1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/filemap.c 4 * 5 * Copyright (C) 1994-1999 Linus Torvalds 6 */ 7 8 /* 9 * This file handles the generic file mmap semantics used by 10 * most "normal" filesystems (but you don't /have/ to use this: 11 * the NFS filesystem used to do this differently, for example) 12 */ 13 #include <linux/export.h> 14 #include <linux/compiler.h> 15 #include <linux/dax.h> 16 #include <linux/fs.h> 17 #include <linux/sched/signal.h> 18 #include <linux/uaccess.h> 19 #include <linux/capability.h> 20 #include <linux/kernel_stat.h> 21 #include <linux/gfp.h> 22 #include <linux/mm.h> 23 #include <linux/swap.h> 24 #include <linux/mman.h> 25 #include <linux/pagemap.h> 26 #include <linux/file.h> 27 #include <linux/uio.h> 28 #include <linux/error-injection.h> 29 #include <linux/hash.h> 30 #include <linux/writeback.h> 31 #include <linux/backing-dev.h> 32 #include <linux/pagevec.h> 33 #include <linux/blkdev.h> 34 #include <linux/security.h> 35 #include <linux/cpuset.h> 36 #include <linux/hugetlb.h> 37 #include <linux/memcontrol.h> 38 #include <linux/cleancache.h> 39 #include <linux/shmem_fs.h> 40 #include <linux/rmap.h> 41 #include <linux/delayacct.h> 42 #include <linux/psi.h> 43 #include <linux/ramfs.h> 44 #include <linux/page_idle.h> 45 #include "internal.h" 46 47 #define CREATE_TRACE_POINTS 48 #include <trace/events/filemap.h> 49 50 /* 51 * FIXME: remove all knowledge of the buffer layer from the core VM 52 */ 53 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 54 55 #include <asm/mman.h> 56 57 /* 58 * Shared mappings implemented 30.11.1994. It's not fully working yet, 59 * though. 60 * 61 * Shared mappings now work. 15.8.1995 Bruno. 62 * 63 * finished 'unifying' the page and buffer cache and SMP-threaded the 64 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 65 * 66 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 67 */ 68 69 /* 70 * Lock ordering: 71 * 72 * ->i_mmap_rwsem (truncate_pagecache) 73 * ->private_lock (__free_pte->__set_page_dirty_buffers) 74 * ->swap_lock (exclusive_swap_page, others) 75 * ->i_pages lock 76 * 77 * ->i_mutex 78 * ->i_mmap_rwsem (truncate->unmap_mapping_range) 79 * 80 * ->mmap_lock 81 * ->i_mmap_rwsem 82 * ->page_table_lock or pte_lock (various, mainly in memory.c) 83 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock) 84 * 85 * ->mmap_lock 86 * ->lock_page (access_process_vm) 87 * 88 * ->i_mutex (generic_perform_write) 89 * ->mmap_lock (fault_in_pages_readable->do_page_fault) 90 * 91 * bdi->wb.list_lock 92 * sb_lock (fs/fs-writeback.c) 93 * ->i_pages lock (__sync_single_inode) 94 * 95 * ->i_mmap_rwsem 96 * ->anon_vma.lock (vma_adjust) 97 * 98 * ->anon_vma.lock 99 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 100 * 101 * ->page_table_lock or pte_lock 102 * ->swap_lock (try_to_unmap_one) 103 * ->private_lock (try_to_unmap_one) 104 * ->i_pages lock (try_to_unmap_one) 105 * ->lruvec->lru_lock (follow_page->mark_page_accessed) 106 * ->lruvec->lru_lock (check_pte_range->isolate_lru_page) 107 * ->private_lock (page_remove_rmap->set_page_dirty) 108 * ->i_pages lock (page_remove_rmap->set_page_dirty) 109 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty) 110 * ->inode->i_lock (page_remove_rmap->set_page_dirty) 111 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg) 112 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 113 * ->inode->i_lock (zap_pte_range->set_page_dirty) 114 * ->private_lock (zap_pte_range->__set_page_dirty_buffers) 115 * 116 * ->i_mmap_rwsem 117 * ->tasklist_lock (memory_failure, collect_procs_ao) 118 */ 119 120 static void page_cache_delete(struct address_space *mapping, 121 struct page *page, void *shadow) 122 { 123 XA_STATE(xas, &mapping->i_pages, page->index); 124 unsigned int nr = 1; 125 126 mapping_set_update(&xas, mapping); 127 128 /* hugetlb pages are represented by a single entry in the xarray */ 129 if (!PageHuge(page)) { 130 xas_set_order(&xas, page->index, compound_order(page)); 131 nr = compound_nr(page); 132 } 133 134 VM_BUG_ON_PAGE(!PageLocked(page), page); 135 VM_BUG_ON_PAGE(PageTail(page), page); 136 VM_BUG_ON_PAGE(nr != 1 && shadow, page); 137 138 xas_store(&xas, shadow); 139 xas_init_marks(&xas); 140 141 page->mapping = NULL; 142 /* Leave page->index set: truncation lookup relies upon it */ 143 144 if (shadow) { 145 mapping->nrexceptional += nr; 146 /* 147 * Make sure the nrexceptional update is committed before 148 * the nrpages update so that final truncate racing 149 * with reclaim does not see both counters 0 at the 150 * same time and miss a shadow entry. 151 */ 152 smp_wmb(); 153 } 154 mapping->nrpages -= nr; 155 } 156 157 static void unaccount_page_cache_page(struct address_space *mapping, 158 struct page *page) 159 { 160 int nr; 161 162 /* 163 * if we're uptodate, flush out into the cleancache, otherwise 164 * invalidate any existing cleancache entries. We can't leave 165 * stale data around in the cleancache once our page is gone 166 */ 167 if (PageUptodate(page) && PageMappedToDisk(page)) 168 cleancache_put_page(page); 169 else 170 cleancache_invalidate_page(mapping, page); 171 172 VM_BUG_ON_PAGE(PageTail(page), page); 173 VM_BUG_ON_PAGE(page_mapped(page), page); 174 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) { 175 int mapcount; 176 177 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n", 178 current->comm, page_to_pfn(page)); 179 dump_page(page, "still mapped when deleted"); 180 dump_stack(); 181 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 182 183 mapcount = page_mapcount(page); 184 if (mapping_exiting(mapping) && 185 page_count(page) >= mapcount + 2) { 186 /* 187 * All vmas have already been torn down, so it's 188 * a good bet that actually the page is unmapped, 189 * and we'd prefer not to leak it: if we're wrong, 190 * some other bad page check should catch it later. 191 */ 192 page_mapcount_reset(page); 193 page_ref_sub(page, mapcount); 194 } 195 } 196 197 /* hugetlb pages do not participate in page cache accounting. */ 198 if (PageHuge(page)) 199 return; 200 201 nr = thp_nr_pages(page); 202 203 __mod_lruvec_page_state(page, NR_FILE_PAGES, -nr); 204 if (PageSwapBacked(page)) { 205 __mod_lruvec_page_state(page, NR_SHMEM, -nr); 206 if (PageTransHuge(page)) 207 __dec_lruvec_page_state(page, NR_SHMEM_THPS); 208 } else if (PageTransHuge(page)) { 209 __dec_lruvec_page_state(page, NR_FILE_THPS); 210 filemap_nr_thps_dec(mapping); 211 } 212 213 /* 214 * At this point page must be either written or cleaned by 215 * truncate. Dirty page here signals a bug and loss of 216 * unwritten data. 217 * 218 * This fixes dirty accounting after removing the page entirely 219 * but leaves PageDirty set: it has no effect for truncated 220 * page and anyway will be cleared before returning page into 221 * buddy allocator. 222 */ 223 if (WARN_ON_ONCE(PageDirty(page))) 224 account_page_cleaned(page, mapping, inode_to_wb(mapping->host)); 225 } 226 227 /* 228 * Delete a page from the page cache and free it. Caller has to make 229 * sure the page is locked and that nobody else uses it - or that usage 230 * is safe. The caller must hold the i_pages lock. 231 */ 232 void __delete_from_page_cache(struct page *page, void *shadow) 233 { 234 struct address_space *mapping = page->mapping; 235 236 trace_mm_filemap_delete_from_page_cache(page); 237 238 unaccount_page_cache_page(mapping, page); 239 page_cache_delete(mapping, page, shadow); 240 } 241 242 static void page_cache_free_page(struct address_space *mapping, 243 struct page *page) 244 { 245 void (*freepage)(struct page *); 246 247 freepage = mapping->a_ops->freepage; 248 if (freepage) 249 freepage(page); 250 251 if (PageTransHuge(page) && !PageHuge(page)) { 252 page_ref_sub(page, thp_nr_pages(page)); 253 VM_BUG_ON_PAGE(page_count(page) <= 0, page); 254 } else { 255 put_page(page); 256 } 257 } 258 259 /** 260 * delete_from_page_cache - delete page from page cache 261 * @page: the page which the kernel is trying to remove from page cache 262 * 263 * This must be called only on pages that have been verified to be in the page 264 * cache and locked. It will never put the page into the free list, the caller 265 * has a reference on the page. 266 */ 267 void delete_from_page_cache(struct page *page) 268 { 269 struct address_space *mapping = page_mapping(page); 270 unsigned long flags; 271 272 BUG_ON(!PageLocked(page)); 273 xa_lock_irqsave(&mapping->i_pages, flags); 274 __delete_from_page_cache(page, NULL); 275 xa_unlock_irqrestore(&mapping->i_pages, flags); 276 277 page_cache_free_page(mapping, page); 278 } 279 EXPORT_SYMBOL(delete_from_page_cache); 280 281 /* 282 * page_cache_delete_batch - delete several pages from page cache 283 * @mapping: the mapping to which pages belong 284 * @pvec: pagevec with pages to delete 285 * 286 * The function walks over mapping->i_pages and removes pages passed in @pvec 287 * from the mapping. The function expects @pvec to be sorted by page index 288 * and is optimised for it to be dense. 289 * It tolerates holes in @pvec (mapping entries at those indices are not 290 * modified). The function expects only THP head pages to be present in the 291 * @pvec. 292 * 293 * The function expects the i_pages lock to be held. 294 */ 295 static void page_cache_delete_batch(struct address_space *mapping, 296 struct pagevec *pvec) 297 { 298 XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index); 299 int total_pages = 0; 300 int i = 0; 301 struct page *page; 302 303 mapping_set_update(&xas, mapping); 304 xas_for_each(&xas, page, ULONG_MAX) { 305 if (i >= pagevec_count(pvec)) 306 break; 307 308 /* A swap/dax/shadow entry got inserted? Skip it. */ 309 if (xa_is_value(page)) 310 continue; 311 /* 312 * A page got inserted in our range? Skip it. We have our 313 * pages locked so they are protected from being removed. 314 * If we see a page whose index is higher than ours, it 315 * means our page has been removed, which shouldn't be 316 * possible because we're holding the PageLock. 