xref: /openbmc/linux/mm/filemap.c (revision 3932b9ca)
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/hugetlb.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include <linux/rmap.h>
38 #include "internal.h"
39 
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/filemap.h>
42 
43 /*
44  * FIXME: remove all knowledge of the buffer layer from the core VM
45  */
46 #include <linux/buffer_head.h> /* for try_to_free_buffers */
47 
48 #include <asm/mman.h>
49 
50 /*
51  * Shared mappings implemented 30.11.1994. It's not fully working yet,
52  * though.
53  *
54  * Shared mappings now work. 15.8.1995  Bruno.
55  *
56  * finished 'unifying' the page and buffer cache and SMP-threaded the
57  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
58  *
59  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60  */
61 
62 /*
63  * Lock ordering:
64  *
65  *  ->i_mmap_mutex		(truncate_pagecache)
66  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
67  *      ->swap_lock		(exclusive_swap_page, others)
68  *        ->mapping->tree_lock
69  *
70  *  ->i_mutex
71  *    ->i_mmap_mutex		(truncate->unmap_mapping_range)
72  *
73  *  ->mmap_sem
74  *    ->i_mmap_mutex
75  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
76  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
77  *
78  *  ->mmap_sem
79  *    ->lock_page		(access_process_vm)
80  *
81  *  ->i_mutex			(generic_perform_write)
82  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
83  *
84  *  bdi->wb.list_lock
85  *    sb_lock			(fs/fs-writeback.c)
86  *    ->mapping->tree_lock	(__sync_single_inode)
87  *
88  *  ->i_mmap_mutex
89  *    ->anon_vma.lock		(vma_adjust)
90  *
91  *  ->anon_vma.lock
92  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
93  *
94  *  ->page_table_lock or pte_lock
95  *    ->swap_lock		(try_to_unmap_one)
96  *    ->private_lock		(try_to_unmap_one)
97  *    ->tree_lock		(try_to_unmap_one)
98  *    ->zone.lru_lock		(follow_page->mark_page_accessed)
99  *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
100  *    ->private_lock		(page_remove_rmap->set_page_dirty)
101  *    ->tree_lock		(page_remove_rmap->set_page_dirty)
102  *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
103  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
104  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
105  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
106  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
107  *
108  * ->i_mmap_mutex
109  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
110  */
111 
112 static void page_cache_tree_delete(struct address_space *mapping,
113 				   struct page *page, void *shadow)
114 {
115 	struct radix_tree_node *node;
116 	unsigned long index;
117 	unsigned int offset;
118 	unsigned int tag;
119 	void **slot;
120 
121 	VM_BUG_ON(!PageLocked(page));
122 
123 	__radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
124 
125 	if (shadow) {
126 		mapping->nrshadows++;
127 		/*
128 		 * Make sure the nrshadows update is committed before
129 		 * the nrpages update so that final truncate racing
130 		 * with reclaim does not see both counters 0 at the
131 		 * same time and miss a shadow entry.
132 		 */
133 		smp_wmb();
134 	}
135 	mapping->nrpages--;
136 
137 	if (!node) {
138 		/* Clear direct pointer tags in root node */
139 		mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
140 		radix_tree_replace_slot(slot, shadow);
141 		return;
142 	}
143 
144 	/* Clear tree tags for the removed page */
145 	index = page->index;
146 	offset = index & RADIX_TREE_MAP_MASK;
147 	for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
148 		if (test_bit(offset, node->tags[tag]))
149 			radix_tree_tag_clear(&mapping->page_tree, index, tag);
150 	}
151 
152 	/* Delete page, swap shadow entry */
153 	radix_tree_replace_slot(slot, shadow);
154 	workingset_node_pages_dec(node);
155 	if (shadow)
156 		workingset_node_shadows_inc(node);
157 	else
158 		if (__radix_tree_delete_node(&mapping->page_tree, node))
159 			return;
160 
161 	/*
162 	 * Track node that only contains shadow entries.
163 	 *
164 	 * Avoid acquiring the list_lru lock if already tracked.  The
165 	 * list_empty() test is safe as node->private_list is
166 	 * protected by mapping->tree_lock.
167 	 */
168 	if (!workingset_node_pages(node) &&
169 	    list_empty(&node->private_list)) {
170 		node->private_data = mapping;
171 		list_lru_add(&workingset_shadow_nodes, &node->private_list);
172 	}
173 }
174 
175 /*
176  * Delete a page from the page cache and free it. Caller has to make
177  * sure the page is locked and that nobody else uses it - or that usage
178  * is safe.  The caller must hold the mapping's tree_lock.
179  */
180 void __delete_from_page_cache(struct page *page, void *shadow)
181 {
182 	struct address_space *mapping = page->mapping;
183 
184 	trace_mm_filemap_delete_from_page_cache(page);
185 	/*
186 	 * if we're uptodate, flush out into the cleancache, otherwise
187 	 * invalidate any existing cleancache entries.  We can't leave
188 	 * stale data around in the cleancache once our page is gone
189 	 */
190 	if (PageUptodate(page) && PageMappedToDisk(page))
191 		cleancache_put_page(page);
192 	else
193 		cleancache_invalidate_page(mapping, page);
194 
195 	page_cache_tree_delete(mapping, page, shadow);
196 
197 	page->mapping = NULL;
198 	/* Leave page->index set: truncation lookup relies upon it */
199 
200 	__dec_zone_page_state(page, NR_FILE_PAGES);
201 	if (PageSwapBacked(page))
202 		__dec_zone_page_state(page, NR_SHMEM);
203 	BUG_ON(page_mapped(page));
204 
205 	/*
206 	 * Some filesystems seem to re-dirty the page even after
207 	 * the VM has canceled the dirty bit (eg ext3 journaling).
208 	 *
209 	 * Fix it up by doing a final dirty accounting check after
210 	 * having removed the page entirely.
211 	 */
212 	if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
213 		dec_zone_page_state(page, NR_FILE_DIRTY);
214 		dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
215 	}
216 }
217 
218 /**
219  * delete_from_page_cache - delete page from page cache
220  * @page: the page which the kernel is trying to remove from page cache
221  *
222  * This must be called only on pages that have been verified to be in the page
223  * cache and locked.  It will never put the page into the free list, the caller
224  * has a reference on the page.
225  */
226 void delete_from_page_cache(struct page *page)
227 {
228 	struct address_space *mapping = page->mapping;
229 	void (*freepage)(struct page *);
230 
231 	BUG_ON(!PageLocked(page));
232 
233 	freepage = mapping->a_ops->freepage;
234 	spin_lock_irq(&mapping->tree_lock);
235 	__delete_from_page_cache(page, NULL);
236 	spin_unlock_irq(&mapping->tree_lock);
237 
238 	if (freepage)
239 		freepage(page);
240 	page_cache_release(page);
241 }
242 EXPORT_SYMBOL(delete_from_page_cache);
243 
244 static int filemap_check_errors(struct address_space *mapping)
245 {
246 	int ret = 0;
247 	/* Check for outstanding write errors */
248 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
249 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
250 		ret = -ENOSPC;
251 	if (test_bit(AS_EIO, &mapping->flags) &&
252 	    test_and_clear_bit(AS_EIO, &mapping->flags))
253 		ret = -EIO;
254 	return ret;
255 }
256 
257 /**
258  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
259  * @mapping:	address space structure to write
260  * @start:	offset in bytes where the range starts
261  * @end:	offset in bytes where the range ends (inclusive)
262  * @sync_mode:	enable synchronous operation
263  *
264  * Start writeback against all of a mapping's dirty pages that lie
265  * within the byte offsets <start, end> inclusive.
266  *
267  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
268  * opposed to a regular memory cleansing writeback.  The difference between
269  * these two operations is that if a dirty page/buffer is encountered, it must
270  * be waited upon, and not just skipped over.
271  */
272 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
273 				loff_t end, int sync_mode)
274 {
275 	int ret;
276 	struct writeback_control wbc = {
277 		.sync_mode = sync_mode,
278 		.nr_to_write = LONG_MAX,
279 		.range_start = start,
280 		.range_end = end,
281 	};
282 
283 	if (!mapping_cap_writeback_dirty(mapping))
284 		return 0;
285 
286 	ret = do_writepages(mapping, &wbc);
287 	return ret;
288 }
289 
290 static inline int __filemap_fdatawrite(struct address_space *mapping,
291 	int sync_mode)
292 {
293 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
294 }
295 
296 int filemap_fdatawrite(struct address_space *mapping)
297 {
298 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
299 }
300 EXPORT_SYMBOL(filemap_fdatawrite);
301 
302 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
303 				loff_t end)
304 {
305 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
306 }
307 EXPORT_SYMBOL(filemap_fdatawrite_range);
308 
309 /**
310  * filemap_flush - mostly a non-blocking flush
311  * @mapping:	target address_space
312  *
313  * This is a mostly non-blocking flush.  Not suitable for data-integrity
314  * purposes - I/O may not be started against all dirty pages.
315  */
316 int filemap_flush(struct address_space *mapping)
317 {
318 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
319 }
320 EXPORT_SYMBOL(filemap_flush);
321 
322 /**
323  * filemap_fdatawait_range - wait for writeback to complete
324  * @mapping:		address space structure to wait for
325  * @start_byte:		offset in bytes where the range starts
326  * @end_byte:		offset in bytes where the range ends (inclusive)
327  *
328  * Walk the list of under-writeback pages of the given address space
329  * in the given range and wait for all of them.
330  */
331 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
332 			    loff_t end_byte)
333 {
334 	pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
335 	pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
336 	struct pagevec pvec;
337 	int nr_pages;
338 	int ret2, ret = 0;
339 
340 	if (end_byte < start_byte)
341 		goto out;
342 
343 	pagevec_init(&pvec, 0);
344 	while ((index <= end) &&
345 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
346 			PAGECACHE_TAG_WRITEBACK,
347 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
348 		unsigned i;
349 
350 		for (i = 0; i < nr_pages; i++) {
351 			struct page *page = pvec.pages[i];
352 
353 			/* until radix tree lookup accepts end_index */
354 			if (page->index > end)
355 				continue;
356 
357 			wait_on_page_writeback(page);
358 			if (TestClearPageError(page))
359 				ret = -EIO;
360 		}
361 		pagevec_release(&pvec);
362 		cond_resched();
363 	}
364 out:
365 	ret2 = filemap_check_errors(mapping);
366 	if (!ret)
367 		ret = ret2;
368 
369 	return ret;
370 }
371 EXPORT_SYMBOL(filemap_fdatawait_range);
372 
373 /**
374  * filemap_fdatawait - wait for all under-writeback pages to complete
375  * @mapping: address space structure to wait for
376  *
377  * Walk the list of under-writeback pages of the given address space
378  * and wait for all of them.
