xref: /openbmc/linux/mm/filemap.c (revision 4e1a33b1)
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/hugetlb.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include <linux/rmap.h>
38 #include "internal.h"
39 
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/filemap.h>
42 
43 /*
44  * FIXME: remove all knowledge of the buffer layer from the core VM
45  */
46 #include <linux/buffer_head.h> /* for try_to_free_buffers */
47 
48 #include <asm/mman.h>
49 
50 /*
51  * Shared mappings implemented 30.11.1994. It's not fully working yet,
52  * though.
53  *
54  * Shared mappings now work. 15.8.1995  Bruno.
55  *
56  * finished 'unifying' the page and buffer cache and SMP-threaded the
57  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
58  *
59  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60  */
61 
62 /*
63  * Lock ordering:
64  *
65  *  ->i_mmap_rwsem		(truncate_pagecache)
66  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
67  *      ->swap_lock		(exclusive_swap_page, others)
68  *        ->mapping->tree_lock
69  *
70  *  ->i_mutex
71  *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
72  *
73  *  ->mmap_sem
74  *    ->i_mmap_rwsem
75  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
76  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
77  *
78  *  ->mmap_sem
79  *    ->lock_page		(access_process_vm)
80  *
81  *  ->i_mutex			(generic_perform_write)
82  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
83  *
84  *  bdi->wb.list_lock
85  *    sb_lock			(fs/fs-writeback.c)
86  *    ->mapping->tree_lock	(__sync_single_inode)
87  *
88  *  ->i_mmap_rwsem
89  *    ->anon_vma.lock		(vma_adjust)
90  *
91  *  ->anon_vma.lock
92  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
93  *
94  *  ->page_table_lock or pte_lock
95  *    ->swap_lock		(try_to_unmap_one)
96  *    ->private_lock		(try_to_unmap_one)
97  *    ->tree_lock		(try_to_unmap_one)
98  *    ->zone_lru_lock(zone)	(follow_page->mark_page_accessed)
99  *    ->zone_lru_lock(zone)	(check_pte_range->isolate_lru_page)
100  *    ->private_lock		(page_remove_rmap->set_page_dirty)
101  *    ->tree_lock		(page_remove_rmap->set_page_dirty)
102  *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
103  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
104  *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
105  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
106  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
107  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
108  *
109  * ->i_mmap_rwsem
110  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
111  */
112 
113 static int page_cache_tree_insert(struct address_space *mapping,
114 				  struct page *page, void **shadowp)
115 {
116 	struct radix_tree_node *node;
117 	void **slot;
118 	int error;
119 
120 	error = __radix_tree_create(&mapping->page_tree, page->index, 0,
121 				    &node, &slot);
122 	if (error)
123 		return error;
124 	if (*slot) {
125 		void *p;
126 
127 		p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
128 		if (!radix_tree_exceptional_entry(p))
129 			return -EEXIST;
130 
131 		mapping->nrexceptional--;
132 		if (!dax_mapping(mapping)) {
133 			if (shadowp)
134 				*shadowp = p;
135 		} else {
136 			/* DAX can replace empty locked entry with a hole */
137 			WARN_ON_ONCE(p !=
138 				dax_radix_locked_entry(0, RADIX_DAX_EMPTY));
139 			/* Wakeup waiters for exceptional entry lock */
140 			dax_wake_mapping_entry_waiter(mapping, page->index, p,
141 						      true);
142 		}
143 	}
144 	__radix_tree_replace(&mapping->page_tree, node, slot, page,
145 			     workingset_update_node, mapping);
146 	mapping->nrpages++;
147 	return 0;
148 }
149 
150 static void page_cache_tree_delete(struct address_space *mapping,
151 				   struct page *page, void *shadow)
152 {
153 	int i, nr;
154 
155 	/* hugetlb pages are represented by one entry in the radix tree */
156 	nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
157 
158 	VM_BUG_ON_PAGE(!PageLocked(page), page);
159 	VM_BUG_ON_PAGE(PageTail(page), page);
160 	VM_BUG_ON_PAGE(nr != 1 && shadow, page);
161 
162 	for (i = 0; i < nr; i++) {
163 		struct radix_tree_node *node;
164 		void **slot;
165 
166 		__radix_tree_lookup(&mapping->page_tree, page->index + i,
167 				    &node, &slot);
168 
169 		VM_BUG_ON_PAGE(!node && nr != 1, page);
170 
171 		radix_tree_clear_tags(&mapping->page_tree, node, slot);
172 		__radix_tree_replace(&mapping->page_tree, node, slot, shadow,
173 				     workingset_update_node, mapping);
174 	}
175 
176 	if (shadow) {
177 		mapping->nrexceptional += nr;
178 		/*
179 		 * Make sure the nrexceptional update is committed before
180 		 * the nrpages update so that final truncate racing
181 		 * with reclaim does not see both counters 0 at the
182 		 * same time and miss a shadow entry.
183 		 */
184 		smp_wmb();
185 	}
186 	mapping->nrpages -= nr;
187 }
188 
189 /*
190  * Delete a page from the page cache and free it. Caller has to make
191  * sure the page is locked and that nobody else uses it - or that usage
192  * is safe.  The caller must hold the mapping's tree_lock.
193  */
194 void __delete_from_page_cache(struct page *page, void *shadow)
195 {
196 	struct address_space *mapping = page->mapping;
197 	int nr = hpage_nr_pages(page);
198 
199 	trace_mm_filemap_delete_from_page_cache(page);
200 	/*
201 	 * if we're uptodate, flush out into the cleancache, otherwise
202 	 * invalidate any existing cleancache entries.  We can't leave
203 	 * stale data around in the cleancache once our page is gone
204 	 */
205 	if (PageUptodate(page) && PageMappedToDisk(page))
206 		cleancache_put_page(page);
207 	else
208 		cleancache_invalidate_page(mapping, page);
209 
210 	VM_BUG_ON_PAGE(PageTail(page), page);
211 	VM_BUG_ON_PAGE(page_mapped(page), page);
212 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
213 		int mapcount;
214 
215 		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
216 			 current->comm, page_to_pfn(page));
217 		dump_page(page, "still mapped when deleted");
218 		dump_stack();
219 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
220 
221 		mapcount = page_mapcount(page);
222 		if (mapping_exiting(mapping) &&
223 		    page_count(page) >= mapcount + 2) {
224 			/*
225 			 * All vmas have already been torn down, so it's
226 			 * a good bet that actually the page is unmapped,
227 			 * and we'd prefer not to leak it: if we're wrong,
228 			 * some other bad page check should catch it later.
229 			 */
230 			page_mapcount_reset(page);
231 			page_ref_sub(page, mapcount);
232 		}
233 	}
234 
235 	page_cache_tree_delete(mapping, page, shadow);
236 
237 	page->mapping = NULL;
238 	/* Leave page->index set: truncation lookup relies upon it */
239 
240 	/* hugetlb pages do not participate in page cache accounting. */
241 	if (!PageHuge(page))
242 		__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
243 	if (PageSwapBacked(page)) {
244 		__mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
245 		if (PageTransHuge(page))
246 			__dec_node_page_state(page, NR_SHMEM_THPS);
247 	} else {
248 		VM_BUG_ON_PAGE(PageTransHuge(page) && !PageHuge(page), page);
249 	}
250 
251 	/*
252 	 * At this point page must be either written or cleaned by truncate.
253 	 * Dirty page here signals a bug and loss of unwritten data.
254 	 *
255 	 * This fixes dirty accounting after removing the page entirely but
256 	 * leaves PageDirty set: it has no effect for truncated page and
257 	 * anyway will be cleared before returning page into buddy allocator.
258 	 */
259 	if (WARN_ON_ONCE(PageDirty(page)))
260 		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
261 }
262 
263 /**
264  * delete_from_page_cache - delete page from page cache
265  * @page: the page which the kernel is trying to remove from page cache
266  *
267  * This must be called only on pages that have been verified to be in the page
268  * cache and locked.  It will never put the page into the free list, the caller
269  * has a reference on the page.
270  */
271 void delete_from_page_cache(struct page *page)
272 {
273 	struct address_space *mapping = page_mapping(page);
274 	unsigned long flags;
275 	void (*freepage)(struct page *);
276 
277 	BUG_ON(!PageLocked(page));
278 
279 	freepage = mapping->a_ops->freepage;
280 
281 	spin_lock_irqsave(&mapping->tree_lock, flags);
282 	__delete_from_page_cache(page, NULL);
283 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
284 
285 	if (freepage)
286 		freepage(page);
287 
288 	if (PageTransHuge(page) && !PageHuge(page)) {
289 		page_ref_sub(page, HPAGE_PMD_NR);
290 		VM_BUG_ON_PAGE(page_count(page) <= 0, page);
291 	} else {
292 		put_page(page);
293 	}
294 }
295 EXPORT_SYMBOL(delete_from_page_cache);
296 
297 int filemap_check_errors(struct address_space *mapping)
298 {
299 	int ret = 0;
300 	/* Check for outstanding write errors */
301 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
302 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
303 		ret = -ENOSPC;
304 	if (test_bit(AS_EIO, &mapping->flags) &&
305 	    test_and_clear_bit(AS_EIO, &mapping->flags))
306 		ret = -EIO;
307 	return ret;
308 }
309 EXPORT_SYMBOL(filemap_check_errors);
310 
311 /**
312  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
313  * @mapping:	address space structure to write
314  * @start:	offset in bytes where the range starts
315  * @end:	offset in bytes where the range ends (inclusive)
316  * @sync_mode:	enable synchronous operation
317  *
318  * Start writeback against all of a mapping's dirty pages that lie
319  * within the byte offsets <start, end> inclusive.
320  *
321  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
322  * opposed to a regular memory cleansing writeback.  The difference between
323  * these two operations is that if a dirty page/buffer is encountered, it must
324  * be waited upon, and not just skipped over.
325  */
326 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
327 				loff_t end, int sync_mode)
328 {
329 	int ret;
330 	struct writeback_control wbc = {
331 		.sync_mode = sync_mode,
332 		.nr_to_write = LONG_MAX,
333 		.range_start = start,
334 		.range_end = end,
335 	};
336 
337 	if (!mapping_cap_writeback_dirty(mapping))
338 		return 0;
339 
340 	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
341 	ret = do_writepages(mapping, &wbc);
342 	wbc_detach_inode(&wbc);
343 	return ret;
344 }
345 
346 static inline int __filemap_fdatawrite(struct address_space *mapping,
347 	int sync_mode)
348 {
349 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
350 }
351 
352 int filemap_fdatawrite(struct address_space *mapping)
353 {
354 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
355 }
356 EXPORT_SYMBOL(filemap_fdatawrite);
357 
358 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
359 				loff_t end)
360 {
361 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
362 }
363 EXPORT_SYMBOL(filemap_fdatawrite_range);
364 
365 /**
366  * filemap_flush - mostly a non-blocking flush
367  * @mapping:	target address_space
368  *
369  * This is a mostly non-blocking flush.  Not suitable for data-integrity
370  * purposes - I/O may not be started against all dirty pages.
371  */
372 int filemap_flush(struct address_space *mapping)
373 {
374 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
375 }
376 EXPORT_SYMBOL(filemap_flush);
377 
378 static int __filemap_fdatawait_range(struct address_space *mapping,
379 				     loff_t start_byte, loff_t end_byte)
380 {
381 	pgoff_t index = start_byte >> PAGE_SHIFT;
382 	pgoff_t end = end_byte >> PAGE_SHIFT;
383 	struct pagevec pvec;
384 	int nr_pages;
385 	int ret = 0;
386 
387 	if (end_byte < start_byte)
388 		goto out;
389 
390 	pagevec_init(&pvec, 0);
391 	while ((index <= end) &&
392 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
393 			PAGECACHE_TAG_WRITEBACK,
394 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
395 		unsigned i;
396 
397 		for (i = 0; i < nr_pages; i++) {
398 			struct page *page = pvec.pages[i];
399 
400 			/* until radix tree lookup accepts end_index */
401 			if (page->index > end)
402 				continue;
403 
404 			wait_on_page_writeback(page);
405 			if (TestClearPageError(page))
406 				ret = -EIO;
407 		}
408 		pagevec_release(&pvec);
409 		cond_resched();
410 	}
411 out:
412 	return ret;
413 }
414 
415 /**
416  * filemap_fdatawait_range - wait for writeback to complete
417  * @mapping:		address space structure to wait for
418  * @start_byte:		offset in bytes where the range starts
419  * @end_byte:		offset in bytes where the range ends (inclusive)
420  *
421  * Walk the list of under-writeback pages of the given address space
422  * in the given range and wait for all of them.  Check error status of
423  * the address space and return it.
