1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/filemap.c 4 * 5 * Copyright (C) 1994-1999 Linus Torvalds 6 */ 7 8 /* 9 * This file handles the generic file mmap semantics used by 10 * most "normal" filesystems (but you don't /have/ to use this: 11 * the NFS filesystem used to do this differently, for example) 12 */ 13 #include <linux/export.h> 14 #include <linux/compiler.h> 15 #include <linux/dax.h> 16 #include <linux/fs.h> 17 #include <linux/sched/signal.h> 18 #include <linux/uaccess.h> 19 #include <linux/capability.h> 20 #include <linux/kernel_stat.h> 21 #include <linux/gfp.h> 22 #include <linux/mm.h> 23 #include <linux/swap.h> 24 #include <linux/mman.h> 25 #include <linux/pagemap.h> 26 #include <linux/file.h> 27 #include <linux/uio.h> 28 #include <linux/error-injection.h> 29 #include <linux/hash.h> 30 #include <linux/writeback.h> 31 #include <linux/backing-dev.h> 32 #include <linux/pagevec.h> 33 #include <linux/blkdev.h> 34 #include <linux/security.h> 35 #include <linux/cpuset.h> 36 #include <linux/hugetlb.h> 37 #include <linux/memcontrol.h> 38 #include <linux/cleancache.h> 39 #include <linux/shmem_fs.h> 40 #include <linux/rmap.h> 41 #include <linux/delayacct.h> 42 #include <linux/psi.h> 43 #include <linux/ramfs.h> 44 #include <linux/page_idle.h> 45 #include "internal.h" 46 47 #define CREATE_TRACE_POINTS 48 #include <trace/events/filemap.h> 49 50 /* 51 * FIXME: remove all knowledge of the buffer layer from the core VM 52 */ 53 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 54 55 #include <asm/mman.h> 56 57 /* 58 * Shared mappings implemented 30.11.1994. It's not fully working yet, 59 * though. 60 * 61 * Shared mappings now work. 15.8.1995 Bruno. 62 * 63 * finished 'unifying' the page and buffer cache and SMP-threaded the 64 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 65 * 66 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 67 */ 68 69 /* 70 * Lock ordering: 71 * 72 * ->i_mmap_rwsem (truncate_pagecache) 73 * ->private_lock (__free_pte->__set_page_dirty_buffers) 74 * ->swap_lock (exclusive_swap_page, others) 75 * ->i_pages lock 76 * 77 * ->i_mutex 78 * ->i_mmap_rwsem (truncate->unmap_mapping_range) 79 * 80 * ->mmap_lock 81 * ->i_mmap_rwsem 82 * ->page_table_lock or pte_lock (various, mainly in memory.c) 83 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock) 84 * 85 * ->mmap_lock 86 * ->lock_page (access_process_vm) 87 * 88 * ->i_mutex (generic_perform_write) 89 * ->mmap_lock (fault_in_pages_readable->do_page_fault) 90 * 91 * bdi->wb.list_lock 92 * sb_lock (fs/fs-writeback.c) 93 * ->i_pages lock (__sync_single_inode) 94 * 95 * ->i_mmap_rwsem 96 * ->anon_vma.lock (vma_adjust) 97 * 98 * ->anon_vma.lock 99 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 100 * 101 * ->page_table_lock or pte_lock 102 * ->swap_lock (try_to_unmap_one) 103 * ->private_lock (try_to_unmap_one) 104 * ->i_pages lock (try_to_unmap_one) 105 * ->lruvec->lru_lock (follow_page->mark_page_accessed) 106 * ->lruvec->lru_lock (check_pte_range->isolate_lru_page) 107 * ->private_lock (page_remove_rmap->set_page_dirty) 108 * ->i_pages lock (page_remove_rmap->set_page_dirty) 109 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty) 110 * ->inode->i_lock (page_remove_rmap->set_page_dirty) 111 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg) 112 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 113 * ->inode->i_lock (zap_pte_range->set_page_dirty) 114 * ->private_lock (zap_pte_range->__set_page_dirty_buffers) 115 * 116 * ->i_mmap_rwsem 117 * ->tasklist_lock (memory_failure, collect_procs_ao) 118 */ 119 120 static void page_cache_delete(struct address_space *mapping, 121 struct page *page, void *shadow) 122 { 123 XA_STATE(xas, &mapping->i_pages, page->index); 124 unsigned int nr = 1; 125 126 mapping_set_update(&xas, mapping); 127 128 /* hugetlb pages are represented by a single entry in the xarray */ 129 if (!PageHuge(page)) { 130 xas_set_order(&xas, page->index, compound_order(page)); 131 nr = compound_nr(page); 132 } 133 134 VM_BUG_ON_PAGE(!PageLocked(page), page); 135 VM_BUG_ON_PAGE(PageTail(page), page); 136 VM_BUG_ON_PAGE(nr != 1 && shadow, page); 137 138 xas_store(&xas, shadow); 139 xas_init_marks(&xas); 140 141 page->mapping = NULL; 142 /* Leave page->index set: truncation lookup relies upon it */ 143 144 if (shadow) { 145 mapping->nrexceptional += nr; 146 /* 147 * Make sure the nrexceptional update is committed before 148 * the nrpages update so that final truncate racing 149 * with reclaim does not see both counters 0 at the 150 * same time and miss a shadow entry. 151 */ 152 smp_wmb(); 153 } 154 mapping->nrpages -= nr; 155 } 156 157 static void unaccount_page_cache_page(struct address_space *mapping, 158 struct page *page) 159 { 160 int nr; 161 162 /* 163 * if we're uptodate, flush out into the cleancache, otherwise 164 * invalidate any existing cleancache entries. We can't leave 165 * stale data around in the cleancache once our page is gone 166 */ 167 if (PageUptodate(page) && PageMappedToDisk(page)) 168 cleancache_put_page(page); 169 else 170 cleancache_invalidate_page(mapping, page); 171 172 VM_BUG_ON_PAGE(PageTail(page), page); 173 VM_BUG_ON_PAGE(page_mapped(page), page); 174 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) { 175 int mapcount; 176 177 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n", 178 current->comm, page_to_pfn(page)); 179 dump_page(page, "still mapped when deleted"); 180 dump_stack(); 181 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 182 183 mapcount = page_mapcount(page); 184 if (mapping_exiting(mapping) && 185 page_count(page) >= mapcount + 2) { 186 /* 187 * All vmas have already been torn down, so it's 188 * a good bet that actually the page is unmapped, 189 * and we'd prefer not to leak it: if we're wrong, 190 * some other bad page check should catch it later. 191 */ 192 page_mapcount_reset(page); 193 page_ref_sub(page, mapcount); 194 } 195 } 196 197 /* hugetlb pages do not participate in page cache accounting. */ 198 if (PageHuge(page)) 199 return; 200 201 nr = thp_nr_pages(page); 202 203 __mod_lruvec_page_state(page, NR_FILE_PAGES, -nr); 204 if (PageSwapBacked(page)) { 205 __mod_lruvec_page_state(page, NR_SHMEM, -nr); 206 if (PageTransHuge(page)) 207 __dec_lruvec_page_state(page, NR_SHMEM_THPS); 208 } else if (PageTransHuge(page)) { 209 __dec_lruvec_page_state(page, NR_FILE_THPS); 210 filemap_nr_thps_dec(mapping); 211 } 212 213 /* 214 * At this point page must be either written or cleaned by 215 * truncate. Dirty page here signals a bug and loss of 216 * unwritten data. 217 * 218 * This fixes dirty accounting after removing the page entirely 219 * but leaves PageDirty set: it has no effect for truncated 220 * page and anyway will be cleared before returning page into 221 * buddy allocator. 222 */ 223 if (WARN_ON_ONCE(PageDirty(page))) 224 account_page_cleaned(page, mapping, inode_to_wb(mapping->host)); 225 } 226 227 /* 228 * Delete a page from the page cache and free it. Caller has to make 229 * sure the page is locked and that nobody else uses it - or that usage 230 * is safe. The caller must hold the i_pages lock. 231 */ 232 void __delete_from_page_cache(struct page *page, void *shadow) 233 { 234 struct address_space *mapping = page->mapping; 235 236 trace_mm_filemap_delete_from_page_cache(page); 237 238 unaccount_page_cache_page(mapping, page); 239 page_cache_delete(mapping, page, shadow); 240 } 241 242 static void page_cache_free_page(struct address_space *mapping, 243 struct page *page) 244 { 245 void (*freepage)(struct page *); 246 247 freepage = mapping->a_ops->freepage; 248 if (freepage) 249 freepage(page); 250 251 if (PageTransHuge(page) && !PageHuge(page)) { 252 page_ref_sub(page, thp_nr_pages(page)); 253 VM_BUG_ON_PAGE(page_count(page) <= 0, page); 254 } else { 255 put_page(page); 256 } 257 } 258 259 /** 260 * delete_from_page_cache - delete page from page cache 261 * @page: the page which the kernel is trying to remove from page cache 262 * 263 * This must be called only on pages that have been verified to be in the page 264 * cache and locked. It will never put the page into the free list, the caller 265 * has a reference on the page. 266 */ 267 void delete_from_page_cache(struct page *page) 268 { 269 struct address_space *mapping = page_mapping(page); 270 unsigned long flags; 271 272 BUG_ON(!PageLocked(page)); 273 xa_lock_irqsave(&mapping->i_pages, flags); 274 __delete_from_page_cache(page, NULL); 275 xa_unlock_irqrestore(&mapping->i_pages, flags); 276 277 page_cache_free_page(mapping, page); 278 } 279 EXPORT_SYMBOL(delete_from_page_cache); 280 281 /* 282 * page_cache_delete_batch - delete several pages from page cache 283 * @mapping: the mapping to which pages belong 284 * @pvec: pagevec with pages to delete 285 * 286 * The function walks over mapping->i_pages and removes pages passed in @pvec 287 * from the mapping. The function expects @pvec to be sorted by page index 288 * and is optimised for it to be dense. 289 * It tolerates holes in @pvec (mapping entries at those indices are not 290 * modified). The function expects only THP head pages to be present in the 291 * @pvec. 292 * 293 * The function expects the i_pages lock to be held. 294 */ 295 static void page_cache_delete_batch(struct address_space *mapping, 296 struct pagevec *pvec) 297 { 298 XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index); 299 int total_pages = 0; 300 int i = 0; 301 struct page *page; 302 303 mapping_set_update(&xas, mapping); 304 xas_for_each(&xas, page, ULONG_MAX) { 305 if (i >= pagevec_count(pvec)) 306 break; 307 308 /* A swap/dax/shadow entry got inserted? Skip it. */ 309 if (xa_is_value(page)) 310 continue; 311 /* 312 * A page got inserted in our range? Skip it. We have our 313 * pages locked so they are protected from being removed. 314 * If we see a page whose index is higher than ours, it 315 * means our page has been removed, which shouldn't be 316 * possible because we're holding the PageLock. 317 */ 318 if (page != pvec->pages[i]) { 319 VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index, 320 page); 321 continue; 322 } 323 324 WARN_ON_ONCE(!PageLocked(page)); 325 326 if (page->index == xas.xa_index) 327 page->mapping = NULL; 328 /* Leave page->index set: truncation lookup relies on it */ 329 330 /* 331 * Move to the next page in the vector if this is a regular 332 * page or the index is of the last sub-page of this compound 333 * page. 334 */ 335 if (page->index + compound_nr(page) - 1 == xas.xa_index) 336 i++; 337 xas_store(&xas, NULL); 338 total_pages++; 339 } 340 mapping->nrpages -= total_pages; 341 } 342 343 void delete_from_page_cache_batch(struct address_space *mapping, 344 struct pagevec *pvec) 345 { 346 int i; 347 unsigned long flags; 348 349 if (!pagevec_count(pvec)) 350 return; 351 352 xa_lock_irqsave(&mapping->i_pages, flags); 353 for (i = 0; i < pagevec_count(pvec); i++) { 354 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]); 355 356 unaccount_page_cache_page(mapping, pvec->pages[i]); 357 } 358 page_cache_delete_batch(mapping, pvec); 359 xa_unlock_irqrestore(&mapping->i_pages, flags); 360 361 for (i = 0; i < pagevec_count(pvec); i++) 362 page_cache_free_page(mapping, pvec->pages[i]); 363 } 364 365 int filemap_check_errors(struct address_space *mapping) 366 { 367 int ret = 0; 368 /* Check for outstanding write errors */ 369 if (test_bit(AS_ENOSPC, &mapping->flags) && 370 test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 371 ret = -ENOSPC; 372 if (test_bit(AS_EIO, &mapping->flags) && 373 test_and_clear_bit(AS_EIO, &mapping->flags)) 374 ret = -EIO; 375 return ret; 376 } 377 EXPORT_SYMBOL(filemap_check_errors); 378 379 static int filemap_check_and_keep_errors(struct address_space *mapping) 380 { 381 /* Check for outstanding write errors */ 382 if (test_bit(AS_EIO, &mapping->flags)) 383 return -EIO; 384 if (test_bit(AS_ENOSPC, &mapping->flags)) 385 return -ENOSPC; 386 return 0; 387 } 388 389 /** 390 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 391 * @mapping: address space structure to write 392 * @start: offset in bytes where the range starts 393 * @end: offset in bytes where the range ends (inclusive) 394 * @sync_mode: enable synchronous operation 395 * 396 * Start writeback against all of a mapping's dirty pages that lie 397 * within the byte offsets <start, end> inclusive. 398 * 399 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 400 * opposed to a regular memory cleansing writeback. The difference between 401 * these two operations is that if a dirty page/buffer is encountered, it must 402 * be waited upon, and not just skipped over. 403 * 404 * Return: %0 on success, negative error code otherwise. 405 */ 406 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 407 loff_t end, int sync_mode) 408 { 409 int ret; 410 struct writeback_control wbc = { 411 .sync_mode = sync_mode, 412 .nr_to_write = LONG_MAX, 413 .range_start = start, 414 .range_end = end, 415 }; 416 417 if (!mapping_can_writeback(mapping) || 418 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 419 return 0; 420 421 wbc_attach_fdatawrite_inode(&wbc, mapping->host); 422 ret = do_writepages(mapping, &wbc); 423 wbc_detach_inode(&wbc); 424 return ret; 425 } 426 427 static inline int __filemap_fdatawrite(struct address_space *mapping, 428 int sync_mode) 429 { 430 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 431 } 432 433 int filemap_fdatawrite(struct address_space *mapping) 434 { 435 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 436 } 437 EXPORT_SYMBOL(filemap_fdatawrite); 438 439 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 440 loff_t end) 441 { 442 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 443 } 444 EXPORT_SYMBOL(filemap_fdatawrite_range); 445 446 /** 447 * filemap_flush - mostly a non-blocking flush 448 * @mapping: target address_space 449 * 450 * This is a mostly non-blocking flush. Not suitable for data-integrity 451 * purposes - I/O may not be started against all dirty pages. 452 * 453 * Return: %0 on success, negative error code otherwise. 