1 /* 2 * linux/mm/filemap.c 3 * 4 * Copyright (C) 1994-1999 Linus Torvalds 5 */ 6 7 /* 8 * This file handles the generic file mmap semantics used by 9 * most "normal" filesystems (but you don't /have/ to use this: 10 * the NFS filesystem used to do this differently, for example) 11 */ 12 #include <linux/export.h> 13 #include <linux/compiler.h> 14 #include <linux/dax.h> 15 #include <linux/fs.h> 16 #include <linux/uaccess.h> 17 #include <linux/capability.h> 18 #include <linux/kernel_stat.h> 19 #include <linux/gfp.h> 20 #include <linux/mm.h> 21 #include <linux/swap.h> 22 #include <linux/mman.h> 23 #include <linux/pagemap.h> 24 #include <linux/file.h> 25 #include <linux/uio.h> 26 #include <linux/hash.h> 27 #include <linux/writeback.h> 28 #include <linux/backing-dev.h> 29 #include <linux/pagevec.h> 30 #include <linux/blkdev.h> 31 #include <linux/security.h> 32 #include <linux/cpuset.h> 33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */ 34 #include <linux/hugetlb.h> 35 #include <linux/memcontrol.h> 36 #include <linux/cleancache.h> 37 #include <linux/rmap.h> 38 #include "internal.h" 39 40 #define CREATE_TRACE_POINTS 41 #include <trace/events/filemap.h> 42 43 /* 44 * FIXME: remove all knowledge of the buffer layer from the core VM 45 */ 46 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 47 48 #include <asm/mman.h> 49 50 /* 51 * Shared mappings implemented 30.11.1994. It's not fully working yet, 52 * though. 53 * 54 * Shared mappings now work. 15.8.1995 Bruno. 55 * 56 * finished 'unifying' the page and buffer cache and SMP-threaded the 57 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 58 * 59 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 60 */ 61 62 /* 63 * Lock ordering: 64 * 65 * ->i_mmap_rwsem (truncate_pagecache) 66 * ->private_lock (__free_pte->__set_page_dirty_buffers) 67 * ->swap_lock (exclusive_swap_page, others) 68 * ->mapping->tree_lock 69 * 70 * ->i_mutex 71 * ->i_mmap_rwsem (truncate->unmap_mapping_range) 72 * 73 * ->mmap_sem 74 * ->i_mmap_rwsem 75 * ->page_table_lock or pte_lock (various, mainly in memory.c) 76 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock) 77 * 78 * ->mmap_sem 79 * ->lock_page (access_process_vm) 80 * 81 * ->i_mutex (generic_perform_write) 82 * ->mmap_sem (fault_in_pages_readable->do_page_fault) 83 * 84 * bdi->wb.list_lock 85 * sb_lock (fs/fs-writeback.c) 86 * ->mapping->tree_lock (__sync_single_inode) 87 * 88 * ->i_mmap_rwsem 89 * ->anon_vma.lock (vma_adjust) 90 * 91 * ->anon_vma.lock 92 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 93 * 94 * ->page_table_lock or pte_lock 95 * ->swap_lock (try_to_unmap_one) 96 * ->private_lock (try_to_unmap_one) 97 * ->tree_lock (try_to_unmap_one) 98 * ->zone_lru_lock(zone) (follow_page->mark_page_accessed) 99 * ->zone_lru_lock(zone) (check_pte_range->isolate_lru_page) 100 * ->private_lock (page_remove_rmap->set_page_dirty) 101 * ->tree_lock (page_remove_rmap->set_page_dirty) 102 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty) 103 * ->inode->i_lock (page_remove_rmap->set_page_dirty) 104 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg) 105 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 106 * ->inode->i_lock (zap_pte_range->set_page_dirty) 107 * ->private_lock (zap_pte_range->__set_page_dirty_buffers) 108 * 109 * ->i_mmap_rwsem 110 * ->tasklist_lock (memory_failure, collect_procs_ao) 111 */ 112 113 static int page_cache_tree_insert(struct address_space *mapping, 114 struct page *page, void **shadowp) 115 { 116 struct radix_tree_node *node; 117 void **slot; 118 int error; 119 120 error = __radix_tree_create(&mapping->page_tree, page->index, 0, 121 &node, &slot); 122 if (error) 123 return error; 124 if (*slot) { 125 void *p; 126 127 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock); 128 if (!radix_tree_exceptional_entry(p)) 129 return -EEXIST; 130 131 mapping->nrexceptional--; 132 if (!dax_mapping(mapping)) { 133 if (shadowp) 134 *shadowp = p; 135 } else { 136 /* DAX can replace empty locked entry with a hole */ 137 WARN_ON_ONCE(p != 138 dax_radix_locked_entry(0, RADIX_DAX_EMPTY)); 139 /* Wakeup waiters for exceptional entry lock */ 140 dax_wake_mapping_entry_waiter(mapping, page->index, p, 141 true); 142 } 143 } 144 __radix_tree_replace(&mapping->page_tree, node, slot, page, 145 workingset_update_node, mapping); 146 mapping->nrpages++; 147 return 0; 148 } 149 150 static void page_cache_tree_delete(struct address_space *mapping, 151 struct page *page, void *shadow) 152 { 153 int i, nr; 154 155 /* hugetlb pages are represented by one entry in the radix tree */ 156 nr = PageHuge(page) ? 1 : hpage_nr_pages(page); 157 158 VM_BUG_ON_PAGE(!PageLocked(page), page); 159 VM_BUG_ON_PAGE(PageTail(page), page); 160 VM_BUG_ON_PAGE(nr != 1 && shadow, page); 161 162 for (i = 0; i < nr; i++) { 163 struct radix_tree_node *node; 164 void **slot; 165 166 __radix_tree_lookup(&mapping->page_tree, page->index + i, 167 &node, &slot); 168 169 VM_BUG_ON_PAGE(!node && nr != 1, page); 170 171 radix_tree_clear_tags(&mapping->page_tree, node, slot); 172 __radix_tree_replace(&mapping->page_tree, node, slot, shadow, 173 workingset_update_node, mapping); 174 } 175 176 if (shadow) { 177 mapping->nrexceptional += nr; 178 /* 179 * Make sure the nrexceptional update is committed before 180 * the nrpages update so that final truncate racing 181 * with reclaim does not see both counters 0 at the 182 * same time and miss a shadow entry. 183 */ 184 smp_wmb(); 185 } 186 mapping->nrpages -= nr; 187 } 188 189 /* 190 * Delete a page from the page cache and free it. Caller has to make 191 * sure the page is locked and that nobody else uses it - or that usage 192 * is safe. The caller must hold the mapping's tree_lock. 193 */ 194 void __delete_from_page_cache(struct page *page, void *shadow) 195 { 196 struct address_space *mapping = page->mapping; 197 int nr = hpage_nr_pages(page); 198 199 trace_mm_filemap_delete_from_page_cache(page); 200 /* 201 * if we're uptodate, flush out into the cleancache, otherwise 202 * invalidate any existing cleancache entries. We can't leave 203 * stale data around in the cleancache once our page is gone 204 */ 205 if (PageUptodate(page) && PageMappedToDisk(page)) 206 cleancache_put_page(page); 207 else 208 cleancache_invalidate_page(mapping, page); 209 210 VM_BUG_ON_PAGE(PageTail(page), page); 211 VM_BUG_ON_PAGE(page_mapped(page), page); 212 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) { 213 int mapcount; 214 215 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n", 216 current->comm, page_to_pfn(page)); 217 dump_page(page, "still mapped when deleted"); 218 dump_stack(); 219 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 220 221 mapcount = page_mapcount(page); 222 if (mapping_exiting(mapping) && 223 page_count(page) >= mapcount + 2) { 224 /* 225 * All vmas have already been torn down, so it's 226 * a good bet that actually the page is unmapped, 227 * and we'd prefer not to leak it: if we're wrong, 228 * some other bad page check should catch it later. 229 */ 230 page_mapcount_reset(page); 231 page_ref_sub(page, mapcount); 232 } 233 } 234 235 page_cache_tree_delete(mapping, page, shadow); 236 237 page->mapping = NULL; 238 /* Leave page->index set: truncation lookup relies upon it */ 239 240 /* hugetlb pages do not participate in page cache accounting. */ 241 if (!PageHuge(page)) 242 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr); 243 if (PageSwapBacked(page)) { 244 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr); 245 if (PageTransHuge(page)) 246 __dec_node_page_state(page, NR_SHMEM_THPS); 247 } else { 248 VM_BUG_ON_PAGE(PageTransHuge(page) && !PageHuge(page), page); 249 } 250 251 /* 252 * At this point page must be either written or cleaned by truncate. 253 * Dirty page here signals a bug and loss of unwritten data. 254 * 255 * This fixes dirty accounting after removing the page entirely but 256 * leaves PageDirty set: it has no effect for truncated page and 257 * anyway will be cleared before returning page into buddy allocator. 258 */ 259 if (WARN_ON_ONCE(PageDirty(page))) 260 account_page_cleaned(page, mapping, inode_to_wb(mapping->host)); 261 } 262 263 /** 264 * delete_from_page_cache - delete page from page cache 265 * @page: the page which the kernel is trying to remove from page cache 266 * 267 * This must be called only on pages that have been verified to be in the page 268 * cache and locked. It will never put the page into the free list, the caller 269 * has a reference on the page. 270 */ 271 void delete_from_page_cache(struct page *page) 272 { 273 struct address_space *mapping = page_mapping(page); 274 unsigned long flags; 275 void (*freepage)(struct page *); 276 277 BUG_ON(!PageLocked(page)); 278 279 freepage = mapping->a_ops->freepage; 280 281 spin_lock_irqsave(&mapping->tree_lock, flags); 282 __delete_from_page_cache(page, NULL); 283 spin_unlock_irqrestore(&mapping->tree_lock, flags); 284 285 if (freepage) 286 freepage(page); 287 288 if (PageTransHuge(page) && !PageHuge(page)) { 289 page_ref_sub(page, HPAGE_PMD_NR); 290 VM_BUG_ON_PAGE(page_count(page) <= 0, page); 291 } else { 292 put_page(page); 293 } 294 } 295 EXPORT_SYMBOL(delete_from_page_cache); 296 297 int filemap_check_errors(struct address_space *mapping) 298 { 299 int ret = 0; 300 /* Check for outstanding write errors */ 301 if (test_bit(AS_ENOSPC, &mapping->flags) && 302 test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 303 ret = -ENOSPC; 304 if (test_bit(AS_EIO, &mapping->flags) && 305 test_and_clear_bit(AS_EIO, &mapping->flags)) 306 ret = -EIO; 307 return ret; 308 } 309 EXPORT_SYMBOL(filemap_check_errors); 310 311 /** 312 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 313 * @mapping: address space structure to write 314 * @start: offset in bytes where the range starts 315 * @end: offset in bytes where the range ends (inclusive) 316 * @sync_mode: enable synchronous operation 317 * 318 * Start writeback against all of a mapping's dirty pages that lie 319 * within the byte offsets <start, end> inclusive. 320 * 321 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 322 * opposed to a regular memory cleansing writeback. The difference between 323 * these two operations is that if a dirty page/buffer is encountered, it must 324 * be waited upon, and not just skipped over. 325 */ 326 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 327 loff_t end, int sync_mode) 328 { 329 int ret; 330 struct writeback_control wbc = { 331 .sync_mode = sync_mode, 332 .nr_to_write = LONG_MAX, 333 .range_start = start, 334 .range_end = end, 335 }; 336 337 if (!mapping_cap_writeback_dirty(mapping)) 338 return 0; 339 340 wbc_attach_fdatawrite_inode(&wbc, mapping->host); 341 ret = do_writepages(mapping, &wbc); 342 wbc_detach_inode(&wbc); 343 return ret; 344 } 345 346 static inline int __filemap_fdatawrite(struct address_space *mapping, 347 int sync_mode) 348 { 349 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 350 } 351 352 int filemap_fdatawrite(struct address_space *mapping) 353 { 354 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 355 } 356 EXPORT_SYMBOL(filemap_fdatawrite); 357 358 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 359 loff_t end) 360 { 361 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 362 } 363 EXPORT_SYMBOL(filemap_fdatawrite_range); 364 365 /** 366 * filemap_flush - mostly a non-blocking flush 367 * @mapping: target address_space 368 * 369 * This is a mostly non-blocking flush. Not suitable for data-integrity 370 * purposes - I/O may not be started against all dirty pages. 