424  *
425  * Since the error status of the address space is cleared by this function,
426  * callers are responsible for checking the return value and handling and/or
427  * reporting the error.
428  */
429 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
430 			    loff_t end_byte)
431 {
432 	int ret, ret2;
433 
434 	ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
435 	ret2 = filemap_check_errors(mapping);
436 	if (!ret)
437 		ret = ret2;
438 
439 	return ret;
440 }
441 EXPORT_SYMBOL(filemap_fdatawait_range);
442 
443 /**
444  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
445  * @mapping: address space structure to wait for
446  *
447  * Walk the list of under-writeback pages of the given address space
448  * and wait for all of them.  Unlike filemap_fdatawait(), this function
449  * does not clear error status of the address space.
450  *
451  * Use this function if callers don't handle errors themselves.  Expected
452  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
453  * fsfreeze(8)
454  */
455 void filemap_fdatawait_keep_errors(struct address_space *mapping)
456 {
457 	loff_t i_size = i_size_read(mapping->host);
458 
459 	if (i_size == 0)
460 		return;
461 
462 	__filemap_fdatawait_range(mapping, 0, i_size - 1);
463 }
464 
465 /**
466  * filemap_fdatawait - wait for all under-writeback pages to complete
467  * @mapping: address space structure to wait for
468  *
469  * Walk the list of under-writeback pages of the given address space
470  * and wait for all of them.  Check error status of the address space
471  * and return it.
472  *
473  * Since the error status of the address space is cleared by this function,
474  * callers are responsible for checking the return value and handling and/or
475  * reporting the error.
476  */
477 int filemap_fdatawait(struct address_space *mapping)
478 {
479 	loff_t i_size = i_size_read(mapping->host);
480 
481 	if (i_size == 0)
482 		return 0;
483 
484 	return filemap_fdatawait_range(mapping, 0, i_size - 1);
485 }
486 EXPORT_SYMBOL(filemap_fdatawait);
487 
488 int filemap_write_and_wait(struct address_space *mapping)
489 {
490 	int err = 0;
491 
492 	if ((!dax_mapping(mapping) && mapping->nrpages) ||
493 	    (dax_mapping(mapping) && mapping->nrexceptional)) {
494 		err = filemap_fdatawrite(mapping);
495 		/*
496 		 * Even if the above returned error, the pages may be
497 		 * written partially (e.g. -ENOSPC), so we wait for it.
498 		 * But the -EIO is special case, it may indicate the worst
499 		 * thing (e.g. bug) happened, so we avoid waiting for it.
500 		 */
501 		if (err != -EIO) {
502 			int err2 = filemap_fdatawait(mapping);
503 			if (!err)
504 				err = err2;
505 		}
506 	} else {
507 		err = filemap_check_errors(mapping);
508 	}
509 	return err;
510 }
511 EXPORT_SYMBOL(filemap_write_and_wait);
512 
513 /**
514  * filemap_write_and_wait_range - write out & wait on a file range
515  * @mapping:	the address_space for the pages
516  * @lstart:	offset in bytes where the range starts
517  * @lend:	offset in bytes where the range ends (inclusive)
518  *
519  * Write out and wait upon file offsets lstart->lend, inclusive.
520  *
521  * Note that `lend' is inclusive (describes the last byte to be written) so
522  * that this function can be used to write to the very end-of-file (end = -1).
523  */
524 int filemap_write_and_wait_range(struct address_space *mapping,
525 				 loff_t lstart, loff_t lend)
526 {
527 	int err = 0;
528 
529 	if ((!dax_mapping(mapping) && mapping->nrpages) ||
530 	    (dax_mapping(mapping) && mapping->nrexceptional)) {
531 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
532 						 WB_SYNC_ALL);
533 		/* See comment of filemap_write_and_wait() */
534 		if (err != -EIO) {
535 			int err2 = filemap_fdatawait_range(mapping,
536 						lstart, lend);
537 			if (!err)
538 				err = err2;
539 		}
540 	} else {
541 		err = filemap_check_errors(mapping);
542 	}
543 	return err;
544 }
545 EXPORT_SYMBOL(filemap_write_and_wait_range);
546 
547 /**
548  * replace_page_cache_page - replace a pagecache page with a new one
549  * @old:	page to be replaced
550  * @new:	page to replace with
551  * @gfp_mask:	allocation mode
552  *
553  * This function replaces a page in the pagecache with a new one.  On
554  * success it acquires the pagecache reference for the new page and
555  * drops it for the old page.  Both the old and new pages must be
556  * locked.  This function does not add the new page to the LRU, the
557  * caller must do that.
558  *
559  * The remove + add is atomic.  The only way this function can fail is
560  * memory allocation failure.
561  */
562 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
563 {
564 	int error;
565 
566 	VM_BUG_ON_PAGE(!PageLocked(old), old);
567 	VM_BUG_ON_PAGE(!PageLocked(new), new);
568 	VM_BUG_ON_PAGE(new->mapping, new);
569 
570 	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
571 	if (!error) {
572 		struct address_space *mapping = old->mapping;
573 		void (*freepage)(struct page *);
574 		unsigned long flags;
575 
576 		pgoff_t offset = old->index;
577 		freepage = mapping->a_ops->freepage;
578 
579 		get_page(new);
580 		new->mapping = mapping;
581 		new->index = offset;
582 
583 		spin_lock_irqsave(&mapping->tree_lock, flags);
584 		__delete_from_page_cache(old, NULL);
585 		error = page_cache_tree_insert(mapping, new, NULL);
586 		BUG_ON(error);
587 
588 		/*
589 		 * hugetlb pages do not participate in page cache accounting.
590 		 */
591 		if (!PageHuge(new))
592 			__inc_node_page_state(new, NR_FILE_PAGES);
593 		if (PageSwapBacked(new))
594 			__inc_node_page_state(new, NR_SHMEM);
595 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
596 		mem_cgroup_migrate(old, new);
597 		radix_tree_preload_end();
598 		if (freepage)
599 			freepage(old);
600 		put_page(old);
601 	}
602 
603 	return error;
604 }
605 EXPORT_SYMBOL_GPL(replace_page_cache_page);
606 
607 static int __add_to_page_cache_locked(struct page *page,
608 				      struct address_space *mapping,
609 				      pgoff_t offset, gfp_t gfp_mask,
610 				      void **shadowp)
611 {
612 	int huge = PageHuge(page);
613 	struct mem_cgroup *memcg;
614 	int error;
615 
616 	VM_BUG_ON_PAGE(!PageLocked(page), page);
617 	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
618 
619 	if (!huge) {
620 		error = mem_cgroup_try_charge(page, current->mm,
621 					      gfp_mask, &memcg, false);
622 		if (error)
623 			return error;
624 	}
625 
626 	error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
627 	if (error) {
628 		if (!huge)
629 			mem_cgroup_cancel_charge(page, memcg, false);
630 		return error;
631 	}
632 
633 	get_page(page);
634 	page->mapping = mapping;
635 	page->index = offset;
636 
637 	spin_lock_irq(&mapping->tree_lock);
638 	error = page_cache_tree_insert(mapping, page, shadowp);
639 	radix_tree_preload_end();
640 	if (unlikely(error))
641 		goto err_insert;
642 
643 	/* hugetlb pages do not participate in page cache accounting. */
644 	if (!huge)
645 		__inc_node_page_state(page, NR_FILE_PAGES);
646 	spin_unlock_irq(&mapping->tree_lock);
647 	if (!huge)
648 		mem_cgroup_commit_charge(page, memcg, false, false);
649 	trace_mm_filemap_add_to_page_cache(page);
650 	return 0;
651 err_insert:
652 	page->mapping = NULL;
653 	/* Leave page->index set: truncation relies upon it */
654 	spin_unlock_irq(&mapping->tree_lock);
655 	if (!huge)
656 		mem_cgroup_cancel_charge(page, memcg, false);
657 	put_page(page);
658 	return error;
659 }
660 
661 /**
662  * add_to_page_cache_locked - add a locked page to the pagecache
663  * @page:	page to add
664  * @mapping:	the page's address_space
665  * @offset:	page index
666  * @gfp_mask:	page allocation mode
667  *
668  * This function is used to add a page to the pagecache. It must be locked.
669  * This function does not add the page to the LRU.  The caller must do that.
670  */
671 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
672 		pgoff_t offset, gfp_t gfp_mask)
673 {
674 	return __add_to_page_cache_locked(page, mapping, offset,
675 					  gfp_mask, NULL);
676 }
677 EXPORT_SYMBOL(add_to_page_cache_locked);
678 
679 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
680 				pgoff_t offset, gfp_t gfp_mask)
681 {
682 	void *shadow = NULL;
683 	int ret;
684 
685 	__SetPageLocked(page);
686 	ret = __add_to_page_cache_locked(page, mapping, offset,
687 					 gfp_mask, &shadow);
688 	if (unlikely(ret))
689 		__ClearPageLocked(page);
690 	else {
691 		/*
692 		 * The page might have been evicted from cache only
693 		 * recently, in which case it should be activated like
694 		 * any other repeatedly accessed page.
695 		 * The exception is pages getting rewritten; evicting other
696 		 * data from the working set, only to cache data that will
697 		 * get overwritten with something else, is a waste of memory.
698 		 */
699 		if (!(gfp_mask & __GFP_WRITE) &&
700 		    shadow && workingset_refault(shadow)) {
701 			SetPageActive(page);
702 			workingset_activation(page);
703 		} else
704 			ClearPageActive(page);
705 		lru_cache_add(page);
706 	}
707 	return ret;
708 }
709 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
710 
711 #ifdef CONFIG_NUMA
712 struct page *__page_cache_alloc(gfp_t gfp)
713 {
714 	int n;
715 	struct page *page;
716 
717 	if (cpuset_do_page_mem_spread()) {
718 		unsigned int cpuset_mems_cookie;
719 		do {
720 			cpuset_mems_cookie = read_mems_allowed_begin();
721 			n = cpuset_mem_spread_node();
722 			page = __alloc_pages_node(n, gfp, 0);
723 		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
724 
725 		return page;
726 	}
727 	return alloc_pages(gfp, 0);
728 }
729 EXPORT_SYMBOL(__page_cache_alloc);
730 #endif
731 
732 /*
733  * In order to wait for pages to become available there must be
734  * waitqueues associated with pages. By using a hash table of
735  * waitqueues where the bucket discipline is to maintain all
736  * waiters on the same queue and wake all when any of the pages
737  * become available, and for the woken contexts to check to be
738  * sure the appropriate page became available, this saves space
739  * at a cost of "thundering herd" phenomena during rare hash
740  * collisions.
741  */
742 #define PAGE_WAIT_TABLE_BITS 8
743 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
744 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
745 
746 static wait_queue_head_t *page_waitqueue(struct page *page)
747 {
748 	return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
749 }
750 
751 void __init pagecache_init(void)
752 {
753 	int i;
754 
755 	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
756 		init_waitqueue_head(&page_wait_table[i]);
757 
758 	page_writeback_init();
759 }
760 
761 struct wait_page_key {
762 	struct page *page;
763 	int bit_nr;
764 	int page_match;
765 };
766 
767 struct wait_page_queue {
768 	struct page *page;
769 	int bit_nr;
770 	wait_queue_t wait;
771 };
772 
773 static int wake_page_function(wait_queue_t *wait, unsigned mode, int sync, void *arg)
774 {
775 	struct wait_page_key *key = arg;
776 	struct wait_page_queue *wait_page
777 		= container_of(wait, struct wait_page_queue, wait);
778 
779 	if (wait_page->page != key->page)
780 	       return 0;
781 	key->page_match = 1;
782 
783 	if (wait_page->bit_nr != key->bit_nr)
784 		return 0;
785 	if (test_bit(key->bit_nr, &key->page->flags))
786 		return 0;
787 
788 	return autoremove_wake_function(wait, mode, sync, key);
789 }
790 
791 static void wake_up_page_bit(struct page *page, int bit_nr)
792 {
793 	wait_queue_head_t *q = page_waitqueue(page);
794 	struct wait_page_key key;
795 	unsigned long flags;
796 
797 	key.page = page;
798 	key.bit_nr = bit_nr;
799 	key.page_match = 0;
800 
801 	spin_lock_irqsave(&q->lock, flags);
802 	__wake_up_locked_key(q, TASK_NORMAL, &key);
803 	/*
804 	 * It is possible for other pages to have collided on the waitqueue
805 	 * hash, so in that case check for a page match. That prevents a long-
806 	 * term waiter
807 	 *
808 	 * It is still possible to miss a case here, when we woke page waiters
809 	 * and removed them from the waitqueue, but there are still other
810 	 * page waiters.