454 */ 455 int filemap_flush(struct address_space *mapping) 456 { 457 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 458 } 459 EXPORT_SYMBOL(filemap_flush); 460 461 /** 462 * filemap_range_has_page - check if a page exists in range. 463 * @mapping: address space within which to check 464 * @start_byte: offset in bytes where the range starts 465 * @end_byte: offset in bytes where the range ends (inclusive) 466 * 467 * Find at least one page in the range supplied, usually used to check if 468 * direct writing in this range will trigger a writeback. 469 * 470 * Return: %true if at least one page exists in the specified range, 471 * %false otherwise. 472 */ 473 bool filemap_range_has_page(struct address_space *mapping, 474 loff_t start_byte, loff_t end_byte) 475 { 476 struct page *page; 477 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 478 pgoff_t max = end_byte >> PAGE_SHIFT; 479 480 if (end_byte < start_byte) 481 return false; 482 483 rcu_read_lock(); 484 for (;;) { 485 page = xas_find(&xas, max); 486 if (xas_retry(&xas, page)) 487 continue; 488 /* Shadow entries don't count */ 489 if (xa_is_value(page)) 490 continue; 491 /* 492 * We don't need to try to pin this page; we're about to 493 * release the RCU lock anyway. It is enough to know that 494 * there was a page here recently. 495 */ 496 break; 497 } 498 rcu_read_unlock(); 499 500 return page != NULL; 501 } 502 EXPORT_SYMBOL(filemap_range_has_page); 503 504 static void __filemap_fdatawait_range(struct address_space *mapping, 505 loff_t start_byte, loff_t end_byte) 506 { 507 pgoff_t index = start_byte >> PAGE_SHIFT; 508 pgoff_t end = end_byte >> PAGE_SHIFT; 509 struct pagevec pvec; 510 int nr_pages; 511 512 if (end_byte < start_byte) 513 return; 514 515 pagevec_init(&pvec); 516 while (index <= end) { 517 unsigned i; 518 519 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, 520 end, PAGECACHE_TAG_WRITEBACK); 521 if (!nr_pages) 522 break; 523 524 for (i = 0; i < nr_pages; i++) { 525 struct page *page = pvec.pages[i]; 526 527 wait_on_page_writeback(page); 528 ClearPageError(page); 529 } 530 pagevec_release(&pvec); 531 cond_resched(); 532 } 533 } 534 535 /** 536 * filemap_fdatawait_range - wait for writeback to complete 537 * @mapping: address space structure to wait for 538 * @start_byte: offset in bytes where the range starts 539 * @end_byte: offset in bytes where the range ends (inclusive) 540 * 541 * Walk the list of under-writeback pages of the given address space 542 * in the given range and wait for all of them. Check error status of 543 * the address space and return it. 544 * 545 * Since the error status of the address space is cleared by this function, 546 * callers are responsible for checking the return value and handling and/or 547 * reporting the error. 548 * 549 * Return: error status of the address space. 550 */ 551 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 552 loff_t end_byte) 553 { 554 __filemap_fdatawait_range(mapping, start_byte, end_byte); 555 return filemap_check_errors(mapping); 556 } 557 EXPORT_SYMBOL(filemap_fdatawait_range); 558 559 /** 560 * filemap_fdatawait_range_keep_errors - wait for writeback to complete 561 * @mapping: address space structure to wait for 562 * @start_byte: offset in bytes where the range starts 563 * @end_byte: offset in bytes where the range ends (inclusive) 564 * 565 * Walk the list of under-writeback pages of the given address space in the 566 * given range and wait for all of them. Unlike filemap_fdatawait_range(), 567 * this function does not clear error status of the address space. 568 * 569 * Use this function if callers don't handle errors themselves. Expected 570 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 571 * fsfreeze(8) 572 */ 573 int filemap_fdatawait_range_keep_errors(struct address_space *mapping, 574 loff_t start_byte, loff_t end_byte) 575 { 576 __filemap_fdatawait_range(mapping, start_byte, end_byte); 577 return filemap_check_and_keep_errors(mapping); 578 } 579 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors); 580 581 /** 582 * file_fdatawait_range - wait for writeback to complete 583 * @file: file pointing to address space structure to wait for 584 * @start_byte: offset in bytes where the range starts 585 * @end_byte: offset in bytes where the range ends (inclusive) 586 * 587 * Walk the list of under-writeback pages of the address space that file 588 * refers to, in the given range and wait for all of them. Check error 589 * status of the address space vs. the file->f_wb_err cursor and return it. 590 * 591 * Since the error status of the file is advanced by this function, 592 * callers are responsible for checking the return value and handling and/or 593 * reporting the error. 594 * 595 * Return: error status of the address space vs. the file->f_wb_err cursor. 596 */ 597 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte) 598 { 599 struct address_space *mapping = file->f_mapping; 600 601 __filemap_fdatawait_range(mapping, start_byte, end_byte); 602 return file_check_and_advance_wb_err(file); 603 } 604 EXPORT_SYMBOL(file_fdatawait_range); 605 606 /** 607 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors 608 * @mapping: address space structure to wait for 609 * 610 * Walk the list of under-writeback pages of the given address space 611 * and wait for all of them. Unlike filemap_fdatawait(), this function 612 * does not clear error status of the address space. 613 * 614 * Use this function if callers don't handle errors themselves. Expected 615 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 616 * fsfreeze(8) 617 * 618 * Return: error status of the address space. 619 */ 620 int filemap_fdatawait_keep_errors(struct address_space *mapping) 621 { 622 __filemap_fdatawait_range(mapping, 0, LLONG_MAX); 623 return filemap_check_and_keep_errors(mapping); 624 } 625 EXPORT_SYMBOL(filemap_fdatawait_keep_errors); 626 627 /* Returns true if writeback might be needed or already in progress. */ 628 static bool mapping_needs_writeback(struct address_space *mapping) 629 { 630 if (dax_mapping(mapping)) 631 return mapping->nrexceptional; 632 633 return mapping->nrpages; 634 } 635 636 /** 637 * filemap_write_and_wait_range - write out & wait on a file range 638 * @mapping: the address_space for the pages 639 * @lstart: offset in bytes where the range starts 640 * @lend: offset in bytes where the range ends (inclusive) 641 * 642 * Write out and wait upon file offsets lstart->lend, inclusive. 643 * 644 * Note that @lend is inclusive (describes the last byte to be written) so 645 * that this function can be used to write to the very end-of-file (end = -1). 646 * 647 * Return: error status of the address space. 648 */ 649 int filemap_write_and_wait_range(struct address_space *mapping, 650 loff_t lstart, loff_t lend) 651 { 652 int err = 0; 653 654 if (mapping_needs_writeback(mapping)) { 655 err = __filemap_fdatawrite_range(mapping, lstart, lend, 656 WB_SYNC_ALL); 657 /* 658 * Even if the above returned error, the pages may be 659 * written partially (e.g. -ENOSPC), so we wait for it. 660 * But the -EIO is special case, it may indicate the worst 661 * thing (e.g. bug) happened, so we avoid waiting for it. 662 */ 663 if (err != -EIO) { 664 int err2 = filemap_fdatawait_range(mapping, 665 lstart, lend); 666 if (!err) 667 err = err2; 668 } else { 669 /* Clear any previously stored errors */ 670 filemap_check_errors(mapping); 671 } 672 } else { 673 err = filemap_check_errors(mapping); 674 } 675 return err; 676 } 677 EXPORT_SYMBOL(filemap_write_and_wait_range); 678 679 void __filemap_set_wb_err(struct address_space *mapping, int err) 680 { 681 errseq_t eseq = errseq_set(&mapping->wb_err, err); 682 683 trace_filemap_set_wb_err(mapping, eseq); 684 } 685 EXPORT_SYMBOL(__filemap_set_wb_err); 686 687 /** 688 * file_check_and_advance_wb_err - report wb error (if any) that was previously 689 * and advance wb_err to current one 690 * @file: struct file on which the error is being reported 691 * 692 * When userland calls fsync (or something like nfsd does the equivalent), we 693 * want to report any writeback errors that occurred since the last fsync (or 694 * since the file was opened if there haven't been any). 695 * 696 * Grab the wb_err from the mapping. If it matches what we have in the file, 697 * then just quickly return 0. The file is all caught up. 698 * 699 * If it doesn't match, then take the mapping value, set the "seen" flag in 700 * it and try to swap it into place. If it works, or another task beat us 701 * to it with the new value, then update the f_wb_err and return the error 702 * portion. The error at this point must be reported via proper channels 703 * (a'la fsync, or NFS COMMIT operation, etc.). 704 * 705 * While we handle mapping->wb_err with atomic operations, the f_wb_err 706 * value is protected by the f_lock since we must ensure that it reflects 707 * the latest value swapped in for this file descriptor. 708 * 709 * Return: %0 on success, negative error code otherwise. 710 */ 711 int file_check_and_advance_wb_err(struct file *file) 712 { 713 int err = 0; 714 errseq_t old = READ_ONCE(file->f_wb_err); 715 struct address_space *mapping = file->f_mapping; 716 717 /* Locklessly handle the common case where nothing has changed */ 718 if (errseq_check(&mapping->wb_err, old)) { 719 /* Something changed, must use slow path */ 720 spin_lock(&file->f_lock); 721 old = file->f_wb_err; 722 err = errseq_check_and_advance(&mapping->wb_err, 723 &file->f_wb_err); 724 trace_file_check_and_advance_wb_err(file, old); 725 spin_unlock(&file->f_lock); 726 } 727 728 /* 729 * We're mostly using this function as a drop in replacement for 730 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect 731 * that the legacy code would have had on these flags. 732 */ 733 clear_bit(AS_EIO, &mapping->flags); 734 clear_bit(AS_ENOSPC, &mapping->flags); 735 return err; 736 } 737 EXPORT_SYMBOL(file_check_and_advance_wb_err); 738 739 /** 740 * file_write_and_wait_range - write out & wait on a file range 741 * @file: file pointing to address_space with pages 742 * @lstart: offset in bytes where the range starts 743 * @lend: offset in bytes where the range ends (inclusive) 744 * 745 * Write out and wait upon file offsets lstart->lend, inclusive. 746 * 747 * Note that @lend is inclusive (describes the last byte to be written) so 748 * that this function can be used to write to the very end-of-file (end = -1). 749 * 750 * After writing out and waiting on the data, we check and advance the 751 * f_wb_err cursor to the latest value, and return any errors detected there. 752 * 753 * Return: %0 on success, negative error code otherwise. 754 */ 755 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend) 756 { 757 int err = 0, err2; 758 struct address_space *mapping = file->f_mapping; 759 760 if (mapping_needs_writeback(mapping)) { 761 err = __filemap_fdatawrite_range(mapping, lstart, lend, 762 WB_SYNC_ALL); 763 /* See comment of filemap_write_and_wait() */ 764 if (err != -EIO) 765 __filemap_fdatawait_range(mapping, lstart, lend); 766 } 767 err2 = file_check_and_advance_wb_err(file); 768 if (!err) 769 err = err2; 770 return err; 771 } 772 EXPORT_SYMBOL(file_write_and_wait_range); 773 774 /** 775 * replace_page_cache_page - replace a pagecache page with a new one 776 * @old: page to be replaced 777 * @new: page to replace with 778 * @gfp_mask: allocation mode 779 * 780 * This function replaces a page in the pagecache with a new one. On 781 * success it acquires the pagecache reference for the new page and 782 * drops it for the old page. Both the old and new pages must be 783 * locked. This function does not add the new page to the LRU, the 784 * caller must do that. 785 * 786 * The remove + add is atomic. This function cannot fail. 787 * 788 * Return: %0 789 */ 790 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask) 791 { 792 struct address_space *mapping = old->mapping; 793 void (*freepage)(struct page *) = mapping->a_ops->freepage; 794 pgoff_t offset = old->index; 795 XA_STATE(xas, &mapping->i_pages, offset); 796 unsigned long flags; 797 798 VM_BUG_ON_PAGE(!PageLocked(old), old); 799 VM_BUG_ON_PAGE(!PageLocked(new), new); 800 VM_BUG_ON_PAGE(new->mapping, new); 801 802 get_page(new); 803 new->mapping = mapping; 804 new->index = offset; 805 806 mem_cgroup_migrate(old, new); 807 808 xas_lock_irqsave(&xas, flags); 809 xas_store(&xas, new); 810 811 old->mapping = NULL; 812 /* hugetlb pages do not participate in page cache accounting. */ 813 if (!PageHuge(old)) 814 __dec_lruvec_page_state(old, NR_FILE_PAGES); 815 if (!PageHuge(new)) 816 __inc_lruvec_page_state(new, NR_FILE_PAGES); 817 if (PageSwapBacked(old)) 818 __dec_lruvec_page_state(old, NR_SHMEM); 819 if (PageSwapBacked(new)) 820 __inc_lruvec_page_state(new, NR_SHMEM); 821 xas_unlock_irqrestore(&xas, flags); 822 if (freepage) 823 freepage(old); 824 put_page(old); 825 826 return 0; 827 } 828 EXPORT_SYMBOL_GPL(replace_page_cache_page); 829 830 noinline int __add_to_page_cache_locked(struct page *page, 831 struct address_space *mapping, 832 pgoff_t offset, gfp_t gfp, 833 void **shadowp) 834 { 835 XA_STATE(xas, &mapping->i_pages, offset); 836 int huge = PageHuge(page); 837 int error; 838 bool charged = false; 839 840 VM_BUG_ON_PAGE(!PageLocked(page), page); 841 VM_BUG_ON_PAGE(PageSwapBacked(page), page); 842 mapping_set_update(&xas, mapping); 843 844 get_page(page); 845 page->mapping = mapping; 846 page->index = offset; 847 848 if (!huge) { 849 error = mem_cgroup_charge(page, current->mm, gfp); 850 if (error) 851 goto error; 852 charged = true; 853 } 854 855 gfp &= GFP_RECLAIM_MASK; 856 857 do { 858 unsigned int order = xa_get_order(xas.xa, xas.xa_index); 859 void *entry, *old = NULL; 860 861 if (order > thp_order(page)) 862 xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index), 863 order, gfp); 864 xas_lock_irq(&xas); 865 xas_for_each_conflict(&xas, entry) { 866 old = entry; 867 if (!xa_is_value(entry)) { 868 xas_set_err(&xas, -EEXIST); 869 goto unlock; 870 } 871 } 872 873 if (old) { 874 if (shadowp) 875 *shadowp = old; 876 /* entry may have been split before we acquired lock */ 877 order = xa_get_order(xas.xa, xas.xa_index); 878 if (order > thp_order(page)) { 879 xas_split(&xas, old, order); 880 xas_reset(&xas); 881 } 882 } 883 884 xas_store(&xas, page); 885 if (xas_error(&xas)) 886 goto unlock; 887 888 if (old) 889 mapping->nrexceptional--; 890 mapping->nrpages++; 891 892 /* hugetlb pages do not participate in page cache accounting */ 893 if (!huge) 894 __inc_lruvec_page_state(page, NR_FILE_PAGES); 895 unlock: 896 xas_unlock_irq(&xas); 897 } while (xas_nomem(&xas, gfp)); 898 899 if (xas_error(&xas)) { 900 error = xas_error(&xas); 901 if (charged) 902 mem_cgroup_uncharge(page); 903 goto error; 904 } 905 906 trace_mm_filemap_add_to_page_cache(page); 907 return 0; 908 error: 909 page->mapping = NULL; 910 /* Leave page->index set: truncation relies upon it */ 911 put_page(page); 912 return error; 913 } 914 ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO); 915 916 /** 917 * add_to_page_cache_locked - add a locked page to the pagecache 918 * @page: page to add 919 * @mapping: the page's address_space 920 * @offset: page index 921 * @gfp_mask: page allocation mode 922 * 923 * This function is used to add a page to the pagecache. It must be locked. 