371 */ 372 int filemap_flush(struct address_space *mapping) 373 { 374 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 375 } 376 EXPORT_SYMBOL(filemap_flush); 377 378 static int __filemap_fdatawait_range(struct address_space *mapping, 379 loff_t start_byte, loff_t end_byte) 380 { 381 pgoff_t index = start_byte >> PAGE_SHIFT; 382 pgoff_t end = end_byte >> PAGE_SHIFT; 383 struct pagevec pvec; 384 int nr_pages; 385 int ret = 0; 386 387 if (end_byte < start_byte) 388 goto out; 389 390 pagevec_init(&pvec, 0); 391 while ((index <= end) && 392 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 393 PAGECACHE_TAG_WRITEBACK, 394 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) { 395 unsigned i; 396 397 for (i = 0; i < nr_pages; i++) { 398 struct page *page = pvec.pages[i]; 399 400 /* until radix tree lookup accepts end_index */ 401 if (page->index > end) 402 continue; 403 404 wait_on_page_writeback(page); 405 if (TestClearPageError(page)) 406 ret = -EIO; 407 } 408 pagevec_release(&pvec); 409 cond_resched(); 410 } 411 out: 412 return ret; 413 } 414 415 /** 416 * filemap_fdatawait_range - wait for writeback to complete 417 * @mapping: address space structure to wait for 418 * @start_byte: offset in bytes where the range starts 419 * @end_byte: offset in bytes where the range ends (inclusive) 420 * 421 * Walk the list of under-writeback pages of the given address space 422 * in the given range and wait for all of them. Check error status of 423 * the address space and return it. 424 * 425 * Since the error status of the address space is cleared by this function, 426 * callers are responsible for checking the return value and handling and/or 427 * reporting the error. 428 */ 429 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 430 loff_t end_byte) 431 { 432 int ret, ret2; 433 434 ret = __filemap_fdatawait_range(mapping, start_byte, end_byte); 435 ret2 = filemap_check_errors(mapping); 436 if (!ret) 437 ret = ret2; 438 439 return ret; 440 } 441 EXPORT_SYMBOL(filemap_fdatawait_range); 442 443 /** 444 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors 445 * @mapping: address space structure to wait for 446 * 447 * Walk the list of under-writeback pages of the given address space 448 * and wait for all of them. Unlike filemap_fdatawait(), this function 449 * does not clear error status of the address space. 450 * 451 * Use this function if callers don't handle errors themselves. Expected 452 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 453 * fsfreeze(8) 454 */ 455 void filemap_fdatawait_keep_errors(struct address_space *mapping) 456 { 457 loff_t i_size = i_size_read(mapping->host); 458 459 if (i_size == 0) 460 return; 461 462 __filemap_fdatawait_range(mapping, 0, i_size - 1); 463 } 464 465 /** 466 * filemap_fdatawait - wait for all under-writeback pages to complete 467 * @mapping: address space structure to wait for 468 * 469 * Walk the list of under-writeback pages of the given address space 470 * and wait for all of them. Check error status of the address space 471 * and return it. 472 * 473 * Since the error status of the address space is cleared by this function, 474 * callers are responsible for checking the return value and handling and/or 475 * reporting the error. 476 */ 477 int filemap_fdatawait(struct address_space *mapping) 478 { 479 loff_t i_size = i_size_read(mapping->host); 480 481 if (i_size == 0) 482 return 0; 483 484 return filemap_fdatawait_range(mapping, 0, i_size - 1); 485 } 486 EXPORT_SYMBOL(filemap_fdatawait); 487 488 int filemap_write_and_wait(struct address_space *mapping) 489 { 490 int err = 0; 491 492 if ((!dax_mapping(mapping) && mapping->nrpages) || 493 (dax_mapping(mapping) && mapping->nrexceptional)) { 494 err = filemap_fdatawrite(mapping); 495 /* 496 * Even if the above returned error, the pages may be 497 * written partially (e.g. -ENOSPC), so we wait for it. 498 * But the -EIO is special case, it may indicate the worst 499 * thing (e.g. bug) happened, so we avoid waiting for it. 500 */ 501 if (err != -EIO) { 502 int err2 = filemap_fdatawait(mapping); 503 if (!err) 504 err = err2; 505 } 506 } else { 507 err = filemap_check_errors(mapping); 508 } 509 return err; 510 } 511 EXPORT_SYMBOL(filemap_write_and_wait); 512 513 /** 514 * filemap_write_and_wait_range - write out & wait on a file range 515 * @mapping: the address_space for the pages 516 * @lstart: offset in bytes where the range starts 517 * @lend: offset in bytes where the range ends (inclusive) 518 * 519 * Write out and wait upon file offsets lstart->lend, inclusive. 520 * 521 * Note that `lend' is inclusive (describes the last byte to be written) so 522 * that this function can be used to write to the very end-of-file (end = -1). 523 */ 524 int filemap_write_and_wait_range(struct address_space *mapping, 525 loff_t lstart, loff_t lend) 526 { 527 int err = 0; 528 529 if ((!dax_mapping(mapping) && mapping->nrpages) || 530 (dax_mapping(mapping) && mapping->nrexceptional)) { 531 err = __filemap_fdatawrite_range(mapping, lstart, lend, 532 WB_SYNC_ALL); 533 /* See comment of filemap_write_and_wait() */ 534 if (err != -EIO) { 535 int err2 = filemap_fdatawait_range(mapping, 536 lstart, lend); 537 if (!err) 538 err = err2; 539 } 540 } else { 541 err = filemap_check_errors(mapping); 542 } 543 return err; 544 } 545 EXPORT_SYMBOL(filemap_write_and_wait_range); 546 547 /** 548 * replace_page_cache_page - replace a pagecache page with a new one 549 * @old: page to be replaced 550 * @new: page to replace with 551 * @gfp_mask: allocation mode 552 * 553 * This function replaces a page in the pagecache with a new one. On 554 * success it acquires the pagecache reference for the new page and 555 * drops it for the old page. Both the old and new pages must be 556 * locked. This function does not add the new page to the LRU, the 557 * caller must do that. 558 * 559 * The remove + add is atomic. The only way this function can fail is 560 * memory allocation failure. 561 */ 562 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask) 563 { 564 int error; 565 566 VM_BUG_ON_PAGE(!PageLocked(old), old); 567 VM_BUG_ON_PAGE(!PageLocked(new), new); 568 VM_BUG_ON_PAGE(new->mapping, new); 569 570 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM); 571 if (!error) { 572 struct address_space *mapping = old->mapping; 573 void (*freepage)(struct page *); 574 unsigned long flags; 575 576 pgoff_t offset = old->index; 577 freepage = mapping->a_ops->freepage; 578 579 get_page(new); 580 new->mapping = mapping; 581 new->index = offset; 582 583 spin_lock_irqsave(&mapping->tree_lock, flags); 584 __delete_from_page_cache(old, NULL); 585 error = page_cache_tree_insert(mapping, new, NULL); 586 BUG_ON(error); 587 588 /* 589 * hugetlb pages do not participate in page cache accounting. 590 */ 591 if (!PageHuge(new)) 592 __inc_node_page_state(new, NR_FILE_PAGES); 593 if (PageSwapBacked(new)) 594 __inc_node_page_state(new, NR_SHMEM); 595 spin_unlock_irqrestore(&mapping->tree_lock, flags); 596 mem_cgroup_migrate(old, new); 597 radix_tree_preload_end(); 598 if (freepage) 599 freepage(old); 600 put_page(old); 601 } 602 603 return error; 604 } 605 EXPORT_SYMBOL_GPL(replace_page_cache_page); 606 607 static int __add_to_page_cache_locked(struct page *page, 608 struct address_space *mapping, 609 pgoff_t offset, gfp_t gfp_mask, 610 void **shadowp) 611 { 612 int huge = PageHuge(page); 613 struct mem_cgroup *memcg; 614 int error; 615 616 VM_BUG_ON_PAGE(!PageLocked(page), page); 617 VM_BUG_ON_PAGE(PageSwapBacked(page), page); 618 619 if (!huge) { 620 error = mem_cgroup_try_charge(page, current->mm, 621 gfp_mask, &memcg, false); 622 if (error) 623 return error; 624 } 625 626 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM); 627 if (error) { 628 if (!huge) 629 mem_cgroup_cancel_charge(page, memcg, false); 630 return error; 631 } 632 633 get_page(page); 634 page->mapping = mapping; 635 page->index = offset; 636 637 spin_lock_irq(&mapping->tree_lock); 638 error = page_cache_tree_insert(mapping, page, shadowp); 639 radix_tree_preload_end(); 640 if (unlikely(error)) 641 goto err_insert; 642 643 /* hugetlb pages do not participate in page cache accounting. */ 644 if (!huge) 645 __inc_node_page_state(page, NR_FILE_PAGES); 646 spin_unlock_irq(&mapping->tree_lock); 647 if (!huge) 648 mem_cgroup_commit_charge(page, memcg, false, false); 649 trace_mm_filemap_add_to_page_cache(page); 650 return 0; 651 err_insert: 652 page->mapping = NULL; 653 /* Leave page->index set: truncation relies upon it */ 654 spin_unlock_irq(&mapping->tree_lock); 655 if (!huge) 656 mem_cgroup_cancel_charge(page, memcg, false); 657 put_page(page); 658 return error; 659 } 660 661 /** 662 * add_to_page_cache_locked - add a locked page to the pagecache 663 * @page: page to add 664 * @mapping: the page's address_space 665 * @offset: page index 666 * @gfp_mask: page allocation mode 667 * 668 * This function is used to add a page to the pagecache. It must be locked. 669 * This function does not add the page to the LRU. The caller must do that. 670 */ 671 int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 672 pgoff_t offset, gfp_t gfp_mask) 673 { 674 return __add_to_page_cache_locked(page, mapping, offset, 675 gfp_mask, NULL); 676 } 677 EXPORT_SYMBOL(add_to_page_cache_locked); 678 679 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 680 pgoff_t offset, gfp_t gfp_mask) 681 { 682 void *shadow = NULL; 683 int ret; 684 685 __SetPageLocked(page); 686 ret = __add_to_page_cache_locked(page, mapping, offset, 687 gfp_mask, &shadow); 688 if (unlikely(ret)) 689 __ClearPageLocked(page); 690 else { 691 /* 692 * The page might have been evicted from cache only 693 * recently, in which case it should be activated like 694 * any other repeatedly accessed page. 695 * The exception is pages getting rewritten; evicting other 696 * data from the working set, only to cache data that will 697 * get overwritten with something else, is a waste of memory. 698 */ 699 if (!(gfp_mask & __GFP_WRITE) && 700 shadow && workingset_refault(shadow)) { 701 SetPageActive(page); 702 workingset_activation(page); 703 } else 704 ClearPageActive(page); 705 lru_cache_add(page); 706 } 707 return ret; 708 } 709 EXPORT_SYMBOL_GPL(add_to_page_cache_lru); 710 711 #ifdef CONFIG_NUMA 712 struct page *__page_cache_alloc(gfp_t gfp) 713 { 714 int n; 715 struct page *page; 716 717 if (cpuset_do_page_mem_spread()) { 718 unsigned int cpuset_mems_cookie; 719 do { 720 cpuset_mems_cookie = read_mems_allowed_begin(); 721 n = cpuset_mem_spread_node(); 722 page = __alloc_pages_node(n, gfp, 0); 723 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie)); 724 725 return page; 726 } 727 return alloc_pages(gfp, 0); 728 } 729 EXPORT_SYMBOL(__page_cache_alloc); 730 #endif 731 732 /* 733 * In order to wait for pages to become available there must be 734 * waitqueues associated with pages. By using a hash table of 735 * waitqueues where the bucket discipline is to maintain all 736 * waiters on the same queue and wake all when any of the pages 737 * become available, and for the woken contexts to check to be 738 * sure the appropriate page became available, this saves space 739 * at a cost of "thundering herd" phenomena during rare hash 740 * collisions. 