811 	 */
812 	if (!waitqueue_active(q) || !key.page_match) {
813 		ClearPageWaiters(page);
814 		/*
815 		 * It's possible to miss clearing Waiters here, when we woke
816 		 * our page waiters, but the hashed waitqueue has waiters for
817 		 * other pages on it.
818 		 *
819 		 * That's okay, it's a rare case. The next waker will clear it.
820 		 */
821 	}
822 	spin_unlock_irqrestore(&q->lock, flags);
823 }
824 
825 static void wake_up_page(struct page *page, int bit)
826 {
827 	if (!PageWaiters(page))
828 		return;
829 	wake_up_page_bit(page, bit);
830 }
831 
832 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
833 		struct page *page, int bit_nr, int state, bool lock)
834 {
835 	struct wait_page_queue wait_page;
836 	wait_queue_t *wait = &wait_page.wait;
837 	int ret = 0;
838 
839 	init_wait(wait);
840 	wait->func = wake_page_function;
841 	wait_page.page = page;
842 	wait_page.bit_nr = bit_nr;
843 
844 	for (;;) {
845 		spin_lock_irq(&q->lock);
846 
847 		if (likely(list_empty(&wait->task_list))) {
848 			if (lock)
849 				__add_wait_queue_tail_exclusive(q, wait);
850 			else
851 				__add_wait_queue(q, wait);
852 			SetPageWaiters(page);
853 		}
854 
855 		set_current_state(state);
856 
857 		spin_unlock_irq(&q->lock);
858 
859 		if (likely(test_bit(bit_nr, &page->flags))) {
860 			io_schedule();
861 			if (unlikely(signal_pending_state(state, current))) {
862 				ret = -EINTR;
863 				break;
864 			}
865 		}
866 
867 		if (lock) {
868 			if (!test_and_set_bit_lock(bit_nr, &page->flags))
869 				break;
870 		} else {
871 			if (!test_bit(bit_nr, &page->flags))
872 				break;
873 		}
874 	}
875 
876 	finish_wait(q, wait);
877 
878 	/*
879 	 * A signal could leave PageWaiters set. Clearing it here if
880 	 * !waitqueue_active would be possible (by open-coding finish_wait),
881 	 * but still fail to catch it in the case of wait hash collision. We
882 	 * already can fail to clear wait hash collision cases, so don't
883 	 * bother with signals either.
884 	 */
885 
886 	return ret;
887 }
888 
889 void wait_on_page_bit(struct page *page, int bit_nr)
890 {
891 	wait_queue_head_t *q = page_waitqueue(page);
892 	wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false);
893 }
894 EXPORT_SYMBOL(wait_on_page_bit);
895 
896 int wait_on_page_bit_killable(struct page *page, int bit_nr)
897 {
898 	wait_queue_head_t *q = page_waitqueue(page);
899 	return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false);
900 }
901 
902 /**
903  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
904  * @page: Page defining the wait queue of interest
905  * @waiter: Waiter to add to the queue
906  *
907  * Add an arbitrary @waiter to the wait queue for the nominated @page.
908  */
909 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
910 {
911 	wait_queue_head_t *q = page_waitqueue(page);
912 	unsigned long flags;
913 
914 	spin_lock_irqsave(&q->lock, flags);
915 	__add_wait_queue(q, waiter);
916 	SetPageWaiters(page);
917 	spin_unlock_irqrestore(&q->lock, flags);
918 }
919 EXPORT_SYMBOL_GPL(add_page_wait_queue);
920 
921 #ifndef clear_bit_unlock_is_negative_byte
922 
923 /*
924  * PG_waiters is the high bit in the same byte as PG_lock.
925  *
926  * On x86 (and on many other architectures), we can clear PG_lock and
927  * test the sign bit at the same time. But if the architecture does
928  * not support that special operation, we just do this all by hand
929  * instead.
930  *
931  * The read of PG_waiters has to be after (or concurrently with) PG_locked
932  * being cleared, but a memory barrier should be unneccssary since it is
933  * in the same byte as PG_locked.
934  */
935 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
936 {
937 	clear_bit_unlock(nr, mem);
938 	/* smp_mb__after_atomic(); */
939 	return test_bit(PG_waiters, mem);
940 }
941 
942 #endif
943 
944 /**
945  * unlock_page - unlock a locked page
946  * @page: the page
947  *
948  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
949  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
950  * mechanism between PageLocked pages and PageWriteback pages is shared.
951  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
952  *
953  * Note that this depends on PG_waiters being the sign bit in the byte
954  * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
955  * clear the PG_locked bit and test PG_waiters at the same time fairly
956  * portably (architectures that do LL/SC can test any bit, while x86 can
957  * test the sign bit).
958  */
959 void unlock_page(struct page *page)
960 {
961 	BUILD_BUG_ON(PG_waiters != 7);
962 	page = compound_head(page);
963 	VM_BUG_ON_PAGE(!PageLocked(page), page);
964 	if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
965 		wake_up_page_bit(page, PG_locked);
966 }
967 EXPORT_SYMBOL(unlock_page);
968 
969 /**
970  * end_page_writeback - end writeback against a page
971  * @page: the page
972  */
973 void end_page_writeback(struct page *page)
974 {
975 	/*
976 	 * TestClearPageReclaim could be used here but it is an atomic
977 	 * operation and overkill in this particular case. Failing to
978 	 * shuffle a page marked for immediate reclaim is too mild to
979 	 * justify taking an atomic operation penalty at the end of
980 	 * ever page writeback.
981 	 */
982 	if (PageReclaim(page)) {
983 		ClearPageReclaim(page);
984 		rotate_reclaimable_page(page);
985 	}
986 
987 	if (!test_clear_page_writeback(page))
988 		BUG();
989 
990 	smp_mb__after_atomic();
991 	wake_up_page(page, PG_writeback);
992 }
993 EXPORT_SYMBOL(end_page_writeback);
994 
995 /*
996  * After completing I/O on a page, call this routine to update the page
997  * flags appropriately
998  */
999 void page_endio(struct page *page, bool is_write, int err)
1000 {
1001 	if (!is_write) {
1002 		if (!err) {
1003 			SetPageUptodate(page);
1004 		} else {
1005 			ClearPageUptodate(page);
1006 			SetPageError(page);
1007 		}
1008 		unlock_page(page);
1009 	} else {
1010 		if (err) {
1011 			struct address_space *mapping;
1012 
1013 			SetPageError(page);
1014 			mapping = page_mapping(page);
1015 			if (mapping)
1016 				mapping_set_error(mapping, err);
1017 		}
1018 		end_page_writeback(page);
1019 	}
1020 }
1021 EXPORT_SYMBOL_GPL(page_endio);
1022 
1023 /**
1024  * __lock_page - get a lock on the page, assuming we need to sleep to get it
1025  * @__page: the page to lock
1026  */
1027 void __lock_page(struct page *__page)
1028 {
1029 	struct page *page = compound_head(__page);
1030 	wait_queue_head_t *q = page_waitqueue(page);
1031 	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true);
1032 }
1033 EXPORT_SYMBOL(__lock_page);
1034 
1035 int __lock_page_killable(struct page *__page)
1036 {
1037 	struct page *page = compound_head(__page);
1038 	wait_queue_head_t *q = page_waitqueue(page);
1039 	return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true);
1040 }
1041 EXPORT_SYMBOL_GPL(__lock_page_killable);
1042 
1043 /*
1044  * Return values:
1045  * 1 - page is locked; mmap_sem is still held.
1046  * 0 - page is not locked.
1047  *     mmap_sem has been released (up_read()), unless flags had both
1048  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1049  *     which case mmap_sem is still held.
1050  *
1051  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1052  * with the page locked and the mmap_sem unperturbed.
1053  */
1054 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1055 			 unsigned int flags)
1056 {
1057 	if (flags & FAULT_FLAG_ALLOW_RETRY) {
1058 		/*
1059 		 * CAUTION! In this case, mmap_sem is not released
1060 		 * even though return 0.
1061 		 */
1062 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1063 			return 0;
1064 
1065 		up_read(&mm->mmap_sem);
1066 		if (flags & FAULT_FLAG_KILLABLE)
1067 			wait_on_page_locked_killable(page);
1068 		else
1069 			wait_on_page_locked(page);
1070 		return 0;
1071 	} else {
1072 		if (flags & FAULT_FLAG_KILLABLE) {
1073 			int ret;
1074 
1075 			ret = __lock_page_killable(page);
1076 			if (ret) {
1077 				up_read(&mm->mmap_sem);
1078 				return 0;
1079 			}
1080 		} else
1081 			__lock_page(page);
1082 		return 1;
1083 	}
1084 }
1085 
1086 /**
1087  * page_cache_next_hole - find the next hole (not-present entry)
1088  * @mapping: mapping
1089  * @index: index
1090  * @max_scan: maximum range to search
1091  *
1092  * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
1093  * lowest indexed hole.
1094  *
1095  * Returns: the index of the hole if found, otherwise returns an index
1096  * outside of the set specified (in which case 'return - index >=
1097  * max_scan' will be true). In rare cases of index wrap-around, 0 will
1098  * be returned.
1099  *
1100  * page_cache_next_hole may be called under rcu_read_lock. However,
1101  * like radix_tree_gang_lookup, this will not atomically search a
1102  * snapshot of the tree at a single point in time. For example, if a
1103  * hole is created at index 5, then subsequently a hole is created at
1104  * index 10, page_cache_next_hole covering both indexes may return 10
1105  * if called under rcu_read_lock.
1106  */
1107 pgoff_t page_cache_next_hole(struct address_space *mapping,
1108 			     pgoff_t index, unsigned long max_scan)
1109 {
1110 	unsigned long i;
1111 
1112 	for (i = 0; i < max_scan; i++) {
1113 		struct page *page;
1114 
1115 		page = radix_tree_lookup(&mapping->page_tree, index);
1116 		if (!page || radix_tree_exceptional_entry(page))
1117 			break;
1118 		index++;
1119 		if (index == 0)
1120 			break;
1121 	}
1122 
1123 	return index;
1124 }
1125 EXPORT_SYMBOL(page_cache_next_hole);
1126 
1127 /**
1128  * page_cache_prev_hole - find the prev hole (not-present entry)
1129  * @mapping: mapping
1130  * @index: index
1131  * @max_scan: maximum range to search
1132  *
1133  * Search backwards in the range [max(index-max_scan+1, 0), index] for
1134  * the first hole.
1135  *
1136  * Returns: the index of the hole if found, otherwise returns an index
1137  * outside of the set specified (in which case 'index - return >=
1138  * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1139  * will be returned.
1140  *
1141  * page_cache_prev_hole may be called under rcu_read_lock. However,
1142  * like radix_tree_gang_lookup, this will not atomically search a
1143  * snapshot of the tree at a single point in time. For example, if a
1144  * hole is created at index 10, then subsequently a hole is created at
1145  * index 5, page_cache_prev_hole covering both indexes may return 5 if
1146  * called under rcu_read_lock.
1147  */
1148 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1149 			     pgoff_t index, unsigned long max_scan)
1150 {
1151 	unsigned long i;
1152 
1153 	for (i = 0; i < max_scan; i++) {
1154 		struct page *page;
1155 
1156 		page = radix_tree_lookup(&mapping->page_tree, index);
1157 		if (!page || radix_tree_exceptional_entry(page))
1158 			break;
1159 		index--;
1160 		if (index == ULONG_MAX)
1161 			break;
1162 	}
1163 
1164 	return index;
1165 }
1166 EXPORT_SYMBOL(page_cache_prev_hole);
1167 
1168 /**
1169  * find_get_entry - find and get a page cache entry
1170  * @mapping: the address_space to search
1171  * @offset: the page cache index
1172  *
1173  * Looks up the page cache slot at @mapping & @offset.  If there is a
1174  * page cache page, it is returned with an increased refcount.
1175  *
1176  * If the slot holds a shadow entry of a previously evicted page, or a
1177  * swap entry from shmem/tmpfs, it is returned.
1178  *
1179  * Otherwise, %NULL is returned.
