(old);
824 
825 	return 0;
826 }
827 EXPORT_SYMBOL_GPL(replace_page_cache_page);
828 
829 static int __add_to_page_cache_locked(struct page *page,
830 				      struct address_space *mapping,
831 				      pgoff_t offset, gfp_t gfp_mask,
832 				      void **shadowp)
833 {
834 	XA_STATE(xas, &mapping->i_pages, offset);
835 	int huge = PageHuge(page);
836 	int error;
837 	void *old;
838 
839 	VM_BUG_ON_PAGE(!PageLocked(page), page);
840 	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
841 	mapping_set_update(&xas, mapping);
842 
843 	get_page(page);
844 	page->mapping = mapping;
845 	page->index = offset;
846 
847 	if (!huge) {
848 		error = mem_cgroup_charge(page, current->mm, gfp_mask);
849 		if (error)
850 			goto error;
851 	}
852 
853 	do {
854 		xas_lock_irq(&xas);
855 		old = xas_load(&xas);
856 		if (old && !xa_is_value(old))
857 			xas_set_err(&xas, -EEXIST);
858 		xas_store(&xas, page);
859 		if (xas_error(&xas))
860 			goto unlock;
861 
862 		if (xa_is_value(old)) {
863 			mapping->nrexceptional--;
864 			if (shadowp)
865 				*shadowp = old;
866 		}
867 		mapping->nrpages++;
868 
869 		/* hugetlb pages do not participate in page cache accounting */
870 		if (!huge)
871 			__inc_lruvec_page_state(page, NR_FILE_PAGES);
872 unlock:
873 		xas_unlock_irq(&xas);
874 	} while (xas_nomem(&xas, gfp_mask & GFP_RECLAIM_MASK));
875 
876 	if (xas_error(&xas)) {
877 		error = xas_error(&xas);
878 		goto error;
879 	}
880 
881 	trace_mm_filemap_add_to_page_cache(page);
882 	return 0;
883 error:
884 	page->mapping = NULL;
885 	/* Leave page->index set: truncation relies upon it */
886 	put_page(page);
887 	return error;
888 }
889 ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO);
890 
891 /**
892  * add_to_page_cache_locked - add a locked page to the pagecache
893  * @page:	page to add
894  * @mapping:	the page's address_space
895  * @offset:	page index
896  * @gfp_mask:	page allocation mode
897  *
898  * This function is used to add a page to the pagecache. It must be locked.
899  * This function does not add the page to the LRU.  The caller must do that.
900  *
901  * Return: %0 on success, negative error code otherwise.
902  */
903 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
904 		pgoff_t offset, gfp_t gfp_mask)
905 {
906 	return __add_to_page_cache_locked(page, mapping, offset,
907 					  gfp_mask, NULL);
908 }
909 EXPORT_SYMBOL(add_to_page_cache_locked);
910 
911 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
912 				pgoff_t offset, gfp_t gfp_mask)
913 {
914 	void *shadow = NULL;
915 	int ret;
916 
917 	__SetPageLocked(page);
918 	ret = __add_to_page_cache_locked(page, mapping, offset,
919 					 gfp_mask, &shadow);
920 	if (unlikely(ret))
921 		__ClearPageLocked(page);
922 	else {
923 		/*
924 		 * The page might have been evicted from cache only
925 		 * recently, in which case it should be activated like
926 		 * any other repeatedly accessed page.
927 		 * The exception is pages getting rewritten; evicting other
928 		 * data from the working set, only to cache data that will
929 		 * get overwritten with something else, is a waste of memory.
930 		 */
931 		WARN_ON_ONCE(PageActive(page));
932 		if (!(gfp_mask & __GFP_WRITE) && shadow)
933 			workingset_refault(page, shadow);
934 		lru_cache_add(page);
935 	}
936 	return ret;
937 }
938 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
939 
940 #ifdef CONFIG_NUMA
941 struct page *__page_cache_alloc(gfp_t gfp)
942 {
943 	int n;
944 	struct page *page;
945 
946 	if (cpuset_do_page_mem_spread()) {
947 		unsigned int cpuset_mems_cookie;
948 		do {
949 			cpuset_mems_cookie = read_mems_allowed_begin();
950 			n = cpuset_mem_spread_node();
951 			page = __alloc_pages_node(n, gfp, 0);
952 		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
953 
954 		return page;
955 	}
956 	return alloc_pages(gfp, 0);
957 }
958 EXPORT_SYMBOL(__page_cache_alloc);
959 #endif
960 
961 /*
962  * In order to wait for pages to become available there must be
963  * waitqueues associated with pages. By using a hash table of
964  * waitqueues where the bucket discipline is to maintain all
965  * waiters on the same queue and wake all when any of the pages
966  * become available, and for the woken contexts to check to be
967  * sure the appropriate page became available, this saves space
968  * at a cost of "thundering herd" phenomena during rare hash
969  * collisions.
970  */
971 #define PAGE_WAIT_TABLE_BITS 8
972 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
973 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
974 
975 static wait_queue_head_t *page_waitqueue(struct page *page)
976 {
977 	return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
978 }
979 
980 void __init pagecache_init(void)
981 {
982 	int i;
983 
984 	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
985 		init_waitqueue_head(&page_wait_table[i]);
986 
987 	page_writeback_init();
988 }
989 
990 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
991 {
992 	int ret;
993 	struct wait_page_key *key = arg;
994 	struct wait_page_queue *wait_page
995 		= container_of(wait, struct wait_page_queue, wait);
996 
997 	if (!wake_page_match(wait_page, key))
998 		return 0;
999 
1000 	/*
1001 	 * If it's an exclusive wait, we get the bit for it, and
1002 	 * stop walking if we can't.
1003 	 *
1004 	 * If it's a non-exclusive wait, then the fact that this
1005 	 * wake function was called means that the bit already
1006 	 * was cleared, and we don't care if somebody then
1007 	 * re-took it.
1008 	 */
1009 	ret = 0;
1010 	if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1011 		if (test_and_set_bit(key->bit_nr, &key->page->flags))
1012 			return -1;
1013 		ret = 1;
1014 	}
1015 	wait->flags |= WQ_FLAG_WOKEN;
1016 
1017 	wake_up_state(wait->private, mode);
1018 
1019 	/*
1020 	 * Ok, we have successfully done what we're waiting for,
1021 	 * and we can unconditionally remove the wait entry.
1022 	 *
1023 	 * Note that this has to be the absolute last thing we do,
1024 	 * since after list_del_init(&wait->entry) the wait entry
1025 	 * might be de-allocated and the process might even have
1026 	 * exited.
1027 	 */
1028 	list_del_init_careful(&wait->entry);
1029 	return ret;
1030 }
1031 
1032 static void wake_up_page_bit(struct page *page, int bit_nr)
1033 {
1034 	wait_queue_head_t *q = page_waitqueue(page);
1035 	struct wait_page_key key;
1036 	unsigned long flags;
1037 	wait_queue_entry_t bookmark;
1038 
1039 	key.page = page;
1040 	key.bit_nr = bit_nr;
1041 	key.page_match = 0;
1042 
1043 	bookmark.flags = 0;
1044 	bookmark.private = NULL;
1045 	bookmark.func = NULL;
1046 	INIT_LIST_HEAD(&bookmark.entry);
1047 
1048 	spin_lock_irqsave(&q->lock, flags);
1049 	__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1050 
1051 	while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1052 		/*
1053 		 * Take a breather from holding the lock,
1054 		 * allow pages that finish wake up asynchronously
1055 		 * to acquire the lock and remove themselves
1056 		 * from wait queue
1057 		 */
1058 		spin_unlock_irqrestore(&q->lock, flags);
1059 		cpu_relax();
1060 		spin_lock_irqsave(&q->lock, flags);
1061 		__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1062 	}
1063 
1064 	/*
1065 	 * It is possible for other pages to have collided on the waitqueue
1066 	 * hash, so in that case check for a page match. That prevents a long-
1067 	 * term waiter
1068 	 *
1069 	 * It is still possible to miss a case here, when we woke page waiters
1070 	 * and removed them from the waitqueue, but there are still other
1071 	 * page waiters.
1072 	 */
1073 	if (!waitqueue_active(q) || !key.page_match) {
1074 		ClearPageWaiters(page);
1075 		/*
1076 		 * It's possible to miss clearing Waiters here, when we woke
1077 		 * our page waiters, but the hashed waitqueue has waiters for
1078 		 * other pages on it.
1079 		 *
1080 		 * That's okay, it's a rare case. The next waker will clear it.
1081 		 */
1082 	}
1083 	spin_unlock_irqrestore(&q->lock, flags);
1084 }
1085 
1086 static void wake_up_page(struct page *page, int bit)
1087 {
1088 	if (!PageWaiters(page))
1089 		return;
1090 	wake_up_page_bit(page, bit);
1091 }
1092 
1093 /*
1094  * A choice of three behaviors for wait_on_page_bit_common():
1095  */
1096 enum behavior {
1097 	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
1098 			 * __lock_page() waiting on then setting PG_locked.
1099 			 */
1100 	SHARED,		/* Hold ref to page and check the bit when woken, like
1101 			 * wait_on_page_writeback() waiting on PG_writeback.
1102 			 */
1103 	DROP,		/* Drop ref to page before wait, no check when woken,
1104 			 * like put_and_wait_on_page_locked() on PG_locked.
1105 			 */
1106 };
1107 
1108 /*
1109  * Attempt to check (or get) the page bit, and mark the
1110  * waiter woken if successful.
1111  */
1112 static inline bool trylock_page_bit_common(struct page *page, int bit_nr,
1113 					struct wait_queue_entry *wait)
1114 {
1115 	if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1116 		if (test_and_set_bit(bit_nr, &page->flags))
1117 			return false;
1118 	} else if (test_bit(bit_nr, &page->flags))
1119 		return false;
1120 
1121 	wait->flags |= WQ_FLAG_WOKEN;
1122 	return true;
1123 }
1124 
1125 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1126 	struct page *page, int bit_nr, int state, enum behavior behavior)
1127 {
1128 	struct wait_page_queue wait_page;
1129 	wait_queue_entry_t *wait = &wait_page.wait;
1130 	bool thrashing = false;
1131 	bool delayacct = false;
1132 	unsigned long pflags;
1133 
1134 	if (bit_nr == PG_locked &&
1135 	    !PageUptodate(page) && PageWorkingset(page)) {
1136 		if (!PageSwapBacked(page)) {
1137 			delayacct_thrashing_start();
1138 			delayacct = true;
1139 		}
1140 		psi_memstall_enter(&pflags);
1141 		thrashing = true;
1142 	}
1143 
1144 	init_wait(wait);
1145 	wait->flags = behavior == EXCLUSIVE ? WQ_FLAG_EXCLUSIVE : 0;
1146 	wait->func = wake_page_function;
1147 	wait_page.page = page;
1148 	wait_page.bit_nr = bit_nr;
1149 
1150 	/*
1151 	 * Do one last check whether we can get the
1152 	 * page bit synchronously.
1153 	 *
1154 	 * Do the SetPageWaiters() marking before that
1155 	 * to let any waker we _just_ missed know they
1156 	 * need to wake us up (otherwise they'll never
1157 	 * even go to the slow case that looks at the
1158 	 * page queue), and add ourselves to the wait
1159 	 * queue if we need to sleep.
1160 	 *
1161 	 * This part needs to be done under the queue
1162 	 * lock to avoid races.
1163 	 */
1164 	spin_lock_irq(&q->lock);
1165 	SetPageWaiters(page);
1166 	if (!trylock_page_bit_common(page, bit_nr, wait))
1167 		__add_wait_queue_entry_tail(q, wait);
1168 	spin_unlock_irq(&q->lock);
1169 
1170 	/*
1171 	 * From now on, all the logic will be based on
1172 	 * the WQ_FLAG_WOKEN flag, and the and the page
1173 	 * bit testing (and setting) will be - or has
1174 	 * already been - done by the wake function.
1175 	 *
1176 	 * We can drop our reference to the page.