741 */ 742 #define PAGE_WAIT_TABLE_BITS 8 743 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS) 744 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned; 745 746 static wait_queue_head_t *page_waitqueue(struct page *page) 747 { 748 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)]; 749 } 750 751 void __init pagecache_init(void) 752 { 753 int i; 754 755 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++) 756 init_waitqueue_head(&page_wait_table[i]); 757 758 page_writeback_init(); 759 } 760 761 struct wait_page_key { 762 struct page *page; 763 int bit_nr; 764 int page_match; 765 }; 766 767 struct wait_page_queue { 768 struct page *page; 769 int bit_nr; 770 wait_queue_t wait; 771 }; 772 773 static int wake_page_function(wait_queue_t *wait, unsigned mode, int sync, void *arg) 774 { 775 struct wait_page_key *key = arg; 776 struct wait_page_queue *wait_page 777 = container_of(wait, struct wait_page_queue, wait); 778 779 if (wait_page->page != key->page) 780 return 0; 781 key->page_match = 1; 782 783 if (wait_page->bit_nr != key->bit_nr) 784 return 0; 785 if (test_bit(key->bit_nr, &key->page->flags)) 786 return 0; 787 788 return autoremove_wake_function(wait, mode, sync, key); 789 } 790 791 static void wake_up_page_bit(struct page *page, int bit_nr) 792 { 793 wait_queue_head_t *q = page_waitqueue(page); 794 struct wait_page_key key; 795 unsigned long flags; 796 797 key.page = page; 798 key.bit_nr = bit_nr; 799 key.page_match = 0; 800 801 spin_lock_irqsave(&q->lock, flags); 802 __wake_up_locked_key(q, TASK_NORMAL, &key); 803 /* 804 * It is possible for other pages to have collided on the waitqueue 805 * hash, so in that case check for a page match. That prevents a long- 806 * term waiter 807 * 808 * It is still possible to miss a case here, when we woke page waiters 809 * and removed them from the waitqueue, but there are still other 810 * page waiters. 811 */ 812 if (!waitqueue_active(q) || !key.page_match) { 813 ClearPageWaiters(page); 814 /* 815 * It's possible to miss clearing Waiters here, when we woke 816 * our page waiters, but the hashed waitqueue has waiters for 817 * other pages on it. 818 * 819 * That's okay, it's a rare case. The next waker will clear it. 820 */ 821 } 822 spin_unlock_irqrestore(&q->lock, flags); 823 } 824 825 static void wake_up_page(struct page *page, int bit) 826 { 827 if (!PageWaiters(page)) 828 return; 829 wake_up_page_bit(page, bit); 830 } 831 832 static inline int wait_on_page_bit_common(wait_queue_head_t *q, 833 struct page *page, int bit_nr, int state, bool lock) 834 { 835 struct wait_page_queue wait_page; 836 wait_queue_t *wait = &wait_page.wait; 837 int ret = 0; 838 839 init_wait(wait); 840 wait->func = wake_page_function; 841 wait_page.page = page; 842 wait_page.bit_nr = bit_nr; 843 844 for (;;) { 845 spin_lock_irq(&q->lock); 846 847 if (likely(list_empty(&wait->task_list))) { 848 if (lock) 849 __add_wait_queue_tail_exclusive(q, wait); 850 else 851 __add_wait_queue(q, wait); 852 SetPageWaiters(page); 853 } 854 855 set_current_state(state); 856 857 spin_unlock_irq(&q->lock); 858 859 if (likely(test_bit(bit_nr, &page->flags))) { 860 io_schedule(); 861 if (unlikely(signal_pending_state(state, current))) { 862 ret = -EINTR; 863 break; 864 } 865 } 866 867 if (lock) { 868 if (!test_and_set_bit_lock(bit_nr, &page->flags)) 869 break; 870 } else { 871 if (!test_bit(bit_nr, &page->flags)) 872 break; 873 } 874 } 875 876 finish_wait(q, wait); 877 878 /* 879 * A signal could leave PageWaiters set. Clearing it here if 880 * !waitqueue_active would be possible (by open-coding finish_wait), 881 * but still fail to catch it in the case of wait hash collision. We 882 * already can fail to clear wait hash collision cases, so don't 883 * bother with signals either. 884 */ 885 886 return ret; 887 } 888 889 void wait_on_page_bit(struct page *page, int bit_nr) 890 { 891 wait_queue_head_t *q = page_waitqueue(page); 892 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false); 893 } 894 EXPORT_SYMBOL(wait_on_page_bit); 895 896 int wait_on_page_bit_killable(struct page *page, int bit_nr) 897 { 898 wait_queue_head_t *q = page_waitqueue(page); 899 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false); 900 } 901 902 /** 903 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue 904 * @page: Page defining the wait queue of interest 905 * @waiter: Waiter to add to the queue 906 * 907 * Add an arbitrary @waiter to the wait queue for the nominated @page. 908 */ 909 void add_page_wait_queue(struct page *page, wait_queue_t *waiter) 910 { 911 wait_queue_head_t *q = page_waitqueue(page); 912 unsigned long flags; 913 914 spin_lock_irqsave(&q->lock, flags); 915 __add_wait_queue(q, waiter); 916 SetPageWaiters(page); 917 spin_unlock_irqrestore(&q->lock, flags); 918 } 919 EXPORT_SYMBOL_GPL(add_page_wait_queue); 920 921 #ifndef clear_bit_unlock_is_negative_byte 922 923 /* 924 * PG_waiters is the high bit in the same byte as PG_lock. 925 * 926 * On x86 (and on many other architectures), we can clear PG_lock and 927 * test the sign bit at the same time. But if the architecture does 928 * not support that special operation, we just do this all by hand 929 * instead. 930 * 931 * The read of PG_waiters has to be after (or concurrently with) PG_locked 932 * being cleared, but a memory barrier should be unneccssary since it is 933 * in the same byte as PG_locked. 934 */ 935 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem) 936 { 937 clear_bit_unlock(nr, mem); 938 /* smp_mb__after_atomic(); */ 939 return test_bit(PG_waiters, mem); 940 } 941 942 #endif 943 944 /** 945 * unlock_page - unlock a locked page 946 * @page: the page 947 * 948 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). 949 * Also wakes sleepers in wait_on_page_writeback() because the wakeup 950 * mechanism between PageLocked pages and PageWriteback pages is shared. 951 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. 952 * 953 * Note that this depends on PG_waiters being the sign bit in the byte 954 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to 955 * clear the PG_locked bit and test PG_waiters at the same time fairly 956 * portably (architectures that do LL/SC can test any bit, while x86 can 957 * test the sign bit). 958 */ 959 void unlock_page(struct page *page) 960 { 961 BUILD_BUG_ON(PG_waiters != 7); 962 page = compound_head(page); 963 VM_BUG_ON_PAGE(!PageLocked(page), page); 964 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags)) 965 wake_up_page_bit(page, PG_locked); 966 } 967 EXPORT_SYMBOL(unlock_page); 968 969 /** 970 * end_page_writeback - end writeback against a page 971 * @page: the page 972 */ 973 void end_page_writeback(struct page *page) 974 { 975 /* 976 * TestClearPageReclaim could be used here but it is an atomic 977 * operation and overkill in this particular case. Failing to 978 * shuffle a page marked for immediate reclaim is too mild to 979 * justify taking an atomic operation penalty at the end of 980 * ever page writeback. 981 */ 982 if (PageReclaim(page)) { 983 ClearPageReclaim(page); 984 rotate_reclaimable_page(page); 985 } 986 987 if (!test_clear_page_writeback(page)) 988 BUG(); 989 990 smp_mb__after_atomic(); 991 wake_up_page(page, PG_writeback); 992 } 993 EXPORT_SYMBOL(end_page_writeback); 994 995 /* 996 * After completing I/O on a page, call this routine to update the page 997 * flags appropriately 998 */ 999 void page_endio(struct page *page, bool is_write, int err) 1000 { 1001 if (!is_write) { 1002 if (!err) { 1003 SetPageUptodate(page); 1004 } else { 1005 ClearPageUptodate(page); 1006 SetPageError(page); 1007 } 1008 unlock_page(page); 1009 } else { 1010 if (err) { 1011 struct address_space *mapping; 1012 1013 SetPageError(page); 1014 mapping = page_mapping(page); 1015 if (mapping) 1016 mapping_set_error(mapping, err); 1017 } 1018 end_page_writeback(page); 1019 } 1020 } 1021 EXPORT_SYMBOL_GPL(page_endio); 1022 1023 /** 1024 * __lock_page - get a lock on the page, assuming we need to sleep to get it 1025 * @__page: the page to lock 1026 */ 1027 void __lock_page(struct page *__page) 1028 { 1029 struct page *page = compound_head(__page); 1030 wait_queue_head_t *q = page_waitqueue(page); 1031 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true); 1032 } 1033 EXPORT_SYMBOL(__lock_page); 1034 1035 int __lock_page_killable(struct page *__page) 1036 { 1037 struct page *page = compound_head(__page); 1038 wait_queue_head_t *q = page_waitqueue(page); 1039 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true); 1040 } 1041 EXPORT_SYMBOL_GPL(__lock_page_killable); 1042 1043 /* 1044 * Return values: 1045 * 1 - page is locked; mmap_sem is still held. 1046 * 0 - page is not locked. 1047 * mmap_sem has been released (up_read()), unless flags had both 1048 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in 1049 * which case mmap_sem is still held. 1050 * 1051 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1 1052 * with the page locked and the mmap_sem unperturbed. 1053 */ 1054 int __lock_page_or_retry(struct page *page, struct mm_struct *mm, 1055 unsigned int flags) 1056 { 1057 if (flags & FAULT_FLAG_ALLOW_RETRY) { 1058 /* 1059 * CAUTION! In this case, mmap_sem is not released 1060 * even though return 0. 1061 */ 1062 if (flags & FAULT_FLAG_RETRY_NOWAIT) 1063 return 0; 1064 1065 up_read(&mm->mmap_sem); 1066 if (flags & FAULT_FLAG_KILLABLE) 1067 wait_on_page_locked_killable(page); 1068 else 1069 wait_on_page_locked(page); 1070 return 0; 1071 } else { 1072 if (flags & FAULT_FLAG_KILLABLE) { 1073 int ret; 1074 1075 ret = __lock_page_killable(page); 1076 if (ret) { 1077 up_read(&mm->mmap_sem); 1078 return 0; 1079 } 1080 } else 1081 __lock_page(page); 1082 return 1; 1083 } 1084 } 1085 1086 /** 1087 * page_cache_next_hole - find the next hole (not-present entry) 1088 * @mapping: mapping 1089 * @index: index 1090 * @max_scan: maximum range to search 1091 * 1092 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the 1093 * lowest indexed hole. 1094 * 1095 * Returns: the index of the hole if found, otherwise returns an index 1096 * outside of the set specified (in which case 'return - index >= 1097 * max_scan' will be true). In rare cases of index wrap-around, 0 will 1098 * be returned. 