1180  */
1181 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1182 {
1183 	void **pagep;
1184 	struct page *head, *page;
1185 
1186 	rcu_read_lock();
1187 repeat:
1188 	page = NULL;
1189 	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1190 	if (pagep) {
1191 		page = radix_tree_deref_slot(pagep);
1192 		if (unlikely(!page))
1193 			goto out;
1194 		if (radix_tree_exception(page)) {
1195 			if (radix_tree_deref_retry(page))
1196 				goto repeat;
1197 			/*
1198 			 * A shadow entry of a recently evicted page,
1199 			 * or a swap entry from shmem/tmpfs.  Return
1200 			 * it without attempting to raise page count.
1201 			 */
1202 			goto out;
1203 		}
1204 
1205 		head = compound_head(page);
1206 		if (!page_cache_get_speculative(head))
1207 			goto repeat;
1208 
1209 		/* The page was split under us? */
1210 		if (compound_head(page) != head) {
1211 			put_page(head);
1212 			goto repeat;
1213 		}
1214 
1215 		/*
1216 		 * Has the page moved?
1217 		 * This is part of the lockless pagecache protocol. See
1218 		 * include/linux/pagemap.h for details.
1219 		 */
1220 		if (unlikely(page != *pagep)) {
1221 			put_page(head);
1222 			goto repeat;
1223 		}
1224 	}
1225 out:
1226 	rcu_read_unlock();
1227 
1228 	return page;
1229 }
1230 EXPORT_SYMBOL(find_get_entry);
1231 
1232 /**
1233  * find_lock_entry - locate, pin and lock a page cache entry
1234  * @mapping: the address_space to search
1235  * @offset: the page cache index
1236  *
1237  * Looks up the page cache slot at @mapping & @offset.  If there is a
1238  * page cache page, it is returned locked and with an increased
1239  * refcount.
1240  *
1241  * If the slot holds a shadow entry of a previously evicted page, or a
1242  * swap entry from shmem/tmpfs, it is returned.
1243  *
1244  * Otherwise, %NULL is returned.
1245  *
1246  * find_lock_entry() may sleep.
1247  */
1248 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1249 {
1250 	struct page *page;
1251 
1252 repeat:
1253 	page = find_get_entry(mapping, offset);
1254 	if (page && !radix_tree_exception(page)) {
1255 		lock_page(page);
1256 		/* Has the page been truncated? */
1257 		if (unlikely(page_mapping(page) != mapping)) {
1258 			unlock_page(page);
1259 			put_page(page);
1260 			goto repeat;
1261 		}
1262 		VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1263 	}
1264 	return page;
1265 }
1266 EXPORT_SYMBOL(find_lock_entry);
1267 
1268 /**
1269  * pagecache_get_page - find and get a page reference
1270  * @mapping: the address_space to search
1271  * @offset: the page index
1272  * @fgp_flags: PCG flags
1273  * @gfp_mask: gfp mask to use for the page cache data page allocation
1274  *
1275  * Looks up the page cache slot at @mapping & @offset.
1276  *
1277  * PCG flags modify how the page is returned.
1278  *
1279  * FGP_ACCESSED: the page will be marked accessed
1280  * FGP_LOCK: Page is return locked
1281  * FGP_CREAT: If page is not present then a new page is allocated using
1282  *		@gfp_mask and added to the page cache and the VM's LRU
1283  *		list. The page is returned locked and with an increased
1284  *		refcount. Otherwise, %NULL is returned.
1285  *
1286  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1287  * if the GFP flags specified for FGP_CREAT are atomic.
1288  *
1289  * If there is a page cache page, it is returned with an increased refcount.
1290  */
1291 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1292 	int fgp_flags, gfp_t gfp_mask)
1293 {
1294 	struct page *page;
1295 
1296 repeat:
1297 	page = find_get_entry(mapping, offset);
1298 	if (radix_tree_exceptional_entry(page))
1299 		page = NULL;
1300 	if (!page)
1301 		goto no_page;
1302 
1303 	if (fgp_flags & FGP_LOCK) {
1304 		if (fgp_flags & FGP_NOWAIT) {
1305 			if (!trylock_page(page)) {
1306 				put_page(page);
1307 				return NULL;
1308 			}
1309 		} else {
1310 			lock_page(page);
1311 		}
1312 
1313 		/* Has the page been truncated? */
1314 		if (unlikely(page->mapping != mapping)) {
1315 			unlock_page(page);
1316 			put_page(page);
1317 			goto repeat;
1318 		}
1319 		VM_BUG_ON_PAGE(page->index != offset, page);
1320 	}
1321 
1322 	if (page && (fgp_flags & FGP_ACCESSED))
1323 		mark_page_accessed(page);
1324 
1325 no_page:
1326 	if (!page && (fgp_flags & FGP_CREAT)) {
1327 		int err;
1328 		if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1329 			gfp_mask |= __GFP_WRITE;
1330 		if (fgp_flags & FGP_NOFS)
1331 			gfp_mask &= ~__GFP_FS;
1332 
1333 		page = __page_cache_alloc(gfp_mask);
1334 		if (!page)
1335 			return NULL;
1336 
1337 		if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1338 			fgp_flags |= FGP_LOCK;
1339 
1340 		/* Init accessed so avoid atomic mark_page_accessed later */
1341 		if (fgp_flags & FGP_ACCESSED)
1342 			__SetPageReferenced(page);
1343 
1344 		err = add_to_page_cache_lru(page, mapping, offset,
1345 				gfp_mask & GFP_RECLAIM_MASK);
1346 		if (unlikely(err)) {
1347 			put_page(page);
1348 			page = NULL;
1349 			if (err == -EEXIST)
1350 				goto repeat;
1351 		}
1352 	}
1353 
1354 	return page;
1355 }
1356 EXPORT_SYMBOL(pagecache_get_page);
1357 
1358 /**
1359  * find_get_entries - gang pagecache lookup
1360  * @mapping:	The address_space to search
1361  * @start:	The starting page cache index
1362  * @nr_entries:	The maximum number of entries
1363  * @entries:	Where the resulting entries are placed
1364  * @indices:	The cache indices corresponding to the entries in @entries
1365  *
1366  * find_get_entries() will search for and return a group of up to
1367  * @nr_entries entries in the mapping.  The entries are placed at
1368  * @entries.  find_get_entries() takes a reference against any actual
1369  * pages it returns.
1370  *
1371  * The search returns a group of mapping-contiguous page cache entries
1372  * with ascending indexes.  There may be holes in the indices due to
1373  * not-present pages.
1374  *
1375  * Any shadow entries of evicted pages, or swap entries from
1376  * shmem/tmpfs, are included in the returned array.
1377  *
1378  * find_get_entries() returns the number of pages and shadow entries
1379  * which were found.
1380  */
1381 unsigned find_get_entries(struct address_space *mapping,
1382 			  pgoff_t start, unsigned int nr_entries,
1383 			  struct page **entries, pgoff_t *indices)
1384 {
1385 	void **slot;
1386 	unsigned int ret = 0;
1387 	struct radix_tree_iter iter;
1388 
1389 	if (!nr_entries)
1390 		return 0;
1391 
1392 	rcu_read_lock();
1393 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1394 		struct page *head, *page;
1395 repeat:
1396 		page = radix_tree_deref_slot(slot);
1397 		if (unlikely(!page))
1398 			continue;
1399 		if (radix_tree_exception(page)) {
1400 			if (radix_tree_deref_retry(page)) {
1401 				slot = radix_tree_iter_retry(&iter);
1402 				continue;
1403 			}
1404 			/*
1405 			 * A shadow entry of a recently evicted page, a swap
1406 			 * entry from shmem/tmpfs or a DAX entry.  Return it
1407 			 * without attempting to raise page count.
1408 			 */
1409 			goto export;
1410 		}
1411 
1412 		head = compound_head(page);
1413 		if (!page_cache_get_speculative(head))
1414 			goto repeat;
1415 
1416 		/* The page was split under us? */
1417 		if (compound_head(page) != head) {
1418 			put_page(head);
1419 			goto repeat;
1420 		}
1421 
1422 		/* Has the page moved? */
1423 		if (unlikely(page != *slot)) {
1424 			put_page(head);
1425 			goto repeat;
1426 		}
1427 export:
1428 		indices[ret] = iter.index;
1429 		entries[ret] = page;
1430 		if (++ret == nr_entries)
1431 			break;
1432 	}
1433 	rcu_read_unlock();
1434 	return ret;
1435 }
1436 
1437 /**
1438  * find_get_pages - gang pagecache lookup
1439  * @mapping:	The address_space to search
1440  * @start:	The starting page index
1441  * @nr_pages:	The maximum number of pages
1442  * @pages:	Where the resulting pages are placed
1443  *
1444  * find_get_pages() will search for and return a group of up to
1445  * @nr_pages pages in the mapping.  The pages are placed at @pages.
1446  * find_get_pages() takes a reference against the returned pages.
1447  *
1448  * The search returns a group of mapping-contiguous pages with ascending
1449  * indexes.  There may be holes in the indices due to not-present pages.
1450  *
1451  * find_get_pages() returns the number of pages which were found.
1452  */
1453 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1454 			    unsigned int nr_pages, struct page **pages)
1455 {
1456 	struct radix_tree_iter iter;
1457 	void **slot;
1458 	unsigned ret = 0;
1459 
1460 	if (unlikely(!nr_pages))
1461 		return 0;
1462 
1463 	rcu_read_lock();
1464 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1465 		struct page *head, *page;
1466 repeat:
1467 		page = radix_tree_deref_slot(slot);
1468 		if (unlikely(!page))
1469 			continue;
1470 
1471 		if (radix_tree_exception(page)) {
1472 			if (radix_tree_deref_retry(page)) {
1473 				slot = radix_tree_iter_retry(&iter);
1474 				continue;
1475 			}
1476 			/*
1477 			 * A shadow entry of a recently evicted page,
1478 			 * or a swap entry from shmem/tmpfs.  Skip
1479 			 * over it.
1480 			 */
1481 			continue;
1482 		}
1483 
1484 		head = compound_head(page);
1485 		if (!page_cache_get_speculative(head))
1486 			goto repeat;
1487 
1488 		/* The page was split under us? */
1489 		if (compound_head(page) != head) {
1490 			put_page(head);
1491 			goto repeat;
1492 		}
1493 
1494 		/* Has the page moved? */
1495 		if (unlikely(page != *slot)) {
1496 			put_page(head);
1497 			goto repeat;
1498 		}
1499 
1500 		pages[ret] = page;
1501 		if (++ret == nr_pages)
1502 			break;
1503 	}
1504 
1505 	rcu_read_unlock();
1506 	return ret;
1507 }
1508 
1509 /**
1510  * find_get_pages_contig - gang contiguous pagecache lookup
1511  * @mapping:	The address_space to search
1512  * @index:	The starting page index
1513  * @nr_pages:	The maximum number of pages
1514  * @pages:	Where the resulting pages are placed
1515  *
1516  * find_get_pages_contig() works exactly like find_get_pages(), except
1517  * that the returned number of pages are guaranteed to be contiguous.
1518  *
1519  * find_get_pages_contig() returns the number of pages which were found.
1520  */
1521 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1522 			       unsigned int nr_pages, struct page **pages)
1523 {
1524 	struct radix_tree_iter iter;
1525 	void **slot;
1526 	unsigned int ret = 0;
1527 
1528 	if (unlikely(!nr_pages))
1529 		return 0;
1530 
1531 	rcu_read_lock();
1532 	radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1533 		struct page *head, *page;
1534 repeat:
1535 		page = radix_tree_deref_slot(slot);
1536 		/* The hole, there no reason to continue */
1537 		if (unlikely(!page))
1538 			break;
1539 
1540 		if (radix_tree_exception(page)) {
1541 			if (radix_tree_deref_retry(page)) {
1542 				slot = radix_tree_iter_retry(&iter);
1543 				continue;
1544 			}
1545 			/*
1546 			 * A shadow entry of a recently evicted page,
1547 			 * or a swap entry from shmem/tmpfs.  Stop
1548 			 * looking for contiguous pages.
1549 			 */
1550 			break;
1551 		}
1552 
1553 		head = compound_head(page);
1554 		if (!page_cache_get_speculative(head))
1555 			goto repeat;
1556 
1557 		/* The page was split under us? */
1558 		if (compound_head(page) != head) {
1559 			put_page(head);
1560 			goto repeat;
1561 		}
1562 
1563 		/* Has the page moved? */
1564 		if (unlikely(page != *slot)) {
1565 			put_page(head);
1566 			goto repeat;
1567 		}
1568 
1569 		/*
1570 		 * must check mapping and index after taking the ref.