317 */ 318 if (page != pvec->pages[i]) { 319 VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index, 320 page); 321 continue; 322 } 323 324 WARN_ON_ONCE(!PageLocked(page)); 325 326 if (page->index == xas.xa_index) 327 page->mapping = NULL; 328 /* Leave page->index set: truncation lookup relies on it */ 329 330 /* 331 * Move to the next page in the vector if this is a regular 332 * page or the index is of the last sub-page of this compound 333 * page. 334 */ 335 if (page->index + compound_nr(page) - 1 == xas.xa_index) 336 i++; 337 xas_store(&xas, NULL); 338 total_pages++; 339 } 340 mapping->nrpages -= total_pages; 341 } 342 343 void delete_from_page_cache_batch(struct address_space *mapping, 344 struct pagevec *pvec) 345 { 346 int i; 347 unsigned long flags; 348 349 if (!pagevec_count(pvec)) 350 return; 351 352 xa_lock_irqsave(&mapping->i_pages, flags); 353 for (i = 0; i < pagevec_count(pvec); i++) { 354 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]); 355 356 unaccount_page_cache_page(mapping, pvec->pages[i]); 357 } 358 page_cache_delete_batch(mapping, pvec); 359 xa_unlock_irqrestore(&mapping->i_pages, flags); 360 361 for (i = 0; i < pagevec_count(pvec); i++) 362 page_cache_free_page(mapping, pvec->pages[i]); 363 } 364 365 int filemap_check_errors(struct address_space *mapping) 366 { 367 int ret = 0; 368 /* Check for outstanding write errors */ 369 if (test_bit(AS_ENOSPC, &mapping->flags) && 370 test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 371 ret = -ENOSPC; 372 if (test_bit(AS_EIO, &mapping->flags) && 373 test_and_clear_bit(AS_EIO, &mapping->flags)) 374 ret = -EIO; 375 return ret; 376 } 377 EXPORT_SYMBOL(filemap_check_errors); 378 379 static int filemap_check_and_keep_errors(struct address_space *mapping) 380 { 381 /* Check for outstanding write errors */ 382 if (test_bit(AS_EIO, &mapping->flags)) 383 return -EIO; 384 if (test_bit(AS_ENOSPC, &mapping->flags)) 385 return -ENOSPC; 386 return 0; 387 } 388 389 /** 390 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 391 * @mapping: address space structure to write 392 * @start: offset in bytes where the range starts 393 * @end: offset in bytes where the range ends (inclusive) 394 * @sync_mode: enable synchronous operation 395 * 396 * Start writeback against all of a mapping's dirty pages that lie 397 * within the byte offsets <start, end> inclusive. 398 * 399 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 400 * opposed to a regular memory cleansing writeback. The difference between 401 * these two operations is that if a dirty page/buffer is encountered, it must 402 * be waited upon, and not just skipped over. 403 * 404 * Return: %0 on success, negative error code otherwise. 405 */ 406 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 407 loff_t end, int sync_mode) 408 { 409 int ret; 410 struct writeback_control wbc = { 411 .sync_mode = sync_mode, 412 .nr_to_write = LONG_MAX, 413 .range_start = start, 414 .range_end = end, 415 }; 416 417 if (!mapping_can_writeback(mapping) || 418 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 419 return 0; 420 421 wbc_attach_fdatawrite_inode(&wbc, mapping->host); 422 ret = do_writepages(mapping, &wbc); 423 wbc_detach_inode(&wbc); 424 return ret; 425 } 426 427 static inline int __filemap_fdatawrite(struct address_space *mapping, 428 int sync_mode) 429 { 430 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 431 } 432 433 int filemap_fdatawrite(struct address_space *mapping) 434 { 435 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 436 } 437 EXPORT_SYMBOL(filemap_fdatawrite); 438 439 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 440 loff_t end) 441 { 442 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 443 } 444 EXPORT_SYMBOL(filemap_fdatawrite_range); 445 446 /** 447 * filemap_flush - mostly a non-blocking flush 448 * @mapping: target address_space 449 * 450 * This is a mostly non-blocking flush. Not suitable for data-integrity 451 * purposes - I/O may not be started against all dirty pages. 452 * 453 * Return: %0 on success, negative error code otherwise. 454 */ 455 int filemap_flush(struct address_space *mapping) 456 { 457 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 458 } 459 EXPORT_SYMBOL(filemap_flush); 460 461 /** 462 * filemap_range_has_page - check if a page exists in range. 463 * @mapping: address space within which to check 464 * @start_byte: offset in bytes where the range starts 465 * @end_byte: offset in bytes where the range ends (inclusive) 466 * 467 * Find at least one page in the range supplied, usually used to check if 468 * direct writing in this range will trigger a writeback. 469 * 470 * Return: %true if at least one page exists in the specified range, 471 * %false otherwise. 472 */ 473 bool filemap_range_has_page(struct address_space *mapping, 474 loff_t start_byte, loff_t end_byte) 475 { 476 struct page *page; 477 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 478 pgoff_t max = end_byte >> PAGE_SHIFT; 479 480 if (end_byte < start_byte) 481 return false; 482 483 rcu_read_lock(); 484 for (;;) { 485 page = xas_find(&xas, max); 486 if (xas_retry(&xas, page)) 487 continue; 488 /* Shadow entries don't count */ 489 if (xa_is_value(page)) 490 continue; 491 /* 492 * We don't need to try to pin this page; we're about to 493 * release the RCU lock anyway. It is enough to know that 494 * there was a page here recently. 495 */ 496 break; 497 } 498 rcu_read_unlock(); 499 500 return page != NULL; 501 } 502 EXPORT_SYMBOL(filemap_range_has_page); 503 504 static void __filemap_fdatawait_range(struct address_space *mapping, 505 loff_t start_byte, loff_t end_byte) 506 { 507 pgoff_t index = start_byte >> PAGE_SHIFT; 508 pgoff_t end = end_byte >> PAGE_SHIFT; 509 struct pagevec pvec; 510 int nr_pages; 511 512 if (end_byte < start_byte) 513 return; 514 515 pagevec_init(&pvec); 516 while (index <= end) { 517 unsigned i; 518 519 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, 520 end, PAGECACHE_TAG_WRITEBACK); 521 if (!nr_pages) 522 break; 523 524 for (i = 0; i < nr_pages; i++) { 525 struct page *page = pvec.pages[i]; 526 527 wait_on_page_writeback(page); 528 ClearPageError(page); 529 } 530 pagevec_release(&pvec); 531 cond_resched(); 532 } 533 } 534 535 /** 536 * filemap_fdatawait_range - wait for writeback to complete 537 * @mapping: address space structure to wait for 538 * @start_byte: offset in bytes where the range starts 539 * @end_byte: offset in bytes where the range ends (inclusive) 540 * 541 * Walk the list of under-writeback pages of the given address space 542 * in the given range and wait for all of them. Check error status of 543 * the address space and return it. 544 * 545 * Since the error status of the address space is cleared by this function, 546 * callers are responsible for checking the return value and handling and/or 547 * reporting the error. 548 * 549 * Return: error status of the address space. 550 */ 551 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 552 loff_t end_byte) 553 { 554 __filemap_fdatawait_range(mapping, start_byte, end_byte); 555 return filemap_check_errors(mapping); 556 } 557 EXPORT_SYMBOL(filemap_fdatawait_range); 558 559 /** 560 * filemap_fdatawait_range_keep_errors - wait for writeback to complete 561 * @mapping: address space structure to wait for 562 * @start_byte: offset in bytes where the range starts 563 * @end_byte: offset in bytes where the range ends (inclusive) 564 * 565 * Walk the list of under-writeback pages of the given address space in the 566 * given range and wait for all of them. Unlike filemap_fdatawait_range(), 567 * this function does not clear error status of the address space. 568 * 569 * Use this function if callers don't handle errors themselves. Expected 570 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 571 * fsfreeze(8) 572 */ 573 int filemap_fdatawait_range_keep_errors(struct address_space *mapping, 574 loff_t start_byte, loff_t end_byte) 575 { 576 __filemap_fdatawait_range(mapping, start_byte, end_byte); 577 return filemap_check_and_keep_errors(mapping); 578 } 579 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors); 580 581 /** 582 * file_fdatawait_range - wait for writeback to complete 583 * @file: file pointing to address space structure to wait for 584 * @start_byte: offset in bytes where the range starts 585 * @end_byte: offset in bytes where the range ends (inclusive) 586 * 587 * Walk the list of under-writeback pages of the address space that file 588 * refers to, in the given range and wait for all of them. Check error 589 * status of the address space vs. the file->f_wb_err cursor and return it. 590 * 591 * Since the error status of the file is advanced by this function, 592 * callers are responsible for checking the return value and handling and/or 593 * reporting the error. 594 * 595 * Return: error status of the address space vs. the file->f_wb_err cursor. 596 */ 597 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte) 598 { 599 struct address_space *mapping = file->f_mapping; 600 601 __filemap_fdatawait_range(mapping, start_byte, end_byte); 602 return file_check_and_advance_wb_err(file); 603 } 604 EXPORT_SYMBOL(file_fdatawait_range); 605 606 /** 607 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors 608 * @mapping: address space structure to wait for 609 * 610 * Walk the list of under-writeback pages of the given address space 611 * and wait for all of them. Unlike filemap_fdatawait(), this function 612 * does not clear error status of the address space. 613 * 614 * Use this function if callers don't handle errors themselves. Expected 615 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 616 * fsfreeze(8) 617 * 618 * Return: error status of the address space. 619 */ 620 int filemap_fdatawait_keep_errors(struct address_space *mapping) 621 { 622 __filemap_fdatawait_range(mapping, 0, LLONG_MAX); 623 return filemap_check_and_keep_errors(mapping); 624 } 625 EXPORT_SYMBOL(filemap_fdatawait_keep_errors); 626 627 /* Returns true if writeback might be needed or already in progress. */ 628 static bool mapping_needs_writeback(struct address_space *mapping) 629 { 630 if (dax_mapping(mapping)) 631 return mapping->nrexceptional; 632 633 return mapping->nrpages; 634 } 635 636 /** 637 * filemap_write_and_wait_range - write out & wait on a file range 638 * @mapping: the address_space for the pages 639 * @lstart: offset in bytes where the range starts 640 * @lend: offset in bytes where the range ends (inclusive) 641 * 642 * Write out and wait upon file offsets lstart->lend, inclusive. 643 * 644 * Note that @lend is inclusive (describes the last byte to be written) so 645 * that this function can be used to write to the very end-of-file (end = -1). 646 * 647 * Return: error status of the address space. 