379  */
380 int filemap_fdatawait(struct address_space *mapping)
381 {
382 	loff_t i_size = i_size_read(mapping->host);
383 
384 	if (i_size == 0)
385 		return 0;
386 
387 	return filemap_fdatawait_range(mapping, 0, i_size - 1);
388 }
389 EXPORT_SYMBOL(filemap_fdatawait);
390 
391 int filemap_write_and_wait(struct address_space *mapping)
392 {
393 	int err = 0;
394 
395 	if (mapping->nrpages) {
396 		err = filemap_fdatawrite(mapping);
397 		/*
398 		 * Even if the above returned error, the pages may be
399 		 * written partially (e.g. -ENOSPC), so we wait for it.
400 		 * But the -EIO is special case, it may indicate the worst
401 		 * thing (e.g. bug) happened, so we avoid waiting for it.
402 		 */
403 		if (err != -EIO) {
404 			int err2 = filemap_fdatawait(mapping);
405 			if (!err)
406 				err = err2;
407 		}
408 	} else {
409 		err = filemap_check_errors(mapping);
410 	}
411 	return err;
412 }
413 EXPORT_SYMBOL(filemap_write_and_wait);
414 
415 /**
416  * filemap_write_and_wait_range - write out & wait on a file range
417  * @mapping:	the address_space for the pages
418  * @lstart:	offset in bytes where the range starts
419  * @lend:	offset in bytes where the range ends (inclusive)
420  *
421  * Write out and wait upon file offsets lstart->lend, inclusive.
422  *
423  * Note that `lend' is inclusive (describes the last byte to be written) so
424  * that this function can be used to write to the very end-of-file (end = -1).
425  */
426 int filemap_write_and_wait_range(struct address_space *mapping,
427 				 loff_t lstart, loff_t lend)
428 {
429 	int err = 0;
430 
431 	if (mapping->nrpages) {
432 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
433 						 WB_SYNC_ALL);
434 		/* See comment of filemap_write_and_wait() */
435 		if (err != -EIO) {
436 			int err2 = filemap_fdatawait_range(mapping,
437 						lstart, lend);
438 			if (!err)
439 				err = err2;
440 		}
441 	} else {
442 		err = filemap_check_errors(mapping);
443 	}
444 	return err;
445 }
446 EXPORT_SYMBOL(filemap_write_and_wait_range);
447 
448 /**
449  * replace_page_cache_page - replace a pagecache page with a new one
450  * @old:	page to be replaced
451  * @new:	page to replace with
452  * @gfp_mask:	allocation mode
453  *
454  * This function replaces a page in the pagecache with a new one.  On
455  * success it acquires the pagecache reference for the new page and
456  * drops it for the old page.  Both the old and new pages must be
457  * locked.  This function does not add the new page to the LRU, the
458  * caller must do that.
459  *
460  * The remove + add is atomic.  The only way this function can fail is
461  * memory allocation failure.
462  */
463 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
464 {
465 	int error;
466 
467 	VM_BUG_ON_PAGE(!PageLocked(old), old);
468 	VM_BUG_ON_PAGE(!PageLocked(new), new);
469 	VM_BUG_ON_PAGE(new->mapping, new);
470 
471 	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
472 	if (!error) {
473 		struct address_space *mapping = old->mapping;
474 		void (*freepage)(struct page *);
475 
476 		pgoff_t offset = old->index;
477 		freepage = mapping->a_ops->freepage;
478 
479 		page_cache_get(new);
480 		new->mapping = mapping;
481 		new->index = offset;
482 
483 		spin_lock_irq(&mapping->tree_lock);
484 		__delete_from_page_cache(old, NULL);
485 		error = radix_tree_insert(&mapping->page_tree, offset, new);
486 		BUG_ON(error);
487 		mapping->nrpages++;
488 		__inc_zone_page_state(new, NR_FILE_PAGES);
489 		if (PageSwapBacked(new))
490 			__inc_zone_page_state(new, NR_SHMEM);
491 		spin_unlock_irq(&mapping->tree_lock);
492 		mem_cgroup_migrate(old, new, true);
493 		radix_tree_preload_end();
494 		if (freepage)
495 			freepage(old);
496 		page_cache_release(old);
497 	}
498 
499 	return error;
500 }
501 EXPORT_SYMBOL_GPL(replace_page_cache_page);
502 
503 static int page_cache_tree_insert(struct address_space *mapping,
504 				  struct page *page, void **shadowp)
505 {
506 	struct radix_tree_node *node;
507 	void **slot;
508 	int error;
509 
510 	error = __radix_tree_create(&mapping->page_tree, page->index,
511 				    &node, &slot);
512 	if (error)
513 		return error;
514 	if (*slot) {
515 		void *p;
516 
517 		p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
518 		if (!radix_tree_exceptional_entry(p))
519 			return -EEXIST;
520 		if (shadowp)
521 			*shadowp = p;
522 		mapping->nrshadows--;
523 		if (node)
524 			workingset_node_shadows_dec(node);
525 	}
526 	radix_tree_replace_slot(slot, page);
527 	mapping->nrpages++;
528 	if (node) {
529 		workingset_node_pages_inc(node);
530 		/*
531 		 * Don't track node that contains actual pages.
532 		 *
533 		 * Avoid acquiring the list_lru lock if already
534 		 * untracked.  The list_empty() test is safe as
535 		 * node->private_list is protected by
536 		 * mapping->tree_lock.
537 		 */
538 		if (!list_empty(&node->private_list))
539 			list_lru_del(&workingset_shadow_nodes,
540 				     &node->private_list);
541 	}
542 	return 0;
543 }
544 
545 static int __add_to_page_cache_locked(struct page *page,
546 				      struct address_space *mapping,
547 				      pgoff_t offset, gfp_t gfp_mask,
548 				      void **shadowp)
549 {
550 	int huge = PageHuge(page);
551 	struct mem_cgroup *memcg;
552 	int error;
553 
554 	VM_BUG_ON_PAGE(!PageLocked(page), page);
555 	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
556 
557 	if (!huge) {
558 		error = mem_cgroup_try_charge(page, current->mm,
559 					      gfp_mask, &memcg);
560 		if (error)
561 			return error;
562 	}
563 
564 	error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
565 	if (error) {
566 		if (!huge)
567 			mem_cgroup_cancel_charge(page, memcg);
568 		return error;
569 	}
570 
571 	page_cache_get(page);
572 	page->mapping = mapping;
573 	page->index = offset;
574 
575 	spin_lock_irq(&mapping->tree_lock);
576 	error = page_cache_tree_insert(mapping, page, shadowp);
577 	radix_tree_preload_end();
578 	if (unlikely(error))
579 		goto err_insert;
580 	__inc_zone_page_state(page, NR_FILE_PAGES);
581 	spin_unlock_irq(&mapping->tree_lock);
582 	if (!huge)
583 		mem_cgroup_commit_charge(page, memcg, false);
584 	trace_mm_filemap_add_to_page_cache(page);
585 	return 0;
586 err_insert:
587 	page->mapping = NULL;
588 	/* Leave page->index set: truncation relies upon it */
589 	spin_unlock_irq(&mapping->tree_lock);
590 	if (!huge)
591 		mem_cgroup_cancel_charge(page, memcg);
592 	page_cache_release(page);
593 	return error;
594 }
595 
596 /**
597  * add_to_page_cache_locked - add a locked page to the pagecache
598  * @page:	page to add
599  * @mapping:	the page's address_space
600  * @offset:	page index
601  * @gfp_mask:	page allocation mode
602  *
603  * This function is used to add a page to the pagecache. It must be locked.
604  * This function does not add the page to the LRU.  The caller must do that.
605  */
606 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
607 		pgoff_t offset, gfp_t gfp_mask)
608 {
609 	return __add_to_page_cache_locked(page, mapping, offset,
610 					  gfp_mask, NULL);
611 }
612 EXPORT_SYMBOL(add_to_page_cache_locked);
613 
614 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
615 				pgoff_t offset, gfp_t gfp_mask)
616 {
617 	void *shadow = NULL;
618 	int ret;
619 
620 	__set_page_locked(page);
621 	ret = __add_to_page_cache_locked(page, mapping, offset,
622 					 gfp_mask, &shadow);
623 	if (unlikely(ret))
624 		__clear_page_locked(page);
625 	else {
626 		/*
627 		 * The page might have been evicted from cache only
628 		 * recently, in which case it should be activated like
629 		 * any other repeatedly accessed page.
630 		 */
631 		if (shadow && workingset_refault(shadow)) {
632 			SetPageActive(page);
633 			workingset_activation(page);
634 		} else
635 			ClearPageActive(page);
636 		lru_cache_add(page);
637 	}
638 	return ret;
639 }
640 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
641 
642 #ifdef CONFIG_NUMA
643 struct page *__page_cache_alloc(gfp_t gfp)
644 {
645 	int n;
646 	struct page *page;
647 
648 	if (cpuset_do_page_mem_spread()) {
649 		unsigned int cpuset_mems_cookie;
650 		do {
651 			cpuset_mems_cookie = read_mems_allowed_begin();
652 			n = cpuset_mem_spread_node();
653 			page = alloc_pages_exact_node(n, gfp, 0);
654 		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
655 
656 		return page;
657 	}
658 	return alloc_pages(gfp, 0);
659 }
660 EXPORT_SYMBOL(__page_cache_alloc);
661 #endif
662 
663 /*
664  * In order to wait for pages to become available there must be
665  * waitqueues associated with pages. By using a hash table of
666  * waitqueues where the bucket discipline is to maintain all
667  * waiters on the same queue and wake all when any of the pages
668  * become available, and for the woken contexts to check to be
669  * sure the appropriate page became available, this saves space
670  * at a cost of "thundering herd" phenomena during rare hash
671  * collisions.
672  */
673 static wait_queue_head_t *page_waitqueue(struct page *page)
674 {
675 	const struct zone *zone = page_zone(page);
676 
677 	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
678 }
679 
680 static inline void wake_up_page(struct page *page, int bit)
681 {
682 	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
683 }
684 
685 void wait_on_page_bit(struct page *page, int bit_nr)
686 {
687 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
688 
689 	if (test_bit(bit_nr, &page->flags))
690 		__wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
691 							TASK_UNINTERRUPTIBLE);
692 }
693 EXPORT_SYMBOL(wait_on_page_bit);
694 
695 int wait_on_page_bit_killable(struct page *page, int bit_nr)
696 {
697 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
698 
699 	if (!test_bit(bit_nr, &page->flags))
700 		return 0;
701 
702 	return __wait_on_bit(page_waitqueue(page), &wait,
703 			     bit_wait_io, TASK_KILLABLE);
704 }
705 
706 /**
707  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
708  * @page: Page defining the wait queue of interest
709  * @waiter: Waiter to add to the queue
710  *
711  * Add an arbitrary @waiter to the wait queue for the nominated @page.
712  */
713 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
714 {
715 	wait_queue_head_t *q = page_waitqueue(page);
716 	unsigned long flags;
717 
718 	spin_lock_irqsave(&q->lock, flags);
719 	__add_wait_queue(q, waiter);
720 	spin_unlock_irqrestore(&q->lock, flags);
721 }
722 EXPORT_SYMBOL_GPL(add_page_wait_queue);
723 
724 /**
725  * unlock_page - unlock a locked page
726  * @page: the page
727  *
728  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
729  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
730  * mechananism between PageLocked pages and PageWriteback pages is shared.
