xref: /openbmc/linux/mm/filemap.c (revision 4800cd83)
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/module.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include <linux/mm_inline.h> /* for page_is_file_cache() */
37 #include "internal.h"
38 
39 /*
40  * FIXME: remove all knowledge of the buffer layer from the core VM
41  */
42 #include <linux/buffer_head.h> /* for try_to_free_buffers */
43 
44 #include <asm/mman.h>
45 
46 /*
47  * Shared mappings implemented 30.11.1994. It's not fully working yet,
48  * though.
49  *
50  * Shared mappings now work. 15.8.1995  Bruno.
51  *
52  * finished 'unifying' the page and buffer cache and SMP-threaded the
53  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
54  *
55  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
56  */
57 
58 /*
59  * Lock ordering:
60  *
61  *  ->i_mmap_lock		(truncate_pagecache)
62  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
63  *      ->swap_lock		(exclusive_swap_page, others)
64  *        ->mapping->tree_lock
65  *
66  *  ->i_mutex
67  *    ->i_mmap_lock		(truncate->unmap_mapping_range)
68  *
69  *  ->mmap_sem
70  *    ->i_mmap_lock
71  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
72  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
73  *
74  *  ->mmap_sem
75  *    ->lock_page		(access_process_vm)
76  *
77  *  ->i_mutex			(generic_file_buffered_write)
78  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
79  *
80  *  ->i_mutex
81  *    ->i_alloc_sem             (various)
82  *
83  *  ->inode_lock
84  *    ->sb_lock			(fs/fs-writeback.c)
85  *    ->mapping->tree_lock	(__sync_single_inode)
86  *
87  *  ->i_mmap_lock
88  *    ->anon_vma.lock		(vma_adjust)
89  *
90  *  ->anon_vma.lock
91  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
92  *
93  *  ->page_table_lock or pte_lock
94  *    ->swap_lock		(try_to_unmap_one)
95  *    ->private_lock		(try_to_unmap_one)
96  *    ->tree_lock		(try_to_unmap_one)
97  *    ->zone.lru_lock		(follow_page->mark_page_accessed)
98  *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
99  *    ->private_lock		(page_remove_rmap->set_page_dirty)
100  *    ->tree_lock		(page_remove_rmap->set_page_dirty)
101  *    ->inode_lock		(page_remove_rmap->set_page_dirty)
102  *    ->inode_lock		(zap_pte_range->set_page_dirty)
103  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
104  *
105  *  (code doesn't rely on that order, so you could switch it around)
106  *  ->tasklist_lock             (memory_failure, collect_procs_ao)
107  *    ->i_mmap_lock
108  */
109 
110 /*
111  * Remove a page from the page cache and free it. Caller has to make
112  * sure the page is locked and that nobody else uses it - or that usage
113  * is safe.  The caller must hold the mapping's tree_lock.
114  */
115 void __remove_from_page_cache(struct page *page)
116 {
117 	struct address_space *mapping = page->mapping;
118 
119 	radix_tree_delete(&mapping->page_tree, page->index);
120 	page->mapping = NULL;
121 	mapping->nrpages--;
122 	__dec_zone_page_state(page, NR_FILE_PAGES);
123 	if (PageSwapBacked(page))
124 		__dec_zone_page_state(page, NR_SHMEM);
125 	BUG_ON(page_mapped(page));
126 
127 	/*
128 	 * Some filesystems seem to re-dirty the page even after
129 	 * the VM has canceled the dirty bit (eg ext3 journaling).
130 	 *
131 	 * Fix it up by doing a final dirty accounting check after
132 	 * having removed the page entirely.
133 	 */
134 	if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
135 		dec_zone_page_state(page, NR_FILE_DIRTY);
136 		dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
137 	}
138 }
139 
140 void remove_from_page_cache(struct page *page)
141 {
142 	struct address_space *mapping = page->mapping;
143 	void (*freepage)(struct page *);
144 
145 	BUG_ON(!PageLocked(page));
146 
147 	freepage = mapping->a_ops->freepage;
148 	spin_lock_irq(&mapping->tree_lock);
149 	__remove_from_page_cache(page);
150 	spin_unlock_irq(&mapping->tree_lock);
151 	mem_cgroup_uncharge_cache_page(page);
152 
153 	if (freepage)
154 		freepage(page);
155 }
156 EXPORT_SYMBOL(remove_from_page_cache);
157 
158 static int sync_page(void *word)
159 {
160 	struct address_space *mapping;
161 	struct page *page;
162 
163 	page = container_of((unsigned long *)word, struct page, flags);
164 
165 	/*
166 	 * page_mapping() is being called without PG_locked held.
167 	 * Some knowledge of the state and use of the page is used to
168 	 * reduce the requirements down to a memory barrier.
169 	 * The danger here is of a stale page_mapping() return value
170 	 * indicating a struct address_space different from the one it's
171 	 * associated with when it is associated with one.
172 	 * After smp_mb(), it's either the correct page_mapping() for
173 	 * the page, or an old page_mapping() and the page's own
174 	 * page_mapping() has gone NULL.
175 	 * The ->sync_page() address_space operation must tolerate
176 	 * page_mapping() going NULL. By an amazing coincidence,
177 	 * this comes about because none of the users of the page
178 	 * in the ->sync_page() methods make essential use of the
179 	 * page_mapping(), merely passing the page down to the backing
180 	 * device's unplug functions when it's non-NULL, which in turn
181 	 * ignore it for all cases but swap, where only page_private(page) is
182 	 * of interest. When page_mapping() does go NULL, the entire
183 	 * call stack gracefully ignores the page and returns.
184 	 * -- wli
185 	 */
186 	smp_mb();
187 	mapping = page_mapping(page);
188 	if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
189 		mapping->a_ops->sync_page(page);
190 	io_schedule();
191 	return 0;
192 }
193 
194 static int sync_page_killable(void *word)
195 {
196 	sync_page(word);
197 	return fatal_signal_pending(current) ? -EINTR : 0;
198 }
199 
200 /**
201  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
202  * @mapping:	address space structure to write
203  * @start:	offset in bytes where the range starts
204  * @end:	offset in bytes where the range ends (inclusive)
205  * @sync_mode:	enable synchronous operation
206  *
207  * Start writeback against all of a mapping's dirty pages that lie
208  * within the byte offsets <start, end> inclusive.
209  *
210  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
211  * opposed to a regular memory cleansing writeback.  The difference between
212  * these two operations is that if a dirty page/buffer is encountered, it must
213  * be waited upon, and not just skipped over.
214  */
215 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
216 				loff_t end, int sync_mode)
217 {
218 	int ret;
219 	struct writeback_control wbc = {
220 		.sync_mode = sync_mode,
221 		.nr_to_write = LONG_MAX,
222 		.range_start = start,
223 		.range_end = end,
224 	};
225 
226 	if (!mapping_cap_writeback_dirty(mapping))
227 		return 0;
228 
229 	ret = do_writepages(mapping, &wbc);
230 	return ret;
231 }
232 
233 static inline int __filemap_fdatawrite(struct address_space *mapping,
234 	int sync_mode)
235 {
236 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
237 }
238 
239 int filemap_fdatawrite(struct address_space *mapping)
240 {
241 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
242 }
243 EXPORT_SYMBOL(filemap_fdatawrite);
244 
245 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
246 				loff_t end)
247 {
248 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
249 }
250 EXPORT_SYMBOL(filemap_fdatawrite_range);
251 
252 /**
253  * filemap_flush - mostly a non-blocking flush
254  * @mapping:	target address_space
255  *
256  * This is a mostly non-blocking flush.  Not suitable for data-integrity
257  * purposes - I/O may not be started against all dirty pages.
258  */
259 int filemap_flush(struct address_space *mapping)
260 {
261 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
262 }
263 EXPORT_SYMBOL(filemap_flush);
264 
265 /**
266  * filemap_fdatawait_range - wait for writeback to complete
267  * @mapping:		address space structure to wait for
268  * @start_byte:		offset in bytes where the range starts
269  * @end_byte:		offset in bytes where the range ends (inclusive)
270  *
271  * Walk the list of under-writeback pages of the given address space
272  * in the given range and wait for all of them.
273  */
274 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
275 			    loff_t end_byte)
276 {
277 	pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
278 	pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
279 	struct pagevec pvec;
280 	int nr_pages;
281 	int ret = 0;
282 
283 	if (end_byte < start_byte)
284 		return 0;
285 
286 	pagevec_init(&pvec, 0);
287 	while ((index <= end) &&
288 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
289 			PAGECACHE_TAG_WRITEBACK,
290 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
291 		unsigned i;
292 
293 		for (i = 0; i < nr_pages; i++) {
294 			struct page *page = pvec.pages[i];
295 
296 			/* until radix tree lookup accepts end_index */
297 			if (page->index > end)
298 				continue;
299 
300 			wait_on_page_writeback(page);
301 			if (TestClearPageError(page))
302 				ret = -EIO;
303 		}
304 		pagevec_release(&pvec);
305 		cond_resched();
306 	}
307 
308 	/* Check for outstanding write errors */
309 	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
310 		ret = -ENOSPC;
311 	if (test_and_clear_bit(AS_EIO, &mapping->flags))
312 		ret = -EIO;
313 
314 	return ret;
315 }
316 EXPORT_SYMBOL(filemap_fdatawait_range);
317 
318 /**
319  * filemap_fdatawait - wait for all under-writeback pages to complete
320  * @mapping: address space structure to wait for
321  *
322  * Walk the list of under-writeback pages of the given address space
323  * and wait for all of them.
324  */
325 int filemap_fdatawait(struct address_space *mapping)
326 {
327 	loff_t i_size = i_size_read(mapping->host);
328 
329 	if (i_size == 0)
330 		return 0;
331 
332 	return filemap_fdatawait_range(mapping, 0, i_size - 1);
333 }
334 EXPORT_SYMBOL(filemap_fdatawait);
335 
336 int filemap_write_and_wait(struct address_space *mapping)
337 {
338 	int err = 0;
339 
340 	if (mapping->nrpages) {
341 		err = filemap_fdatawrite(mapping);
342 		/*
343 		 * Even if the above returned error, the pages may be
344 		 * written partially (e.g. -ENOSPC), so we wait for it.