1099 * 1100 * page_cache_next_hole may be called under rcu_read_lock. However, 1101 * like radix_tree_gang_lookup, this will not atomically search a 1102 * snapshot of the tree at a single point in time. For example, if a 1103 * hole is created at index 5, then subsequently a hole is created at 1104 * index 10, page_cache_next_hole covering both indexes may return 10 1105 * if called under rcu_read_lock. 1106 */ 1107 pgoff_t page_cache_next_hole(struct address_space *mapping, 1108 pgoff_t index, unsigned long max_scan) 1109 { 1110 unsigned long i; 1111 1112 for (i = 0; i < max_scan; i++) { 1113 struct page *page; 1114 1115 page = radix_tree_lookup(&mapping->page_tree, index); 1116 if (!page || radix_tree_exceptional_entry(page)) 1117 break; 1118 index++; 1119 if (index == 0) 1120 break; 1121 } 1122 1123 return index; 1124 } 1125 EXPORT_SYMBOL(page_cache_next_hole); 1126 1127 /** 1128 * page_cache_prev_hole - find the prev hole (not-present entry) 1129 * @mapping: mapping 1130 * @index: index 1131 * @max_scan: maximum range to search 1132 * 1133 * Search backwards in the range [max(index-max_scan+1, 0), index] for 1134 * the first hole. 1135 * 1136 * Returns: the index of the hole if found, otherwise returns an index 1137 * outside of the set specified (in which case 'index - return >= 1138 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX 1139 * will be returned. 1140 * 1141 * page_cache_prev_hole may be called under rcu_read_lock. However, 1142 * like radix_tree_gang_lookup, this will not atomically search a 1143 * snapshot of the tree at a single point in time. For example, if a 1144 * hole is created at index 10, then subsequently a hole is created at 1145 * index 5, page_cache_prev_hole covering both indexes may return 5 if 1146 * called under rcu_read_lock. 1147 */ 1148 pgoff_t page_cache_prev_hole(struct address_space *mapping, 1149 pgoff_t index, unsigned long max_scan) 1150 { 1151 unsigned long i; 1152 1153 for (i = 0; i < max_scan; i++) { 1154 struct page *page; 1155 1156 page = radix_tree_lookup(&mapping->page_tree, index); 1157 if (!page || radix_tree_exceptional_entry(page)) 1158 break; 1159 index--; 1160 if (index == ULONG_MAX) 1161 break; 1162 } 1163 1164 return index; 1165 } 1166 EXPORT_SYMBOL(page_cache_prev_hole); 1167 1168 /** 1169 * find_get_entry - find and get a page cache entry 1170 * @mapping: the address_space to search 1171 * @offset: the page cache index 1172 * 1173 * Looks up the page cache slot at @mapping & @offset. If there is a 1174 * page cache page, it is returned with an increased refcount. 1175 * 1176 * If the slot holds a shadow entry of a previously evicted page, or a 1177 * swap entry from shmem/tmpfs, it is returned. 1178 * 1179 * Otherwise, %NULL is returned. 1180 */ 1181 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset) 1182 { 1183 void **pagep; 1184 struct page *head, *page; 1185 1186 rcu_read_lock(); 1187 repeat: 1188 page = NULL; 1189 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset); 1190 if (pagep) { 1191 page = radix_tree_deref_slot(pagep); 1192 if (unlikely(!page)) 1193 goto out; 1194 if (radix_tree_exception(page)) { 1195 if (radix_tree_deref_retry(page)) 1196 goto repeat; 1197 /* 1198 * A shadow entry of a recently evicted page, 1199 * or a swap entry from shmem/tmpfs. Return 1200 * it without attempting to raise page count. 1201 */ 1202 goto out; 1203 } 1204 1205 head = compound_head(page); 1206 if (!page_cache_get_speculative(head)) 1207 goto repeat; 1208 1209 /* The page was split under us? */ 1210 if (compound_head(page) != head) { 1211 put_page(head); 1212 goto repeat; 1213 } 1214 1215 /* 1216 * Has the page moved? 1217 * This is part of the lockless pagecache protocol. See 1218 * include/linux/pagemap.h for details. 1219 */ 1220 if (unlikely(page != *pagep)) { 1221 put_page(head); 1222 goto repeat; 1223 } 1224 } 1225 out: 1226 rcu_read_unlock(); 1227 1228 return page; 1229 } 1230 EXPORT_SYMBOL(find_get_entry); 1231 1232 /** 1233 * find_lock_entry - locate, pin and lock a page cache entry 1234 * @mapping: the address_space to search 1235 * @offset: the page cache index 1236 * 1237 * Looks up the page cache slot at @mapping & @offset. If there is a 1238 * page cache page, it is returned locked and with an increased 1239 * refcount. 1240 * 1241 * If the slot holds a shadow entry of a previously evicted page, or a 1242 * swap entry from shmem/tmpfs, it is returned. 1243 * 1244 * Otherwise, %NULL is returned. 1245 * 1246 * find_lock_entry() may sleep. 1247 */ 1248 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset) 1249 { 1250 struct page *page; 1251 1252 repeat: 1253 page = find_get_entry(mapping, offset); 1254 if (page && !radix_tree_exception(page)) { 1255 lock_page(page); 1256 /* Has the page been truncated? */ 1257 if (unlikely(page_mapping(page) != mapping)) { 1258 unlock_page(page); 1259 put_page(page); 1260 goto repeat; 1261 } 1262 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page); 1263 } 1264 return page; 1265 } 1266 EXPORT_SYMBOL(find_lock_entry); 1267 1268 /** 1269 * pagecache_get_page - find and get a page reference 1270 * @mapping: the address_space to search 1271 * @offset: the page index 1272 * @fgp_flags: PCG flags 1273 * @gfp_mask: gfp mask to use for the page cache data page allocation 1274 * 1275 * Looks up the page cache slot at @mapping & @offset. 1276 * 1277 * PCG flags modify how the page is returned. 1278 * 1279 * FGP_ACCESSED: the page will be marked accessed 1280 * FGP_LOCK: Page is return locked 1281 * FGP_CREAT: If page is not present then a new page is allocated using 1282 * @gfp_mask and added to the page cache and the VM's LRU 1283 * list. The page is returned locked and with an increased 1284 * refcount. Otherwise, %NULL is returned. 1285 * 1286 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even 1287 * if the GFP flags specified for FGP_CREAT are atomic. 1288 * 1289 * If there is a page cache page, it is returned with an increased refcount. 1290 */ 1291 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset, 1292 int fgp_flags, gfp_t gfp_mask) 1293 { 1294 struct page *page; 1295 1296 repeat: 1297 page = find_get_entry(mapping, offset); 1298 if (radix_tree_exceptional_entry(page)) 1299 page = NULL; 1300 if (!page) 1301 goto no_page; 1302 1303 if (fgp_flags & FGP_LOCK) { 1304 if (fgp_flags & FGP_NOWAIT) { 1305 if (!trylock_page(page)) { 1306 put_page(page); 1307 return NULL; 1308 } 1309 } else { 1310 lock_page(page); 1311 } 1312 1313 /* Has the page been truncated? */ 1314 if (unlikely(page->mapping != mapping)) { 1315 unlock_page(page); 1316 put_page(page); 1317 goto repeat; 1318 } 1319 VM_BUG_ON_PAGE(page->index != offset, page); 1320 } 1321 1322 if (page && (fgp_flags & FGP_ACCESSED)) 1323 mark_page_accessed(page); 1324 1325 no_page: 1326 if (!page && (fgp_flags & FGP_CREAT)) { 1327 int err; 1328 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping)) 1329 gfp_mask |= __GFP_WRITE; 1330 if (fgp_flags & FGP_NOFS) 1331 gfp_mask &= ~__GFP_FS; 1332 1333 page = __page_cache_alloc(gfp_mask); 1334 if (!page) 1335 return NULL; 1336 1337 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK))) 1338 fgp_flags |= FGP_LOCK; 1339 1340 /* Init accessed so avoid atomic mark_page_accessed later */ 1341 if (fgp_flags & FGP_ACCESSED) 1342 __SetPageReferenced(page); 1343 1344 err = add_to_page_cache_lru(page, mapping, offset, 1345 gfp_mask & GFP_RECLAIM_MASK); 1346 if (unlikely(err)) { 1347 put_page(page); 1348 page = NULL; 1349 if (err == -EEXIST) 1350 goto repeat; 1351 } 1352 } 1353 1354 return page; 1355 } 1356 EXPORT_SYMBOL(pagecache_get_page); 1357 1358 /** 1359 * find_get_entries - gang pagecache lookup 1360 * @mapping: The address_space to search 1361 * @start: The starting page cache index 1362 * @nr_entries: The maximum number of entries 1363 * @entries: Where the resulting entries are placed 1364 * @indices: The cache indices corresponding to the entries in @entries 1365 * 1366 * find_get_entries() will search for and return a group of up to 1367 * @nr_entries entries in the mapping. The entries are placed at 1368 * @entries. find_get_entries() takes a reference against any actual 1369 * pages it returns. 1370 * 1371 * The search returns a group of mapping-contiguous page cache entries 1372 * with ascending indexes. There may be holes in the indices due to 1373 * not-present pages. 1374 * 1375 * Any shadow entries of evicted pages, or swap entries from 1376 * shmem/tmpfs, are included in the returned array. 1377 * 1378 * find_get_entries() returns the number of pages and shadow entries 1379 * which were found. 1380 */ 1381 unsigned find_get_entries(struct address_space *mapping, 1382 pgoff_t start, unsigned int nr_entries, 1383 struct page **entries, pgoff_t *indices) 1384 { 1385 void **slot; 1386 unsigned int ret = 0; 1387 struct radix_tree_iter iter; 1388 1389 if (!nr_entries) 1390 return 0; 1391 1392 rcu_read_lock(); 1393 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { 1394 struct page *head, *page; 1395 repeat: 1396 page = radix_tree_deref_slot(slot); 1397 if (unlikely(!page)) 1398 continue; 1399 if (radix_tree_exception(page)) { 1400 if (radix_tree_deref_retry(page)) { 1401 slot = radix_tree_iter_retry(&iter); 1402 continue; 1403 } 1404 /* 1405 * A shadow entry of a recently evicted page, a swap 1406 * entry from shmem/tmpfs or a DAX entry. Return it 1407 * without attempting to raise page count. 1408 */ 1409 goto export; 1410 } 1411 1412 head = compound_head(page); 1413 if (!page_cache_get_speculative(head)) 1414 goto repeat; 1415 1416 /* The page was split under us? */ 1417 if (compound_head(page) != head) { 1418 put_page(head); 1419 goto repeat; 1420 } 1421 1422 /* Has the page moved? */ 1423 if (unlikely(page != *slot)) { 1424 put_page(head); 1425 goto repeat; 1426 } 1427 export: 1428 indices[ret] = iter.index; 1429 entries[ret] = page; 1430 if (++ret == nr_entries) 1431 break; 1432 } 1433 rcu_read_unlock(); 1434 return ret; 1435 } 1436 1437 /** 1438 * find_get_pages - gang pagecache lookup 1439 * @mapping: The address_space to search 1440 * @start: The starting page index 1441 * @nr_pages: The maximum number of pages 1442 * @pages: Where the resulting pages are placed 1443 * 1444 * find_get_pages() will search for and return a group of up to 1445 * @nr_pages pages in the mapping. The pages are placed at @pages. 1446 * find_get_pages() takes a reference against the returned pages. 1447 * 1448 * The search returns a group of mapping-contiguous pages with ascending 1449 * indexes. There may be holes in the indices due to not-present pages. 1450 * 1451 * find_get_pages() returns the number of pages which were found. 1452 */ 1453 unsigned find_get_pages(struct address_space *mapping, pgoff_t start, 1454 unsigned int nr_pages, struct page **pages) 1455 { 1456 struct radix_tree_iter iter; 1457 void **slot; 1458 unsigned ret = 0; 1459 1460 if (unlikely(!nr_pages)) 1461 return 0; 1462 1463 rcu_read_lock(); 1464 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { 1465 struct page *head, *page; 1466 repeat: 1467 page = radix_tree_deref_slot(slot); 1468 if (unlikely(!page)) 1469 continue; 1470 1471 if (radix_tree_exception(page)) { 1472 if (radix_tree_deref_retry(page)) { 1473 slot = radix_tree_iter_retry(&iter); 1474 continue; 1475 } 1476 /* 1477 * A shadow entry of a recently evicted page, 1478 * or a swap entry from shmem/tmpfs. Skip 1479 * over it. 1480 */ 1481 continue; 1482 } 1483 1484 head = compound_head(page); 1485 if (!page_cache_get_speculative(head)) 1486 goto repeat; 1487 1488 /* The page was split under us? */ 1489 if (compound_head(page) != head) { 1490 put_page(head); 1491 goto repeat; 1492 } 1493 1494 /* Has the page moved? */ 1495 if (unlikely(page != *slot)) { 1496 put_page(head); 1497 goto repeat; 1498 } 1499 1500 pages[ret] = page; 1501 if (++ret == nr_pages) 1502 break; 1503 } 1504 1505 rcu_read_unlock(); 1506 return ret; 1507 } 1508 1509 /** 1510 * find_get_pages_contig - gang contiguous pagecache lookup 1511 * @mapping: The address_space to search 1512 * @index: The starting page index 1513 * @nr_pages: The maximum number of pages 1514 * @pages: Where the resulting pages are placed 1515 * 1516 * find_get_pages_contig() works exactly like find_get_pages(), except 1517 * that the returned number of pages are guaranteed to be contiguous. 