731  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
732  *
733  * The mb is necessary to enforce ordering between the clear_bit and the read
734  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
735  */
736 void unlock_page(struct page *page)
737 {
738 	VM_BUG_ON_PAGE(!PageLocked(page), page);
739 	clear_bit_unlock(PG_locked, &page->flags);
740 	smp_mb__after_atomic();
741 	wake_up_page(page, PG_locked);
742 }
743 EXPORT_SYMBOL(unlock_page);
744 
745 /**
746  * end_page_writeback - end writeback against a page
747  * @page: the page
748  */
749 void end_page_writeback(struct page *page)
750 {
751 	/*
752 	 * TestClearPageReclaim could be used here but it is an atomic
753 	 * operation and overkill in this particular case. Failing to
754 	 * shuffle a page marked for immediate reclaim is too mild to
755 	 * justify taking an atomic operation penalty at the end of
756 	 * ever page writeback.
757 	 */
758 	if (PageReclaim(page)) {
759 		ClearPageReclaim(page);
760 		rotate_reclaimable_page(page);
761 	}
762 
763 	if (!test_clear_page_writeback(page))
764 		BUG();
765 
766 	smp_mb__after_atomic();
767 	wake_up_page(page, PG_writeback);
768 }
769 EXPORT_SYMBOL(end_page_writeback);
770 
771 /*
772  * After completing I/O on a page, call this routine to update the page
773  * flags appropriately
774  */
775 void page_endio(struct page *page, int rw, int err)
776 {
777 	if (rw == READ) {
778 		if (!err) {
779 			SetPageUptodate(page);
780 		} else {
781 			ClearPageUptodate(page);
782 			SetPageError(page);
783 		}
784 		unlock_page(page);
785 	} else { /* rw == WRITE */
786 		if (err) {
787 			SetPageError(page);
788 			if (page->mapping)
789 				mapping_set_error(page->mapping, err);
790 		}
791 		end_page_writeback(page);
792 	}
793 }
794 EXPORT_SYMBOL_GPL(page_endio);
795 
796 /**
797  * __lock_page - get a lock on the page, assuming we need to sleep to get it
798  * @page: the page to lock
799  */
800 void __lock_page(struct page *page)
801 {
802 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
803 
804 	__wait_on_bit_lock(page_waitqueue(page), &wait, bit_wait_io,
805 							TASK_UNINTERRUPTIBLE);
806 }
807 EXPORT_SYMBOL(__lock_page);
808 
809 int __lock_page_killable(struct page *page)
810 {
811 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
812 
813 	return __wait_on_bit_lock(page_waitqueue(page), &wait,
814 					bit_wait_io, TASK_KILLABLE);
815 }
816 EXPORT_SYMBOL_GPL(__lock_page_killable);
817 
818 /*
819  * Return values:
820  * 1 - page is locked; mmap_sem is still held.
821  * 0 - page is not locked.
822  *     mmap_sem has been released (up_read()), unless flags had both
823  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
824  *     which case mmap_sem is still held.
825  *
826  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
827  * with the page locked and the mmap_sem unperturbed.
828  */
829 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
830 			 unsigned int flags)
831 {
832 	if (flags & FAULT_FLAG_ALLOW_RETRY) {
833 		/*
834 		 * CAUTION! In this case, mmap_sem is not released
835 		 * even though return 0.
836 		 */
837 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
838 			return 0;
839 
840 		up_read(&mm->mmap_sem);
841 		if (flags & FAULT_FLAG_KILLABLE)
842 			wait_on_page_locked_killable(page);
843 		else
844 			wait_on_page_locked(page);
845 		return 0;
846 	} else {
847 		if (flags & FAULT_FLAG_KILLABLE) {
848 			int ret;
849 
850 			ret = __lock_page_killable(page);
851 			if (ret) {
852 				up_read(&mm->mmap_sem);
853 				return 0;
854 			}
855 		} else
856 			__lock_page(page);
857 		return 1;
858 	}
859 }
860 
861 /**
862  * page_cache_next_hole - find the next hole (not-present entry)
863  * @mapping: mapping
864  * @index: index
865  * @max_scan: maximum range to search
866  *
867  * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
868  * lowest indexed hole.
869  *
870  * Returns: the index of the hole if found, otherwise returns an index
871  * outside of the set specified (in which case 'return - index >=
872  * max_scan' will be true). In rare cases of index wrap-around, 0 will
873  * be returned.
874  *
875  * page_cache_next_hole may be called under rcu_read_lock. However,
876  * like radix_tree_gang_lookup, this will not atomically search a
877  * snapshot of the tree at a single point in time. For example, if a
878  * hole is created at index 5, then subsequently a hole is created at
879  * index 10, page_cache_next_hole covering both indexes may return 10
880  * if called under rcu_read_lock.
881  */
882 pgoff_t page_cache_next_hole(struct address_space *mapping,
883 			     pgoff_t index, unsigned long max_scan)
884 {
885 	unsigned long i;
886 
887 	for (i = 0; i < max_scan; i++) {
888 		struct page *page;
889 
890 		page = radix_tree_lookup(&mapping->page_tree, index);
891 		if (!page || radix_tree_exceptional_entry(page))
892 			break;
893 		index++;
894 		if (index == 0)
895 			break;
896 	}
897 
898 	return index;
899 }
900 EXPORT_SYMBOL(page_cache_next_hole);
901 
902 /**
903  * page_cache_prev_hole - find the prev hole (not-present entry)
904  * @mapping: mapping
905  * @index: index
906  * @max_scan: maximum range to search
907  *
908  * Search backwards in the range [max(index-max_scan+1, 0), index] for
909  * the first hole.
910  *
911  * Returns: the index of the hole if found, otherwise returns an index
912  * outside of the set specified (in which case 'index - return >=
913  * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
914  * will be returned.
915  *
916  * page_cache_prev_hole may be called under rcu_read_lock. However,
917  * like radix_tree_gang_lookup, this will not atomically search a
918  * snapshot of the tree at a single point in time. For example, if a
919  * hole is created at index 10, then subsequently a hole is created at
920  * index 5, page_cache_prev_hole covering both indexes may return 5 if
921  * called under rcu_read_lock.
922  */
923 pgoff_t page_cache_prev_hole(struct address_space *mapping,
924 			     pgoff_t index, unsigned long max_scan)
925 {
926 	unsigned long i;
927 
928 	for (i = 0; i < max_scan; i++) {
929 		struct page *page;
930 
931 		page = radix_tree_lookup(&mapping->page_tree, index);
932 		if (!page || radix_tree_exceptional_entry(page))
933 			break;
934 		index--;
935 		if (index == ULONG_MAX)
936 			break;
937 	}
938 
939 	return index;
940 }
941 EXPORT_SYMBOL(page_cache_prev_hole);
942 
943 /**
944  * find_get_entry - find and get a page cache entry
945  * @mapping: the address_space to search
946  * @offset: the page cache index
947  *
948  * Looks up the page cache slot at @mapping & @offset.  If there is a
949  * page cache page, it is returned with an increased refcount.
950  *
951  * If the slot holds a shadow entry of a previously evicted page, or a
952  * swap entry from shmem/tmpfs, it is returned.
953  *
954  * Otherwise, %NULL is returned.
955  */
956 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
957 {
958 	void **pagep;
959 	struct page *page;
960 
961 	rcu_read_lock();
962 repeat:
963 	page = NULL;
964 	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
965 	if (pagep) {
966 		page = radix_tree_deref_slot(pagep);
967 		if (unlikely(!page))
968 			goto out;
969 		if (radix_tree_exception(page)) {
970 			if (radix_tree_deref_retry(page))
971 				goto repeat;
972 			/*
973 			 * A shadow entry of a recently evicted page,
974 			 * or a swap entry from shmem/tmpfs.  Return
975 			 * it without attempting to raise page count.
976 			 */
977 			goto out;
978 		}
979 		if (!page_cache_get_speculative(page))
980 			goto repeat;
981 
982 		/*
983 		 * Has the page moved?
984 		 * This is part of the lockless pagecache protocol. See
985 		 * include/linux/pagemap.h for details.
986 		 */
987 		if (unlikely(page != *pagep)) {
988 			page_cache_release(page);
989 			goto repeat;
990 		}
991 	}
992 out:
993 	rcu_read_unlock();
994 
995 	return page;
996 }
997 EXPORT_SYMBOL(find_get_entry);
998 
999 /**
1000  * find_lock_entry - locate, pin and lock a page cache entry
1001  * @mapping: the address_space to search
1002  * @offset: the page cache index
1003  *
1004  * Looks up the page cache slot at @mapping & @offset.  If there is a
1005  * page cache page, it is returned locked and with an increased
1006  * refcount.
1007  *
1008  * If the slot holds a shadow entry of a previously evicted page, or a
1009  * swap entry from shmem/tmpfs, it is returned.
1010  *
1011  * Otherwise, %NULL is returned.
1012  *
1013  * find_lock_entry() may sleep.
1014  */
1015 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1016 {
1017 	struct page *page;
1018 
1019 repeat:
1020 	page = find_get_entry(mapping, offset);
1021 	if (page && !radix_tree_exception(page)) {
1022 		lock_page(page);
1023 		/* Has the page been truncated? */
1024 		if (unlikely(page->mapping != mapping)) {
1025 			unlock_page(page);
1026 			page_cache_release(page);
1027 			goto repeat;
1028 		}
1029 		VM_BUG_ON_PAGE(page->index != offset, page);
1030 	}
1031 	return page;
1032 }
1033 EXPORT_SYMBOL(find_lock_entry);
1034 
1035 /**
1036  * pagecache_get_page - find and get a page reference
1037  * @mapping: the address_space to search
1038  * @offset: the page index
1039  * @fgp_flags: PCG flags
1040  * @cache_gfp_mask: gfp mask to use for the page cache data page allocation
1041  * @radix_gfp_mask: gfp mask to use for radix tree node allocation
1042  *
1043  * Looks up the page cache slot at @mapping & @offset.
1044  *
1045  * PCG flags modify how the page is returned.
1046  *
1047  * FGP_ACCESSED: the page will be marked accessed
1048  * FGP_LOCK: Page is return locked
1049  * FGP_CREAT: If page is not present then a new page is allocated using
1050  *		@cache_gfp_mask and added to the page cache and the VM's LRU
1051  *		list. If radix tree nodes are allocated during page cache
1052  *		insertion then @radix_gfp_mask is used. The page is returned
1053  *		locked and with an increased refcount. Otherwise, %NULL is
1054  *		returned.
1055  *
1056  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1057  * if the GFP flags specified for FGP_CREAT are atomic.
1058  *
1059  * If there is a page cache page, it is returned with an increased refcount.
