xref: /openbmc/linux/mm/filemap.c (revision 4bce6fce)
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/capability.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/gfp.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/mman.h>
22 #include <linux/pagemap.h>
23 #include <linux/file.h>
24 #include <linux/uio.h>
25 #include <linux/hash.h>
26 #include <linux/writeback.h>
27 #include <linux/backing-dev.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/security.h>
31 #include <linux/cpuset.h>
32 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
33 #include <linux/hugetlb.h>
34 #include <linux/memcontrol.h>
35 #include <linux/cleancache.h>
36 #include <linux/rmap.h>
37 #include "internal.h"
38 
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/filemap.h>
41 
42 /*
43  * FIXME: remove all knowledge of the buffer layer from the core VM
44  */
45 #include <linux/buffer_head.h> /* for try_to_free_buffers */
46 
47 #include <asm/mman.h>
48 
49 /*
50  * Shared mappings implemented 30.11.1994. It's not fully working yet,
51  * though.
52  *
53  * Shared mappings now work. 15.8.1995  Bruno.
54  *
55  * finished 'unifying' the page and buffer cache and SMP-threaded the
56  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
57  *
58  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
59  */
60 
61 /*
62  * Lock ordering:
63  *
64  *  ->i_mmap_rwsem		(truncate_pagecache)
65  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
66  *      ->swap_lock		(exclusive_swap_page, others)
67  *        ->mapping->tree_lock
68  *
69  *  ->i_mutex
70  *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
71  *
72  *  ->mmap_sem
73  *    ->i_mmap_rwsem
74  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
75  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
76  *
77  *  ->mmap_sem
78  *    ->lock_page		(access_process_vm)
79  *
80  *  ->i_mutex			(generic_perform_write)
81  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
82  *
83  *  bdi->wb.list_lock
84  *    sb_lock			(fs/fs-writeback.c)
85  *    ->mapping->tree_lock	(__sync_single_inode)
86  *
87  *  ->i_mmap_rwsem
88  *    ->anon_vma.lock		(vma_adjust)
89  *
90  *  ->anon_vma.lock
91  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
92  *
93  *  ->page_table_lock or pte_lock
94  *    ->swap_lock		(try_to_unmap_one)
95  *    ->private_lock		(try_to_unmap_one)
96  *    ->tree_lock		(try_to_unmap_one)
97  *    ->zone.lru_lock		(follow_page->mark_page_accessed)
98  *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
99  *    ->private_lock		(page_remove_rmap->set_page_dirty)
100  *    ->tree_lock		(page_remove_rmap->set_page_dirty)
101  *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
102  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
103  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
104  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
105  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
106  *
107  * ->i_mmap_rwsem
108  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
109  */
110 
111 static void page_cache_tree_delete(struct address_space *mapping,
112 				   struct page *page, void *shadow)
113 {
114 	struct radix_tree_node *node;
115 	unsigned long index;
116 	unsigned int offset;
117 	unsigned int tag;
118 	void **slot;
119 
120 	VM_BUG_ON(!PageLocked(page));
121 
122 	__radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
123 
124 	if (shadow) {
125 		mapping->nrshadows++;
126 		/*
127 		 * Make sure the nrshadows update is committed before
128 		 * the nrpages update so that final truncate racing
129 		 * with reclaim does not see both counters 0 at the
130 		 * same time and miss a shadow entry.
131 		 */
132 		smp_wmb();
133 	}
134 	mapping->nrpages--;
135 
136 	if (!node) {
137 		/* Clear direct pointer tags in root node */
138 		mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
139 		radix_tree_replace_slot(slot, shadow);
140 		return;
141 	}
142 
143 	/* Clear tree tags for the removed page */
144 	index = page->index;
145 	offset = index & RADIX_TREE_MAP_MASK;
146 	for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
147 		if (test_bit(offset, node->tags[tag]))
148 			radix_tree_tag_clear(&mapping->page_tree, index, tag);
149 	}
150 
151 	/* Delete page, swap shadow entry */
152 	radix_tree_replace_slot(slot, shadow);
153 	workingset_node_pages_dec(node);
154 	if (shadow)
155 		workingset_node_shadows_inc(node);
156 	else
157 		if (__radix_tree_delete_node(&mapping->page_tree, node))
158 			return;
159 
160 	/*
161 	 * Track node that only contains shadow entries.
162 	 *
163 	 * Avoid acquiring the list_lru lock if already tracked.  The
164 	 * list_empty() test is safe as node->private_list is
165 	 * protected by mapping->tree_lock.
166 	 */
167 	if (!workingset_node_pages(node) &&
168 	    list_empty(&node->private_list)) {
169 		node->private_data = mapping;
170 		list_lru_add(&workingset_shadow_nodes, &node->private_list);
171 	}
172 }
173 
174 /*
175  * Delete a page from the page cache and free it. Caller has to make
176  * sure the page is locked and that nobody else uses it - or that usage
177  * is safe.  The caller must hold the mapping's tree_lock.
178  */
179 void __delete_from_page_cache(struct page *page, void *shadow)
180 {
181 	struct address_space *mapping = page->mapping;
182 
183 	trace_mm_filemap_delete_from_page_cache(page);
184 	/*
185 	 * if we're uptodate, flush out into the cleancache, otherwise
186 	 * invalidate any existing cleancache entries.  We can't leave
187 	 * stale data around in the cleancache once our page is gone
188 	 */
189 	if (PageUptodate(page) && PageMappedToDisk(page))
190 		cleancache_put_page(page);
191 	else
192 		cleancache_invalidate_page(mapping, page);
193 
194 	page_cache_tree_delete(mapping, page, shadow);
195 
196 	page->mapping = NULL;
197 	/* Leave page->index set: truncation lookup relies upon it */
198 
199 	__dec_zone_page_state(page, NR_FILE_PAGES);
200 	if (PageSwapBacked(page))
201 		__dec_zone_page_state(page, NR_SHMEM);
202 	BUG_ON(page_mapped(page));
203 
204 	/*
205 	 * At this point page must be either written or cleaned by truncate.
206 	 * Dirty page here signals a bug and loss of unwritten data.
207 	 *
208 	 * This fixes dirty accounting after removing the page entirely but
209 	 * leaves PageDirty set: it has no effect for truncated page and
210 	 * anyway will be cleared before returning page into buddy allocator.
211 	 */
212 	if (WARN_ON_ONCE(PageDirty(page)))
213 		account_page_cleaned(page, mapping);
214 }
215 
216 /**
217  * delete_from_page_cache - delete page from page cache
218  * @page: the page which the kernel is trying to remove from page cache
219  *
220  * This must be called only on pages that have been verified to be in the page
221  * cache and locked.  It will never put the page into the free list, the caller
222  * has a reference on the page.
223  */
224 void delete_from_page_cache(struct page *page)
225 {
226 	struct address_space *mapping = page->mapping;
227 	void (*freepage)(struct page *);
228 
229 	BUG_ON(!PageLocked(page));
230 
231 	freepage = mapping->a_ops->freepage;
232 	spin_lock_irq(&mapping->tree_lock);
233 	__delete_from_page_cache(page, NULL);
234 	spin_unlock_irq(&mapping->tree_lock);
235 
236 	if (freepage)
237 		freepage(page);
238 	page_cache_release(page);
239 }
240 EXPORT_SYMBOL(delete_from_page_cache);
241 
242 static int filemap_check_errors(struct address_space *mapping)
243 {
244 	int ret = 0;
245 	/* Check for outstanding write errors */
246 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
247 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
248 		ret = -ENOSPC;
249 	if (test_bit(AS_EIO, &mapping->flags) &&
250 	    test_and_clear_bit(AS_EIO, &mapping->flags))
251 		ret = -EIO;
252 	return ret;
253 }
254 
255 /**
256  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
257  * @mapping:	address space structure to write
258  * @start:	offset in bytes where the range starts
259  * @end:	offset in bytes where the range ends (inclusive)
260  * @sync_mode:	enable synchronous operation
261  *
262  * Start writeback against all of a mapping's dirty pages that lie
263  * within the byte offsets <start, end> inclusive.
264  *
265  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
266  * opposed to a regular memory cleansing writeback.  The difference between
267  * these two operations is that if a dirty page/buffer is encountered, it must
268  * be waited upon, and not just skipped over.
269  */
270 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
271 				loff_t end, int sync_mode)
272 {
273 	int ret;
274 	struct writeback_control wbc = {
275 		.sync_mode = sync_mode,
276 		.nr_to_write = LONG_MAX,
277 		.range_start = start,
278 		.range_end = end,
279 	};
280 
281 	if (!mapping_cap_writeback_dirty(mapping))
282 		return 0;
283 
284 	ret = do_writepages(mapping, &wbc);
285 	return ret;
286 }
287 
288 static inline int __filemap_fdatawrite(struct address_space *mapping,
289 	int sync_mode)
290 {
291 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
292 }
293 
294 int filemap_fdatawrite(struct address_space *mapping)
295 {
296 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
297 }
298 EXPORT_SYMBOL(filemap_fdatawrite);
299 
300 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
301 				loff_t end)
302 {
303 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
304 }
305 EXPORT_SYMBOL(filemap_fdatawrite_range);
306 
307 /**
308  * filemap_flush - mostly a non-blocking flush
309  * @mapping:	target address_space
310  *
311  * This is a mostly non-blocking flush.  Not suitable for data-integrity
312  * purposes - I/O may not be started against all dirty pages.
313  */
314 int filemap_flush(struct address_space *mapping)
315 {
316 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
317 }
318 EXPORT_SYMBOL(filemap_flush);
319 
320 /**
321  * filemap_fdatawait_range - wait for writeback to complete
322  * @mapping:		address space structure to wait for
323  * @start_byte:		offset in bytes where the range starts
324  * @end_byte:		offset in bytes where the range ends (inclusive)
325  *
326  * Walk the list of under-writeback pages of the given address space
327  * in the given range and wait for all of them.
328  */
329 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
330 			    loff_t end_byte)
331 {
332 	pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
333 	pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
334 	struct pagevec pvec;
335 	int nr_pages;
336 	int ret2, ret = 0;
337 
338 	if (end_byte < start_byte)
339 		goto out;
340 
341 	pagevec_init(&pvec, 0);
342 	while ((index <= end) &&
343 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
344 			PAGECACHE_TAG_WRITEBACK,
345 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
346 		unsigned i;
347 
348 		for (i = 0; i < nr_pages; i++) {
349 			struct page *page = pvec.pages[i];
350 
351 			/* until radix tree lookup accepts end_index */
352 			if (page->index > end)
353 				continue;
354 
355 			wait_on_page_writeback(page);
356 			if (TestClearPageError(page))
357 				ret = -EIO;
358 		}
359 		pagevec_release(&pvec);
360 		cond_resched();
361 	}
362 out:
363 	ret2 = filemap_check_errors(mapping);
364 	if (!ret)
365 		ret = ret2;
366 
367 	return ret;
368 }
369 EXPORT_SYMBOL(filemap_fdatawait_range);
370 
371 /**
372  * filemap_fdatawait - wait for all under-writeback pages to complete
373  * @mapping: address space structure to wait for
374  *
375  * Walk the list of under-writeback pages of the given address space
376  * and wait for all of them.