924 * This function does not add the page to the LRU. The caller must do that. 925 * 926 * Return: %0 on success, negative error code otherwise. 927 */ 928 int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 929 pgoff_t offset, gfp_t gfp_mask) 930 { 931 return __add_to_page_cache_locked(page, mapping, offset, 932 gfp_mask, NULL); 933 } 934 EXPORT_SYMBOL(add_to_page_cache_locked); 935 936 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 937 pgoff_t offset, gfp_t gfp_mask) 938 { 939 void *shadow = NULL; 940 int ret; 941 942 __SetPageLocked(page); 943 ret = __add_to_page_cache_locked(page, mapping, offset, 944 gfp_mask, &shadow); 945 if (unlikely(ret)) 946 __ClearPageLocked(page); 947 else { 948 /* 949 * The page might have been evicted from cache only 950 * recently, in which case it should be activated like 951 * any other repeatedly accessed page. 952 * The exception is pages getting rewritten; evicting other 953 * data from the working set, only to cache data that will 954 * get overwritten with something else, is a waste of memory. 955 */ 956 WARN_ON_ONCE(PageActive(page)); 957 if (!(gfp_mask & __GFP_WRITE) && shadow) 958 workingset_refault(page, shadow); 959 lru_cache_add(page); 960 } 961 return ret; 962 } 963 EXPORT_SYMBOL_GPL(add_to_page_cache_lru); 964 965 #ifdef CONFIG_NUMA 966 struct page *__page_cache_alloc(gfp_t gfp) 967 { 968 int n; 969 struct page *page; 970 971 if (cpuset_do_page_mem_spread()) { 972 unsigned int cpuset_mems_cookie; 973 do { 974 cpuset_mems_cookie = read_mems_allowed_begin(); 975 n = cpuset_mem_spread_node(); 976 page = __alloc_pages_node(n, gfp, 0); 977 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie)); 978 979 return page; 980 } 981 return alloc_pages(gfp, 0); 982 } 983 EXPORT_SYMBOL(__page_cache_alloc); 984 #endif 985 986 /* 987 * In order to wait for pages to become available there must be 988 * waitqueues associated with pages. By using a hash table of 989 * waitqueues where the bucket discipline is to maintain all 990 * waiters on the same queue and wake all when any of the pages 991 * become available, and for the woken contexts to check to be 992 * sure the appropriate page became available, this saves space 993 * at a cost of "thundering herd" phenomena during rare hash 994 * collisions. 995 */ 996 #define PAGE_WAIT_TABLE_BITS 8 997 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS) 998 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned; 999 1000 static wait_queue_head_t *page_waitqueue(struct page *page) 1001 { 1002 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)]; 1003 } 1004 1005 void __init pagecache_init(void) 1006 { 1007 int i; 1008 1009 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++) 1010 init_waitqueue_head(&page_wait_table[i]); 1011 1012 page_writeback_init(); 1013 } 1014 1015 /* 1016 * The page wait code treats the "wait->flags" somewhat unusually, because 1017 * we have multiple different kinds of waits, not just the usual "exclusive" 1018 * one. 1019 * 1020 * We have: 1021 * 1022 * (a) no special bits set: 1023 * 1024 * We're just waiting for the bit to be released, and when a waker 1025 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up, 1026 * and remove it from the wait queue. 1027 * 1028 * Simple and straightforward. 1029 * 1030 * (b) WQ_FLAG_EXCLUSIVE: 1031 * 1032 * The waiter is waiting to get the lock, and only one waiter should 1033 * be woken up to avoid any thundering herd behavior. We'll set the 1034 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue. 1035 * 1036 * This is the traditional exclusive wait. 1037 * 1038 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM: 1039 * 1040 * The waiter is waiting to get the bit, and additionally wants the 1041 * lock to be transferred to it for fair lock behavior. If the lock 1042 * cannot be taken, we stop walking the wait queue without waking 1043 * the waiter. 1044 * 1045 * This is the "fair lock handoff" case, and in addition to setting 1046 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see 1047 * that it now has the lock. 1048 */ 1049 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg) 1050 { 1051 unsigned int flags; 1052 struct wait_page_key *key = arg; 1053 struct wait_page_queue *wait_page 1054 = container_of(wait, struct wait_page_queue, wait); 1055 1056 if (!wake_page_match(wait_page, key)) 1057 return 0; 1058 1059 /* 1060 * If it's a lock handoff wait, we get the bit for it, and 1061 * stop walking (and do not wake it up) if we can't. 1062 */ 1063 flags = wait->flags; 1064 if (flags & WQ_FLAG_EXCLUSIVE) { 1065 if (test_bit(key->bit_nr, &key->page->flags)) 1066 return -1; 1067 if (flags & WQ_FLAG_CUSTOM) { 1068 if (test_and_set_bit(key->bit_nr, &key->page->flags)) 1069 return -1; 1070 flags |= WQ_FLAG_DONE; 1071 } 1072 } 1073 1074 /* 1075 * We are holding the wait-queue lock, but the waiter that 1076 * is waiting for this will be checking the flags without 1077 * any locking. 1078 * 1079 * So update the flags atomically, and wake up the waiter 1080 * afterwards to avoid any races. This store-release pairs 1081 * with the load-acquire in wait_on_page_bit_common(). 1082 */ 1083 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN); 1084 wake_up_state(wait->private, mode); 1085 1086 /* 1087 * Ok, we have successfully done what we're waiting for, 1088 * and we can unconditionally remove the wait entry. 1089 * 1090 * Note that this pairs with the "finish_wait()" in the 1091 * waiter, and has to be the absolute last thing we do. 1092 * After this list_del_init(&wait->entry) the wait entry 1093 * might be de-allocated and the process might even have 1094 * exited. 1095 */ 1096 list_del_init_careful(&wait->entry); 1097 return (flags & WQ_FLAG_EXCLUSIVE) != 0; 1098 } 1099 1100 static void wake_up_page_bit(struct page *page, int bit_nr) 1101 { 1102 wait_queue_head_t *q = page_waitqueue(page); 1103 struct wait_page_key key; 1104 unsigned long flags; 1105 wait_queue_entry_t bookmark; 1106 1107 key.page = page; 1108 key.bit_nr = bit_nr; 1109 key.page_match = 0; 1110 1111 bookmark.flags = 0; 1112 bookmark.private = NULL; 1113 bookmark.func = NULL; 1114 INIT_LIST_HEAD(&bookmark.entry); 1115 1116 spin_lock_irqsave(&q->lock, flags); 1117 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); 1118 1119 while (bookmark.flags & WQ_FLAG_BOOKMARK) { 1120 /* 1121 * Take a breather from holding the lock, 1122 * allow pages that finish wake up asynchronously 1123 * to acquire the lock and remove themselves 1124 * from wait queue 1125 */ 1126 spin_unlock_irqrestore(&q->lock, flags); 1127 cpu_relax(); 1128 spin_lock_irqsave(&q->lock, flags); 1129 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); 1130 } 1131 1132 /* 1133 * It is possible for other pages to have collided on the waitqueue 1134 * hash, so in that case check for a page match. That prevents a long- 1135 * term waiter 1136 * 1137 * It is still possible to miss a case here, when we woke page waiters 1138 * and removed them from the waitqueue, but there are still other 1139 * page waiters. 1140 */ 1141 if (!waitqueue_active(q) || !key.page_match) { 1142 ClearPageWaiters(page); 1143 /* 1144 * It's possible to miss clearing Waiters here, when we woke 1145 * our page waiters, but the hashed waitqueue has waiters for 1146 * other pages on it. 1147 * 1148 * That's okay, it's a rare case. The next waker will clear it. 1149 */ 1150 } 1151 spin_unlock_irqrestore(&q->lock, flags); 1152 } 1153 1154 static void wake_up_page(struct page *page, int bit) 1155 { 1156 if (!PageWaiters(page)) 1157 return; 1158 wake_up_page_bit(page, bit); 1159 } 1160 1161 /* 1162 * A choice of three behaviors for wait_on_page_bit_common(): 1163 */ 1164 enum behavior { 1165 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like 1166 * __lock_page() waiting on then setting PG_locked. 1167 */ 1168 SHARED, /* Hold ref to page and check the bit when woken, like 1169 * wait_on_page_writeback() waiting on PG_writeback. 1170 */ 1171 DROP, /* Drop ref to page before wait, no check when woken, 1172 * like put_and_wait_on_page_locked() on PG_locked. 1173 */ 1174 }; 1175 1176 /* 1177 * Attempt to check (or get) the page bit, and mark us done 1178 * if successful. 1179 */ 1180 static inline bool trylock_page_bit_common(struct page *page, int bit_nr, 1181 struct wait_queue_entry *wait) 1182 { 1183 if (wait->flags & WQ_FLAG_EXCLUSIVE) { 1184 if (test_and_set_bit(bit_nr, &page->flags)) 1185 return false; 1186 } else if (test_bit(bit_nr, &page->flags)) 1187 return false; 1188 1189 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE; 1190 return true; 1191 } 1192 1193 /* How many times do we accept lock stealing from under a waiter? */ 1194 int sysctl_page_lock_unfairness = 5; 1195 1196 static inline int wait_on_page_bit_common(wait_queue_head_t *q, 1197 struct page *page, int bit_nr, int state, enum behavior behavior) 1198 { 1199 int unfairness = sysctl_page_lock_unfairness; 1200 struct wait_page_queue wait_page; 1201 wait_queue_entry_t *wait = &wait_page.wait; 1202 bool thrashing = false; 1203 bool delayacct = false; 1204 unsigned long pflags; 1205 1206 if (bit_nr == PG_locked && 1207 !PageUptodate(page) && PageWorkingset(page)) { 1208 if (!PageSwapBacked(page)) { 1209 delayacct_thrashing_start(); 1210 delayacct = true; 1211 } 1212 psi_memstall_enter(&pflags); 1213 thrashing = true; 1214 } 1215 1216 init_wait(wait); 1217 wait->func = wake_page_function; 1218 wait_page.page = page; 1219 wait_page.bit_nr = bit_nr; 1220 1221 repeat: 1222 wait->flags = 0; 1223 if (behavior == EXCLUSIVE) { 1224 wait->flags = WQ_FLAG_EXCLUSIVE; 1225 if (--unfairness < 0) 1226 wait->flags |= WQ_FLAG_CUSTOM; 1227 } 1228 1229 /* 1230 * Do one last check whether we can get the 1231 * page bit synchronously. 1232 * 1233 * Do the SetPageWaiters() marking before that 1234 * to let any waker we _just_ missed know they 1235 * need to wake us up (otherwise they'll never 1236 * even go to the slow case that looks at the 1237 * page queue), and add ourselves to the wait 1238 * queue if we need to sleep. 1239 * 1240 * This part needs to be done under the queue 1241 * lock to avoid races. 1242 */ 1243 spin_lock_irq(&q->lock); 1244 SetPageWaiters(page); 1245 if (!trylock_page_bit_common(page, bit_nr, wait)) 1246 __add_wait_queue_entry_tail(q, wait); 1247 spin_unlock_irq(&q->lock); 1248 1249 /* 1250 * From now on, all the logic will be based on 1251 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to 1252 * see whether the page bit testing has already 1253 * been done by the wake function. 1254 * 1255 * We can drop our reference to the page. 1256 */ 1257 if (behavior == DROP) 1258 put_page(page); 1259 1260 /* 1261 * Note that until the "finish_wait()", or until 1262 * we see the WQ_FLAG_WOKEN flag, we need to 1263 * be very careful with the 'wait->flags', because 1264 * we may race with a waker that sets them. 1265 */ 1266 for (;;) { 1267 unsigned int flags; 1268 1269 set_current_state(state); 1270 1271 /* Loop until we've been woken or interrupted */ 1272 flags = smp_load_acquire(&wait->flags); 1273 if (!(flags & WQ_FLAG_WOKEN)) { 1274 if (signal_pending_state(state, current)) 1275 break; 1276 1277 io_schedule(); 1278 continue; 1279 } 1280 1281 /* If we were non-exclusive, we're done */ 1282 if (behavior != EXCLUSIVE) 1283 break; 1284 1285 /* If the waker got the lock for us, we're done */ 1286 if (flags & WQ_FLAG_DONE) 1287 break; 1288 1289 /* 1290 * Otherwise, if we're getting the lock, we need to 1291 * try to get it ourselves. 1292 * 1293 * And if that fails, we'll have to retry this all. 1294 */ 1295 if (unlikely(test_and_set_bit(bit_nr, &page->flags))) 1296 goto repeat; 1297 1298 wait->flags |= WQ_FLAG_DONE; 1299 break; 1300 } 1301 1302 /* 1303 * If a signal happened, this 'finish_wait()' may remove the last 1304 * waiter from the wait-queues, but the PageWaiters bit will remain 1305 * set. That's ok. The next wakeup will take care of it, and trying 1306 * to do it here would be difficult and prone to races. 1307 */ 1308 finish_wait(q, wait); 1309 1310 if (thrashing) { 1311 if (delayacct) 1312 delayacct_thrashing_end(); 1313 psi_memstall_leave(&pflags); 1314 } 1315 1316 /* 1317 * NOTE! The wait->flags weren't stable until we've done the 1318 * 'finish_wait()', and we could have exited the loop above due 1319 * to a signal, and had a wakeup event happen after the signal 1320 * test but before the 'finish_wait()'. 1321 * 1322 * So only after the finish_wait() can we reliably determine 1323 * if we got woken up or not, so we can now figure out the final 1324 * return value based on that state without races. 