1060  */
1061 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1062 	int fgp_flags, gfp_t cache_gfp_mask, gfp_t radix_gfp_mask)
1063 {
1064 	struct page *page;
1065 
1066 repeat:
1067 	page = find_get_entry(mapping, offset);
1068 	if (radix_tree_exceptional_entry(page))
1069 		page = NULL;
1070 	if (!page)
1071 		goto no_page;
1072 
1073 	if (fgp_flags & FGP_LOCK) {
1074 		if (fgp_flags & FGP_NOWAIT) {
1075 			if (!trylock_page(page)) {
1076 				page_cache_release(page);
1077 				return NULL;
1078 			}
1079 		} else {
1080 			lock_page(page);
1081 		}
1082 
1083 		/* Has the page been truncated? */
1084 		if (unlikely(page->mapping != mapping)) {
1085 			unlock_page(page);
1086 			page_cache_release(page);
1087 			goto repeat;
1088 		}
1089 		VM_BUG_ON_PAGE(page->index != offset, page);
1090 	}
1091 
1092 	if (page && (fgp_flags & FGP_ACCESSED))
1093 		mark_page_accessed(page);
1094 
1095 no_page:
1096 	if (!page && (fgp_flags & FGP_CREAT)) {
1097 		int err;
1098 		if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1099 			cache_gfp_mask |= __GFP_WRITE;
1100 		if (fgp_flags & FGP_NOFS) {
1101 			cache_gfp_mask &= ~__GFP_FS;
1102 			radix_gfp_mask &= ~__GFP_FS;
1103 		}
1104 
1105 		page = __page_cache_alloc(cache_gfp_mask);
1106 		if (!page)
1107 			return NULL;
1108 
1109 		if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1110 			fgp_flags |= FGP_LOCK;
1111 
1112 		/* Init accessed so avoid atomic mark_page_accessed later */
1113 		if (fgp_flags & FGP_ACCESSED)
1114 			__SetPageReferenced(page);
1115 
1116 		err = add_to_page_cache_lru(page, mapping, offset, radix_gfp_mask);
1117 		if (unlikely(err)) {
1118 			page_cache_release(page);
1119 			page = NULL;
1120 			if (err == -EEXIST)
1121 				goto repeat;
1122 		}
1123 	}
1124 
1125 	return page;
1126 }
1127 EXPORT_SYMBOL(pagecache_get_page);
1128 
1129 /**
1130  * find_get_entries - gang pagecache lookup
1131  * @mapping:	The address_space to search
1132  * @start:	The starting page cache index
1133  * @nr_entries:	The maximum number of entries
1134  * @entries:	Where the resulting entries are placed
1135  * @indices:	The cache indices corresponding to the entries in @entries
1136  *
1137  * find_get_entries() will search for and return a group of up to
1138  * @nr_entries entries in the mapping.  The entries are placed at
1139  * @entries.  find_get_entries() takes a reference against any actual
1140  * pages it returns.
1141  *
1142  * The search returns a group of mapping-contiguous page cache entries
1143  * with ascending indexes.  There may be holes in the indices due to
1144  * not-present pages.
1145  *
1146  * Any shadow entries of evicted pages, or swap entries from
1147  * shmem/tmpfs, are included in the returned array.
1148  *
1149  * find_get_entries() returns the number of pages and shadow entries
1150  * which were found.
1151  */
1152 unsigned find_get_entries(struct address_space *mapping,
1153 			  pgoff_t start, unsigned int nr_entries,
1154 			  struct page **entries, pgoff_t *indices)
1155 {
1156 	void **slot;
1157 	unsigned int ret = 0;
1158 	struct radix_tree_iter iter;
1159 
1160 	if (!nr_entries)
1161 		return 0;
1162 
1163 	rcu_read_lock();
1164 restart:
1165 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1166 		struct page *page;
1167 repeat:
1168 		page = radix_tree_deref_slot(slot);
1169 		if (unlikely(!page))
1170 			continue;
1171 		if (radix_tree_exception(page)) {
1172 			if (radix_tree_deref_retry(page))
1173 				goto restart;
1174 			/*
1175 			 * A shadow entry of a recently evicted page,
1176 			 * or a swap entry from shmem/tmpfs.  Return
1177 			 * it without attempting to raise page count.
1178 			 */
1179 			goto export;
1180 		}
1181 		if (!page_cache_get_speculative(page))
1182 			goto repeat;
1183 
1184 		/* Has the page moved? */
1185 		if (unlikely(page != *slot)) {
1186 			page_cache_release(page);
1187 			goto repeat;
1188 		}
1189 export:
1190 		indices[ret] = iter.index;
1191 		entries[ret] = page;
1192 		if (++ret == nr_entries)
1193 			break;
1194 	}
1195 	rcu_read_unlock();
1196 	return ret;
1197 }
1198 
1199 /**
1200  * find_get_pages - gang pagecache lookup
1201  * @mapping:	The address_space to search
1202  * @start:	The starting page index
1203  * @nr_pages:	The maximum number of pages
1204  * @pages:	Where the resulting pages are placed
1205  *
1206  * find_get_pages() will search for and return a group of up to
1207  * @nr_pages pages in the mapping.  The pages are placed at @pages.
1208  * find_get_pages() takes a reference against the returned pages.
1209  *
1210  * The search returns a group of mapping-contiguous pages with ascending
1211  * indexes.  There may be holes in the indices due to not-present pages.
1212  *
1213  * find_get_pages() returns the number of pages which were found.
1214  */
1215 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1216 			    unsigned int nr_pages, struct page **pages)
1217 {
1218 	struct radix_tree_iter iter;
1219 	void **slot;
1220 	unsigned ret = 0;
1221 
1222 	if (unlikely(!nr_pages))
1223 		return 0;
1224 
1225 	rcu_read_lock();
1226 restart:
1227 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1228 		struct page *page;
1229 repeat:
1230 		page = radix_tree_deref_slot(slot);
1231 		if (unlikely(!page))
1232 			continue;
1233 
1234 		if (radix_tree_exception(page)) {
1235 			if (radix_tree_deref_retry(page)) {
1236 				/*
1237 				 * Transient condition which can only trigger
1238 				 * when entry at index 0 moves out of or back
1239 				 * to root: none yet gotten, safe to restart.
1240 				 */
1241 				WARN_ON(iter.index);
1242 				goto restart;
1243 			}
1244 			/*
1245 			 * A shadow entry of a recently evicted page,
1246 			 * or a swap entry from shmem/tmpfs.  Skip
1247 			 * over it.
1248 			 */
1249 			continue;
1250 		}
1251 
1252 		if (!page_cache_get_speculative(page))
1253 			goto repeat;
1254 
1255 		/* Has the page moved? */
1256 		if (unlikely(page != *slot)) {
1257 			page_cache_release(page);
1258 			goto repeat;
1259 		}
1260 
1261 		pages[ret] = page;
1262 		if (++ret == nr_pages)
1263 			break;
1264 	}
1265 
1266 	rcu_read_unlock();
1267 	return ret;
1268 }
1269 
1270 /**
1271  * find_get_pages_contig - gang contiguous pagecache lookup
1272  * @mapping:	The address_space to search
1273  * @index:	The starting page index
1274  * @nr_pages:	The maximum number of pages
1275  * @pages:	Where the resulting pages are placed
1276  *
1277  * find_get_pages_contig() works exactly like find_get_pages(), except
1278  * that the returned number of pages are guaranteed to be contiguous.
1279  *
1280  * find_get_pages_contig() returns the number of pages which were found.
1281  */
1282 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1283 			       unsigned int nr_pages, struct page **pages)
1284 {
1285 	struct radix_tree_iter iter;
1286 	void **slot;
1287 	unsigned int ret = 0;
1288 
1289 	if (unlikely(!nr_pages))
1290 		return 0;
1291 
1292 	rcu_read_lock();
1293 restart:
1294 	radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1295 		struct page *page;
1296 repeat:
1297 		page = radix_tree_deref_slot(slot);
1298 		/* The hole, there no reason to continue */
1299 		if (unlikely(!page))
1300 			break;
1301 
1302 		if (radix_tree_exception(page)) {
1303 			if (radix_tree_deref_retry(page)) {
1304 				/*
1305 				 * Transient condition which can only trigger
1306 				 * when entry at index 0 moves out of or back
1307 				 * to root: none yet gotten, safe to restart.
1308 				 */
1309 				goto restart;
1310 			}
1311 			/*
1312 			 * A shadow entry of a recently evicted page,
1313 			 * or a swap entry from shmem/tmpfs.  Stop
1314 			 * looking for contiguous pages.
1315 			 */
1316 			break;
1317 		}
1318 
1319 		if (!page_cache_get_speculative(page))
1320 			goto repeat;
1321 
1322 		/* Has the page moved? */
1323 		if (unlikely(page != *slot)) {
1324 			page_cache_release(page);
1325 			goto repeat;
1326 		}
1327 
1328 		/*
1329 		 * must check mapping and index after taking the ref.
1330 		 * otherwise we can get both false positives and false
1331 		 * negatives, which is just confusing to the caller.
1332 		 */
1333 		if (page->mapping == NULL || page->index != iter.index) {
1334 			page_cache_release(page);
1335 			break;
1336 		}
1337 
1338 		pages[ret] = page;
1339 		if (++ret == nr_pages)
1340 			break;
1341 	}
1342 	rcu_read_unlock();
1343 	return ret;
1344 }
1345 EXPORT_SYMBOL(find_get_pages_contig);
1346 
1347 /**
1348  * find_get_pages_tag - find and return pages that match @tag
1349  * @mapping:	the address_space to search
1350  * @index:	the starting page index
1351  * @tag:	the tag index
1352  * @nr_pages:	the maximum number of pages
1353  * @pages:	where the resulting pages are placed
1354  *
1355  * Like find_get_pages, except we only return pages which are tagged with
1356  * @tag.   We update @index to index the next page for the traversal.
1357  */
1358 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1359 			int tag, unsigned int nr_pages, struct page **pages)
1360 {
1361 	struct radix_tree_iter iter;
1362 	void **slot;
1363 	unsigned ret = 0;
1364 
1365 	if (unlikely(!nr_pages))
1366 		return 0;
1367 
1368 	rcu_read_lock();
1369 restart:
1370 	radix_tree_for_each_tagged(slot, &mapping->page_tree,
1371 				   &iter, *index, tag) {
1372 		struct page *page;
1373 repeat:
1374 		page = radix_tree_deref_slot(slot);
1375 		if (unlikely(!page))
1376 			continue;
1377 
1378 		if (radix_tree_exception(page)) {
1379 			if (radix_tree_deref_retry(page)) {
1380 				/*
1381 				 * Transient condition which can only trigger
1382 				 * when entry at index 0 moves out of or back
1383 				 * to root: none yet gotten, safe to restart.
1384 				 */
1385 				goto restart;
1386 			}
1387 			/*
1388 			 * A shadow entry of a recently evicted page.