377  */
378 int filemap_fdatawait(struct address_space *mapping)
379 {
380 	loff_t i_size = i_size_read(mapping->host);
381 
382 	if (i_size == 0)
383 		return 0;
384 
385 	return filemap_fdatawait_range(mapping, 0, i_size - 1);
386 }
387 EXPORT_SYMBOL(filemap_fdatawait);
388 
389 int filemap_write_and_wait(struct address_space *mapping)
390 {
391 	int err = 0;
392 
393 	if (mapping->nrpages) {
394 		err = filemap_fdatawrite(mapping);
395 		/*
396 		 * Even if the above returned error, the pages may be
397 		 * written partially (e.g. -ENOSPC), so we wait for it.
398 		 * But the -EIO is special case, it may indicate the worst
399 		 * thing (e.g. bug) happened, so we avoid waiting for it.
400 		 */
401 		if (err != -EIO) {
402 			int err2 = filemap_fdatawait(mapping);
403 			if (!err)
404 				err = err2;
405 		}
406 	} else {
407 		err = filemap_check_errors(mapping);
408 	}
409 	return err;
410 }
411 EXPORT_SYMBOL(filemap_write_and_wait);
412 
413 /**
414  * filemap_write_and_wait_range - write out & wait on a file range
415  * @mapping:	the address_space for the pages
416  * @lstart:	offset in bytes where the range starts
417  * @lend:	offset in bytes where the range ends (inclusive)
418  *
419  * Write out and wait upon file offsets lstart->lend, inclusive.
420  *
421  * Note that `lend' is inclusive (describes the last byte to be written) so
422  * that this function can be used to write to the very end-of-file (end = -1).
423  */
424 int filemap_write_and_wait_range(struct address_space *mapping,
425 				 loff_t lstart, loff_t lend)
426 {
427 	int err = 0;
428 
429 	if (mapping->nrpages) {
430 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
431 						 WB_SYNC_ALL);
432 		/* See comment of filemap_write_and_wait() */
433 		if (err != -EIO) {
434 			int err2 = filemap_fdatawait_range(mapping,
435 						lstart, lend);
436 			if (!err)
437 				err = err2;
438 		}
439 	} else {
440 		err = filemap_check_errors(mapping);
441 	}
442 	return err;
443 }
444 EXPORT_SYMBOL(filemap_write_and_wait_range);
445 
446 /**
447  * replace_page_cache_page - replace a pagecache page with a new one
448  * @old:	page to be replaced
449  * @new:	page to replace with
450  * @gfp_mask:	allocation mode
451  *
452  * This function replaces a page in the pagecache with a new one.  On
453  * success it acquires the pagecache reference for the new page and
454  * drops it for the old page.  Both the old and new pages must be
455  * locked.  This function does not add the new page to the LRU, the
456  * caller must do that.
457  *
458  * The remove + add is atomic.  The only way this function can fail is
459  * memory allocation failure.
460  */
461 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
462 {
463 	int error;
464 
465 	VM_BUG_ON_PAGE(!PageLocked(old), old);
466 	VM_BUG_ON_PAGE(!PageLocked(new), new);
467 	VM_BUG_ON_PAGE(new->mapping, new);
468 
469 	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
470 	if (!error) {
471 		struct address_space *mapping = old->mapping;
472 		void (*freepage)(struct page *);
473 
474 		pgoff_t offset = old->index;
475 		freepage = mapping->a_ops->freepage;
476 
477 		page_cache_get(new);
478 		new->mapping = mapping;
479 		new->index = offset;
480 
481 		spin_lock_irq(&mapping->tree_lock);
482 		__delete_from_page_cache(old, NULL);
483 		error = radix_tree_insert(&mapping->page_tree, offset, new);
484 		BUG_ON(error);
485 		mapping->nrpages++;
486 		__inc_zone_page_state(new, NR_FILE_PAGES);
487 		if (PageSwapBacked(new))
488 			__inc_zone_page_state(new, NR_SHMEM);
489 		spin_unlock_irq(&mapping->tree_lock);
490 		mem_cgroup_migrate(old, new, true);
491 		radix_tree_preload_end();
492 		if (freepage)
493 			freepage(old);
494 		page_cache_release(old);
495 	}
496 
497 	return error;
498 }
499 EXPORT_SYMBOL_GPL(replace_page_cache_page);
500 
501 static int page_cache_tree_insert(struct address_space *mapping,
502 				  struct page *page, void **shadowp)
503 {
504 	struct radix_tree_node *node;
505 	void **slot;
506 	int error;
507 
508 	error = __radix_tree_create(&mapping->page_tree, page->index,
509 				    &node, &slot);
510 	if (error)
511 		return error;
512 	if (*slot) {
513 		void *p;
514 
515 		p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
516 		if (!radix_tree_exceptional_entry(p))
517 			return -EEXIST;
518 		if (shadowp)
519 			*shadowp = p;
520 		mapping->nrshadows--;
521 		if (node)
522 			workingset_node_shadows_dec(node);
523 	}
524 	radix_tree_replace_slot(slot, page);
525 	mapping->nrpages++;
526 	if (node) {
527 		workingset_node_pages_inc(node);
528 		/*
529 		 * Don't track node that contains actual pages.
530 		 *
531 		 * Avoid acquiring the list_lru lock if already
532 		 * untracked.  The list_empty() test is safe as
533 		 * node->private_list is protected by
534 		 * mapping->tree_lock.
535 		 */
536 		if (!list_empty(&node->private_list))
537 			list_lru_del(&workingset_shadow_nodes,
538 				     &node->private_list);
539 	}
540 	return 0;
541 }
542 
543 static int __add_to_page_cache_locked(struct page *page,
544 				      struct address_space *mapping,
545 				      pgoff_t offset, gfp_t gfp_mask,
546 				      void **shadowp)
547 {
548 	int huge = PageHuge(page);
549 	struct mem_cgroup *memcg;
550 	int error;
551 
552 	VM_BUG_ON_PAGE(!PageLocked(page), page);
553 	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
554 
555 	if (!huge) {
556 		error = mem_cgroup_try_charge(page, current->mm,
557 					      gfp_mask, &memcg);
558 		if (error)
559 			return error;
560 	}
561 
562 	error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
563 	if (error) {
564 		if (!huge)
565 			mem_cgroup_cancel_charge(page, memcg);
566 		return error;
567 	}
568 
569 	page_cache_get(page);
570 	page->mapping = mapping;
571 	page->index = offset;
572 
573 	spin_lock_irq(&mapping->tree_lock);
574 	error = page_cache_tree_insert(mapping, page, shadowp);
575 	radix_tree_preload_end();
576 	if (unlikely(error))
577 		goto err_insert;
578 	__inc_zone_page_state(page, NR_FILE_PAGES);
579 	spin_unlock_irq(&mapping->tree_lock);
580 	if (!huge)
581 		mem_cgroup_commit_charge(page, memcg, false);
582 	trace_mm_filemap_add_to_page_cache(page);
583 	return 0;
584 err_insert:
585 	page->mapping = NULL;
586 	/* Leave page->index set: truncation relies upon it */
587 	spin_unlock_irq(&mapping->tree_lock);
588 	if (!huge)
589 		mem_cgroup_cancel_charge(page, memcg);
590 	page_cache_release(page);
591 	return error;
592 }
593 
594 /**
595  * add_to_page_cache_locked - add a locked page to the pagecache
596  * @page:	page to add
597  * @mapping:	the page's address_space
598  * @offset:	page index
599  * @gfp_mask:	page allocation mode
600  *
601  * This function is used to add a page to the pagecache. It must be locked.
602  * This function does not add the page to the LRU.  The caller must do that.
603  */
604 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
605 		pgoff_t offset, gfp_t gfp_mask)
606 {
607 	return __add_to_page_cache_locked(page, mapping, offset,
608 					  gfp_mask, NULL);
609 }
610 EXPORT_SYMBOL(add_to_page_cache_locked);
611 
612 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
613 				pgoff_t offset, gfp_t gfp_mask)
614 {
615 	void *shadow = NULL;
616 	int ret;
617 
618 	__set_page_locked(page);
619 	ret = __add_to_page_cache_locked(page, mapping, offset,
620 					 gfp_mask, &shadow);
621 	if (unlikely(ret))
622 		__clear_page_locked(page);
623 	else {
624 		/*
625 		 * The page might have been evicted from cache only
626 		 * recently, in which case it should be activated like
627 		 * any other repeatedly accessed page.
628 		 */
629 		if (shadow && workingset_refault(shadow)) {
630 			SetPageActive(page);
631 			workingset_activation(page);
632 		} else
633 			ClearPageActive(page);
634 		lru_cache_add(page);
635 	}
636 	return ret;
637 }
638 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
639 
640 #ifdef CONFIG_NUMA
641 struct page *__page_cache_alloc(gfp_t gfp)
642 {
643 	int n;
644 	struct page *page;
645 
646 	if (cpuset_do_page_mem_spread()) {
647 		unsigned int cpuset_mems_cookie;
648 		do {
649 			cpuset_mems_cookie = read_mems_allowed_begin();
650 			n = cpuset_mem_spread_node();
651 			page = alloc_pages_exact_node(n, gfp, 0);
652 		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
653 
654 		return page;
655 	}
656 	return alloc_pages(gfp, 0);
657 }
658 EXPORT_SYMBOL(__page_cache_alloc);
659 #endif
660 
661 /*
662  * In order to wait for pages to become available there must be
663  * waitqueues associated with pages. By using a hash table of
664  * waitqueues where the bucket discipline is to maintain all
665  * waiters on the same queue and wake all when any of the pages
666  * become available, and for the woken contexts to check to be
667  * sure the appropriate page became available, this saves space
668  * at a cost of "thundering herd" phenomena during rare hash
669  * collisions.
670  */
671 wait_queue_head_t *page_waitqueue(struct page *page)
672 {
673 	const struct zone *zone = page_zone(page);
674 
675 	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
676 }
677 EXPORT_SYMBOL(page_waitqueue);
678 
679 void wait_on_page_bit(struct page *page, int bit_nr)
680 {
681 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
682 
683 	if (test_bit(bit_nr, &page->flags))
684 		__wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
685 							TASK_UNINTERRUPTIBLE);
686 }
687 EXPORT_SYMBOL(wait_on_page_bit);
688 
689 int wait_on_page_bit_killable(struct page *page, int bit_nr)
690 {
691 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
692 
693 	if (!test_bit(bit_nr, &page->flags))
694 		return 0;
695 
696 	return __wait_on_bit(page_waitqueue(page), &wait,
697 			     bit_wait_io, TASK_KILLABLE);
698 }
699 
700 int wait_on_page_bit_killable_timeout(struct page *page,
701 				       int bit_nr, unsigned long timeout)
702 {
703 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
704 
705 	wait.key.timeout = jiffies + timeout;
706 	if (!test_bit(bit_nr, &page->flags))
707 		return 0;
708 	return __wait_on_bit(page_waitqueue(page), &wait,
709 			     bit_wait_io_timeout, TASK_KILLABLE);
710 }
711 EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
712 
713 /**
714  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
715  * @page: Page defining the wait queue of interest
716  * @waiter: Waiter to add to the queue
717  *
718  * Add an arbitrary @waiter to the wait queue for the nominated @page.