1571 		 * otherwise we can get both false positives and false
1572 		 * negatives, which is just confusing to the caller.
1573 		 */
1574 		if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1575 			put_page(page);
1576 			break;
1577 		}
1578 
1579 		pages[ret] = page;
1580 		if (++ret == nr_pages)
1581 			break;
1582 	}
1583 	rcu_read_unlock();
1584 	return ret;
1585 }
1586 EXPORT_SYMBOL(find_get_pages_contig);
1587 
1588 /**
1589  * find_get_pages_tag - find and return pages that match @tag
1590  * @mapping:	the address_space to search
1591  * @index:	the starting page index
1592  * @tag:	the tag index
1593  * @nr_pages:	the maximum number of pages
1594  * @pages:	where the resulting pages are placed
1595  *
1596  * Like find_get_pages, except we only return pages which are tagged with
1597  * @tag.   We update @index to index the next page for the traversal.
1598  */
1599 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1600 			int tag, unsigned int nr_pages, struct page **pages)
1601 {
1602 	struct radix_tree_iter iter;
1603 	void **slot;
1604 	unsigned ret = 0;
1605 
1606 	if (unlikely(!nr_pages))
1607 		return 0;
1608 
1609 	rcu_read_lock();
1610 	radix_tree_for_each_tagged(slot, &mapping->page_tree,
1611 				   &iter, *index, tag) {
1612 		struct page *head, *page;
1613 repeat:
1614 		page = radix_tree_deref_slot(slot);
1615 		if (unlikely(!page))
1616 			continue;
1617 
1618 		if (radix_tree_exception(page)) {
1619 			if (radix_tree_deref_retry(page)) {
1620 				slot = radix_tree_iter_retry(&iter);
1621 				continue;
1622 			}
1623 			/*
1624 			 * A shadow entry of a recently evicted page.
1625 			 *
1626 			 * Those entries should never be tagged, but
1627 			 * this tree walk is lockless and the tags are
1628 			 * looked up in bulk, one radix tree node at a
1629 			 * time, so there is a sizable window for page
1630 			 * reclaim to evict a page we saw tagged.
1631 			 *
1632 			 * Skip over it.
1633 			 */
1634 			continue;
1635 		}
1636 
1637 		head = compound_head(page);
1638 		if (!page_cache_get_speculative(head))
1639 			goto repeat;
1640 
1641 		/* The page was split under us? */
1642 		if (compound_head(page) != head) {
1643 			put_page(head);
1644 			goto repeat;
1645 		}
1646 
1647 		/* Has the page moved? */
1648 		if (unlikely(page != *slot)) {
1649 			put_page(head);
1650 			goto repeat;
1651 		}
1652 
1653 		pages[ret] = page;
1654 		if (++ret == nr_pages)
1655 			break;
1656 	}
1657 
1658 	rcu_read_unlock();
1659 
1660 	if (ret)
1661 		*index = pages[ret - 1]->index + 1;
1662 
1663 	return ret;
1664 }
1665 EXPORT_SYMBOL(find_get_pages_tag);
1666 
1667 /**
1668  * find_get_entries_tag - find and return entries that match @tag
1669  * @mapping:	the address_space to search
1670  * @start:	the starting page cache index
1671  * @tag:	the tag index
1672  * @nr_entries:	the maximum number of entries
1673  * @entries:	where the resulting entries are placed
1674  * @indices:	the cache indices corresponding to the entries in @entries
1675  *
1676  * Like find_get_entries, except we only return entries which are tagged with
1677  * @tag.
1678  */
1679 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1680 			int tag, unsigned int nr_entries,
1681 			struct page **entries, pgoff_t *indices)
1682 {
1683 	void **slot;
1684 	unsigned int ret = 0;
1685 	struct radix_tree_iter iter;
1686 
1687 	if (!nr_entries)
1688 		return 0;
1689 
1690 	rcu_read_lock();
1691 	radix_tree_for_each_tagged(slot, &mapping->page_tree,
1692 				   &iter, start, tag) {
1693 		struct page *head, *page;
1694 repeat:
1695 		page = radix_tree_deref_slot(slot);
1696 		if (unlikely(!page))
1697 			continue;
1698 		if (radix_tree_exception(page)) {
1699 			if (radix_tree_deref_retry(page)) {
1700 				slot = radix_tree_iter_retry(&iter);
1701 				continue;
1702 			}
1703 
1704 			/*
1705 			 * A shadow entry of a recently evicted page, a swap
1706 			 * entry from shmem/tmpfs or a DAX entry.  Return it
1707 			 * without attempting to raise page count.
1708 			 */
1709 			goto export;
1710 		}
1711 
1712 		head = compound_head(page);
1713 		if (!page_cache_get_speculative(head))
1714 			goto repeat;
1715 
1716 		/* The page was split under us? */
1717 		if (compound_head(page) != head) {
1718 			put_page(head);
1719 			goto repeat;
1720 		}
1721 
1722 		/* Has the page moved? */
1723 		if (unlikely(page != *slot)) {
1724 			put_page(head);
1725 			goto repeat;
1726 		}
1727 export:
1728 		indices[ret] = iter.index;
1729 		entries[ret] = page;
1730 		if (++ret == nr_entries)
1731 			break;
1732 	}
1733 	rcu_read_unlock();
1734 	return ret;
1735 }
1736 EXPORT_SYMBOL(find_get_entries_tag);
1737 
1738 /*
1739  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1740  * a _large_ part of the i/o request. Imagine the worst scenario:
1741  *
1742  *      ---R__________________________________________B__________
1743  *         ^ reading here                             ^ bad block(assume 4k)
1744  *
1745  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1746  * => failing the whole request => read(R) => read(R+1) =>
1747  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1748  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1749  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1750  *
1751  * It is going insane. Fix it by quickly scaling down the readahead size.
1752  */
1753 static void shrink_readahead_size_eio(struct file *filp,
1754 					struct file_ra_state *ra)
1755 {
1756 	ra->ra_pages /= 4;
1757 }
1758 
1759 /**
1760  * do_generic_file_read - generic file read routine
1761  * @filp:	the file to read
1762  * @ppos:	current file position
1763  * @iter:	data destination
1764  * @written:	already copied
1765  *
1766  * This is a generic file read routine, and uses the
1767  * mapping->a_ops->readpage() function for the actual low-level stuff.
1768  *
1769  * This is really ugly. But the goto's actually try to clarify some
1770  * of the logic when it comes to error handling etc.
1771  */
1772 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1773 		struct iov_iter *iter, ssize_t written)
1774 {
1775 	struct address_space *mapping = filp->f_mapping;
1776 	struct inode *inode = mapping->host;
1777 	struct file_ra_state *ra = &filp->f_ra;
1778 	pgoff_t index;
1779 	pgoff_t last_index;
1780 	pgoff_t prev_index;
1781 	unsigned long offset;      /* offset into pagecache page */
1782 	unsigned int prev_offset;
1783 	int error = 0;
1784 
1785 	if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
1786 		return 0;
1787 	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
1788 
1789 	index = *ppos >> PAGE_SHIFT;
1790 	prev_index = ra->prev_pos >> PAGE_SHIFT;
1791 	prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1792 	last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1793 	offset = *ppos & ~PAGE_MASK;
1794 
1795 	for (;;) {
1796 		struct page *page;
1797 		pgoff_t end_index;
1798 		loff_t isize;
1799 		unsigned long nr, ret;
1800 
1801 		cond_resched();
1802 find_page:
1803 		if (fatal_signal_pending(current)) {
1804 			error = -EINTR;
1805 			goto out;
1806 		}
1807 
1808 		page = find_get_page(mapping, index);
1809 		if (!page) {
1810 			page_cache_sync_readahead(mapping,
1811 					ra, filp,
1812 					index, last_index - index);
1813 			page = find_get_page(mapping, index);
1814 			if (unlikely(page == NULL))
1815 				goto no_cached_page;
1816 		}
1817 		if (PageReadahead(page)) {
1818 			page_cache_async_readahead(mapping,
1819 					ra, filp, page,
1820 					index, last_index - index);
1821 		}
1822 		if (!PageUptodate(page)) {
1823 			/*
1824 			 * See comment in do_read_cache_page on why
1825 			 * wait_on_page_locked is used to avoid unnecessarily
1826 			 * serialisations and why it's safe.
1827 			 */
1828 			error = wait_on_page_locked_killable(page);
1829 			if (unlikely(error))
1830 				goto readpage_error;
1831 			if (PageUptodate(page))
1832 				goto page_ok;
1833 
1834 			if (inode->i_blkbits == PAGE_SHIFT ||
1835 					!mapping->a_ops->is_partially_uptodate)
1836 				goto page_not_up_to_date;
1837 			/* pipes can't handle partially uptodate pages */
1838 			if (unlikely(iter->type & ITER_PIPE))
1839 				goto page_not_up_to_date;
1840 			if (!trylock_page(page))
1841 				goto page_not_up_to_date;
1842 			/* Did it get truncated before we got the lock? */
1843 			if (!page->mapping)
1844 				goto page_not_up_to_date_locked;
1845 			if (!mapping->a_ops->is_partially_uptodate(page,
1846 							offset, iter->count))
1847 				goto page_not_up_to_date_locked;
1848 			unlock_page(page);
1849 		}
1850 page_ok:
1851 		/*
1852 		 * i_size must be checked after we know the page is Uptodate.
1853 		 *
1854 		 * Checking i_size after the check allows us to calculate
1855 		 * the correct value for "nr", which means the zero-filled
1856 		 * part of the page is not copied back to userspace (unless
1857 		 * another truncate extends the file - this is desired though).
1858 		 */
1859 
1860 		isize = i_size_read(inode);
1861 		end_index = (isize - 1) >> PAGE_SHIFT;
1862 		if (unlikely(!isize || index > end_index)) {
1863 			put_page(page);
1864 			goto out;
1865 		}
1866 
1867 		/* nr is the maximum number of bytes to copy from this page */
1868 		nr = PAGE_SIZE;
1869 		if (index == end_index) {
1870 			nr = ((isize - 1) & ~PAGE_MASK) + 1;
1871 			if (nr <= offset) {
1872 				put_page(page);
1873 				goto out;
1874 			}
1875 		}
1876 		nr = nr - offset;
1877 
1878 		/* If users can be writing to this page using arbitrary
1879 		 * virtual addresses, take care about potential aliasing
1880 		 * before reading the page on the kernel side.
1881 		 */
1882 		if (mapping_writably_mapped(mapping))
1883 			flush_dcache_page(page);
1884 
1885 		/*
1886 		 * When a sequential read accesses a page several times,
1887 		 * only mark it as accessed the first time.
1888 		 */
1889 		if (prev_index != index || offset != prev_offset)
1890 			mark_page_accessed(page);
1891 		prev_index = index;
1892 
1893 		/*
1894 		 * Ok, we have the page, and it's up-to-date, so
1895 		 * now we can copy it to user space...
1896 		 */
1897 
1898 		ret = copy_page_to_iter(page, offset, nr, iter);
1899 		offset += ret;
1900 		index += offset >> PAGE_SHIFT;
1901 		offset &= ~PAGE_MASK;
1902 		prev_offset = offset;
1903 
1904 		put_page(page);
1905 		written += ret;
1906 		if (!iov_iter_count(iter))
1907 			goto out;
1908 		if (ret < nr) {
1909 			error = -EFAULT;
1910 			goto out;
1911 		}
1912 		continue;
1913 
1914 page_not_up_to_date:
1915 		/* Get exclusive access to the page ... */
1916 		error = lock_page_killable(page);
1917 		if (unlikely(error))
1918 			goto readpage_error;
1919 
1920 page_not_up_to_date_locked:
1921 		/* Did it get truncated before we got the lock? */
1922 		if (!page->mapping) {
1923 			unlock_page(page);
1924 			put_page(page);
1925 			continue;
1926 		}
1927 
1928 		/* Did somebody else fill it already? */
1929 		if (PageUptodate(page)) {
1930 			unlock_page(page);
1931 			goto page_ok;
1932 		}
1933 
1934 readpage:
1935 		/*
1936 		 * A previous I/O error may have been due to temporary
1937 		 * failures, eg. multipath errors.
1938 		 * PG_error will be set again if readpage fails.