1389 			 *
1390 			 * Those entries should never be tagged, but
1391 			 * this tree walk is lockless and the tags are
1392 			 * looked up in bulk, one radix tree node at a
1393 			 * time, so there is a sizable window for page
1394 			 * reclaim to evict a page we saw tagged.
1395 			 *
1396 			 * Skip over it.
1397 			 */
1398 			continue;
1399 		}
1400 
1401 		if (!page_cache_get_speculative(page))
1402 			goto repeat;
1403 
1404 		/* Has the page moved? */
1405 		if (unlikely(page != *slot)) {
1406 			page_cache_release(page);
1407 			goto repeat;
1408 		}
1409 
1410 		pages[ret] = page;
1411 		if (++ret == nr_pages)
1412 			break;
1413 	}
1414 
1415 	rcu_read_unlock();
1416 
1417 	if (ret)
1418 		*index = pages[ret - 1]->index + 1;
1419 
1420 	return ret;
1421 }
1422 EXPORT_SYMBOL(find_get_pages_tag);
1423 
1424 /*
1425  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1426  * a _large_ part of the i/o request. Imagine the worst scenario:
1427  *
1428  *      ---R__________________________________________B__________
1429  *         ^ reading here                             ^ bad block(assume 4k)
1430  *
1431  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1432  * => failing the whole request => read(R) => read(R+1) =>
1433  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1434  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1435  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1436  *
1437  * It is going insane. Fix it by quickly scaling down the readahead size.
1438  */
1439 static void shrink_readahead_size_eio(struct file *filp,
1440 					struct file_ra_state *ra)
1441 {
1442 	ra->ra_pages /= 4;
1443 }
1444 
1445 /**
1446  * do_generic_file_read - generic file read routine
1447  * @filp:	the file to read
1448  * @ppos:	current file position
1449  * @iter:	data destination
1450  * @written:	already copied
1451  *
1452  * This is a generic file read routine, and uses the
1453  * mapping->a_ops->readpage() function for the actual low-level stuff.
1454  *
1455  * This is really ugly. But the goto's actually try to clarify some
1456  * of the logic when it comes to error handling etc.
1457  */
1458 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1459 		struct iov_iter *iter, ssize_t written)
1460 {
1461 	struct address_space *mapping = filp->f_mapping;
1462 	struct inode *inode = mapping->host;
1463 	struct file_ra_state *ra = &filp->f_ra;
1464 	pgoff_t index;
1465 	pgoff_t last_index;
1466 	pgoff_t prev_index;
1467 	unsigned long offset;      /* offset into pagecache page */
1468 	unsigned int prev_offset;
1469 	int error = 0;
1470 
1471 	index = *ppos >> PAGE_CACHE_SHIFT;
1472 	prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1473 	prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1474 	last_index = (*ppos + iter->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1475 	offset = *ppos & ~PAGE_CACHE_MASK;
1476 
1477 	for (;;) {
1478 		struct page *page;
1479 		pgoff_t end_index;
1480 		loff_t isize;
1481 		unsigned long nr, ret;
1482 
1483 		cond_resched();
1484 find_page:
1485 		page = find_get_page(mapping, index);
1486 		if (!page) {
1487 			page_cache_sync_readahead(mapping,
1488 					ra, filp,
1489 					index, last_index - index);
1490 			page = find_get_page(mapping, index);
1491 			if (unlikely(page == NULL))
1492 				goto no_cached_page;
1493 		}
1494 		if (PageReadahead(page)) {
1495 			page_cache_async_readahead(mapping,
1496 					ra, filp, page,
1497 					index, last_index - index);
1498 		}
1499 		if (!PageUptodate(page)) {
1500 			if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1501 					!mapping->a_ops->is_partially_uptodate)
1502 				goto page_not_up_to_date;
1503 			if (!trylock_page(page))
1504 				goto page_not_up_to_date;
1505 			/* Did it get truncated before we got the lock? */
1506 			if (!page->mapping)
1507 				goto page_not_up_to_date_locked;
1508 			if (!mapping->a_ops->is_partially_uptodate(page,
1509 							offset, iter->count))
1510 				goto page_not_up_to_date_locked;
1511 			unlock_page(page);
1512 		}
1513 page_ok:
1514 		/*
1515 		 * i_size must be checked after we know the page is Uptodate.
1516 		 *
1517 		 * Checking i_size after the check allows us to calculate
1518 		 * the correct value for "nr", which means the zero-filled
1519 		 * part of the page is not copied back to userspace (unless
1520 		 * another truncate extends the file - this is desired though).
1521 		 */
1522 
1523 		isize = i_size_read(inode);
1524 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1525 		if (unlikely(!isize || index > end_index)) {
1526 			page_cache_release(page);
1527 			goto out;
1528 		}
1529 
1530 		/* nr is the maximum number of bytes to copy from this page */
1531 		nr = PAGE_CACHE_SIZE;
1532 		if (index == end_index) {
1533 			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1534 			if (nr <= offset) {
1535 				page_cache_release(page);
1536 				goto out;
1537 			}
1538 		}
1539 		nr = nr - offset;
1540 
1541 		/* If users can be writing to this page using arbitrary
1542 		 * virtual addresses, take care about potential aliasing
1543 		 * before reading the page on the kernel side.
1544 		 */
1545 		if (mapping_writably_mapped(mapping))
1546 			flush_dcache_page(page);
1547 
1548 		/*
1549 		 * When a sequential read accesses a page several times,
1550 		 * only mark it as accessed the first time.
1551 		 */
1552 		if (prev_index != index || offset != prev_offset)
1553 			mark_page_accessed(page);
1554 		prev_index = index;
1555 
1556 		/*
1557 		 * Ok, we have the page, and it's up-to-date, so
1558 		 * now we can copy it to user space...
1559 		 */
1560 
1561 		ret = copy_page_to_iter(page, offset, nr, iter);
1562 		offset += ret;
1563 		index += offset >> PAGE_CACHE_SHIFT;
1564 		offset &= ~PAGE_CACHE_MASK;
1565 		prev_offset = offset;
1566 
1567 		page_cache_release(page);
1568 		written += ret;
1569 		if (!iov_iter_count(iter))
1570 			goto out;
1571 		if (ret < nr) {
1572 			error = -EFAULT;
1573 			goto out;
1574 		}
1575 		continue;
1576 
1577 page_not_up_to_date:
1578 		/* Get exclusive access to the page ... */
1579 		error = lock_page_killable(page);
1580 		if (unlikely(error))
1581 			goto readpage_error;
1582 
1583 page_not_up_to_date_locked:
1584 		/* Did it get truncated before we got the lock? */
1585 		if (!page->mapping) {
1586 			unlock_page(page);
1587 			page_cache_release(page);
1588 			continue;
1589 		}
1590 
1591 		/* Did somebody else fill it already? */
1592 		if (PageUptodate(page)) {
1593 			unlock_page(page);
1594 			goto page_ok;
1595 		}
1596 
1597 readpage:
1598 		/*
1599 		 * A previous I/O error may have been due to temporary
1600 		 * failures, eg. multipath errors.
1601 		 * PG_error will be set again if readpage fails.
1602 		 */
1603 		ClearPageError(page);
1604 		/* Start the actual read. The read will unlock the page. */
1605 		error = mapping->a_ops->readpage(filp, page);
1606 
1607 		if (unlikely(error)) {
1608 			if (error == AOP_TRUNCATED_PAGE) {
1609 				page_cache_release(page);
1610 				error = 0;
1611 				goto find_page;
1612 			}
1613 			goto readpage_error;
1614 		}
1615 
1616 		if (!PageUptodate(page)) {
1617 			error = lock_page_killable(page);
1618 			if (unlikely(error))
1619 				goto readpage_error;
1620 			if (!PageUptodate(page)) {
1621 				if (page->mapping == NULL) {
1622 					/*
1623 					 * invalidate_mapping_pages got it
1624 					 */
1625 					unlock_page(page);
1626 					page_cache_release(page);
1627 					goto find_page;
1628 				}
1629 				unlock_page(page);
1630 				shrink_readahead_size_eio(filp, ra);
1631 				error = -EIO;
1632 				goto readpage_error;
1633 			}
1634 			unlock_page(page);
1635 		}
1636 
1637 		goto page_ok;
1638 
1639 readpage_error:
1640 		/* UHHUH! A synchronous read error occurred. Report it */
1641 		page_cache_release(page);
1642 		goto out;
1643 
1644 no_cached_page:
1645 		/*
1646 		 * Ok, it wasn't cached, so we need to create a new
1647 		 * page..
1648 		 */
1649 		page = page_cache_alloc_cold(mapping);
1650 		if (!page) {
1651 			error = -ENOMEM;
1652 			goto out;
1653 		}
1654 		error = add_to_page_cache_lru(page, mapping,
1655 						index, GFP_KERNEL);
1656 		if (error) {
1657 			page_cache_release(page);
1658 			if (error == -EEXIST) {
1659 				error = 0;
1660 				goto find_page;
1661 			}
1662 			goto out;
1663 		}
1664 		goto readpage;
1665 	}
1666 
1667 out:
1668 	ra->prev_pos = prev_index;
1669 	ra->prev_pos <<= PAGE_CACHE_SHIFT;
1670 	ra->prev_pos |= prev_offset;
1671 
1672 	*ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1673 	file_accessed(filp);
1674 	return written ? written : error;
1675 }
1676 
1677 /**
1678  * generic_file_read_iter - generic filesystem read routine
1679  * @iocb:	kernel I/O control block
1680  * @iter:	destination for the data read
1681  *
1682  * This is the "read_iter()" routine for all filesystems
1683  * that can use the page cache directly.
1684  */
1685 ssize_t
1686 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1687 {
1688 	struct file *file = iocb->ki_filp;
1689 	ssize_t retval = 0;
1690 	loff_t *ppos = &iocb->ki_pos;
1691 	loff_t pos = *ppos;
1692 
1693 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1694 	if (file->f_flags & O_DIRECT) {
1695 		struct address_space *mapping = file->f_mapping;
1696 		struct inode *inode = mapping->host;
1697 		size_t count = iov_iter_count(iter);
1698 		loff_t size;
1699 
1700 		if (!count)
1701 			goto out; /* skip atime */
1702 		size = i_size_read(inode);
1703 		retval = filemap_write_and_wait_range(mapping, pos,
1704 					pos + count - 1);
1705 		if (!retval) {
1706 			struct iov_iter data = *iter;
1707 			retval = mapping->a_ops->direct_IO(READ, iocb, &data, pos);
1708 		}
1709 
1710 		if (retval > 0) {
1711 			*ppos = pos + retval;
1712 			iov_iter_advance(iter, retval);
1713 		}
1714 
1715 		/*
1716 		 * Btrfs can have a short DIO read if we encounter
1717 		 * compressed extents, so if there was an error, or if
1718 		 * we've already read everything we wanted to, or if
1719 		 * there was a short read because we hit EOF, go ahead
1720 		 * and return.  Otherwise fallthrough to buffered io for
1721 		 * the rest of the read.