1177 	 */
1178 	if (behavior == DROP)
1179 		put_page(page);
1180 
1181 	for (;;) {
1182 		set_current_state(state);
1183 
1184 		if (signal_pending_state(state, current))
1185 			break;
1186 
1187 		if (wait->flags & WQ_FLAG_WOKEN)
1188 			break;
1189 
1190 		io_schedule();
1191 	}
1192 
1193 	finish_wait(q, wait);
1194 
1195 	if (thrashing) {
1196 		if (delayacct)
1197 			delayacct_thrashing_end();
1198 		psi_memstall_leave(&pflags);
1199 	}
1200 
1201 	/*
1202 	 * A signal could leave PageWaiters set. Clearing it here if
1203 	 * !waitqueue_active would be possible (by open-coding finish_wait),
1204 	 * but still fail to catch it in the case of wait hash collision. We
1205 	 * already can fail to clear wait hash collision cases, so don't
1206 	 * bother with signals either.
1207 	 */
1208 
1209 	return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1210 }
1211 
1212 void wait_on_page_bit(struct page *page, int bit_nr)
1213 {
1214 	wait_queue_head_t *q = page_waitqueue(page);
1215 	wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1216 }
1217 EXPORT_SYMBOL(wait_on_page_bit);
1218 
1219 int wait_on_page_bit_killable(struct page *page, int bit_nr)
1220 {
1221 	wait_queue_head_t *q = page_waitqueue(page);
1222 	return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
1223 }
1224 EXPORT_SYMBOL(wait_on_page_bit_killable);
1225 
1226 static int __wait_on_page_locked_async(struct page *page,
1227 				       struct wait_page_queue *wait, bool set)
1228 {
1229 	struct wait_queue_head *q = page_waitqueue(page);
1230 	int ret = 0;
1231 
1232 	wait->page = page;
1233 	wait->bit_nr = PG_locked;
1234 
1235 	spin_lock_irq(&q->lock);
1236 	__add_wait_queue_entry_tail(q, &wait->wait);
1237 	SetPageWaiters(page);
1238 	if (set)
1239 		ret = !trylock_page(page);
1240 	else
1241 		ret = PageLocked(page);
1242 	/*
1243 	 * If we were succesful now, we know we're still on the
1244 	 * waitqueue as we're still under the lock. This means it's
1245 	 * safe to remove and return success, we know the callback
1246 	 * isn't going to trigger.
1247 	 */
1248 	if (!ret)
1249 		__remove_wait_queue(q, &wait->wait);
1250 	else
1251 		ret = -EIOCBQUEUED;
1252 	spin_unlock_irq(&q->lock);
1253 	return ret;
1254 }
1255 
1256 static int wait_on_page_locked_async(struct page *page,
1257 				     struct wait_page_queue *wait)
1258 {
1259 	if (!PageLocked(page))
1260 		return 0;
1261 	return __wait_on_page_locked_async(compound_head(page), wait, false);
1262 }
1263 
1264 /**
1265  * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1266  * @page: The page to wait for.
1267  *
1268  * The caller should hold a reference on @page.  They expect the page to
1269  * become unlocked relatively soon, but do not wish to hold up migration
1270  * (for example) by holding the reference while waiting for the page to
1271  * come unlocked.  After this function returns, the caller should not
1272  * dereference @page.
1273  */
1274 void put_and_wait_on_page_locked(struct page *page)
1275 {
1276 	wait_queue_head_t *q;
1277 
1278 	page = compound_head(page);
1279 	q = page_waitqueue(page);
1280 	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP);
1281 }
1282 
1283 /**
1284  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1285  * @page: Page defining the wait queue of interest
1286  * @waiter: Waiter to add to the queue
1287  *
1288  * Add an arbitrary @waiter to the wait queue for the nominated @page.
1289  */
1290 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1291 {
1292 	wait_queue_head_t *q = page_waitqueue(page);
1293 	unsigned long flags;
1294 
1295 	spin_lock_irqsave(&q->lock, flags);
1296 	__add_wait_queue_entry_tail(q, waiter);
1297 	SetPageWaiters(page);
1298 	spin_unlock_irqrestore(&q->lock, flags);
1299 }
1300 EXPORT_SYMBOL_GPL(add_page_wait_queue);
1301 
1302 #ifndef clear_bit_unlock_is_negative_byte
1303 
1304 /*
1305  * PG_waiters is the high bit in the same byte as PG_lock.
1306  *
1307  * On x86 (and on many other architectures), we can clear PG_lock and
1308  * test the sign bit at the same time. But if the architecture does
1309  * not support that special operation, we just do this all by hand
1310  * instead.
1311  *
1312  * The read of PG_waiters has to be after (or concurrently with) PG_locked
1313  * being cleared, but a memory barrier should be unnecessary since it is
1314  * in the same byte as PG_locked.
1315  */
1316 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1317 {
1318 	clear_bit_unlock(nr, mem);
1319 	/* smp_mb__after_atomic(); */
1320 	return test_bit(PG_waiters, mem);
1321 }
1322 
1323 #endif
1324 
1325 /**
1326  * unlock_page - unlock a locked page
1327  * @page: the page
1328  *
1329  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1330  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1331  * mechanism between PageLocked pages and PageWriteback pages is shared.
1332  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1333  *
1334  * Note that this depends on PG_waiters being the sign bit in the byte
1335  * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1336  * clear the PG_locked bit and test PG_waiters at the same time fairly
1337  * portably (architectures that do LL/SC can test any bit, while x86 can
1338  * test the sign bit).
1339  */
1340 void unlock_page(struct page *page)
1341 {
1342 	BUILD_BUG_ON(PG_waiters != 7);
1343 	page = compound_head(page);
1344 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1345 	if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1346 		wake_up_page_bit(page, PG_locked);
1347 }
1348 EXPORT_SYMBOL(unlock_page);
1349 
1350 /**
1351  * end_page_writeback - end writeback against a page
1352  * @page: the page
1353  */
1354 void end_page_writeback(struct page *page)
1355 {
1356 	/*
1357 	 * TestClearPageReclaim could be used here but it is an atomic
1358 	 * operation and overkill in this particular case. Failing to
1359 	 * shuffle a page marked for immediate reclaim is too mild to
1360 	 * justify taking an atomic operation penalty at the end of
1361 	 * ever page writeback.
1362 	 */
1363 	if (PageReclaim(page)) {
1364 		ClearPageReclaim(page);
1365 		rotate_reclaimable_page(page);
1366 	}
1367 
1368 	if (!test_clear_page_writeback(page))
1369 		BUG();
1370 
1371 	smp_mb__after_atomic();
1372 	wake_up_page(page, PG_writeback);
1373 }
1374 EXPORT_SYMBOL(end_page_writeback);
1375 
1376 /*
1377  * After completing I/O on a page, call this routine to update the page
1378  * flags appropriately
1379  */
1380 void page_endio(struct page *page, bool is_write, int err)
1381 {
1382 	if (!is_write) {
1383 		if (!err) {
1384 			SetPageUptodate(page);
1385 		} else {
1386 			ClearPageUptodate(page);
1387 			SetPageError(page);
1388 		}
1389 		unlock_page(page);
1390 	} else {
1391 		if (err) {
1392 			struct address_space *mapping;
1393 
1394 			SetPageError(page);
1395 			mapping = page_mapping(page);
1396 			if (mapping)
1397 				mapping_set_error(mapping, err);
1398 		}
1399 		end_page_writeback(page);
1400 	}
1401 }
1402 EXPORT_SYMBOL_GPL(page_endio);
1403 
1404 /**
1405  * __lock_page - get a lock on the page, assuming we need to sleep to get it
1406  * @__page: the page to lock
1407  */
1408 void __lock_page(struct page *__page)
1409 {
1410 	struct page *page = compound_head(__page);
1411 	wait_queue_head_t *q = page_waitqueue(page);
1412 	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
1413 				EXCLUSIVE);
1414 }
1415 EXPORT_SYMBOL(__lock_page);
1416 
1417 int __lock_page_killable(struct page *__page)
1418 {
1419 	struct page *page = compound_head(__page);
1420 	wait_queue_head_t *q = page_waitqueue(page);
1421 	return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
1422 					EXCLUSIVE);
1423 }
1424 EXPORT_SYMBOL_GPL(__lock_page_killable);
1425 
1426 int __lock_page_async(struct page *page, struct wait_page_queue *wait)
1427 {
1428 	return __wait_on_page_locked_async(page, wait, true);
1429 }
1430 
1431 /*
1432  * Return values:
1433  * 1 - page is locked; mmap_lock is still held.
1434  * 0 - page is not locked.
1435  *     mmap_lock has been released (mmap_read_unlock(), unless flags had both
1436  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1437  *     which case mmap_lock is still held.
1438  *
1439  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1440  * with the page locked and the mmap_lock unperturbed.
1441  */
1442 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1443 			 unsigned int flags)
1444 {
1445 	if (fault_flag_allow_retry_first(flags)) {
1446 		/*
1447 		 * CAUTION! In this case, mmap_lock is not released
1448 		 * even though return 0.
1449 		 */
1450 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1451 			return 0;
1452 
1453 		mmap_read_unlock(mm);
1454 		if (flags & FAULT_FLAG_KILLABLE)
1455 			wait_on_page_locked_killable(page);
1456 		else
1457 			wait_on_page_locked(page);
1458 		return 0;
1459 	} else {
1460 		if (flags & FAULT_FLAG_KILLABLE) {
1461 			int ret;
1462 
1463 			ret = __lock_page_killable(page);
1464 			if (ret) {
1465 				mmap_read_unlock(mm);
1466 				return 0;
1467 			}
1468 		} else
1469 			__lock_page(page);
1470 		return 1;
1471 	}
1472 }
1473 
1474 /**
1475  * page_cache_next_miss() - Find the next gap in the page cache.
1476  * @mapping: Mapping.
1477  * @index: Index.
1478  * @max_scan: Maximum range to search.
1479  *
1480  * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1481  * gap with the lowest index.
1482  *
1483  * This function may be called under the rcu_read_lock.  However, this will
1484  * not atomically search a snapshot of the cache at a single point in time.
1485  * For example, if a gap is created at index 5, then subsequently a gap is
1486  * created at index 10, page_cache_next_miss covering both indices may
1487  * return 10 if called under the rcu_read_lock.
1488  *
1489  * Return: The index of the gap if found, otherwise an index outside the
1490  * range specified (in which case 'return - index >= max_scan' will be true).
1491  * In the rare case of index wrap-around, 0 will be returned.
1492  */
1493 pgoff_t page_cache_next_miss(struct address_space *mapping,
1494 			     pgoff_t index, unsigned long max_scan)
1495 {
1496 	XA_STATE(xas, &mapping->i_pages, index);
1497 
1498 	while (max_scan--) {
1499 		void *entry = xas_next(&xas);
1500 		if (!entry || xa_is_value(entry))
1501 			break;
1502 		if (xas.xa_index == 0)
1503 			break;
1504 	}
1505 
1506 	return xas.xa_index;
1507 }
1508 EXPORT_SYMBOL(page_cache_next_miss);
1509 
1510 /**
1511  * page_cache_prev_miss() - Find the previous gap in the page cache.
1512  * @mapping: Mapping.
1513  * @index: Index.
1514  * @max_scan: Maximum range to search.
1515  *
1516  * Search the range [max(index - max_scan + 1, 0), index] for the
1517  * gap with the highest index.
1518  *
1519  * This function may be called under the rcu_read_lock.  However, this will
1520  * not atomically search a snapshot of the cache at a single point in time.
1521  * For example, if a gap is created at index 10, then subsequently a gap is
1522  * created at index 5, page_cache_prev_miss() covering both indices may
1523  * return 5 if called under the rcu_read_lock.
1524  *
1525  * Return: The index of the gap if found, otherwise an index outside the
1526  * range specified (in which case 'index - return >= max_scan' will be true).
1527  * In the rare case of wrap-around, ULONG_MAX will be returned.