648 */ 649 int filemap_write_and_wait_range(struct address_space *mapping, 650 loff_t lstart, loff_t lend) 651 { 652 int err = 0; 653 654 if (mapping_needs_writeback(mapping)) { 655 err = __filemap_fdatawrite_range(mapping, lstart, lend, 656 WB_SYNC_ALL); 657 /* 658 * Even if the above returned error, the pages may be 659 * written partially (e.g. -ENOSPC), so we wait for it. 660 * But the -EIO is special case, it may indicate the worst 661 * thing (e.g. bug) happened, so we avoid waiting for it. 662 */ 663 if (err != -EIO) { 664 int err2 = filemap_fdatawait_range(mapping, 665 lstart, lend); 666 if (!err) 667 err = err2; 668 } else { 669 /* Clear any previously stored errors */ 670 filemap_check_errors(mapping); 671 } 672 } else { 673 err = filemap_check_errors(mapping); 674 } 675 return err; 676 } 677 EXPORT_SYMBOL(filemap_write_and_wait_range); 678 679 void __filemap_set_wb_err(struct address_space *mapping, int err) 680 { 681 errseq_t eseq = errseq_set(&mapping->wb_err, err); 682 683 trace_filemap_set_wb_err(mapping, eseq); 684 } 685 EXPORT_SYMBOL(__filemap_set_wb_err); 686 687 /** 688 * file_check_and_advance_wb_err - report wb error (if any) that was previously 689 * and advance wb_err to current one 690 * @file: struct file on which the error is being reported 691 * 692 * When userland calls fsync (or something like nfsd does the equivalent), we 693 * want to report any writeback errors that occurred since the last fsync (or 694 * since the file was opened if there haven't been any). 695 * 696 * Grab the wb_err from the mapping. If it matches what we have in the file, 697 * then just quickly return 0. The file is all caught up. 698 * 699 * If it doesn't match, then take the mapping value, set the "seen" flag in 700 * it and try to swap it into place. If it works, or another task beat us 701 * to it with the new value, then update the f_wb_err and return the error 702 * portion. The error at this point must be reported via proper channels 703 * (a'la fsync, or NFS COMMIT operation, etc.). 704 * 705 * While we handle mapping->wb_err with atomic operations, the f_wb_err 706 * value is protected by the f_lock since we must ensure that it reflects 707 * the latest value swapped in for this file descriptor. 708 * 709 * Return: %0 on success, negative error code otherwise. 710 */ 711 int file_check_and_advance_wb_err(struct file *file) 712 { 713 int err = 0; 714 errseq_t old = READ_ONCE(file->f_wb_err); 715 struct address_space *mapping = file->f_mapping; 716 717 /* Locklessly handle the common case where nothing has changed */ 718 if (errseq_check(&mapping->wb_err, old)) { 719 /* Something changed, must use slow path */ 720 spin_lock(&file->f_lock); 721 old = file->f_wb_err; 722 err = errseq_check_and_advance(&mapping->wb_err, 723 &file->f_wb_err); 724 trace_file_check_and_advance_wb_err(file, old); 725 spin_unlock(&file->f_lock); 726 } 727 728 /* 729 * We're mostly using this function as a drop in replacement for 730 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect 731 * that the legacy code would have had on these flags. 732 */ 733 clear_bit(AS_EIO, &mapping->flags); 734 clear_bit(AS_ENOSPC, &mapping->flags); 735 return err; 736 } 737 EXPORT_SYMBOL(file_check_and_advance_wb_err); 738 739 /** 740 * file_write_and_wait_range - write out & wait on a file range 741 * @file: file pointing to address_space with pages 742 * @lstart: offset in bytes where the range starts 743 * @lend: offset in bytes where the range ends (inclusive) 744 * 745 * Write out and wait upon file offsets lstart->lend, inclusive. 746 * 747 * Note that @lend is inclusive (describes the last byte to be written) so 748 * that this function can be used to write to the very end-of-file (end = -1). 749 * 750 * After writing out and waiting on the data, we check and advance the 751 * f_wb_err cursor to the latest value, and return any errors detected there. 752 * 753 * Return: %0 on success, negative error code otherwise. 754 */ 755 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend) 756 { 757 int err = 0, err2; 758 struct address_space *mapping = file->f_mapping; 759 760 if (mapping_needs_writeback(mapping)) { 761 err = __filemap_fdatawrite_range(mapping, lstart, lend, 762 WB_SYNC_ALL); 763 /* See comment of filemap_write_and_wait() */ 764 if (err != -EIO) 765 __filemap_fdatawait_range(mapping, lstart, lend); 766 } 767 err2 = file_check_and_advance_wb_err(file); 768 if (!err) 769 err = err2; 770 return err; 771 } 772 EXPORT_SYMBOL(file_write_and_wait_range); 773 774 /** 775 * replace_page_cache_page - replace a pagecache page with a new one 776 * @old: page to be replaced 777 * @new: page to replace with 778 * @gfp_mask: allocation mode 779 * 780 * This function replaces a page in the pagecache with a new one. On 781 * success it acquires the pagecache reference for the new page and 782 * drops it for the old page. Both the old and new pages must be 783 * locked. This function does not add the new page to the LRU, the 784 * caller must do that. 785 * 786 * The remove + add is atomic. This function cannot fail. 787 * 788 * Return: %0 789 */ 790 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask) 791 { 792 struct address_space *mapping = old->mapping; 793 void (*freepage)(struct page *) = mapping->a_ops->freepage; 794 pgoff_t offset = old->index; 795 XA_STATE(xas, &mapping->i_pages, offset); 796 unsigned long flags; 797 798 VM_BUG_ON_PAGE(!PageLocked(old), old); 799 VM_BUG_ON_PAGE(!PageLocked(new), new); 800 VM_BUG_ON_PAGE(new->mapping, new); 801 802 get_page(new); 803 new->mapping = mapping; 804 new->index = offset; 805 806 mem_cgroup_migrate(old, new); 807 808 xas_lock_irqsave(&xas, flags); 809 xas_store(&xas, new); 810 811 old->mapping = NULL; 812 /* hugetlb pages do not participate in page cache accounting. */ 813 if (!PageHuge(old)) 814 __dec_lruvec_page_state(old, NR_FILE_PAGES); 815 if (!PageHuge(new)) 816 __inc_lruvec_page_state(new, NR_FILE_PAGES); 817 if (PageSwapBacked(old)) 818 __dec_lruvec_page_state(old, NR_SHMEM); 819 if (PageSwapBacked(new)) 820 __inc_lruvec_page_state(new, NR_SHMEM); 821 xas_unlock_irqrestore(&xas, flags); 822 if (freepage) 823 freepage(old); 824 put_page(old); 825 826 return 0; 827 } 828 EXPORT_SYMBOL_GPL(replace_page_cache_page); 829 830 noinline int __add_to_page_cache_locked(struct page *page, 831 struct address_space *mapping, 832 pgoff_t offset, gfp_t gfp, 833 void **shadowp) 834 { 835 XA_STATE(xas, &mapping->i_pages, offset); 836 int huge = PageHuge(page); 837 int error; 838 839 VM_BUG_ON_PAGE(!PageLocked(page), page); 840 VM_BUG_ON_PAGE(PageSwapBacked(page), page); 841 mapping_set_update(&xas, mapping); 842 843 get_page(page); 844 page->mapping = mapping; 845 page->index = offset; 846 847 if (!huge) { 848 error = mem_cgroup_charge(page, current->mm, gfp); 849 if (error) 850 goto error; 851 } 852 853 gfp &= GFP_RECLAIM_MASK; 854 855 do { 856 unsigned int order = xa_get_order(xas.xa, xas.xa_index); 857 void *entry, *old = NULL; 858 859 if (order > thp_order(page)) 860 xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index), 861 order, gfp); 862 xas_lock_irq(&xas); 863 xas_for_each_conflict(&xas, entry) { 864 old = entry; 865 if (!xa_is_value(entry)) { 866 xas_set_err(&xas, -EEXIST); 867 goto unlock; 868 } 869 } 870 871 if (old) { 872 if (shadowp) 873 *shadowp = old; 874 /* entry may have been split before we acquired lock */ 875 order = xa_get_order(xas.xa, xas.xa_index); 876 if (order > thp_order(page)) { 877 xas_split(&xas, old, order); 878 xas_reset(&xas); 879 } 880 } 881 882 xas_store(&xas, page); 883 if (xas_error(&xas)) 884 goto unlock; 885 886 if (old) 887 mapping->nrexceptional--; 888 mapping->nrpages++; 889 890 /* hugetlb pages do not participate in page cache accounting */ 891 if (!huge) 892 __inc_lruvec_page_state(page, NR_FILE_PAGES); 893 unlock: 894 xas_unlock_irq(&xas); 895 } while (xas_nomem(&xas, gfp)); 896 897 if (xas_error(&xas)) { 898 error = xas_error(&xas); 899 goto error; 900 } 901 902 trace_mm_filemap_add_to_page_cache(page); 903 return 0; 904 error: 905 page->mapping = NULL; 906 /* Leave page->index set: truncation relies upon it */ 907 put_page(page); 908 return error; 909 } 910 ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO); 911 912 /** 913 * add_to_page_cache_locked - add a locked page to the pagecache 914 * @page: page to add 915 * @mapping: the page's address_space 916 * @offset: page index 917 * @gfp_mask: page allocation mode 918 * 919 * This function is used to add a page to the pagecache. It must be locked. 920 * This function does not add the page to the LRU. The caller must do that. 921 * 922 * Return: %0 on success, negative error code otherwise. 923 */ 924 int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 925 pgoff_t offset, gfp_t gfp_mask) 926 { 927 return __add_to_page_cache_locked(page, mapping, offset, 928 gfp_mask, NULL); 929 } 930 EXPORT_SYMBOL(add_to_page_cache_locked); 931 932 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 933 pgoff_t offset, gfp_t gfp_mask) 934 { 935 void *shadow = NULL; 936 int ret; 937 938 __SetPageLocked(page); 939 ret = __add_to_page_cache_locked(page, mapping, offset, 940 gfp_mask, &shadow); 941 if (unlikely(ret)) 942 __ClearPageLocked(page); 943 else { 944 /* 945 * The page might have been evicted from cache only 946 * recently, in which case it should be activated like 947 * any other repeatedly accessed page. 948 * The exception is pages getting rewritten; evicting other 949 * data from the working set, only to cache data that will 950 * get overwritten with something else, is a waste of memory. 951 */ 952 WARN_ON_ONCE(PageActive(page)); 953 if (!(gfp_mask & __GFP_WRITE) && shadow) 954 workingset_refault(page, shadow); 955 lru_cache_add(page); 956 } 957 return ret; 958 } 959 EXPORT_SYMBOL_GPL(add_to_page_cache_lru); 960 961 #ifdef CONFIG_NUMA 962 struct page *__page_cache_alloc(gfp_t gfp) 963 { 964 int n; 965 struct page *page; 966 967 if (cpuset_do_page_mem_spread()) { 968 unsigned int cpuset_mems_cookie; 969 do { 970 cpuset_mems_cookie = read_mems_allowed_begin(); 971 n = cpuset_mem_spread_node(); 972 page = __alloc_pages_node(n, gfp, 0); 973 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie)); 974 975 return page; 976 } 977 return alloc_pages(gfp, 0); 978 } 979 EXPORT_SYMBOL(__page_cache_alloc); 980 #endif 981 982 /* 983 * In order to wait for pages to become available there must be 984 * waitqueues associated with pages. By using a hash table of 985 * waitqueues where the bucket discipline is to maintain all 986 * waiters on the same queue and wake all when any of the pages 987 * become available, and for the woken contexts to check to be 988 * sure the appropriate page became available, this saves space 989 * at a cost of "thundering herd" phenomena during rare hash 990 * collisions. 