1518 * 1519 * find_get_pages_contig() returns the number of pages which were found. 1520 */ 1521 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, 1522 unsigned int nr_pages, struct page **pages) 1523 { 1524 struct radix_tree_iter iter; 1525 void **slot; 1526 unsigned int ret = 0; 1527 1528 if (unlikely(!nr_pages)) 1529 return 0; 1530 1531 rcu_read_lock(); 1532 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) { 1533 struct page *head, *page; 1534 repeat: 1535 page = radix_tree_deref_slot(slot); 1536 /* The hole, there no reason to continue */ 1537 if (unlikely(!page)) 1538 break; 1539 1540 if (radix_tree_exception(page)) { 1541 if (radix_tree_deref_retry(page)) { 1542 slot = radix_tree_iter_retry(&iter); 1543 continue; 1544 } 1545 /* 1546 * A shadow entry of a recently evicted page, 1547 * or a swap entry from shmem/tmpfs. Stop 1548 * looking for contiguous pages. 1549 */ 1550 break; 1551 } 1552 1553 head = compound_head(page); 1554 if (!page_cache_get_speculative(head)) 1555 goto repeat; 1556 1557 /* The page was split under us? */ 1558 if (compound_head(page) != head) { 1559 put_page(head); 1560 goto repeat; 1561 } 1562 1563 /* Has the page moved? */ 1564 if (unlikely(page != *slot)) { 1565 put_page(head); 1566 goto repeat; 1567 } 1568 1569 /* 1570 * must check mapping and index after taking the ref. 1571 * otherwise we can get both false positives and false 1572 * negatives, which is just confusing to the caller. 1573 */ 1574 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) { 1575 put_page(page); 1576 break; 1577 } 1578 1579 pages[ret] = page; 1580 if (++ret == nr_pages) 1581 break; 1582 } 1583 rcu_read_unlock(); 1584 return ret; 1585 } 1586 EXPORT_SYMBOL(find_get_pages_contig); 1587 1588 /** 1589 * find_get_pages_tag - find and return pages that match @tag 1590 * @mapping: the address_space to search 1591 * @index: the starting page index 1592 * @tag: the tag index 1593 * @nr_pages: the maximum number of pages 1594 * @pages: where the resulting pages are placed 1595 * 1596 * Like find_get_pages, except we only return pages which are tagged with 1597 * @tag. We update @index to index the next page for the traversal. 1598 */ 1599 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, 1600 int tag, unsigned int nr_pages, struct page **pages) 1601 { 1602 struct radix_tree_iter iter; 1603 void **slot; 1604 unsigned ret = 0; 1605 1606 if (unlikely(!nr_pages)) 1607 return 0; 1608 1609 rcu_read_lock(); 1610 radix_tree_for_each_tagged(slot, &mapping->page_tree, 1611 &iter, *index, tag) { 1612 struct page *head, *page; 1613 repeat: 1614 page = radix_tree_deref_slot(slot); 1615 if (unlikely(!page)) 1616 continue; 1617 1618 if (radix_tree_exception(page)) { 1619 if (radix_tree_deref_retry(page)) { 1620 slot = radix_tree_iter_retry(&iter); 1621 continue; 1622 } 1623 /* 1624 * A shadow entry of a recently evicted page. 1625 * 1626 * Those entries should never be tagged, but 1627 * this tree walk is lockless and the tags are 1628 * looked up in bulk, one radix tree node at a 1629 * time, so there is a sizable window for page 1630 * reclaim to evict a page we saw tagged. 1631 * 1632 * Skip over it. 1633 */ 1634 continue; 1635 } 1636 1637 head = compound_head(page); 1638 if (!page_cache_get_speculative(head)) 1639 goto repeat; 1640 1641 /* The page was split under us? */ 1642 if (compound_head(page) != head) { 1643 put_page(head); 1644 goto repeat; 1645 } 1646 1647 /* Has the page moved? */ 1648 if (unlikely(page != *slot)) { 1649 put_page(head); 1650 goto repeat; 1651 } 1652 1653 pages[ret] = page; 1654 if (++ret == nr_pages) 1655 break; 1656 } 1657 1658 rcu_read_unlock(); 1659 1660 if (ret) 1661 *index = pages[ret - 1]->index + 1; 1662 1663 return ret; 1664 } 1665 EXPORT_SYMBOL(find_get_pages_tag); 1666 1667 /** 1668 * find_get_entries_tag - find and return entries that match @tag 1669 * @mapping: the address_space to search 1670 * @start: the starting page cache index 1671 * @tag: the tag index 1672 * @nr_entries: the maximum number of entries 1673 * @entries: where the resulting entries are placed 1674 * @indices: the cache indices corresponding to the entries in @entries 1675 * 1676 * Like find_get_entries, except we only return entries which are tagged with 1677 * @tag. 1678 */ 1679 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start, 1680 int tag, unsigned int nr_entries, 1681 struct page **entries, pgoff_t *indices) 1682 { 1683 void **slot; 1684 unsigned int ret = 0; 1685 struct radix_tree_iter iter; 1686 1687 if (!nr_entries) 1688 return 0; 1689 1690 rcu_read_lock(); 1691 radix_tree_for_each_tagged(slot, &mapping->page_tree, 1692 &iter, start, tag) { 1693 struct page *head, *page; 1694 repeat: 1695 page = radix_tree_deref_slot(slot); 1696 if (unlikely(!page)) 1697 continue; 1698 if (radix_tree_exception(page)) { 1699 if (radix_tree_deref_retry(page)) { 1700 slot = radix_tree_iter_retry(&iter); 1701 continue; 1702 } 1703 1704 /* 1705 * A shadow entry of a recently evicted page, a swap 1706 * entry from shmem/tmpfs or a DAX entry. Return it 1707 * without attempting to raise page count. 1708 */ 1709 goto export; 1710 } 1711 1712 head = compound_head(page); 1713 if (!page_cache_get_speculative(head)) 1714 goto repeat; 1715 1716 /* The page was split under us? */ 1717 if (compound_head(page) != head) { 1718 put_page(head); 1719 goto repeat; 1720 } 1721 1722 /* Has the page moved? */ 1723 if (unlikely(page != *slot)) { 1724 put_page(head); 1725 goto repeat; 1726 } 1727 export: 1728 indices[ret] = iter.index; 1729 entries[ret] = page; 1730 if (++ret == nr_entries) 1731 break; 1732 } 1733 rcu_read_unlock(); 1734 return ret; 1735 } 1736 EXPORT_SYMBOL(find_get_entries_tag); 1737 1738 /* 1739 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 1740 * a _large_ part of the i/o request. Imagine the worst scenario: 1741 * 1742 * ---R__________________________________________B__________ 1743 * ^ reading here ^ bad block(assume 4k) 1744 * 1745 * read(R) => miss => readahead(R...B) => media error => frustrating retries 1746 * => failing the whole request => read(R) => read(R+1) => 1747 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 1748 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 1749 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 1750 * 1751 * It is going insane. Fix it by quickly scaling down the readahead size. 1752 */ 1753 static void shrink_readahead_size_eio(struct file *filp, 1754 struct file_ra_state *ra) 1755 { 1756 ra->ra_pages /= 4; 1757 } 1758 1759 /** 1760 * do_generic_file_read - generic file read routine 1761 * @filp: the file to read 1762 * @ppos: current file position 1763 * @iter: data destination 1764 * @written: already copied 1765 * 1766 * This is a generic file read routine, and uses the 1767 * mapping->a_ops->readpage() function for the actual low-level stuff. 1768 * 1769 * This is really ugly. But the goto's actually try to clarify some 1770 * of the logic when it comes to error handling etc. 1771 */ 1772 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos, 1773 struct iov_iter *iter, ssize_t written) 1774 { 1775 struct address_space *mapping = filp->f_mapping; 1776 struct inode *inode = mapping->host; 1777 struct file_ra_state *ra = &filp->f_ra; 1778 pgoff_t index; 1779 pgoff_t last_index; 1780 pgoff_t prev_index; 1781 unsigned long offset; /* offset into pagecache page */ 1782 unsigned int prev_offset; 1783 int error = 0; 1784 1785 if (unlikely(*ppos >= inode->i_sb->s_maxbytes)) 1786 return 0; 1787 iov_iter_truncate(iter, inode->i_sb->s_maxbytes); 1788 1789 index = *ppos >> PAGE_SHIFT; 1790 prev_index = ra->prev_pos >> PAGE_SHIFT; 1791 prev_offset = ra->prev_pos & (PAGE_SIZE-1); 1792 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT; 1793 offset = *ppos & ~PAGE_MASK; 1794 1795 for (;;) { 1796 struct page *page; 1797 pgoff_t end_index; 1798 loff_t isize; 1799 unsigned long nr, ret; 1800 1801 cond_resched(); 1802 find_page: 1803 if (fatal_signal_pending(current)) { 1804 error = -EINTR; 1805 goto out; 1806 } 1807 1808 page = find_get_page(mapping, index); 1809 if (!page) { 1810 page_cache_sync_readahead(mapping, 1811 ra, filp, 1812 index, last_index - index); 1813 page = find_get_page(mapping, index); 1814 if (unlikely(page == NULL)) 1815 goto no_cached_page; 1816 } 1817 if (PageReadahead(page)) { 1818 page_cache_async_readahead(mapping, 1819 ra, filp, page, 1820 index, last_index - index); 1821 } 1822 if (!PageUptodate(page)) { 1823 /* 1824 * See comment in do_read_cache_page on why 1825 * wait_on_page_locked is used to avoid unnecessarily 1826 * serialisations and why it's safe. 1827 */ 1828 error = wait_on_page_locked_killable(page); 1829 if (unlikely(error)) 1830 goto readpage_error; 1831 if (PageUptodate(page)) 1832 goto page_ok; 1833 1834 if (inode->i_blkbits == PAGE_SHIFT || 1835 !mapping->a_ops->is_partially_uptodate) 1836 goto page_not_up_to_date; 1837 /* pipes can't handle partially uptodate pages */ 1838 if (unlikely(iter->type & ITER_PIPE)) 1839 goto page_not_up_to_date; 1840 if (!trylock_page(page)) 1841 goto page_not_up_to_date; 1842 /* Did it get truncated before we got the lock? */ 1843 if (!page->mapping) 1844 goto page_not_up_to_date_locked; 1845 if (!mapping->a_ops->is_partially_uptodate(page, 1846 offset, iter->count)) 1847 goto page_not_up_to_date_locked; 1848 unlock_page(page); 1849 } 1850 page_ok: 1851 /* 1852 * i_size must be checked after we know the page is Uptodate. 1853 * 1854 * Checking i_size after the check allows us to calculate 1855 * the correct value for "nr", which means the zero-filled 1856 * part of the page is not copied back to userspace (unless 1857 * another truncate extends the file - this is desired though). 1858 */ 1859 1860 isize = i_size_read(inode); 1861 end_index = (isize - 1) >> PAGE_SHIFT; 1862 if (unlikely(!isize || index > end_index)) { 1863 put_page(page); 1864 goto out; 1865 } 1866 1867 /* nr is the maximum number of bytes to copy from this page */ 1868 nr = PAGE_SIZE; 1869 if (index == end_index) { 1870 nr = ((isize - 1) & ~PAGE_MASK) + 1; 1871 if (nr <= offset) { 1872 put_page(page); 1873 goto out; 1874 } 1875 } 1876 nr = nr - offset; 1877 1878 /* If users can be writing to this page using arbitrary 1879 * virtual addresses, take care about potential aliasing 1880 * before reading the page on the kernel side. 1881 */ 1882 if (mapping_writably_mapped(mapping)) 1883 flush_dcache_page(page); 1884 1885 /* 1886 * When a sequential read accesses a page several times, 1887 * only mark it as accessed the first time. 1888 */ 1889 if (prev_index != index || offset != prev_offset) 1890 mark_page_accessed(page); 1891 prev_index = index; 1892 1893 /* 1894 * Ok, we have the page, and it's up-to-date, so 1895 * now we can copy it to user space... 