1528  */
1529 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1530 			     pgoff_t index, unsigned long max_scan)
1531 {
1532 	XA_STATE(xas, &mapping->i_pages, index);
1533 
1534 	while (max_scan--) {
1535 		void *entry = xas_prev(&xas);
1536 		if (!entry || xa_is_value(entry))
1537 			break;
1538 		if (xas.xa_index == ULONG_MAX)
1539 			break;
1540 	}
1541 
1542 	return xas.xa_index;
1543 }
1544 EXPORT_SYMBOL(page_cache_prev_miss);
1545 
1546 /**
1547  * find_get_entry - find and get a page cache entry
1548  * @mapping: the address_space to search
1549  * @offset: the page cache index
1550  *
1551  * Looks up the page cache slot at @mapping & @offset.  If there is a
1552  * page cache page, it is returned with an increased refcount.
1553  *
1554  * If the slot holds a shadow entry of a previously evicted page, or a
1555  * swap entry from shmem/tmpfs, it is returned.
1556  *
1557  * Return: the found page or shadow entry, %NULL if nothing is found.
1558  */
1559 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1560 {
1561 	XA_STATE(xas, &mapping->i_pages, offset);
1562 	struct page *page;
1563 
1564 	rcu_read_lock();
1565 repeat:
1566 	xas_reset(&xas);
1567 	page = xas_load(&xas);
1568 	if (xas_retry(&xas, page))
1569 		goto repeat;
1570 	/*
1571 	 * A shadow entry of a recently evicted page, or a swap entry from
1572 	 * shmem/tmpfs.  Return it without attempting to raise page count.
1573 	 */
1574 	if (!page || xa_is_value(page))
1575 		goto out;
1576 
1577 	if (!page_cache_get_speculative(page))
1578 		goto repeat;
1579 
1580 	/*
1581 	 * Has the page moved or been split?
1582 	 * This is part of the lockless pagecache protocol. See
1583 	 * include/linux/pagemap.h for details.
1584 	 */
1585 	if (unlikely(page != xas_reload(&xas))) {
1586 		put_page(page);
1587 		goto repeat;
1588 	}
1589 	page = find_subpage(page, offset);
1590 out:
1591 	rcu_read_unlock();
1592 
1593 	return page;
1594 }
1595 
1596 /**
1597  * find_lock_entry - locate, pin and lock a page cache entry
1598  * @mapping: the address_space to search
1599  * @offset: the page cache index
1600  *
1601  * Looks up the page cache slot at @mapping & @offset.  If there is a
1602  * page cache page, it is returned locked and with an increased
1603  * refcount.
1604  *
1605  * If the slot holds a shadow entry of a previously evicted page, or a
1606  * swap entry from shmem/tmpfs, it is returned.
1607  *
1608  * find_lock_entry() may sleep.
1609  *
1610  * Return: the found page or shadow entry, %NULL if nothing is found.
1611  */
1612 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1613 {
1614 	struct page *page;
1615 
1616 repeat:
1617 	page = find_get_entry(mapping, offset);
1618 	if (page && !xa_is_value(page)) {
1619 		lock_page(page);
1620 		/* Has the page been truncated? */
1621 		if (unlikely(page_mapping(page) != mapping)) {
1622 			unlock_page(page);
1623 			put_page(page);
1624 			goto repeat;
1625 		}
1626 		VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1627 	}
1628 	return page;
1629 }
1630 EXPORT_SYMBOL(find_lock_entry);
1631 
1632 /**
1633  * pagecache_get_page - Find and get a reference to a page.
1634  * @mapping: The address_space to search.
1635  * @index: The page index.
1636  * @fgp_flags: %FGP flags modify how the page is returned.
1637  * @gfp_mask: Memory allocation flags to use if %FGP_CREAT is specified.
1638  *
1639  * Looks up the page cache entry at @mapping & @index.
1640  *
1641  * @fgp_flags can be zero or more of these flags:
1642  *
1643  * * %FGP_ACCESSED - The page will be marked accessed.
1644  * * %FGP_LOCK - The page is returned locked.
1645  * * %FGP_CREAT - If no page is present then a new page is allocated using
1646  *   @gfp_mask and added to the page cache and the VM's LRU list.
1647  *   The page is returned locked and with an increased refcount.
1648  * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1649  *   page is already in cache.  If the page was allocated, unlock it before
1650  *   returning so the caller can do the same dance.
1651  *
1652  * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1653  * if the %GFP flags specified for %FGP_CREAT are atomic.
1654  *
1655  * If there is a page cache page, it is returned with an increased refcount.
1656  *
1657  * Return: The found page or %NULL otherwise.
1658  */
1659 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
1660 		int fgp_flags, gfp_t gfp_mask)
1661 {
1662 	struct page *page;
1663 
1664 repeat:
1665 	page = find_get_entry(mapping, index);
1666 	if (xa_is_value(page))
1667 		page = NULL;
1668 	if (!page)
1669 		goto no_page;
1670 
1671 	if (fgp_flags & FGP_LOCK) {
1672 		if (fgp_flags & FGP_NOWAIT) {
1673 			if (!trylock_page(page)) {
1674 				put_page(page);
1675 				return NULL;
1676 			}
1677 		} else {
1678 			lock_page(page);
1679 		}
1680 
1681 		/* Has the page been truncated? */
1682 		if (unlikely(compound_head(page)->mapping != mapping)) {
1683 			unlock_page(page);
1684 			put_page(page);
1685 			goto repeat;
1686 		}
1687 		VM_BUG_ON_PAGE(page->index != index, page);
1688 	}
1689 
1690 	if (fgp_flags & FGP_ACCESSED)
1691 		mark_page_accessed(page);
1692 
1693 no_page:
1694 	if (!page && (fgp_flags & FGP_CREAT)) {
1695 		int err;
1696 		if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1697 			gfp_mask |= __GFP_WRITE;
1698 		if (fgp_flags & FGP_NOFS)
1699 			gfp_mask &= ~__GFP_FS;
1700 
1701 		page = __page_cache_alloc(gfp_mask);
1702 		if (!page)
1703 			return NULL;
1704 
1705 		if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1706 			fgp_flags |= FGP_LOCK;
1707 
1708 		/* Init accessed so avoid atomic mark_page_accessed later */
1709 		if (fgp_flags & FGP_ACCESSED)
1710 			__SetPageReferenced(page);
1711 
1712 		err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
1713 		if (unlikely(err)) {
1714 			put_page(page);
1715 			page = NULL;
1716 			if (err == -EEXIST)
1717 				goto repeat;
1718 		}
1719 
1720 		/*
1721 		 * add_to_page_cache_lru locks the page, and for mmap we expect
1722 		 * an unlocked page.
1723 		 */
1724 		if (page && (fgp_flags & FGP_FOR_MMAP))
1725 			unlock_page(page);
1726 	}
1727 
1728 	return page;
1729 }
1730 EXPORT_SYMBOL(pagecache_get_page);
1731 
1732 /**
1733  * find_get_entries - gang pagecache lookup
1734  * @mapping:	The address_space to search
1735  * @start:	The starting page cache index
1736  * @nr_entries:	The maximum number of entries
1737  * @entries:	Where the resulting entries are placed
1738  * @indices:	The cache indices corresponding to the entries in @entries
1739  *
1740  * find_get_entries() will search for and return a group of up to
1741  * @nr_entries entries in the mapping.  The entries are placed at
1742  * @entries.  find_get_entries() takes a reference against any actual
1743  * pages it returns.
1744  *
1745  * The search returns a group of mapping-contiguous page cache entries
1746  * with ascending indexes.  There may be holes in the indices due to
1747  * not-present pages.
1748  *
1749  * Any shadow entries of evicted pages, or swap entries from
1750  * shmem/tmpfs, are included in the returned array.
1751  *
1752  * If it finds a Transparent Huge Page, head or tail, find_get_entries()
1753  * stops at that page: the caller is likely to have a better way to handle
1754  * the compound page as a whole, and then skip its extent, than repeatedly
1755  * calling find_get_entries() to return all its tails.
1756  *
1757  * Return: the number of pages and shadow entries which were found.
1758  */
1759 unsigned find_get_entries(struct address_space *mapping,
1760 			  pgoff_t start, unsigned int nr_entries,
1761 			  struct page **entries, pgoff_t *indices)
1762 {
1763 	XA_STATE(xas, &mapping->i_pages, start);
1764 	struct page *page;
1765 	unsigned int ret = 0;
1766 
1767 	if (!nr_entries)
1768 		return 0;
1769 
1770 	rcu_read_lock();
1771 	xas_for_each(&xas, page, ULONG_MAX) {
1772 		if (xas_retry(&xas, page))
1773 			continue;
1774 		/*
1775 		 * A shadow entry of a recently evicted page, a swap
1776 		 * entry from shmem/tmpfs or a DAX entry.  Return it
1777 		 * without attempting to raise page count.
1778 		 */
1779 		if (xa_is_value(page))
1780 			goto export;
1781 
1782 		if (!page_cache_get_speculative(page))
1783 			goto retry;
1784 
1785 		/* Has the page moved or been split? */
1786 		if (unlikely(page != xas_reload(&xas)))
1787 			goto put_page;
1788 
1789 		/*
1790 		 * Terminate early on finding a THP, to allow the caller to
1791 		 * handle it all at once; but continue if this is hugetlbfs.
1792 		 */
1793 		if (PageTransHuge(page) && !PageHuge(page)) {
1794 			page = find_subpage(page, xas.xa_index);
1795 			nr_entries = ret + 1;
1796 		}
1797 export:
1798 		indices[ret] = xas.xa_index;
1799 		entries[ret] = page;
1800 		if (++ret == nr_entries)
1801 			break;
1802 		continue;
1803 put_page:
1804 		put_page(page);
1805 retry:
1806 		xas_reset(&xas);
1807 	}
1808 	rcu_read_unlock();
1809 	return ret;
1810 }
1811 
1812 /**
1813  * find_get_pages_range - gang pagecache lookup
1814  * @mapping:	The address_space to search
1815  * @start:	The starting page index
1816  * @end:	The final page index (inclusive)
1817  * @nr_pages:	The maximum number of pages
1818  * @pages:	Where the resulting pages are placed
1819  *
1820  * find_get_pages_range() will search for and return a group of up to @nr_pages
1821  * pages in the mapping starting at index @start and up to index @end
1822  * (inclusive).  The pages are placed at @pages.  find_get_pages_range() takes
1823  * a reference against the returned pages.
1824  *
1825  * The search returns a group of mapping-contiguous pages with ascending
1826  * indexes.  There may be holes in the indices due to not-present pages.
1827  * We also update @start to index the next page for the traversal.
1828  *
1829  * Return: the number of pages which were found. If this number is
1830  * smaller than @nr_pages, the end of specified range has been
1831  * reached.
1832  */
1833 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1834 			      pgoff_t end, unsigned int nr_pages,
1835 			      struct page **pages)
1836 {
1837 	XA_STATE(xas, &mapping->i_pages, *start);
1838 	struct page *page;
1839 	unsigned ret = 0;
1840 
1841 	if (unlikely(!nr_pages))
1842 		return 0;
1843 
1844 	rcu_read_lock();
1845 	xas_for_each(&xas, page, end) {
1846 		if (xas_retry(&xas, page))
1847 			continue;
1848 		/* Skip over shadow, swap and DAX entries */
1849 		if (xa_is_value(page))
1850 			continue;
1851 
1852 		if (!page_cache_get_speculative(page))
1853 			goto retry;
1854 
1855 		/* Has the page moved or been split? */
1856 		if (unlikely(page != xas_reload(&xas)))
1857 			goto put_page;
1858 
1859 		pages[ret] = find_subpage(page, xas.xa_index);
1860 		if (++ret == nr_pages) {
1861 			*start = xas.xa_index + 1;
1862 			goto out;
1863 		}
1864 		continue;
1865 put_page:
1866 		put_page(page);
1867 retry:
1868 		xas_reset(&xas);
1869 	}
1870 
1871 	/*
1872 	 * We come here when there is no page beyond @end. We take care to not
1873 	 * overflow the index @start as it confuses some of the callers. This
1874 	 * breaks the iteration when there is a page at index -1 but that is
1875 	 * already broken anyway.