991 */ 992 #define PAGE_WAIT_TABLE_BITS 8 993 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS) 994 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned; 995 996 static wait_queue_head_t *page_waitqueue(struct page *page) 997 { 998 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)]; 999 } 1000 1001 void __init pagecache_init(void) 1002 { 1003 int i; 1004 1005 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++) 1006 init_waitqueue_head(&page_wait_table[i]); 1007 1008 page_writeback_init(); 1009 } 1010 1011 /* 1012 * The page wait code treats the "wait->flags" somewhat unusually, because 1013 * we have multiple different kinds of waits, not just the usual "exclusive" 1014 * one. 1015 * 1016 * We have: 1017 * 1018 * (a) no special bits set: 1019 * 1020 * We're just waiting for the bit to be released, and when a waker 1021 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up, 1022 * and remove it from the wait queue. 1023 * 1024 * Simple and straightforward. 1025 * 1026 * (b) WQ_FLAG_EXCLUSIVE: 1027 * 1028 * The waiter is waiting to get the lock, and only one waiter should 1029 * be woken up to avoid any thundering herd behavior. We'll set the 1030 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue. 1031 * 1032 * This is the traditional exclusive wait. 1033 * 1034 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM: 1035 * 1036 * The waiter is waiting to get the bit, and additionally wants the 1037 * lock to be transferred to it for fair lock behavior. If the lock 1038 * cannot be taken, we stop walking the wait queue without waking 1039 * the waiter. 1040 * 1041 * This is the "fair lock handoff" case, and in addition to setting 1042 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see 1043 * that it now has the lock. 1044 */ 1045 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg) 1046 { 1047 unsigned int flags; 1048 struct wait_page_key *key = arg; 1049 struct wait_page_queue *wait_page 1050 = container_of(wait, struct wait_page_queue, wait); 1051 1052 if (!wake_page_match(wait_page, key)) 1053 return 0; 1054 1055 /* 1056 * If it's a lock handoff wait, we get the bit for it, and 1057 * stop walking (and do not wake it up) if we can't. 1058 */ 1059 flags = wait->flags; 1060 if (flags & WQ_FLAG_EXCLUSIVE) { 1061 if (test_bit(key->bit_nr, &key->page->flags)) 1062 return -1; 1063 if (flags & WQ_FLAG_CUSTOM) { 1064 if (test_and_set_bit(key->bit_nr, &key->page->flags)) 1065 return -1; 1066 flags |= WQ_FLAG_DONE; 1067 } 1068 } 1069 1070 /* 1071 * We are holding the wait-queue lock, but the waiter that 1072 * is waiting for this will be checking the flags without 1073 * any locking. 1074 * 1075 * So update the flags atomically, and wake up the waiter 1076 * afterwards to avoid any races. This store-release pairs 1077 * with the load-acquire in wait_on_page_bit_common(). 1078 */ 1079 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN); 1080 wake_up_state(wait->private, mode); 1081 1082 /* 1083 * Ok, we have successfully done what we're waiting for, 1084 * and we can unconditionally remove the wait entry. 1085 * 1086 * Note that this pairs with the "finish_wait()" in the 1087 * waiter, and has to be the absolute last thing we do. 1088 * After this list_del_init(&wait->entry) the wait entry 1089 * might be de-allocated and the process might even have 1090 * exited. 1091 */ 1092 list_del_init_careful(&wait->entry); 1093 return (flags & WQ_FLAG_EXCLUSIVE) != 0; 1094 } 1095 1096 static void wake_up_page_bit(struct page *page, int bit_nr) 1097 { 1098 wait_queue_head_t *q = page_waitqueue(page); 1099 struct wait_page_key key; 1100 unsigned long flags; 1101 wait_queue_entry_t bookmark; 1102 1103 key.page = page; 1104 key.bit_nr = bit_nr; 1105 key.page_match = 0; 1106 1107 bookmark.flags = 0; 1108 bookmark.private = NULL; 1109 bookmark.func = NULL; 1110 INIT_LIST_HEAD(&bookmark.entry); 1111 1112 spin_lock_irqsave(&q->lock, flags); 1113 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); 1114 1115 while (bookmark.flags & WQ_FLAG_BOOKMARK) { 1116 /* 1117 * Take a breather from holding the lock, 1118 * allow pages that finish wake up asynchronously 1119 * to acquire the lock and remove themselves 1120 * from wait queue 1121 */ 1122 spin_unlock_irqrestore(&q->lock, flags); 1123 cpu_relax(); 1124 spin_lock_irqsave(&q->lock, flags); 1125 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); 1126 } 1127 1128 /* 1129 * It is possible for other pages to have collided on the waitqueue 1130 * hash, so in that case check for a page match. That prevents a long- 1131 * term waiter 1132 * 1133 * It is still possible to miss a case here, when we woke page waiters 1134 * and removed them from the waitqueue, but there are still other 1135 * page waiters. 1136 */ 1137 if (!waitqueue_active(q) || !key.page_match) { 1138 ClearPageWaiters(page); 1139 /* 1140 * It's possible to miss clearing Waiters here, when we woke 1141 * our page waiters, but the hashed waitqueue has waiters for 1142 * other pages on it. 1143 * 1144 * That's okay, it's a rare case. The next waker will clear it. 1145 */ 1146 } 1147 spin_unlock_irqrestore(&q->lock, flags); 1148 } 1149 1150 static void wake_up_page(struct page *page, int bit) 1151 { 1152 if (!PageWaiters(page)) 1153 return; 1154 wake_up_page_bit(page, bit); 1155 } 1156 1157 /* 1158 * A choice of three behaviors for wait_on_page_bit_common(): 1159 */ 1160 enum behavior { 1161 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like 1162 * __lock_page() waiting on then setting PG_locked. 1163 */ 1164 SHARED, /* Hold ref to page and check the bit when woken, like 1165 * wait_on_page_writeback() waiting on PG_writeback. 1166 */ 1167 DROP, /* Drop ref to page before wait, no check when woken, 1168 * like put_and_wait_on_page_locked() on PG_locked. 1169 */ 1170 }; 1171 1172 /* 1173 * Attempt to check (or get) the page bit, and mark us done 1174 * if successful. 1175 */ 1176 static inline bool trylock_page_bit_common(struct page *page, int bit_nr, 1177 struct wait_queue_entry *wait) 1178 { 1179 if (wait->flags & WQ_FLAG_EXCLUSIVE) { 1180 if (test_and_set_bit(bit_nr, &page->flags)) 1181 return false; 1182 } else if (test_bit(bit_nr, &page->flags)) 1183 return false; 1184 1185 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE; 1186 return true; 1187 } 1188 1189 /* How many times do we accept lock stealing from under a waiter? */ 1190 int sysctl_page_lock_unfairness = 5; 1191 1192 static inline int wait_on_page_bit_common(wait_queue_head_t *q, 1193 struct page *page, int bit_nr, int state, enum behavior behavior) 1194 { 1195 int unfairness = sysctl_page_lock_unfairness; 1196 struct wait_page_queue wait_page; 1197 wait_queue_entry_t *wait = &wait_page.wait; 1198 bool thrashing = false; 1199 bool delayacct = false; 1200 unsigned long pflags; 1201 1202 if (bit_nr == PG_locked && 1203 !PageUptodate(page) && PageWorkingset(page)) { 1204 if (!PageSwapBacked(page)) { 1205 delayacct_thrashing_start(); 1206 delayacct = true; 1207 } 1208 psi_memstall_enter(&pflags); 1209 thrashing = true; 1210 } 1211 1212 init_wait(wait); 1213 wait->func = wake_page_function; 1214 wait_page.page = page; 1215 wait_page.bit_nr = bit_nr; 1216 1217 repeat: 1218 wait->flags = 0; 1219 if (behavior == EXCLUSIVE) { 1220 wait->flags = WQ_FLAG_EXCLUSIVE; 1221 if (--unfairness < 0) 1222 wait->flags |= WQ_FLAG_CUSTOM; 1223 } 1224 1225 /* 1226 * Do one last check whether we can get the 1227 * page bit synchronously. 1228 * 1229 * Do the SetPageWaiters() marking before that 1230 * to let any waker we _just_ missed know they 1231 * need to wake us up (otherwise they'll never 1232 * even go to the slow case that looks at the 1233 * page queue), and add ourselves to the wait 1234 * queue if we need to sleep. 1235 * 1236 * This part needs to be done under the queue 1237 * lock to avoid races. 1238 */ 1239 spin_lock_irq(&q->lock); 1240 SetPageWaiters(page); 1241 if (!trylock_page_bit_common(page, bit_nr, wait)) 1242 __add_wait_queue_entry_tail(q, wait); 1243 spin_unlock_irq(&q->lock); 1244 1245 /* 1246 * From now on, all the logic will be based on 1247 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to 1248 * see whether the page bit testing has already 1249 * been done by the wake function. 1250 * 1251 * We can drop our reference to the page. 1252 */ 1253 if (behavior == DROP) 1254 put_page(page); 1255 1256 /* 1257 * Note that until the "finish_wait()", or until 1258 * we see the WQ_FLAG_WOKEN flag, we need to 1259 * be very careful with the 'wait->flags', because 1260 * we may race with a waker that sets them. 1261 */ 1262 for (;;) { 1263 unsigned int flags; 1264 1265 set_current_state(state); 1266 1267 /* Loop until we've been woken or interrupted */ 1268 flags = smp_load_acquire(&wait->flags); 1269 if (!(flags & WQ_FLAG_WOKEN)) { 1270 if (signal_pending_state(state, current)) 1271 break; 1272 1273 io_schedule(); 1274 continue; 1275 } 1276 1277 /* If we were non-exclusive, we're done */ 1278 if (behavior != EXCLUSIVE) 1279 break; 1280 1281 /* If the waker got the lock for us, we're done */ 1282 if (flags & WQ_FLAG_DONE) 1283 break; 1284 1285 /* 1286 * Otherwise, if we're getting the lock, we need to 1287 * try to get it ourselves. 1288 * 1289 * And if that fails, we'll have to retry this all. 1290 */ 1291 if (unlikely(test_and_set_bit(bit_nr, &page->flags))) 1292 goto repeat; 1293 1294 wait->flags |= WQ_FLAG_DONE; 1295 break; 1296 } 1297 1298 /* 1299 * If a signal happened, this 'finish_wait()' may remove the last 1300 * waiter from the wait-queues, but the PageWaiters bit will remain 1301 * set. That's ok. The next wakeup will take care of it, and trying 1302 * to do it here would be difficult and prone to races. 1303 */ 1304 finish_wait(q, wait); 1305 1306 if (thrashing) { 1307 if (delayacct) 1308 delayacct_thrashing_end(); 1309 psi_memstall_leave(&pflags); 1310 } 1311 1312 /* 1313 * NOTE! The wait->flags weren't stable until we've done the 1314 * 'finish_wait()', and we could have exited the loop above due 1315 * to a signal, and had a wakeup event happen after the signal 1316 * test but before the 'finish_wait()'. 