1325 * 1326 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive 1327 * waiter, but an exclusive one requires WQ_FLAG_DONE. 1328 */ 1329 if (behavior == EXCLUSIVE) 1330 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR; 1331 1332 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR; 1333 } 1334 1335 void wait_on_page_bit(struct page *page, int bit_nr) 1336 { 1337 wait_queue_head_t *q = page_waitqueue(page); 1338 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED); 1339 } 1340 EXPORT_SYMBOL(wait_on_page_bit); 1341 1342 int wait_on_page_bit_killable(struct page *page, int bit_nr) 1343 { 1344 wait_queue_head_t *q = page_waitqueue(page); 1345 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED); 1346 } 1347 EXPORT_SYMBOL(wait_on_page_bit_killable); 1348 1349 static int __wait_on_page_locked_async(struct page *page, 1350 struct wait_page_queue *wait, bool set) 1351 { 1352 struct wait_queue_head *q = page_waitqueue(page); 1353 int ret = 0; 1354 1355 wait->page = page; 1356 wait->bit_nr = PG_locked; 1357 1358 spin_lock_irq(&q->lock); 1359 __add_wait_queue_entry_tail(q, &wait->wait); 1360 SetPageWaiters(page); 1361 if (set) 1362 ret = !trylock_page(page); 1363 else 1364 ret = PageLocked(page); 1365 /* 1366 * If we were successful now, we know we're still on the 1367 * waitqueue as we're still under the lock. This means it's 1368 * safe to remove and return success, we know the callback 1369 * isn't going to trigger. 1370 */ 1371 if (!ret) 1372 __remove_wait_queue(q, &wait->wait); 1373 else 1374 ret = -EIOCBQUEUED; 1375 spin_unlock_irq(&q->lock); 1376 return ret; 1377 } 1378 1379 static int wait_on_page_locked_async(struct page *page, 1380 struct wait_page_queue *wait) 1381 { 1382 if (!PageLocked(page)) 1383 return 0; 1384 return __wait_on_page_locked_async(compound_head(page), wait, false); 1385 } 1386 1387 /** 1388 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked 1389 * @page: The page to wait for. 1390 * 1391 * The caller should hold a reference on @page. They expect the page to 1392 * become unlocked relatively soon, but do not wish to hold up migration 1393 * (for example) by holding the reference while waiting for the page to 1394 * come unlocked. After this function returns, the caller should not 1395 * dereference @page. 1396 */ 1397 void put_and_wait_on_page_locked(struct page *page) 1398 { 1399 wait_queue_head_t *q; 1400 1401 page = compound_head(page); 1402 q = page_waitqueue(page); 1403 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP); 1404 } 1405 1406 /** 1407 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue 1408 * @page: Page defining the wait queue of interest 1409 * @waiter: Waiter to add to the queue 1410 * 1411 * Add an arbitrary @waiter to the wait queue for the nominated @page. 1412 */ 1413 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter) 1414 { 1415 wait_queue_head_t *q = page_waitqueue(page); 1416 unsigned long flags; 1417 1418 spin_lock_irqsave(&q->lock, flags); 1419 __add_wait_queue_entry_tail(q, waiter); 1420 SetPageWaiters(page); 1421 spin_unlock_irqrestore(&q->lock, flags); 1422 } 1423 EXPORT_SYMBOL_GPL(add_page_wait_queue); 1424 1425 #ifndef clear_bit_unlock_is_negative_byte 1426 1427 /* 1428 * PG_waiters is the high bit in the same byte as PG_lock. 1429 * 1430 * On x86 (and on many other architectures), we can clear PG_lock and 1431 * test the sign bit at the same time. But if the architecture does 1432 * not support that special operation, we just do this all by hand 1433 * instead. 1434 * 1435 * The read of PG_waiters has to be after (or concurrently with) PG_locked 1436 * being cleared, but a memory barrier should be unnecessary since it is 1437 * in the same byte as PG_locked. 1438 */ 1439 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem) 1440 { 1441 clear_bit_unlock(nr, mem); 1442 /* smp_mb__after_atomic(); */ 1443 return test_bit(PG_waiters, mem); 1444 } 1445 1446 #endif 1447 1448 /** 1449 * unlock_page - unlock a locked page 1450 * @page: the page 1451 * 1452 * Unlocks the page and wakes up sleepers in wait_on_page_locked(). 1453 * Also wakes sleepers in wait_on_page_writeback() because the wakeup 1454 * mechanism between PageLocked pages and PageWriteback pages is shared. 1455 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. 1456 * 1457 * Note that this depends on PG_waiters being the sign bit in the byte 1458 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to 1459 * clear the PG_locked bit and test PG_waiters at the same time fairly 1460 * portably (architectures that do LL/SC can test any bit, while x86 can 1461 * test the sign bit). 1462 */ 1463 void unlock_page(struct page *page) 1464 { 1465 BUILD_BUG_ON(PG_waiters != 7); 1466 page = compound_head(page); 1467 VM_BUG_ON_PAGE(!PageLocked(page), page); 1468 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags)) 1469 wake_up_page_bit(page, PG_locked); 1470 } 1471 EXPORT_SYMBOL(unlock_page); 1472 1473 /** 1474 * end_page_writeback - end writeback against a page 1475 * @page: the page 1476 */ 1477 void end_page_writeback(struct page *page) 1478 { 1479 /* 1480 * TestClearPageReclaim could be used here but it is an atomic 1481 * operation and overkill in this particular case. Failing to 1482 * shuffle a page marked for immediate reclaim is too mild to 1483 * justify taking an atomic operation penalty at the end of 1484 * ever page writeback. 1485 */ 1486 if (PageReclaim(page)) { 1487 ClearPageReclaim(page); 1488 rotate_reclaimable_page(page); 1489 } 1490 1491 /* 1492 * Writeback does not hold a page reference of its own, relying 1493 * on truncation to wait for the clearing of PG_writeback. 1494 * But here we must make sure that the page is not freed and 1495 * reused before the wake_up_page(). 1496 */ 1497 get_page(page); 1498 if (!test_clear_page_writeback(page)) 1499 BUG(); 1500 1501 smp_mb__after_atomic(); 1502 wake_up_page(page, PG_writeback); 1503 put_page(page); 1504 } 1505 EXPORT_SYMBOL(end_page_writeback); 1506 1507 /* 1508 * After completing I/O on a page, call this routine to update the page 1509 * flags appropriately 1510 */ 1511 void page_endio(struct page *page, bool is_write, int err) 1512 { 1513 if (!is_write) { 1514 if (!err) { 1515 SetPageUptodate(page); 1516 } else { 1517 ClearPageUptodate(page); 1518 SetPageError(page); 1519 } 1520 unlock_page(page); 1521 } else { 1522 if (err) { 1523 struct address_space *mapping; 1524 1525 SetPageError(page); 1526 mapping = page_mapping(page); 1527 if (mapping) 1528 mapping_set_error(mapping, err); 1529 } 1530 end_page_writeback(page); 1531 } 1532 } 1533 EXPORT_SYMBOL_GPL(page_endio); 1534 1535 /** 1536 * __lock_page - get a lock on the page, assuming we need to sleep to get it 1537 * @__page: the page to lock 1538 */ 1539 void __lock_page(struct page *__page) 1540 { 1541 struct page *page = compound_head(__page); 1542 wait_queue_head_t *q = page_waitqueue(page); 1543 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, 1544 EXCLUSIVE); 1545 } 1546 EXPORT_SYMBOL(__lock_page); 1547 1548 int __lock_page_killable(struct page *__page) 1549 { 1550 struct page *page = compound_head(__page); 1551 wait_queue_head_t *q = page_waitqueue(page); 1552 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, 1553 EXCLUSIVE); 1554 } 1555 EXPORT_SYMBOL_GPL(__lock_page_killable); 1556 1557 int __lock_page_async(struct page *page, struct wait_page_queue *wait) 1558 { 1559 return __wait_on_page_locked_async(page, wait, true); 1560 } 1561 1562 /* 1563 * Return values: 1564 * 1 - page is locked; mmap_lock is still held. 1565 * 0 - page is not locked. 1566 * mmap_lock has been released (mmap_read_unlock(), unless flags had both 1567 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in 1568 * which case mmap_lock is still held. 1569 * 1570 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1 1571 * with the page locked and the mmap_lock unperturbed. 1572 */ 1573 int __lock_page_or_retry(struct page *page, struct mm_struct *mm, 1574 unsigned int flags) 1575 { 1576 if (fault_flag_allow_retry_first(flags)) { 1577 /* 1578 * CAUTION! In this case, mmap_lock is not released 1579 * even though return 0. 1580 */ 1581 if (flags & FAULT_FLAG_RETRY_NOWAIT) 1582 return 0; 1583 1584 mmap_read_unlock(mm); 1585 if (flags & FAULT_FLAG_KILLABLE) 1586 wait_on_page_locked_killable(page); 1587 else 1588 wait_on_page_locked(page); 1589 return 0; 1590 } 1591 if (flags & FAULT_FLAG_KILLABLE) { 1592 int ret; 1593 1594 ret = __lock_page_killable(page); 1595 if (ret) { 1596 mmap_read_unlock(mm); 1597 return 0; 1598 } 1599 } else { 1600 __lock_page(page); 1601 } 1602 return 1; 1603 1604 } 1605 1606 /** 1607 * page_cache_next_miss() - Find the next gap in the page cache. 1608 * @mapping: Mapping. 1609 * @index: Index. 1610 * @max_scan: Maximum range to search. 1611 * 1612 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the 1613 * gap with the lowest index. 1614 * 1615 * This function may be called under the rcu_read_lock. However, this will 1616 * not atomically search a snapshot of the cache at a single point in time. 1617 * For example, if a gap is created at index 5, then subsequently a gap is 1618 * created at index 10, page_cache_next_miss covering both indices may 1619 * return 10 if called under the rcu_read_lock. 1620 * 1621 * Return: The index of the gap if found, otherwise an index outside the 1622 * range specified (in which case 'return - index >= max_scan' will be true). 1623 * In the rare case of index wrap-around, 0 will be returned. 1624 */ 1625 pgoff_t page_cache_next_miss(struct address_space *mapping, 1626 pgoff_t index, unsigned long max_scan) 1627 { 1628 XA_STATE(xas, &mapping->i_pages, index); 1629 1630 while (max_scan--) { 1631 void *entry = xas_next(&xas); 1632 if (!entry || xa_is_value(entry)) 1633 break; 1634 if (xas.xa_index == 0) 1635 break; 1636 } 1637 1638 return xas.xa_index; 1639 } 1640 EXPORT_SYMBOL(page_cache_next_miss); 1641 1642 /** 1643 * page_cache_prev_miss() - Find the previous gap in the page cache. 1644 * @mapping: Mapping. 1645 * @index: Index. 1646 * @max_scan: Maximum range to search. 1647 * 1648 * Search the range [max(index - max_scan + 1, 0), index] for the 1649 * gap with the highest index. 1650 * 1651 * This function may be called under the rcu_read_lock. However, this will 1652 * not atomically search a snapshot of the cache at a single point in time. 1653 * For example, if a gap is created at index 10, then subsequently a gap is 1654 * created at index 5, page_cache_prev_miss() covering both indices may 1655 * return 5 if called under the rcu_read_lock. 1656 * 1657 * Return: The index of the gap if found, otherwise an index outside the 1658 * range specified (in which case 'index - return >= max_scan' will be true). 1659 * In the rare case of wrap-around, ULONG_MAX will be returned. 1660 */ 1661 pgoff_t page_cache_prev_miss(struct address_space *mapping, 1662 pgoff_t index, unsigned long max_scan) 1663 { 1664 XA_STATE(xas, &mapping->i_pages, index); 1665 1666 while (max_scan--) { 1667 void *entry = xas_prev(&xas); 1668 if (!entry || xa_is_value(entry)) 1669 break; 1670 if (xas.xa_index == ULONG_MAX) 1671 break; 1672 } 1673 1674 return xas.xa_index; 1675 } 1676 EXPORT_SYMBOL(page_cache_prev_miss); 1677 1678 /** 1679 * find_get_entry - find and get a page cache entry 1680 * @mapping: the address_space to search 1681 * @index: The page cache index. 1682 * 1683 * Looks up the page cache slot at @mapping & @offset. If there is a 1684 * page cache page, the head page is returned with an increased refcount. 1685 * 1686 * If the slot holds a shadow entry of a previously evicted page, or a 1687 * swap entry from shmem/tmpfs, it is returned. 1688 * 1689 * Return: The head page or shadow entry, %NULL if nothing is found. 1690 */ 1691 struct page *find_get_entry(struct address_space *mapping, pgoff_t index) 1692 { 1693 XA_STATE(xas, &mapping->i_pages, index); 1694 struct page *page; 1695 1696 rcu_read_lock(); 1697 repeat: 1698 xas_reset(&xas); 1699 page = xas_load(&xas); 1700 if (xas_retry(&xas, page)) 1701 goto repeat; 1702 /* 1703 * A shadow entry of a recently evicted page, or a swap entry from 1704 * shmem/tmpfs. Return it without attempting to raise page count. 1705 */ 1706 if (!page || xa_is_value(page)) 1707 goto out; 1708 1709 if (!page_cache_get_speculative(page)) 1710 goto repeat; 1711 1712 /* 1713 * Has the page moved or been split? 1714 * This is part of the lockless pagecache protocol. See 1715 * include/linux/pagemap.h for details. 1716 */ 1717 if (unlikely(page != xas_reload(&xas))) { 1718 put_page(page); 1719 goto repeat; 1720 } 1721 out: 1722 rcu_read_unlock(); 1723 1724 return page; 1725 } 1726 1727 /** 1728 * find_lock_entry - Locate and lock a page cache entry. 1729 * @mapping: The address_space to search. 1730 * @index: The page cache index. 1731 * 1732 * Looks up the page at @mapping & @index. If there is a page in the 1733 * cache, the head page is returned locked and with an increased refcount. 1734 * 1735 * If the slot holds a shadow entry of a previously evicted page, or a 1736 * swap entry from shmem/tmpfs, it is returned. 1737 * 1738 * Context: May sleep. 1739 * Return: The head page or shadow entry, %NULL if nothing is found. 1740 */ 1741 struct page *find_lock_entry(struct address_space *mapping, pgoff_t index) 1742 { 1743 struct page *page; 1744 1745 repeat: 1746 page = find_get_entry(mapping, index); 1747 if (page && !xa_is_value(page)) { 1748 lock_page(page); 1749 /* Has the page been truncated? */ 1750 if (unlikely(page->mapping != mapping)) { 1751 unlock_page(page); 1752 put_page(page); 1753 goto repeat; 1754 } 1755 VM_BUG_ON_PAGE(!thp_contains(page, index), page); 1756 } 1757 return page; 1758 } 1759 1760 /** 1761 * pagecache_get_page - Find and get a reference to a page. 1762 * @mapping: The address_space to search. 1763 * @index: The page index. 1764 * @fgp_flags: %FGP flags modify how the page is returned. 1765 * @gfp_mask: Memory allocation flags to use if %FGP_CREAT is specified. 1766 * 1767 * Looks up the page cache entry at @mapping & @index. 1768 * 1769 * @fgp_flags can be zero or more of these flags: 1770 * 1771 * * %FGP_ACCESSED - The page will be marked accessed. 1772 * * %FGP_LOCK - The page is returned locked. 1773 * * %FGP_HEAD - If the page is present and a THP, return the head page 1774 * rather than the exact page specified by the index. 1775 * * %FGP_CREAT - If no page is present then a new page is allocated using 1776 * @gfp_mask and added to the page cache and the VM's LRU list. 1777 * The page is returned locked and with an increased refcount. 1778 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the 1779 * page is already in cache. If the page was allocated, unlock it before 1780 * returning so the caller can do the same dance. 