719  */
720 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
721 {
722 	wait_queue_head_t *q = page_waitqueue(page);
723 	unsigned long flags;
724 
725 	spin_lock_irqsave(&q->lock, flags);
726 	__add_wait_queue(q, waiter);
727 	spin_unlock_irqrestore(&q->lock, flags);
728 }
729 EXPORT_SYMBOL_GPL(add_page_wait_queue);
730 
731 /**
732  * unlock_page - unlock a locked page
733  * @page: the page
734  *
735  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
736  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
737  * mechanism between PageLocked pages and PageWriteback pages is shared.
738  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
739  *
740  * The mb is necessary to enforce ordering between the clear_bit and the read
741  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
742  */
743 void unlock_page(struct page *page)
744 {
745 	VM_BUG_ON_PAGE(!PageLocked(page), page);
746 	clear_bit_unlock(PG_locked, &page->flags);
747 	smp_mb__after_atomic();
748 	wake_up_page(page, PG_locked);
749 }
750 EXPORT_SYMBOL(unlock_page);
751 
752 /**
753  * end_page_writeback - end writeback against a page
754  * @page: the page
755  */
756 void end_page_writeback(struct page *page)
757 {
758 	/*
759 	 * TestClearPageReclaim could be used here but it is an atomic
760 	 * operation and overkill in this particular case. Failing to
761 	 * shuffle a page marked for immediate reclaim is too mild to
762 	 * justify taking an atomic operation penalty at the end of
763 	 * ever page writeback.
764 	 */
765 	if (PageReclaim(page)) {
766 		ClearPageReclaim(page);
767 		rotate_reclaimable_page(page);
768 	}
769 
770 	if (!test_clear_page_writeback(page))
771 		BUG();
772 
773 	smp_mb__after_atomic();
774 	wake_up_page(page, PG_writeback);
775 }
776 EXPORT_SYMBOL(end_page_writeback);
777 
778 /*
779  * After completing I/O on a page, call this routine to update the page
780  * flags appropriately
781  */
782 void page_endio(struct page *page, int rw, int err)
783 {
784 	if (rw == READ) {
785 		if (!err) {
786 			SetPageUptodate(page);
787 		} else {
788 			ClearPageUptodate(page);
789 			SetPageError(page);
790 		}
791 		unlock_page(page);
792 	} else { /* rw == WRITE */
793 		if (err) {
794 			SetPageError(page);
795 			if (page->mapping)
796 				mapping_set_error(page->mapping, err);
797 		}
798 		end_page_writeback(page);
799 	}
800 }
801 EXPORT_SYMBOL_GPL(page_endio);
802 
803 /**
804  * __lock_page - get a lock on the page, assuming we need to sleep to get it
805  * @page: the page to lock
806  */
807 void __lock_page(struct page *page)
808 {
809 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
810 
811 	__wait_on_bit_lock(page_waitqueue(page), &wait, bit_wait_io,
812 							TASK_UNINTERRUPTIBLE);
813 }
814 EXPORT_SYMBOL(__lock_page);
815 
816 int __lock_page_killable(struct page *page)
817 {
818 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
819 
820 	return __wait_on_bit_lock(page_waitqueue(page), &wait,
821 					bit_wait_io, TASK_KILLABLE);
822 }
823 EXPORT_SYMBOL_GPL(__lock_page_killable);
824 
825 /*
826  * Return values:
827  * 1 - page is locked; mmap_sem is still held.
828  * 0 - page is not locked.
829  *     mmap_sem has been released (up_read()), unless flags had both
830  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
831  *     which case mmap_sem is still held.
832  *
833  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
834  * with the page locked and the mmap_sem unperturbed.
835  */
836 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
837 			 unsigned int flags)
838 {
839 	if (flags & FAULT_FLAG_ALLOW_RETRY) {
840 		/*
841 		 * CAUTION! In this case, mmap_sem is not released
842 		 * even though return 0.
843 		 */
844 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
845 			return 0;
846 
847 		up_read(&mm->mmap_sem);
848 		if (flags & FAULT_FLAG_KILLABLE)
849 			wait_on_page_locked_killable(page);
850 		else
851 			wait_on_page_locked(page);
852 		return 0;
853 	} else {
854 		if (flags & FAULT_FLAG_KILLABLE) {
855 			int ret;
856 
857 			ret = __lock_page_killable(page);
858 			if (ret) {
859 				up_read(&mm->mmap_sem);
860 				return 0;
861 			}
862 		} else
863 			__lock_page(page);
864 		return 1;
865 	}
866 }
867 
868 /**
869  * page_cache_next_hole - find the next hole (not-present entry)
870  * @mapping: mapping
871  * @index: index
872  * @max_scan: maximum range to search
873  *
874  * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
875  * lowest indexed hole.
876  *
877  * Returns: the index of the hole if found, otherwise returns an index
878  * outside of the set specified (in which case 'return - index >=
879  * max_scan' will be true). In rare cases of index wrap-around, 0 will
880  * be returned.
881  *
882  * page_cache_next_hole may be called under rcu_read_lock. However,
883  * like radix_tree_gang_lookup, this will not atomically search a
884  * snapshot of the tree at a single point in time. For example, if a
885  * hole is created at index 5, then subsequently a hole is created at
886  * index 10, page_cache_next_hole covering both indexes may return 10
887  * if called under rcu_read_lock.
888  */
889 pgoff_t page_cache_next_hole(struct address_space *mapping,
890 			     pgoff_t index, unsigned long max_scan)
891 {
892 	unsigned long i;
893 
894 	for (i = 0; i < max_scan; i++) {
895 		struct page *page;
896 
897 		page = radix_tree_lookup(&mapping->page_tree, index);
898 		if (!page || radix_tree_exceptional_entry(page))
899 			break;
900 		index++;
901 		if (index == 0)
902 			break;
903 	}
904 
905 	return index;
906 }
907 EXPORT_SYMBOL(page_cache_next_hole);
908 
909 /**
910  * page_cache_prev_hole - find the prev hole (not-present entry)
911  * @mapping: mapping
912  * @index: index
913  * @max_scan: maximum range to search
914  *
915  * Search backwards in the range [max(index-max_scan+1, 0), index] for
916  * the first hole.
917  *
918  * Returns: the index of the hole if found, otherwise returns an index
919  * outside of the set specified (in which case 'index - return >=
920  * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
921  * will be returned.
922  *
923  * page_cache_prev_hole may be called under rcu_read_lock. However,
924  * like radix_tree_gang_lookup, this will not atomically search a
925  * snapshot of the tree at a single point in time. For example, if a
926  * hole is created at index 10, then subsequently a hole is created at
927  * index 5, page_cache_prev_hole covering both indexes may return 5 if
928  * called under rcu_read_lock.
929  */
930 pgoff_t page_cache_prev_hole(struct address_space *mapping,
931 			     pgoff_t index, unsigned long max_scan)
932 {
933 	unsigned long i;
934 
935 	for (i = 0; i < max_scan; i++) {
936 		struct page *page;
937 
938 		page = radix_tree_lookup(&mapping->page_tree, index);
939 		if (!page || radix_tree_exceptional_entry(page))
940 			break;
941 		index--;
942 		if (index == ULONG_MAX)
943 			break;
944 	}
945 
946 	return index;
947 }
948 EXPORT_SYMBOL(page_cache_prev_hole);
949 
950 /**
951  * find_get_entry - find and get a page cache entry
952  * @mapping: the address_space to search
953  * @offset: the page cache index
954  *
955  * Looks up the page cache slot at @mapping & @offset.  If there is a
956  * page cache page, it is returned with an increased refcount.
957  *
958  * If the slot holds a shadow entry of a previously evicted page, or a
959  * swap entry from shmem/tmpfs, it is returned.
960  *
961  * Otherwise, %NULL is returned.
962  */
963 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
964 {
965 	void **pagep;
966 	struct page *page;
967 
968 	rcu_read_lock();
969 repeat:
970 	page = NULL;
971 	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
972 	if (pagep) {
973 		page = radix_tree_deref_slot(pagep);
974 		if (unlikely(!page))
975 			goto out;
976 		if (radix_tree_exception(page)) {
977 			if (radix_tree_deref_retry(page))
978 				goto repeat;
979 			/*
980 			 * A shadow entry of a recently evicted page,
981 			 * or a swap entry from shmem/tmpfs.  Return
982 			 * it without attempting to raise page count.
983 			 */
984 			goto out;
985 		}
986 		if (!page_cache_get_speculative(page))
987 			goto repeat;
988 
989 		/*
990 		 * Has the page moved?
991 		 * This is part of the lockless pagecache protocol. See
992 		 * include/linux/pagemap.h for details.
993 		 */
994 		if (unlikely(page != *pagep)) {
995 			page_cache_release(page);
996 			goto repeat;
997 		}
998 	}
999 out:
1000 	rcu_read_unlock();
1001 
1002 	return page;
1003 }
1004 EXPORT_SYMBOL(find_get_entry);
1005 
1006 /**
1007  * find_lock_entry - locate, pin and lock a page cache entry
1008  * @mapping: the address_space to search
1009  * @offset: the page cache index
1010  *
1011  * Looks up the page cache slot at @mapping & @offset.  If there is a
1012  * page cache page, it is returned locked and with an increased
1013  * refcount.
1014  *
1015  * If the slot holds a shadow entry of a previously evicted page, or a
1016  * swap entry from shmem/tmpfs, it is returned.
1017  *
1018  * Otherwise, %NULL is returned.
1019  *
1020  * find_lock_entry() may sleep.
1021  */
1022 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1023 {
1024 	struct page *page;
1025 
1026 repeat:
1027 	page = find_get_entry(mapping, offset);
1028 	if (page && !radix_tree_exception(page)) {
1029 		lock_page(page);
1030 		/* Has the page been truncated? */
1031 		if (unlikely(page->mapping != mapping)) {
1032 			unlock_page(page);
1033 			page_cache_release(page);
1034 			goto repeat;
1035 		}
1036 		VM_BUG_ON_PAGE(page->index != offset, page);
1037 	}
1038 	return page;
1039 }
1040 EXPORT_SYMBOL(find_lock_entry);
1041 
1042 /**
1043  * pagecache_get_page - find and get a page reference
1044  * @mapping: the address_space to search
1045  * @offset: the page index
1046  * @fgp_flags: PCG flags
1047  * @gfp_mask: gfp mask to use for the page cache data page allocation
1048  *
1049  * Looks up the page cache slot at @mapping & @offset.