1876 	 */
1877 	if (end == (pgoff_t)-1)
1878 		*start = (pgoff_t)-1;
1879 	else
1880 		*start = end + 1;
1881 out:
1882 	rcu_read_unlock();
1883 
1884 	return ret;
1885 }
1886 
1887 /**
1888  * find_get_pages_contig - gang contiguous pagecache lookup
1889  * @mapping:	The address_space to search
1890  * @index:	The starting page index
1891  * @nr_pages:	The maximum number of pages
1892  * @pages:	Where the resulting pages are placed
1893  *
1894  * find_get_pages_contig() works exactly like find_get_pages(), except
1895  * that the returned number of pages are guaranteed to be contiguous.
1896  *
1897  * Return: the number of pages which were found.
1898  */
1899 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1900 			       unsigned int nr_pages, struct page **pages)
1901 {
1902 	XA_STATE(xas, &mapping->i_pages, index);
1903 	struct page *page;
1904 	unsigned int ret = 0;
1905 
1906 	if (unlikely(!nr_pages))
1907 		return 0;
1908 
1909 	rcu_read_lock();
1910 	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1911 		if (xas_retry(&xas, page))
1912 			continue;
1913 		/*
1914 		 * If the entry has been swapped out, we can stop looking.
1915 		 * No current caller is looking for DAX entries.
1916 		 */
1917 		if (xa_is_value(page))
1918 			break;
1919 
1920 		if (!page_cache_get_speculative(page))
1921 			goto retry;
1922 
1923 		/* Has the page moved or been split? */
1924 		if (unlikely(page != xas_reload(&xas)))
1925 			goto put_page;
1926 
1927 		pages[ret] = find_subpage(page, xas.xa_index);
1928 		if (++ret == nr_pages)
1929 			break;
1930 		continue;
1931 put_page:
1932 		put_page(page);
1933 retry:
1934 		xas_reset(&xas);
1935 	}
1936 	rcu_read_unlock();
1937 	return ret;
1938 }
1939 EXPORT_SYMBOL(find_get_pages_contig);
1940 
1941 /**
1942  * find_get_pages_range_tag - find and return pages in given range matching @tag
1943  * @mapping:	the address_space to search
1944  * @index:	the starting page index
1945  * @end:	The final page index (inclusive)
1946  * @tag:	the tag index
1947  * @nr_pages:	the maximum number of pages
1948  * @pages:	where the resulting pages are placed
1949  *
1950  * Like find_get_pages, except we only return pages which are tagged with
1951  * @tag.   We update @index to index the next page for the traversal.
1952  *
1953  * Return: the number of pages which were found.
1954  */
1955 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
1956 			pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
1957 			struct page **pages)
1958 {
1959 	XA_STATE(xas, &mapping->i_pages, *index);
1960 	struct page *page;
1961 	unsigned ret = 0;
1962 
1963 	if (unlikely(!nr_pages))
1964 		return 0;
1965 
1966 	rcu_read_lock();
1967 	xas_for_each_marked(&xas, page, end, tag) {
1968 		if (xas_retry(&xas, page))
1969 			continue;
1970 		/*
1971 		 * Shadow entries should never be tagged, but this iteration
1972 		 * is lockless so there is a window for page reclaim to evict
1973 		 * a page we saw tagged.  Skip over it.
1974 		 */
1975 		if (xa_is_value(page))
1976 			continue;
1977 
1978 		if (!page_cache_get_speculative(page))
1979 			goto retry;
1980 
1981 		/* Has the page moved or been split? */
1982 		if (unlikely(page != xas_reload(&xas)))
1983 			goto put_page;
1984 
1985 		pages[ret] = find_subpage(page, xas.xa_index);
1986 		if (++ret == nr_pages) {
1987 			*index = xas.xa_index + 1;
1988 			goto out;
1989 		}
1990 		continue;
1991 put_page:
1992 		put_page(page);
1993 retry:
1994 		xas_reset(&xas);
1995 	}
1996 
1997 	/*
1998 	 * We come here when we got to @end. We take care to not overflow the
1999 	 * index @index as it confuses some of the callers. This breaks the
2000 	 * iteration when there is a page at index -1 but that is already
2001 	 * broken anyway.
2002 	 */
2003 	if (end == (pgoff_t)-1)
2004 		*index = (pgoff_t)-1;
2005 	else
2006 		*index = end + 1;
2007 out:
2008 	rcu_read_unlock();
2009 
2010 	return ret;
2011 }
2012 EXPORT_SYMBOL(find_get_pages_range_tag);
2013 
2014 /*
2015  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2016  * a _large_ part of the i/o request. Imagine the worst scenario:
2017  *
2018  *      ---R__________________________________________B__________
2019  *         ^ reading here                             ^ bad block(assume 4k)
2020  *
2021  * read(R) => miss => readahead(R...B) => media error => frustrating retries
2022  * => failing the whole request => read(R) => read(R+1) =>
2023  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2024  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2025  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2026  *
2027  * It is going insane. Fix it by quickly scaling down the readahead size.
2028  */
2029 static void shrink_readahead_size_eio(struct file_ra_state *ra)
2030 {
2031 	ra->ra_pages /= 4;
2032 }
2033 
2034 /**
2035  * generic_file_buffered_read - generic file read routine
2036  * @iocb:	the iocb to read
2037  * @iter:	data destination
2038  * @written:	already copied
2039  *
2040  * This is a generic file read routine, and uses the
2041  * mapping->a_ops->readpage() function for the actual low-level stuff.
2042  *
2043  * This is really ugly. But the goto's actually try to clarify some
2044  * of the logic when it comes to error handling etc.
2045  *
2046  * Return:
2047  * * total number of bytes copied, including those the were already @written
2048  * * negative error code if nothing was copied
2049  */
2050 ssize_t generic_file_buffered_read(struct kiocb *iocb,
2051 		struct iov_iter *iter, ssize_t written)
2052 {
2053 	struct file *filp = iocb->ki_filp;
2054 	struct address_space *mapping = filp->f_mapping;
2055 	struct inode *inode = mapping->host;
2056 	struct file_ra_state *ra = &filp->f_ra;
2057 	loff_t *ppos = &iocb->ki_pos;
2058 	pgoff_t index;
2059 	pgoff_t last_index;
2060 	pgoff_t prev_index;
2061 	unsigned long offset;      /* offset into pagecache page */
2062 	unsigned int prev_offset;
2063 	int error = 0;
2064 
2065 	if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
2066 		return 0;
2067 	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2068 
2069 	index = *ppos >> PAGE_SHIFT;
2070 	prev_index = ra->prev_pos >> PAGE_SHIFT;
2071 	prev_offset = ra->prev_pos & (PAGE_SIZE-1);
2072 	last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
2073 	offset = *ppos & ~PAGE_MASK;
2074 
2075 	for (;;) {
2076 		struct page *page;
2077 		pgoff_t end_index;
2078 		loff_t isize;
2079 		unsigned long nr, ret;
2080 
2081 		cond_resched();
2082 find_page:
2083 		if (fatal_signal_pending(current)) {
2084 			error = -EINTR;
2085 			goto out;
2086 		}
2087 
2088 		page = find_get_page(mapping, index);
2089 		if (!page) {
2090 			if (iocb->ki_flags & IOCB_NOIO)
2091 				goto would_block;
2092 			page_cache_sync_readahead(mapping,
2093 					ra, filp,
2094 					index, last_index - index);
2095 			page = find_get_page(mapping, index);
2096 			if (unlikely(page == NULL))
2097 				goto no_cached_page;
2098 		}
2099 		if (PageReadahead(page)) {
2100 			if (iocb->ki_flags & IOCB_NOIO) {
2101 				put_page(page);
2102 				goto out;
2103 			}
2104 			page_cache_async_readahead(mapping,
2105 					ra, filp, page,
2106 					index, last_index - index);
2107 		}
2108 		if (!PageUptodate(page)) {
2109 			/*
2110 			 * See comment in do_read_cache_page on why
2111 			 * wait_on_page_locked is used to avoid unnecessarily
2112 			 * serialisations and why it's safe.
2113 			 */
2114 			if (iocb->ki_flags & IOCB_WAITQ) {
2115 				if (written) {
2116 					put_page(page);
2117 					goto out;
2118 				}
2119 				error = wait_on_page_locked_async(page,
2120 								iocb->ki_waitq);
2121 			} else {
2122 				if (iocb->ki_flags & IOCB_NOWAIT) {
2123 					put_page(page);
2124 					goto would_block;
2125 				}
2126 				error = wait_on_page_locked_killable(page);
2127 			}
2128 			if (unlikely(error))
2129 				goto readpage_error;
2130 			if (PageUptodate(page))
2131 				goto page_ok;
2132 
2133 			if (inode->i_blkbits == PAGE_SHIFT ||
2134 					!mapping->a_ops->is_partially_uptodate)
2135 				goto page_not_up_to_date;
2136 			/* pipes can't handle partially uptodate pages */
2137 			if (unlikely(iov_iter_is_pipe(iter)))
2138 				goto page_not_up_to_date;
2139 			if (!trylock_page(page))
2140 				goto page_not_up_to_date;
2141 			/* Did it get truncated before we got the lock? */
2142 			if (!page->mapping)
2143 				goto page_not_up_to_date_locked;
2144 			if (!mapping->a_ops->is_partially_uptodate(page,
2145 							offset, iter->count))
2146 				goto page_not_up_to_date_locked;
2147 			unlock_page(page);
2148 		}
2149 page_ok:
2150 		/*
2151 		 * i_size must be checked after we know the page is Uptodate.
2152 		 *
2153 		 * Checking i_size after the check allows us to calculate
2154 		 * the correct value for "nr", which means the zero-filled
2155 		 * part of the page is not copied back to userspace (unless
2156 		 * another truncate extends the file - this is desired though).
2157 		 */
2158 
2159 		isize = i_size_read(inode);
2160 		end_index = (isize - 1) >> PAGE_SHIFT;
2161 		if (unlikely(!isize || index > end_index)) {
2162 			put_page(page);
2163 			goto out;
2164 		}
2165 
2166 		/* nr is the maximum number of bytes to copy from this page */
2167 		nr = PAGE_SIZE;
2168 		if (index == end_index) {
2169 			nr = ((isize - 1) & ~PAGE_MASK) + 1;
2170 			if (nr <= offset) {
2171 				put_page(page);
2172 				goto out;
2173 			}
2174 		}
2175 		nr = nr - offset;
2176 
2177 		/* If users can be writing to this page using arbitrary
2178 		 * virtual addresses, take care about potential aliasing
2179 		 * before reading the page on the kernel side.
2180 		 */
2181 		if (mapping_writably_mapped(mapping))
2182 			flush_dcache_page(page);
2183 
2184 		/*
2185 		 * When a sequential read accesses a page several times,
2186 		 * only mark it as accessed the first time.
2187 		 */
2188 		if (prev_index != index || offset != prev_offset)
2189 			mark_page_accessed(page);
2190 		prev_index = index;
2191 
2192 		/*
2193 		 * Ok, we have the page, and it's up-to-date, so
2194 		 * now we can copy it to user space...
2195 		 */
2196 
2197 		ret = copy_page_to_iter(page, offset, nr, iter);
2198 		offset += ret;
2199 		index += offset >> PAGE_SHIFT;
2200 		offset &= ~PAGE_MASK;
2201 		prev_offset = offset;
2202 
2203 		put_page(page);
2204 		written += ret;
2205 		if (!iov_iter_count(iter))
2206 			goto out;
2207 		if (ret < nr) {
2208 			error = -EFAULT;
2209 			goto out;
2210 		}
2211 		continue;
2212 
2213 page_not_up_to_date:
2214 		/* Get exclusive access to the page ... */
2215 		if (iocb->ki_flags & IOCB_WAITQ)
2216 			error = lock_page_async(page, iocb->ki_waitq);
2217 		else
2218 			error = lock_page_killable(page);
2219 		if (unlikely(error))
2220 			goto readpage_error;
2221 
2222 page_not_up_to_date_locked:
2223 		/* Did it get truncated before we got the lock? */
2224 		if (!page->mapping) {
2225 			unlock_page(page);
2226 			put_page(page);
2227 			continue;
2228 		}
2229 
2230 		/* Did somebody else fill it already? */
2231 		if (PageUptodate(page)) {
2232 			unlock_page(page);
2233 			goto page_ok;
2234 		}
2235 
2236 readpage:
2237 		if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT)) {
2238 			unlock_page(page);
2239 			put_page(page);
2240 			goto would_block;
2241 		}
2242 		/*
2243 		 * A previous I/O error may have been due to temporary
2244 		 * failures, eg. multipath errors.