1781 * * %FGP_WRITE - The page will be written 1782 * * %FGP_NOFS - __GFP_FS will get cleared in gfp mask 1783 * * %FGP_NOWAIT - Don't get blocked by page lock 1784 * 1785 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even 1786 * if the %GFP flags specified for %FGP_CREAT are atomic. 1787 * 1788 * If there is a page cache page, it is returned with an increased refcount. 1789 * 1790 * Return: The found page or %NULL otherwise. 1791 */ 1792 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index, 1793 int fgp_flags, gfp_t gfp_mask) 1794 { 1795 struct page *page; 1796 1797 repeat: 1798 page = find_get_entry(mapping, index); 1799 if (xa_is_value(page)) 1800 page = NULL; 1801 if (!page) 1802 goto no_page; 1803 1804 if (fgp_flags & FGP_LOCK) { 1805 if (fgp_flags & FGP_NOWAIT) { 1806 if (!trylock_page(page)) { 1807 put_page(page); 1808 return NULL; 1809 } 1810 } else { 1811 lock_page(page); 1812 } 1813 1814 /* Has the page been truncated? */ 1815 if (unlikely(page->mapping != mapping)) { 1816 unlock_page(page); 1817 put_page(page); 1818 goto repeat; 1819 } 1820 VM_BUG_ON_PAGE(!thp_contains(page, index), page); 1821 } 1822 1823 if (fgp_flags & FGP_ACCESSED) 1824 mark_page_accessed(page); 1825 else if (fgp_flags & FGP_WRITE) { 1826 /* Clear idle flag for buffer write */ 1827 if (page_is_idle(page)) 1828 clear_page_idle(page); 1829 } 1830 if (!(fgp_flags & FGP_HEAD)) 1831 page = find_subpage(page, index); 1832 1833 no_page: 1834 if (!page && (fgp_flags & FGP_CREAT)) { 1835 int err; 1836 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping)) 1837 gfp_mask |= __GFP_WRITE; 1838 if (fgp_flags & FGP_NOFS) 1839 gfp_mask &= ~__GFP_FS; 1840 1841 page = __page_cache_alloc(gfp_mask); 1842 if (!page) 1843 return NULL; 1844 1845 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP)))) 1846 fgp_flags |= FGP_LOCK; 1847 1848 /* Init accessed so avoid atomic mark_page_accessed later */ 1849 if (fgp_flags & FGP_ACCESSED) 1850 __SetPageReferenced(page); 1851 1852 err = add_to_page_cache_lru(page, mapping, index, gfp_mask); 1853 if (unlikely(err)) { 1854 put_page(page); 1855 page = NULL; 1856 if (err == -EEXIST) 1857 goto repeat; 1858 } 1859 1860 /* 1861 * add_to_page_cache_lru locks the page, and for mmap we expect 1862 * an unlocked page. 1863 */ 1864 if (page && (fgp_flags & FGP_FOR_MMAP)) 1865 unlock_page(page); 1866 } 1867 1868 return page; 1869 } 1870 EXPORT_SYMBOL(pagecache_get_page); 1871 1872 /** 1873 * find_get_entries - gang pagecache lookup 1874 * @mapping: The address_space to search 1875 * @start: The starting page cache index 1876 * @nr_entries: The maximum number of entries 1877 * @entries: Where the resulting entries are placed 1878 * @indices: The cache indices corresponding to the entries in @entries 1879 * 1880 * find_get_entries() will search for and return a group of up to 1881 * @nr_entries entries in the mapping. The entries are placed at 1882 * @entries. find_get_entries() takes a reference against any actual 1883 * pages it returns. 1884 * 1885 * The search returns a group of mapping-contiguous page cache entries 1886 * with ascending indexes. There may be holes in the indices due to 1887 * not-present pages. 1888 * 1889 * Any shadow entries of evicted pages, or swap entries from 1890 * shmem/tmpfs, are included in the returned array. 1891 * 1892 * If it finds a Transparent Huge Page, head or tail, find_get_entries() 1893 * stops at that page: the caller is likely to have a better way to handle 1894 * the compound page as a whole, and then skip its extent, than repeatedly 1895 * calling find_get_entries() to return all its tails. 1896 * 1897 * Return: the number of pages and shadow entries which were found. 1898 */ 1899 unsigned find_get_entries(struct address_space *mapping, 1900 pgoff_t start, unsigned int nr_entries, 1901 struct page **entries, pgoff_t *indices) 1902 { 1903 XA_STATE(xas, &mapping->i_pages, start); 1904 struct page *page; 1905 unsigned int ret = 0; 1906 1907 if (!nr_entries) 1908 return 0; 1909 1910 rcu_read_lock(); 1911 xas_for_each(&xas, page, ULONG_MAX) { 1912 if (xas_retry(&xas, page)) 1913 continue; 1914 /* 1915 * A shadow entry of a recently evicted page, a swap 1916 * entry from shmem/tmpfs or a DAX entry. Return it 1917 * without attempting to raise page count. 1918 */ 1919 if (xa_is_value(page)) 1920 goto export; 1921 1922 if (!page_cache_get_speculative(page)) 1923 goto retry; 1924 1925 /* Has the page moved or been split? */ 1926 if (unlikely(page != xas_reload(&xas))) 1927 goto put_page; 1928 1929 /* 1930 * Terminate early on finding a THP, to allow the caller to 1931 * handle it all at once; but continue if this is hugetlbfs. 1932 */ 1933 if (PageTransHuge(page) && !PageHuge(page)) { 1934 page = find_subpage(page, xas.xa_index); 1935 nr_entries = ret + 1; 1936 } 1937 export: 1938 indices[ret] = xas.xa_index; 1939 entries[ret] = page; 1940 if (++ret == nr_entries) 1941 break; 1942 continue; 1943 put_page: 1944 put_page(page); 1945 retry: 1946 xas_reset(&xas); 1947 } 1948 rcu_read_unlock(); 1949 return ret; 1950 } 1951 1952 /** 1953 * find_get_pages_range - gang pagecache lookup 1954 * @mapping: The address_space to search 1955 * @start: The starting page index 1956 * @end: The final page index (inclusive) 1957 * @nr_pages: The maximum number of pages 1958 * @pages: Where the resulting pages are placed 1959 * 1960 * find_get_pages_range() will search for and return a group of up to @nr_pages 1961 * pages in the mapping starting at index @start and up to index @end 1962 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes 1963 * a reference against the returned pages. 1964 * 1965 * The search returns a group of mapping-contiguous pages with ascending 1966 * indexes. There may be holes in the indices due to not-present pages. 1967 * We also update @start to index the next page for the traversal. 1968 * 1969 * Return: the number of pages which were found. If this number is 1970 * smaller than @nr_pages, the end of specified range has been 1971 * reached. 1972 */ 1973 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start, 1974 pgoff_t end, unsigned int nr_pages, 1975 struct page **pages) 1976 { 1977 XA_STATE(xas, &mapping->i_pages, *start); 1978 struct page *page; 1979 unsigned ret = 0; 1980 1981 if (unlikely(!nr_pages)) 1982 return 0; 1983 1984 rcu_read_lock(); 1985 xas_for_each(&xas, page, end) { 1986 if (xas_retry(&xas, page)) 1987 continue; 1988 /* Skip over shadow, swap and DAX entries */ 1989 if (xa_is_value(page)) 1990 continue; 1991 1992 if (!page_cache_get_speculative(page)) 1993 goto retry; 1994 1995 /* Has the page moved or been split? */ 1996 if (unlikely(page != xas_reload(&xas))) 1997 goto put_page; 1998 1999 pages[ret] = find_subpage(page, xas.xa_index); 2000 if (++ret == nr_pages) { 2001 *start = xas.xa_index + 1; 2002 goto out; 2003 } 2004 continue; 2005 put_page: 2006 put_page(page); 2007 retry: 2008 xas_reset(&xas); 2009 } 2010 2011 /* 2012 * We come here when there is no page beyond @end. We take care to not 2013 * overflow the index @start as it confuses some of the callers. This 2014 * breaks the iteration when there is a page at index -1 but that is 2015 * already broken anyway. 2016 */ 2017 if (end == (pgoff_t)-1) 2018 *start = (pgoff_t)-1; 2019 else 2020 *start = end + 1; 2021 out: 2022 rcu_read_unlock(); 2023 2024 return ret; 2025 } 2026 2027 /** 2028 * find_get_pages_contig - gang contiguous pagecache lookup 2029 * @mapping: The address_space to search 2030 * @index: The starting page index 2031 * @nr_pages: The maximum number of pages 2032 * @pages: Where the resulting pages are placed 2033 * 2034 * find_get_pages_contig() works exactly like find_get_pages(), except 2035 * that the returned number of pages are guaranteed to be contiguous. 2036 * 2037 * Return: the number of pages which were found. 2038 */ 2039 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, 2040 unsigned int nr_pages, struct page **pages) 2041 { 2042 XA_STATE(xas, &mapping->i_pages, index); 2043 struct page *page; 2044 unsigned int ret = 0; 2045 2046 if (unlikely(!nr_pages)) 2047 return 0; 2048 2049 rcu_read_lock(); 2050 for (page = xas_load(&xas); page; page = xas_next(&xas)) { 2051 if (xas_retry(&xas, page)) 2052 continue; 2053 /* 2054 * If the entry has been swapped out, we can stop looking. 2055 * No current caller is looking for DAX entries. 2056 */ 2057 if (xa_is_value(page)) 2058 break; 2059 2060 if (!page_cache_get_speculative(page)) 2061 goto retry; 2062 2063 /* Has the page moved or been split? */ 2064 if (unlikely(page != xas_reload(&xas))) 2065 goto put_page; 2066 2067 pages[ret] = find_subpage(page, xas.xa_index); 2068 if (++ret == nr_pages) 2069 break; 2070 continue; 2071 put_page: 2072 put_page(page); 2073 retry: 2074 xas_reset(&xas); 2075 } 2076 rcu_read_unlock(); 2077 return ret; 2078 } 2079 EXPORT_SYMBOL(find_get_pages_contig); 2080 2081 /** 2082 * find_get_pages_range_tag - find and return pages in given range matching @tag 2083 * @mapping: the address_space to search 2084 * @index: the starting page index 2085 * @end: The final page index (inclusive) 2086 * @tag: the tag index 2087 * @nr_pages: the maximum number of pages 2088 * @pages: where the resulting pages are placed 2089 * 2090 * Like find_get_pages, except we only return pages which are tagged with 2091 * @tag. We update @index to index the next page for the traversal. 2092 * 2093 * Return: the number of pages which were found. 2094 */ 2095 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index, 2096 pgoff_t end, xa_mark_t tag, unsigned int nr_pages, 2097 struct page **pages) 2098 { 2099 XA_STATE(xas, &mapping->i_pages, *index); 2100 struct page *page; 2101 unsigned ret = 0; 2102 2103 if (unlikely(!nr_pages)) 2104 return 0; 2105 2106 rcu_read_lock(); 2107 xas_for_each_marked(&xas, page, end, tag) { 2108 if (xas_retry(&xas, page)) 2109 continue; 2110 /* 2111 * Shadow entries should never be tagged, but this iteration 2112 * is lockless so there is a window for page reclaim to evict 2113 * a page we saw tagged. Skip over it. 2114 */ 2115 if (xa_is_value(page)) 2116 continue; 2117 2118 if (!page_cache_get_speculative(page)) 2119 goto retry; 2120 2121 /* Has the page moved or been split? */ 2122 if (unlikely(page != xas_reload(&xas))) 2123 goto put_page; 2124 2125 pages[ret] = find_subpage(page, xas.xa_index); 2126 if (++ret == nr_pages) { 2127 *index = xas.xa_index + 1; 2128 goto out; 2129 } 2130 continue; 2131 put_page: 2132 put_page(page); 2133 retry: 2134 xas_reset(&xas); 2135 } 2136 2137 /* 2138 * We come here when we got to @end. We take care to not overflow the 2139 * index @index as it confuses some of the callers. This breaks the 2140 * iteration when there is a page at index -1 but that is already 2141 * broken anyway. 2142 */ 2143 if (end == (pgoff_t)-1) 2144 *index = (pgoff_t)-1; 2145 else 2146 *index = end + 1; 2147 out: 2148 rcu_read_unlock(); 2149 2150 return ret; 2151 } 2152 EXPORT_SYMBOL(find_get_pages_range_tag); 2153 2154 /* 2155 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 2156 * a _large_ part of the i/o request. Imagine the worst scenario: 2157 * 2158 * ---R__________________________________________B__________ 2159 * ^ reading here ^ bad block(assume 4k) 2160 * 2161 * read(R) => miss => readahead(R...B) => media error => frustrating retries 2162 * => failing the whole request => read(R) => read(R+1) => 2163 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 2164 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 2165 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 2166 * 2167 * It is going insane. Fix it by quickly scaling down the readahead size. 2168 */ 2169 static void shrink_readahead_size_eio(struct file_ra_state *ra) 2170 { 2171 ra->ra_pages /= 4; 2172 } 2173 2174 static int lock_page_for_iocb(struct kiocb *iocb, struct page *page) 2175 { 2176 if (iocb->ki_flags & IOCB_WAITQ) 2177 return lock_page_async(page, iocb->ki_waitq); 2178 else if (iocb->ki_flags & IOCB_NOWAIT) 2179 return trylock_page(page) ? 0 : -EAGAIN; 2180 else 2181 return lock_page_killable(page); 2182 } 2183 2184 static struct page * 2185 generic_file_buffered_read_readpage(struct kiocb *iocb, 2186 struct file *filp, 2187 struct address_space *mapping, 2188 struct page *page) 2189 { 2190 struct file_ra_state *ra = &filp->f_ra; 2191 int error; 2192 2193 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT)) { 2194 unlock_page(page); 2195 put_page(page); 2196 return ERR_PTR(-EAGAIN); 2197 } 2198 2199 /* 2200 * A previous I/O error may have been due to temporary 2201 * failures, eg. multipath errors. 2202 * PG_error will be set again if readpage fails. 