345 		 * But the -EIO is special case, it may indicate the worst
346 		 * thing (e.g. bug) happened, so we avoid waiting for it.
347 		 */
348 		if (err != -EIO) {
349 			int err2 = filemap_fdatawait(mapping);
350 			if (!err)
351 				err = err2;
352 		}
353 	}
354 	return err;
355 }
356 EXPORT_SYMBOL(filemap_write_and_wait);
357 
358 /**
359  * filemap_write_and_wait_range - write out & wait on a file range
360  * @mapping:	the address_space for the pages
361  * @lstart:	offset in bytes where the range starts
362  * @lend:	offset in bytes where the range ends (inclusive)
363  *
364  * Write out and wait upon file offsets lstart->lend, inclusive.
365  *
366  * Note that `lend' is inclusive (describes the last byte to be written) so
367  * that this function can be used to write to the very end-of-file (end = -1).
368  */
369 int filemap_write_and_wait_range(struct address_space *mapping,
370 				 loff_t lstart, loff_t lend)
371 {
372 	int err = 0;
373 
374 	if (mapping->nrpages) {
375 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
376 						 WB_SYNC_ALL);
377 		/* See comment of filemap_write_and_wait() */
378 		if (err != -EIO) {
379 			int err2 = filemap_fdatawait_range(mapping,
380 						lstart, lend);
381 			if (!err)
382 				err = err2;
383 		}
384 	}
385 	return err;
386 }
387 EXPORT_SYMBOL(filemap_write_and_wait_range);
388 
389 /**
390  * add_to_page_cache_locked - add a locked page to the pagecache
391  * @page:	page to add
392  * @mapping:	the page's address_space
393  * @offset:	page index
394  * @gfp_mask:	page allocation mode
395  *
396  * This function is used to add a page to the pagecache. It must be locked.
397  * This function does not add the page to the LRU.  The caller must do that.
398  */
399 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
400 		pgoff_t offset, gfp_t gfp_mask)
401 {
402 	int error;
403 
404 	VM_BUG_ON(!PageLocked(page));
405 
406 	error = mem_cgroup_cache_charge(page, current->mm,
407 					gfp_mask & GFP_RECLAIM_MASK);
408 	if (error)
409 		goto out;
410 
411 	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
412 	if (error == 0) {
413 		page_cache_get(page);
414 		page->mapping = mapping;
415 		page->index = offset;
416 
417 		spin_lock_irq(&mapping->tree_lock);
418 		error = radix_tree_insert(&mapping->page_tree, offset, page);
419 		if (likely(!error)) {
420 			mapping->nrpages++;
421 			__inc_zone_page_state(page, NR_FILE_PAGES);
422 			if (PageSwapBacked(page))
423 				__inc_zone_page_state(page, NR_SHMEM);
424 			spin_unlock_irq(&mapping->tree_lock);
425 		} else {
426 			page->mapping = NULL;
427 			spin_unlock_irq(&mapping->tree_lock);
428 			mem_cgroup_uncharge_cache_page(page);
429 			page_cache_release(page);
430 		}
431 		radix_tree_preload_end();
432 	} else
433 		mem_cgroup_uncharge_cache_page(page);
434 out:
435 	return error;
436 }
437 EXPORT_SYMBOL(add_to_page_cache_locked);
438 
439 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
440 				pgoff_t offset, gfp_t gfp_mask)
441 {
442 	int ret;
443 
444 	/*
445 	 * Splice_read and readahead add shmem/tmpfs pages into the page cache
446 	 * before shmem_readpage has a chance to mark them as SwapBacked: they
447 	 * need to go on the anon lru below, and mem_cgroup_cache_charge
448 	 * (called in add_to_page_cache) needs to know where they're going too.
449 	 */
450 	if (mapping_cap_swap_backed(mapping))
451 		SetPageSwapBacked(page);
452 
453 	ret = add_to_page_cache(page, mapping, offset, gfp_mask);
454 	if (ret == 0) {
455 		if (page_is_file_cache(page))
456 			lru_cache_add_file(page);
457 		else
458 			lru_cache_add_anon(page);
459 	}
460 	return ret;
461 }
462 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
463 
464 #ifdef CONFIG_NUMA
465 struct page *__page_cache_alloc(gfp_t gfp)
466 {
467 	int n;
468 	struct page *page;
469 
470 	if (cpuset_do_page_mem_spread()) {
471 		get_mems_allowed();
472 		n = cpuset_mem_spread_node();
473 		page = alloc_pages_exact_node(n, gfp, 0);
474 		put_mems_allowed();
475 		return page;
476 	}
477 	return alloc_pages(gfp, 0);
478 }
479 EXPORT_SYMBOL(__page_cache_alloc);
480 #endif
481 
482 static int __sleep_on_page_lock(void *word)
483 {
484 	io_schedule();
485 	return 0;
486 }
487 
488 /*
489  * In order to wait for pages to become available there must be
490  * waitqueues associated with pages. By using a hash table of
491  * waitqueues where the bucket discipline is to maintain all
492  * waiters on the same queue and wake all when any of the pages
493  * become available, and for the woken contexts to check to be
494  * sure the appropriate page became available, this saves space
495  * at a cost of "thundering herd" phenomena during rare hash
496  * collisions.
497  */
498 static wait_queue_head_t *page_waitqueue(struct page *page)
499 {
500 	const struct zone *zone = page_zone(page);
501 
502 	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
503 }
504 
505 static inline void wake_up_page(struct page *page, int bit)
506 {
507 	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
508 }
509 
510 void wait_on_page_bit(struct page *page, int bit_nr)
511 {
512 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
513 
514 	if (test_bit(bit_nr, &page->flags))
515 		__wait_on_bit(page_waitqueue(page), &wait, sync_page,
516 							TASK_UNINTERRUPTIBLE);
517 }
518 EXPORT_SYMBOL(wait_on_page_bit);
519 
520 /**
521  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
522  * @page: Page defining the wait queue of interest
523  * @waiter: Waiter to add to the queue
524  *
525  * Add an arbitrary @waiter to the wait queue for the nominated @page.
526  */
527 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
528 {
529 	wait_queue_head_t *q = page_waitqueue(page);
530 	unsigned long flags;
531 
532 	spin_lock_irqsave(&q->lock, flags);
533 	__add_wait_queue(q, waiter);
534 	spin_unlock_irqrestore(&q->lock, flags);
535 }
536 EXPORT_SYMBOL_GPL(add_page_wait_queue);
537 
538 /**
539  * unlock_page - unlock a locked page
540  * @page: the page
541  *
542  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
543  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
544  * mechananism between PageLocked pages and PageWriteback pages is shared.
545  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
546  *
547  * The mb is necessary to enforce ordering between the clear_bit and the read
548  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
549  */
550 void unlock_page(struct page *page)
551 {
552 	VM_BUG_ON(!PageLocked(page));
553 	clear_bit_unlock(PG_locked, &page->flags);
554 	smp_mb__after_clear_bit();
555 	wake_up_page(page, PG_locked);
556 }
557 EXPORT_SYMBOL(unlock_page);
558 
559 /**
560  * end_page_writeback - end writeback against a page
561  * @page: the page
562  */
563 void end_page_writeback(struct page *page)
564 {
565 	if (TestClearPageReclaim(page))
566 		rotate_reclaimable_page(page);
567 
568 	if (!test_clear_page_writeback(page))
569 		BUG();
570 
571 	smp_mb__after_clear_bit();
572 	wake_up_page(page, PG_writeback);
573 }
574 EXPORT_SYMBOL(end_page_writeback);
575 
576 /**
577  * __lock_page - get a lock on the page, assuming we need to sleep to get it
578  * @page: the page to lock
579  *
580  * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary.  If some
581  * random driver's requestfn sets TASK_RUNNING, we could busywait.  However
582  * chances are that on the second loop, the block layer's plug list is empty,
583  * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
584  */
585 void __lock_page(struct page *page)
586 {
587 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
588 
589 	__wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
590 							TASK_UNINTERRUPTIBLE);
591 }
592 EXPORT_SYMBOL(__lock_page);
593 
594 int __lock_page_killable(struct page *page)
595 {
596 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
597 
598 	return __wait_on_bit_lock(page_waitqueue(page), &wait,
599 					sync_page_killable, TASK_KILLABLE);
600 }
601 EXPORT_SYMBOL_GPL(__lock_page_killable);
602 
603 /**
604  * __lock_page_nosync - get a lock on the page, without calling sync_page()
605  * @page: the page to lock
606  *
607  * Variant of lock_page that does not require the caller to hold a reference
608  * on the page's mapping.
609  */
610 void __lock_page_nosync(struct page *page)
611 {
612 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
613 	__wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
614 							TASK_UNINTERRUPTIBLE);
615 }
616 
617 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
618 			 unsigned int flags)
619 {
620 	if (!(flags & FAULT_FLAG_ALLOW_RETRY)) {
621 		__lock_page(page);
622 		return 1;
623 	} else {
624 		up_read(&mm->mmap_sem);
625 		wait_on_page_locked(page);
626 		return 0;
627 	}
628 }
629 
630 /**
631  * find_get_page - find and get a page reference
632  * @mapping: the address_space to search
633  * @offset: the page index
634  *
635  * Is there a pagecache struct page at the given (mapping, offset) tuple?
636  * If yes, increment its refcount and return it; if no, return NULL.
637  */
638 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
639 {
640 	void **pagep;
641 	struct page *page;
642 
643 	rcu_read_lock();
644 repeat:
645 	page = NULL;
646 	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
647 	if (pagep) {
648 		page = radix_tree_deref_slot(pagep);
649 		if (unlikely(!page))
650 			goto out;
651 		if (radix_tree_deref_retry(page))
652 			goto repeat;
653 
654 		if (!page_cache_get_speculative(page))
655 			goto repeat;
656 
657 		/*
658 		 * Has the page moved?
659 		 * This is part of the lockless pagecache protocol. See
660 		 * include/linux/pagemap.h for details.