1896 */ 1897 1898 ret = copy_page_to_iter(page, offset, nr, iter); 1899 offset += ret; 1900 index += offset >> PAGE_SHIFT; 1901 offset &= ~PAGE_MASK; 1902 prev_offset = offset; 1903 1904 put_page(page); 1905 written += ret; 1906 if (!iov_iter_count(iter)) 1907 goto out; 1908 if (ret < nr) { 1909 error = -EFAULT; 1910 goto out; 1911 } 1912 continue; 1913 1914 page_not_up_to_date: 1915 /* Get exclusive access to the page ... */ 1916 error = lock_page_killable(page); 1917 if (unlikely(error)) 1918 goto readpage_error; 1919 1920 page_not_up_to_date_locked: 1921 /* Did it get truncated before we got the lock? */ 1922 if (!page->mapping) { 1923 unlock_page(page); 1924 put_page(page); 1925 continue; 1926 } 1927 1928 /* Did somebody else fill it already? */ 1929 if (PageUptodate(page)) { 1930 unlock_page(page); 1931 goto page_ok; 1932 } 1933 1934 readpage: 1935 /* 1936 * A previous I/O error may have been due to temporary 1937 * failures, eg. multipath errors. 1938 * PG_error will be set again if readpage fails. 1939 */ 1940 ClearPageError(page); 1941 /* Start the actual read. The read will unlock the page. */ 1942 error = mapping->a_ops->readpage(filp, page); 1943 1944 if (unlikely(error)) { 1945 if (error == AOP_TRUNCATED_PAGE) { 1946 put_page(page); 1947 error = 0; 1948 goto find_page; 1949 } 1950 goto readpage_error; 1951 } 1952 1953 if (!PageUptodate(page)) { 1954 error = lock_page_killable(page); 1955 if (unlikely(error)) 1956 goto readpage_error; 1957 if (!PageUptodate(page)) { 1958 if (page->mapping == NULL) { 1959 /* 1960 * invalidate_mapping_pages got it 1961 */ 1962 unlock_page(page); 1963 put_page(page); 1964 goto find_page; 1965 } 1966 unlock_page(page); 1967 shrink_readahead_size_eio(filp, ra); 1968 error = -EIO; 1969 goto readpage_error; 1970 } 1971 unlock_page(page); 1972 } 1973 1974 goto page_ok; 1975 1976 readpage_error: 1977 /* UHHUH! A synchronous read error occurred. Report it */ 1978 put_page(page); 1979 goto out; 1980 1981 no_cached_page: 1982 /* 1983 * Ok, it wasn't cached, so we need to create a new 1984 * page.. 1985 */ 1986 page = page_cache_alloc_cold(mapping); 1987 if (!page) { 1988 error = -ENOMEM; 1989 goto out; 1990 } 1991 error = add_to_page_cache_lru(page, mapping, index, 1992 mapping_gfp_constraint(mapping, GFP_KERNEL)); 1993 if (error) { 1994 put_page(page); 1995 if (error == -EEXIST) { 1996 error = 0; 1997 goto find_page; 1998 } 1999 goto out; 2000 } 2001 goto readpage; 2002 } 2003 2004 out: 2005 ra->prev_pos = prev_index; 2006 ra->prev_pos <<= PAGE_SHIFT; 2007 ra->prev_pos |= prev_offset; 2008 2009 *ppos = ((loff_t)index << PAGE_SHIFT) + offset; 2010 file_accessed(filp); 2011 return written ? written : error; 2012 } 2013 2014 /** 2015 * generic_file_read_iter - generic filesystem read routine 2016 * @iocb: kernel I/O control block 2017 * @iter: destination for the data read 2018 * 2019 * This is the "read_iter()" routine for all filesystems 2020 * that can use the page cache directly. 2021 */ 2022 ssize_t 2023 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 2024 { 2025 struct file *file = iocb->ki_filp; 2026 ssize_t retval = 0; 2027 size_t count = iov_iter_count(iter); 2028 2029 if (!count) 2030 goto out; /* skip atime */ 2031 2032 if (iocb->ki_flags & IOCB_DIRECT) { 2033 struct address_space *mapping = file->f_mapping; 2034 struct inode *inode = mapping->host; 2035 struct iov_iter data = *iter; 2036 loff_t size; 2037 2038 size = i_size_read(inode); 2039 retval = filemap_write_and_wait_range(mapping, iocb->ki_pos, 2040 iocb->ki_pos + count - 1); 2041 if (retval < 0) 2042 goto out; 2043 2044 file_accessed(file); 2045 2046 retval = mapping->a_ops->direct_IO(iocb, &data); 2047 if (retval >= 0) { 2048 iocb->ki_pos += retval; 2049 iov_iter_advance(iter, retval); 2050 } 2051 2052 /* 2053 * Btrfs can have a short DIO read if we encounter 2054 * compressed extents, so if there was an error, or if 2055 * we've already read everything we wanted to, or if 2056 * there was a short read because we hit EOF, go ahead 2057 * and return. Otherwise fallthrough to buffered io for 2058 * the rest of the read. Buffered reads will not work for 2059 * DAX files, so don't bother trying. 2060 */ 2061 if (retval < 0 || !iov_iter_count(iter) || iocb->ki_pos >= size || 2062 IS_DAX(inode)) 2063 goto out; 2064 } 2065 2066 retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval); 2067 out: 2068 return retval; 2069 } 2070 EXPORT_SYMBOL(generic_file_read_iter); 2071 2072 #ifdef CONFIG_MMU 2073 /** 2074 * page_cache_read - adds requested page to the page cache if not already there 2075 * @file: file to read 2076 * @offset: page index 2077 * @gfp_mask: memory allocation flags 2078 * 2079 * This adds the requested page to the page cache if it isn't already there, 2080 * and schedules an I/O to read in its contents from disk. 2081 */ 2082 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask) 2083 { 2084 struct address_space *mapping = file->f_mapping; 2085 struct page *page; 2086 int ret; 2087 2088 do { 2089 page = __page_cache_alloc(gfp_mask|__GFP_COLD); 2090 if (!page) 2091 return -ENOMEM; 2092 2093 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL); 2094 if (ret == 0) 2095 ret = mapping->a_ops->readpage(file, page); 2096 else if (ret == -EEXIST) 2097 ret = 0; /* losing race to add is OK */ 2098 2099 put_page(page); 2100 2101 } while (ret == AOP_TRUNCATED_PAGE); 2102 2103 return ret; 2104 } 2105 2106 #define MMAP_LOTSAMISS (100) 2107 2108 /* 2109 * Synchronous readahead happens when we don't even find 2110 * a page in the page cache at all. 2111 */ 2112 static void do_sync_mmap_readahead(struct vm_area_struct *vma, 2113 struct file_ra_state *ra, 2114 struct file *file, 2115 pgoff_t offset) 2116 { 2117 struct address_space *mapping = file->f_mapping; 2118 2119 /* If we don't want any read-ahead, don't bother */ 2120 if (vma->vm_flags & VM_RAND_READ) 2121 return; 2122 if (!ra->ra_pages) 2123 return; 2124 2125 if (vma->vm_flags & VM_SEQ_READ) { 2126 page_cache_sync_readahead(mapping, ra, file, offset, 2127 ra->ra_pages); 2128 return; 2129 } 2130 2131 /* Avoid banging the cache line if not needed */ 2132 if (ra->mmap_miss < MMAP_LOTSAMISS * 10) 2133 ra->mmap_miss++; 2134 2135 /* 2136 * Do we miss much more than hit in this file? If so, 2137 * stop bothering with read-ahead. It will only hurt. 2138 */ 2139 if (ra->mmap_miss > MMAP_LOTSAMISS) 2140 return; 2141 2142 /* 2143 * mmap read-around 2144 */ 2145 ra->start = max_t(long, 0, offset - ra->ra_pages / 2); 2146 ra->size = ra->ra_pages; 2147 ra->async_size = ra->ra_pages / 4; 2148 ra_submit(ra, mapping, file); 2149 } 2150 2151 /* 2152 * Asynchronous readahead happens when we find the page and PG_readahead, 2153 * so we want to possibly extend the readahead further.. 2154 */ 2155 static void do_async_mmap_readahead(struct vm_area_struct *vma, 2156 struct file_ra_state *ra, 2157 struct file *file, 2158 struct page *page, 2159 pgoff_t offset) 2160 { 2161 struct address_space *mapping = file->f_mapping; 2162 2163 /* If we don't want any read-ahead, don't bother */ 2164 if (vma->vm_flags & VM_RAND_READ) 2165 return; 2166 if (ra->mmap_miss > 0) 2167 ra->mmap_miss--; 2168 if (PageReadahead(page)) 2169 page_cache_async_readahead(mapping, ra, file, 2170 page, offset, ra->ra_pages); 2171 } 2172 2173 /** 2174 * filemap_fault - read in file data for page fault handling 2175 * @vmf: struct vm_fault containing details of the fault 2176 * 2177 * filemap_fault() is invoked via the vma operations vector for a 2178 * mapped memory region to read in file data during a page fault. 2179 * 2180 * The goto's are kind of ugly, but this streamlines the normal case of having 2181 * it in the page cache, and handles the special cases reasonably without 2182 * having a lot of duplicated code. 2183 * 2184 * vma->vm_mm->mmap_sem must be held on entry. 2185 * 2186 * If our return value has VM_FAULT_RETRY set, it's because 2187 * lock_page_or_retry() returned 0. 2188 * The mmap_sem has usually been released in this case. 2189 * See __lock_page_or_retry() for the exception. 2190 * 2191 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem 2192 * has not been released. 2193 * 2194 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. 2195 */ 2196 int filemap_fault(struct vm_fault *vmf) 2197 { 2198 int error; 2199 struct file *file = vmf->vma->vm_file; 2200 struct address_space *mapping = file->f_mapping; 2201 struct file_ra_state *ra = &file->f_ra; 2202 struct inode *inode = mapping->host; 2203 pgoff_t offset = vmf->pgoff; 2204 struct page *page; 2205 loff_t size; 2206 int ret = 0; 2207 2208 size = round_up(i_size_read(inode), PAGE_SIZE); 2209 if (offset >= size >> PAGE_SHIFT) 2210 return VM_FAULT_SIGBUS; 2211 2212 /* 2213 * Do we have something in the page cache already? 2214 */ 2215 page = find_get_page(mapping, offset); 2216 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) { 2217 /* 2218 * We found the page, so try async readahead before 2219 * waiting for the lock. 2220 */ 2221 do_async_mmap_readahead(vmf->vma, ra, file, page, offset); 2222 } else if (!page) { 2223 /* No page in the page cache at all */ 2224 do_sync_mmap_readahead(vmf->vma, ra, file, offset); 2225 count_vm_event(PGMAJFAULT); 2226 mem_cgroup_count_vm_event(vmf->vma->vm_mm, PGMAJFAULT); 2227 ret = VM_FAULT_MAJOR; 2228 retry_find: 2229 page = find_get_page(mapping, offset); 2230 if (!page) 2231 goto no_cached_page; 2232 } 2233 2234 if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) { 2235 put_page(page); 2236 return ret | VM_FAULT_RETRY; 2237 } 2238 2239 /* Did it get truncated? */ 2240 if (unlikely(page->mapping != mapping)) { 2241 unlock_page(page); 2242 put_page(page); 2243 goto retry_find; 2244 } 2245 VM_BUG_ON_PAGE(page->index != offset, page); 2246 2247 /* 2248 * We have a locked page in the page cache, now we need to check 2249 * that it's up-to-date. If not, it is going to be due to an error. 2250 */ 2251 if (unlikely(!PageUptodate(page))) 2252 goto page_not_uptodate; 2253 2254 /* 2255 * Found the page and have a reference on it. 2256 * We must recheck i_size under page lock. 2257 */ 2258 size = round_up(i_size_read(inode), PAGE_SIZE); 2259 if (unlikely(offset >= size >> PAGE_SHIFT)) { 2260 unlock_page(page); 2261 put_page(page); 2262 return VM_FAULT_SIGBUS; 2263 } 2264 2265 vmf->page = page; 2266 return ret | VM_FAULT_LOCKED; 2267 2268 no_cached_page: 2269 /* 2270 * We're only likely to ever get here if MADV_RANDOM is in 2271 * effect. 2272 */ 2273 error = page_cache_read(file, offset, vmf->gfp_mask); 2274 2275 /* 2276 * The page we want has now been added to the page cache. 2277 * In the unlikely event that someone removed it in the 2278 * meantime, we'll just come back here and read it again. 2279 */ 2280 if (error >= 0) 2281 goto retry_find; 2282 2283 /* 2284 * An error return from page_cache_read can result if the 2285 * system is low on memory, or a problem occurs while trying 2286 * to schedule I/O. 2287 */ 2288 if (error == -ENOMEM) 2289 return VM_FAULT_OOM; 2290 return VM_FAULT_SIGBUS; 2291 2292 page_not_uptodate: 2293 /* 2294 * Umm, take care of errors if the page isn't up-to-date. 2295 * Try to re-read it _once_. We do this synchronously, 2296 * because there really aren't any performance issues here 2297 * and we need to check for errors. 