1939 		 */
1940 		ClearPageError(page);
1941 		/* Start the actual read. The read will unlock the page. */
1942 		error = mapping->a_ops->readpage(filp, page);
1943 
1944 		if (unlikely(error)) {
1945 			if (error == AOP_TRUNCATED_PAGE) {
1946 				put_page(page);
1947 				error = 0;
1948 				goto find_page;
1949 			}
1950 			goto readpage_error;
1951 		}
1952 
1953 		if (!PageUptodate(page)) {
1954 			error = lock_page_killable(page);
1955 			if (unlikely(error))
1956 				goto readpage_error;
1957 			if (!PageUptodate(page)) {
1958 				if (page->mapping == NULL) {
1959 					/*
1960 					 * invalidate_mapping_pages got it
1961 					 */
1962 					unlock_page(page);
1963 					put_page(page);
1964 					goto find_page;
1965 				}
1966 				unlock_page(page);
1967 				shrink_readahead_size_eio(filp, ra);
1968 				error = -EIO;
1969 				goto readpage_error;
1970 			}
1971 			unlock_page(page);
1972 		}
1973 
1974 		goto page_ok;
1975 
1976 readpage_error:
1977 		/* UHHUH! A synchronous read error occurred. Report it */
1978 		put_page(page);
1979 		goto out;
1980 
1981 no_cached_page:
1982 		/*
1983 		 * Ok, it wasn't cached, so we need to create a new
1984 		 * page..
1985 		 */
1986 		page = page_cache_alloc_cold(mapping);
1987 		if (!page) {
1988 			error = -ENOMEM;
1989 			goto out;
1990 		}
1991 		error = add_to_page_cache_lru(page, mapping, index,
1992 				mapping_gfp_constraint(mapping, GFP_KERNEL));
1993 		if (error) {
1994 			put_page(page);
1995 			if (error == -EEXIST) {
1996 				error = 0;
1997 				goto find_page;
1998 			}
1999 			goto out;
2000 		}
2001 		goto readpage;
2002 	}
2003 
2004 out:
2005 	ra->prev_pos = prev_index;
2006 	ra->prev_pos <<= PAGE_SHIFT;
2007 	ra->prev_pos |= prev_offset;
2008 
2009 	*ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2010 	file_accessed(filp);
2011 	return written ? written : error;
2012 }
2013 
2014 /**
2015  * generic_file_read_iter - generic filesystem read routine
2016  * @iocb:	kernel I/O control block
2017  * @iter:	destination for the data read
2018  *
2019  * This is the "read_iter()" routine for all filesystems
2020  * that can use the page cache directly.
2021  */
2022 ssize_t
2023 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2024 {
2025 	struct file *file = iocb->ki_filp;
2026 	ssize_t retval = 0;
2027 	size_t count = iov_iter_count(iter);
2028 
2029 	if (!count)
2030 		goto out; /* skip atime */
2031 
2032 	if (iocb->ki_flags & IOCB_DIRECT) {
2033 		struct address_space *mapping = file->f_mapping;
2034 		struct inode *inode = mapping->host;
2035 		struct iov_iter data = *iter;
2036 		loff_t size;
2037 
2038 		size = i_size_read(inode);
2039 		retval = filemap_write_and_wait_range(mapping, iocb->ki_pos,
2040 					iocb->ki_pos + count - 1);
2041 		if (retval < 0)
2042 			goto out;
2043 
2044 		file_accessed(file);
2045 
2046 		retval = mapping->a_ops->direct_IO(iocb, &data);
2047 		if (retval >= 0) {
2048 			iocb->ki_pos += retval;
2049 			iov_iter_advance(iter, retval);
2050 		}
2051 
2052 		/*
2053 		 * Btrfs can have a short DIO read if we encounter
2054 		 * compressed extents, so if there was an error, or if
2055 		 * we've already read everything we wanted to, or if
2056 		 * there was a short read because we hit EOF, go ahead
2057 		 * and return.  Otherwise fallthrough to buffered io for
2058 		 * the rest of the read.  Buffered reads will not work for
2059 		 * DAX files, so don't bother trying.
2060 		 */
2061 		if (retval < 0 || !iov_iter_count(iter) || iocb->ki_pos >= size ||
2062 		    IS_DAX(inode))
2063 			goto out;
2064 	}
2065 
2066 	retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval);
2067 out:
2068 	return retval;
2069 }
2070 EXPORT_SYMBOL(generic_file_read_iter);
2071 
2072 #ifdef CONFIG_MMU
2073 /**
2074  * page_cache_read - adds requested page to the page cache if not already there
2075  * @file:	file to read
2076  * @offset:	page index
2077  * @gfp_mask:	memory allocation flags
2078  *
2079  * This adds the requested page to the page cache if it isn't already there,
2080  * and schedules an I/O to read in its contents from disk.
2081  */
2082 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
2083 {
2084 	struct address_space *mapping = file->f_mapping;
2085 	struct page *page;
2086 	int ret;
2087 
2088 	do {
2089 		page = __page_cache_alloc(gfp_mask|__GFP_COLD);
2090 		if (!page)
2091 			return -ENOMEM;
2092 
2093 		ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
2094 		if (ret == 0)
2095 			ret = mapping->a_ops->readpage(file, page);
2096 		else if (ret == -EEXIST)
2097 			ret = 0; /* losing race to add is OK */
2098 
2099 		put_page(page);
2100 
2101 	} while (ret == AOP_TRUNCATED_PAGE);
2102 
2103 	return ret;
2104 }
2105 
2106 #define MMAP_LOTSAMISS  (100)
2107 
2108 /*
2109  * Synchronous readahead happens when we don't even find
2110  * a page in the page cache at all.
2111  */
2112 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2113 				   struct file_ra_state *ra,
2114 				   struct file *file,
2115 				   pgoff_t offset)
2116 {
2117 	struct address_space *mapping = file->f_mapping;
2118 
2119 	/* If we don't want any read-ahead, don't bother */
2120 	if (vma->vm_flags & VM_RAND_READ)
2121 		return;
2122 	if (!ra->ra_pages)
2123 		return;
2124 
2125 	if (vma->vm_flags & VM_SEQ_READ) {
2126 		page_cache_sync_readahead(mapping, ra, file, offset,
2127 					  ra->ra_pages);
2128 		return;
2129 	}
2130 
2131 	/* Avoid banging the cache line if not needed */
2132 	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2133 		ra->mmap_miss++;
2134 
2135 	/*
2136 	 * Do we miss much more than hit in this file? If so,
2137 	 * stop bothering with read-ahead. It will only hurt.
2138 	 */
2139 	if (ra->mmap_miss > MMAP_LOTSAMISS)
2140 		return;
2141 
2142 	/*
2143 	 * mmap read-around
2144 	 */
2145 	ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2146 	ra->size = ra->ra_pages;
2147 	ra->async_size = ra->ra_pages / 4;
2148 	ra_submit(ra, mapping, file);
2149 }
2150 
2151 /*
2152  * Asynchronous readahead happens when we find the page and PG_readahead,
2153  * so we want to possibly extend the readahead further..
2154  */
2155 static void do_async_mmap_readahead(struct vm_area_struct *vma,
2156 				    struct file_ra_state *ra,
2157 				    struct file *file,
2158 				    struct page *page,
2159 				    pgoff_t offset)
2160 {
2161 	struct address_space *mapping = file->f_mapping;
2162 
2163 	/* If we don't want any read-ahead, don't bother */
2164 	if (vma->vm_flags & VM_RAND_READ)
2165 		return;
2166 	if (ra->mmap_miss > 0)
2167 		ra->mmap_miss--;
2168 	if (PageReadahead(page))
2169 		page_cache_async_readahead(mapping, ra, file,
2170 					   page, offset, ra->ra_pages);
2171 }
2172 
2173 /**
2174  * filemap_fault - read in file data for page fault handling
2175  * @vmf:	struct vm_fault containing details of the fault
2176  *
2177  * filemap_fault() is invoked via the vma operations vector for a
2178  * mapped memory region to read in file data during a page fault.
2179  *
2180  * The goto's are kind of ugly, but this streamlines the normal case of having
2181  * it in the page cache, and handles the special cases reasonably without
2182  * having a lot of duplicated code.
2183  *
2184  * vma->vm_mm->mmap_sem must be held on entry.
2185  *
2186  * If our return value has VM_FAULT_RETRY set, it's because
2187  * lock_page_or_retry() returned 0.
2188  * The mmap_sem has usually been released in this case.
2189  * See __lock_page_or_retry() for the exception.
2190  *
2191  * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2192  * has not been released.
2193  *
2194  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2195  */
2196 int filemap_fault(struct vm_fault *vmf)
2197 {
2198 	int error;
2199 	struct file *file = vmf->vma->vm_file;
2200 	struct address_space *mapping = file->f_mapping;
2201 	struct file_ra_state *ra = &file->f_ra;
2202 	struct inode *inode = mapping->host;
2203 	pgoff_t offset = vmf->pgoff;
2204 	struct page *page;
2205 	loff_t size;
2206 	int ret = 0;
2207 
2208 	size = round_up(i_size_read(inode), PAGE_SIZE);
2209 	if (offset >= size >> PAGE_SHIFT)
2210 		return VM_FAULT_SIGBUS;
2211 
2212 	/*
2213 	 * Do we have something in the page cache already?
2214 	 */
2215 	page = find_get_page(mapping, offset);
2216 	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2217 		/*
2218 		 * We found the page, so try async readahead before
2219 		 * waiting for the lock.
2220 		 */
2221 		do_async_mmap_readahead(vmf->vma, ra, file, page, offset);
2222 	} else if (!page) {
2223 		/* No page in the page cache at all */
2224 		do_sync_mmap_readahead(vmf->vma, ra, file, offset);
2225 		count_vm_event(PGMAJFAULT);
2226 		mem_cgroup_count_vm_event(vmf->vma->vm_mm, PGMAJFAULT);
2227 		ret = VM_FAULT_MAJOR;
2228 retry_find:
2229 		page = find_get_page(mapping, offset);
2230 		if (!page)
2231 			goto no_cached_page;
2232 	}
2233 
2234 	if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) {
2235 		put_page(page);
2236 		return ret | VM_FAULT_RETRY;
2237 	}
2238 
2239 	/* Did it get truncated? */
2240 	if (unlikely(page->mapping != mapping)) {
2241 		unlock_page(page);
2242 		put_page(page);
2243 		goto retry_find;
2244 	}
2245 	VM_BUG_ON_PAGE(page->index != offset, page);
2246 
2247 	/*
2248 	 * We have a locked page in the page cache, now we need to check
2249 	 * that it's up-to-date. If not, it is going to be due to an error.
2250 	 */
2251 	if (unlikely(!PageUptodate(page)))
2252 		goto page_not_uptodate;
2253 
2254 	/*
2255 	 * Found the page and have a reference on it.
2256 	 * We must recheck i_size under page lock.
2257 	 */
2258 	size = round_up(i_size_read(inode), PAGE_SIZE);
2259 	if (unlikely(offset >= size >> PAGE_SHIFT)) {
2260 		unlock_page(page);
2261 		put_page(page);
2262 		return VM_FAULT_SIGBUS;
2263 	}
2264 
2265 	vmf->page = page;
2266 	return ret | VM_FAULT_LOCKED;
2267 
2268 no_cached_page:
2269 	/*
2270 	 * We're only likely to ever get here if MADV_RANDOM is in
2271 	 * effect.
2272 	 */
2273 	error = page_cache_read(file, offset, vmf->gfp_mask);
2274 
2275 	/*
2276 	 * The page we want has now been added to the page cache.
2277 	 * In the unlikely event that someone removed it in the
2278 	 * meantime, we'll just come back here and read it again.
2279 	 */
2280 	if (error >= 0)
2281 		goto retry_find;
2282 
2283 	/*
2284 	 * An error return from page_cache_read can result if the
2285 	 * system is low on memory, or a problem occurs while trying
2286 	 * to schedule I/O.
2287 	 */
2288 	if (error == -ENOMEM)
2289 		return VM_FAULT_OOM;
2290 	return VM_FAULT_SIGBUS;
2291 
2292 page_not_uptodate:
2293 	/*
2294 	 * Umm, take care of errors if the page isn't up-to-date.
2295 	 * Try to re-read it _once_. We do this synchronously,
2296 	 * because there really aren't any performance issues here
2297 	 * and we need to check for errors.