661 		 */
662 		if (unlikely(page != *pagep)) {
663 			page_cache_release(page);
664 			goto repeat;
665 		}
666 	}
667 out:
668 	rcu_read_unlock();
669 
670 	return page;
671 }
672 EXPORT_SYMBOL(find_get_page);
673 
674 /**
675  * find_lock_page - locate, pin and lock a pagecache page
676  * @mapping: the address_space to search
677  * @offset: the page index
678  *
679  * Locates the desired pagecache page, locks it, increments its reference
680  * count and returns its address.
681  *
682  * Returns zero if the page was not present. find_lock_page() may sleep.
683  */
684 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
685 {
686 	struct page *page;
687 
688 repeat:
689 	page = find_get_page(mapping, offset);
690 	if (page) {
691 		lock_page(page);
692 		/* Has the page been truncated? */
693 		if (unlikely(page->mapping != mapping)) {
694 			unlock_page(page);
695 			page_cache_release(page);
696 			goto repeat;
697 		}
698 		VM_BUG_ON(page->index != offset);
699 	}
700 	return page;
701 }
702 EXPORT_SYMBOL(find_lock_page);
703 
704 /**
705  * find_or_create_page - locate or add a pagecache page
706  * @mapping: the page's address_space
707  * @index: the page's index into the mapping
708  * @gfp_mask: page allocation mode
709  *
710  * Locates a page in the pagecache.  If the page is not present, a new page
711  * is allocated using @gfp_mask and is added to the pagecache and to the VM's
712  * LRU list.  The returned page is locked and has its reference count
713  * incremented.
714  *
715  * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
716  * allocation!
717  *
718  * find_or_create_page() returns the desired page's address, or zero on
719  * memory exhaustion.
720  */
721 struct page *find_or_create_page(struct address_space *mapping,
722 		pgoff_t index, gfp_t gfp_mask)
723 {
724 	struct page *page;
725 	int err;
726 repeat:
727 	page = find_lock_page(mapping, index);
728 	if (!page) {
729 		page = __page_cache_alloc(gfp_mask);
730 		if (!page)
731 			return NULL;
732 		/*
733 		 * We want a regular kernel memory (not highmem or DMA etc)
734 		 * allocation for the radix tree nodes, but we need to honour
735 		 * the context-specific requirements the caller has asked for.
736 		 * GFP_RECLAIM_MASK collects those requirements.
737 		 */
738 		err = add_to_page_cache_lru(page, mapping, index,
739 			(gfp_mask & GFP_RECLAIM_MASK));
740 		if (unlikely(err)) {
741 			page_cache_release(page);
742 			page = NULL;
743 			if (err == -EEXIST)
744 				goto repeat;
745 		}
746 	}
747 	return page;
748 }
749 EXPORT_SYMBOL(find_or_create_page);
750 
751 /**
752  * find_get_pages - gang pagecache lookup
753  * @mapping:	The address_space to search
754  * @start:	The starting page index
755  * @nr_pages:	The maximum number of pages
756  * @pages:	Where the resulting pages are placed
757  *
758  * find_get_pages() will search for and return a group of up to
759  * @nr_pages pages in the mapping.  The pages are placed at @pages.
760  * find_get_pages() takes a reference against the returned pages.
761  *
762  * The search returns a group of mapping-contiguous pages with ascending
763  * indexes.  There may be holes in the indices due to not-present pages.
764  *
765  * find_get_pages() returns the number of pages which were found.
766  */
767 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
768 			    unsigned int nr_pages, struct page **pages)
769 {
770 	unsigned int i;
771 	unsigned int ret;
772 	unsigned int nr_found;
773 
774 	rcu_read_lock();
775 restart:
776 	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
777 				(void ***)pages, start, nr_pages);
778 	ret = 0;
779 	for (i = 0; i < nr_found; i++) {
780 		struct page *page;
781 repeat:
782 		page = radix_tree_deref_slot((void **)pages[i]);
783 		if (unlikely(!page))
784 			continue;
785 		if (radix_tree_deref_retry(page)) {
786 			if (ret)
787 				start = pages[ret-1]->index;
788 			goto restart;
789 		}
790 
791 		if (!page_cache_get_speculative(page))
792 			goto repeat;
793 
794 		/* Has the page moved? */
795 		if (unlikely(page != *((void **)pages[i]))) {
796 			page_cache_release(page);
797 			goto repeat;
798 		}
799 
800 		pages[ret] = page;
801 		ret++;
802 	}
803 	rcu_read_unlock();
804 	return ret;
805 }
806 
807 /**
808  * find_get_pages_contig - gang contiguous pagecache lookup
809  * @mapping:	The address_space to search
810  * @index:	The starting page index
811  * @nr_pages:	The maximum number of pages
812  * @pages:	Where the resulting pages are placed
813  *
814  * find_get_pages_contig() works exactly like find_get_pages(), except
815  * that the returned number of pages are guaranteed to be contiguous.
816  *
817  * find_get_pages_contig() returns the number of pages which were found.
818  */
819 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
820 			       unsigned int nr_pages, struct page **pages)
821 {
822 	unsigned int i;
823 	unsigned int ret;
824 	unsigned int nr_found;
825 
826 	rcu_read_lock();
827 restart:
828 	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
829 				(void ***)pages, index, nr_pages);
830 	ret = 0;
831 	for (i = 0; i < nr_found; i++) {
832 		struct page *page;
833 repeat:
834 		page = radix_tree_deref_slot((void **)pages[i]);
835 		if (unlikely(!page))
836 			continue;
837 		if (radix_tree_deref_retry(page))
838 			goto restart;
839 
840 		if (!page_cache_get_speculative(page))
841 			goto repeat;
842 
843 		/* Has the page moved? */
844 		if (unlikely(page != *((void **)pages[i]))) {
845 			page_cache_release(page);
846 			goto repeat;
847 		}
848 
849 		/*
850 		 * must check mapping and index after taking the ref.
851 		 * otherwise we can get both false positives and false
852 		 * negatives, which is just confusing to the caller.
853 		 */
854 		if (page->mapping == NULL || page->index != index) {
855 			page_cache_release(page);
856 			break;
857 		}
858 
859 		pages[ret] = page;
860 		ret++;
861 		index++;
862 	}
863 	rcu_read_unlock();
864 	return ret;
865 }
866 EXPORT_SYMBOL(find_get_pages_contig);
867 
868 /**
869  * find_get_pages_tag - find and return pages that match @tag
870  * @mapping:	the address_space to search
871  * @index:	the starting page index
872  * @tag:	the tag index
873  * @nr_pages:	the maximum number of pages
874  * @pages:	where the resulting pages are placed
875  *
876  * Like find_get_pages, except we only return pages which are tagged with
877  * @tag.   We update @index to index the next page for the traversal.
878  */
879 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
880 			int tag, unsigned int nr_pages, struct page **pages)
881 {
882 	unsigned int i;
883 	unsigned int ret;
884 	unsigned int nr_found;
885 
886 	rcu_read_lock();
887 restart:
888 	nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
889 				(void ***)pages, *index, nr_pages, tag);
890 	ret = 0;
891 	for (i = 0; i < nr_found; i++) {
892 		struct page *page;
893 repeat:
894 		page = radix_tree_deref_slot((void **)pages[i]);
895 		if (unlikely(!page))
896 			continue;
897 		if (radix_tree_deref_retry(page))
898 			goto restart;
899 
900 		if (!page_cache_get_speculative(page))
901 			goto repeat;
902 
903 		/* Has the page moved? */
904 		if (unlikely(page != *((void **)pages[i]))) {
905 			page_cache_release(page);
906 			goto repeat;
907 		}
908 
909 		pages[ret] = page;
910 		ret++;
911 	}
912 	rcu_read_unlock();
913 
914 	if (ret)
915 		*index = pages[ret - 1]->index + 1;
916 
917 	return ret;
918 }
919 EXPORT_SYMBOL(find_get_pages_tag);
920 
921 /**
922  * grab_cache_page_nowait - returns locked page at given index in given cache
923  * @mapping: target address_space
924  * @index: the page index
925  *
926  * Same as grab_cache_page(), but do not wait if the page is unavailable.
927  * This is intended for speculative data generators, where the data can
928  * be regenerated if the page couldn't be grabbed.  This routine should
929  * be safe to call while holding the lock for another page.
930  *
931  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
932  * and deadlock against the caller's locked page.
933  */
934 struct page *
935 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
936 {
937 	struct page *page = find_get_page(mapping, index);
938 
939 	if (page) {
940 		if (trylock_page(page))
941 			return page;
942 		page_cache_release(page);
943 		return NULL;
944 	}
945 	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
946 	if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
947 		page_cache_release(page);
948 		page = NULL;
949 	}
950 	return page;
951 }
952 EXPORT_SYMBOL(grab_cache_page_nowait);
953 
954 /*
955  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
956  * a _large_ part of the i/o request. Imagine the worst scenario:
957  *
958  *      ---R__________________________________________B__________
959  *         ^ reading here                             ^ bad block(assume 4k)
960  *
961  * read(R) => miss => readahead(R...B) => media error => frustrating retries
962  * => failing the whole request => read(R) => read(R+1) =>
963  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
964  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
965  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
966  *
967  * It is going insane. Fix it by quickly scaling down the readahead size.
968  */
969 static void shrink_readahead_size_eio(struct file *filp,
970 					struct file_ra_state *ra)
971 {
972 	ra->ra_pages /= 4;
973 }
974 
975 /**
976  * do_generic_file_read - generic file read routine
977  * @filp:	the file to read
978  * @ppos:	current file position
979  * @desc:	read_descriptor
980  * @actor:	read method
981  *
982  * This is a generic file read routine, and uses the
983  * mapping->a_ops->readpage() function for the actual low-level stuff.
984  *
985  * This is really ugly. But the goto's actually try to clarify some
986  * of the logic when it comes to error handling etc.