2298 */ 2299 ClearPageError(page); 2300 error = mapping->a_ops->readpage(file, page); 2301 if (!error) { 2302 wait_on_page_locked(page); 2303 if (!PageUptodate(page)) 2304 error = -EIO; 2305 } 2306 put_page(page); 2307 2308 if (!error || error == AOP_TRUNCATED_PAGE) 2309 goto retry_find; 2310 2311 /* Things didn't work out. Return zero to tell the mm layer so. */ 2312 shrink_readahead_size_eio(file, ra); 2313 return VM_FAULT_SIGBUS; 2314 } 2315 EXPORT_SYMBOL(filemap_fault); 2316 2317 void filemap_map_pages(struct vm_fault *vmf, 2318 pgoff_t start_pgoff, pgoff_t end_pgoff) 2319 { 2320 struct radix_tree_iter iter; 2321 void **slot; 2322 struct file *file = vmf->vma->vm_file; 2323 struct address_space *mapping = file->f_mapping; 2324 pgoff_t last_pgoff = start_pgoff; 2325 loff_t size; 2326 struct page *head, *page; 2327 2328 rcu_read_lock(); 2329 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, 2330 start_pgoff) { 2331 if (iter.index > end_pgoff) 2332 break; 2333 repeat: 2334 page = radix_tree_deref_slot(slot); 2335 if (unlikely(!page)) 2336 goto next; 2337 if (radix_tree_exception(page)) { 2338 if (radix_tree_deref_retry(page)) { 2339 slot = radix_tree_iter_retry(&iter); 2340 continue; 2341 } 2342 goto next; 2343 } 2344 2345 head = compound_head(page); 2346 if (!page_cache_get_speculative(head)) 2347 goto repeat; 2348 2349 /* The page was split under us? */ 2350 if (compound_head(page) != head) { 2351 put_page(head); 2352 goto repeat; 2353 } 2354 2355 /* Has the page moved? */ 2356 if (unlikely(page != *slot)) { 2357 put_page(head); 2358 goto repeat; 2359 } 2360 2361 if (!PageUptodate(page) || 2362 PageReadahead(page) || 2363 PageHWPoison(page)) 2364 goto skip; 2365 if (!trylock_page(page)) 2366 goto skip; 2367 2368 if (page->mapping != mapping || !PageUptodate(page)) 2369 goto unlock; 2370 2371 size = round_up(i_size_read(mapping->host), PAGE_SIZE); 2372 if (page->index >= size >> PAGE_SHIFT) 2373 goto unlock; 2374 2375 if (file->f_ra.mmap_miss > 0) 2376 file->f_ra.mmap_miss--; 2377 2378 vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT; 2379 if (vmf->pte) 2380 vmf->pte += iter.index - last_pgoff; 2381 last_pgoff = iter.index; 2382 if (alloc_set_pte(vmf, NULL, page)) 2383 goto unlock; 2384 unlock_page(page); 2385 goto next; 2386 unlock: 2387 unlock_page(page); 2388 skip: 2389 put_page(page); 2390 next: 2391 /* Huge page is mapped? No need to proceed. */ 2392 if (pmd_trans_huge(*vmf->pmd)) 2393 break; 2394 if (iter.index == end_pgoff) 2395 break; 2396 } 2397 rcu_read_unlock(); 2398 } 2399 EXPORT_SYMBOL(filemap_map_pages); 2400 2401 int filemap_page_mkwrite(struct vm_fault *vmf) 2402 { 2403 struct page *page = vmf->page; 2404 struct inode *inode = file_inode(vmf->vma->vm_file); 2405 int ret = VM_FAULT_LOCKED; 2406 2407 sb_start_pagefault(inode->i_sb); 2408 file_update_time(vmf->vma->vm_file); 2409 lock_page(page); 2410 if (page->mapping != inode->i_mapping) { 2411 unlock_page(page); 2412 ret = VM_FAULT_NOPAGE; 2413 goto out; 2414 } 2415 /* 2416 * We mark the page dirty already here so that when freeze is in 2417 * progress, we are guaranteed that writeback during freezing will 2418 * see the dirty page and writeprotect it again. 2419 */ 2420 set_page_dirty(page); 2421 wait_for_stable_page(page); 2422 out: 2423 sb_end_pagefault(inode->i_sb); 2424 return ret; 2425 } 2426 EXPORT_SYMBOL(filemap_page_mkwrite); 2427 2428 const struct vm_operations_struct generic_file_vm_ops = { 2429 .fault = filemap_fault, 2430 .map_pages = filemap_map_pages, 2431 .page_mkwrite = filemap_page_mkwrite, 2432 }; 2433 2434 /* This is used for a general mmap of a disk file */ 2435 2436 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 2437 { 2438 struct address_space *mapping = file->f_mapping; 2439 2440 if (!mapping->a_ops->readpage) 2441 return -ENOEXEC; 2442 file_accessed(file); 2443 vma->vm_ops = &generic_file_vm_ops; 2444 return 0; 2445 } 2446 2447 /* 2448 * This is for filesystems which do not implement ->writepage. 2449 */ 2450 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 2451 { 2452 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 2453 return -EINVAL; 2454 return generic_file_mmap(file, vma); 2455 } 2456 #else 2457 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 2458 { 2459 return -ENOSYS; 2460 } 2461 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) 2462 { 2463 return -ENOSYS; 2464 } 2465 #endif /* CONFIG_MMU */ 2466 2467 EXPORT_SYMBOL(generic_file_mmap); 2468 EXPORT_SYMBOL(generic_file_readonly_mmap); 2469 2470 static struct page *wait_on_page_read(struct page *page) 2471 { 2472 if (!IS_ERR(page)) { 2473 wait_on_page_locked(page); 2474 if (!PageUptodate(page)) { 2475 put_page(page); 2476 page = ERR_PTR(-EIO); 2477 } 2478 } 2479 return page; 2480 } 2481 2482 static struct page *do_read_cache_page(struct address_space *mapping, 2483 pgoff_t index, 2484 int (*filler)(void *, struct page *), 2485 void *data, 2486 gfp_t gfp) 2487 { 2488 struct page *page; 2489 int err; 2490 repeat: 2491 page = find_get_page(mapping, index); 2492 if (!page) { 2493 page = __page_cache_alloc(gfp | __GFP_COLD); 2494 if (!page) 2495 return ERR_PTR(-ENOMEM); 2496 err = add_to_page_cache_lru(page, mapping, index, gfp); 2497 if (unlikely(err)) { 2498 put_page(page); 2499 if (err == -EEXIST) 2500 goto repeat; 2501 /* Presumably ENOMEM for radix tree node */ 2502 return ERR_PTR(err); 2503 } 2504 2505 filler: 2506 err = filler(data, page); 2507 if (err < 0) { 2508 put_page(page); 2509 return ERR_PTR(err); 2510 } 2511 2512 page = wait_on_page_read(page); 2513 if (IS_ERR(page)) 2514 return page; 2515 goto out; 2516 } 2517 if (PageUptodate(page)) 2518 goto out; 2519 2520 /* 2521 * Page is not up to date and may be locked due one of the following 2522 * case a: Page is being filled and the page lock is held 2523 * case b: Read/write error clearing the page uptodate status 2524 * case c: Truncation in progress (page locked) 2525 * case d: Reclaim in progress 2526 * 2527 * Case a, the page will be up to date when the page is unlocked. 2528 * There is no need to serialise on the page lock here as the page 2529 * is pinned so the lock gives no additional protection. Even if the 2530 * the page is truncated, the data is still valid if PageUptodate as 2531 * it's a race vs truncate race. 2532 * Case b, the page will not be up to date 2533 * Case c, the page may be truncated but in itself, the data may still 2534 * be valid after IO completes as it's a read vs truncate race. The 2535 * operation must restart if the page is not uptodate on unlock but 2536 * otherwise serialising on page lock to stabilise the mapping gives 2537 * no additional guarantees to the caller as the page lock is 2538 * released before return. 2539 * Case d, similar to truncation. If reclaim holds the page lock, it 2540 * will be a race with remove_mapping that determines if the mapping 2541 * is valid on unlock but otherwise the data is valid and there is 2542 * no need to serialise with page lock. 2543 * 2544 * As the page lock gives no additional guarantee, we optimistically 2545 * wait on the page to be unlocked and check if it's up to date and 2546 * use the page if it is. Otherwise, the page lock is required to 2547 * distinguish between the different cases. The motivation is that we 2548 * avoid spurious serialisations and wakeups when multiple processes 2549 * wait on the same page for IO to complete. 2550 */ 2551 wait_on_page_locked(page); 2552 if (PageUptodate(page)) 2553 goto out; 2554 2555 /* Distinguish between all the cases under the safety of the lock */ 2556 lock_page(page); 2557 2558 /* Case c or d, restart the operation */ 2559 if (!page->mapping) { 2560 unlock_page(page); 2561 put_page(page); 2562 goto repeat; 2563 } 2564 2565 /* Someone else locked and filled the page in a very small window */ 2566 if (PageUptodate(page)) { 2567 unlock_page(page); 2568 goto out; 2569 } 2570 goto filler; 2571 2572 out: 2573 mark_page_accessed(page); 2574 return page; 2575 } 2576 2577 /** 2578 * read_cache_page - read into page cache, fill it if needed 2579 * @mapping: the page's address_space 2580 * @index: the page index 2581 * @filler: function to perform the read 2582 * @data: first arg to filler(data, page) function, often left as NULL 2583 * 2584 * Read into the page cache. If a page already exists, and PageUptodate() is 2585 * not set, try to fill the page and wait for it to become unlocked. 2586 * 2587 * If the page does not get brought uptodate, return -EIO. 2588 */ 2589 struct page *read_cache_page(struct address_space *mapping, 2590 pgoff_t index, 2591 int (*filler)(void *, struct page *), 2592 void *data) 2593 { 2594 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping)); 2595 } 2596 EXPORT_SYMBOL(read_cache_page); 2597 2598 /** 2599 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 2600 * @mapping: the page's address_space 2601 * @index: the page index 2602 * @gfp: the page allocator flags to use if allocating 2603 * 2604 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 2605 * any new page allocations done using the specified allocation flags. 2606 * 2607 * If the page does not get brought uptodate, return -EIO. 2608 */ 2609 struct page *read_cache_page_gfp(struct address_space *mapping, 2610 pgoff_t index, 2611 gfp_t gfp) 2612 { 2613 filler_t *filler = (filler_t *)mapping->a_ops->readpage; 2614 2615 return do_read_cache_page(mapping, index, filler, NULL, gfp); 2616 } 2617 EXPORT_SYMBOL(read_cache_page_gfp); 2618 2619 /* 2620 * Performs necessary checks before doing a write 2621 * 2622 * Can adjust writing position or amount of bytes to write. 2623 * Returns appropriate error code that caller should return or 2624 * zero in case that write should be allowed. 2625 */ 2626 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from) 2627 { 2628 struct file *file = iocb->ki_filp; 2629 struct inode *inode = file->f_mapping->host; 2630 unsigned long limit = rlimit(RLIMIT_FSIZE); 2631 loff_t pos; 2632 2633 if (!iov_iter_count(from)) 2634 return 0; 2635 2636 /* FIXME: this is for backwards compatibility with 2.4 */ 2637 if (iocb->ki_flags & IOCB_APPEND) 2638 iocb->ki_pos = i_size_read(inode); 2639 2640 pos = iocb->ki_pos; 2641 2642 if (limit != RLIM_INFINITY) { 2643 if (iocb->ki_pos >= limit) { 2644 send_sig(SIGXFSZ, current, 0); 2645 return -EFBIG; 2646 } 2647 iov_iter_truncate(from, limit - (unsigned long)pos); 2648 } 2649 2650 /* 2651 * LFS rule 2652 */ 2653 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS && 2654 !(file->f_flags & O_LARGEFILE))) { 2655 if (pos >= MAX_NON_LFS) 2656 return -EFBIG; 2657 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos); 2658 } 2659 2660 /* 2661 * Are we about to exceed the fs block limit ? 2662 * 2663 * If we have written data it becomes a short write. If we have 2664 * exceeded without writing data we send a signal and return EFBIG. 2665 * Linus frestrict idea will clean these up nicely.. 