2245 		 * PG_error will be set again if readpage fails.
2246 		 */
2247 		ClearPageError(page);
2248 		/* Start the actual read. The read will unlock the page. */
2249 		error = mapping->a_ops->readpage(filp, page);
2250 
2251 		if (unlikely(error)) {
2252 			if (error == AOP_TRUNCATED_PAGE) {
2253 				put_page(page);
2254 				error = 0;
2255 				goto find_page;
2256 			}
2257 			goto readpage_error;
2258 		}
2259 
2260 		if (!PageUptodate(page)) {
2261 			error = lock_page_killable(page);
2262 			if (unlikely(error))
2263 				goto readpage_error;
2264 			if (!PageUptodate(page)) {
2265 				if (page->mapping == NULL) {
2266 					/*
2267 					 * invalidate_mapping_pages got it
2268 					 */
2269 					unlock_page(page);
2270 					put_page(page);
2271 					goto find_page;
2272 				}
2273 				unlock_page(page);
2274 				shrink_readahead_size_eio(ra);
2275 				error = -EIO;
2276 				goto readpage_error;
2277 			}
2278 			unlock_page(page);
2279 		}
2280 
2281 		goto page_ok;
2282 
2283 readpage_error:
2284 		/* UHHUH! A synchronous read error occurred. Report it */
2285 		put_page(page);
2286 		goto out;
2287 
2288 no_cached_page:
2289 		/*
2290 		 * Ok, it wasn't cached, so we need to create a new
2291 		 * page..
2292 		 */
2293 		page = page_cache_alloc(mapping);
2294 		if (!page) {
2295 			error = -ENOMEM;
2296 			goto out;
2297 		}
2298 		error = add_to_page_cache_lru(page, mapping, index,
2299 				mapping_gfp_constraint(mapping, GFP_KERNEL));
2300 		if (error) {
2301 			put_page(page);
2302 			if (error == -EEXIST) {
2303 				error = 0;
2304 				goto find_page;
2305 			}
2306 			goto out;
2307 		}
2308 		goto readpage;
2309 	}
2310 
2311 would_block:
2312 	error = -EAGAIN;
2313 out:
2314 	ra->prev_pos = prev_index;
2315 	ra->prev_pos <<= PAGE_SHIFT;
2316 	ra->prev_pos |= prev_offset;
2317 
2318 	*ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2319 	file_accessed(filp);
2320 	return written ? written : error;
2321 }
2322 EXPORT_SYMBOL_GPL(generic_file_buffered_read);
2323 
2324 /**
2325  * generic_file_read_iter - generic filesystem read routine
2326  * @iocb:	kernel I/O control block
2327  * @iter:	destination for the data read
2328  *
2329  * This is the "read_iter()" routine for all filesystems
2330  * that can use the page cache directly.
2331  *
2332  * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2333  * be returned when no data can be read without waiting for I/O requests
2334  * to complete; it doesn't prevent readahead.
2335  *
2336  * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2337  * requests shall be made for the read or for readahead.  When no data
2338  * can be read, -EAGAIN shall be returned.  When readahead would be
2339  * triggered, a partial, possibly empty read shall be returned.
2340  *
2341  * Return:
2342  * * number of bytes copied, even for partial reads
2343  * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2344  */
2345 ssize_t
2346 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2347 {
2348 	size_t count = iov_iter_count(iter);
2349 	ssize_t retval = 0;
2350 
2351 	if (!count)
2352 		goto out; /* skip atime */
2353 
2354 	if (iocb->ki_flags & IOCB_DIRECT) {
2355 		struct file *file = iocb->ki_filp;
2356 		struct address_space *mapping = file->f_mapping;
2357 		struct inode *inode = mapping->host;
2358 		loff_t size;
2359 
2360 		size = i_size_read(inode);
2361 		if (iocb->ki_flags & IOCB_NOWAIT) {
2362 			if (filemap_range_has_page(mapping, iocb->ki_pos,
2363 						   iocb->ki_pos + count - 1))
2364 				return -EAGAIN;
2365 		} else {
2366 			retval = filemap_write_and_wait_range(mapping,
2367 						iocb->ki_pos,
2368 					        iocb->ki_pos + count - 1);
2369 			if (retval < 0)
2370 				goto out;
2371 		}
2372 
2373 		file_accessed(file);
2374 
2375 		retval = mapping->a_ops->direct_IO(iocb, iter);
2376 		if (retval >= 0) {
2377 			iocb->ki_pos += retval;
2378 			count -= retval;
2379 		}
2380 		iov_iter_revert(iter, count - iov_iter_count(iter));
2381 
2382 		/*
2383 		 * Btrfs can have a short DIO read if we encounter
2384 		 * compressed extents, so if there was an error, or if
2385 		 * we've already read everything we wanted to, or if
2386 		 * there was a short read because we hit EOF, go ahead
2387 		 * and return.  Otherwise fallthrough to buffered io for
2388 		 * the rest of the read.  Buffered reads will not work for
2389 		 * DAX files, so don't bother trying.
2390 		 */
2391 		if (retval < 0 || !count || iocb->ki_pos >= size ||
2392 		    IS_DAX(inode))
2393 			goto out;
2394 	}
2395 
2396 	retval = generic_file_buffered_read(iocb, iter, retval);
2397 out:
2398 	return retval;
2399 }
2400 EXPORT_SYMBOL(generic_file_read_iter);
2401 
2402 #ifdef CONFIG_MMU
2403 #define MMAP_LOTSAMISS  (100)
2404 /*
2405  * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
2406  * @vmf - the vm_fault for this fault.
2407  * @page - the page to lock.
2408  * @fpin - the pointer to the file we may pin (or is already pinned).
2409  *
2410  * This works similar to lock_page_or_retry in that it can drop the mmap_lock.
2411  * It differs in that it actually returns the page locked if it returns 1 and 0
2412  * if it couldn't lock the page.  If we did have to drop the mmap_lock then fpin
2413  * will point to the pinned file and needs to be fput()'ed at a later point.
2414  */
2415 static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
2416 				     struct file **fpin)
2417 {
2418 	if (trylock_page(page))
2419 		return 1;
2420 
2421 	/*
2422 	 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2423 	 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
2424 	 * is supposed to work. We have way too many special cases..
2425 	 */
2426 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2427 		return 0;
2428 
2429 	*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2430 	if (vmf->flags & FAULT_FLAG_KILLABLE) {
2431 		if (__lock_page_killable(page)) {
2432 			/*
2433 			 * We didn't have the right flags to drop the mmap_lock,
2434 			 * but all fault_handlers only check for fatal signals
2435 			 * if we return VM_FAULT_RETRY, so we need to drop the
2436 			 * mmap_lock here and return 0 if we don't have a fpin.
2437 			 */
2438 			if (*fpin == NULL)
2439 				mmap_read_unlock(vmf->vma->vm_mm);
2440 			return 0;
2441 		}
2442 	} else
2443 		__lock_page(page);
2444 	return 1;
2445 }
2446 
2447 
2448 /*
2449  * Synchronous readahead happens when we don't even find a page in the page
2450  * cache at all.  We don't want to perform IO under the mmap sem, so if we have
2451  * to drop the mmap sem we return the file that was pinned in order for us to do
2452  * that.  If we didn't pin a file then we return NULL.  The file that is
2453  * returned needs to be fput()'ed when we're done with it.
2454  */
2455 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
2456 {
2457 	struct file *file = vmf->vma->vm_file;
2458 	struct file_ra_state *ra = &file->f_ra;
2459 	struct address_space *mapping = file->f_mapping;
2460 	struct file *fpin = NULL;
2461 	pgoff_t offset = vmf->pgoff;
2462 
2463 	/* If we don't want any read-ahead, don't bother */
2464 	if (vmf->vma->vm_flags & VM_RAND_READ)
2465 		return fpin;
2466 	if (!ra->ra_pages)
2467 		return fpin;
2468 
2469 	if (vmf->vma->vm_flags & VM_SEQ_READ) {
2470 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2471 		page_cache_sync_readahead(mapping, ra, file, offset,
2472 					  ra->ra_pages);
2473 		return fpin;
2474 	}
2475 
2476 	/* Avoid banging the cache line if not needed */
2477 	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2478 		ra->mmap_miss++;
2479 
2480 	/*
2481 	 * Do we miss much more than hit in this file? If so,
2482 	 * stop bothering with read-ahead. It will only hurt.
2483 	 */
2484 	if (ra->mmap_miss > MMAP_LOTSAMISS)
2485 		return fpin;
2486 
2487 	/*
2488 	 * mmap read-around
2489 	 */
2490 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2491 	ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2492 	ra->size = ra->ra_pages;
2493 	ra->async_size = ra->ra_pages / 4;
2494 	ra_submit(ra, mapping, file);
2495 	return fpin;
2496 }
2497 
2498 /*
2499  * Asynchronous readahead happens when we find the page and PG_readahead,
2500  * so we want to possibly extend the readahead further.  We return the file that
2501  * was pinned if we have to drop the mmap_lock in order to do IO.
2502  */
2503 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
2504 					    struct page *page)
2505 {
2506 	struct file *file = vmf->vma->vm_file;
2507 	struct file_ra_state *ra = &file->f_ra;
2508 	struct address_space *mapping = file->f_mapping;
2509 	struct file *fpin = NULL;
2510 	pgoff_t offset = vmf->pgoff;
2511 
2512 	/* If we don't want any read-ahead, don't bother */
2513 	if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
2514 		return fpin;
2515 	if (ra->mmap_miss > 0)
2516 		ra->mmap_miss--;
2517 	if (PageReadahead(page)) {
2518 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2519 		page_cache_async_readahead(mapping, ra, file,
2520 					   page, offset, ra->ra_pages);
2521 	}
2522 	return fpin;
2523 }
2524 
2525 /**
2526  * filemap_fault - read in file data for page fault handling
2527  * @vmf:	struct vm_fault containing details of the fault
2528  *
2529  * filemap_fault() is invoked via the vma operations vector for a
2530  * mapped memory region to read in file data during a page fault.
2531  *
2532  * The goto's are kind of ugly, but this streamlines the normal case of having
2533  * it in the page cache, and handles the special cases reasonably without
2534  * having a lot of duplicated code.
2535  *
2536  * vma->vm_mm->mmap_lock must be held on entry.
2537  *
2538  * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
2539  * may be dropped before doing I/O or by lock_page_maybe_drop_mmap().
2540  *
2541  * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
2542  * has not been released.
2543  *
2544  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2545  *
2546  * Return: bitwise-OR of %VM_FAULT_ codes.
2547  */
2548 vm_fault_t filemap_fault(struct vm_fault *vmf)
2549 {
2550 	int error;
2551 	struct file *file = vmf->vma->vm_file;
2552 	struct file *fpin = NULL;
2553 	struct address_space *mapping = file->f_mapping;
2554 	struct file_ra_state *ra = &file->f_ra;
2555 	struct inode *inode = mapping->host;
2556 	pgoff_t offset = vmf->pgoff;
2557 	pgoff_t max_off;
2558 	struct page *page;
2559 	vm_fault_t ret = 0;
2560 
2561 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2562 	if (unlikely(offset >= max_off))
2563 		return VM_FAULT_SIGBUS;
2564 
2565 	/*
2566 	 * Do we have something in the page cache already?
2567 	 */
2568 	page = find_get_page(mapping, offset);
2569 	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2570 		/*
2571 		 * We found the page, so try async readahead before
2572 		 * waiting for the lock.