1050  *
1051  * PCG flags modify how the page is returned.
1052  *
1053  * FGP_ACCESSED: the page will be marked accessed
1054  * FGP_LOCK: Page is return locked
1055  * FGP_CREAT: If page is not present then a new page is allocated using
1056  *		@gfp_mask and added to the page cache and the VM's LRU
1057  *		list. The page is returned locked and with an increased
1058  *		refcount. Otherwise, %NULL is returned.
1059  *
1060  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1061  * if the GFP flags specified for FGP_CREAT are atomic.
1062  *
1063  * If there is a page cache page, it is returned with an increased refcount.
1064  */
1065 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1066 	int fgp_flags, gfp_t gfp_mask)
1067 {
1068 	struct page *page;
1069 
1070 repeat:
1071 	page = find_get_entry(mapping, offset);
1072 	if (radix_tree_exceptional_entry(page))
1073 		page = NULL;
1074 	if (!page)
1075 		goto no_page;
1076 
1077 	if (fgp_flags & FGP_LOCK) {
1078 		if (fgp_flags & FGP_NOWAIT) {
1079 			if (!trylock_page(page)) {
1080 				page_cache_release(page);
1081 				return NULL;
1082 			}
1083 		} else {
1084 			lock_page(page);
1085 		}
1086 
1087 		/* Has the page been truncated? */
1088 		if (unlikely(page->mapping != mapping)) {
1089 			unlock_page(page);
1090 			page_cache_release(page);
1091 			goto repeat;
1092 		}
1093 		VM_BUG_ON_PAGE(page->index != offset, page);
1094 	}
1095 
1096 	if (page && (fgp_flags & FGP_ACCESSED))
1097 		mark_page_accessed(page);
1098 
1099 no_page:
1100 	if (!page && (fgp_flags & FGP_CREAT)) {
1101 		int err;
1102 		if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1103 			gfp_mask |= __GFP_WRITE;
1104 		if (fgp_flags & FGP_NOFS)
1105 			gfp_mask &= ~__GFP_FS;
1106 
1107 		page = __page_cache_alloc(gfp_mask);
1108 		if (!page)
1109 			return NULL;
1110 
1111 		if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1112 			fgp_flags |= FGP_LOCK;
1113 
1114 		/* Init accessed so avoid atomic mark_page_accessed later */
1115 		if (fgp_flags & FGP_ACCESSED)
1116 			__SetPageReferenced(page);
1117 
1118 		err = add_to_page_cache_lru(page, mapping, offset,
1119 				gfp_mask & GFP_RECLAIM_MASK);
1120 		if (unlikely(err)) {
1121 			page_cache_release(page);
1122 			page = NULL;
1123 			if (err == -EEXIST)
1124 				goto repeat;
1125 		}
1126 	}
1127 
1128 	return page;
1129 }
1130 EXPORT_SYMBOL(pagecache_get_page);
1131 
1132 /**
1133  * find_get_entries - gang pagecache lookup
1134  * @mapping:	The address_space to search
1135  * @start:	The starting page cache index
1136  * @nr_entries:	The maximum number of entries
1137  * @entries:	Where the resulting entries are placed
1138  * @indices:	The cache indices corresponding to the entries in @entries
1139  *
1140  * find_get_entries() will search for and return a group of up to
1141  * @nr_entries entries in the mapping.  The entries are placed at
1142  * @entries.  find_get_entries() takes a reference against any actual
1143  * pages it returns.
1144  *
1145  * The search returns a group of mapping-contiguous page cache entries
1146  * with ascending indexes.  There may be holes in the indices due to
1147  * not-present pages.
1148  *
1149  * Any shadow entries of evicted pages, or swap entries from
1150  * shmem/tmpfs, are included in the returned array.
1151  *
1152  * find_get_entries() returns the number of pages and shadow entries
1153  * which were found.
1154  */
1155 unsigned find_get_entries(struct address_space *mapping,
1156 			  pgoff_t start, unsigned int nr_entries,
1157 			  struct page **entries, pgoff_t *indices)
1158 {
1159 	void **slot;
1160 	unsigned int ret = 0;
1161 	struct radix_tree_iter iter;
1162 
1163 	if (!nr_entries)
1164 		return 0;
1165 
1166 	rcu_read_lock();
1167 restart:
1168 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1169 		struct page *page;
1170 repeat:
1171 		page = radix_tree_deref_slot(slot);
1172 		if (unlikely(!page))
1173 			continue;
1174 		if (radix_tree_exception(page)) {
1175 			if (radix_tree_deref_retry(page))
1176 				goto restart;
1177 			/*
1178 			 * A shadow entry of a recently evicted page,
1179 			 * or a swap entry from shmem/tmpfs.  Return
1180 			 * it without attempting to raise page count.
1181 			 */
1182 			goto export;
1183 		}
1184 		if (!page_cache_get_speculative(page))
1185 			goto repeat;
1186 
1187 		/* Has the page moved? */
1188 		if (unlikely(page != *slot)) {
1189 			page_cache_release(page);
1190 			goto repeat;
1191 		}
1192 export:
1193 		indices[ret] = iter.index;
1194 		entries[ret] = page;
1195 		if (++ret == nr_entries)
1196 			break;
1197 	}
1198 	rcu_read_unlock();
1199 	return ret;
1200 }
1201 
1202 /**
1203  * find_get_pages - gang pagecache lookup
1204  * @mapping:	The address_space to search
1205  * @start:	The starting page index
1206  * @nr_pages:	The maximum number of pages
1207  * @pages:	Where the resulting pages are placed
1208  *
1209  * find_get_pages() will search for and return a group of up to
1210  * @nr_pages pages in the mapping.  The pages are placed at @pages.
1211  * find_get_pages() takes a reference against the returned pages.
1212  *
1213  * The search returns a group of mapping-contiguous pages with ascending
1214  * indexes.  There may be holes in the indices due to not-present pages.
1215  *
1216  * find_get_pages() returns the number of pages which were found.
1217  */
1218 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1219 			    unsigned int nr_pages, struct page **pages)
1220 {
1221 	struct radix_tree_iter iter;
1222 	void **slot;
1223 	unsigned ret = 0;
1224 
1225 	if (unlikely(!nr_pages))
1226 		return 0;
1227 
1228 	rcu_read_lock();
1229 restart:
1230 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1231 		struct page *page;
1232 repeat:
1233 		page = radix_tree_deref_slot(slot);
1234 		if (unlikely(!page))
1235 			continue;
1236 
1237 		if (radix_tree_exception(page)) {
1238 			if (radix_tree_deref_retry(page)) {
1239 				/*
1240 				 * Transient condition which can only trigger
1241 				 * when entry at index 0 moves out of or back
1242 				 * to root: none yet gotten, safe to restart.
1243 				 */
1244 				WARN_ON(iter.index);
1245 				goto restart;
1246 			}
1247 			/*
1248 			 * A shadow entry of a recently evicted page,
1249 			 * or a swap entry from shmem/tmpfs.  Skip
1250 			 * over it.
1251 			 */
1252 			continue;
1253 		}
1254 
1255 		if (!page_cache_get_speculative(page))
1256 			goto repeat;
1257 
1258 		/* Has the page moved? */
1259 		if (unlikely(page != *slot)) {
1260 			page_cache_release(page);
1261 			goto repeat;
1262 		}
1263 
1264 		pages[ret] = page;
1265 		if (++ret == nr_pages)
1266 			break;
1267 	}
1268 
1269 	rcu_read_unlock();
1270 	return ret;
1271 }
1272 
1273 /**
1274  * find_get_pages_contig - gang contiguous pagecache lookup
1275  * @mapping:	The address_space to search
1276  * @index:	The starting page index
1277  * @nr_pages:	The maximum number of pages
1278  * @pages:	Where the resulting pages are placed
1279  *
1280  * find_get_pages_contig() works exactly like find_get_pages(), except
1281  * that the returned number of pages are guaranteed to be contiguous.
1282  *
1283  * find_get_pages_contig() returns the number of pages which were found.
1284  */
1285 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1286 			       unsigned int nr_pages, struct page **pages)
1287 {
1288 	struct radix_tree_iter iter;
1289 	void **slot;
1290 	unsigned int ret = 0;
1291 
1292 	if (unlikely(!nr_pages))
1293 		return 0;
1294 
1295 	rcu_read_lock();
1296 restart:
1297 	radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1298 		struct page *page;
1299 repeat:
1300 		page = radix_tree_deref_slot(slot);
1301 		/* The hole, there no reason to continue */
1302 		if (unlikely(!page))
1303 			break;
1304 
1305 		if (radix_tree_exception(page)) {
1306 			if (radix_tree_deref_retry(page)) {
1307 				/*
1308 				 * Transient condition which can only trigger
1309 				 * when entry at index 0 moves out of or back
1310 				 * to root: none yet gotten, safe to restart.
1311 				 */
1312 				goto restart;
1313 			}
1314 			/*
1315 			 * A shadow entry of a recently evicted page,
1316 			 * or a swap entry from shmem/tmpfs.  Stop
1317 			 * looking for contiguous pages.
1318 			 */
1319 			break;
1320 		}
1321 
1322 		if (!page_cache_get_speculative(page))
1323 			goto repeat;
1324 
1325 		/* Has the page moved? */
1326 		if (unlikely(page != *slot)) {
1327 			page_cache_release(page);
1328 			goto repeat;
1329 		}
1330 
1331 		/*
1332 		 * must check mapping and index after taking the ref.
1333 		 * otherwise we can get both false positives and false
1334 		 * negatives, which is just confusing to the caller.
1335 		 */
1336 		if (page->mapping == NULL || page->index != iter.index) {
1337 			page_cache_release(page);
1338 			break;
1339 		}
1340 
1341 		pages[ret] = page;
1342 		if (++ret == nr_pages)
1343 			break;
1344 	}
1345 	rcu_read_unlock();
1346 	return ret;
1347 }
1348 EXPORT_SYMBOL(find_get_pages_contig);
1349 
1350 /**
1351  * find_get_pages_tag - find and return pages that match @tag
1352  * @mapping:	the address_space to search
1353  * @index:	the starting page index
1354  * @tag:	the tag index
1355  * @nr_pages:	the maximum number of pages
1356  * @pages:	where the resulting pages are placed
1357  *
1358  * Like find_get_pages, except we only return pages which are tagged with
1359  * @tag.   We update @index to index the next page for the traversal.