1722 		 */
1723 		if (retval < 0 || !iov_iter_count(iter) || *ppos >= size) {
1724 			file_accessed(file);
1725 			goto out;
1726 		}
1727 	}
1728 
1729 	retval = do_generic_file_read(file, ppos, iter, retval);
1730 out:
1731 	return retval;
1732 }
1733 EXPORT_SYMBOL(generic_file_read_iter);
1734 
1735 #ifdef CONFIG_MMU
1736 /**
1737  * page_cache_read - adds requested page to the page cache if not already there
1738  * @file:	file to read
1739  * @offset:	page index
1740  *
1741  * This adds the requested page to the page cache if it isn't already there,
1742  * and schedules an I/O to read in its contents from disk.
1743  */
1744 static int page_cache_read(struct file *file, pgoff_t offset)
1745 {
1746 	struct address_space *mapping = file->f_mapping;
1747 	struct page *page;
1748 	int ret;
1749 
1750 	do {
1751 		page = page_cache_alloc_cold(mapping);
1752 		if (!page)
1753 			return -ENOMEM;
1754 
1755 		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1756 		if (ret == 0)
1757 			ret = mapping->a_ops->readpage(file, page);
1758 		else if (ret == -EEXIST)
1759 			ret = 0; /* losing race to add is OK */
1760 
1761 		page_cache_release(page);
1762 
1763 	} while (ret == AOP_TRUNCATED_PAGE);
1764 
1765 	return ret;
1766 }
1767 
1768 #define MMAP_LOTSAMISS  (100)
1769 
1770 /*
1771  * Synchronous readahead happens when we don't even find
1772  * a page in the page cache at all.
1773  */
1774 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1775 				   struct file_ra_state *ra,
1776 				   struct file *file,
1777 				   pgoff_t offset)
1778 {
1779 	unsigned long ra_pages;
1780 	struct address_space *mapping = file->f_mapping;
1781 
1782 	/* If we don't want any read-ahead, don't bother */
1783 	if (vma->vm_flags & VM_RAND_READ)
1784 		return;
1785 	if (!ra->ra_pages)
1786 		return;
1787 
1788 	if (vma->vm_flags & VM_SEQ_READ) {
1789 		page_cache_sync_readahead(mapping, ra, file, offset,
1790 					  ra->ra_pages);
1791 		return;
1792 	}
1793 
1794 	/* Avoid banging the cache line if not needed */
1795 	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1796 		ra->mmap_miss++;
1797 
1798 	/*
1799 	 * Do we miss much more than hit in this file? If so,
1800 	 * stop bothering with read-ahead. It will only hurt.
1801 	 */
1802 	if (ra->mmap_miss > MMAP_LOTSAMISS)
1803 		return;
1804 
1805 	/*
1806 	 * mmap read-around
1807 	 */
1808 	ra_pages = max_sane_readahead(ra->ra_pages);
1809 	ra->start = max_t(long, 0, offset - ra_pages / 2);
1810 	ra->size = ra_pages;
1811 	ra->async_size = ra_pages / 4;
1812 	ra_submit(ra, mapping, file);
1813 }
1814 
1815 /*
1816  * Asynchronous readahead happens when we find the page and PG_readahead,
1817  * so we want to possibly extend the readahead further..
1818  */
1819 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1820 				    struct file_ra_state *ra,
1821 				    struct file *file,
1822 				    struct page *page,
1823 				    pgoff_t offset)
1824 {
1825 	struct address_space *mapping = file->f_mapping;
1826 
1827 	/* If we don't want any read-ahead, don't bother */
1828 	if (vma->vm_flags & VM_RAND_READ)
1829 		return;
1830 	if (ra->mmap_miss > 0)
1831 		ra->mmap_miss--;
1832 	if (PageReadahead(page))
1833 		page_cache_async_readahead(mapping, ra, file,
1834 					   page, offset, ra->ra_pages);
1835 }
1836 
1837 /**
1838  * filemap_fault - read in file data for page fault handling
1839  * @vma:	vma in which the fault was taken
1840  * @vmf:	struct vm_fault containing details of the fault
1841  *
1842  * filemap_fault() is invoked via the vma operations vector for a
1843  * mapped memory region to read in file data during a page fault.
1844  *
1845  * The goto's are kind of ugly, but this streamlines the normal case of having
1846  * it in the page cache, and handles the special cases reasonably without
1847  * having a lot of duplicated code.
1848  *
1849  * vma->vm_mm->mmap_sem must be held on entry.
1850  *
1851  * If our return value has VM_FAULT_RETRY set, it's because
1852  * lock_page_or_retry() returned 0.
1853  * The mmap_sem has usually been released in this case.
1854  * See __lock_page_or_retry() for the exception.
1855  *
1856  * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
1857  * has not been released.
1858  *
1859  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
1860  */
1861 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1862 {
1863 	int error;
1864 	struct file *file = vma->vm_file;
1865 	struct address_space *mapping = file->f_mapping;
1866 	struct file_ra_state *ra = &file->f_ra;
1867 	struct inode *inode = mapping->host;
1868 	pgoff_t offset = vmf->pgoff;
1869 	struct page *page;
1870 	loff_t size;
1871 	int ret = 0;
1872 
1873 	size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1874 	if (offset >= size >> PAGE_CACHE_SHIFT)
1875 		return VM_FAULT_SIGBUS;
1876 
1877 	/*
1878 	 * Do we have something in the page cache already?
1879 	 */
1880 	page = find_get_page(mapping, offset);
1881 	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1882 		/*
1883 		 * We found the page, so try async readahead before
1884 		 * waiting for the lock.
1885 		 */
1886 		do_async_mmap_readahead(vma, ra, file, page, offset);
1887 	} else if (!page) {
1888 		/* No page in the page cache at all */
1889 		do_sync_mmap_readahead(vma, ra, file, offset);
1890 		count_vm_event(PGMAJFAULT);
1891 		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1892 		ret = VM_FAULT_MAJOR;
1893 retry_find:
1894 		page = find_get_page(mapping, offset);
1895 		if (!page)
1896 			goto no_cached_page;
1897 	}
1898 
1899 	if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1900 		page_cache_release(page);
1901 		return ret | VM_FAULT_RETRY;
1902 	}
1903 
1904 	/* Did it get truncated? */
1905 	if (unlikely(page->mapping != mapping)) {
1906 		unlock_page(page);
1907 		put_page(page);
1908 		goto retry_find;
1909 	}
1910 	VM_BUG_ON_PAGE(page->index != offset, page);
1911 
1912 	/*
1913 	 * We have a locked page in the page cache, now we need to check
1914 	 * that it's up-to-date. If not, it is going to be due to an error.
1915 	 */
1916 	if (unlikely(!PageUptodate(page)))
1917 		goto page_not_uptodate;
1918 
1919 	/*
1920 	 * Found the page and have a reference on it.
1921 	 * We must recheck i_size under page lock.
1922 	 */
1923 	size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1924 	if (unlikely(offset >= size >> PAGE_CACHE_SHIFT)) {
1925 		unlock_page(page);
1926 		page_cache_release(page);
1927 		return VM_FAULT_SIGBUS;
1928 	}
1929 
1930 	vmf->page = page;
1931 	return ret | VM_FAULT_LOCKED;
1932 
1933 no_cached_page:
1934 	/*
1935 	 * We're only likely to ever get here if MADV_RANDOM is in
1936 	 * effect.
1937 	 */
1938 	error = page_cache_read(file, offset);
1939 
1940 	/*
1941 	 * The page we want has now been added to the page cache.
1942 	 * In the unlikely event that someone removed it in the
1943 	 * meantime, we'll just come back here and read it again.
1944 	 */
1945 	if (error >= 0)
1946 		goto retry_find;
1947 
1948 	/*
1949 	 * An error return from page_cache_read can result if the
1950 	 * system is low on memory, or a problem occurs while trying
1951 	 * to schedule I/O.
1952 	 */
1953 	if (error == -ENOMEM)
1954 		return VM_FAULT_OOM;
1955 	return VM_FAULT_SIGBUS;
1956 
1957 page_not_uptodate:
1958 	/*
1959 	 * Umm, take care of errors if the page isn't up-to-date.
1960 	 * Try to re-read it _once_. We do this synchronously,
1961 	 * because there really aren't any performance issues here
1962 	 * and we need to check for errors.
1963 	 */
1964 	ClearPageError(page);
1965 	error = mapping->a_ops->readpage(file, page);
1966 	if (!error) {
1967 		wait_on_page_locked(page);
1968 		if (!PageUptodate(page))
1969 			error = -EIO;
1970 	}
1971 	page_cache_release(page);
1972 
1973 	if (!error || error == AOP_TRUNCATED_PAGE)
1974 		goto retry_find;
1975 
1976 	/* Things didn't work out. Return zero to tell the mm layer so. */
1977 	shrink_readahead_size_eio(file, ra);
1978 	return VM_FAULT_SIGBUS;
1979 }
1980 EXPORT_SYMBOL(filemap_fault);
1981 
1982 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
1983 {
1984 	struct radix_tree_iter iter;
1985 	void **slot;
1986 	struct file *file = vma->vm_file;
1987 	struct address_space *mapping = file->f_mapping;
1988 	loff_t size;
1989 	struct page *page;
1990 	unsigned long address = (unsigned long) vmf->virtual_address;
1991 	unsigned long addr;
1992 	pte_t *pte;
1993 
1994 	rcu_read_lock();
1995 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
1996 		if (iter.index > vmf->max_pgoff)
1997 			break;
1998 repeat:
1999 		page = radix_tree_deref_slot(slot);
2000 		if (unlikely(!page))
2001 			goto next;
2002 		if (radix_tree_exception(page)) {
2003 			if (radix_tree_deref_retry(page))
2004 				break;
2005 			else
2006 				goto next;
2007 		}
2008 
2009 		if (!page_cache_get_speculative(page))
2010 			goto repeat;
2011 
2012 		/* Has the page moved? */
2013 		if (unlikely(page != *slot)) {
2014 			page_cache_release(page);
2015 			goto repeat;
2016 		}
2017 
2018 		if (!PageUptodate(page) ||
2019 				PageReadahead(page) ||
2020 				PageHWPoison(page))
2021 			goto skip;
2022 		if (!trylock_page(page))
2023 			goto skip;
2024 
2025 		if (page->mapping != mapping || !PageUptodate(page))
2026 			goto unlock;
2027 
2028 		size = round_up(i_size_read(mapping->host), PAGE_CACHE_SIZE);
2029 		if (page->index >= size >> PAGE_CACHE_SHIFT)
2030 			goto unlock;
2031 
2032 		pte = vmf->pte + page->index - vmf->pgoff;
2033 		if (!pte_none(*pte))
2034 			goto unlock;
2035 
2036 		if (file->f_ra.mmap_miss > 0)
2037 			file->f_ra.mmap_miss--;
2038 		addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2039 		do_set_pte(vma, addr, page, pte, false, false);
2040 		unlock_page(page);
2041 		goto next;
2042 unlock:
2043 		unlock_page(page);
2044 skip:
2045 		page_cache_release(page);
2046 next:
2047 		if (iter.index == vmf->max_pgoff)
2048 			break;
2049 	}
2050 	rcu_read_unlock();
2051 }
2052 EXPORT_SYMBOL(filemap_map_pages);
2053 
2054 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2055 {
2056 	struct page *page = vmf->page;
2057 	struct inode *inode = file_inode(vma->vm_file);
2058 	int ret = VM_FAULT_LOCKED;
2059 
2060 	sb_start_pagefault(inode->i_sb);
2061 	file_update_time(vma->vm_file);
2062 	lock_page(page);
2063 	if (page->mapping != inode->i_mapping) {
2064 		unlock_page(page);
2065 		ret = VM_FAULT_NOPAGE;
2066 		goto out;
2067 	}
2068 	/*
2069 	 * We mark the page dirty already here so that when freeze is in
2070 	 * progress, we are guaranteed that writeback during freezing will
2071 	 * see the dirty page and writeprotect it again.