2298 	 */
2299 	ClearPageError(page);
2300 	error = mapping->a_ops->readpage(file, page);
2301 	if (!error) {
2302 		wait_on_page_locked(page);
2303 		if (!PageUptodate(page))
2304 			error = -EIO;
2305 	}
2306 	put_page(page);
2307 
2308 	if (!error || error == AOP_TRUNCATED_PAGE)
2309 		goto retry_find;
2310 
2311 	/* Things didn't work out. Return zero to tell the mm layer so. */
2312 	shrink_readahead_size_eio(file, ra);
2313 	return VM_FAULT_SIGBUS;
2314 }
2315 EXPORT_SYMBOL(filemap_fault);
2316 
2317 void filemap_map_pages(struct vm_fault *vmf,
2318 		pgoff_t start_pgoff, pgoff_t end_pgoff)
2319 {
2320 	struct radix_tree_iter iter;
2321 	void **slot;
2322 	struct file *file = vmf->vma->vm_file;
2323 	struct address_space *mapping = file->f_mapping;
2324 	pgoff_t last_pgoff = start_pgoff;
2325 	loff_t size;
2326 	struct page *head, *page;
2327 
2328 	rcu_read_lock();
2329 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2330 			start_pgoff) {
2331 		if (iter.index > end_pgoff)
2332 			break;
2333 repeat:
2334 		page = radix_tree_deref_slot(slot);
2335 		if (unlikely(!page))
2336 			goto next;
2337 		if (radix_tree_exception(page)) {
2338 			if (radix_tree_deref_retry(page)) {
2339 				slot = radix_tree_iter_retry(&iter);
2340 				continue;
2341 			}
2342 			goto next;
2343 		}
2344 
2345 		head = compound_head(page);
2346 		if (!page_cache_get_speculative(head))
2347 			goto repeat;
2348 
2349 		/* The page was split under us? */
2350 		if (compound_head(page) != head) {
2351 			put_page(head);
2352 			goto repeat;
2353 		}
2354 
2355 		/* Has the page moved? */
2356 		if (unlikely(page != *slot)) {
2357 			put_page(head);
2358 			goto repeat;
2359 		}
2360 
2361 		if (!PageUptodate(page) ||
2362 				PageReadahead(page) ||
2363 				PageHWPoison(page))
2364 			goto skip;
2365 		if (!trylock_page(page))
2366 			goto skip;
2367 
2368 		if (page->mapping != mapping || !PageUptodate(page))
2369 			goto unlock;
2370 
2371 		size = round_up(i_size_read(mapping->host), PAGE_SIZE);
2372 		if (page->index >= size >> PAGE_SHIFT)
2373 			goto unlock;
2374 
2375 		if (file->f_ra.mmap_miss > 0)
2376 			file->f_ra.mmap_miss--;
2377 
2378 		vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2379 		if (vmf->pte)
2380 			vmf->pte += iter.index - last_pgoff;
2381 		last_pgoff = iter.index;
2382 		if (alloc_set_pte(vmf, NULL, page))
2383 			goto unlock;
2384 		unlock_page(page);
2385 		goto next;
2386 unlock:
2387 		unlock_page(page);
2388 skip:
2389 		put_page(page);
2390 next:
2391 		/* Huge page is mapped? No need to proceed. */
2392 		if (pmd_trans_huge(*vmf->pmd))
2393 			break;
2394 		if (iter.index == end_pgoff)
2395 			break;
2396 	}
2397 	rcu_read_unlock();
2398 }
2399 EXPORT_SYMBOL(filemap_map_pages);
2400 
2401 int filemap_page_mkwrite(struct vm_fault *vmf)
2402 {
2403 	struct page *page = vmf->page;
2404 	struct inode *inode = file_inode(vmf->vma->vm_file);
2405 	int ret = VM_FAULT_LOCKED;
2406 
2407 	sb_start_pagefault(inode->i_sb);
2408 	file_update_time(vmf->vma->vm_file);
2409 	lock_page(page);
2410 	if (page->mapping != inode->i_mapping) {
2411 		unlock_page(page);
2412 		ret = VM_FAULT_NOPAGE;
2413 		goto out;
2414 	}
2415 	/*
2416 	 * We mark the page dirty already here so that when freeze is in
2417 	 * progress, we are guaranteed that writeback during freezing will
2418 	 * see the dirty page and writeprotect it again.
2419 	 */
2420 	set_page_dirty(page);
2421 	wait_for_stable_page(page);
2422 out:
2423 	sb_end_pagefault(inode->i_sb);
2424 	return ret;
2425 }
2426 EXPORT_SYMBOL(filemap_page_mkwrite);
2427 
2428 const struct vm_operations_struct generic_file_vm_ops = {
2429 	.fault		= filemap_fault,
2430 	.map_pages	= filemap_map_pages,
2431 	.page_mkwrite	= filemap_page_mkwrite,
2432 };
2433 
2434 /* This is used for a general mmap of a disk file */
2435 
2436 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2437 {
2438 	struct address_space *mapping = file->f_mapping;
2439 
2440 	if (!mapping->a_ops->readpage)
2441 		return -ENOEXEC;
2442 	file_accessed(file);
2443 	vma->vm_ops = &generic_file_vm_ops;
2444 	return 0;
2445 }
2446 
2447 /*
2448  * This is for filesystems which do not implement ->writepage.
2449  */
2450 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2451 {
2452 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2453 		return -EINVAL;
2454 	return generic_file_mmap(file, vma);
2455 }
2456 #else
2457 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2458 {
2459 	return -ENOSYS;
2460 }
2461 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2462 {
2463 	return -ENOSYS;
2464 }
2465 #endif /* CONFIG_MMU */
2466 
2467 EXPORT_SYMBOL(generic_file_mmap);
2468 EXPORT_SYMBOL(generic_file_readonly_mmap);
2469 
2470 static struct page *wait_on_page_read(struct page *page)
2471 {
2472 	if (!IS_ERR(page)) {
2473 		wait_on_page_locked(page);
2474 		if (!PageUptodate(page)) {
2475 			put_page(page);
2476 			page = ERR_PTR(-EIO);
2477 		}
2478 	}
2479 	return page;
2480 }
2481 
2482 static struct page *do_read_cache_page(struct address_space *mapping,
2483 				pgoff_t index,
2484 				int (*filler)(void *, struct page *),
2485 				void *data,
2486 				gfp_t gfp)
2487 {
2488 	struct page *page;
2489 	int err;
2490 repeat:
2491 	page = find_get_page(mapping, index);
2492 	if (!page) {
2493 		page = __page_cache_alloc(gfp | __GFP_COLD);
2494 		if (!page)
2495 			return ERR_PTR(-ENOMEM);
2496 		err = add_to_page_cache_lru(page, mapping, index, gfp);
2497 		if (unlikely(err)) {
2498 			put_page(page);
2499 			if (err == -EEXIST)
2500 				goto repeat;
2501 			/* Presumably ENOMEM for radix tree node */
2502 			return ERR_PTR(err);
2503 		}
2504 
2505 filler:
2506 		err = filler(data, page);
2507 		if (err < 0) {
2508 			put_page(page);
2509 			return ERR_PTR(err);
2510 		}
2511 
2512 		page = wait_on_page_read(page);
2513 		if (IS_ERR(page))
2514 			return page;
2515 		goto out;
2516 	}
2517 	if (PageUptodate(page))
2518 		goto out;
2519 
2520 	/*
2521 	 * Page is not up to date and may be locked due one of the following
2522 	 * case a: Page is being filled and the page lock is held
2523 	 * case b: Read/write error clearing the page uptodate status
2524 	 * case c: Truncation in progress (page locked)
2525 	 * case d: Reclaim in progress
2526 	 *
2527 	 * Case a, the page will be up to date when the page is unlocked.
2528 	 *    There is no need to serialise on the page lock here as the page
2529 	 *    is pinned so the lock gives no additional protection. Even if the
2530 	 *    the page is truncated, the data is still valid if PageUptodate as
2531 	 *    it's a race vs truncate race.
2532 	 * Case b, the page will not be up to date
2533 	 * Case c, the page may be truncated but in itself, the data may still
2534 	 *    be valid after IO completes as it's a read vs truncate race. The
2535 	 *    operation must restart if the page is not uptodate on unlock but
2536 	 *    otherwise serialising on page lock to stabilise the mapping gives
2537 	 *    no additional guarantees to the caller as the page lock is
2538 	 *    released before return.
2539 	 * Case d, similar to truncation. If reclaim holds the page lock, it
2540 	 *    will be a race with remove_mapping that determines if the mapping
2541 	 *    is valid on unlock but otherwise the data is valid and there is
2542 	 *    no need to serialise with page lock.
2543 	 *
2544 	 * As the page lock gives no additional guarantee, we optimistically
2545 	 * wait on the page to be unlocked and check if it's up to date and
2546 	 * use the page if it is. Otherwise, the page lock is required to
2547 	 * distinguish between the different cases. The motivation is that we
2548 	 * avoid spurious serialisations and wakeups when multiple processes
2549 	 * wait on the same page for IO to complete.
2550 	 */
2551 	wait_on_page_locked(page);
2552 	if (PageUptodate(page))
2553 		goto out;
2554 
2555 	/* Distinguish between all the cases under the safety of the lock */
2556 	lock_page(page);
2557 
2558 	/* Case c or d, restart the operation */
2559 	if (!page->mapping) {
2560 		unlock_page(page);
2561 		put_page(page);
2562 		goto repeat;
2563 	}
2564 
2565 	/* Someone else locked and filled the page in a very small window */
2566 	if (PageUptodate(page)) {
2567 		unlock_page(page);
2568 		goto out;
2569 	}
2570 	goto filler;
2571 
2572 out:
2573 	mark_page_accessed(page);
2574 	return page;
2575 }
2576 
2577 /**
2578  * read_cache_page - read into page cache, fill it if needed
2579  * @mapping:	the page's address_space
2580  * @index:	the page index
2581  * @filler:	function to perform the read
2582  * @data:	first arg to filler(data, page) function, often left as NULL
2583  *
2584  * Read into the page cache. If a page already exists, and PageUptodate() is
2585  * not set, try to fill the page and wait for it to become unlocked.
2586  *
2587  * If the page does not get brought uptodate, return -EIO.
2588  */
2589 struct page *read_cache_page(struct address_space *mapping,
2590 				pgoff_t index,
2591 				int (*filler)(void *, struct page *),
2592 				void *data)
2593 {
2594 	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2595 }
2596 EXPORT_SYMBOL(read_cache_page);
2597 
2598 /**
2599  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2600  * @mapping:	the page's address_space
2601  * @index:	the page index
2602  * @gfp:	the page allocator flags to use if allocating
2603  *
2604  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2605  * any new page allocations done using the specified allocation flags.
2606  *
2607  * If the page does not get brought uptodate, return -EIO.
2608  */
2609 struct page *read_cache_page_gfp(struct address_space *mapping,
2610 				pgoff_t index,
2611 				gfp_t gfp)
2612 {
2613 	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2614 
2615 	return do_read_cache_page(mapping, index, filler, NULL, gfp);
2616 }
2617 EXPORT_SYMBOL(read_cache_page_gfp);
2618 
2619 /*
2620  * Performs necessary checks before doing a write
2621  *
2622  * Can adjust writing position or amount of bytes to write.
2623  * Returns appropriate error code that caller should return or
2624  * zero in case that write should be allowed.
2625  */
2626 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2627 {
2628 	struct file *file = iocb->ki_filp;
2629 	struct inode *inode = file->f_mapping->host;
2630 	unsigned long limit = rlimit(RLIMIT_FSIZE);
2631 	loff_t pos;
2632 
2633 	if (!iov_iter_count(from))
2634 		return 0;
2635 
2636 	/* FIXME: this is for backwards compatibility with 2.4 */
2637 	if (iocb->ki_flags & IOCB_APPEND)
2638 		iocb->ki_pos = i_size_read(inode);
2639 
2640 	pos = iocb->ki_pos;
2641 
2642 	if (limit != RLIM_INFINITY) {
2643 		if (iocb->ki_pos >= limit) {
2644 			send_sig(SIGXFSZ, current, 0);
2645 			return -EFBIG;
2646 		}
2647 		iov_iter_truncate(from, limit - (unsigned long)pos);
2648 	}
2649 
2650 	/*
2651 	 * LFS rule
2652 	 */
2653 	if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2654 				!(file->f_flags & O_LARGEFILE))) {
2655 		if (pos >= MAX_NON_LFS)
2656 			return -EFBIG;
2657 		iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2658 	}
2659 
2660 	/*
2661 	 * Are we about to exceed the fs block limit ?
2662 	 *
2663 	 * If we have written data it becomes a short write.  If we have
2664 	 * exceeded without writing data we send a signal and return EFBIG.
2665 	 * Linus frestrict idea will clean these up nicely..