1360  */
1361 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1362 			int tag, unsigned int nr_pages, struct page **pages)
1363 {
1364 	struct radix_tree_iter iter;
1365 	void **slot;
1366 	unsigned ret = 0;
1367 
1368 	if (unlikely(!nr_pages))
1369 		return 0;
1370 
1371 	rcu_read_lock();
1372 restart:
1373 	radix_tree_for_each_tagged(slot, &mapping->page_tree,
1374 				   &iter, *index, tag) {
1375 		struct page *page;
1376 repeat:
1377 		page = radix_tree_deref_slot(slot);
1378 		if (unlikely(!page))
1379 			continue;
1380 
1381 		if (radix_tree_exception(page)) {
1382 			if (radix_tree_deref_retry(page)) {
1383 				/*
1384 				 * Transient condition which can only trigger
1385 				 * when entry at index 0 moves out of or back
1386 				 * to root: none yet gotten, safe to restart.
1387 				 */
1388 				goto restart;
1389 			}
1390 			/*
1391 			 * A shadow entry of a recently evicted page.
1392 			 *
1393 			 * Those entries should never be tagged, but
1394 			 * this tree walk is lockless and the tags are
1395 			 * looked up in bulk, one radix tree node at a
1396 			 * time, so there is a sizable window for page
1397 			 * reclaim to evict a page we saw tagged.
1398 			 *
1399 			 * Skip over it.
1400 			 */
1401 			continue;
1402 		}
1403 
1404 		if (!page_cache_get_speculative(page))
1405 			goto repeat;
1406 
1407 		/* Has the page moved? */
1408 		if (unlikely(page != *slot)) {
1409 			page_cache_release(page);
1410 			goto repeat;
1411 		}
1412 
1413 		pages[ret] = page;
1414 		if (++ret == nr_pages)
1415 			break;
1416 	}
1417 
1418 	rcu_read_unlock();
1419 
1420 	if (ret)
1421 		*index = pages[ret - 1]->index + 1;
1422 
1423 	return ret;
1424 }
1425 EXPORT_SYMBOL(find_get_pages_tag);
1426 
1427 /*
1428  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1429  * a _large_ part of the i/o request. Imagine the worst scenario:
1430  *
1431  *      ---R__________________________________________B__________
1432  *         ^ reading here                             ^ bad block(assume 4k)
1433  *
1434  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1435  * => failing the whole request => read(R) => read(R+1) =>
1436  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1437  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1438  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1439  *
1440  * It is going insane. Fix it by quickly scaling down the readahead size.
1441  */
1442 static void shrink_readahead_size_eio(struct file *filp,
1443 					struct file_ra_state *ra)
1444 {
1445 	ra->ra_pages /= 4;
1446 }
1447 
1448 /**
1449  * do_generic_file_read - generic file read routine
1450  * @filp:	the file to read
1451  * @ppos:	current file position
1452  * @iter:	data destination
1453  * @written:	already copied
1454  *
1455  * This is a generic file read routine, and uses the
1456  * mapping->a_ops->readpage() function for the actual low-level stuff.
1457  *
1458  * This is really ugly. But the goto's actually try to clarify some
1459  * of the logic when it comes to error handling etc.
1460  */
1461 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1462 		struct iov_iter *iter, ssize_t written)
1463 {
1464 	struct address_space *mapping = filp->f_mapping;
1465 	struct inode *inode = mapping->host;
1466 	struct file_ra_state *ra = &filp->f_ra;
1467 	pgoff_t index;
1468 	pgoff_t last_index;
1469 	pgoff_t prev_index;
1470 	unsigned long offset;      /* offset into pagecache page */
1471 	unsigned int prev_offset;
1472 	int error = 0;
1473 
1474 	index = *ppos >> PAGE_CACHE_SHIFT;
1475 	prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1476 	prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1477 	last_index = (*ppos + iter->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1478 	offset = *ppos & ~PAGE_CACHE_MASK;
1479 
1480 	for (;;) {
1481 		struct page *page;
1482 		pgoff_t end_index;
1483 		loff_t isize;
1484 		unsigned long nr, ret;
1485 
1486 		cond_resched();
1487 find_page:
1488 		page = find_get_page(mapping, index);
1489 		if (!page) {
1490 			page_cache_sync_readahead(mapping,
1491 					ra, filp,
1492 					index, last_index - index);
1493 			page = find_get_page(mapping, index);
1494 			if (unlikely(page == NULL))
1495 				goto no_cached_page;
1496 		}
1497 		if (PageReadahead(page)) {
1498 			page_cache_async_readahead(mapping,
1499 					ra, filp, page,
1500 					index, last_index - index);
1501 		}
1502 		if (!PageUptodate(page)) {
1503 			if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1504 					!mapping->a_ops->is_partially_uptodate)
1505 				goto page_not_up_to_date;
1506 			if (!trylock_page(page))
1507 				goto page_not_up_to_date;
1508 			/* Did it get truncated before we got the lock? */
1509 			if (!page->mapping)
1510 				goto page_not_up_to_date_locked;
1511 			if (!mapping->a_ops->is_partially_uptodate(page,
1512 							offset, iter->count))
1513 				goto page_not_up_to_date_locked;
1514 			unlock_page(page);
1515 		}
1516 page_ok:
1517 		/*
1518 		 * i_size must be checked after we know the page is Uptodate.
1519 		 *
1520 		 * Checking i_size after the check allows us to calculate
1521 		 * the correct value for "nr", which means the zero-filled
1522 		 * part of the page is not copied back to userspace (unless
1523 		 * another truncate extends the file - this is desired though).
1524 		 */
1525 
1526 		isize = i_size_read(inode);
1527 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1528 		if (unlikely(!isize || index > end_index)) {
1529 			page_cache_release(page);
1530 			goto out;
1531 		}
1532 
1533 		/* nr is the maximum number of bytes to copy from this page */
1534 		nr = PAGE_CACHE_SIZE;
1535 		if (index == end_index) {
1536 			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1537 			if (nr <= offset) {
1538 				page_cache_release(page);
1539 				goto out;
1540 			}
1541 		}
1542 		nr = nr - offset;
1543 
1544 		/* If users can be writing to this page using arbitrary
1545 		 * virtual addresses, take care about potential aliasing
1546 		 * before reading the page on the kernel side.
1547 		 */
1548 		if (mapping_writably_mapped(mapping))
1549 			flush_dcache_page(page);
1550 
1551 		/*
1552 		 * When a sequential read accesses a page several times,
1553 		 * only mark it as accessed the first time.
1554 		 */
1555 		if (prev_index != index || offset != prev_offset)
1556 			mark_page_accessed(page);
1557 		prev_index = index;
1558 
1559 		/*
1560 		 * Ok, we have the page, and it's up-to-date, so
1561 		 * now we can copy it to user space...
1562 		 */
1563 
1564 		ret = copy_page_to_iter(page, offset, nr, iter);
1565 		offset += ret;
1566 		index += offset >> PAGE_CACHE_SHIFT;
1567 		offset &= ~PAGE_CACHE_MASK;
1568 		prev_offset = offset;
1569 
1570 		page_cache_release(page);
1571 		written += ret;
1572 		if (!iov_iter_count(iter))
1573 			goto out;
1574 		if (ret < nr) {
1575 			error = -EFAULT;
1576 			goto out;
1577 		}
1578 		continue;
1579 
1580 page_not_up_to_date:
1581 		/* Get exclusive access to the page ... */
1582 		error = lock_page_killable(page);
1583 		if (unlikely(error))
1584 			goto readpage_error;
1585 
1586 page_not_up_to_date_locked:
1587 		/* Did it get truncated before we got the lock? */
1588 		if (!page->mapping) {
1589 			unlock_page(page);
1590 			page_cache_release(page);
1591 			continue;
1592 		}
1593 
1594 		/* Did somebody else fill it already? */
1595 		if (PageUptodate(page)) {
1596 			unlock_page(page);
1597 			goto page_ok;
1598 		}
1599 
1600 readpage:
1601 		/*
1602 		 * A previous I/O error may have been due to temporary
1603 		 * failures, eg. multipath errors.
1604 		 * PG_error will be set again if readpage fails.
1605 		 */
1606 		ClearPageError(page);
1607 		/* Start the actual read. The read will unlock the page. */
1608 		error = mapping->a_ops->readpage(filp, page);
1609 
1610 		if (unlikely(error)) {
1611 			if (error == AOP_TRUNCATED_PAGE) {
1612 				page_cache_release(page);
1613 				error = 0;
1614 				goto find_page;
1615 			}
1616 			goto readpage_error;
1617 		}
1618 
1619 		if (!PageUptodate(page)) {
1620 			error = lock_page_killable(page);
1621 			if (unlikely(error))
1622 				goto readpage_error;
1623 			if (!PageUptodate(page)) {
1624 				if (page->mapping == NULL) {
1625 					/*
1626 					 * invalidate_mapping_pages got it
1627 					 */
1628 					unlock_page(page);
1629 					page_cache_release(page);
1630 					goto find_page;
1631 				}
1632 				unlock_page(page);
1633 				shrink_readahead_size_eio(filp, ra);
1634 				error = -EIO;
1635 				goto readpage_error;
1636 			}
1637 			unlock_page(page);
1638 		}
1639 
1640 		goto page_ok;
1641 
1642 readpage_error:
1643 		/* UHHUH! A synchronous read error occurred. Report it */
1644 		page_cache_release(page);
1645 		goto out;
1646 
1647 no_cached_page:
1648 		/*
1649 		 * Ok, it wasn't cached, so we need to create a new
1650 		 * page..
1651 		 */
1652 		page = page_cache_alloc_cold(mapping);
1653 		if (!page) {
1654 			error = -ENOMEM;
1655 			goto out;
1656 		}
1657 		error = add_to_page_cache_lru(page, mapping,
1658 						index, GFP_KERNEL);
1659 		if (error) {
1660 			page_cache_release(page);
1661 			if (error == -EEXIST) {
1662 				error = 0;
1663 				goto find_page;
1664 			}
1665 			goto out;
1666 		}
1667 		goto readpage;
1668 	}
1669 
1670 out:
1671 	ra->prev_pos = prev_index;
1672 	ra->prev_pos <<= PAGE_CACHE_SHIFT;
1673 	ra->prev_pos |= prev_offset;
1674 
1675 	*ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1676 	file_accessed(filp);
1677 	return written ? written : error;
1678 }
1679 
1680 /**
1681  * generic_file_read_iter - generic filesystem read routine
1682  * @iocb:	kernel I/O control block
1683  * @iter:	destination for the data read
1684  *
1685  * This is the "read_iter()" routine for all filesystems
1686  * that can use the page cache directly.