1317 * 1318 * So only after the finish_wait() can we reliably determine 1319 * if we got woken up or not, so we can now figure out the final 1320 * return value based on that state without races. 1321 * 1322 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive 1323 * waiter, but an exclusive one requires WQ_FLAG_DONE. 1324 */ 1325 if (behavior == EXCLUSIVE) 1326 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR; 1327 1328 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR; 1329 } 1330 1331 void wait_on_page_bit(struct page *page, int bit_nr) 1332 { 1333 wait_queue_head_t *q = page_waitqueue(page); 1334 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED); 1335 } 1336 EXPORT_SYMBOL(wait_on_page_bit); 1337 1338 int wait_on_page_bit_killable(struct page *page, int bit_nr) 1339 { 1340 wait_queue_head_t *q = page_waitqueue(page); 1341 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED); 1342 } 1343 EXPORT_SYMBOL(wait_on_page_bit_killable); 1344 1345 static int __wait_on_page_locked_async(struct page *page, 1346 struct wait_page_queue *wait, bool set) 1347 { 1348 struct wait_queue_head *q = page_waitqueue(page); 1349 int ret = 0; 1350 1351 wait->page = page; 1352 wait->bit_nr = PG_locked; 1353 1354 spin_lock_irq(&q->lock); 1355 __add_wait_queue_entry_tail(q, &wait->wait); 1356 SetPageWaiters(page); 1357 if (set) 1358 ret = !trylock_page(page); 1359 else 1360 ret = PageLocked(page); 1361 /* 1362 * If we were successful now, we know we're still on the 1363 * waitqueue as we're still under the lock. This means it's 1364 * safe to remove and return success, we know the callback 1365 * isn't going to trigger. 1366 */ 1367 if (!ret) 1368 __remove_wait_queue(q, &wait->wait); 1369 else 1370 ret = -EIOCBQUEUED; 1371 spin_unlock_irq(&q->lock); 1372 return ret; 1373 } 1374 1375 static int wait_on_page_locked_async(struct page *page, 1376 struct wait_page_queue *wait) 1377 { 1378 if (!PageLocked(page)) 1379 return 0; 1380 return __wait_on_page_locked_async(compound_head(page), wait, false); 1381 } 1382 1383 /** 1384 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked 1385 * @page: The page to wait for. 1386 * 1387 * The caller should hold a reference on @page. They expect the page to 1388 * become unlocked relatively soon, but do not wish to hold up migration 1389 * (for example) by holding the reference while waiting for the page to 1390 * come unlocked. After this function returns, the caller should not 1391 * dereference @page. 1392 */ 1393 void put_and_wait_on_page_locked(struct page *page) 1394 { 1395 wait_queue_head_t *q; 1396 1397 page = compound_head(page); 1398 q = page_waitqueue(page); 1399 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP); 1400 } 1401 1402 /** 1403 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue 1404 * @page: Page defining the wait queue of interest 1405 * @waiter: Waiter to add to the queue 1406 * 1407 * Add an arbitrary @waiter to the wait queue for the nominated @page. 1408 */ 1409 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter) 1410 { 1411 wait_queue_head_t *q = page_waitqueue(page); 1412 unsigned long flags; 1413 1414 spin_lock_irqsave(&q->lock, flags); 1415 __add_wait_queue_entry_tail(q, waiter); 1416 SetPageWaiters(page); 1417 spin_unlock_irqrestore(&q->lock, flags); 1418 } 1419 EXPORT_SYMBOL_GPL(add_page_wait_queue); 1420 1421 #ifndef clear_bit_unlock_is_negative_byte 1422 1423 /* 1424 * PG_waiters is the high bit in the same byte as PG_lock. 1425 * 1426 * On x86 (and on many other architectures), we can clear PG_lock and 1427 * test the sign bit at the same time. But if the architecture does 1428 * not support that special operation, we just do this all by hand 1429 * instead. 1430 * 1431 * The read of PG_waiters has to be after (or concurrently with) PG_locked 1432 * being cleared, but a memory barrier should be unnecessary since it is 1433 * in the same byte as PG_locked. 1434 */ 1435 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem) 1436 { 1437 clear_bit_unlock(nr, mem); 1438 /* smp_mb__after_atomic(); */ 1439 return test_bit(PG_waiters, mem); 1440 } 1441 1442 #endif 1443 1444 /** 1445 * unlock_page - unlock a locked page 1446 * @page: the page 1447 * 1448 * Unlocks the page and wakes up sleepers in wait_on_page_locked(). 1449 * Also wakes sleepers in wait_on_page_writeback() because the wakeup 1450 * mechanism between PageLocked pages and PageWriteback pages is shared. 1451 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. 1452 * 1453 * Note that this depends on PG_waiters being the sign bit in the byte 1454 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to 1455 * clear the PG_locked bit and test PG_waiters at the same time fairly 1456 * portably (architectures that do LL/SC can test any bit, while x86 can 1457 * test the sign bit). 1458 */ 1459 void unlock_page(struct page *page) 1460 { 1461 BUILD_BUG_ON(PG_waiters != 7); 1462 page = compound_head(page); 1463 VM_BUG_ON_PAGE(!PageLocked(page), page); 1464 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags)) 1465 wake_up_page_bit(page, PG_locked); 1466 } 1467 EXPORT_SYMBOL(unlock_page); 1468 1469 /** 1470 * end_page_writeback - end writeback against a page 1471 * @page: the page 1472 */ 1473 void end_page_writeback(struct page *page) 1474 { 1475 /* 1476 * TestClearPageReclaim could be used here but it is an atomic 1477 * operation and overkill in this particular case. Failing to 1478 * shuffle a page marked for immediate reclaim is too mild to 1479 * justify taking an atomic operation penalty at the end of 1480 * ever page writeback. 1481 */ 1482 if (PageReclaim(page)) { 1483 ClearPageReclaim(page); 1484 rotate_reclaimable_page(page); 1485 } 1486 1487 /* 1488 * Writeback does not hold a page reference of its own, relying 1489 * on truncation to wait for the clearing of PG_writeback. 1490 * But here we must make sure that the page is not freed and 1491 * reused before the wake_up_page(). 1492 */ 1493 get_page(page); 1494 if (!test_clear_page_writeback(page)) 1495 BUG(); 1496 1497 smp_mb__after_atomic(); 1498 wake_up_page(page, PG_writeback); 1499 put_page(page); 1500 } 1501 EXPORT_SYMBOL(end_page_writeback); 1502 1503 /* 1504 * After completing I/O on a page, call this routine to update the page 1505 * flags appropriately 1506 */ 1507 void page_endio(struct page *page, bool is_write, int err) 1508 { 1509 if (!is_write) { 1510 if (!err) { 1511 SetPageUptodate(page); 1512 } else { 1513 ClearPageUptodate(page); 1514 SetPageError(page); 1515 } 1516 unlock_page(page); 1517 } else { 1518 if (err) { 1519 struct address_space *mapping; 1520 1521 SetPageError(page); 1522 mapping = page_mapping(page); 1523 if (mapping) 1524 mapping_set_error(mapping, err); 1525 } 1526 end_page_writeback(page); 1527 } 1528 } 1529 EXPORT_SYMBOL_GPL(page_endio); 1530 1531 /** 1532 * __lock_page - get a lock on the page, assuming we need to sleep to get it 1533 * @__page: the page to lock 1534 */ 1535 void __lock_page(struct page *__page) 1536 { 1537 struct page *page = compound_head(__page); 1538 wait_queue_head_t *q = page_waitqueue(page); 1539 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, 1540 EXCLUSIVE); 1541 } 1542 EXPORT_SYMBOL(__lock_page); 1543 1544 int __lock_page_killable(struct page *__page) 1545 { 1546 struct page *page = compound_head(__page); 1547 wait_queue_head_t *q = page_waitqueue(page); 1548 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, 1549 EXCLUSIVE); 1550 } 1551 EXPORT_SYMBOL_GPL(__lock_page_killable); 1552 1553 int __lock_page_async(struct page *page, struct wait_page_queue *wait) 1554 { 1555 return __wait_on_page_locked_async(page, wait, true); 1556 } 1557 1558 /* 1559 * Return values: 1560 * 1 - page is locked; mmap_lock is still held. 1561 * 0 - page is not locked. 1562 * mmap_lock has been released (mmap_read_unlock(), unless flags had both 1563 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in 1564 * which case mmap_lock is still held. 1565 * 1566 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1 1567 * with the page locked and the mmap_lock unperturbed. 1568 */ 1569 int __lock_page_or_retry(struct page *page, struct mm_struct *mm, 1570 unsigned int flags) 1571 { 1572 if (fault_flag_allow_retry_first(flags)) { 1573 /* 1574 * CAUTION! In this case, mmap_lock is not released 1575 * even though return 0. 1576 */ 1577 if (flags & FAULT_FLAG_RETRY_NOWAIT) 1578 return 0; 1579 1580 mmap_read_unlock(mm); 1581 if (flags & FAULT_FLAG_KILLABLE) 1582 wait_on_page_locked_killable(page); 1583 else 1584 wait_on_page_locked(page); 1585 return 0; 1586 } 1587 if (flags & FAULT_FLAG_KILLABLE) { 1588 int ret; 1589 1590 ret = __lock_page_killable(page); 1591 if (ret) { 1592 mmap_read_unlock(mm); 1593 return 0; 1594 } 1595 } else { 1596 __lock_page(page); 1597 } 1598 return 1; 1599 1600 } 1601 1602 /** 1603 * page_cache_next_miss() - Find the next gap in the page cache. 1604 * @mapping: Mapping. 1605 * @index: Index. 1606 * @max_scan: Maximum range to search. 1607 * 1608 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the 1609 * gap with the lowest index. 1610 * 1611 * This function may be called under the rcu_read_lock. However, this will 1612 * not atomically search a snapshot of the cache at a single point in time. 1613 * For example, if a gap is created at index 5, then subsequently a gap is 1614 * created at index 10, page_cache_next_miss covering both indices may 1615 * return 10 if called under the rcu_read_lock. 1616 * 1617 * Return: The index of the gap if found, otherwise an index outside the 1618 * range specified (in which case 'return - index >= max_scan' will be true). 1619 * In the rare case of index wrap-around, 0 will be returned. 1620 */ 1621 pgoff_t page_cache_next_miss(struct address_space *mapping, 1622 pgoff_t index, unsigned long max_scan) 1623 { 1624 XA_STATE(xas, &mapping->i_pages, index); 1625 1626 while (max_scan--) { 1627 void *entry = xas_next(&xas); 1628 if (!entry || xa_is_value(entry)) 1629 break; 1630 if (xas.xa_index == 0) 1631 break; 1632 } 1633 1634 return xas.xa_index; 1635 } 1636 EXPORT_SYMBOL(page_cache_next_miss); 1637 1638 /** 1639 * page_cache_prev_miss() - Find the previous gap in the page cache. 1640 * @mapping: Mapping. 1641 * @index: Index. 1642 * @max_scan: Maximum range to search. 1643 * 1644 * Search the range [max(index - max_scan + 1, 0), index] for the 1645 * gap with the highest index. 