987  */
988 static void do_generic_file_read(struct file *filp, loff_t *ppos,
989 		read_descriptor_t *desc, read_actor_t actor)
990 {
991 	struct address_space *mapping = filp->f_mapping;
992 	struct inode *inode = mapping->host;
993 	struct file_ra_state *ra = &filp->f_ra;
994 	pgoff_t index;
995 	pgoff_t last_index;
996 	pgoff_t prev_index;
997 	unsigned long offset;      /* offset into pagecache page */
998 	unsigned int prev_offset;
999 	int error;
1000 
1001 	index = *ppos >> PAGE_CACHE_SHIFT;
1002 	prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1003 	prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1004 	last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1005 	offset = *ppos & ~PAGE_CACHE_MASK;
1006 
1007 	for (;;) {
1008 		struct page *page;
1009 		pgoff_t end_index;
1010 		loff_t isize;
1011 		unsigned long nr, ret;
1012 
1013 		cond_resched();
1014 find_page:
1015 		page = find_get_page(mapping, index);
1016 		if (!page) {
1017 			page_cache_sync_readahead(mapping,
1018 					ra, filp,
1019 					index, last_index - index);
1020 			page = find_get_page(mapping, index);
1021 			if (unlikely(page == NULL))
1022 				goto no_cached_page;
1023 		}
1024 		if (PageReadahead(page)) {
1025 			page_cache_async_readahead(mapping,
1026 					ra, filp, page,
1027 					index, last_index - index);
1028 		}
1029 		if (!PageUptodate(page)) {
1030 			if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1031 					!mapping->a_ops->is_partially_uptodate)
1032 				goto page_not_up_to_date;
1033 			if (!trylock_page(page))
1034 				goto page_not_up_to_date;
1035 			/* Did it get truncated before we got the lock? */
1036 			if (!page->mapping)
1037 				goto page_not_up_to_date_locked;
1038 			if (!mapping->a_ops->is_partially_uptodate(page,
1039 								desc, offset))
1040 				goto page_not_up_to_date_locked;
1041 			unlock_page(page);
1042 		}
1043 page_ok:
1044 		/*
1045 		 * i_size must be checked after we know the page is Uptodate.
1046 		 *
1047 		 * Checking i_size after the check allows us to calculate
1048 		 * the correct value for "nr", which means the zero-filled
1049 		 * part of the page is not copied back to userspace (unless
1050 		 * another truncate extends the file - this is desired though).
1051 		 */
1052 
1053 		isize = i_size_read(inode);
1054 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1055 		if (unlikely(!isize || index > end_index)) {
1056 			page_cache_release(page);
1057 			goto out;
1058 		}
1059 
1060 		/* nr is the maximum number of bytes to copy from this page */
1061 		nr = PAGE_CACHE_SIZE;
1062 		if (index == end_index) {
1063 			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1064 			if (nr <= offset) {
1065 				page_cache_release(page);
1066 				goto out;
1067 			}
1068 		}
1069 		nr = nr - offset;
1070 
1071 		/* If users can be writing to this page using arbitrary
1072 		 * virtual addresses, take care about potential aliasing
1073 		 * before reading the page on the kernel side.
1074 		 */
1075 		if (mapping_writably_mapped(mapping))
1076 			flush_dcache_page(page);
1077 
1078 		/*
1079 		 * When a sequential read accesses a page several times,
1080 		 * only mark it as accessed the first time.
1081 		 */
1082 		if (prev_index != index || offset != prev_offset)
1083 			mark_page_accessed(page);
1084 		prev_index = index;
1085 
1086 		/*
1087 		 * Ok, we have the page, and it's up-to-date, so
1088 		 * now we can copy it to user space...
1089 		 *
1090 		 * The actor routine returns how many bytes were actually used..
1091 		 * NOTE! This may not be the same as how much of a user buffer
1092 		 * we filled up (we may be padding etc), so we can only update
1093 		 * "pos" here (the actor routine has to update the user buffer
1094 		 * pointers and the remaining count).
1095 		 */
1096 		ret = actor(desc, page, offset, nr);
1097 		offset += ret;
1098 		index += offset >> PAGE_CACHE_SHIFT;
1099 		offset &= ~PAGE_CACHE_MASK;
1100 		prev_offset = offset;
1101 
1102 		page_cache_release(page);
1103 		if (ret == nr && desc->count)
1104 			continue;
1105 		goto out;
1106 
1107 page_not_up_to_date:
1108 		/* Get exclusive access to the page ... */
1109 		error = lock_page_killable(page);
1110 		if (unlikely(error))
1111 			goto readpage_error;
1112 
1113 page_not_up_to_date_locked:
1114 		/* Did it get truncated before we got the lock? */
1115 		if (!page->mapping) {
1116 			unlock_page(page);
1117 			page_cache_release(page);
1118 			continue;
1119 		}
1120 
1121 		/* Did somebody else fill it already? */
1122 		if (PageUptodate(page)) {
1123 			unlock_page(page);
1124 			goto page_ok;
1125 		}
1126 
1127 readpage:
1128 		/*
1129 		 * A previous I/O error may have been due to temporary
1130 		 * failures, eg. multipath errors.
1131 		 * PG_error will be set again if readpage fails.
1132 		 */
1133 		ClearPageError(page);
1134 		/* Start the actual read. The read will unlock the page. */
1135 		error = mapping->a_ops->readpage(filp, page);
1136 
1137 		if (unlikely(error)) {
1138 			if (error == AOP_TRUNCATED_PAGE) {
1139 				page_cache_release(page);
1140 				goto find_page;
1141 			}
1142 			goto readpage_error;
1143 		}
1144 
1145 		if (!PageUptodate(page)) {
1146 			error = lock_page_killable(page);
1147 			if (unlikely(error))
1148 				goto readpage_error;
1149 			if (!PageUptodate(page)) {
1150 				if (page->mapping == NULL) {
1151 					/*
1152 					 * invalidate_mapping_pages got it
1153 					 */
1154 					unlock_page(page);
1155 					page_cache_release(page);
1156 					goto find_page;
1157 				}
1158 				unlock_page(page);
1159 				shrink_readahead_size_eio(filp, ra);
1160 				error = -EIO;
1161 				goto readpage_error;
1162 			}
1163 			unlock_page(page);
1164 		}
1165 
1166 		goto page_ok;
1167 
1168 readpage_error:
1169 		/* UHHUH! A synchronous read error occurred. Report it */
1170 		desc->error = error;
1171 		page_cache_release(page);
1172 		goto out;
1173 
1174 no_cached_page:
1175 		/*
1176 		 * Ok, it wasn't cached, so we need to create a new
1177 		 * page..
1178 		 */
1179 		page = page_cache_alloc_cold(mapping);
1180 		if (!page) {
1181 			desc->error = -ENOMEM;
1182 			goto out;
1183 		}
1184 		error = add_to_page_cache_lru(page, mapping,
1185 						index, GFP_KERNEL);
1186 		if (error) {
1187 			page_cache_release(page);
1188 			if (error == -EEXIST)
1189 				goto find_page;
1190 			desc->error = error;
1191 			goto out;
1192 		}
1193 		goto readpage;
1194 	}
1195 
1196 out:
1197 	ra->prev_pos = prev_index;
1198 	ra->prev_pos <<= PAGE_CACHE_SHIFT;
1199 	ra->prev_pos |= prev_offset;
1200 
1201 	*ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1202 	file_accessed(filp);
1203 }
1204 
1205 int file_read_actor(read_descriptor_t *desc, struct page *page,
1206 			unsigned long offset, unsigned long size)
1207 {
1208 	char *kaddr;
1209 	unsigned long left, count = desc->count;
1210 
1211 	if (size > count)
1212 		size = count;
1213 
1214 	/*
1215 	 * Faults on the destination of a read are common, so do it before
1216 	 * taking the kmap.
1217 	 */
1218 	if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1219 		kaddr = kmap_atomic(page, KM_USER0);
1220 		left = __copy_to_user_inatomic(desc->arg.buf,
1221 						kaddr + offset, size);
1222 		kunmap_atomic(kaddr, KM_USER0);
1223 		if (left == 0)
1224 			goto success;
1225 	}
1226 
1227 	/* Do it the slow way */
1228 	kaddr = kmap(page);
1229 	left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1230 	kunmap(page);
1231 
1232 	if (left) {
1233 		size -= left;
1234 		desc->error = -EFAULT;
1235 	}
1236 success:
1237 	desc->count = count - size;
1238 	desc->written += size;
1239 	desc->arg.buf += size;
1240 	return size;
1241 }
1242 
1243 /*
1244  * Performs necessary checks before doing a write
1245  * @iov:	io vector request
1246  * @nr_segs:	number of segments in the iovec
1247  * @count:	number of bytes to write
1248  * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1249  *
1250  * Adjust number of segments and amount of bytes to write (nr_segs should be
1251  * properly initialized first). Returns appropriate error code that caller
1252  * should return or zero in case that write should be allowed.
1253  */
1254 int generic_segment_checks(const struct iovec *iov,
1255 			unsigned long *nr_segs, size_t *count, int access_flags)
1256 {
1257 	unsigned long   seg;
1258 	size_t cnt = 0;
1259 	for (seg = 0; seg < *nr_segs; seg++) {
1260 		const struct iovec *iv = &iov[seg];
1261 
1262 		/*
1263 		 * If any segment has a negative length, or the cumulative
1264 		 * length ever wraps negative then return -EINVAL.
1265 		 */
1266 		cnt += iv->iov_len;
1267 		if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1268 			return -EINVAL;
1269 		if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1270 			continue;
1271 		if (seg == 0)
1272 			return -EFAULT;
1273 		*nr_segs = seg;
1274 		cnt -= iv->iov_len;	/* This segment is no good */
1275 		break;
1276 	}
1277 	*count = cnt;
1278 	return 0;
1279 }
1280 EXPORT_SYMBOL(generic_segment_checks);
1281 
1282 /**
1283  * generic_file_aio_read - generic filesystem read routine
1284  * @iocb:	kernel I/O control block
1285  * @iov:	io vector request
1286  * @nr_segs:	number of segments in the iovec
1287  * @pos:	current file position
1288  *
1289  * This is the "read()" routine for all filesystems
1290  * that can use the page cache directly.