1687  */
1688 ssize_t
1689 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1690 {
1691 	struct file *file = iocb->ki_filp;
1692 	ssize_t retval = 0;
1693 	loff_t *ppos = &iocb->ki_pos;
1694 	loff_t pos = *ppos;
1695 
1696 	if (iocb->ki_flags & IOCB_DIRECT) {
1697 		struct address_space *mapping = file->f_mapping;
1698 		struct inode *inode = mapping->host;
1699 		size_t count = iov_iter_count(iter);
1700 		loff_t size;
1701 
1702 		if (!count)
1703 			goto out; /* skip atime */
1704 		size = i_size_read(inode);
1705 		retval = filemap_write_and_wait_range(mapping, pos,
1706 					pos + count - 1);
1707 		if (!retval) {
1708 			struct iov_iter data = *iter;
1709 			retval = mapping->a_ops->direct_IO(iocb, &data, pos);
1710 		}
1711 
1712 		if (retval > 0) {
1713 			*ppos = pos + retval;
1714 			iov_iter_advance(iter, retval);
1715 		}
1716 
1717 		/*
1718 		 * Btrfs can have a short DIO read if we encounter
1719 		 * compressed extents, so if there was an error, or if
1720 		 * we've already read everything we wanted to, or if
1721 		 * there was a short read because we hit EOF, go ahead
1722 		 * and return.  Otherwise fallthrough to buffered io for
1723 		 * the rest of the read.  Buffered reads will not work for
1724 		 * DAX files, so don't bother trying.
1725 		 */
1726 		if (retval < 0 || !iov_iter_count(iter) || *ppos >= size ||
1727 		    IS_DAX(inode)) {
1728 			file_accessed(file);
1729 			goto out;
1730 		}
1731 	}
1732 
1733 	retval = do_generic_file_read(file, ppos, iter, retval);
1734 out:
1735 	return retval;
1736 }
1737 EXPORT_SYMBOL(generic_file_read_iter);
1738 
1739 #ifdef CONFIG_MMU
1740 /**
1741  * page_cache_read - adds requested page to the page cache if not already there
1742  * @file:	file to read
1743  * @offset:	page index
1744  *
1745  * This adds the requested page to the page cache if it isn't already there,
1746  * and schedules an I/O to read in its contents from disk.
1747  */
1748 static int page_cache_read(struct file *file, pgoff_t offset)
1749 {
1750 	struct address_space *mapping = file->f_mapping;
1751 	struct page *page;
1752 	int ret;
1753 
1754 	do {
1755 		page = page_cache_alloc_cold(mapping);
1756 		if (!page)
1757 			return -ENOMEM;
1758 
1759 		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1760 		if (ret == 0)
1761 			ret = mapping->a_ops->readpage(file, page);
1762 		else if (ret == -EEXIST)
1763 			ret = 0; /* losing race to add is OK */
1764 
1765 		page_cache_release(page);
1766 
1767 	} while (ret == AOP_TRUNCATED_PAGE);
1768 
1769 	return ret;
1770 }
1771 
1772 #define MMAP_LOTSAMISS  (100)
1773 
1774 /*
1775  * Synchronous readahead happens when we don't even find
1776  * a page in the page cache at all.
1777  */
1778 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1779 				   struct file_ra_state *ra,
1780 				   struct file *file,
1781 				   pgoff_t offset)
1782 {
1783 	unsigned long ra_pages;
1784 	struct address_space *mapping = file->f_mapping;
1785 
1786 	/* If we don't want any read-ahead, don't bother */
1787 	if (vma->vm_flags & VM_RAND_READ)
1788 		return;
1789 	if (!ra->ra_pages)
1790 		return;
1791 
1792 	if (vma->vm_flags & VM_SEQ_READ) {
1793 		page_cache_sync_readahead(mapping, ra, file, offset,
1794 					  ra->ra_pages);
1795 		return;
1796 	}
1797 
1798 	/* Avoid banging the cache line if not needed */
1799 	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1800 		ra->mmap_miss++;
1801 
1802 	/*
1803 	 * Do we miss much more than hit in this file? If so,
1804 	 * stop bothering with read-ahead. It will only hurt.
1805 	 */
1806 	if (ra->mmap_miss > MMAP_LOTSAMISS)
1807 		return;
1808 
1809 	/*
1810 	 * mmap read-around
1811 	 */
1812 	ra_pages = max_sane_readahead(ra->ra_pages);
1813 	ra->start = max_t(long, 0, offset - ra_pages / 2);
1814 	ra->size = ra_pages;
1815 	ra->async_size = ra_pages / 4;
1816 	ra_submit(ra, mapping, file);
1817 }
1818 
1819 /*
1820  * Asynchronous readahead happens when we find the page and PG_readahead,
1821  * so we want to possibly extend the readahead further..
1822  */
1823 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1824 				    struct file_ra_state *ra,
1825 				    struct file *file,
1826 				    struct page *page,
1827 				    pgoff_t offset)
1828 {
1829 	struct address_space *mapping = file->f_mapping;
1830 
1831 	/* If we don't want any read-ahead, don't bother */
1832 	if (vma->vm_flags & VM_RAND_READ)
1833 		return;
1834 	if (ra->mmap_miss > 0)
1835 		ra->mmap_miss--;
1836 	if (PageReadahead(page))
1837 		page_cache_async_readahead(mapping, ra, file,
1838 					   page, offset, ra->ra_pages);
1839 }
1840 
1841 /**
1842  * filemap_fault - read in file data for page fault handling
1843  * @vma:	vma in which the fault was taken
1844  * @vmf:	struct vm_fault containing details of the fault
1845  *
1846  * filemap_fault() is invoked via the vma operations vector for a
1847  * mapped memory region to read in file data during a page fault.
1848  *
1849  * The goto's are kind of ugly, but this streamlines the normal case of having
1850  * it in the page cache, and handles the special cases reasonably without
1851  * having a lot of duplicated code.
1852  *
1853  * vma->vm_mm->mmap_sem must be held on entry.
1854  *
1855  * If our return value has VM_FAULT_RETRY set, it's because
1856  * lock_page_or_retry() returned 0.
1857  * The mmap_sem has usually been released in this case.
1858  * See __lock_page_or_retry() for the exception.
1859  *
1860  * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
1861  * has not been released.
1862  *
1863  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
1864  */
1865 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1866 {
1867 	int error;
1868 	struct file *file = vma->vm_file;
1869 	struct address_space *mapping = file->f_mapping;
1870 	struct file_ra_state *ra = &file->f_ra;
1871 	struct inode *inode = mapping->host;
1872 	pgoff_t offset = vmf->pgoff;
1873 	struct page *page;
1874 	loff_t size;
1875 	int ret = 0;
1876 
1877 	size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1878 	if (offset >= size >> PAGE_CACHE_SHIFT)
1879 		return VM_FAULT_SIGBUS;
1880 
1881 	/*
1882 	 * Do we have something in the page cache already?
1883 	 */
1884 	page = find_get_page(mapping, offset);
1885 	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1886 		/*
1887 		 * We found the page, so try async readahead before
1888 		 * waiting for the lock.
1889 		 */
1890 		do_async_mmap_readahead(vma, ra, file, page, offset);
1891 	} else if (!page) {
1892 		/* No page in the page cache at all */
1893 		do_sync_mmap_readahead(vma, ra, file, offset);
1894 		count_vm_event(PGMAJFAULT);
1895 		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1896 		ret = VM_FAULT_MAJOR;
1897 retry_find:
1898 		page = find_get_page(mapping, offset);
1899 		if (!page)
1900 			goto no_cached_page;
1901 	}
1902 
1903 	if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1904 		page_cache_release(page);
1905 		return ret | VM_FAULT_RETRY;
1906 	}
1907 
1908 	/* Did it get truncated? */
1909 	if (unlikely(page->mapping != mapping)) {
1910 		unlock_page(page);
1911 		put_page(page);
1912 		goto retry_find;
1913 	}
1914 	VM_BUG_ON_PAGE(page->index != offset, page);
1915 
1916 	/*
1917 	 * We have a locked page in the page cache, now we need to check
1918 	 * that it's up-to-date. If not, it is going to be due to an error.
1919 	 */
1920 	if (unlikely(!PageUptodate(page)))
1921 		goto page_not_uptodate;
1922 
1923 	/*
1924 	 * Found the page and have a reference on it.
1925 	 * We must recheck i_size under page lock.
1926 	 */
1927 	size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1928 	if (unlikely(offset >= size >> PAGE_CACHE_SHIFT)) {
1929 		unlock_page(page);
1930 		page_cache_release(page);
1931 		return VM_FAULT_SIGBUS;
1932 	}
1933 
1934 	vmf->page = page;
1935 	return ret | VM_FAULT_LOCKED;
1936 
1937 no_cached_page:
1938 	/*
1939 	 * We're only likely to ever get here if MADV_RANDOM is in
1940 	 * effect.
1941 	 */
1942 	error = page_cache_read(file, offset);
1943 
1944 	/*
1945 	 * The page we want has now been added to the page cache.
1946 	 * In the unlikely event that someone removed it in the
1947 	 * meantime, we'll just come back here and read it again.
1948 	 */
1949 	if (error >= 0)
1950 		goto retry_find;
1951 
1952 	/*
1953 	 * An error return from page_cache_read can result if the
1954 	 * system is low on memory, or a problem occurs while trying
1955 	 * to schedule I/O.
1956 	 */
1957 	if (error == -ENOMEM)
1958 		return VM_FAULT_OOM;
1959 	return VM_FAULT_SIGBUS;
1960 
1961 page_not_uptodate:
1962 	/*
1963 	 * Umm, take care of errors if the page isn't up-to-date.
1964 	 * Try to re-read it _once_. We do this synchronously,
1965 	 * because there really aren't any performance issues here
1966 	 * and we need to check for errors.