2203 */ 2204 ClearPageError(page); 2205 /* Start the actual read. The read will unlock the page. */ 2206 error = mapping->a_ops->readpage(filp, page); 2207 2208 if (unlikely(error)) { 2209 put_page(page); 2210 return error != AOP_TRUNCATED_PAGE ? ERR_PTR(error) : NULL; 2211 } 2212 2213 if (!PageUptodate(page)) { 2214 error = lock_page_for_iocb(iocb, page); 2215 if (unlikely(error)) { 2216 put_page(page); 2217 return ERR_PTR(error); 2218 } 2219 if (!PageUptodate(page)) { 2220 if (page->mapping == NULL) { 2221 /* 2222 * invalidate_mapping_pages got it 2223 */ 2224 unlock_page(page); 2225 put_page(page); 2226 return NULL; 2227 } 2228 unlock_page(page); 2229 shrink_readahead_size_eio(ra); 2230 put_page(page); 2231 return ERR_PTR(-EIO); 2232 } 2233 unlock_page(page); 2234 } 2235 2236 return page; 2237 } 2238 2239 static struct page * 2240 generic_file_buffered_read_pagenotuptodate(struct kiocb *iocb, 2241 struct file *filp, 2242 struct iov_iter *iter, 2243 struct page *page, 2244 loff_t pos, loff_t count) 2245 { 2246 struct address_space *mapping = filp->f_mapping; 2247 struct inode *inode = mapping->host; 2248 int error; 2249 2250 /* 2251 * See comment in do_read_cache_page on why 2252 * wait_on_page_locked is used to avoid unnecessarily 2253 * serialisations and why it's safe. 2254 */ 2255 if (iocb->ki_flags & IOCB_WAITQ) { 2256 error = wait_on_page_locked_async(page, 2257 iocb->ki_waitq); 2258 } else { 2259 error = wait_on_page_locked_killable(page); 2260 } 2261 if (unlikely(error)) { 2262 put_page(page); 2263 return ERR_PTR(error); 2264 } 2265 if (PageUptodate(page)) 2266 return page; 2267 2268 if (inode->i_blkbits == PAGE_SHIFT || 2269 !mapping->a_ops->is_partially_uptodate) 2270 goto page_not_up_to_date; 2271 /* pipes can't handle partially uptodate pages */ 2272 if (unlikely(iov_iter_is_pipe(iter))) 2273 goto page_not_up_to_date; 2274 if (!trylock_page(page)) 2275 goto page_not_up_to_date; 2276 /* Did it get truncated before we got the lock? */ 2277 if (!page->mapping) 2278 goto page_not_up_to_date_locked; 2279 if (!mapping->a_ops->is_partially_uptodate(page, 2280 pos & ~PAGE_MASK, count)) 2281 goto page_not_up_to_date_locked; 2282 unlock_page(page); 2283 return page; 2284 2285 page_not_up_to_date: 2286 /* Get exclusive access to the page ... */ 2287 error = lock_page_for_iocb(iocb, page); 2288 if (unlikely(error)) { 2289 put_page(page); 2290 return ERR_PTR(error); 2291 } 2292 2293 page_not_up_to_date_locked: 2294 /* Did it get truncated before we got the lock? */ 2295 if (!page->mapping) { 2296 unlock_page(page); 2297 put_page(page); 2298 return NULL; 2299 } 2300 2301 /* Did somebody else fill it already? */ 2302 if (PageUptodate(page)) { 2303 unlock_page(page); 2304 return page; 2305 } 2306 2307 return generic_file_buffered_read_readpage(iocb, filp, mapping, page); 2308 } 2309 2310 static struct page * 2311 generic_file_buffered_read_no_cached_page(struct kiocb *iocb, 2312 struct iov_iter *iter) 2313 { 2314 struct file *filp = iocb->ki_filp; 2315 struct address_space *mapping = filp->f_mapping; 2316 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT; 2317 struct page *page; 2318 int error; 2319 2320 if (iocb->ki_flags & IOCB_NOIO) 2321 return ERR_PTR(-EAGAIN); 2322 2323 /* 2324 * Ok, it wasn't cached, so we need to create a new 2325 * page.. 2326 */ 2327 page = page_cache_alloc(mapping); 2328 if (!page) 2329 return ERR_PTR(-ENOMEM); 2330 2331 error = add_to_page_cache_lru(page, mapping, index, 2332 mapping_gfp_constraint(mapping, GFP_KERNEL)); 2333 if (error) { 2334 put_page(page); 2335 return error != -EEXIST ? ERR_PTR(error) : NULL; 2336 } 2337 2338 return generic_file_buffered_read_readpage(iocb, filp, mapping, page); 2339 } 2340 2341 static int generic_file_buffered_read_get_pages(struct kiocb *iocb, 2342 struct iov_iter *iter, 2343 struct page **pages, 2344 unsigned int nr) 2345 { 2346 struct file *filp = iocb->ki_filp; 2347 struct address_space *mapping = filp->f_mapping; 2348 struct file_ra_state *ra = &filp->f_ra; 2349 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT; 2350 pgoff_t last_index = (iocb->ki_pos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT; 2351 int i, j, nr_got, err = 0; 2352 2353 nr = min_t(unsigned long, last_index - index, nr); 2354 find_page: 2355 if (fatal_signal_pending(current)) 2356 return -EINTR; 2357 2358 nr_got = find_get_pages_contig(mapping, index, nr, pages); 2359 if (nr_got) 2360 goto got_pages; 2361 2362 if (iocb->ki_flags & IOCB_NOIO) 2363 return -EAGAIN; 2364 2365 page_cache_sync_readahead(mapping, ra, filp, index, last_index - index); 2366 2367 nr_got = find_get_pages_contig(mapping, index, nr, pages); 2368 if (nr_got) 2369 goto got_pages; 2370 2371 pages[0] = generic_file_buffered_read_no_cached_page(iocb, iter); 2372 err = PTR_ERR_OR_ZERO(pages[0]); 2373 if (!IS_ERR_OR_NULL(pages[0])) 2374 nr_got = 1; 2375 got_pages: 2376 for (i = 0; i < nr_got; i++) { 2377 struct page *page = pages[i]; 2378 pgoff_t pg_index = index + i; 2379 loff_t pg_pos = max(iocb->ki_pos, 2380 (loff_t) pg_index << PAGE_SHIFT); 2381 loff_t pg_count = iocb->ki_pos + iter->count - pg_pos; 2382 2383 if (PageReadahead(page)) { 2384 if (iocb->ki_flags & IOCB_NOIO) { 2385 for (j = i; j < nr_got; j++) 2386 put_page(pages[j]); 2387 nr_got = i; 2388 err = -EAGAIN; 2389 break; 2390 } 2391 page_cache_async_readahead(mapping, ra, filp, page, 2392 pg_index, last_index - pg_index); 2393 } 2394 2395 if (!PageUptodate(page)) { 2396 if ((iocb->ki_flags & IOCB_NOWAIT) || 2397 ((iocb->ki_flags & IOCB_WAITQ) && i)) { 2398 for (j = i; j < nr_got; j++) 2399 put_page(pages[j]); 2400 nr_got = i; 2401 err = -EAGAIN; 2402 break; 2403 } 2404 2405 page = generic_file_buffered_read_pagenotuptodate(iocb, 2406 filp, iter, page, pg_pos, pg_count); 2407 if (IS_ERR_OR_NULL(page)) { 2408 for (j = i + 1; j < nr_got; j++) 2409 put_page(pages[j]); 2410 nr_got = i; 2411 err = PTR_ERR_OR_ZERO(page); 2412 break; 2413 } 2414 } 2415 } 2416 2417 if (likely(nr_got)) 2418 return nr_got; 2419 if (err) 2420 return err; 2421 /* 2422 * No pages and no error means we raced and should retry: 2423 */ 2424 goto find_page; 2425 } 2426 2427 /** 2428 * generic_file_buffered_read - generic file read routine 2429 * @iocb: the iocb to read 2430 * @iter: data destination 2431 * @written: already copied 2432 * 2433 * This is a generic file read routine, and uses the 2434 * mapping->a_ops->readpage() function for the actual low-level stuff. 2435 * 2436 * This is really ugly. But the goto's actually try to clarify some 2437 * of the logic when it comes to error handling etc. 2438 * 2439 * Return: 2440 * * total number of bytes copied, including those the were already @written 2441 * * negative error code if nothing was copied 2442 */ 2443 ssize_t generic_file_buffered_read(struct kiocb *iocb, 2444 struct iov_iter *iter, ssize_t written) 2445 { 2446 struct file *filp = iocb->ki_filp; 2447 struct file_ra_state *ra = &filp->f_ra; 2448 struct address_space *mapping = filp->f_mapping; 2449 struct inode *inode = mapping->host; 2450 struct page *pages_onstack[PAGEVEC_SIZE], **pages = NULL; 2451 unsigned int nr_pages = min_t(unsigned int, 512, 2452 ((iocb->ki_pos + iter->count + PAGE_SIZE - 1) >> PAGE_SHIFT) - 2453 (iocb->ki_pos >> PAGE_SHIFT)); 2454 int i, pg_nr, error = 0; 2455 bool writably_mapped; 2456 loff_t isize, end_offset; 2457 2458 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes)) 2459 return 0; 2460 if (unlikely(!iov_iter_count(iter))) 2461 return 0; 2462 2463 iov_iter_truncate(iter, inode->i_sb->s_maxbytes); 2464 2465 if (nr_pages > ARRAY_SIZE(pages_onstack)) 2466 pages = kmalloc_array(nr_pages, sizeof(void *), GFP_KERNEL); 2467 2468 if (!pages) { 2469 pages = pages_onstack; 2470 nr_pages = min_t(unsigned int, nr_pages, ARRAY_SIZE(pages_onstack)); 2471 } 2472 2473 do { 2474 cond_resched(); 2475 2476 /* 2477 * If we've already successfully copied some data, then we 2478 * can no longer safely return -EIOCBQUEUED. Hence mark 2479 * an async read NOWAIT at that point. 2480 */ 2481 if ((iocb->ki_flags & IOCB_WAITQ) && written) 2482 iocb->ki_flags |= IOCB_NOWAIT; 2483 2484 i = 0; 2485 pg_nr = generic_file_buffered_read_get_pages(iocb, iter, 2486 pages, nr_pages); 2487 if (pg_nr < 0) { 2488 error = pg_nr; 2489 break; 2490 } 2491 2492 /* 2493 * i_size must be checked after we know the pages are Uptodate. 2494 * 2495 * Checking i_size after the check allows us to calculate 2496 * the correct value for "nr", which means the zero-filled 2497 * part of the page is not copied back to userspace (unless 2498 * another truncate extends the file - this is desired though). 2499 */ 2500 isize = i_size_read(inode); 2501 if (unlikely(iocb->ki_pos >= isize)) 2502 goto put_pages; 2503 2504 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count); 2505 2506 while ((iocb->ki_pos >> PAGE_SHIFT) + pg_nr > 2507 (end_offset + PAGE_SIZE - 1) >> PAGE_SHIFT) 2508 put_page(pages[--pg_nr]); 2509 2510 /* 2511 * Once we start copying data, we don't want to be touching any 2512 * cachelines that might be contended: 2513 */ 2514 writably_mapped = mapping_writably_mapped(mapping); 2515 2516 /* 2517 * When a sequential read accesses a page several times, only 2518 * mark it as accessed the first time. 2519 */ 2520 if (iocb->ki_pos >> PAGE_SHIFT != 2521 ra->prev_pos >> PAGE_SHIFT) 2522 mark_page_accessed(pages[0]); 2523 for (i = 1; i < pg_nr; i++) 2524 mark_page_accessed(pages[i]); 2525 2526 for (i = 0; i < pg_nr; i++) { 2527 unsigned int offset = iocb->ki_pos & ~PAGE_MASK; 2528 unsigned int bytes = min_t(loff_t, end_offset - iocb->ki_pos, 2529 PAGE_SIZE - offset); 2530 unsigned int copied; 2531 2532 /* 2533 * If users can be writing to this page using arbitrary 2534 * virtual addresses, take care about potential aliasing 2535 * before reading the page on the kernel side. 2536 */ 2537 if (writably_mapped) 2538 flush_dcache_page(pages[i]); 2539 2540 copied = copy_page_to_iter(pages[i], offset, bytes, iter); 2541 2542 written += copied; 2543 iocb->ki_pos += copied; 2544 ra->prev_pos = iocb->ki_pos; 2545 2546 if (copied < bytes) { 2547 error = -EFAULT; 2548 break; 2549 } 2550 } 2551 put_pages: 2552 for (i = 0; i < pg_nr; i++) 2553 put_page(pages[i]); 2554 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error); 2555 2556 file_accessed(filp); 2557 2558 if (pages != pages_onstack) 2559 kfree(pages); 2560 2561 return written ? written : error; 2562 } 2563 EXPORT_SYMBOL_GPL(generic_file_buffered_read); 2564 2565 /** 2566 * generic_file_read_iter - generic filesystem read routine 2567 * @iocb: kernel I/O control block 2568 * @iter: destination for the data read 2569 * 2570 * This is the "read_iter()" routine for all filesystems 2571 * that can use the page cache directly. 2572 * 2573 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall 2574 * be returned when no data can be read without waiting for I/O requests 2575 * to complete; it doesn't prevent readahead. 2576 * 2577 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O 2578 * requests shall be made for the read or for readahead. When no data 2579 * can be read, -EAGAIN shall be returned. When readahead would be 2580 * triggered, a partial, possibly empty read shall be returned. 2581 * 2582 * Return: 2583 * * number of bytes copied, even for partial reads 2584 * * negative error code (or 0 if IOCB_NOIO) if nothing was read 2585 */ 2586 ssize_t 2587 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 2588 { 2589 size_t count = iov_iter_count(iter); 2590 ssize_t retval = 0; 2591 2592 if (!count) 2593 goto out; /* skip atime */ 2594 2595 if (iocb->ki_flags & IOCB_DIRECT) { 2596 struct file *file = iocb->ki_filp; 2597 struct address_space *mapping = file->f_mapping; 2598 struct inode *inode = mapping->host; 2599 loff_t size; 2600 2601 size = i_size_read(inode); 2602 if (iocb->ki_flags & IOCB_NOWAIT) { 2603 if (filemap_range_has_page(mapping, iocb->ki_pos, 2604 iocb->ki_pos + count - 1)) 2605 return -EAGAIN; 2606 } else { 2607 retval = filemap_write_and_wait_range(mapping, 2608 iocb->ki_pos, 2609 iocb->ki_pos + count - 1); 2610 if (retval < 0) 2611 goto out; 2612 } 2613 2614 file_accessed(file); 2615 2616 retval = mapping->a_ops->direct_IO(iocb, iter); 2617 if (retval >= 0) { 2618 iocb->ki_pos += retval; 2619 count -= retval; 2620 } 2621 iov_iter_revert(iter, count - iov_iter_count(iter)); 2622 2623 /* 2624 * Btrfs can have a short DIO read if we encounter 2625 * compressed extents, so if there was an error, or if 2626 * we've already read everything we wanted to, or if 2627 * there was a short read because we hit EOF, go ahead 2628 * and return. Otherwise fallthrough to buffered io for 2629 * the rest of the read. Buffered reads will not work for 2630 * DAX files, so don't bother trying. 2631 */ 2632 if (retval < 0 || !count || iocb->ki_pos >= size || 2633 IS_DAX(inode)) 2634 goto out; 2635 } 2636 2637 retval = generic_file_buffered_read(iocb, iter, retval); 2638 out: 2639 return retval; 2640 } 2641 EXPORT_SYMBOL(generic_file_read_iter); 2642 2643 #ifdef CONFIG_MMU 2644 #define MMAP_LOTSAMISS (100) 2645 /* 2646 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock 2647 * @vmf - the vm_fault for this fault. 2648 * @page - the page to lock. 2649 * @fpin - the pointer to the file we may pin (or is already pinned). 2650 * 2651 * This works similar to lock_page_or_retry in that it can drop the mmap_lock. 2652 * It differs in that it actually returns the page locked if it returns 1 and 0 2653 * if it couldn't lock the page. If we did have to drop the mmap_lock then fpin 2654 * will point to the pinned file and needs to be fput()'ed at a later point. 2655 */ 2656 static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page, 2657 struct file **fpin) 2658 { 2659 if (trylock_page(page)) 2660 return 1; 2661 2662 /* 2663 * NOTE! This will make us return with VM_FAULT_RETRY, but with 2664 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT 2665 * is supposed to work. We have way too many special cases.. 