1291  */
1292 ssize_t
1293 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1294 		unsigned long nr_segs, loff_t pos)
1295 {
1296 	struct file *filp = iocb->ki_filp;
1297 	ssize_t retval;
1298 	unsigned long seg = 0;
1299 	size_t count;
1300 	loff_t *ppos = &iocb->ki_pos;
1301 
1302 	count = 0;
1303 	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1304 	if (retval)
1305 		return retval;
1306 
1307 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1308 	if (filp->f_flags & O_DIRECT) {
1309 		loff_t size;
1310 		struct address_space *mapping;
1311 		struct inode *inode;
1312 
1313 		mapping = filp->f_mapping;
1314 		inode = mapping->host;
1315 		if (!count)
1316 			goto out; /* skip atime */
1317 		size = i_size_read(inode);
1318 		if (pos < size) {
1319 			retval = filemap_write_and_wait_range(mapping, pos,
1320 					pos + iov_length(iov, nr_segs) - 1);
1321 			if (!retval) {
1322 				retval = mapping->a_ops->direct_IO(READ, iocb,
1323 							iov, pos, nr_segs);
1324 			}
1325 			if (retval > 0) {
1326 				*ppos = pos + retval;
1327 				count -= retval;
1328 			}
1329 
1330 			/*
1331 			 * Btrfs can have a short DIO read if we encounter
1332 			 * compressed extents, so if there was an error, or if
1333 			 * we've already read everything we wanted to, or if
1334 			 * there was a short read because we hit EOF, go ahead
1335 			 * and return.  Otherwise fallthrough to buffered io for
1336 			 * the rest of the read.
1337 			 */
1338 			if (retval < 0 || !count || *ppos >= size) {
1339 				file_accessed(filp);
1340 				goto out;
1341 			}
1342 		}
1343 	}
1344 
1345 	count = retval;
1346 	for (seg = 0; seg < nr_segs; seg++) {
1347 		read_descriptor_t desc;
1348 		loff_t offset = 0;
1349 
1350 		/*
1351 		 * If we did a short DIO read we need to skip the section of the
1352 		 * iov that we've already read data into.
1353 		 */
1354 		if (count) {
1355 			if (count > iov[seg].iov_len) {
1356 				count -= iov[seg].iov_len;
1357 				continue;
1358 			}
1359 			offset = count;
1360 			count = 0;
1361 		}
1362 
1363 		desc.written = 0;
1364 		desc.arg.buf = iov[seg].iov_base + offset;
1365 		desc.count = iov[seg].iov_len - offset;
1366 		if (desc.count == 0)
1367 			continue;
1368 		desc.error = 0;
1369 		do_generic_file_read(filp, ppos, &desc, file_read_actor);
1370 		retval += desc.written;
1371 		if (desc.error) {
1372 			retval = retval ?: desc.error;
1373 			break;
1374 		}
1375 		if (desc.count > 0)
1376 			break;
1377 	}
1378 out:
1379 	return retval;
1380 }
1381 EXPORT_SYMBOL(generic_file_aio_read);
1382 
1383 static ssize_t
1384 do_readahead(struct address_space *mapping, struct file *filp,
1385 	     pgoff_t index, unsigned long nr)
1386 {
1387 	if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1388 		return -EINVAL;
1389 
1390 	force_page_cache_readahead(mapping, filp, index, nr);
1391 	return 0;
1392 }
1393 
1394 SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1395 {
1396 	ssize_t ret;
1397 	struct file *file;
1398 
1399 	ret = -EBADF;
1400 	file = fget(fd);
1401 	if (file) {
1402 		if (file->f_mode & FMODE_READ) {
1403 			struct address_space *mapping = file->f_mapping;
1404 			pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1405 			pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1406 			unsigned long len = end - start + 1;
1407 			ret = do_readahead(mapping, file, start, len);
1408 		}
1409 		fput(file);
1410 	}
1411 	return ret;
1412 }
1413 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1414 asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1415 {
1416 	return SYSC_readahead((int) fd, offset, (size_t) count);
1417 }
1418 SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1419 #endif
1420 
1421 #ifdef CONFIG_MMU
1422 /**
1423  * page_cache_read - adds requested page to the page cache if not already there
1424  * @file:	file to read
1425  * @offset:	page index
1426  *
1427  * This adds the requested page to the page cache if it isn't already there,
1428  * and schedules an I/O to read in its contents from disk.
1429  */
1430 static int page_cache_read(struct file *file, pgoff_t offset)
1431 {
1432 	struct address_space *mapping = file->f_mapping;
1433 	struct page *page;
1434 	int ret;
1435 
1436 	do {
1437 		page = page_cache_alloc_cold(mapping);
1438 		if (!page)
1439 			return -ENOMEM;
1440 
1441 		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1442 		if (ret == 0)
1443 			ret = mapping->a_ops->readpage(file, page);
1444 		else if (ret == -EEXIST)
1445 			ret = 0; /* losing race to add is OK */
1446 
1447 		page_cache_release(page);
1448 
1449 	} while (ret == AOP_TRUNCATED_PAGE);
1450 
1451 	return ret;
1452 }
1453 
1454 #define MMAP_LOTSAMISS  (100)
1455 
1456 /*
1457  * Synchronous readahead happens when we don't even find
1458  * a page in the page cache at all.
1459  */
1460 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1461 				   struct file_ra_state *ra,
1462 				   struct file *file,
1463 				   pgoff_t offset)
1464 {
1465 	unsigned long ra_pages;
1466 	struct address_space *mapping = file->f_mapping;
1467 
1468 	/* If we don't want any read-ahead, don't bother */
1469 	if (VM_RandomReadHint(vma))
1470 		return;
1471 
1472 	if (VM_SequentialReadHint(vma) ||
1473 			offset - 1 == (ra->prev_pos >> PAGE_CACHE_SHIFT)) {
1474 		page_cache_sync_readahead(mapping, ra, file, offset,
1475 					  ra->ra_pages);
1476 		return;
1477 	}
1478 
1479 	if (ra->mmap_miss < INT_MAX)
1480 		ra->mmap_miss++;
1481 
1482 	/*
1483 	 * Do we miss much more than hit in this file? If so,
1484 	 * stop bothering with read-ahead. It will only hurt.
1485 	 */
1486 	if (ra->mmap_miss > MMAP_LOTSAMISS)
1487 		return;
1488 
1489 	/*
1490 	 * mmap read-around
1491 	 */
1492 	ra_pages = max_sane_readahead(ra->ra_pages);
1493 	if (ra_pages) {
1494 		ra->start = max_t(long, 0, offset - ra_pages/2);
1495 		ra->size = ra_pages;
1496 		ra->async_size = 0;
1497 		ra_submit(ra, mapping, file);
1498 	}
1499 }
1500 
1501 /*
1502  * Asynchronous readahead happens when we find the page and PG_readahead,
1503  * so we want to possibly extend the readahead further..
1504  */
1505 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1506 				    struct file_ra_state *ra,
1507 				    struct file *file,
1508 				    struct page *page,
1509 				    pgoff_t offset)
1510 {
1511 	struct address_space *mapping = file->f_mapping;
1512 
1513 	/* If we don't want any read-ahead, don't bother */
1514 	if (VM_RandomReadHint(vma))
1515 		return;
1516 	if (ra->mmap_miss > 0)
1517 		ra->mmap_miss--;
1518 	if (PageReadahead(page))
1519 		page_cache_async_readahead(mapping, ra, file,
1520 					   page, offset, ra->ra_pages);
1521 }
1522 
1523 /**
1524  * filemap_fault - read in file data for page fault handling
1525  * @vma:	vma in which the fault was taken
1526  * @vmf:	struct vm_fault containing details of the fault
1527  *
1528  * filemap_fault() is invoked via the vma operations vector for a
1529  * mapped memory region to read in file data during a page fault.
1530  *
1531  * The goto's are kind of ugly, but this streamlines the normal case of having
1532  * it in the page cache, and handles the special cases reasonably without
1533  * having a lot of duplicated code.
1534  */
1535 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1536 {
1537 	int error;
1538 	struct file *file = vma->vm_file;
1539 	struct address_space *mapping = file->f_mapping;
1540 	struct file_ra_state *ra = &file->f_ra;
1541 	struct inode *inode = mapping->host;
1542 	pgoff_t offset = vmf->pgoff;
1543 	struct page *page;
1544 	pgoff_t size;
1545 	int ret = 0;
1546 
1547 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1548 	if (offset >= size)
1549 		return VM_FAULT_SIGBUS;
1550 
1551 	/*
1552 	 * Do we have something in the page cache already?
1553 	 */
1554 	page = find_get_page(mapping, offset);
1555 	if (likely(page)) {
1556 		/*
1557 		 * We found the page, so try async readahead before
1558 		 * waiting for the lock.
1559 		 */
1560 		do_async_mmap_readahead(vma, ra, file, page, offset);
1561 	} else {
1562 		/* No page in the page cache at all */
1563 		do_sync_mmap_readahead(vma, ra, file, offset);
1564 		count_vm_event(PGMAJFAULT);
1565 		ret = VM_FAULT_MAJOR;
1566 retry_find:
1567 		page = find_get_page(mapping, offset);
1568 		if (!page)
1569 			goto no_cached_page;
1570 	}
1571 
1572 	if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1573 		page_cache_release(page);
1574 		return ret | VM_FAULT_RETRY;
1575 	}
1576 
1577 	/* Did it get truncated? */
1578 	if (unlikely(page->mapping != mapping)) {
1579 		unlock_page(page);
1580 		put_page(page);
1581 		goto retry_find;
1582 	}
1583 	VM_BUG_ON(page->index != offset);
1584 
1585 	/*
1586 	 * We have a locked page in the page cache, now we need to check
1587 	 * that it's up-to-date. If not, it is going to be due to an error.
1588 	 */
1589 	if (unlikely(!PageUptodate(page)))
1590 		goto page_not_uptodate;
1591 
1592 	/*
1593 	 * Found the page and have a reference on it.
1594 	 * We must recheck i_size under page lock.
1595 	 */
1596 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1597 	if (unlikely(offset >= size)) {
1598 		unlock_page(page);
1599 		page_cache_release(page);
1600 		return VM_FAULT_SIGBUS;
1601 	}
1602 
1603 	ra->prev_pos = (loff_t)offset << PAGE_CACHE_SHIFT;
1604 	vmf->page = page;
1605 	return ret | VM_FAULT_LOCKED;
1606 
1607 no_cached_page:
1608 	/*
1609 	 * We're only likely to ever get here if MADV_RANDOM is in
1610 	 * effect.
1611 	 */
1612 	error = page_cache_read(file, offset);
1613 
1614 	/*
1615 	 * The page we want has now been added to the page cache.
1616 	 * In the unlikely event that someone removed it in the
1617 	 * meantime, we'll just come back here and read it again.