1967 	 */
1968 	ClearPageError(page);
1969 	error = mapping->a_ops->readpage(file, page);
1970 	if (!error) {
1971 		wait_on_page_locked(page);
1972 		if (!PageUptodate(page))
1973 			error = -EIO;
1974 	}
1975 	page_cache_release(page);
1976 
1977 	if (!error || error == AOP_TRUNCATED_PAGE)
1978 		goto retry_find;
1979 
1980 	/* Things didn't work out. Return zero to tell the mm layer so. */
1981 	shrink_readahead_size_eio(file, ra);
1982 	return VM_FAULT_SIGBUS;
1983 }
1984 EXPORT_SYMBOL(filemap_fault);
1985 
1986 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
1987 {
1988 	struct radix_tree_iter iter;
1989 	void **slot;
1990 	struct file *file = vma->vm_file;
1991 	struct address_space *mapping = file->f_mapping;
1992 	loff_t size;
1993 	struct page *page;
1994 	unsigned long address = (unsigned long) vmf->virtual_address;
1995 	unsigned long addr;
1996 	pte_t *pte;
1997 
1998 	rcu_read_lock();
1999 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
2000 		if (iter.index > vmf->max_pgoff)
2001 			break;
2002 repeat:
2003 		page = radix_tree_deref_slot(slot);
2004 		if (unlikely(!page))
2005 			goto next;
2006 		if (radix_tree_exception(page)) {
2007 			if (radix_tree_deref_retry(page))
2008 				break;
2009 			else
2010 				goto next;
2011 		}
2012 
2013 		if (!page_cache_get_speculative(page))
2014 			goto repeat;
2015 
2016 		/* Has the page moved? */
2017 		if (unlikely(page != *slot)) {
2018 			page_cache_release(page);
2019 			goto repeat;
2020 		}
2021 
2022 		if (!PageUptodate(page) ||
2023 				PageReadahead(page) ||
2024 				PageHWPoison(page))
2025 			goto skip;
2026 		if (!trylock_page(page))
2027 			goto skip;
2028 
2029 		if (page->mapping != mapping || !PageUptodate(page))
2030 			goto unlock;
2031 
2032 		size = round_up(i_size_read(mapping->host), PAGE_CACHE_SIZE);
2033 		if (page->index >= size >> PAGE_CACHE_SHIFT)
2034 			goto unlock;
2035 
2036 		pte = vmf->pte + page->index - vmf->pgoff;
2037 		if (!pte_none(*pte))
2038 			goto unlock;
2039 
2040 		if (file->f_ra.mmap_miss > 0)
2041 			file->f_ra.mmap_miss--;
2042 		addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2043 		do_set_pte(vma, addr, page, pte, false, false);
2044 		unlock_page(page);
2045 		goto next;
2046 unlock:
2047 		unlock_page(page);
2048 skip:
2049 		page_cache_release(page);
2050 next:
2051 		if (iter.index == vmf->max_pgoff)
2052 			break;
2053 	}
2054 	rcu_read_unlock();
2055 }
2056 EXPORT_SYMBOL(filemap_map_pages);
2057 
2058 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2059 {
2060 	struct page *page = vmf->page;
2061 	struct inode *inode = file_inode(vma->vm_file);
2062 	int ret = VM_FAULT_LOCKED;
2063 
2064 	sb_start_pagefault(inode->i_sb);
2065 	file_update_time(vma->vm_file);
2066 	lock_page(page);
2067 	if (page->mapping != inode->i_mapping) {
2068 		unlock_page(page);
2069 		ret = VM_FAULT_NOPAGE;
2070 		goto out;
2071 	}
2072 	/*
2073 	 * We mark the page dirty already here so that when freeze is in
2074 	 * progress, we are guaranteed that writeback during freezing will
2075 	 * see the dirty page and writeprotect it again.
2076 	 */
2077 	set_page_dirty(page);
2078 	wait_for_stable_page(page);
2079 out:
2080 	sb_end_pagefault(inode->i_sb);
2081 	return ret;
2082 }
2083 EXPORT_SYMBOL(filemap_page_mkwrite);
2084 
2085 const struct vm_operations_struct generic_file_vm_ops = {
2086 	.fault		= filemap_fault,
2087 	.map_pages	= filemap_map_pages,
2088 	.page_mkwrite	= filemap_page_mkwrite,
2089 };
2090 
2091 /* This is used for a general mmap of a disk file */
2092 
2093 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2094 {
2095 	struct address_space *mapping = file->f_mapping;
2096 
2097 	if (!mapping->a_ops->readpage)
2098 		return -ENOEXEC;
2099 	file_accessed(file);
2100 	vma->vm_ops = &generic_file_vm_ops;
2101 	return 0;
2102 }
2103 
2104 /*
2105  * This is for filesystems which do not implement ->writepage.
2106  */
2107 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2108 {
2109 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2110 		return -EINVAL;
2111 	return generic_file_mmap(file, vma);
2112 }
2113 #else
2114 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2115 {
2116 	return -ENOSYS;
2117 }
2118 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2119 {
2120 	return -ENOSYS;
2121 }
2122 #endif /* CONFIG_MMU */
2123 
2124 EXPORT_SYMBOL(generic_file_mmap);
2125 EXPORT_SYMBOL(generic_file_readonly_mmap);
2126 
2127 static struct page *wait_on_page_read(struct page *page)
2128 {
2129 	if (!IS_ERR(page)) {
2130 		wait_on_page_locked(page);
2131 		if (!PageUptodate(page)) {
2132 			page_cache_release(page);
2133 			page = ERR_PTR(-EIO);
2134 		}
2135 	}
2136 	return page;
2137 }
2138 
2139 static struct page *__read_cache_page(struct address_space *mapping,
2140 				pgoff_t index,
2141 				int (*filler)(void *, struct page *),
2142 				void *data,
2143 				gfp_t gfp)
2144 {
2145 	struct page *page;
2146 	int err;
2147 repeat:
2148 	page = find_get_page(mapping, index);
2149 	if (!page) {
2150 		page = __page_cache_alloc(gfp | __GFP_COLD);
2151 		if (!page)
2152 			return ERR_PTR(-ENOMEM);
2153 		err = add_to_page_cache_lru(page, mapping, index, gfp);
2154 		if (unlikely(err)) {
2155 			page_cache_release(page);
2156 			if (err == -EEXIST)
2157 				goto repeat;
2158 			/* Presumably ENOMEM for radix tree node */
2159 			return ERR_PTR(err);
2160 		}
2161 		err = filler(data, page);
2162 		if (err < 0) {
2163 			page_cache_release(page);
2164 			page = ERR_PTR(err);
2165 		} else {
2166 			page = wait_on_page_read(page);
2167 		}
2168 	}
2169 	return page;
2170 }
2171 
2172 static struct page *do_read_cache_page(struct address_space *mapping,
2173 				pgoff_t index,
2174 				int (*filler)(void *, struct page *),
2175 				void *data,
2176 				gfp_t gfp)
2177 
2178 {
2179 	struct page *page;
2180 	int err;
2181 
2182 retry:
2183 	page = __read_cache_page(mapping, index, filler, data, gfp);
2184 	if (IS_ERR(page))
2185 		return page;
2186 	if (PageUptodate(page))
2187 		goto out;
2188 
2189 	lock_page(page);
2190 	if (!page->mapping) {
2191 		unlock_page(page);
2192 		page_cache_release(page);
2193 		goto retry;
2194 	}
2195 	if (PageUptodate(page)) {
2196 		unlock_page(page);
2197 		goto out;
2198 	}
2199 	err = filler(data, page);
2200 	if (err < 0) {
2201 		page_cache_release(page);
2202 		return ERR_PTR(err);
2203 	} else {
2204 		page = wait_on_page_read(page);
2205 		if (IS_ERR(page))
2206 			return page;
2207 	}
2208 out:
2209 	mark_page_accessed(page);
2210 	return page;
2211 }
2212 
2213 /**
2214  * read_cache_page - read into page cache, fill it if needed
2215  * @mapping:	the page's address_space
2216  * @index:	the page index
2217  * @filler:	function to perform the read
2218  * @data:	first arg to filler(data, page) function, often left as NULL
2219  *
2220  * Read into the page cache. If a page already exists, and PageUptodate() is
2221  * not set, try to fill the page and wait for it to become unlocked.
2222  *
2223  * If the page does not get brought uptodate, return -EIO.
2224  */
2225 struct page *read_cache_page(struct address_space *mapping,
2226 				pgoff_t index,
2227 				int (*filler)(void *, struct page *),
2228 				void *data)
2229 {
2230 	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2231 }
2232 EXPORT_SYMBOL(read_cache_page);
2233 
2234 /**
2235  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2236  * @mapping:	the page's address_space
2237  * @index:	the page index
2238  * @gfp:	the page allocator flags to use if allocating
2239  *
2240  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2241  * any new page allocations done using the specified allocation flags.
2242  *
2243  * If the page does not get brought uptodate, return -EIO.
2244  */
2245 struct page *read_cache_page_gfp(struct address_space *mapping,
2246 				pgoff_t index,
2247 				gfp_t gfp)
2248 {
2249 	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2250 
2251 	return do_read_cache_page(mapping, index, filler, NULL, gfp);
2252 }
2253 EXPORT_SYMBOL(read_cache_page_gfp);
2254 
2255 /*
2256  * Performs necessary checks before doing a write
2257  *
2258  * Can adjust writing position or amount of bytes to write.
2259  * Returns appropriate error code that caller should return or
2260  * zero in case that write should be allowed.
2261  */
2262 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2263 {
2264 	struct file *file = iocb->ki_filp;
2265 	struct inode *inode = file->f_mapping->host;
2266 	unsigned long limit = rlimit(RLIMIT_FSIZE);
2267 	loff_t pos;
2268 
2269 	if (!iov_iter_count(from))
2270 		return 0;
2271 
2272 	/* FIXME: this is for backwards compatibility with 2.4 */
2273 	if (iocb->ki_flags & IOCB_APPEND)
2274 		iocb->ki_pos = i_size_read(inode);
2275 
2276 	pos = iocb->ki_pos;
2277 
2278 	if (limit != RLIM_INFINITY) {
2279 		if (iocb->ki_pos >= limit) {
2280 			send_sig(SIGXFSZ, current, 0);
2281 			return -EFBIG;
2282 		}
2283 		iov_iter_truncate(from, limit - (unsigned long)pos);
2284 	}
2285 
2286 	/*
2287 	 * LFS rule
2288 	 */
2289 	if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2290 				!(file->f_flags & O_LARGEFILE))) {
2291 		if (pos >= MAX_NON_LFS)
2292 			return -EFBIG;
2293 		iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2294 	}
2295 
2296 	/*
2297 	 * Are we about to exceed the fs block limit ?
2298 	 *
2299 	 * If we have written data it becomes a short write.  If we have
2300 	 * exceeded without writing data we send a signal and return EFBIG.
2301 	 * Linus frestrict idea will clean these up nicely..
2302 	 */
2303 	if (unlikely(pos >= inode->i_sb->s_maxbytes))
2304 		return -EFBIG;
2305 
2306 	iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2307 	return iov_iter_count(from);
2308 }
2309 EXPORT_SYMBOL(generic_write_checks);
2310 
2311 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2312 				loff_t pos, unsigned len, unsigned flags,
2313 				struct page **pagep, void **fsdata)
2314 {
2315 	const struct address_space_operations *aops = mapping->a_ops;
2316 
2317 	return aops->write_begin(file, mapping, pos, len, flags,
2318 							pagep, fsdata);
2319 }
2320 EXPORT_SYMBOL(pagecache_write_begin);
2321 
2322 int pagecache_write_end(struct file *file, struct address_space *mapping,
2323 				loff_t pos, unsigned len, unsigned copied,
2324 				struct page *page, void *fsdata)
2325 {
2326 	const struct address_space_operations *aops = mapping->a_ops;
2327 
2328 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2329 }
2330 EXPORT_SYMBOL(pagecache_write_end);
2331 
2332 ssize_t
2333 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from, loff_t pos)
2334 {
2335 	struct file	*file = iocb->ki_filp;
2336 	struct address_space *mapping = file->f_mapping;
2337 	struct inode	*inode = mapping->host;
2338 	ssize_t		written;
2339 	size_t		write_len;
2340 	pgoff_t		end;
2341 	struct iov_iter data;
2342 
2343 	write_len = iov_iter_count(from);
2344 	end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2345 
2346 	written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2347 	if (written)
2348 		goto out;
2349 
2350 	/*
2351 	 * After a write we want buffered reads to be sure to go to disk to get
2352 	 * the new data.  We invalidate clean cached page from the region we're
2353 	 * about to write.  We do this *before* the write so that we can return
2354 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2355 	 */
2356 	if (mapping->nrpages) {
2357 		written = invalidate_inode_pages2_range(mapping,
2358 					pos >> PAGE_CACHE_SHIFT, end);
2359 		/*
2360 		 * If a page can not be invalidated, return 0 to fall back
2361 		 * to buffered write.