1646 * 1647 * This function may be called under the rcu_read_lock. However, this will 1648 * not atomically search a snapshot of the cache at a single point in time. 1649 * For example, if a gap is created at index 10, then subsequently a gap is 1650 * created at index 5, page_cache_prev_miss() covering both indices may 1651 * return 5 if called under the rcu_read_lock. 1652 * 1653 * Return: The index of the gap if found, otherwise an index outside the 1654 * range specified (in which case 'index - return >= max_scan' will be true). 1655 * In the rare case of wrap-around, ULONG_MAX will be returned. 1656 */ 1657 pgoff_t page_cache_prev_miss(struct address_space *mapping, 1658 pgoff_t index, unsigned long max_scan) 1659 { 1660 XA_STATE(xas, &mapping->i_pages, index); 1661 1662 while (max_scan--) { 1663 void *entry = xas_prev(&xas); 1664 if (!entry || xa_is_value(entry)) 1665 break; 1666 if (xas.xa_index == ULONG_MAX) 1667 break; 1668 } 1669 1670 return xas.xa_index; 1671 } 1672 EXPORT_SYMBOL(page_cache_prev_miss); 1673 1674 /** 1675 * find_get_entry - find and get a page cache entry 1676 * @mapping: the address_space to search 1677 * @index: The page cache index. 1678 * 1679 * Looks up the page cache slot at @mapping & @offset. If there is a 1680 * page cache page, the head page is returned with an increased refcount. 1681 * 1682 * If the slot holds a shadow entry of a previously evicted page, or a 1683 * swap entry from shmem/tmpfs, it is returned. 1684 * 1685 * Return: The head page or shadow entry, %NULL if nothing is found. 1686 */ 1687 struct page *find_get_entry(struct address_space *mapping, pgoff_t index) 1688 { 1689 XA_STATE(xas, &mapping->i_pages, index); 1690 struct page *page; 1691 1692 rcu_read_lock(); 1693 repeat: 1694 xas_reset(&xas); 1695 page = xas_load(&xas); 1696 if (xas_retry(&xas, page)) 1697 goto repeat; 1698 /* 1699 * A shadow entry of a recently evicted page, or a swap entry from 1700 * shmem/tmpfs. Return it without attempting to raise page count. 1701 */ 1702 if (!page || xa_is_value(page)) 1703 goto out; 1704 1705 if (!page_cache_get_speculative(page)) 1706 goto repeat; 1707 1708 /* 1709 * Has the page moved or been split? 1710 * This is part of the lockless pagecache protocol. See 1711 * include/linux/pagemap.h for details. 1712 */ 1713 if (unlikely(page != xas_reload(&xas))) { 1714 put_page(page); 1715 goto repeat; 1716 } 1717 out: 1718 rcu_read_unlock(); 1719 1720 return page; 1721 } 1722 1723 /** 1724 * find_lock_entry - Locate and lock a page cache entry. 1725 * @mapping: The address_space to search. 1726 * @index: The page cache index. 1727 * 1728 * Looks up the page at @mapping & @index. If there is a page in the 1729 * cache, the head page is returned locked and with an increased refcount. 1730 * 1731 * If the slot holds a shadow entry of a previously evicted page, or a 1732 * swap entry from shmem/tmpfs, it is returned. 1733 * 1734 * Context: May sleep. 1735 * Return: The head page or shadow entry, %NULL if nothing is found. 1736 */ 1737 struct page *find_lock_entry(struct address_space *mapping, pgoff_t index) 1738 { 1739 struct page *page; 1740 1741 repeat: 1742 page = find_get_entry(mapping, index); 1743 if (page && !xa_is_value(page)) { 1744 lock_page(page); 1745 /* Has the page been truncated? */ 1746 if (unlikely(page->mapping != mapping)) { 1747 unlock_page(page); 1748 put_page(page); 1749 goto repeat; 1750 } 1751 VM_BUG_ON_PAGE(!thp_contains(page, index), page); 1752 } 1753 return page; 1754 } 1755 1756 /** 1757 * pagecache_get_page - Find and get a reference to a page. 1758 * @mapping: The address_space to search. 1759 * @index: The page index. 1760 * @fgp_flags: %FGP flags modify how the page is returned. 1761 * @gfp_mask: Memory allocation flags to use if %FGP_CREAT is specified. 1762 * 1763 * Looks up the page cache entry at @mapping & @index. 1764 * 1765 * @fgp_flags can be zero or more of these flags: 1766 * 1767 * * %FGP_ACCESSED - The page will be marked accessed. 1768 * * %FGP_LOCK - The page is returned locked. 1769 * * %FGP_HEAD - If the page is present and a THP, return the head page 1770 * rather than the exact page specified by the index. 1771 * * %FGP_CREAT - If no page is present then a new page is allocated using 1772 * @gfp_mask and added to the page cache and the VM's LRU list. 1773 * The page is returned locked and with an increased refcount. 1774 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the 1775 * page is already in cache. If the page was allocated, unlock it before 1776 * returning so the caller can do the same dance. 1777 * * %FGP_WRITE - The page will be written 1778 * * %FGP_NOFS - __GFP_FS will get cleared in gfp mask 1779 * * %FGP_NOWAIT - Don't get blocked by page lock 1780 * 1781 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even 1782 * if the %GFP flags specified for %FGP_CREAT are atomic. 1783 * 1784 * If there is a page cache page, it is returned with an increased refcount. 1785 * 1786 * Return: The found page or %NULL otherwise. 1787 */ 1788 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index, 1789 int fgp_flags, gfp_t gfp_mask) 1790 { 1791 struct page *page; 1792 1793 repeat: 1794 page = find_get_entry(mapping, index); 1795 if (xa_is_value(page)) 1796 page = NULL; 1797 if (!page) 1798 goto no_page; 1799 1800 if (fgp_flags & FGP_LOCK) { 1801 if (fgp_flags & FGP_NOWAIT) { 1802 if (!trylock_page(page)) { 1803 put_page(page); 1804 return NULL; 1805 } 1806 } else { 1807 lock_page(page); 1808 } 1809 1810 /* Has the page been truncated? */ 1811 if (unlikely(page->mapping != mapping)) { 1812 unlock_page(page); 1813 put_page(page); 1814 goto repeat; 1815 } 1816 VM_BUG_ON_PAGE(!thp_contains(page, index), page); 1817 } 1818 1819 if (fgp_flags & FGP_ACCESSED) 1820 mark_page_accessed(page); 1821 else if (fgp_flags & FGP_WRITE) { 1822 /* Clear idle flag for buffer write */ 1823 if (page_is_idle(page)) 1824 clear_page_idle(page); 1825 } 1826 if (!(fgp_flags & FGP_HEAD)) 1827 page = find_subpage(page, index); 1828 1829 no_page: 1830 if (!page && (fgp_flags & FGP_CREAT)) { 1831 int err; 1832 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping)) 1833 gfp_mask |= __GFP_WRITE; 1834 if (fgp_flags & FGP_NOFS) 1835 gfp_mask &= ~__GFP_FS; 1836 1837 page = __page_cache_alloc(gfp_mask); 1838 if (!page) 1839 return NULL; 1840 1841 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP)))) 1842 fgp_flags |= FGP_LOCK; 1843 1844 /* Init accessed so avoid atomic mark_page_accessed later */ 1845 if (fgp_flags & FGP_ACCESSED) 1846 __SetPageReferenced(page); 1847 1848 err = add_to_page_cache_lru(page, mapping, index, gfp_mask); 1849 if (unlikely(err)) { 1850 put_page(page); 1851 page = NULL; 1852 if (err == -EEXIST) 1853 goto repeat; 1854 } 1855 1856 /* 1857 * add_to_page_cache_lru locks the page, and for mmap we expect 1858 * an unlocked page. 1859 */ 1860 if (page && (fgp_flags & FGP_FOR_MMAP)) 1861 unlock_page(page); 1862 } 1863 1864 return page; 1865 } 1866 EXPORT_SYMBOL(pagecache_get_page); 1867 1868 /** 1869 * find_get_entries - gang pagecache lookup 1870 * @mapping: The address_space to search 1871 * @start: The starting page cache index 1872 * @nr_entries: The maximum number of entries 1873 * @entries: Where the resulting entries are placed 1874 * @indices: The cache indices corresponding to the entries in @entries 1875 * 1876 * find_get_entries() will search for and return a group of up to 1877 * @nr_entries entries in the mapping. The entries are placed at 1878 * @entries. find_get_entries() takes a reference against any actual 1879 * pages it returns. 1880 * 1881 * The search returns a group of mapping-contiguous page cache entries 1882 * with ascending indexes. There may be holes in the indices due to 1883 * not-present pages. 1884 * 1885 * Any shadow entries of evicted pages, or swap entries from 1886 * shmem/tmpfs, are included in the returned array. 1887 * 1888 * If it finds a Transparent Huge Page, head or tail, find_get_entries() 1889 * stops at that page: the caller is likely to have a better way to handle 1890 * the compound page as a whole, and then skip its extent, than repeatedly 1891 * calling find_get_entries() to return all its tails. 1892 * 1893 * Return: the number of pages and shadow entries which were found. 1894 */ 1895 unsigned find_get_entries(struct address_space *mapping, 1896 pgoff_t start, unsigned int nr_entries, 1897 struct page **entries, pgoff_t *indices) 1898 { 1899 XA_STATE(xas, &mapping->i_pages, start); 1900 struct page *page; 1901 unsigned int ret = 0; 1902 1903 if (!nr_entries) 1904 return 0; 1905 1906 rcu_read_lock(); 1907 xas_for_each(&xas, page, ULONG_MAX) { 1908 if (xas_retry(&xas, page)) 1909 continue; 1910 /* 1911 * A shadow entry of a recently evicted page, a swap 1912 * entry from shmem/tmpfs or a DAX entry. Return it 1913 * without attempting to raise page count. 1914 */ 1915 if (xa_is_value(page)) 1916 goto export; 1917 1918 if (!page_cache_get_speculative(page)) 1919 goto retry; 1920 1921 /* Has the page moved or been split? */ 1922 if (unlikely(page != xas_reload(&xas))) 1923 goto put_page; 1924 1925 /* 1926 * Terminate early on finding a THP, to allow the caller to 1927 * handle it all at once; but continue if this is hugetlbfs. 1928 */ 1929 if (PageTransHuge(page) && !PageHuge(page)) { 1930 page = find_subpage(page, xas.xa_index); 1931 nr_entries = ret + 1; 1932 } 1933 export: 1934 indices[ret] = xas.xa_index; 1935 entries[ret] = page; 1936 if (++ret == nr_entries) 1937 break; 1938 continue; 1939 put_page: 1940 put_page(page); 1941 retry: 1942 xas_reset(&xas); 1943 } 1944 rcu_read_unlock(); 1945 return ret; 1946 } 1947 1948 /** 1949 * find_get_pages_range - gang pagecache lookup 1950 * @mapping: The address_space to search 1951 * @start: The starting page index 1952 * @end: The final page index (inclusive) 1953 * @nr_pages: The maximum number of pages 1954 * @pages: Where the resulting pages are placed 1955 * 1956 * find_get_pages_range() will search for and return a group of up to @nr_pages 1957 * pages in the mapping starting at index @start and up to index @end 1958 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes 1959 * a reference against the returned pages. 1960 * 1961 * The search returns a group of mapping-contiguous pages with ascending 1962 * indexes. There may be holes in the indices due to not-present pages. 1963 * We also update @start to index the next page for the traversal. 1964 * 1965 * Return: the number of pages which were found. If this number is 1966 * smaller than @nr_pages, the end of specified range has been 1967 * reached. 