2666 */ 2667 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 2668 return 0; 2669 2670 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin); 2671 if (vmf->flags & FAULT_FLAG_KILLABLE) { 2672 if (__lock_page_killable(page)) { 2673 /* 2674 * We didn't have the right flags to drop the mmap_lock, 2675 * but all fault_handlers only check for fatal signals 2676 * if we return VM_FAULT_RETRY, so we need to drop the 2677 * mmap_lock here and return 0 if we don't have a fpin. 2678 */ 2679 if (*fpin == NULL) 2680 mmap_read_unlock(vmf->vma->vm_mm); 2681 return 0; 2682 } 2683 } else 2684 __lock_page(page); 2685 return 1; 2686 } 2687 2688 2689 /* 2690 * Synchronous readahead happens when we don't even find a page in the page 2691 * cache at all. We don't want to perform IO under the mmap sem, so if we have 2692 * to drop the mmap sem we return the file that was pinned in order for us to do 2693 * that. If we didn't pin a file then we return NULL. The file that is 2694 * returned needs to be fput()'ed when we're done with it. 2695 */ 2696 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf) 2697 { 2698 struct file *file = vmf->vma->vm_file; 2699 struct file_ra_state *ra = &file->f_ra; 2700 struct address_space *mapping = file->f_mapping; 2701 DEFINE_READAHEAD(ractl, file, mapping, vmf->pgoff); 2702 struct file *fpin = NULL; 2703 unsigned int mmap_miss; 2704 2705 /* If we don't want any read-ahead, don't bother */ 2706 if (vmf->vma->vm_flags & VM_RAND_READ) 2707 return fpin; 2708 if (!ra->ra_pages) 2709 return fpin; 2710 2711 if (vmf->vma->vm_flags & VM_SEQ_READ) { 2712 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 2713 page_cache_sync_ra(&ractl, ra, ra->ra_pages); 2714 return fpin; 2715 } 2716 2717 /* Avoid banging the cache line if not needed */ 2718 mmap_miss = READ_ONCE(ra->mmap_miss); 2719 if (mmap_miss < MMAP_LOTSAMISS * 10) 2720 WRITE_ONCE(ra->mmap_miss, ++mmap_miss); 2721 2722 /* 2723 * Do we miss much more than hit in this file? If so, 2724 * stop bothering with read-ahead. It will only hurt. 2725 */ 2726 if (mmap_miss > MMAP_LOTSAMISS) 2727 return fpin; 2728 2729 /* 2730 * mmap read-around 2731 */ 2732 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 2733 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2); 2734 ra->size = ra->ra_pages; 2735 ra->async_size = ra->ra_pages / 4; 2736 ractl._index = ra->start; 2737 do_page_cache_ra(&ractl, ra->size, ra->async_size); 2738 return fpin; 2739 } 2740 2741 /* 2742 * Asynchronous readahead happens when we find the page and PG_readahead, 2743 * so we want to possibly extend the readahead further. We return the file that 2744 * was pinned if we have to drop the mmap_lock in order to do IO. 2745 */ 2746 static struct file *do_async_mmap_readahead(struct vm_fault *vmf, 2747 struct page *page) 2748 { 2749 struct file *file = vmf->vma->vm_file; 2750 struct file_ra_state *ra = &file->f_ra; 2751 struct address_space *mapping = file->f_mapping; 2752 struct file *fpin = NULL; 2753 unsigned int mmap_miss; 2754 pgoff_t offset = vmf->pgoff; 2755 2756 /* If we don't want any read-ahead, don't bother */ 2757 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages) 2758 return fpin; 2759 mmap_miss = READ_ONCE(ra->mmap_miss); 2760 if (mmap_miss) 2761 WRITE_ONCE(ra->mmap_miss, --mmap_miss); 2762 if (PageReadahead(page)) { 2763 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 2764 page_cache_async_readahead(mapping, ra, file, 2765 page, offset, ra->ra_pages); 2766 } 2767 return fpin; 2768 } 2769 2770 /** 2771 * filemap_fault - read in file data for page fault handling 2772 * @vmf: struct vm_fault containing details of the fault 2773 * 2774 * filemap_fault() is invoked via the vma operations vector for a 2775 * mapped memory region to read in file data during a page fault. 2776 * 2777 * The goto's are kind of ugly, but this streamlines the normal case of having 2778 * it in the page cache, and handles the special cases reasonably without 2779 * having a lot of duplicated code. 2780 * 2781 * vma->vm_mm->mmap_lock must be held on entry. 2782 * 2783 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock 2784 * may be dropped before doing I/O or by lock_page_maybe_drop_mmap(). 2785 * 2786 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock 2787 * has not been released. 2788 * 2789 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. 2790 * 2791 * Return: bitwise-OR of %VM_FAULT_ codes. 2792 */ 2793 vm_fault_t filemap_fault(struct vm_fault *vmf) 2794 { 2795 int error; 2796 struct file *file = vmf->vma->vm_file; 2797 struct file *fpin = NULL; 2798 struct address_space *mapping = file->f_mapping; 2799 struct file_ra_state *ra = &file->f_ra; 2800 struct inode *inode = mapping->host; 2801 pgoff_t offset = vmf->pgoff; 2802 pgoff_t max_off; 2803 struct page *page; 2804 vm_fault_t ret = 0; 2805 2806 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2807 if (unlikely(offset >= max_off)) 2808 return VM_FAULT_SIGBUS; 2809 2810 /* 2811 * Do we have something in the page cache already? 2812 */ 2813 page = find_get_page(mapping, offset); 2814 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) { 2815 /* 2816 * We found the page, so try async readahead before 2817 * waiting for the lock. 2818 */ 2819 fpin = do_async_mmap_readahead(vmf, page); 2820 } else if (!page) { 2821 /* No page in the page cache at all */ 2822 count_vm_event(PGMAJFAULT); 2823 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); 2824 ret = VM_FAULT_MAJOR; 2825 fpin = do_sync_mmap_readahead(vmf); 2826 retry_find: 2827 page = pagecache_get_page(mapping, offset, 2828 FGP_CREAT|FGP_FOR_MMAP, 2829 vmf->gfp_mask); 2830 if (!page) { 2831 if (fpin) 2832 goto out_retry; 2833 return VM_FAULT_OOM; 2834 } 2835 } 2836 2837 if (!lock_page_maybe_drop_mmap(vmf, page, &fpin)) 2838 goto out_retry; 2839 2840 /* Did it get truncated? */ 2841 if (unlikely(compound_head(page)->mapping != mapping)) { 2842 unlock_page(page); 2843 put_page(page); 2844 goto retry_find; 2845 } 2846 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page); 2847 2848 /* 2849 * We have a locked page in the page cache, now we need to check 2850 * that it's up-to-date. If not, it is going to be due to an error. 2851 */ 2852 if (unlikely(!PageUptodate(page))) 2853 goto page_not_uptodate; 2854 2855 /* 2856 * We've made it this far and we had to drop our mmap_lock, now is the 2857 * time to return to the upper layer and have it re-find the vma and 2858 * redo the fault. 2859 */ 2860 if (fpin) { 2861 unlock_page(page); 2862 goto out_retry; 2863 } 2864 2865 /* 2866 * Found the page and have a reference on it. 2867 * We must recheck i_size under page lock. 2868 */ 2869 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2870 if (unlikely(offset >= max_off)) { 2871 unlock_page(page); 2872 put_page(page); 2873 return VM_FAULT_SIGBUS; 2874 } 2875 2876 vmf->page = page; 2877 return ret | VM_FAULT_LOCKED; 2878 2879 page_not_uptodate: 2880 /* 2881 * Umm, take care of errors if the page isn't up-to-date. 2882 * Try to re-read it _once_. We do this synchronously, 2883 * because there really aren't any performance issues here 2884 * and we need to check for errors. 2885 */ 2886 ClearPageError(page); 2887 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 2888 error = mapping->a_ops->readpage(file, page); 2889 if (!error) { 2890 wait_on_page_locked(page); 2891 if (!PageUptodate(page)) 2892 error = -EIO; 2893 } 2894 if (fpin) 2895 goto out_retry; 2896 put_page(page); 2897 2898 if (!error || error == AOP_TRUNCATED_PAGE) 2899 goto retry_find; 2900 2901 shrink_readahead_size_eio(ra); 2902 return VM_FAULT_SIGBUS; 2903 2904 out_retry: 2905 /* 2906 * We dropped the mmap_lock, we need to return to the fault handler to 2907 * re-find the vma and come back and find our hopefully still populated 2908 * page. 2909 */ 2910 if (page) 2911 put_page(page); 2912 if (fpin) 2913 fput(fpin); 2914 return ret | VM_FAULT_RETRY; 2915 } 2916 EXPORT_SYMBOL(filemap_fault); 2917 2918 void filemap_map_pages(struct vm_fault *vmf, 2919 pgoff_t start_pgoff, pgoff_t end_pgoff) 2920 { 2921 struct file *file = vmf->vma->vm_file; 2922 struct address_space *mapping = file->f_mapping; 2923 pgoff_t last_pgoff = start_pgoff; 2924 unsigned long max_idx; 2925 XA_STATE(xas, &mapping->i_pages, start_pgoff); 2926 struct page *head, *page; 2927 unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss); 2928 2929 rcu_read_lock(); 2930 xas_for_each(&xas, head, end_pgoff) { 2931 if (xas_retry(&xas, head)) 2932 continue; 2933 if (xa_is_value(head)) 2934 goto next; 2935 2936 /* 2937 * Check for a locked page first, as a speculative 2938 * reference may adversely influence page migration. 2939 */ 2940 if (PageLocked(head)) 2941 goto next; 2942 if (!page_cache_get_speculative(head)) 2943 goto next; 2944 2945 /* Has the page moved or been split? */ 2946 if (unlikely(head != xas_reload(&xas))) 2947 goto skip; 2948 page = find_subpage(head, xas.xa_index); 2949 2950 if (!PageUptodate(head) || 2951 PageReadahead(page) || 2952 PageHWPoison(page)) 2953 goto skip; 2954 if (!trylock_page(head)) 2955 goto skip; 2956 2957 if (head->mapping != mapping || !PageUptodate(head)) 2958 goto unlock; 2959 2960 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 2961 if (xas.xa_index >= max_idx) 2962 goto unlock; 2963 2964 if (mmap_miss > 0) 2965 mmap_miss--; 2966 2967 vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT; 2968 if (vmf->pte) 2969 vmf->pte += xas.xa_index - last_pgoff; 2970 last_pgoff = xas.xa_index; 2971 if (alloc_set_pte(vmf, page)) 2972 goto unlock; 2973 unlock_page(head); 2974 goto next; 2975 unlock: 2976 unlock_page(head); 2977 skip: 2978 put_page(head); 2979 next: 2980 /* Huge page is mapped? No need to proceed. */ 2981 if (pmd_trans_huge(*vmf->pmd)) 2982 break; 2983 } 2984 rcu_read_unlock(); 2985 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss); 2986 } 2987 EXPORT_SYMBOL(filemap_map_pages); 2988 2989 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 2990 { 2991 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 2992 struct page *page = vmf->page; 2993 vm_fault_t ret = VM_FAULT_LOCKED; 2994 2995 sb_start_pagefault(mapping->host->i_sb); 2996 file_update_time(vmf->vma->vm_file); 2997 lock_page(page); 2998 if (page->mapping != mapping) { 2999 unlock_page(page); 3000 ret = VM_FAULT_NOPAGE; 3001 goto out; 3002 } 3003 /* 3004 * We mark the page dirty already here so that when freeze is in 3005 * progress, we are guaranteed that writeback during freezing will 3006 * see the dirty page and writeprotect it again. 3007 */ 3008 set_page_dirty(page); 3009 wait_for_stable_page(page); 3010 out: 3011 sb_end_pagefault(mapping->host->i_sb); 3012 return ret; 3013 } 3014 3015 const struct vm_operations_struct generic_file_vm_ops = { 3016 .fault = filemap_fault, 3017 .map_pages = filemap_map_pages, 3018 .page_mkwrite = filemap_page_mkwrite, 3019 }; 3020 3021 /* This is used for a general mmap of a disk file */ 3022 3023 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 3024 { 3025 struct address_space *mapping = file->f_mapping; 3026 3027 if (!mapping->a_ops->readpage) 3028 return -ENOEXEC; 3029 file_accessed(file); 3030 vma->vm_ops = &generic_file_vm_ops; 3031 return 0; 3032 } 3033 3034 /* 3035 * This is for filesystems which do not implement ->writepage. 3036 */ 3037 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3038 { 3039 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 3040 return -EINVAL; 3041 return generic_file_mmap(file, vma); 3042 } 3043 #else 3044 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3045 { 3046 return VM_FAULT_SIGBUS; 3047 } 3048 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 3049 { 3050 return -ENOSYS; 3051 } 3052 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) 3053 { 3054 return -ENOSYS; 3055 } 3056 #endif /* CONFIG_MMU */ 3057 3058 EXPORT_SYMBOL(filemap_page_mkwrite); 3059 EXPORT_SYMBOL(generic_file_mmap); 3060 EXPORT_SYMBOL(generic_file_readonly_mmap); 3061 3062 static struct page *wait_on_page_read(struct page *page) 3063 { 3064 if (!IS_ERR(page)) { 3065 wait_on_page_locked(page); 3066 if (!PageUptodate(page)) { 3067 put_page(page); 3068 page = ERR_PTR(-EIO); 3069 } 3070 } 3071 return page; 3072 } 3073 3074 static struct page *do_read_cache_page(struct address_space *mapping, 3075 pgoff_t index, 3076 int (*filler)(void *, struct page *), 3077 void *data, 3078 gfp_t gfp) 3079 { 3080 struct page *page; 3081 int err; 3082 repeat: 3083 page = find_get_page(mapping, index); 3084 if (!page) { 3085 page = __page_cache_alloc(gfp); 3086 if (!page) 3087 return ERR_PTR(-ENOMEM); 3088 err = add_to_page_cache_lru(page, mapping, index, gfp); 3089 if (unlikely(err)) { 3090 put_page(page); 3091 if (err == -EEXIST) 3092 goto repeat; 3093 /* Presumably ENOMEM for xarray node */ 3094 return ERR_PTR(err); 3095 } 3096 3097 filler: 3098 if (filler) 3099 err = filler(data, page); 3100 else 3101 err = mapping->a_ops->readpage(data, page); 3102 3103 if (err < 0) { 3104 put_page(page); 3105 return ERR_PTR(err); 3106 } 3107 3108 page = wait_on_page_read(page); 3109 if (IS_ERR(page)) 3110 return page; 3111 goto out; 3112 } 3113 if (PageUptodate(page)) 3114 goto out; 3115 3116 /* 3117 * Page is not up to date and may be locked due to one of the following 3118 * case a: Page is being filled and the page lock is held 3119 * case b: Read/write error clearing the page uptodate status 3120 * case c: Truncation in progress (page locked) 3121 * case d: Reclaim in progress 3122 * 3123 * Case a, the page will be up to date when the page is unlocked. 3124 * There is no need to serialise on the page lock here as the page 3125 * is pinned so the lock gives no additional protection. Even if the 3126 * page is truncated, the data is still valid if PageUptodate as 3127 * it's a race vs truncate race. 3128 * Case b, the page will not be up to date 3129 * Case c, the page may be truncated but in itself, the data may still 3130 * be valid after IO completes as it's a read vs truncate race. The 3131 * operation must restart if the page is not uptodate on unlock but 3132 * otherwise serialising on page lock to stabilise the mapping gives 3133 * no additional guarantees to the caller as the page lock is 3134 * released before return. 3135 * Case d, similar to truncation. If reclaim holds the page lock, it 3136 * will be a race with remove_mapping that determines if the mapping 3137 * is valid on unlock but otherwise the data is valid and there is 3138 * no need to serialise with page lock. 3139 * 3140 * As the page lock gives no additional guarantee, we optimistically 3141 * wait on the page to be unlocked and check if it's up to date and 3142 * use the page if it is. Otherwise, the page lock is required to 3143 * distinguish between the different cases. The motivation is that we 3144 * avoid spurious serialisations and wakeups when multiple processes 3145 * wait on the same page for IO to complete. 3146 */ 3147 wait_on_page_locked(page); 3148 if (PageUptodate(page)) 3149 goto out; 3150 3151 /* Distinguish between all the cases under the safety of the lock */ 3152 lock_page(page); 3153 3154 /* Case c or d, restart the operation */ 3155 if (!page->mapping) { 3156 unlock_page(page); 3157 put_page(page); 3158 goto repeat; 3159 } 3160 3161 /* Someone else locked and filled the page in a very small window */ 3162 if (PageUptodate(page)) { 3163 unlock_page(page); 3164 goto out; 3165 } 3166 3167 /* 3168 * A previous I/O error may have been due to temporary 3169 * failures. 3170 * Clear page error before actual read, PG_error will be 3171 * set again if read page fails. 