1618 	 */
1619 	if (error >= 0)
1620 		goto retry_find;
1621 
1622 	/*
1623 	 * An error return from page_cache_read can result if the
1624 	 * system is low on memory, or a problem occurs while trying
1625 	 * to schedule I/O.
1626 	 */
1627 	if (error == -ENOMEM)
1628 		return VM_FAULT_OOM;
1629 	return VM_FAULT_SIGBUS;
1630 
1631 page_not_uptodate:
1632 	/*
1633 	 * Umm, take care of errors if the page isn't up-to-date.
1634 	 * Try to re-read it _once_. We do this synchronously,
1635 	 * because there really aren't any performance issues here
1636 	 * and we need to check for errors.
1637 	 */
1638 	ClearPageError(page);
1639 	error = mapping->a_ops->readpage(file, page);
1640 	if (!error) {
1641 		wait_on_page_locked(page);
1642 		if (!PageUptodate(page))
1643 			error = -EIO;
1644 	}
1645 	page_cache_release(page);
1646 
1647 	if (!error || error == AOP_TRUNCATED_PAGE)
1648 		goto retry_find;
1649 
1650 	/* Things didn't work out. Return zero to tell the mm layer so. */
1651 	shrink_readahead_size_eio(file, ra);
1652 	return VM_FAULT_SIGBUS;
1653 }
1654 EXPORT_SYMBOL(filemap_fault);
1655 
1656 const struct vm_operations_struct generic_file_vm_ops = {
1657 	.fault		= filemap_fault,
1658 };
1659 
1660 /* This is used for a general mmap of a disk file */
1661 
1662 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1663 {
1664 	struct address_space *mapping = file->f_mapping;
1665 
1666 	if (!mapping->a_ops->readpage)
1667 		return -ENOEXEC;
1668 	file_accessed(file);
1669 	vma->vm_ops = &generic_file_vm_ops;
1670 	vma->vm_flags |= VM_CAN_NONLINEAR;
1671 	return 0;
1672 }
1673 
1674 /*
1675  * This is for filesystems which do not implement ->writepage.
1676  */
1677 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1678 {
1679 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1680 		return -EINVAL;
1681 	return generic_file_mmap(file, vma);
1682 }
1683 #else
1684 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1685 {
1686 	return -ENOSYS;
1687 }
1688 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1689 {
1690 	return -ENOSYS;
1691 }
1692 #endif /* CONFIG_MMU */
1693 
1694 EXPORT_SYMBOL(generic_file_mmap);
1695 EXPORT_SYMBOL(generic_file_readonly_mmap);
1696 
1697 static struct page *__read_cache_page(struct address_space *mapping,
1698 				pgoff_t index,
1699 				int (*filler)(void *,struct page*),
1700 				void *data,
1701 				gfp_t gfp)
1702 {
1703 	struct page *page;
1704 	int err;
1705 repeat:
1706 	page = find_get_page(mapping, index);
1707 	if (!page) {
1708 		page = __page_cache_alloc(gfp | __GFP_COLD);
1709 		if (!page)
1710 			return ERR_PTR(-ENOMEM);
1711 		err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1712 		if (unlikely(err)) {
1713 			page_cache_release(page);
1714 			if (err == -EEXIST)
1715 				goto repeat;
1716 			/* Presumably ENOMEM for radix tree node */
1717 			return ERR_PTR(err);
1718 		}
1719 		err = filler(data, page);
1720 		if (err < 0) {
1721 			page_cache_release(page);
1722 			page = ERR_PTR(err);
1723 		}
1724 	}
1725 	return page;
1726 }
1727 
1728 static struct page *do_read_cache_page(struct address_space *mapping,
1729 				pgoff_t index,
1730 				int (*filler)(void *,struct page*),
1731 				void *data,
1732 				gfp_t gfp)
1733 
1734 {
1735 	struct page *page;
1736 	int err;
1737 
1738 retry:
1739 	page = __read_cache_page(mapping, index, filler, data, gfp);
1740 	if (IS_ERR(page))
1741 		return page;
1742 	if (PageUptodate(page))
1743 		goto out;
1744 
1745 	lock_page(page);
1746 	if (!page->mapping) {
1747 		unlock_page(page);
1748 		page_cache_release(page);
1749 		goto retry;
1750 	}
1751 	if (PageUptodate(page)) {
1752 		unlock_page(page);
1753 		goto out;
1754 	}
1755 	err = filler(data, page);
1756 	if (err < 0) {
1757 		page_cache_release(page);
1758 		return ERR_PTR(err);
1759 	}
1760 out:
1761 	mark_page_accessed(page);
1762 	return page;
1763 }
1764 
1765 /**
1766  * read_cache_page_async - read into page cache, fill it if needed
1767  * @mapping:	the page's address_space
1768  * @index:	the page index
1769  * @filler:	function to perform the read
1770  * @data:	destination for read data
1771  *
1772  * Same as read_cache_page, but don't wait for page to become unlocked
1773  * after submitting it to the filler.
1774  *
1775  * Read into the page cache. If a page already exists, and PageUptodate() is
1776  * not set, try to fill the page but don't wait for it to become unlocked.
1777  *
1778  * If the page does not get brought uptodate, return -EIO.
1779  */
1780 struct page *read_cache_page_async(struct address_space *mapping,
1781 				pgoff_t index,
1782 				int (*filler)(void *,struct page*),
1783 				void *data)
1784 {
1785 	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
1786 }
1787 EXPORT_SYMBOL(read_cache_page_async);
1788 
1789 static struct page *wait_on_page_read(struct page *page)
1790 {
1791 	if (!IS_ERR(page)) {
1792 		wait_on_page_locked(page);
1793 		if (!PageUptodate(page)) {
1794 			page_cache_release(page);
1795 			page = ERR_PTR(-EIO);
1796 		}
1797 	}
1798 	return page;
1799 }
1800 
1801 /**
1802  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1803  * @mapping:	the page's address_space
1804  * @index:	the page index
1805  * @gfp:	the page allocator flags to use if allocating
1806  *
1807  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1808  * any new page allocations done using the specified allocation flags. Note
1809  * that the Radix tree operations will still use GFP_KERNEL, so you can't
1810  * expect to do this atomically or anything like that - but you can pass in
1811  * other page requirements.
1812  *
1813  * If the page does not get brought uptodate, return -EIO.
1814  */
1815 struct page *read_cache_page_gfp(struct address_space *mapping,
1816 				pgoff_t index,
1817 				gfp_t gfp)
1818 {
1819 	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
1820 
1821 	return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
1822 }
1823 EXPORT_SYMBOL(read_cache_page_gfp);
1824 
1825 /**
1826  * read_cache_page - read into page cache, fill it if needed
1827  * @mapping:	the page's address_space
1828  * @index:	the page index
1829  * @filler:	function to perform the read
1830  * @data:	destination for read data
1831  *
1832  * Read into the page cache. If a page already exists, and PageUptodate() is
1833  * not set, try to fill the page then wait for it to become unlocked.
1834  *
1835  * If the page does not get brought uptodate, return -EIO.
1836  */
1837 struct page *read_cache_page(struct address_space *mapping,
1838 				pgoff_t index,
1839 				int (*filler)(void *,struct page*),
1840 				void *data)
1841 {
1842 	return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1843 }
1844 EXPORT_SYMBOL(read_cache_page);
1845 
1846 /*
1847  * The logic we want is
1848  *
1849  *	if suid or (sgid and xgrp)
1850  *		remove privs
1851  */
1852 int should_remove_suid(struct dentry *dentry)
1853 {
1854 	mode_t mode = dentry->d_inode->i_mode;
1855 	int kill = 0;
1856 
1857 	/* suid always must be killed */
1858 	if (unlikely(mode & S_ISUID))
1859 		kill = ATTR_KILL_SUID;
1860 
1861 	/*
1862 	 * sgid without any exec bits is just a mandatory locking mark; leave
1863 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1864 	 */
1865 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1866 		kill |= ATTR_KILL_SGID;
1867 
1868 	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1869 		return kill;
1870 
1871 	return 0;
1872 }
1873 EXPORT_SYMBOL(should_remove_suid);
1874 
1875 static int __remove_suid(struct dentry *dentry, int kill)
1876 {
1877 	struct iattr newattrs;
1878 
1879 	newattrs.ia_valid = ATTR_FORCE | kill;
1880 	return notify_change(dentry, &newattrs);
1881 }
1882 
1883 int file_remove_suid(struct file *file)
1884 {
1885 	struct dentry *dentry = file->f_path.dentry;
1886 	int killsuid = should_remove_suid(dentry);
1887 	int killpriv = security_inode_need_killpriv(dentry);
1888 	int error = 0;
1889 
1890 	if (killpriv < 0)
1891 		return killpriv;
1892 	if (killpriv)
1893 		error = security_inode_killpriv(dentry);
1894 	if (!error && killsuid)
1895 		error = __remove_suid(dentry, killsuid);
1896 
1897 	return error;
1898 }
1899 EXPORT_SYMBOL(file_remove_suid);
1900 
1901 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1902 			const struct iovec *iov, size_t base, size_t bytes)
1903 {
1904 	size_t copied = 0, left = 0;
1905 
1906 	while (bytes) {
1907 		char __user *buf = iov->iov_base + base;
1908 		int copy = min(bytes, iov->iov_len - base);
1909 
1910 		base = 0;
1911 		left = __copy_from_user_inatomic(vaddr, buf, copy);
1912 		copied += copy;
1913 		bytes -= copy;
1914 		vaddr += copy;
1915 		iov++;
1916 
1917 		if (unlikely(left))
1918 			break;
1919 	}
1920 	return copied - left;
1921 }
1922 
1923 /*
1924  * Copy as much as we can into the page and return the number of bytes which
1925  * were successfully copied.  If a fault is encountered then return the number of
1926  * bytes which were copied.