1968 */ 1969 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start, 1970 pgoff_t end, unsigned int nr_pages, 1971 struct page **pages) 1972 { 1973 XA_STATE(xas, &mapping->i_pages, *start); 1974 struct page *page; 1975 unsigned ret = 0; 1976 1977 if (unlikely(!nr_pages)) 1978 return 0; 1979 1980 rcu_read_lock(); 1981 xas_for_each(&xas, page, end) { 1982 if (xas_retry(&xas, page)) 1983 continue; 1984 /* Skip over shadow, swap and DAX entries */ 1985 if (xa_is_value(page)) 1986 continue; 1987 1988 if (!page_cache_get_speculative(page)) 1989 goto retry; 1990 1991 /* Has the page moved or been split? */ 1992 if (unlikely(page != xas_reload(&xas))) 1993 goto put_page; 1994 1995 pages[ret] = find_subpage(page, xas.xa_index); 1996 if (++ret == nr_pages) { 1997 *start = xas.xa_index + 1; 1998 goto out; 1999 } 2000 continue; 2001 put_page: 2002 put_page(page); 2003 retry: 2004 xas_reset(&xas); 2005 } 2006 2007 /* 2008 * We come here when there is no page beyond @end. We take care to not 2009 * overflow the index @start as it confuses some of the callers. This 2010 * breaks the iteration when there is a page at index -1 but that is 2011 * already broken anyway. 2012 */ 2013 if (end == (pgoff_t)-1) 2014 *start = (pgoff_t)-1; 2015 else 2016 *start = end + 1; 2017 out: 2018 rcu_read_unlock(); 2019 2020 return ret; 2021 } 2022 2023 /** 2024 * find_get_pages_contig - gang contiguous pagecache lookup 2025 * @mapping: The address_space to search 2026 * @index: The starting page index 2027 * @nr_pages: The maximum number of pages 2028 * @pages: Where the resulting pages are placed 2029 * 2030 * find_get_pages_contig() works exactly like find_get_pages(), except 2031 * that the returned number of pages are guaranteed to be contiguous. 2032 * 2033 * Return: the number of pages which were found. 2034 */ 2035 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, 2036 unsigned int nr_pages, struct page **pages) 2037 { 2038 XA_STATE(xas, &mapping->i_pages, index); 2039 struct page *page; 2040 unsigned int ret = 0; 2041 2042 if (unlikely(!nr_pages)) 2043 return 0; 2044 2045 rcu_read_lock(); 2046 for (page = xas_load(&xas); page; page = xas_next(&xas)) { 2047 if (xas_retry(&xas, page)) 2048 continue; 2049 /* 2050 * If the entry has been swapped out, we can stop looking. 2051 * No current caller is looking for DAX entries. 2052 */ 2053 if (xa_is_value(page)) 2054 break; 2055 2056 if (!page_cache_get_speculative(page)) 2057 goto retry; 2058 2059 /* Has the page moved or been split? */ 2060 if (unlikely(page != xas_reload(&xas))) 2061 goto put_page; 2062 2063 pages[ret] = find_subpage(page, xas.xa_index); 2064 if (++ret == nr_pages) 2065 break; 2066 continue; 2067 put_page: 2068 put_page(page); 2069 retry: 2070 xas_reset(&xas); 2071 } 2072 rcu_read_unlock(); 2073 return ret; 2074 } 2075 EXPORT_SYMBOL(find_get_pages_contig); 2076 2077 /** 2078 * find_get_pages_range_tag - find and return pages in given range matching @tag 2079 * @mapping: the address_space to search 2080 * @index: the starting page index 2081 * @end: The final page index (inclusive) 2082 * @tag: the tag index 2083 * @nr_pages: the maximum number of pages 2084 * @pages: where the resulting pages are placed 2085 * 2086 * Like find_get_pages, except we only return pages which are tagged with 2087 * @tag. We update @index to index the next page for the traversal. 2088 * 2089 * Return: the number of pages which were found. 2090 */ 2091 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index, 2092 pgoff_t end, xa_mark_t tag, unsigned int nr_pages, 2093 struct page **pages) 2094 { 2095 XA_STATE(xas, &mapping->i_pages, *index); 2096 struct page *page; 2097 unsigned ret = 0; 2098 2099 if (unlikely(!nr_pages)) 2100 return 0; 2101 2102 rcu_read_lock(); 2103 xas_for_each_marked(&xas, page, end, tag) { 2104 if (xas_retry(&xas, page)) 2105 continue; 2106 /* 2107 * Shadow entries should never be tagged, but this iteration 2108 * is lockless so there is a window for page reclaim to evict 2109 * a page we saw tagged. Skip over it. 2110 */ 2111 if (xa_is_value(page)) 2112 continue; 2113 2114 if (!page_cache_get_speculative(page)) 2115 goto retry; 2116 2117 /* Has the page moved or been split? */ 2118 if (unlikely(page != xas_reload(&xas))) 2119 goto put_page; 2120 2121 pages[ret] = find_subpage(page, xas.xa_index); 2122 if (++ret == nr_pages) { 2123 *index = xas.xa_index + 1; 2124 goto out; 2125 } 2126 continue; 2127 put_page: 2128 put_page(page); 2129 retry: 2130 xas_reset(&xas); 2131 } 2132 2133 /* 2134 * We come here when we got to @end. We take care to not overflow the 2135 * index @index as it confuses some of the callers. This breaks the 2136 * iteration when there is a page at index -1 but that is already 2137 * broken anyway. 2138 */ 2139 if (end == (pgoff_t)-1) 2140 *index = (pgoff_t)-1; 2141 else 2142 *index = end + 1; 2143 out: 2144 rcu_read_unlock(); 2145 2146 return ret; 2147 } 2148 EXPORT_SYMBOL(find_get_pages_range_tag); 2149 2150 /* 2151 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 2152 * a _large_ part of the i/o request. Imagine the worst scenario: 2153 * 2154 * ---R__________________________________________B__________ 2155 * ^ reading here ^ bad block(assume 4k) 2156 * 2157 * read(R) => miss => readahead(R...B) => media error => frustrating retries 2158 * => failing the whole request => read(R) => read(R+1) => 2159 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 2160 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 2161 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 2162 * 2163 * It is going insane. Fix it by quickly scaling down the readahead size. 2164 */ 2165 static void shrink_readahead_size_eio(struct file_ra_state *ra) 2166 { 2167 ra->ra_pages /= 4; 2168 } 2169 2170 static int lock_page_for_iocb(struct kiocb *iocb, struct page *page) 2171 { 2172 if (iocb->ki_flags & IOCB_WAITQ) 2173 return lock_page_async(page, iocb->ki_waitq); 2174 else if (iocb->ki_flags & IOCB_NOWAIT) 2175 return trylock_page(page) ? 0 : -EAGAIN; 2176 else 2177 return lock_page_killable(page); 2178 } 2179 2180 static struct page * 2181 generic_file_buffered_read_readpage(struct kiocb *iocb, 2182 struct file *filp, 2183 struct address_space *mapping, 2184 struct page *page) 2185 { 2186 struct file_ra_state *ra = &filp->f_ra; 2187 int error; 2188 2189 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT)) { 2190 unlock_page(page); 2191 put_page(page); 2192 return ERR_PTR(-EAGAIN); 2193 } 2194 2195 /* 2196 * A previous I/O error may have been due to temporary 2197 * failures, eg. multipath errors. 2198 * PG_error will be set again if readpage fails. 2199 */ 2200 ClearPageError(page); 2201 /* Start the actual read. The read will unlock the page. */ 2202 error = mapping->a_ops->readpage(filp, page); 2203 2204 if (unlikely(error)) { 2205 put_page(page); 2206 return error != AOP_TRUNCATED_PAGE ? ERR_PTR(error) : NULL; 2207 } 2208 2209 if (!PageUptodate(page)) { 2210 error = lock_page_for_iocb(iocb, page); 2211 if (unlikely(error)) { 2212 put_page(page); 2213 return ERR_PTR(error); 2214 } 2215 if (!PageUptodate(page)) { 2216 if (page->mapping == NULL) { 2217 /* 2218 * invalidate_mapping_pages got it 2219 */ 2220 unlock_page(page); 2221 put_page(page); 2222 return NULL; 2223 } 2224 unlock_page(page); 2225 shrink_readahead_size_eio(ra); 2226 put_page(page); 2227 return ERR_PTR(-EIO); 2228 } 2229 unlock_page(page); 2230 } 2231 2232 return page; 2233 } 2234 2235 static struct page * 2236 generic_file_buffered_read_pagenotuptodate(struct kiocb *iocb, 2237 struct file *filp, 2238 struct iov_iter *iter, 2239 struct page *page, 2240 loff_t pos, loff_t count) 2241 { 2242 struct address_space *mapping = filp->f_mapping; 2243 struct inode *inode = mapping->host; 2244 int error; 2245 2246 /* 2247 * See comment in do_read_cache_page on why 2248 * wait_on_page_locked is used to avoid unnecessarily 2249 * serialisations and why it's safe. 2250 */ 2251 if (iocb->ki_flags & IOCB_WAITQ) { 2252 error = wait_on_page_locked_async(page, 2253 iocb->ki_waitq); 2254 } else { 2255 error = wait_on_page_locked_killable(page); 2256 } 2257 if (unlikely(error)) { 2258 put_page(page); 2259 return ERR_PTR(error); 2260 } 2261 if (PageUptodate(page)) 2262 return page; 2263 2264 if (inode->i_blkbits == PAGE_SHIFT || 2265 !mapping->a_ops->is_partially_uptodate) 2266 goto page_not_up_to_date; 2267 /* pipes can't handle partially uptodate pages */ 2268 if (unlikely(iov_iter_is_pipe(iter))) 2269 goto page_not_up_to_date; 2270 if (!trylock_page(page)) 2271 goto page_not_up_to_date; 2272 /* Did it get truncated before we got the lock? */ 2273 if (!page->mapping) 2274 goto page_not_up_to_date_locked; 2275 if (!mapping->a_ops->is_partially_uptodate(page, 2276 pos & ~PAGE_MASK, count)) 2277 goto page_not_up_to_date_locked; 2278 unlock_page(page); 2279 return page; 2280 2281 page_not_up_to_date: 2282 /* Get exclusive access to the page ... */ 2283 error = lock_page_for_iocb(iocb, page); 2284 if (unlikely(error)) { 2285 put_page(page); 2286 return ERR_PTR(error); 2287 } 2288 2289 page_not_up_to_date_locked: 2290 /* Did it get truncated before we got the lock? */ 2291 if (!page->mapping) { 2292 unlock_page(page); 2293 put_page(page); 2294 return NULL; 2295 } 2296 2297 /* Did somebody else fill it already? */ 2298 if (PageUptodate(page)) { 2299 unlock_page(page); 2300 return page; 2301 } 2302 2303 return generic_file_buffered_read_readpage(iocb, filp, mapping, page); 2304 } 2305 2306 static struct page * 2307 generic_file_buffered_read_no_cached_page(struct kiocb *iocb, 2308 struct iov_iter *iter) 2309 { 2310 struct file *filp = iocb->ki_filp; 2311 struct address_space *mapping = filp->f_mapping; 2312 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT; 2313 struct page *page; 2314 int error; 2315 2316 if (iocb->ki_flags & IOCB_NOIO) 2317 return ERR_PTR(-EAGAIN); 2318 2319 /* 2320 * Ok, it wasn't cached, so we need to create a new 2321 * page.. 2322 */ 2323 page = page_cache_alloc(mapping); 2324 if (!page) 2325 return ERR_PTR(-ENOMEM); 2326 2327 error = add_to_page_cache_lru(page, mapping, index, 2328 mapping_gfp_constraint(mapping, GFP_KERNEL)); 2329 if (error) { 2330 put_page(page); 2331 return error != -EEXIST ? ERR_PTR(error) : NULL; 2332 } 2333 2334 return generic_file_buffered_read_readpage(iocb, filp, mapping, page); 2335 } 2336 2337 static int generic_file_buffered_read_get_pages(struct kiocb *iocb, 2338 struct iov_iter *iter, 2339 struct