2666 	 */
2667 	if (unlikely(pos >= inode->i_sb->s_maxbytes))
2668 		return -EFBIG;
2669 
2670 	iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2671 	return iov_iter_count(from);
2672 }
2673 EXPORT_SYMBOL(generic_write_checks);
2674 
2675 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2676 				loff_t pos, unsigned len, unsigned flags,
2677 				struct page **pagep, void **fsdata)
2678 {
2679 	const struct address_space_operations *aops = mapping->a_ops;
2680 
2681 	return aops->write_begin(file, mapping, pos, len, flags,
2682 							pagep, fsdata);
2683 }
2684 EXPORT_SYMBOL(pagecache_write_begin);
2685 
2686 int pagecache_write_end(struct file *file, struct address_space *mapping,
2687 				loff_t pos, unsigned len, unsigned copied,
2688 				struct page *page, void *fsdata)
2689 {
2690 	const struct address_space_operations *aops = mapping->a_ops;
2691 
2692 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2693 }
2694 EXPORT_SYMBOL(pagecache_write_end);
2695 
2696 ssize_t
2697 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
2698 {
2699 	struct file	*file = iocb->ki_filp;
2700 	struct address_space *mapping = file->f_mapping;
2701 	struct inode	*inode = mapping->host;
2702 	loff_t		pos = iocb->ki_pos;
2703 	ssize_t		written;
2704 	size_t		write_len;
2705 	pgoff_t		end;
2706 	struct iov_iter data;
2707 
2708 	write_len = iov_iter_count(from);
2709 	end = (pos + write_len - 1) >> PAGE_SHIFT;
2710 
2711 	written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2712 	if (written)
2713 		goto out;
2714 
2715 	/*
2716 	 * After a write we want buffered reads to be sure to go to disk to get
2717 	 * the new data.  We invalidate clean cached page from the region we're
2718 	 * about to write.  We do this *before* the write so that we can return
2719 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2720 	 */
2721 	if (mapping->nrpages) {
2722 		written = invalidate_inode_pages2_range(mapping,
2723 					pos >> PAGE_SHIFT, end);
2724 		/*
2725 		 * If a page can not be invalidated, return 0 to fall back
2726 		 * to buffered write.
2727 		 */
2728 		if (written) {
2729 			if (written == -EBUSY)
2730 				return 0;
2731 			goto out;
2732 		}
2733 	}
2734 
2735 	data = *from;
2736 	written = mapping->a_ops->direct_IO(iocb, &data);
2737 
2738 	/*
2739 	 * Finally, try again to invalidate clean pages which might have been
2740 	 * cached by non-direct readahead, or faulted in by get_user_pages()
2741 	 * if the source of the write was an mmap'ed region of the file
2742 	 * we're writing.  Either one is a pretty crazy thing to do,
2743 	 * so we don't support it 100%.  If this invalidation
2744 	 * fails, tough, the write still worked...
2745 	 */
2746 	if (mapping->nrpages) {
2747 		invalidate_inode_pages2_range(mapping,
2748 					      pos >> PAGE_SHIFT, end);
2749 	}
2750 
2751 	if (written > 0) {
2752 		pos += written;
2753 		iov_iter_advance(from, written);
2754 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2755 			i_size_write(inode, pos);
2756 			mark_inode_dirty(inode);
2757 		}
2758 		iocb->ki_pos = pos;
2759 	}
2760 out:
2761 	return written;
2762 }
2763 EXPORT_SYMBOL(generic_file_direct_write);
2764 
2765 /*
2766  * Find or create a page at the given pagecache position. Return the locked
2767  * page. This function is specifically for buffered writes.
2768  */
2769 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2770 					pgoff_t index, unsigned flags)
2771 {
2772 	struct page *page;
2773 	int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
2774 
2775 	if (flags & AOP_FLAG_NOFS)
2776 		fgp_flags |= FGP_NOFS;
2777 
2778 	page = pagecache_get_page(mapping, index, fgp_flags,
2779 			mapping_gfp_mask(mapping));
2780 	if (page)
2781 		wait_for_stable_page(page);
2782 
2783 	return page;
2784 }
2785 EXPORT_SYMBOL(grab_cache_page_write_begin);
2786 
2787 ssize_t generic_perform_write(struct file *file,
2788 				struct iov_iter *i, loff_t pos)
2789 {
2790 	struct address_space *mapping = file->f_mapping;
2791 	const struct address_space_operations *a_ops = mapping->a_ops;
2792 	long status = 0;
2793 	ssize_t written = 0;
2794 	unsigned int flags = 0;
2795 
2796 	/*
2797 	 * Copies from kernel address space cannot fail (NFSD is a big user).
2798 	 */
2799 	if (!iter_is_iovec(i))
2800 		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2801 
2802 	do {
2803 		struct page *page;
2804 		unsigned long offset;	/* Offset into pagecache page */
2805 		unsigned long bytes;	/* Bytes to write to page */
2806 		size_t copied;		/* Bytes copied from user */
2807 		void *fsdata;
2808 
2809 		offset = (pos & (PAGE_SIZE - 1));
2810 		bytes = min_t(unsigned long, PAGE_SIZE - offset,
2811 						iov_iter_count(i));
2812 
2813 again:
2814 		/*
2815 		 * Bring in the user page that we will copy from _first_.
2816 		 * Otherwise there's a nasty deadlock on copying from the
2817 		 * same page as we're writing to, without it being marked
2818 		 * up-to-date.
2819 		 *
2820 		 * Not only is this an optimisation, but it is also required
2821 		 * to check that the address is actually valid, when atomic
2822 		 * usercopies are used, below.
2823 		 */
2824 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2825 			status = -EFAULT;
2826 			break;
2827 		}
2828 
2829 		if (fatal_signal_pending(current)) {
2830 			status = -EINTR;
2831 			break;
2832 		}
2833 
2834 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2835 						&page, &fsdata);
2836 		if (unlikely(status < 0))
2837 			break;
2838 
2839 		if (mapping_writably_mapped(mapping))
2840 			flush_dcache_page(page);
2841 
2842 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2843 		flush_dcache_page(page);
2844 
2845 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2846 						page, fsdata);
2847 		if (unlikely(status < 0))
2848 			break;
2849 		copied = status;
2850 
2851 		cond_resched();
2852 
2853 		iov_iter_advance(i, copied);
2854 		if (unlikely(copied == 0)) {
2855 			/*
2856 			 * If we were unable to copy any data at all, we must
2857 			 * fall back to a single segment length write.
2858 			 *
2859 			 * If we didn't fallback here, we could livelock
2860 			 * because not all segments in the iov can be copied at
2861 			 * once without a pagefault.
2862 			 */
2863 			bytes = min_t(unsigned long, PAGE_SIZE - offset,
2864 						iov_iter_single_seg_count(i));
2865 			goto again;
2866 		}
2867 		pos += copied;
2868 		written += copied;
2869 
2870 		balance_dirty_pages_ratelimited(mapping);
2871 	} while (iov_iter_count(i));
2872 
2873 	return written ? written : status;
2874 }
2875 EXPORT_SYMBOL(generic_perform_write);
2876 
2877 /**
2878  * __generic_file_write_iter - write data to a file
2879  * @iocb:	IO state structure (file, offset, etc.)
2880  * @from:	iov_iter with data to write
2881  *
2882  * This function does all the work needed for actually writing data to a
2883  * file. It does all basic checks, removes SUID from the file, updates
2884  * modification times and calls proper subroutines depending on whether we
2885  * do direct IO or a standard buffered write.
2886  *
2887  * It expects i_mutex to be grabbed unless we work on a block device or similar
2888  * object which does not need locking at all.
2889  *
2890  * This function does *not* take care of syncing data in case of O_SYNC write.
2891  * A caller has to handle it. This is mainly due to the fact that we want to
2892  * avoid syncing under i_mutex.
2893  */
2894 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2895 {
2896 	struct file *file = iocb->ki_filp;
2897 	struct address_space * mapping = file->f_mapping;
2898 	struct inode 	*inode = mapping->host;
2899 	ssize_t		written = 0;
2900 	ssize_t		err;
2901 	ssize_t		status;
2902 
2903 	/* We can write back this queue in page reclaim */
2904 	current->backing_dev_info = inode_to_bdi(inode);
2905 	err = file_remove_privs(file);
2906 	if (err)
2907 		goto out;
2908 
2909 	err = file_update_time(file);
2910 	if (err)
2911 		goto out;
2912 
2913 	if (iocb->ki_flags & IOCB_DIRECT) {
2914 		loff_t pos, endbyte;
2915 
2916 		written = generic_file_direct_write(iocb, from);
2917 		/*
2918 		 * If the write stopped short of completing, fall back to
2919 		 * buffered writes.  Some filesystems do this for writes to
2920 		 * holes, for example.  For DAX files, a buffered write will
2921 		 * not succeed (even if it did, DAX does not handle dirty
2922 		 * page-cache pages correctly).
2923 		 */
2924 		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2925 			goto out;
2926 
2927 		status = generic_perform_write(file, from, pos = iocb->ki_pos);
2928 		/*
2929 		 * If generic_perform_write() returned a synchronous error
2930 		 * then we want to return the number of bytes which were
2931 		 * direct-written, or the error code if that was zero.  Note
2932 		 * that this differs from normal direct-io semantics, which
2933 		 * will return -EFOO even if some bytes were written.
2934 		 */
2935 		if (unlikely(status < 0)) {
2936 			err = status;
2937 			goto out;
2938 		}
2939 		/*
2940 		 * We need to ensure that the page cache pages are written to
2941 		 * disk and invalidated to preserve the expected O_DIRECT
2942 		 * semantics.
2943 		 */
2944 		endbyte = pos + status - 1;
2945 		err = filemap_write_and_wait_range(mapping, pos, endbyte);
2946 		if (err == 0) {
2947 			iocb->ki_pos = endbyte + 1;
2948 			written += status;
2949 			invalidate_mapping_pages(mapping,
2950 						 pos >> PAGE_SHIFT,
2951 						 endbyte >> PAGE_SHIFT);
2952 		} else {
2953 			/*
2954 			 * We don't know how much we wrote, so just return
2955 			 * the number of bytes which were direct-written
2956 			 */
2957 		}
2958 	} else {
2959 		written = generic_perform_write(file, from, iocb->ki_pos);
2960 		if (likely(written > 0))
2961 			iocb->ki_pos += written;
2962 	}
2963 out:
2964 	current->backing_dev_info = NULL;
2965 	return written ? written : err;
2966 }
2967 EXPORT_SYMBOL(__generic_file_write_iter);
2968 
2969 /**
2970  * generic_file_write_iter - write data to a file
2971  * @iocb:	IO state structure
2972  * @from:	iov_iter with data to write
2973  *
2974  * This is a wrapper around __generic_file_write_iter() to be used by most
2975  * filesystems. It takes care of syncing the file in case of O_SYNC file
2976  * and acquires i_mutex as needed.
2977  */
2978 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2979 {
2980 	struct file *file = iocb->ki_filp;
2981 	struct inode *inode = file->f_mapping->host;
2982 	ssize_t ret;
2983 
2984 	inode_lock(inode);
2985 	ret = generic_write_checks(iocb, from);
2986 	if (ret > 0)
2987 		ret = __generic_file_write_iter(iocb, from);
2988 	inode_unlock(inode);
2989 
2990 	if (ret > 0)
2991 		ret = generic_write_sync(iocb, ret);
2992 	return ret;
2993 }
2994 EXPORT_SYMBOL(generic_file_write_iter);
2995 
2996 /**
2997  * try_to_release_page() - release old fs-specific metadata on a page
2998  *
2999  * @page: the page which the kernel is trying to free
3000  * @gfp_mask: memory allocation flags (and I/O mode)
3001  *
3002  * The address_space is to try to release any data against the page
3003  * (presumably at page->private).  If the release was successful, return `1'.
3004  * Otherwise return zero.
3005  *
3006  * This may also be called if PG_fscache is set on a page, indicating that the
3007  * page is known to the local caching routines.
3008  *
3009  * The @gfp_mask argument specifies whether I/O may be performed to release
3010  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3011  *
3012  */
3013 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3014 {
3015 	struct address_space * const mapping = page->mapping;
3016 
3017 	BUG_ON(!PageLocked(page));
3018 	if (PageWriteback(page))
3019 		return 0;
3020 
3021 	if (mapping && mapping->a_ops->releasepage)
3022 		return mapping->a_ops->releasepage(page, gfp_mask);
3023 	return try_to_free_buffers(page);
3024 }
3025 
3026 EXPORT_SYMBOL(try_to_release_page);
3027