1927  */
1928 size_t iov_iter_copy_from_user_atomic(struct page *page,
1929 		struct iov_iter *i, unsigned long offset, size_t bytes)
1930 {
1931 	char *kaddr;
1932 	size_t copied;
1933 
1934 	BUG_ON(!in_atomic());
1935 	kaddr = kmap_atomic(page, KM_USER0);
1936 	if (likely(i->nr_segs == 1)) {
1937 		int left;
1938 		char __user *buf = i->iov->iov_base + i->iov_offset;
1939 		left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
1940 		copied = bytes - left;
1941 	} else {
1942 		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1943 						i->iov, i->iov_offset, bytes);
1944 	}
1945 	kunmap_atomic(kaddr, KM_USER0);
1946 
1947 	return copied;
1948 }
1949 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1950 
1951 /*
1952  * This has the same sideeffects and return value as
1953  * iov_iter_copy_from_user_atomic().
1954  * The difference is that it attempts to resolve faults.
1955  * Page must not be locked.
1956  */
1957 size_t iov_iter_copy_from_user(struct page *page,
1958 		struct iov_iter *i, unsigned long offset, size_t bytes)
1959 {
1960 	char *kaddr;
1961 	size_t copied;
1962 
1963 	kaddr = kmap(page);
1964 	if (likely(i->nr_segs == 1)) {
1965 		int left;
1966 		char __user *buf = i->iov->iov_base + i->iov_offset;
1967 		left = __copy_from_user(kaddr + offset, buf, bytes);
1968 		copied = bytes - left;
1969 	} else {
1970 		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1971 						i->iov, i->iov_offset, bytes);
1972 	}
1973 	kunmap(page);
1974 	return copied;
1975 }
1976 EXPORT_SYMBOL(iov_iter_copy_from_user);
1977 
1978 void iov_iter_advance(struct iov_iter *i, size_t bytes)
1979 {
1980 	BUG_ON(i->count < bytes);
1981 
1982 	if (likely(i->nr_segs == 1)) {
1983 		i->iov_offset += bytes;
1984 		i->count -= bytes;
1985 	} else {
1986 		const struct iovec *iov = i->iov;
1987 		size_t base = i->iov_offset;
1988 
1989 		/*
1990 		 * The !iov->iov_len check ensures we skip over unlikely
1991 		 * zero-length segments (without overruning the iovec).
1992 		 */
1993 		while (bytes || unlikely(i->count && !iov->iov_len)) {
1994 			int copy;
1995 
1996 			copy = min(bytes, iov->iov_len - base);
1997 			BUG_ON(!i->count || i->count < copy);
1998 			i->count -= copy;
1999 			bytes -= copy;
2000 			base += copy;
2001 			if (iov->iov_len == base) {
2002 				iov++;
2003 				base = 0;
2004 			}
2005 		}
2006 		i->iov = iov;
2007 		i->iov_offset = base;
2008 	}
2009 }
2010 EXPORT_SYMBOL(iov_iter_advance);
2011 
2012 /*
2013  * Fault in the first iovec of the given iov_iter, to a maximum length
2014  * of bytes. Returns 0 on success, or non-zero if the memory could not be
2015  * accessed (ie. because it is an invalid address).
2016  *
2017  * writev-intensive code may want this to prefault several iovecs -- that
2018  * would be possible (callers must not rely on the fact that _only_ the
2019  * first iovec will be faulted with the current implementation).
2020  */
2021 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2022 {
2023 	char __user *buf = i->iov->iov_base + i->iov_offset;
2024 	bytes = min(bytes, i->iov->iov_len - i->iov_offset);
2025 	return fault_in_pages_readable(buf, bytes);
2026 }
2027 EXPORT_SYMBOL(iov_iter_fault_in_readable);
2028 
2029 /*
2030  * Return the count of just the current iov_iter segment.
2031  */
2032 size_t iov_iter_single_seg_count(struct iov_iter *i)
2033 {
2034 	const struct iovec *iov = i->iov;
2035 	if (i->nr_segs == 1)
2036 		return i->count;
2037 	else
2038 		return min(i->count, iov->iov_len - i->iov_offset);
2039 }
2040 EXPORT_SYMBOL(iov_iter_single_seg_count);
2041 
2042 /*
2043  * Performs necessary checks before doing a write
2044  *
2045  * Can adjust writing position or amount of bytes to write.
2046  * Returns appropriate error code that caller should return or
2047  * zero in case that write should be allowed.
2048  */
2049 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2050 {
2051 	struct inode *inode = file->f_mapping->host;
2052 	unsigned long limit = rlimit(RLIMIT_FSIZE);
2053 
2054         if (unlikely(*pos < 0))
2055                 return -EINVAL;
2056 
2057 	if (!isblk) {
2058 		/* FIXME: this is for backwards compatibility with 2.4 */
2059 		if (file->f_flags & O_APPEND)
2060                         *pos = i_size_read(inode);
2061 
2062 		if (limit != RLIM_INFINITY) {
2063 			if (*pos >= limit) {
2064 				send_sig(SIGXFSZ, current, 0);
2065 				return -EFBIG;
2066 			}
2067 			if (*count > limit - (typeof(limit))*pos) {
2068 				*count = limit - (typeof(limit))*pos;
2069 			}
2070 		}
2071 	}
2072 
2073 	/*
2074 	 * LFS rule
2075 	 */
2076 	if (unlikely(*pos + *count > MAX_NON_LFS &&
2077 				!(file->f_flags & O_LARGEFILE))) {
2078 		if (*pos >= MAX_NON_LFS) {
2079 			return -EFBIG;
2080 		}
2081 		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2082 			*count = MAX_NON_LFS - (unsigned long)*pos;
2083 		}
2084 	}
2085 
2086 	/*
2087 	 * Are we about to exceed the fs block limit ?
2088 	 *
2089 	 * If we have written data it becomes a short write.  If we have
2090 	 * exceeded without writing data we send a signal and return EFBIG.
2091 	 * Linus frestrict idea will clean these up nicely..
2092 	 */
2093 	if (likely(!isblk)) {
2094 		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2095 			if (*count || *pos > inode->i_sb->s_maxbytes) {
2096 				return -EFBIG;
2097 			}
2098 			/* zero-length writes at ->s_maxbytes are OK */
2099 		}
2100 
2101 		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2102 			*count = inode->i_sb->s_maxbytes - *pos;
2103 	} else {
2104 #ifdef CONFIG_BLOCK
2105 		loff_t isize;
2106 		if (bdev_read_only(I_BDEV(inode)))
2107 			return -EPERM;
2108 		isize = i_size_read(inode);
2109 		if (*pos >= isize) {
2110 			if (*count || *pos > isize)
2111 				return -ENOSPC;
2112 		}
2113 
2114 		if (*pos + *count > isize)
2115 			*count = isize - *pos;
2116 #else
2117 		return -EPERM;
2118 #endif
2119 	}
2120 	return 0;
2121 }
2122 EXPORT_SYMBOL(generic_write_checks);
2123 
2124 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2125 				loff_t pos, unsigned len, unsigned flags,
2126 				struct page **pagep, void **fsdata)
2127 {
2128 	const struct address_space_operations *aops = mapping->a_ops;
2129 
2130 	return aops->write_begin(file, mapping, pos, len, flags,
2131 							pagep, fsdata);
2132 }
2133 EXPORT_SYMBOL(pagecache_write_begin);
2134 
2135 int pagecache_write_end(struct file *file, struct address_space *mapping,
2136 				loff_t pos, unsigned len, unsigned copied,
2137 				struct page *page, void *fsdata)
2138 {
2139 	const struct address_space_operations *aops = mapping->a_ops;
2140 
2141 	mark_page_accessed(page);
2142 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2143 }
2144 EXPORT_SYMBOL(pagecache_write_end);
2145 
2146 ssize_t
2147 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2148 		unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2149 		size_t count, size_t ocount)
2150 {
2151 	struct file	*file = iocb->ki_filp;
2152 	struct address_space *mapping = file->f_mapping;
2153 	struct inode	*inode = mapping->host;
2154 	ssize_t		written;
2155 	size_t		write_len;
2156 	pgoff_t		end;
2157 
2158 	if (count != ocount)
2159 		*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2160 
2161 	write_len = iov_length(iov, *nr_segs);
2162 	end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2163 
2164 	written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2165 	if (written)
2166 		goto out;
2167 
2168 	/*
2169 	 * After a write we want buffered reads to be sure to go to disk to get
2170 	 * the new data.  We invalidate clean cached page from the region we're
2171 	 * about to write.  We do this *before* the write so that we can return
2172 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2173 	 */
2174 	if (mapping->nrpages) {
2175 		written = invalidate_inode_pages2_range(mapping,
2176 					pos >> PAGE_CACHE_SHIFT, end);
2177 		/*
2178 		 * If a page can not be invalidated, return 0 to fall back
2179 		 * to buffered write.
2180 		 */
2181 		if (written) {
2182 			if (written == -EBUSY)
2183 				return 0;
2184 			goto out;
2185 		}
2186 	}
2187 
2188 	written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2189 
2190 	/*
2191 	 * Finally, try again to invalidate clean pages which might have been
2192 	 * cached by non-direct readahead, or faulted in by get_user_pages()
2193 	 * if the source of the write was an mmap'ed region of the file
2194 	 * we're writing.  Either one is a pretty crazy thing to do,
2195 	 * so we don't support it 100%.  If this invalidation
2196 	 * fails, tough, the write still worked...
2197 	 */
2198 	if (mapping->nrpages) {
2199 		invalidate_inode_pages2_range(mapping,
2200 					      pos >> PAGE_CACHE_SHIFT, end);
2201 	}
2202 
2203 	if (written > 0) {
2204 		pos += written;
2205 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2206 			i_size_write(inode, pos);
2207 			mark_inode_dirty(inode);
2208 		}
2209 		*ppos = pos;
2210 	}
2211 out:
2212 	return written;
2213 }
2214 EXPORT_SYMBOL(generic_file_direct_write);
2215 
2216 /*
2217  * Find or create a page at the given pagecache position. Return the locked
2218  * page. This function is specifically for buffered writes.