2362 		 */
2363 		if (written) {
2364 			if (written == -EBUSY)
2365 				return 0;
2366 			goto out;
2367 		}
2368 	}
2369 
2370 	data = *from;
2371 	written = mapping->a_ops->direct_IO(iocb, &data, pos);
2372 
2373 	/*
2374 	 * Finally, try again to invalidate clean pages which might have been
2375 	 * cached by non-direct readahead, or faulted in by get_user_pages()
2376 	 * if the source of the write was an mmap'ed region of the file
2377 	 * we're writing.  Either one is a pretty crazy thing to do,
2378 	 * so we don't support it 100%.  If this invalidation
2379 	 * fails, tough, the write still worked...
2380 	 */
2381 	if (mapping->nrpages) {
2382 		invalidate_inode_pages2_range(mapping,
2383 					      pos >> PAGE_CACHE_SHIFT, end);
2384 	}
2385 
2386 	if (written > 0) {
2387 		pos += written;
2388 		iov_iter_advance(from, written);
2389 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2390 			i_size_write(inode, pos);
2391 			mark_inode_dirty(inode);
2392 		}
2393 		iocb->ki_pos = pos;
2394 	}
2395 out:
2396 	return written;
2397 }
2398 EXPORT_SYMBOL(generic_file_direct_write);
2399 
2400 /*
2401  * Find or create a page at the given pagecache position. Return the locked
2402  * page. This function is specifically for buffered writes.
2403  */
2404 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2405 					pgoff_t index, unsigned flags)
2406 {
2407 	struct page *page;
2408 	int fgp_flags = FGP_LOCK|FGP_ACCESSED|FGP_WRITE|FGP_CREAT;
2409 
2410 	if (flags & AOP_FLAG_NOFS)
2411 		fgp_flags |= FGP_NOFS;
2412 
2413 	page = pagecache_get_page(mapping, index, fgp_flags,
2414 			mapping_gfp_mask(mapping));
2415 	if (page)
2416 		wait_for_stable_page(page);
2417 
2418 	return page;
2419 }
2420 EXPORT_SYMBOL(grab_cache_page_write_begin);
2421 
2422 ssize_t generic_perform_write(struct file *file,
2423 				struct iov_iter *i, loff_t pos)
2424 {
2425 	struct address_space *mapping = file->f_mapping;
2426 	const struct address_space_operations *a_ops = mapping->a_ops;
2427 	long status = 0;
2428 	ssize_t written = 0;
2429 	unsigned int flags = 0;
2430 
2431 	/*
2432 	 * Copies from kernel address space cannot fail (NFSD is a big user).
2433 	 */
2434 	if (!iter_is_iovec(i))
2435 		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2436 
2437 	do {
2438 		struct page *page;
2439 		unsigned long offset;	/* Offset into pagecache page */
2440 		unsigned long bytes;	/* Bytes to write to page */
2441 		size_t copied;		/* Bytes copied from user */
2442 		void *fsdata;
2443 
2444 		offset = (pos & (PAGE_CACHE_SIZE - 1));
2445 		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2446 						iov_iter_count(i));
2447 
2448 again:
2449 		/*
2450 		 * Bring in the user page that we will copy from _first_.
2451 		 * Otherwise there's a nasty deadlock on copying from the
2452 		 * same page as we're writing to, without it being marked
2453 		 * up-to-date.
2454 		 *
2455 		 * Not only is this an optimisation, but it is also required
2456 		 * to check that the address is actually valid, when atomic
2457 		 * usercopies are used, below.
2458 		 */
2459 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2460 			status = -EFAULT;
2461 			break;
2462 		}
2463 
2464 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2465 						&page, &fsdata);
2466 		if (unlikely(status < 0))
2467 			break;
2468 
2469 		if (mapping_writably_mapped(mapping))
2470 			flush_dcache_page(page);
2471 
2472 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2473 		flush_dcache_page(page);
2474 
2475 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2476 						page, fsdata);
2477 		if (unlikely(status < 0))
2478 			break;
2479 		copied = status;
2480 
2481 		cond_resched();
2482 
2483 		iov_iter_advance(i, copied);
2484 		if (unlikely(copied == 0)) {
2485 			/*
2486 			 * If we were unable to copy any data at all, we must
2487 			 * fall back to a single segment length write.
2488 			 *
2489 			 * If we didn't fallback here, we could livelock
2490 			 * because not all segments in the iov can be copied at
2491 			 * once without a pagefault.
2492 			 */
2493 			bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2494 						iov_iter_single_seg_count(i));
2495 			goto again;
2496 		}
2497 		pos += copied;
2498 		written += copied;
2499 
2500 		balance_dirty_pages_ratelimited(mapping);
2501 		if (fatal_signal_pending(current)) {
2502 			status = -EINTR;
2503 			break;
2504 		}
2505 	} while (iov_iter_count(i));
2506 
2507 	return written ? written : status;
2508 }
2509 EXPORT_SYMBOL(generic_perform_write);
2510 
2511 /**
2512  * __generic_file_write_iter - write data to a file
2513  * @iocb:	IO state structure (file, offset, etc.)
2514  * @from:	iov_iter with data to write
2515  *
2516  * This function does all the work needed for actually writing data to a
2517  * file. It does all basic checks, removes SUID from the file, updates
2518  * modification times and calls proper subroutines depending on whether we
2519  * do direct IO or a standard buffered write.
2520  *
2521  * It expects i_mutex to be grabbed unless we work on a block device or similar
2522  * object which does not need locking at all.
2523  *
2524  * This function does *not* take care of syncing data in case of O_SYNC write.
2525  * A caller has to handle it. This is mainly due to the fact that we want to
2526  * avoid syncing under i_mutex.
2527  */
2528 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2529 {
2530 	struct file *file = iocb->ki_filp;
2531 	struct address_space * mapping = file->f_mapping;
2532 	struct inode 	*inode = mapping->host;
2533 	ssize_t		written = 0;
2534 	ssize_t		err;
2535 	ssize_t		status;
2536 
2537 	/* We can write back this queue in page reclaim */
2538 	current->backing_dev_info = inode_to_bdi(inode);
2539 	err = file_remove_suid(file);
2540 	if (err)
2541 		goto out;
2542 
2543 	err = file_update_time(file);
2544 	if (err)
2545 		goto out;
2546 
2547 	if (iocb->ki_flags & IOCB_DIRECT) {
2548 		loff_t pos, endbyte;
2549 
2550 		written = generic_file_direct_write(iocb, from, iocb->ki_pos);
2551 		/*
2552 		 * If the write stopped short of completing, fall back to
2553 		 * buffered writes.  Some filesystems do this for writes to
2554 		 * holes, for example.  For DAX files, a buffered write will
2555 		 * not succeed (even if it did, DAX does not handle dirty
2556 		 * page-cache pages correctly).
2557 		 */
2558 		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2559 			goto out;
2560 
2561 		status = generic_perform_write(file, from, pos = iocb->ki_pos);
2562 		/*
2563 		 * If generic_perform_write() returned a synchronous error
2564 		 * then we want to return the number of bytes which were
2565 		 * direct-written, or the error code if that was zero.  Note
2566 		 * that this differs from normal direct-io semantics, which
2567 		 * will return -EFOO even if some bytes were written.
2568 		 */
2569 		if (unlikely(status < 0)) {
2570 			err = status;
2571 			goto out;
2572 		}
2573 		/*
2574 		 * We need to ensure that the page cache pages are written to
2575 		 * disk and invalidated to preserve the expected O_DIRECT
2576 		 * semantics.
2577 		 */
2578 		endbyte = pos + status - 1;
2579 		err = filemap_write_and_wait_range(mapping, pos, endbyte);
2580 		if (err == 0) {
2581 			iocb->ki_pos = endbyte + 1;
2582 			written += status;
2583 			invalidate_mapping_pages(mapping,
2584 						 pos >> PAGE_CACHE_SHIFT,
2585 						 endbyte >> PAGE_CACHE_SHIFT);
2586 		} else {
2587 			/*
2588 			 * We don't know how much we wrote, so just return
2589 			 * the number of bytes which were direct-written
2590 			 */
2591 		}
2592 	} else {
2593 		written = generic_perform_write(file, from, iocb->ki_pos);
2594 		if (likely(written > 0))
2595 			iocb->ki_pos += written;
2596 	}
2597 out:
2598 	current->backing_dev_info = NULL;
2599 	return written ? written : err;
2600 }
2601 EXPORT_SYMBOL(__generic_file_write_iter);
2602 
2603 /**
2604  * generic_file_write_iter - write data to a file
2605  * @iocb:	IO state structure
2606  * @from:	iov_iter with data to write
2607  *
2608  * This is a wrapper around __generic_file_write_iter() to be used by most
2609  * filesystems. It takes care of syncing the file in case of O_SYNC file
2610  * and acquires i_mutex as needed.
2611  */
2612 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2613 {
2614 	struct file *file = iocb->ki_filp;
2615 	struct inode *inode = file->f_mapping->host;
2616 	ssize_t ret;
2617 
2618 	mutex_lock(&inode->i_mutex);
2619 	ret = generic_write_checks(iocb, from);
2620 	if (ret > 0)
2621 		ret = __generic_file_write_iter(iocb, from);
2622 	mutex_unlock(&inode->i_mutex);
2623 
2624 	if (ret > 0) {
2625 		ssize_t err;
2626 
2627 		err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2628 		if (err < 0)
2629 			ret = err;
2630 	}
2631 	return ret;
2632 }
2633 EXPORT_SYMBOL(generic_file_write_iter);
2634 
2635 /**
2636  * try_to_release_page() - release old fs-specific metadata on a page
2637  *
2638  * @page: the page which the kernel is trying to free
2639  * @gfp_mask: memory allocation flags (and I/O mode)
2640  *
2641  * The address_space is to try to release any data against the page
2642  * (presumably at page->private).  If the release was successful, return `1'.
2643  * Otherwise return zero.
2644  *
2645  * This may also be called if PG_fscache is set on a page, indicating that the
2646  * page is known to the local caching routines.
2647  *
2648  * The @gfp_mask argument specifies whether I/O may be performed to release
2649  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2650  *
2651  */
2652 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2653 {
2654 	struct address_space * const mapping = page->mapping;
2655 
2656 	BUG_ON(!PageLocked(page));
2657 	if (PageWriteback(page))
2658 		return 0;
2659 
2660 	if (mapping && mapping->a_ops->releasepage)
2661 		return mapping->a_ops->releasepage(page, gfp_mask);
2662 	return try_to_free_buffers(page);
2663 }
2664 
2665 EXPORT_SYMBOL(try_to_release_page);
2666