2072 	 */
2073 	set_page_dirty(page);
2074 	wait_for_stable_page(page);
2075 out:
2076 	sb_end_pagefault(inode->i_sb);
2077 	return ret;
2078 }
2079 EXPORT_SYMBOL(filemap_page_mkwrite);
2080 
2081 const struct vm_operations_struct generic_file_vm_ops = {
2082 	.fault		= filemap_fault,
2083 	.map_pages	= filemap_map_pages,
2084 	.page_mkwrite	= filemap_page_mkwrite,
2085 	.remap_pages	= generic_file_remap_pages,
2086 };
2087 
2088 /* This is used for a general mmap of a disk file */
2089 
2090 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2091 {
2092 	struct address_space *mapping = file->f_mapping;
2093 
2094 	if (!mapping->a_ops->readpage)
2095 		return -ENOEXEC;
2096 	file_accessed(file);
2097 	vma->vm_ops = &generic_file_vm_ops;
2098 	return 0;
2099 }
2100 
2101 /*
2102  * This is for filesystems which do not implement ->writepage.
2103  */
2104 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2105 {
2106 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2107 		return -EINVAL;
2108 	return generic_file_mmap(file, vma);
2109 }
2110 #else
2111 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2112 {
2113 	return -ENOSYS;
2114 }
2115 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2116 {
2117 	return -ENOSYS;
2118 }
2119 #endif /* CONFIG_MMU */
2120 
2121 EXPORT_SYMBOL(generic_file_mmap);
2122 EXPORT_SYMBOL(generic_file_readonly_mmap);
2123 
2124 static struct page *wait_on_page_read(struct page *page)
2125 {
2126 	if (!IS_ERR(page)) {
2127 		wait_on_page_locked(page);
2128 		if (!PageUptodate(page)) {
2129 			page_cache_release(page);
2130 			page = ERR_PTR(-EIO);
2131 		}
2132 	}
2133 	return page;
2134 }
2135 
2136 static struct page *__read_cache_page(struct address_space *mapping,
2137 				pgoff_t index,
2138 				int (*filler)(void *, struct page *),
2139 				void *data,
2140 				gfp_t gfp)
2141 {
2142 	struct page *page;
2143 	int err;
2144 repeat:
2145 	page = find_get_page(mapping, index);
2146 	if (!page) {
2147 		page = __page_cache_alloc(gfp | __GFP_COLD);
2148 		if (!page)
2149 			return ERR_PTR(-ENOMEM);
2150 		err = add_to_page_cache_lru(page, mapping, index, gfp);
2151 		if (unlikely(err)) {
2152 			page_cache_release(page);
2153 			if (err == -EEXIST)
2154 				goto repeat;
2155 			/* Presumably ENOMEM for radix tree node */
2156 			return ERR_PTR(err);
2157 		}
2158 		err = filler(data, page);
2159 		if (err < 0) {
2160 			page_cache_release(page);
2161 			page = ERR_PTR(err);
2162 		} else {
2163 			page = wait_on_page_read(page);
2164 		}
2165 	}
2166 	return page;
2167 }
2168 
2169 static struct page *do_read_cache_page(struct address_space *mapping,
2170 				pgoff_t index,
2171 				int (*filler)(void *, struct page *),
2172 				void *data,
2173 				gfp_t gfp)
2174 
2175 {
2176 	struct page *page;
2177 	int err;
2178 
2179 retry:
2180 	page = __read_cache_page(mapping, index, filler, data, gfp);
2181 	if (IS_ERR(page))
2182 		return page;
2183 	if (PageUptodate(page))
2184 		goto out;
2185 
2186 	lock_page(page);
2187 	if (!page->mapping) {
2188 		unlock_page(page);
2189 		page_cache_release(page);
2190 		goto retry;
2191 	}
2192 	if (PageUptodate(page)) {
2193 		unlock_page(page);
2194 		goto out;
2195 	}
2196 	err = filler(data, page);
2197 	if (err < 0) {
2198 		page_cache_release(page);
2199 		return ERR_PTR(err);
2200 	} else {
2201 		page = wait_on_page_read(page);
2202 		if (IS_ERR(page))
2203 			return page;
2204 	}
2205 out:
2206 	mark_page_accessed(page);
2207 	return page;
2208 }
2209 
2210 /**
2211  * read_cache_page - read into page cache, fill it if needed
2212  * @mapping:	the page's address_space
2213  * @index:	the page index
2214  * @filler:	function to perform the read
2215  * @data:	first arg to filler(data, page) function, often left as NULL
2216  *
2217  * Read into the page cache. If a page already exists, and PageUptodate() is
2218  * not set, try to fill the page and wait for it to become unlocked.
2219  *
2220  * If the page does not get brought uptodate, return -EIO.
2221  */
2222 struct page *read_cache_page(struct address_space *mapping,
2223 				pgoff_t index,
2224 				int (*filler)(void *, struct page *),
2225 				void *data)
2226 {
2227 	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2228 }
2229 EXPORT_SYMBOL(read_cache_page);
2230 
2231 /**
2232  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2233  * @mapping:	the page's address_space
2234  * @index:	the page index
2235  * @gfp:	the page allocator flags to use if allocating
2236  *
2237  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2238  * any new page allocations done using the specified allocation flags.
2239  *
2240  * If the page does not get brought uptodate, return -EIO.
2241  */
2242 struct page *read_cache_page_gfp(struct address_space *mapping,
2243 				pgoff_t index,
2244 				gfp_t gfp)
2245 {
2246 	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2247 
2248 	return do_read_cache_page(mapping, index, filler, NULL, gfp);
2249 }
2250 EXPORT_SYMBOL(read_cache_page_gfp);
2251 
2252 /*
2253  * Performs necessary checks before doing a write
2254  *
2255  * Can adjust writing position or amount of bytes to write.
2256  * Returns appropriate error code that caller should return or
2257  * zero in case that write should be allowed.
2258  */
2259 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2260 {
2261 	struct inode *inode = file->f_mapping->host;
2262 	unsigned long limit = rlimit(RLIMIT_FSIZE);
2263 
2264         if (unlikely(*pos < 0))
2265                 return -EINVAL;
2266 
2267 	if (!isblk) {
2268 		/* FIXME: this is for backwards compatibility with 2.4 */
2269 		if (file->f_flags & O_APPEND)
2270                         *pos = i_size_read(inode);
2271 
2272 		if (limit != RLIM_INFINITY) {
2273 			if (*pos >= limit) {
2274 				send_sig(SIGXFSZ, current, 0);
2275 				return -EFBIG;
2276 			}
2277 			if (*count > limit - (typeof(limit))*pos) {
2278 				*count = limit - (typeof(limit))*pos;
2279 			}
2280 		}
2281 	}
2282 
2283 	/*
2284 	 * LFS rule
2285 	 */
2286 	if (unlikely(*pos + *count > MAX_NON_LFS &&
2287 				!(file->f_flags & O_LARGEFILE))) {
2288 		if (*pos >= MAX_NON_LFS) {
2289 			return -EFBIG;
2290 		}
2291 		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2292 			*count = MAX_NON_LFS - (unsigned long)*pos;
2293 		}
2294 	}
2295 
2296 	/*
2297 	 * Are we about to exceed the fs block limit ?
2298 	 *
2299 	 * If we have written data it becomes a short write.  If we have
2300 	 * exceeded without writing data we send a signal and return EFBIG.
2301 	 * Linus frestrict idea will clean these up nicely..
2302 	 */
2303 	if (likely(!isblk)) {
2304 		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2305 			if (*count || *pos > inode->i_sb->s_maxbytes) {
2306 				return -EFBIG;
2307 			}
2308 			/* zero-length writes at ->s_maxbytes are OK */
2309 		}
2310 
2311 		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2312 			*count = inode->i_sb->s_maxbytes - *pos;
2313 	} else {
2314 #ifdef CONFIG_BLOCK
2315 		loff_t isize;
2316 		if (bdev_read_only(I_BDEV(inode)))
2317 			return -EPERM;
2318 		isize = i_size_read(inode);
2319 		if (*pos >= isize) {
2320 			if (*count || *pos > isize)
2321 				return -ENOSPC;
2322 		}
2323 
2324 		if (*pos + *count > isize)
2325 			*count = isize - *pos;
2326 #else
2327 		return -EPERM;
2328 #endif
2329 	}
2330 	return 0;
2331 }
2332 EXPORT_SYMBOL(generic_write_checks);
2333 
2334 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2335 				loff_t pos, unsigned len, unsigned flags,
2336 				struct page **pagep, void **fsdata)
2337 {
2338 	const struct address_space_operations *aops = mapping->a_ops;
2339 
2340 	return aops->write_begin(file, mapping, pos, len, flags,
2341 							pagep, fsdata);
2342 }
2343 EXPORT_SYMBOL(pagecache_write_begin);
2344 
2345 int pagecache_write_end(struct file *file, struct address_space *mapping,
2346 				loff_t pos, unsigned len, unsigned copied,
2347 				struct page *page, void *fsdata)
2348 {
2349 	const struct address_space_operations *aops = mapping->a_ops;
2350 
2351 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2352 }
2353 EXPORT_SYMBOL(pagecache_write_end);
2354 
2355 ssize_t
2356 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from, loff_t pos)
2357 {
2358 	struct file	*file = iocb->ki_filp;
2359 	struct address_space *mapping = file->f_mapping;
2360 	struct inode	*inode = mapping->host;
2361 	ssize_t		written;
2362 	size_t		write_len;
2363 	pgoff_t		end;
2364 	struct iov_iter data;
2365 
2366 	write_len = iov_iter_count(from);
2367 	end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2368 
2369 	written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2370 	if (written)
2371 		goto out;
2372 
2373 	/*
2374 	 * After a write we want buffered reads to be sure to go to disk to get
2375 	 * the new data.  We invalidate clean cached page from the region we're
2376 	 * about to write.  We do this *before* the write so that we can return
2377 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2378 	 */
2379 	if (mapping->nrpages) {
2380 		written = invalidate_inode_pages2_range(mapping,
2381 					pos >> PAGE_CACHE_SHIFT, end);
2382 		/*
2383 		 * If a page can not be invalidated, return 0 to fall back
2384 		 * to buffered write.