3172 */ 3173 ClearPageError(page); 3174 goto filler; 3175 3176 out: 3177 mark_page_accessed(page); 3178 return page; 3179 } 3180 3181 /** 3182 * read_cache_page - read into page cache, fill it if needed 3183 * @mapping: the page's address_space 3184 * @index: the page index 3185 * @filler: function to perform the read 3186 * @data: first arg to filler(data, page) function, often left as NULL 3187 * 3188 * Read into the page cache. If a page already exists, and PageUptodate() is 3189 * not set, try to fill the page and wait for it to become unlocked. 3190 * 3191 * If the page does not get brought uptodate, return -EIO. 3192 * 3193 * Return: up to date page on success, ERR_PTR() on failure. 3194 */ 3195 struct page *read_cache_page(struct address_space *mapping, 3196 pgoff_t index, 3197 int (*filler)(void *, struct page *), 3198 void *data) 3199 { 3200 return do_read_cache_page(mapping, index, filler, data, 3201 mapping_gfp_mask(mapping)); 3202 } 3203 EXPORT_SYMBOL(read_cache_page); 3204 3205 /** 3206 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 3207 * @mapping: the page's address_space 3208 * @index: the page index 3209 * @gfp: the page allocator flags to use if allocating 3210 * 3211 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 3212 * any new page allocations done using the specified allocation flags. 3213 * 3214 * If the page does not get brought uptodate, return -EIO. 3215 * 3216 * Return: up to date page on success, ERR_PTR() on failure. 3217 */ 3218 struct page *read_cache_page_gfp(struct address_space *mapping, 3219 pgoff_t index, 3220 gfp_t gfp) 3221 { 3222 return do_read_cache_page(mapping, index, NULL, NULL, gfp); 3223 } 3224 EXPORT_SYMBOL(read_cache_page_gfp); 3225 3226 int pagecache_write_begin(struct file *file, struct address_space *mapping, 3227 loff_t pos, unsigned len, unsigned flags, 3228 struct page **pagep, void **fsdata) 3229 { 3230 const struct address_space_operations *aops = mapping->a_ops; 3231 3232 return aops->write_begin(file, mapping, pos, len, flags, 3233 pagep, fsdata); 3234 } 3235 EXPORT_SYMBOL(pagecache_write_begin); 3236 3237 int pagecache_write_end(struct file *file, struct address_space *mapping, 3238 loff_t pos, unsigned len, unsigned copied, 3239 struct page *page, void *fsdata) 3240 { 3241 const struct address_space_operations *aops = mapping->a_ops; 3242 3243 return aops->write_end(file, mapping, pos, len, copied, page, fsdata); 3244 } 3245 EXPORT_SYMBOL(pagecache_write_end); 3246 3247 /* 3248 * Warn about a page cache invalidation failure during a direct I/O write. 3249 */ 3250 void dio_warn_stale_pagecache(struct file *filp) 3251 { 3252 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST); 3253 char pathname[128]; 3254 char *path; 3255 3256 errseq_set(&filp->f_mapping->wb_err, -EIO); 3257 if (__ratelimit(&_rs)) { 3258 path = file_path(filp, pathname, sizeof(pathname)); 3259 if (IS_ERR(path)) 3260 path = "(unknown)"; 3261 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n"); 3262 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid, 3263 current->comm); 3264 } 3265 } 3266 3267 ssize_t 3268 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) 3269 { 3270 struct file *file = iocb->ki_filp; 3271 struct address_space *mapping = file->f_mapping; 3272 struct inode *inode = mapping->host; 3273 loff_t pos = iocb->ki_pos; 3274 ssize_t written; 3275 size_t write_len; 3276 pgoff_t end; 3277 3278 write_len = iov_iter_count(from); 3279 end = (pos + write_len - 1) >> PAGE_SHIFT; 3280 3281 if (iocb->ki_flags & IOCB_NOWAIT) { 3282 /* If there are pages to writeback, return */ 3283 if (filemap_range_has_page(file->f_mapping, pos, 3284 pos + write_len - 1)) 3285 return -EAGAIN; 3286 } else { 3287 written = filemap_write_and_wait_range(mapping, pos, 3288 pos + write_len - 1); 3289 if (written) 3290 goto out; 3291 } 3292 3293 /* 3294 * After a write we want buffered reads to be sure to go to disk to get 3295 * the new data. We invalidate clean cached page from the region we're 3296 * about to write. We do this *before* the write so that we can return 3297 * without clobbering -EIOCBQUEUED from ->direct_IO(). 3298 */ 3299 written = invalidate_inode_pages2_range(mapping, 3300 pos >> PAGE_SHIFT, end); 3301 /* 3302 * If a page can not be invalidated, return 0 to fall back 3303 * to buffered write. 3304 */ 3305 if (written) { 3306 if (written == -EBUSY) 3307 return 0; 3308 goto out; 3309 } 3310 3311 written = mapping->a_ops->direct_IO(iocb, from); 3312 3313 /* 3314 * Finally, try again to invalidate clean pages which might have been 3315 * cached by non-direct readahead, or faulted in by get_user_pages() 3316 * if the source of the write was an mmap'ed region of the file 3317 * we're writing. Either one is a pretty crazy thing to do, 3318 * so we don't support it 100%. If this invalidation 3319 * fails, tough, the write still worked... 3320 * 3321 * Most of the time we do not need this since dio_complete() will do 3322 * the invalidation for us. However there are some file systems that 3323 * do not end up with dio_complete() being called, so let's not break 3324 * them by removing it completely. 3325 * 3326 * Noticeable example is a blkdev_direct_IO(). 3327 * 3328 * Skip invalidation for async writes or if mapping has no pages. 3329 */ 3330 if (written > 0 && mapping->nrpages && 3331 invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end)) 3332 dio_warn_stale_pagecache(file); 3333 3334 if (written > 0) { 3335 pos += written; 3336 write_len -= written; 3337 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 3338 i_size_write(inode, pos); 3339 mark_inode_dirty(inode); 3340 } 3341 iocb->ki_pos = pos; 3342 } 3343 iov_iter_revert(from, write_len - iov_iter_count(from)); 3344 out: 3345 return written; 3346 } 3347 EXPORT_SYMBOL(generic_file_direct_write); 3348 3349 /* 3350 * Find or create a page at the given pagecache position. Return the locked 3351 * page. This function is specifically for buffered writes. 3352 */ 3353 struct page *grab_cache_page_write_begin(struct address_space *mapping, 3354 pgoff_t index, unsigned flags) 3355 { 3356 struct page *page; 3357 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT; 3358 3359 if (flags & AOP_FLAG_NOFS) 3360 fgp_flags |= FGP_NOFS; 3361 3362 page = pagecache_get_page(mapping, index, fgp_flags, 3363 mapping_gfp_mask(mapping)); 3364 if (page) 3365 wait_for_stable_page(page); 3366 3367 return page; 3368 } 3369 EXPORT_SYMBOL(grab_cache_page_write_begin); 3370 3371 ssize_t generic_perform_write(struct file *file, 3372 struct iov_iter *i, loff_t pos) 3373 { 3374 struct address_space *mapping = file->f_mapping; 3375 const struct address_space_operations *a_ops = mapping->a_ops; 3376 long status = 0; 3377 ssize_t written = 0; 3378 unsigned int flags = 0; 3379 3380 do { 3381 struct page *page; 3382 unsigned long offset; /* Offset into pagecache page */ 3383 unsigned long bytes; /* Bytes to write to page */ 3384 size_t copied; /* Bytes copied from user */ 3385 void *fsdata; 3386 3387 offset = (pos & (PAGE_SIZE - 1)); 3388 bytes = min_t(unsigned long, PAGE_SIZE - offset, 3389 iov_iter_count(i)); 3390 3391 again: 3392 /* 3393 * Bring in the user page that we will copy from _first_. 3394 * Otherwise there's a nasty deadlock on copying from the 3395 * same page as we're writing to, without it being marked 3396 * up-to-date. 3397 * 3398 * Not only is this an optimisation, but it is also required 3399 * to check that the address is actually valid, when atomic 3400 * usercopies are used, below. 3401 */ 3402 if (unlikely(iov_iter_fault_in_readable(i, bytes))) { 3403 status = -EFAULT; 3404 break; 3405 } 3406 3407 if (fatal_signal_pending(current)) { 3408 status = -EINTR; 3409 break; 3410 } 3411 3412 status = a_ops->write_begin(file, mapping, pos, bytes, flags, 3413 &page, &fsdata); 3414 if (unlikely(status < 0)) 3415 break; 3416 3417 if (mapping_writably_mapped(mapping)) 3418 flush_dcache_page(page); 3419 3420 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); 3421 flush_dcache_page(page); 3422 3423 status = a_ops->write_end(file, mapping, pos, bytes, copied, 3424 page, fsdata); 3425 if (unlikely(status < 0)) 3426 break; 3427 copied = status; 3428 3429 cond_resched(); 3430 3431 iov_iter_advance(i, copied); 3432 if (unlikely(copied == 0)) { 3433 /* 3434 * If we were unable to copy any data at all, we must 3435 * fall back to a single segment length write. 3436 * 3437 * If we didn't fallback here, we could livelock 3438 * because not all segments in the iov can be copied at 3439 * once without a pagefault. 3440 */ 3441 bytes = min_t(unsigned long, PAGE_SIZE - offset, 3442 iov_iter_single_seg_count(i)); 3443 goto again; 3444 } 3445 pos += copied; 3446 written += copied; 3447 3448 balance_dirty_pages_ratelimited(mapping); 3449 } while (iov_iter_count(i)); 3450 3451 return written ? written : status; 3452 } 3453 EXPORT_SYMBOL(generic_perform_write); 3454 3455 /** 3456 * __generic_file_write_iter - write data to a file 3457 * @iocb: IO state structure (file, offset, etc.) 3458 * @from: iov_iter with data to write 3459 * 3460 * This function does all the work needed for actually writing data to a 3461 * file. It does all basic checks, removes SUID from the file, updates 3462 * modification times and calls proper subroutines depending on whether we 3463 * do direct IO or a standard buffered write. 3464 * 3465 * It expects i_mutex to be grabbed unless we work on a block device or similar 3466 * object which does not need locking at all. 3467 * 3468 * This function does *not* take care of syncing data in case of O_SYNC write. 3469 * A caller has to handle it. This is mainly due to the fact that we want to 3470 * avoid syncing under i_mutex. 3471 * 3472 * Return: 3473 * * number of bytes written, even for truncated writes 3474 * * negative error code if no data has been written at all 3475 */ 3476 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3477 { 3478 struct file *file = iocb->ki_filp; 3479 struct address_space * mapping = file->f_mapping; 3480 struct inode *inode = mapping->host; 3481 ssize_t written = 0; 3482 ssize_t err; 3483 ssize_t status; 3484 3485 /* We can write back this queue in page reclaim */ 3486 current->backing_dev_info = inode_to_bdi(inode); 3487 err = file_remove_privs(file); 3488 if (err) 3489 goto out; 3490 3491 err = file_update_time(file); 3492 if (err) 3493 goto out; 3494 3495 if (iocb->ki_flags & IOCB_DIRECT) { 3496 loff_t pos, endbyte; 3497 3498 written = generic_file_direct_write(iocb, from); 3499 /* 3500 * If the write stopped short of completing, fall back to 3501 * buffered writes. Some filesystems do this for writes to 3502 * holes, for example. For DAX files, a buffered write will 3503 * not succeed (even if it did, DAX does not handle dirty 3504 * page-cache pages correctly). 3505 */ 3506 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode)) 3507 goto out; 3508 3509 status = generic_perform_write(file, from, pos = iocb->ki_pos); 3510 /* 3511 * If generic_perform_write() returned a synchronous error 3512 * then we want to return the number of bytes which were 3513 * direct-written, or the error code if that was zero. Note 3514 * that this differs from normal direct-io semantics, which 3515 * will return -EFOO even if some bytes were written. 3516 */ 3517 if (unlikely(status < 0)) { 3518 err = status; 3519 goto out; 3520 } 3521 /* 3522 * We need to ensure that the page cache pages are written to 3523 * disk and invalidated to preserve the expected O_DIRECT 3524 * semantics. 3525 */ 3526 endbyte = pos + status - 1; 3527 err = filemap_write_and_wait_range(mapping, pos, endbyte); 3528 if (err == 0) { 3529 iocb->ki_pos = endbyte + 1; 3530 written += status; 3531 invalidate_mapping_pages(mapping, 3532 pos >> PAGE_SHIFT, 3533 endbyte >> PAGE_SHIFT); 3534 } else { 3535 /* 3536 * We don't know how much we wrote, so just return 3537 * the number of bytes which were direct-written 3538 */ 3539 } 3540 } else { 3541 written = generic_perform_write(file, from, iocb->ki_pos); 3542 if (likely(written > 0)) 3543 iocb->ki_pos += written; 3544 } 3545 out: 3546 current->backing_dev_info = NULL; 3547 return written ? written : err; 3548 } 3549 EXPORT_SYMBOL(__generic_file_write_iter); 3550 3551 /** 3552 * generic_file_write_iter - write data to a file 3553 * @iocb: IO state structure 3554 * @from: iov_iter with data to write 3555 * 3556 * This is a wrapper around __generic_file_write_iter() to be used by most 3557 * filesystems. It takes care of syncing the file in case of O_SYNC file 3558 * and acquires i_mutex as needed. 3559 * Return: 3560 * * negative error code if no data has been written at all of 3561 * vfs_fsync_range() failed for a synchronous write 3562 * * number of bytes written, even for truncated writes 3563 */ 3564 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3565 { 3566 struct file *file = iocb->ki_filp; 3567 struct inode *inode = file->f_mapping->host; 3568 ssize_t ret; 3569 3570 inode_lock(inode); 3571 ret = generic_write_checks(iocb, from); 3572 if (ret > 0) 3573 ret = __generic_file_write_iter(iocb, from); 3574 inode_unlock(inode); 3575 3576 if (ret > 0) 3577 ret = generic_write_sync(iocb, ret); 3578 return ret; 3579 } 3580 EXPORT_SYMBOL(generic_file_write_iter); 3581 3582 /** 3583 * try_to_release_page() - release old fs-specific metadata on a page 3584 * 3585 * @page: the page which the kernel is trying to free 3586 * @gfp_mask: memory allocation flags (and I/O mode) 3587 * 3588 * The address_space is to try to release any data against the page 3589 * (presumably at page->private). 3590 * 3591 * This may also be called if PG_fscache is set on a page, indicating that the 3592 * page is known to the local caching routines. 3593 * 3594 * The @gfp_mask argument specifies whether I/O may be performed to release 3595 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS). 3596 * 3597 * Return: %1 if the release was successful, otherwise return zero. 3598 */ 3599 int try_to_release_page(struct page *page, gfp_t gfp_mask) 3600 { 3601 struct address_space * const mapping = page->mapping; 3602 3603 BUG_ON(!PageLocked(page)); 3604 if (PageWriteback(page)) 3605 return 0; 3606 3607 if (mapping && mapping->a_ops->releasepage) 3608 return mapping->a_ops->releasepage(page, gfp_mask); 3609 return try_to_free_buffers(page); 3610 } 3611 3612 EXPORT_SYMBOL(try_to_release_page); 3613