2573 		 */
2574 		fpin = do_async_mmap_readahead(vmf, page);
2575 	} else if (!page) {
2576 		/* No page in the page cache at all */
2577 		count_vm_event(PGMAJFAULT);
2578 		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2579 		ret = VM_FAULT_MAJOR;
2580 		fpin = do_sync_mmap_readahead(vmf);
2581 retry_find:
2582 		page = pagecache_get_page(mapping, offset,
2583 					  FGP_CREAT|FGP_FOR_MMAP,
2584 					  vmf->gfp_mask);
2585 		if (!page) {
2586 			if (fpin)
2587 				goto out_retry;
2588 			return VM_FAULT_OOM;
2589 		}
2590 	}
2591 
2592 	if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
2593 		goto out_retry;
2594 
2595 	/* Did it get truncated? */
2596 	if (unlikely(compound_head(page)->mapping != mapping)) {
2597 		unlock_page(page);
2598 		put_page(page);
2599 		goto retry_find;
2600 	}
2601 	VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
2602 
2603 	/*
2604 	 * We have a locked page in the page cache, now we need to check
2605 	 * that it's up-to-date. If not, it is going to be due to an error.
2606 	 */
2607 	if (unlikely(!PageUptodate(page)))
2608 		goto page_not_uptodate;
2609 
2610 	/*
2611 	 * We've made it this far and we had to drop our mmap_lock, now is the
2612 	 * time to return to the upper layer and have it re-find the vma and
2613 	 * redo the fault.
2614 	 */
2615 	if (fpin) {
2616 		unlock_page(page);
2617 		goto out_retry;
2618 	}
2619 
2620 	/*
2621 	 * Found the page and have a reference on it.
2622 	 * We must recheck i_size under page lock.
2623 	 */
2624 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2625 	if (unlikely(offset >= max_off)) {
2626 		unlock_page(page);
2627 		put_page(page);
2628 		return VM_FAULT_SIGBUS;
2629 	}
2630 
2631 	vmf->page = page;
2632 	return ret | VM_FAULT_LOCKED;
2633 
2634 page_not_uptodate:
2635 	/*
2636 	 * Umm, take care of errors if the page isn't up-to-date.
2637 	 * Try to re-read it _once_. We do this synchronously,
2638 	 * because there really aren't any performance issues here
2639 	 * and we need to check for errors.
2640 	 */
2641 	ClearPageError(page);
2642 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2643 	error = mapping->a_ops->readpage(file, page);
2644 	if (!error) {
2645 		wait_on_page_locked(page);
2646 		if (!PageUptodate(page))
2647 			error = -EIO;
2648 	}
2649 	if (fpin)
2650 		goto out_retry;
2651 	put_page(page);
2652 
2653 	if (!error || error == AOP_TRUNCATED_PAGE)
2654 		goto retry_find;
2655 
2656 	shrink_readahead_size_eio(ra);
2657 	return VM_FAULT_SIGBUS;
2658 
2659 out_retry:
2660 	/*
2661 	 * We dropped the mmap_lock, we need to return to the fault handler to
2662 	 * re-find the vma and come back and find our hopefully still populated
2663 	 * page.
2664 	 */
2665 	if (page)
2666 		put_page(page);
2667 	if (fpin)
2668 		fput(fpin);
2669 	return ret | VM_FAULT_RETRY;
2670 }
2671 EXPORT_SYMBOL(filemap_fault);
2672 
2673 void filemap_map_pages(struct vm_fault *vmf,
2674 		pgoff_t start_pgoff, pgoff_t end_pgoff)
2675 {
2676 	struct file *file = vmf->vma->vm_file;
2677 	struct address_space *mapping = file->f_mapping;
2678 	pgoff_t last_pgoff = start_pgoff;
2679 	unsigned long max_idx;
2680 	XA_STATE(xas, &mapping->i_pages, start_pgoff);
2681 	struct page *page;
2682 
2683 	rcu_read_lock();
2684 	xas_for_each(&xas, page, end_pgoff) {
2685 		if (xas_retry(&xas, page))
2686 			continue;
2687 		if (xa_is_value(page))
2688 			goto next;
2689 
2690 		/*
2691 		 * Check for a locked page first, as a speculative
2692 		 * reference may adversely influence page migration.
2693 		 */
2694 		if (PageLocked(page))
2695 			goto next;
2696 		if (!page_cache_get_speculative(page))
2697 			goto next;
2698 
2699 		/* Has the page moved or been split? */
2700 		if (unlikely(page != xas_reload(&xas)))
2701 			goto skip;
2702 		page = find_subpage(page, xas.xa_index);
2703 
2704 		if (!PageUptodate(page) ||
2705 				PageReadahead(page) ||
2706 				PageHWPoison(page))
2707 			goto skip;
2708 		if (!trylock_page(page))
2709 			goto skip;
2710 
2711 		if (page->mapping != mapping || !PageUptodate(page))
2712 			goto unlock;
2713 
2714 		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2715 		if (page->index >= max_idx)
2716 			goto unlock;
2717 
2718 		if (file->f_ra.mmap_miss > 0)
2719 			file->f_ra.mmap_miss--;
2720 
2721 		vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
2722 		if (vmf->pte)
2723 			vmf->pte += xas.xa_index - last_pgoff;
2724 		last_pgoff = xas.xa_index;
2725 		if (alloc_set_pte(vmf, page))
2726 			goto unlock;
2727 		unlock_page(page);
2728 		goto next;
2729 unlock:
2730 		unlock_page(page);
2731 skip:
2732 		put_page(page);
2733 next:
2734 		/* Huge page is mapped? No need to proceed. */
2735 		if (pmd_trans_huge(*vmf->pmd))
2736 			break;
2737 	}
2738 	rcu_read_unlock();
2739 }
2740 EXPORT_SYMBOL(filemap_map_pages);
2741 
2742 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2743 {
2744 	struct page *page = vmf->page;
2745 	struct inode *inode = file_inode(vmf->vma->vm_file);
2746 	vm_fault_t ret = VM_FAULT_LOCKED;
2747 
2748 	sb_start_pagefault(inode->i_sb);
2749 	file_update_time(vmf->vma->vm_file);
2750 	lock_page(page);
2751 	if (page->mapping != inode->i_mapping) {
2752 		unlock_page(page);
2753 		ret = VM_FAULT_NOPAGE;
2754 		goto out;
2755 	}
2756 	/*
2757 	 * We mark the page dirty already here so that when freeze is in
2758 	 * progress, we are guaranteed that writeback during freezing will
2759 	 * see the dirty page and writeprotect it again.
2760 	 */
2761 	set_page_dirty(page);
2762 	wait_for_stable_page(page);
2763 out:
2764 	sb_end_pagefault(inode->i_sb);
2765 	return ret;
2766 }
2767 
2768 const struct vm_operations_struct generic_file_vm_ops = {
2769 	.fault		= filemap_fault,
2770 	.map_pages	= filemap_map_pages,
2771 	.page_mkwrite	= filemap_page_mkwrite,
2772 };
2773 
2774 /* This is used for a general mmap of a disk file */
2775 
2776 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2777 {
2778 	struct address_space *mapping = file->f_mapping;
2779 
2780 	if (!mapping->a_ops->readpage)
2781 		return -ENOEXEC;
2782 	file_accessed(file);
2783 	vma->vm_ops = &generic_file_vm_ops;
2784 	return 0;
2785 }
2786 
2787 /*
2788  * This is for filesystems which do not implement ->writepage.
2789  */
2790 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2791 {
2792 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2793 		return -EINVAL;
2794 	return generic_file_mmap(file, vma);
2795 }
2796 #else
2797 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2798 {
2799 	return VM_FAULT_SIGBUS;
2800 }
2801 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2802 {
2803 	return -ENOSYS;
2804 }
2805 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2806 {
2807 	return -ENOSYS;
2808 }
2809 #endif /* CONFIG_MMU */
2810 
2811 EXPORT_SYMBOL(filemap_page_mkwrite);
2812 EXPORT_SYMBOL(generic_file_mmap);
2813 EXPORT_SYMBOL(generic_file_readonly_mmap);
2814 
2815 static struct page *wait_on_page_read(struct page *page)
2816 {
2817 	if (!IS_ERR(page)) {
2818 		wait_on_page_locked(page);
2819 		if (!PageUptodate(page)) {
2820 			put_page(page);
2821 			page = ERR_PTR(-EIO);
2822 		}
2823 	}
2824 	return page;
2825 }
2826 
2827 static struct page *do_read_cache_page(struct address_space *mapping,
2828 				pgoff_t index,
2829 				int (*filler)(void *, struct page *),
2830 				void *data,
2831 				gfp_t gfp)
2832 {
2833 	struct page *page;
2834 	int err;
2835 repeat:
2836 	page = find_get_page(mapping, index);
2837 	if (!page) {
2838 		page = __page_cache_alloc(gfp);
2839 		if (!page)
2840 			return ERR_PTR(-ENOMEM);
2841 		err = add_to_page_cache_lru(page, mapping, index, gfp);
2842 		if (unlikely(err)) {
2843 			put_page(page);
2844 			if (err == -EEXIST)
2845 				goto repeat;
2846 			/* Presumably ENOMEM for xarray node */
2847 			return ERR_PTR(err);
2848 		}
2849 
2850 filler:
2851 		if (filler)
2852 			err = filler(data, page);
2853 		else
2854 			err = mapping->a_ops->readpage(data, page);
2855 
2856 		if (err < 0) {
2857 			put_page(page);
2858 			return ERR_PTR(err);
2859 		}
2860 
2861 		page = wait_on_page_read(page);
2862 		if (IS_ERR(page))
2863 			return page;
2864 		goto out;
2865 	}
2866 	if (PageUptodate(page))
2867 		goto out;
2868 
2869 	/*
2870 	 * Page is not up to date and may be locked due one of the following
2871 	 * case a: Page is being filled and the page lock is held
2872 	 * case b: Read/write error clearing the page uptodate status
2873 	 * case c: Truncation in progress (page locked)
2874 	 * case d: Reclaim in progress
2875 	 *
2876 	 * Case a, the page will be up to date when the page is unlocked.
2877 	 *    There is no need to serialise on the page lock here as the page
2878 	 *    is pinned so the lock gives no additional protection. Even if the
2879 	 *    the page is truncated, the data is still valid if PageUptodate as
2880 	 *    it's a race vs truncate race.
2881 	 * Case b, the page will not be up to date
2882 	 * Case c, the page may be truncated but in itself, the data may still
2883 	 *    be valid after IO completes as it's a read vs truncate race. The
2884 	 *    operation must restart if the page is not uptodate on unlock but
2885 	 *    otherwise serialising on page lock to stabilise the mapping gives
2886 	 *    no additional guarantees to the caller as the page lock is
2887 	 *    released before return.
2888 	 * Case d, similar to truncation. If reclaim holds the page lock, it
2889 	 *    will be a race with remove_mapping that determines if the mapping
2890 	 *    is valid on unlock but otherwise the data is valid and there is
2891 	 *    no need to serialise with page lock.
2892 	 *
2893 	 * As the page lock gives no additional guarantee, we optimistically
2894 	 * wait on the page to be unlocked and check if it's up to date and
2895 	 * use the page if it is. Otherwise, the page lock is required to
2896 	 * distinguish between the different cases. The motivation is that we
2897 	 * avoid spurious serialisations and wakeups when multiple processes
2898 	 * wait on the same page for IO to complete.
2899 	 */
2900 	wait_on_page_locked(page);
2901 	if (PageUptodate(page))
2902 		goto out;
2903 
2904 	/* Distinguish between all the cases under the safety of the lock */
2905 	lock_page(page);
2906 
2907 	/* Case c or d, restart the operation */
2908 	if (!page->mapping) {
2909 		unlock_page(page);
2910 		put_page(page);
2911 		goto repeat;
2912 	}
2913 
2914 	/* Someone else locked and filled the page in a very small window */
2915 	if (PageUptodate(page)) {
2916 		unlock_page(page);
2917 		goto out;
2918 	}
2919 
2920 	/*
2921 	 * A previous I/O error may have been due to temporary
2922 	 * failures.
2923 	 * Clear page error before actual read, PG_error will be
2924 	 * set again if read page fails.