2666 */ 2667 if (unlikely(pos >= inode->i_sb->s_maxbytes)) 2668 return -EFBIG; 2669 2670 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos); 2671 return iov_iter_count(from); 2672 } 2673 EXPORT_SYMBOL(generic_write_checks); 2674 2675 int pagecache_write_begin(struct file *file, struct address_space *mapping, 2676 loff_t pos, unsigned len, unsigned flags, 2677 struct page **pagep, void **fsdata) 2678 { 2679 const struct address_space_operations *aops = mapping->a_ops; 2680 2681 return aops->write_begin(file, mapping, pos, len, flags, 2682 pagep, fsdata); 2683 } 2684 EXPORT_SYMBOL(pagecache_write_begin); 2685 2686 int pagecache_write_end(struct file *file, struct address_space *mapping, 2687 loff_t pos, unsigned len, unsigned copied, 2688 struct page *page, void *fsdata) 2689 { 2690 const struct address_space_operations *aops = mapping->a_ops; 2691 2692 return aops->write_end(file, mapping, pos, len, copied, page, fsdata); 2693 } 2694 EXPORT_SYMBOL(pagecache_write_end); 2695 2696 ssize_t 2697 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) 2698 { 2699 struct file *file = iocb->ki_filp; 2700 struct address_space *mapping = file->f_mapping; 2701 struct inode *inode = mapping->host; 2702 loff_t pos = iocb->ki_pos; 2703 ssize_t written; 2704 size_t write_len; 2705 pgoff_t end; 2706 struct iov_iter data; 2707 2708 write_len = iov_iter_count(from); 2709 end = (pos + write_len - 1) >> PAGE_SHIFT; 2710 2711 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1); 2712 if (written) 2713 goto out; 2714 2715 /* 2716 * After a write we want buffered reads to be sure to go to disk to get 2717 * the new data. We invalidate clean cached page from the region we're 2718 * about to write. We do this *before* the write so that we can return 2719 * without clobbering -EIOCBQUEUED from ->direct_IO(). 2720 */ 2721 if (mapping->nrpages) { 2722 written = invalidate_inode_pages2_range(mapping, 2723 pos >> PAGE_SHIFT, end); 2724 /* 2725 * If a page can not be invalidated, return 0 to fall back 2726 * to buffered write. 2727 */ 2728 if (written) { 2729 if (written == -EBUSY) 2730 return 0; 2731 goto out; 2732 } 2733 } 2734 2735 data = *from; 2736 written = mapping->a_ops->direct_IO(iocb, &data); 2737 2738 /* 2739 * Finally, try again to invalidate clean pages which might have been 2740 * cached by non-direct readahead, or faulted in by get_user_pages() 2741 * if the source of the write was an mmap'ed region of the file 2742 * we're writing. Either one is a pretty crazy thing to do, 2743 * so we don't support it 100%. If this invalidation 2744 * fails, tough, the write still worked... 2745 */ 2746 if (mapping->nrpages) { 2747 invalidate_inode_pages2_range(mapping, 2748 pos >> PAGE_SHIFT, end); 2749 } 2750 2751 if (written > 0) { 2752 pos += written; 2753 iov_iter_advance(from, written); 2754 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 2755 i_size_write(inode, pos); 2756 mark_inode_dirty(inode); 2757 } 2758 iocb->ki_pos = pos; 2759 } 2760 out: 2761 return written; 2762 } 2763 EXPORT_SYMBOL(generic_file_direct_write); 2764 2765 /* 2766 * Find or create a page at the given pagecache position. Return the locked 2767 * page. This function is specifically for buffered writes. 2768 */ 2769 struct page *grab_cache_page_write_begin(struct address_space *mapping, 2770 pgoff_t index, unsigned flags) 2771 { 2772 struct page *page; 2773 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT; 2774 2775 if (flags & AOP_FLAG_NOFS) 2776 fgp_flags |= FGP_NOFS; 2777 2778 page = pagecache_get_page(mapping, index, fgp_flags, 2779 mapping_gfp_mask(mapping)); 2780 if (page) 2781 wait_for_stable_page(page); 2782 2783 return page; 2784 } 2785 EXPORT_SYMBOL(grab_cache_page_write_begin); 2786 2787 ssize_t generic_perform_write(struct file *file, 2788 struct iov_iter *i, loff_t pos) 2789 { 2790 struct address_space *mapping = file->f_mapping; 2791 const struct address_space_operations *a_ops = mapping->a_ops; 2792 long status = 0; 2793 ssize_t written = 0; 2794 unsigned int flags = 0; 2795 2796 /* 2797 * Copies from kernel address space cannot fail (NFSD is a big user). 2798 */ 2799 if (!iter_is_iovec(i)) 2800 flags |= AOP_FLAG_UNINTERRUPTIBLE; 2801 2802 do { 2803 struct page *page; 2804 unsigned long offset; /* Offset into pagecache page */ 2805 unsigned long bytes; /* Bytes to write to page */ 2806 size_t copied; /* Bytes copied from user */ 2807 void *fsdata; 2808 2809 offset = (pos & (PAGE_SIZE - 1)); 2810 bytes = min_t(unsigned long, PAGE_SIZE - offset, 2811 iov_iter_count(i)); 2812 2813 again: 2814 /* 2815 * Bring in the user page that we will copy from _first_. 2816 * Otherwise there's a nasty deadlock on copying from the 2817 * same page as we're writing to, without it being marked 2818 * up-to-date. 2819 * 2820 * Not only is this an optimisation, but it is also required 2821 * to check that the address is actually valid, when atomic 2822 * usercopies are used, below. 2823 */ 2824 if (unlikely(iov_iter_fault_in_readable(i, bytes))) { 2825 status = -EFAULT; 2826 break; 2827 } 2828 2829 if (fatal_signal_pending(current)) { 2830 status = -EINTR; 2831 break; 2832 } 2833 2834 status = a_ops->write_begin(file, mapping, pos, bytes, flags, 2835 &page, &fsdata); 2836 if (unlikely(status < 0)) 2837 break; 2838 2839 if (mapping_writably_mapped(mapping)) 2840 flush_dcache_page(page); 2841 2842 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); 2843 flush_dcache_page(page); 2844 2845 status = a_ops->write_end(file, mapping, pos, bytes, copied, 2846 page, fsdata); 2847 if (unlikely(status < 0)) 2848 break; 2849 copied = status; 2850 2851 cond_resched(); 2852 2853 iov_iter_advance(i, copied); 2854 if (unlikely(copied == 0)) { 2855 /* 2856 * If we were unable to copy any data at all, we must 2857 * fall back to a single segment length write. 2858 * 2859 * If we didn't fallback here, we could livelock 2860 * because not all segments in the iov can be copied at 2861 * once without a pagefault. 2862 */ 2863 bytes = min_t(unsigned long, PAGE_SIZE - offset, 2864 iov_iter_single_seg_count(i)); 2865 goto again; 2866 } 2867 pos += copied; 2868 written += copied; 2869 2870 balance_dirty_pages_ratelimited(mapping); 2871 } while (iov_iter_count(i)); 2872 2873 return written ? written : status; 2874 } 2875 EXPORT_SYMBOL(generic_perform_write); 2876 2877 /** 2878 * __generic_file_write_iter - write data to a file 2879 * @iocb: IO state structure (file, offset, etc.) 2880 * @from: iov_iter with data to write 2881 * 2882 * This function does all the work needed for actually writing data to a 2883 * file. It does all basic checks, removes SUID from the file, updates 2884 * modification times and calls proper subroutines depending on whether we 2885 * do direct IO or a standard buffered write. 2886 * 2887 * It expects i_mutex to be grabbed unless we work on a block device or similar 2888 * object which does not need locking at all. 2889 * 2890 * This function does *not* take care of syncing data in case of O_SYNC write. 2891 * A caller has to handle it. This is mainly due to the fact that we want to 2892 * avoid syncing under i_mutex. 2893 */ 2894 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 2895 { 2896 struct file *file = iocb->ki_filp; 2897 struct address_space * mapping = file->f_mapping; 2898 struct inode *inode = mapping->host; 2899 ssize_t written = 0; 2900 ssize_t err; 2901 ssize_t status; 2902 2903 /* We can write back this queue in page reclaim */ 2904 current->backing_dev_info = inode_to_bdi(inode); 2905 err = file_remove_privs(file); 2906 if (err) 2907 goto out; 2908 2909 err = file_update_time(file); 2910 if (err) 2911 goto out; 2912 2913 if (iocb->ki_flags & IOCB_DIRECT) { 2914 loff_t pos, endbyte; 2915 2916 written = generic_file_direct_write(iocb, from); 2917 /* 2918 * If the write stopped short of completing, fall back to 2919 * buffered writes. Some filesystems do this for writes to 2920 * holes, for example. For DAX files, a buffered write will 2921 * not succeed (even if it did, DAX does not handle dirty 2922 * page-cache pages correctly). 2923 */ 2924 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode)) 2925 goto out; 2926 2927 status = generic_perform_write(file, from, pos = iocb->ki_pos); 2928 /* 2929 * If generic_perform_write() returned a synchronous error 2930 * then we want to return the number of bytes which were 2931 * direct-written, or the error code if that was zero. Note 2932 * that this differs from normal direct-io semantics, which 2933 * will return -EFOO even if some bytes were written. 2934 */ 2935 if (unlikely(status < 0)) { 2936 err = status; 2937 goto out; 2938 } 2939 /* 2940 * We need to ensure that the page cache pages are written to 2941 * disk and invalidated to preserve the expected O_DIRECT 2942 * semantics. 2943 */ 2944 endbyte = pos + status - 1; 2945 err = filemap_write_and_wait_range(mapping, pos, endbyte); 2946 if (err == 0) { 2947 iocb->ki_pos = endbyte + 1; 2948 written += status; 2949 invalidate_mapping_pages(mapping, 2950 pos >> PAGE_SHIFT, 2951 endbyte >> PAGE_SHIFT); 2952 } else { 2953 /* 2954 * We don't know how much we wrote, so just return 2955 * the number of bytes which were direct-written 2956 */ 2957 } 2958 } else { 2959 written = generic_perform_write(file, from, iocb->ki_pos); 2960 if (likely(written > 0)) 2961 iocb->ki_pos += written; 2962 } 2963 out: 2964 current->backing_dev_info = NULL; 2965 return written ? written : err; 2966 } 2967 EXPORT_SYMBOL(__generic_file_write_iter); 2968 2969 /** 2970 * generic_file_write_iter - write data to a file 2971 * @iocb: IO state structure 2972 * @from: iov_iter with data to write 2973 * 2974 * This is a wrapper around __generic_file_write_iter() to be used by most 2975 * filesystems. It takes care of syncing the file in case of O_SYNC file 2976 * and acquires i_mutex as needed. 2977 */ 2978 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 2979 { 2980 struct file *file = iocb->ki_filp; 2981 struct inode *inode = file->f_mapping->host; 2982 ssize_t ret; 2983 2984 inode_lock(inode); 2985 ret = generic_write_checks(iocb, from); 2986 if (ret > 0) 2987 ret = __generic_file_write_iter(iocb, from); 2988 inode_unlock(inode); 2989 2990 if (ret > 0) 2991 ret = generic_write_sync(iocb, ret); 2992 return ret; 2993 } 2994 EXPORT_SYMBOL(generic_file_write_iter); 2995 2996 /** 2997 * try_to_release_page() - release old fs-specific metadata on a page 2998 * 2999 * @page: the page which the kernel is trying to free 3000 * @gfp_mask: memory allocation flags (and I/O mode) 3001 * 3002 * The address_space is to try to release any data against the page 3003 * (presumably at page->private). If the release was successful, return `1'. 3004 * Otherwise return zero. 3005 * 3006 * This may also be called if PG_fscache is set on a page, indicating that the 3007 * page is known to the local caching routines. 3008 * 3009 * The @gfp_mask argument specifies whether I/O may be performed to release 3010 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS). 3011 * 3012 */ 3013 int try_to_release_page(struct page *page, gfp_t gfp_mask) 3014 { 3015 struct address_space * const mapping = page->mapping; 3016 3017 BUG_ON(!PageLocked(page)); 3018 if (PageWriteback(page)) 3019 return 0; 3020 3021 if (mapping && mapping->a_ops->releasepage) 3022 return mapping->a_ops->releasepage(page, gfp_mask); 3023 return try_to_free_buffers(page); 3024 } 3025 3026 EXPORT_SYMBOL(try_to_release_page); 3027