2385 		 */
2386 		if (written) {
2387 			if (written == -EBUSY)
2388 				return 0;
2389 			goto out;
2390 		}
2391 	}
2392 
2393 	data = *from;
2394 	written = mapping->a_ops->direct_IO(WRITE, iocb, &data, pos);
2395 
2396 	/*
2397 	 * Finally, try again to invalidate clean pages which might have been
2398 	 * cached by non-direct readahead, or faulted in by get_user_pages()
2399 	 * if the source of the write was an mmap'ed region of the file
2400 	 * we're writing.  Either one is a pretty crazy thing to do,
2401 	 * so we don't support it 100%.  If this invalidation
2402 	 * fails, tough, the write still worked...
2403 	 */
2404 	if (mapping->nrpages) {
2405 		invalidate_inode_pages2_range(mapping,
2406 					      pos >> PAGE_CACHE_SHIFT, end);
2407 	}
2408 
2409 	if (written > 0) {
2410 		pos += written;
2411 		iov_iter_advance(from, written);
2412 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2413 			i_size_write(inode, pos);
2414 			mark_inode_dirty(inode);
2415 		}
2416 		iocb->ki_pos = pos;
2417 	}
2418 out:
2419 	return written;
2420 }
2421 EXPORT_SYMBOL(generic_file_direct_write);
2422 
2423 /*
2424  * Find or create a page at the given pagecache position. Return the locked
2425  * page. This function is specifically for buffered writes.
2426  */
2427 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2428 					pgoff_t index, unsigned flags)
2429 {
2430 	struct page *page;
2431 	int fgp_flags = FGP_LOCK|FGP_ACCESSED|FGP_WRITE|FGP_CREAT;
2432 
2433 	if (flags & AOP_FLAG_NOFS)
2434 		fgp_flags |= FGP_NOFS;
2435 
2436 	page = pagecache_get_page(mapping, index, fgp_flags,
2437 			mapping_gfp_mask(mapping),
2438 			GFP_KERNEL);
2439 	if (page)
2440 		wait_for_stable_page(page);
2441 
2442 	return page;
2443 }
2444 EXPORT_SYMBOL(grab_cache_page_write_begin);
2445 
2446 ssize_t generic_perform_write(struct file *file,
2447 				struct iov_iter *i, loff_t pos)
2448 {
2449 	struct address_space *mapping = file->f_mapping;
2450 	const struct address_space_operations *a_ops = mapping->a_ops;
2451 	long status = 0;
2452 	ssize_t written = 0;
2453 	unsigned int flags = 0;
2454 
2455 	/*
2456 	 * Copies from kernel address space cannot fail (NFSD is a big user).
2457 	 */
2458 	if (segment_eq(get_fs(), KERNEL_DS))
2459 		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2460 
2461 	do {
2462 		struct page *page;
2463 		unsigned long offset;	/* Offset into pagecache page */
2464 		unsigned long bytes;	/* Bytes to write to page */
2465 		size_t copied;		/* Bytes copied from user */
2466 		void *fsdata;
2467 
2468 		offset = (pos & (PAGE_CACHE_SIZE - 1));
2469 		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2470 						iov_iter_count(i));
2471 
2472 again:
2473 		/*
2474 		 * Bring in the user page that we will copy from _first_.
2475 		 * Otherwise there's a nasty deadlock on copying from the
2476 		 * same page as we're writing to, without it being marked
2477 		 * up-to-date.
2478 		 *
2479 		 * Not only is this an optimisation, but it is also required
2480 		 * to check that the address is actually valid, when atomic
2481 		 * usercopies are used, below.
2482 		 */
2483 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2484 			status = -EFAULT;
2485 			break;
2486 		}
2487 
2488 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2489 						&page, &fsdata);
2490 		if (unlikely(status < 0))
2491 			break;
2492 
2493 		if (mapping_writably_mapped(mapping))
2494 			flush_dcache_page(page);
2495 
2496 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2497 		flush_dcache_page(page);
2498 
2499 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2500 						page, fsdata);
2501 		if (unlikely(status < 0))
2502 			break;
2503 		copied = status;
2504 
2505 		cond_resched();
2506 
2507 		iov_iter_advance(i, copied);
2508 		if (unlikely(copied == 0)) {
2509 			/*
2510 			 * If we were unable to copy any data at all, we must
2511 			 * fall back to a single segment length write.
2512 			 *
2513 			 * If we didn't fallback here, we could livelock
2514 			 * because not all segments in the iov can be copied at
2515 			 * once without a pagefault.
2516 			 */
2517 			bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2518 						iov_iter_single_seg_count(i));
2519 			goto again;
2520 		}
2521 		pos += copied;
2522 		written += copied;
2523 
2524 		balance_dirty_pages_ratelimited(mapping);
2525 		if (fatal_signal_pending(current)) {
2526 			status = -EINTR;
2527 			break;
2528 		}
2529 	} while (iov_iter_count(i));
2530 
2531 	return written ? written : status;
2532 }
2533 EXPORT_SYMBOL(generic_perform_write);
2534 
2535 /**
2536  * __generic_file_write_iter - write data to a file
2537  * @iocb:	IO state structure (file, offset, etc.)
2538  * @from:	iov_iter with data to write
2539  *
2540  * This function does all the work needed for actually writing data to a
2541  * file. It does all basic checks, removes SUID from the file, updates
2542  * modification times and calls proper subroutines depending on whether we
2543  * do direct IO or a standard buffered write.
2544  *
2545  * It expects i_mutex to be grabbed unless we work on a block device or similar
2546  * object which does not need locking at all.
2547  *
2548  * This function does *not* take care of syncing data in case of O_SYNC write.
2549  * A caller has to handle it. This is mainly due to the fact that we want to
2550  * avoid syncing under i_mutex.
2551  */
2552 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2553 {
2554 	struct file *file = iocb->ki_filp;
2555 	struct address_space * mapping = file->f_mapping;
2556 	struct inode 	*inode = mapping->host;
2557 	loff_t		pos = iocb->ki_pos;
2558 	ssize_t		written = 0;
2559 	ssize_t		err;
2560 	ssize_t		status;
2561 	size_t		count = iov_iter_count(from);
2562 
2563 	/* We can write back this queue in page reclaim */
2564 	current->backing_dev_info = mapping->backing_dev_info;
2565 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2566 	if (err)
2567 		goto out;
2568 
2569 	if (count == 0)
2570 		goto out;
2571 
2572 	iov_iter_truncate(from, count);
2573 
2574 	err = file_remove_suid(file);
2575 	if (err)
2576 		goto out;
2577 
2578 	err = file_update_time(file);
2579 	if (err)
2580 		goto out;
2581 
2582 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2583 	if (unlikely(file->f_flags & O_DIRECT)) {
2584 		loff_t endbyte;
2585 
2586 		written = generic_file_direct_write(iocb, from, pos);
2587 		if (written < 0 || written == count)
2588 			goto out;
2589 
2590 		/*
2591 		 * direct-io write to a hole: fall through to buffered I/O
2592 		 * for completing the rest of the request.
2593 		 */
2594 		pos += written;
2595 		count -= written;
2596 
2597 		status = generic_perform_write(file, from, pos);
2598 		/*
2599 		 * If generic_perform_write() returned a synchronous error
2600 		 * then we want to return the number of bytes which were
2601 		 * direct-written, or the error code if that was zero.  Note
2602 		 * that this differs from normal direct-io semantics, which
2603 		 * will return -EFOO even if some bytes were written.
2604 		 */
2605 		if (unlikely(status < 0)) {
2606 			err = status;
2607 			goto out;
2608 		}
2609 		iocb->ki_pos = pos + status;
2610 		/*
2611 		 * We need to ensure that the page cache pages are written to
2612 		 * disk and invalidated to preserve the expected O_DIRECT
2613 		 * semantics.
2614 		 */
2615 		endbyte = pos + status - 1;
2616 		err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2617 		if (err == 0) {
2618 			written += status;
2619 			invalidate_mapping_pages(mapping,
2620 						 pos >> PAGE_CACHE_SHIFT,
2621 						 endbyte >> PAGE_CACHE_SHIFT);
2622 		} else {
2623 			/*
2624 			 * We don't know how much we wrote, so just return
2625 			 * the number of bytes which were direct-written
2626 			 */
2627 		}
2628 	} else {
2629 		written = generic_perform_write(file, from, pos);
2630 		if (likely(written >= 0))
2631 			iocb->ki_pos = pos + written;
2632 	}
2633 out:
2634 	current->backing_dev_info = NULL;
2635 	return written ? written : err;
2636 }
2637 EXPORT_SYMBOL(__generic_file_write_iter);
2638 
2639 /**
2640  * generic_file_write_iter - write data to a file
2641  * @iocb:	IO state structure
2642  * @from:	iov_iter with data to write
2643  *
2644  * This is a wrapper around __generic_file_write_iter() to be used by most
2645  * filesystems. It takes care of syncing the file in case of O_SYNC file
2646  * and acquires i_mutex as needed.
2647  */
2648 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2649 {
2650 	struct file *file = iocb->ki_filp;
2651 	struct inode *inode = file->f_mapping->host;
2652 	ssize_t ret;
2653 
2654 	mutex_lock(&inode->i_mutex);
2655 	ret = __generic_file_write_iter(iocb, from);
2656 	mutex_unlock(&inode->i_mutex);
2657 
2658 	if (ret > 0) {
2659 		ssize_t err;
2660 
2661 		err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2662 		if (err < 0)
2663 			ret = err;
2664 	}
2665 	return ret;
2666 }
2667 EXPORT_SYMBOL(generic_file_write_iter);
2668 
2669 /**
2670  * try_to_release_page() - release old fs-specific metadata on a page
2671  *
2672  * @page: the page which the kernel is trying to free
2673  * @gfp_mask: memory allocation flags (and I/O mode)
2674  *
2675  * The address_space is to try to release any data against the page
2676  * (presumably at page->private).  If the release was successful, return `1'.
2677  * Otherwise return zero.
2678  *
2679  * This may also be called if PG_fscache is set on a page, indicating that the
2680  * page is known to the local caching routines.
2681  *
2682  * The @gfp_mask argument specifies whether I/O may be performed to release
2683  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2684  *
2685  */
2686 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2687 {
2688 	struct address_space * const mapping = page->mapping;
2689 
2690 	BUG_ON(!PageLocked(page));
2691 	if (PageWriteback(page))
2692 		return 0;
2693 
2694 	if (mapping && mapping->a_ops->releasepage)
2695 		return mapping->a_ops->releasepage(page, gfp_mask);
2696 	return try_to_free_buffers(page);
2697 }
2698 
2699 EXPORT_SYMBOL(try_to_release_page);
2700