2925 	 */
2926 	ClearPageError(page);
2927 	goto filler;
2928 
2929 out:
2930 	mark_page_accessed(page);
2931 	return page;
2932 }
2933 
2934 /**
2935  * read_cache_page - read into page cache, fill it if needed
2936  * @mapping:	the page's address_space
2937  * @index:	the page index
2938  * @filler:	function to perform the read
2939  * @data:	first arg to filler(data, page) function, often left as NULL
2940  *
2941  * Read into the page cache. If a page already exists, and PageUptodate() is
2942  * not set, try to fill the page and wait for it to become unlocked.
2943  *
2944  * If the page does not get brought uptodate, return -EIO.
2945  *
2946  * Return: up to date page on success, ERR_PTR() on failure.
2947  */
2948 struct page *read_cache_page(struct address_space *mapping,
2949 				pgoff_t index,
2950 				int (*filler)(void *, struct page *),
2951 				void *data)
2952 {
2953 	return do_read_cache_page(mapping, index, filler, data,
2954 			mapping_gfp_mask(mapping));
2955 }
2956 EXPORT_SYMBOL(read_cache_page);
2957 
2958 /**
2959  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2960  * @mapping:	the page's address_space
2961  * @index:	the page index
2962  * @gfp:	the page allocator flags to use if allocating
2963  *
2964  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2965  * any new page allocations done using the specified allocation flags.
2966  *
2967  * If the page does not get brought uptodate, return -EIO.
2968  *
2969  * Return: up to date page on success, ERR_PTR() on failure.
2970  */
2971 struct page *read_cache_page_gfp(struct address_space *mapping,
2972 				pgoff_t index,
2973 				gfp_t gfp)
2974 {
2975 	return do_read_cache_page(mapping, index, NULL, NULL, gfp);
2976 }
2977 EXPORT_SYMBOL(read_cache_page_gfp);
2978 
2979 /*
2980  * Don't operate on ranges the page cache doesn't support, and don't exceed the
2981  * LFS limits.  If pos is under the limit it becomes a short access.  If it
2982  * exceeds the limit we return -EFBIG.
2983  */
2984 static int generic_write_check_limits(struct file *file, loff_t pos,
2985 				      loff_t *count)
2986 {
2987 	struct inode *inode = file->f_mapping->host;
2988 	loff_t max_size = inode->i_sb->s_maxbytes;
2989 	loff_t limit = rlimit(RLIMIT_FSIZE);
2990 
2991 	if (limit != RLIM_INFINITY) {
2992 		if (pos >= limit) {
2993 			send_sig(SIGXFSZ, current, 0);
2994 			return -EFBIG;
2995 		}
2996 		*count = min(*count, limit - pos);
2997 	}
2998 
2999 	if (!(file->f_flags & O_LARGEFILE))
3000 		max_size = MAX_NON_LFS;
3001 
3002 	if (unlikely(pos >= max_size))
3003 		return -EFBIG;
3004 
3005 	*count = min(*count, max_size - pos);
3006 
3007 	return 0;
3008 }
3009 
3010 /*
3011  * Performs necessary checks before doing a write
3012  *
3013  * Can adjust writing position or amount of bytes to write.
3014  * Returns appropriate error code that caller should return or
3015  * zero in case that write should be allowed.
3016  */
3017 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
3018 {
3019 	struct file *file = iocb->ki_filp;
3020 	struct inode *inode = file->f_mapping->host;
3021 	loff_t count;
3022 	int ret;
3023 
3024 	if (IS_SWAPFILE(inode))
3025 		return -ETXTBSY;
3026 
3027 	if (!iov_iter_count(from))
3028 		return 0;
3029 
3030 	/* FIXME: this is for backwards compatibility with 2.4 */
3031 	if (iocb->ki_flags & IOCB_APPEND)
3032 		iocb->ki_pos = i_size_read(inode);
3033 
3034 	if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
3035 		return -EINVAL;
3036 
3037 	count = iov_iter_count(from);
3038 	ret = generic_write_check_limits(file, iocb->ki_pos, &count);
3039 	if (ret)
3040 		return ret;
3041 
3042 	iov_iter_truncate(from, count);
3043 	return iov_iter_count(from);
3044 }
3045 EXPORT_SYMBOL(generic_write_checks);
3046 
3047 /*
3048  * Performs necessary checks before doing a clone.
3049  *
3050  * Can adjust amount of bytes to clone via @req_count argument.
3051  * Returns appropriate error code that caller should return or
3052  * zero in case the clone should be allowed.
3053  */
3054 int generic_remap_checks(struct file *file_in, loff_t pos_in,
3055 			 struct file *file_out, loff_t pos_out,
3056 			 loff_t *req_count, unsigned int remap_flags)
3057 {
3058 	struct inode *inode_in = file_in->f_mapping->host;
3059 	struct inode *inode_out = file_out->f_mapping->host;
3060 	uint64_t count = *req_count;
3061 	uint64_t bcount;
3062 	loff_t size_in, size_out;
3063 	loff_t bs = inode_out->i_sb->s_blocksize;
3064 	int ret;
3065 
3066 	/* The start of both ranges must be aligned to an fs block. */
3067 	if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_out, bs))
3068 		return -EINVAL;
3069 
3070 	/* Ensure offsets don't wrap. */
3071 	if (pos_in + count < pos_in || pos_out + count < pos_out)
3072 		return -EINVAL;
3073 
3074 	size_in = i_size_read(inode_in);
3075 	size_out = i_size_read(inode_out);
3076 
3077 	/* Dedupe requires both ranges to be within EOF. */
3078 	if ((remap_flags & REMAP_FILE_DEDUP) &&
3079 	    (pos_in >= size_in || pos_in + count > size_in ||
3080 	     pos_out >= size_out || pos_out + count > size_out))
3081 		return -EINVAL;
3082 
3083 	/* Ensure the infile range is within the infile. */
3084 	if (pos_in >= size_in)
3085 		return -EINVAL;
3086 	count = min(count, size_in - (uint64_t)pos_in);
3087 
3088 	ret = generic_write_check_limits(file_out, pos_out, &count);
3089 	if (ret)
3090 		return ret;
3091 
3092 	/*
3093 	 * If the user wanted us to link to the infile's EOF, round up to the
3094 	 * next block boundary for this check.
3095 	 *
3096 	 * Otherwise, make sure the count is also block-aligned, having
3097 	 * already confirmed the starting offsets' block alignment.
3098 	 */
3099 	if (pos_in + count == size_in) {
3100 		bcount = ALIGN(size_in, bs) - pos_in;
3101 	} else {
3102 		if (!IS_ALIGNED(count, bs))
3103 			count = ALIGN_DOWN(count, bs);
3104 		bcount = count;
3105 	}
3106 
3107 	/* Don't allow overlapped cloning within the same file. */
3108 	if (inode_in == inode_out &&
3109 	    pos_out + bcount > pos_in &&
3110 	    pos_out < pos_in + bcount)
3111 		return -EINVAL;
3112 
3113 	/*
3114 	 * We shortened the request but the caller can't deal with that, so
3115 	 * bounce the request back to userspace.
3116 	 */
3117 	if (*req_count != count && !(remap_flags & REMAP_FILE_CAN_SHORTEN))
3118 		return -EINVAL;
3119 
3120 	*req_count = count;
3121 	return 0;
3122 }
3123 
3124 
3125 /*
3126  * Performs common checks before doing a file copy/clone
3127  * from @file_in to @file_out.
3128  */
3129 int generic_file_rw_checks(struct file *file_in, struct file *file_out)
3130 {
3131 	struct inode *inode_in = file_inode(file_in);
3132 	struct inode *inode_out = file_inode(file_out);
3133 
3134 	/* Don't copy dirs, pipes, sockets... */
3135 	if (S_ISDIR(inode_in->i_mode) || S_ISDIR(inode_out->i_mode))
3136 		return -EISDIR;
3137 	if (!S_ISREG(inode_in->i_mode) || !S_ISREG(inode_out->i_mode))
3138 		return -EINVAL;
3139 
3140 	if (!(file_in->f_mode & FMODE_READ) ||
3141 	    !(file_out->f_mode & FMODE_WRITE) ||
3142 	    (file_out->f_flags & O_APPEND))
3143 		return -EBADF;
3144 
3145 	return 0;
3146 }
3147 
3148 /*
3149  * Performs necessary checks before doing a file copy
3150  *
3151  * Can adjust amount of bytes to copy via @req_count argument.
3152  * Returns appropriate error code that caller should return or
3153  * zero in case the copy should be allowed.
3154  */
3155 int generic_copy_file_checks(struct file *file_in, loff_t pos_in,
3156 			     struct file *file_out, loff_t pos_out,
3157 			     size_t *req_count, unsigned int flags)
3158 {
3159 	struct inode *inode_in = file_inode(file_in);
3160 	struct inode *inode_out = file_inode(file_out);
3161 	uint64_t count = *req_count;
3162 	loff_t size_in;
3163 	int ret;
3164 
3165 	ret = generic_file_rw_checks(file_in, file_out);
3166 	if (ret)
3167 		return ret;
3168 
3169 	/* Don't touch certain kinds of inodes */
3170 	if (IS_IMMUTABLE(inode_out))
3171 		return -EPERM;
3172 
3173 	if (IS_SWAPFILE(inode_in) || IS_SWAPFILE(inode_out))
3174 		return -ETXTBSY;
3175 
3176 	/* Ensure offsets don't wrap. */
3177 	if (pos_in + count < pos_in || pos_out + count < pos_out)
3178 		return -EOVERFLOW;
3179 
3180 	/* Shorten the copy to EOF */
3181 	size_in = i_size_read(inode_in);
3182 	if (pos_in >= size_in)
3183 		count = 0;
3184 	else
3185 		count = min(count, size_in - (uint64_t)pos_in);
3186 
3187 	ret = generic_write_check_limits(file_out, pos_out, &count);
3188 	if (ret)
3189 		return ret;
3190 
3191 	/* Don't allow overlapped copying within the same file. */
3192 	if (inode_in == inode_out &&
3193 	    pos_out + count > pos_in &&
3194 	    pos_out < pos_in + count)
3195 		return -EINVAL;
3196 
3197 	*req_count = count;
3198 	return 0;
3199 }
3200 
3201 int pagecache_write_begin(struct file *file, struct address_space *mapping,
3202 				loff_t pos, unsigned len, unsigned flags,
3203 				struct page **pagep, void **fsdata)
3204 {
3205 	const struct address_space_operations *aops = mapping->a_ops;
3206 
3207 	return aops->write_begin(file, mapping, pos, len, flags,
3208 							pagep, fsdata);
3209 }
3210 EXPORT_SYMBOL(pagecache_write_begin);
3211 
3212 int pagecache_write_end(struct file *file, struct address_space *mapping,
3213 				loff_t pos, unsigned len, unsigned copied,
3214 				struct page *page, void *fsdata)
3215 {
3216 	const struct address_space_operations *aops = mapping->a_ops;
3217 
3218 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3219 }
3220 EXPORT_SYMBOL(pagecache_write_end);
3221 
3222 /*
3223  * Warn about a page cache invalidation failure during a direct I/O write.