2219  */
2220 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2221 					pgoff_t index, unsigned flags)
2222 {
2223 	int status;
2224 	struct page *page;
2225 	gfp_t gfp_notmask = 0;
2226 	if (flags & AOP_FLAG_NOFS)
2227 		gfp_notmask = __GFP_FS;
2228 repeat:
2229 	page = find_lock_page(mapping, index);
2230 	if (page)
2231 		return page;
2232 
2233 	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
2234 	if (!page)
2235 		return NULL;
2236 	status = add_to_page_cache_lru(page, mapping, index,
2237 						GFP_KERNEL & ~gfp_notmask);
2238 	if (unlikely(status)) {
2239 		page_cache_release(page);
2240 		if (status == -EEXIST)
2241 			goto repeat;
2242 		return NULL;
2243 	}
2244 	return page;
2245 }
2246 EXPORT_SYMBOL(grab_cache_page_write_begin);
2247 
2248 static ssize_t generic_perform_write(struct file *file,
2249 				struct iov_iter *i, loff_t pos)
2250 {
2251 	struct address_space *mapping = file->f_mapping;
2252 	const struct address_space_operations *a_ops = mapping->a_ops;
2253 	long status = 0;
2254 	ssize_t written = 0;
2255 	unsigned int flags = 0;
2256 
2257 	/*
2258 	 * Copies from kernel address space cannot fail (NFSD is a big user).
2259 	 */
2260 	if (segment_eq(get_fs(), KERNEL_DS))
2261 		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2262 
2263 	do {
2264 		struct page *page;
2265 		unsigned long offset;	/* Offset into pagecache page */
2266 		unsigned long bytes;	/* Bytes to write to page */
2267 		size_t copied;		/* Bytes copied from user */
2268 		void *fsdata;
2269 
2270 		offset = (pos & (PAGE_CACHE_SIZE - 1));
2271 		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2272 						iov_iter_count(i));
2273 
2274 again:
2275 
2276 		/*
2277 		 * Bring in the user page that we will copy from _first_.
2278 		 * Otherwise there's a nasty deadlock on copying from the
2279 		 * same page as we're writing to, without it being marked
2280 		 * up-to-date.
2281 		 *
2282 		 * Not only is this an optimisation, but it is also required
2283 		 * to check that the address is actually valid, when atomic
2284 		 * usercopies are used, below.
2285 		 */
2286 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2287 			status = -EFAULT;
2288 			break;
2289 		}
2290 
2291 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2292 						&page, &fsdata);
2293 		if (unlikely(status))
2294 			break;
2295 
2296 		if (mapping_writably_mapped(mapping))
2297 			flush_dcache_page(page);
2298 
2299 		pagefault_disable();
2300 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2301 		pagefault_enable();
2302 		flush_dcache_page(page);
2303 
2304 		mark_page_accessed(page);
2305 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2306 						page, fsdata);
2307 		if (unlikely(status < 0))
2308 			break;
2309 		copied = status;
2310 
2311 		cond_resched();
2312 
2313 		iov_iter_advance(i, copied);
2314 		if (unlikely(copied == 0)) {
2315 			/*
2316 			 * If we were unable to copy any data at all, we must
2317 			 * fall back to a single segment length write.
2318 			 *
2319 			 * If we didn't fallback here, we could livelock
2320 			 * because not all segments in the iov can be copied at
2321 			 * once without a pagefault.
2322 			 */
2323 			bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2324 						iov_iter_single_seg_count(i));
2325 			goto again;
2326 		}
2327 		pos += copied;
2328 		written += copied;
2329 
2330 		balance_dirty_pages_ratelimited(mapping);
2331 
2332 	} while (iov_iter_count(i));
2333 
2334 	return written ? written : status;
2335 }
2336 
2337 ssize_t
2338 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2339 		unsigned long nr_segs, loff_t pos, loff_t *ppos,
2340 		size_t count, ssize_t written)
2341 {
2342 	struct file *file = iocb->ki_filp;
2343 	ssize_t status;
2344 	struct iov_iter i;
2345 
2346 	iov_iter_init(&i, iov, nr_segs, count, written);
2347 	status = generic_perform_write(file, &i, pos);
2348 
2349 	if (likely(status >= 0)) {
2350 		written += status;
2351 		*ppos = pos + status;
2352   	}
2353 
2354 	return written ? written : status;
2355 }
2356 EXPORT_SYMBOL(generic_file_buffered_write);
2357 
2358 /**
2359  * __generic_file_aio_write - write data to a file
2360  * @iocb:	IO state structure (file, offset, etc.)
2361  * @iov:	vector with data to write
2362  * @nr_segs:	number of segments in the vector
2363  * @ppos:	position where to write
2364  *
2365  * This function does all the work needed for actually writing data to a
2366  * file. It does all basic checks, removes SUID from the file, updates
2367  * modification times and calls proper subroutines depending on whether we
2368  * do direct IO or a standard buffered write.
2369  *
2370  * It expects i_mutex to be grabbed unless we work on a block device or similar
2371  * object which does not need locking at all.
2372  *
2373  * This function does *not* take care of syncing data in case of O_SYNC write.
2374  * A caller has to handle it. This is mainly due to the fact that we want to
2375  * avoid syncing under i_mutex.
2376  */
2377 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2378 				 unsigned long nr_segs, loff_t *ppos)
2379 {
2380 	struct file *file = iocb->ki_filp;
2381 	struct address_space * mapping = file->f_mapping;
2382 	size_t ocount;		/* original count */
2383 	size_t count;		/* after file limit checks */
2384 	struct inode 	*inode = mapping->host;
2385 	loff_t		pos;
2386 	ssize_t		written;
2387 	ssize_t		err;
2388 
2389 	ocount = 0;
2390 	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2391 	if (err)
2392 		return err;
2393 
2394 	count = ocount;
2395 	pos = *ppos;
2396 
2397 	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2398 
2399 	/* We can write back this queue in page reclaim */
2400 	current->backing_dev_info = mapping->backing_dev_info;
2401 	written = 0;
2402 
2403 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2404 	if (err)
2405 		goto out;
2406 
2407 	if (count == 0)
2408 		goto out;
2409 
2410 	err = file_remove_suid(file);
2411 	if (err)
2412 		goto out;
2413 
2414 	file_update_time(file);
2415 
2416 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2417 	if (unlikely(file->f_flags & O_DIRECT)) {
2418 		loff_t endbyte;
2419 		ssize_t written_buffered;
2420 
2421 		written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2422 							ppos, count, ocount);
2423 		if (written < 0 || written == count)
2424 			goto out;
2425 		/*
2426 		 * direct-io write to a hole: fall through to buffered I/O
2427 		 * for completing the rest of the request.
2428 		 */
2429 		pos += written;
2430 		count -= written;
2431 		written_buffered = generic_file_buffered_write(iocb, iov,
2432 						nr_segs, pos, ppos, count,
2433 						written);
2434 		/*
2435 		 * If generic_file_buffered_write() retuned a synchronous error
2436 		 * then we want to return the number of bytes which were
2437 		 * direct-written, or the error code if that was zero.  Note
2438 		 * that this differs from normal direct-io semantics, which
2439 		 * will return -EFOO even if some bytes were written.
2440 		 */
2441 		if (written_buffered < 0) {
2442 			err = written_buffered;
2443 			goto out;
2444 		}
2445 
2446 		/*
2447 		 * We need to ensure that the page cache pages are written to
2448 		 * disk and invalidated to preserve the expected O_DIRECT
2449 		 * semantics.
2450 		 */
2451 		endbyte = pos + written_buffered - written - 1;
2452 		err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2453 		if (err == 0) {
2454 			written = written_buffered;
2455 			invalidate_mapping_pages(mapping,
2456 						 pos >> PAGE_CACHE_SHIFT,
2457 						 endbyte >> PAGE_CACHE_SHIFT);
2458 		} else {
2459 			/*
2460 			 * We don't know how much we wrote, so just return
2461 			 * the number of bytes which were direct-written
2462 			 */
2463 		}
2464 	} else {
2465 		written = generic_file_buffered_write(iocb, iov, nr_segs,
2466 				pos, ppos, count, written);
2467 	}
2468 out:
2469 	current->backing_dev_info = NULL;
2470 	return written ? written : err;
2471 }
2472 EXPORT_SYMBOL(__generic_file_aio_write);
2473 
2474 /**
2475  * generic_file_aio_write - write data to a file
2476  * @iocb:	IO state structure
2477  * @iov:	vector with data to write
2478  * @nr_segs:	number of segments in the vector
2479  * @pos:	position in file where to write
2480  *
2481  * This is a wrapper around __generic_file_aio_write() to be used by most
2482  * filesystems. It takes care of syncing the file in case of O_SYNC file
2483  * and acquires i_mutex as needed.
2484  */
2485 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2486 		unsigned long nr_segs, loff_t pos)
2487 {
2488 	struct file *file = iocb->ki_filp;
2489 	struct inode *inode = file->f_mapping->host;
2490 	ssize_t ret;
2491 
2492 	BUG_ON(iocb->ki_pos != pos);
2493 
2494 	mutex_lock(&inode->i_mutex);
2495 	ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
2496 	mutex_unlock(&inode->i_mutex);
2497 
2498 	if (ret > 0 || ret == -EIOCBQUEUED) {
2499 		ssize_t err;
2500 
2501 		err = generic_write_sync(file, pos, ret);
2502 		if (err < 0 && ret > 0)
2503 			ret = err;
2504 	}
2505 	return ret;
2506 }
2507 EXPORT_SYMBOL(generic_file_aio_write);
2508 
2509 /**
2510  * try_to_release_page() - release old fs-specific metadata on a page
2511  *
2512  * @page: the page which the kernel is trying to free
2513  * @gfp_mask: memory allocation flags (and I/O mode)
2514  *
2515  * The address_space is to try to release any data against the page
2516  * (presumably at page->private).  If the release was successful, return `1'.
2517  * Otherwise return zero.
2518  *
2519  * This may also be called if PG_fscache is set on a page, indicating that the
2520  * page is known to the local caching routines.
2521  *
2522  * The @gfp_mask argument specifies whether I/O may be performed to release
2523  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2524  *
2525  */
2526 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2527 {
2528 	struct address_space * const mapping = page->mapping;
2529 
2530 	BUG_ON(!PageLocked(page));
2531 	if (PageWriteback(page))
2532 		return 0;
2533 
2534 	if (mapping && mapping->a_ops->releasepage)
2535 		return mapping->a_ops->releasepage(page, gfp_mask);
2536 	return try_to_free_buffers(page);
2537 }
2538 
2539 EXPORT_SYMBOL(try_to_release_page);
2540