3224  */
3225 void dio_warn_stale_pagecache(struct file *filp)
3226 {
3227 	static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3228 	char pathname[128];
3229 	struct inode *inode = file_inode(filp);
3230 	char *path;
3231 
3232 	errseq_set(&inode->i_mapping->wb_err, -EIO);
3233 	if (__ratelimit(&_rs)) {
3234 		path = file_path(filp, pathname, sizeof(pathname));
3235 		if (IS_ERR(path))
3236 			path = "(unknown)";
3237 		pr_crit("Page cache invalidation failure on direct I/O.  Possible data corruption due to collision with buffered I/O!\n");
3238 		pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3239 			current->comm);
3240 	}
3241 }
3242 
3243 ssize_t
3244 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3245 {
3246 	struct file	*file = iocb->ki_filp;
3247 	struct address_space *mapping = file->f_mapping;
3248 	struct inode	*inode = mapping->host;
3249 	loff_t		pos = iocb->ki_pos;
3250 	ssize_t		written;
3251 	size_t		write_len;
3252 	pgoff_t		end;
3253 
3254 	write_len = iov_iter_count(from);
3255 	end = (pos + write_len - 1) >> PAGE_SHIFT;
3256 
3257 	if (iocb->ki_flags & IOCB_NOWAIT) {
3258 		/* If there are pages to writeback, return */
3259 		if (filemap_range_has_page(inode->i_mapping, pos,
3260 					   pos + write_len - 1))
3261 			return -EAGAIN;
3262 	} else {
3263 		written = filemap_write_and_wait_range(mapping, pos,
3264 							pos + write_len - 1);
3265 		if (written)
3266 			goto out;
3267 	}
3268 
3269 	/*
3270 	 * After a write we want buffered reads to be sure to go to disk to get
3271 	 * the new data.  We invalidate clean cached page from the region we're
3272 	 * about to write.  We do this *before* the write so that we can return
3273 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
3274 	 */
3275 	written = invalidate_inode_pages2_range(mapping,
3276 					pos >> PAGE_SHIFT, end);
3277 	/*
3278 	 * If a page can not be invalidated, return 0 to fall back
3279 	 * to buffered write.
3280 	 */
3281 	if (written) {
3282 		if (written == -EBUSY)
3283 			return 0;
3284 		goto out;
3285 	}
3286 
3287 	written = mapping->a_ops->direct_IO(iocb, from);
3288 
3289 	/*
3290 	 * Finally, try again to invalidate clean pages which might have been
3291 	 * cached by non-direct readahead, or faulted in by get_user_pages()
3292 	 * if the source of the write was an mmap'ed region of the file
3293 	 * we're writing.  Either one is a pretty crazy thing to do,
3294 	 * so we don't support it 100%.  If this invalidation
3295 	 * fails, tough, the write still worked...
3296 	 *
3297 	 * Most of the time we do not need this since dio_complete() will do
3298 	 * the invalidation for us. However there are some file systems that
3299 	 * do not end up with dio_complete() being called, so let's not break
3300 	 * them by removing it completely.
3301 	 *
3302 	 * Noticeable example is a blkdev_direct_IO().
3303 	 *
3304 	 * Skip invalidation for async writes or if mapping has no pages.
3305 	 */
3306 	if (written > 0 && mapping->nrpages &&
3307 	    invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3308 		dio_warn_stale_pagecache(file);
3309 
3310 	if (written > 0) {
3311 		pos += written;
3312 		write_len -= written;
3313 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3314 			i_size_write(inode, pos);
3315 			mark_inode_dirty(inode);
3316 		}
3317 		iocb->ki_pos = pos;
3318 	}
3319 	iov_iter_revert(from, write_len - iov_iter_count(from));
3320 out:
3321 	return written;
3322 }
3323 EXPORT_SYMBOL(generic_file_direct_write);
3324 
3325 /*
3326  * Find or create a page at the given pagecache position. Return the locked
3327  * page. This function is specifically for buffered writes.
3328  */
3329 struct page *grab_cache_page_write_begin(struct address_space *mapping,
3330 					pgoff_t index, unsigned flags)
3331 {
3332 	struct page *page;
3333 	int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3334 
3335 	if (flags & AOP_FLAG_NOFS)
3336 		fgp_flags |= FGP_NOFS;
3337 
3338 	page = pagecache_get_page(mapping, index, fgp_flags,
3339 			mapping_gfp_mask(mapping));
3340 	if (page)
3341 		wait_for_stable_page(page);
3342 
3343 	return page;
3344 }
3345 EXPORT_SYMBOL(grab_cache_page_write_begin);
3346 
3347 ssize_t generic_perform_write(struct file *file,
3348 				struct iov_iter *i, loff_t pos)
3349 {
3350 	struct address_space *mapping = file->f_mapping;
3351 	const struct address_space_operations *a_ops = mapping->a_ops;
3352 	long status = 0;
3353 	ssize_t written = 0;
3354 	unsigned int flags = 0;
3355 
3356 	do {
3357 		struct page *page;
3358 		unsigned long offset;	/* Offset into pagecache page */
3359 		unsigned long bytes;	/* Bytes to write to page */
3360 		size_t copied;		/* Bytes copied from user */
3361 		void *fsdata;
3362 
3363 		offset = (pos & (PAGE_SIZE - 1));
3364 		bytes = min_t(unsigned long, PAGE_SIZE - offset,
3365 						iov_iter_count(i));
3366 
3367 again:
3368 		/*
3369 		 * Bring in the user page that we will copy from _first_.
3370 		 * Otherwise there's a nasty deadlock on copying from the
3371 		 * same page as we're writing to, without it being marked
3372 		 * up-to-date.
3373 		 *
3374 		 * Not only is this an optimisation, but it is also required
3375 		 * to check that the address is actually valid, when atomic
3376 		 * usercopies are used, below.
3377 		 */
3378 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3379 			status = -EFAULT;
3380 			break;
3381 		}
3382 
3383 		if (fatal_signal_pending(current)) {
3384 			status = -EINTR;
3385 			break;
3386 		}
3387 
3388 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3389 						&page, &fsdata);
3390 		if (unlikely(status < 0))
3391 			break;
3392 
3393 		if (mapping_writably_mapped(mapping))
3394 			flush_dcache_page(page);
3395 
3396 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
3397 		flush_dcache_page(page);
3398 
3399 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
3400 						page, fsdata);
3401 		if (unlikely(status < 0))
3402 			break;
3403 		copied = status;
3404 
3405 		cond_resched();
3406 
3407 		iov_iter_advance(i, copied);
3408 		if (unlikely(copied == 0)) {
3409 			/*
3410 			 * If we were unable to copy any data at all, we must
3411 			 * fall back to a single segment length write.
3412 			 *
3413 			 * If we didn't fallback here, we could livelock
3414 			 * because not all segments in the iov can be copied at
3415 			 * once without a pagefault.
3416 			 */
3417 			bytes = min_t(unsigned long, PAGE_SIZE - offset,
3418 						iov_iter_single_seg_count(i));
3419 			goto again;
3420 		}
3421 		pos += copied;
3422 		written += copied;
3423 
3424 		balance_dirty_pages_ratelimited(mapping);
3425 	} while (iov_iter_count(i));
3426 
3427 	return written ? written : status;
3428 }
3429 EXPORT_SYMBOL(generic_perform_write);
3430 
3431 /**
3432  * __generic_file_write_iter - write data to a file
3433  * @iocb:	IO state structure (file, offset, etc.)
3434  * @from:	iov_iter with data to write
3435  *
3436  * This function does all the work needed for actually writing data to a
3437  * file. It does all basic checks, removes SUID from the file, updates
3438  * modification times and calls proper subroutines depending on whether we
3439  * do direct IO or a standard buffered write.
3440  *
3441  * It expects i_mutex to be grabbed unless we work on a block device or similar
3442  * object which does not need locking at all.
3443  *
3444  * This function does *not* take care of syncing data in case of O_SYNC write.
3445  * A caller has to handle it. This is mainly due to the fact that we want to
3446  * avoid syncing under i_mutex.
3447  *
3448  * Return:
3449  * * number of bytes written, even for truncated writes
3450  * * negative error code if no data has been written at all
3451  */
3452 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3453 {
3454 	struct file *file = iocb->ki_filp;
3455 	struct address_space * mapping = file->f_mapping;
3456 	struct inode 	*inode = mapping->host;
3457 	ssize_t		written = 0;
3458 	ssize_t		err;
3459 	ssize_t		status;
3460 
3461 	/* We can write back this queue in page reclaim */
3462 	current->backing_dev_info = inode_to_bdi(inode);
3463 	err = file_remove_privs(file);
3464 	if (err)
3465 		goto out;
3466 
3467 	err = file_update_time(file);
3468 	if (err)
3469 		goto out;
3470 
3471 	if (iocb->ki_flags & IOCB_DIRECT) {
3472 		loff_t pos, endbyte;
3473 
3474 		written = generic_file_direct_write(iocb, from);
3475 		/*
3476 		 * If the write stopped short of completing, fall back to
3477 		 * buffered writes.  Some filesystems do this for writes to
3478 		 * holes, for example.  For DAX files, a buffered write will
3479 		 * not succeed (even if it did, DAX does not handle dirty
3480 		 * page-cache pages correctly).
3481 		 */
3482 		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3483 			goto out;
3484 
3485 		status = generic_perform_write(file, from, pos = iocb->ki_pos);
3486 		/*
3487 		 * If generic_perform_write() returned a synchronous error
3488 		 * then we want to return the number of bytes which were
3489 		 * direct-written, or the error code if that was zero.  Note
3490 		 * that this differs from normal direct-io semantics, which
3491 		 * will return -EFOO even if some bytes were written.
3492 		 */
3493 		if (unlikely(status < 0)) {
3494 			err = status;
3495 			goto out;
3496 		}
3497 		/*
3498 		 * We need to ensure that the page cache pages are written to
3499 		 * disk and invalidated to preserve the expected O_DIRECT
3500 		 * semantics.
3501 		 */
3502 		endbyte = pos + status - 1;
3503 		err = filemap_write_and_wait_range(mapping, pos, endbyte);
3504 		if (err == 0) {
3505 			iocb->ki_pos = endbyte + 1;
3506 			written += status;
3507 			invalidate_mapping_pages(mapping,
3508 						 pos >> PAGE_SHIFT,
3509 						 endbyte >> PAGE_SHIFT);
3510 		} else {
3511 			/*
3512 			 * We don't know how much we wrote, so just return
3513 			 * the number of bytes which were direct-written
3514 			 */
3515 		}
3516 	} else {
3517 		written = generic_perform_write(file, from, iocb->ki_pos);
3518 		if (likely(written > 0))
3519 			iocb->ki_pos += written;
3520 	}
3521 out:
3522 	current->backing_dev_info = NULL;
3523 	return written ? written : err;
3524 }
3525 EXPORT_SYMBOL(__generic_file_write_iter);
3526 
3527 /**
3528  * generic_file_write_iter - write data to a file
3529  * @iocb:	IO state structure
3530  * @from:	iov_iter with data to write
3531  *
3532  * This is a wrapper around __generic_file_write_iter() to be used by most
3533  * filesystems. It takes care of syncing the file in case of O_SYNC file
3534  * and acquires i_mutex as needed.
3535  * Return:
3536  * * negative error code if no data has been written at all of
3537  *   vfs_fsync_range() failed for a synchronous write
3538  * * number of bytes written, even for truncated writes
3539  */
3540 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3541 {
3542 	struct file *file = iocb->ki_filp;
3543 	struct inode *inode = file->f_mapping->host;
3544 	ssize_t ret;
3545 
3546 	inode_lock(inode);
3547 	ret = generic_write_checks(iocb, from);
3548 	if (ret > 0)
3549 		ret = __generic_file_write_iter(iocb, from);
3550 	inode_unlock(inode);
3551 
3552 	if (ret > 0)
3553 		ret = generic_write_sync(iocb, ret);
3554 	return ret;
3555 }
3556 EXPORT_SYMBOL(generic_file_write_iter);
3557 
3558 /**
3559  * try_to_release_page() - release old fs-specific metadata on a page
3560  *
3561  * @page: the page which the kernel is trying to free
3562  * @gfp_mask: memory allocation flags (and I/O mode)
3563  *
3564  * The address_space is to try to release any data against the page
3565  * (presumably at page->private).
3566  *
3567  * This may also be called if PG_fscache is set on a page, indicating that the
3568  * page is known to the local caching routines.
3569  *
3570  * The @gfp_mask argument specifies whether I/O may be performed to release
3571  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3572  *
3573  * Return: %1 if the release was successful, otherwise return zero.
3574  */
3575 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3576 {
3577 	struct address_space * const mapping = page->mapping;
3578 
3579 	BUG_ON(!PageLocked(page));
3580 	if (PageWriteback(page))
3581 		return 0;
3582 
3583 	if (mapping && mapping->a_ops->releasepage)
3584 		return mapping->a_ops->releasepage(page, gfp_mask);
3585 	return try_to_free_buffers(page);
3586 }
3587 
3588 EXPORT_SYMBOL(try_to_release_page);
3589