page **pages, 2340 unsigned int nr) 2341 { 2342 struct file *filp = iocb->ki_filp; 2343 struct address_space *mapping = filp->f_mapping; 2344 struct file_ra_state *ra = &filp->f_ra; 2345 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT; 2346 pgoff_t last_index = (iocb->ki_pos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT; 2347 int i, j, nr_got, err = 0; 2348 2349 nr = min_t(unsigned long, last_index - index, nr); 2350 find_page: 2351 if (fatal_signal_pending(current)) 2352 return -EINTR; 2353 2354 nr_got = find_get_pages_contig(mapping, index, nr, pages); 2355 if (nr_got) 2356 goto got_pages; 2357 2358 if (iocb->ki_flags & IOCB_NOIO) 2359 return -EAGAIN; 2360 2361 page_cache_sync_readahead(mapping, ra, filp, index, last_index - index); 2362 2363 nr_got = find_get_pages_contig(mapping, index, nr, pages); 2364 if (nr_got) 2365 goto got_pages; 2366 2367 pages[0] = generic_file_buffered_read_no_cached_page(iocb, iter); 2368 err = PTR_ERR_OR_ZERO(pages[0]); 2369 if (!IS_ERR_OR_NULL(pages[0])) 2370 nr_got = 1; 2371 got_pages: 2372 for (i = 0; i < nr_got; i++) { 2373 struct page *page = pages[i]; 2374 pgoff_t pg_index = index + i; 2375 loff_t pg_pos = max(iocb->ki_pos, 2376 (loff_t) pg_index << PAGE_SHIFT); 2377 loff_t pg_count = iocb->ki_pos + iter->count - pg_pos; 2378 2379 if (PageReadahead(page)) { 2380 if (iocb->ki_flags & IOCB_NOIO) { 2381 for (j = i; j < nr_got; j++) 2382 put_page(pages[j]); 2383 nr_got = i; 2384 err = -EAGAIN; 2385 break; 2386 } 2387 page_cache_async_readahead(mapping, ra, filp, page, 2388 pg_index, last_index - pg_index); 2389 } 2390 2391 if (!PageUptodate(page)) { 2392 if ((iocb->ki_flags & IOCB_NOWAIT) || 2393 ((iocb->ki_flags & IOCB_WAITQ) && i)) { 2394 for (j = i; j < nr_got; j++) 2395 put_page(pages[j]); 2396 nr_got = i; 2397 err = -EAGAIN; 2398 break; 2399 } 2400 2401 page = generic_file_buffered_read_pagenotuptodate(iocb, 2402 filp, iter, page, pg_pos, pg_count); 2403 if (IS_ERR_OR_NULL(page)) { 2404 for (j = i + 1; j < nr_got; j++) 2405 put_page(pages[j]); 2406 nr_got = i; 2407 err = PTR_ERR_OR_ZERO(page); 2408 break; 2409 } 2410 } 2411 } 2412 2413 if (likely(nr_got)) 2414 return nr_got; 2415 if (err) 2416 return err; 2417 /* 2418 * No pages and no error means we raced and should retry: 2419 */ 2420 goto find_page; 2421 } 2422 2423 /** 2424 * generic_file_buffered_read - generic file read routine 2425 * @iocb: the iocb to read 2426 * @iter: data destination 2427 * @written: already copied 2428 * 2429 * This is a generic file read routine, and uses the 2430 * mapping->a_ops->readpage() function for the actual low-level stuff. 2431 * 2432 * This is really ugly. But the goto's actually try to clarify some 2433 * of the logic when it comes to error handling etc. 2434 * 2435 * Return: 2436 * * total number of bytes copied, including those the were already @written 2437 * * negative error code if nothing was copied 2438 */ 2439 ssize_t generic_file_buffered_read(struct kiocb *iocb, 2440 struct iov_iter *iter, ssize_t written) 2441 { 2442 struct file *filp = iocb->ki_filp; 2443 struct file_ra_state *ra = &filp->f_ra; 2444 struct address_space *mapping = filp->f_mapping; 2445 struct inode *inode = mapping->host; 2446 struct page *pages_onstack[PAGEVEC_SIZE], **pages = NULL; 2447 unsigned int nr_pages = min_t(unsigned int, 512, 2448 ((iocb->ki_pos + iter->count + PAGE_SIZE - 1) >> PAGE_SHIFT) - 2449 (iocb->ki_pos >> PAGE_SHIFT)); 2450 int i, pg_nr, error = 0; 2451 bool writably_mapped; 2452 loff_t isize, end_offset; 2453 2454 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes)) 2455 return 0; 2456 if (unlikely(!iov_iter_count(iter))) 2457 return 0; 2458 2459 iov_iter_truncate(iter, inode->i_sb->s_maxbytes); 2460 2461 if (nr_pages > ARRAY_SIZE(pages_onstack)) 2462 pages = kmalloc_array(nr_pages, sizeof(void *), GFP_KERNEL); 2463 2464 if (!pages) { 2465 pages = pages_onstack; 2466 nr_pages = min_t(unsigned int, nr_pages, ARRAY_SIZE(pages_onstack)); 2467 } 2468 2469 do { 2470 cond_resched(); 2471 2472 /* 2473 * If we've already successfully copied some data, then we 2474 * can no longer safely return -EIOCBQUEUED. Hence mark 2475 * an async read NOWAIT at that point. 2476 */ 2477 if ((iocb->ki_flags & IOCB_WAITQ) && written) 2478 iocb->ki_flags |= IOCB_NOWAIT; 2479 2480 i = 0; 2481 pg_nr = generic_file_buffered_read_get_pages(iocb, iter, 2482 pages, nr_pages); 2483 if (pg_nr < 0) { 2484 error = pg_nr; 2485 break; 2486 } 2487 2488 /* 2489 * i_size must be checked after we know the pages are Uptodate. 2490 * 2491 * Checking i_size after the check allows us to calculate 2492 * the correct value for "nr", which means the zero-filled 2493 * part of the page is not copied back to userspace (unless 2494 * another truncate extends the file - this is desired though). 2495 */ 2496 isize = i_size_read(inode); 2497 if (unlikely(iocb->ki_pos >= isize)) 2498 goto put_pages; 2499 2500 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count); 2501 2502 while ((iocb->ki_pos >> PAGE_SHIFT) + pg_nr > 2503 (end_offset + PAGE_SIZE - 1) >> PAGE_SHIFT) 2504 put_page(pages[--pg_nr]); 2505 2506 /* 2507 * Once we start copying data, we don't want to be touching any 2508 * cachelines that might be contended: 2509 */ 2510 writably_mapped = mapping_writably_mapped(mapping); 2511 2512 /* 2513 * When a sequential read accesses a page several times, only 2514 * mark it as accessed the first time. 2515 */ 2516 if (iocb->ki_pos >> PAGE_SHIFT != 2517 ra->prev_pos >> PAGE_SHIFT) 2518 mark_page_accessed(pages[0]); 2519 for (i = 1; i < pg_nr; i++) 2520 mark_page_accessed(pages[i]); 2521 2522 for (i = 0; i < pg_nr; i++) { 2523 unsigned int offset = iocb->ki_pos & ~PAGE_MASK; 2524 unsigned int bytes = min_t(loff_t, end_offset - iocb->ki_pos, 2525 PAGE_SIZE - offset); 2526 unsigned int copied; 2527 2528 /* 2529 * If users can be writing to this page using arbitrary 2530 * virtual addresses, take care about potential aliasing 2531 * before reading the page on the kernel side. 2532 */ 2533 if (writably_mapped) 2534 flush_dcache_page(pages[i]); 2535 2536 copied = copy_page_to_iter(pages[i], offset, bytes, iter); 2537 2538 written += copied; 2539 iocb->ki_pos += copied; 2540 ra->prev_pos = iocb->ki_pos; 2541 2542 if (copied < bytes) { 2543 error = -EFAULT; 2544 break; 2545 } 2546 } 2547 put_pages: 2548 for (i = 0; i < pg_nr; i++) 2549 put_page(pages[i]); 2550 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error); 2551 2552 file_accessed(filp); 2553 2554 if (pages != pages_onstack) 2555 kfree(pages); 2556 2557 return written ? written : error; 2558 } 2559 EXPORT_SYMBOL_GPL(generic_file_buffered_read); 2560 2561 /** 2562 * generic_file_read_iter - generic filesystem read routine 2563 * @iocb: kernel I/O control block 2564 * @iter: destination for the data read 2565 * 2566 * This is the "read_iter()" routine for all filesystems 2567 * that can use the page cache directly. 2568 * 2569 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall 2570 * be returned when no data can be read without waiting for I/O requests 2571 * to complete; it doesn't prevent readahead. 2572 * 2573 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O 2574 * requests shall be made for the read or for readahead. When no data 2575 * can be read, -EAGAIN shall be returned. When readahead would be 2576 * triggered, a partial, possibly empty read shall be returned. 2577 * 2578 * Return: 2579 * * number of bytes copied, even for partial reads 2580 * * negative error code (or 0 if IOCB_NOIO) if nothing was read 2581 */ 2582 ssize_t 2583 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 2584 { 2585 size_t count = iov_iter_count(iter); 2586 ssize_t retval = 0; 2587 2588 if (!count) 2589 goto out; /* skip atime */ 2590 2591 if (iocb->ki_flags & IOCB_DIRECT) { 2592 struct file *file = iocb->ki_filp; 2593 struct address_space *mapping = file->f_mapping; 2594 struct inode *inode = mapping->host; 2595 loff_t size; 2596 2597 size = i_size_read(inode); 2598 if (iocb->ki_flags & IOCB_NOWAIT) { 2599 if (filemap_range_has_page(mapping, iocb->ki_pos, 2600 iocb->ki_pos + count - 1)) 2601 return -EAGAIN; 2602 } else { 2603 retval = filemap_write_and_wait_range(mapping, 2604 iocb->ki_pos, 2605 iocb->ki_pos + count - 1); 2606 if (retval < 0) 2607 goto out; 2608 } 2609 2610 file_accessed(file); 2611 2612 retval = mapping->a_ops->direct_IO(iocb, iter); 2613 if (retval >= 0) { 2614 iocb->ki_pos += retval; 2615 count -= retval; 2616 } 2617 iov_iter_revert(iter, count - iov_iter_count(iter)); 2618 2619 /* 2620 * Btrfs can have a short DIO read if we encounter 2621 * compressed extents, so if there was an error, or if 2622 * we've already read everything we wanted to, or if 2623 * there was a short read because we hit EOF, go ahead 2624 * and return. Otherwise fallthrough to buffered io for 2625 * the rest of the read. Buffered reads will not work for 2626 * DAX files, so don't bother trying. 2627 */ 2628 if (retval < 0 || !count || iocb->ki_pos >= size || 2629 IS_DAX(inode)) 2630 goto out; 2631 } 2632 2633 retval = generic_file_buffered_read(iocb, iter, retval); 2634 out: 2635 return retval; 2636 } 2637 EXPORT_SYMBOL(generic_file_read_iter); 2638 2639 #ifdef CONFIG_MMU 2640 #define MMAP_LOTSAMISS (100) 2641 /* 2642 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock 2643 * @vmf - the vm_fault for this fault. 2644 * @page - the page to lock. 2645 * @fpin - the pointer to the file we may pin (or is already pinned). 2646 * 2647 * This works similar to lock_page_or_retry in that it can drop the mmap_lock. 2648 * It differs in that it actually returns the page locked if it returns 1 and 0 2649 * if it couldn't lock the page. If we did have to drop the mmap_lock then fpin 2650 * will point to the pinned file and needs to be fput()'ed at a later point. 2651 */ 2652 static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page, 2653 struct file **fpin) 2654 { 2655 if (trylock_page(page)) 2656 return 1; 2657 2658 /* 2659 * NOTE! This will make us return with VM_FAULT_RETRY, but with 2660 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT 2661 * is supposed to work. We have way too many special cases.. 2662 */ 2663 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 2664 return 0; 2665 2666 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin); 2667 if (vmf->flags & FAULT_FLAG_KILLABLE) { 2668 if (__lock_page_killable(page)) { 2669 /* 2670 * We didn't have the right flags to drop the mmap_lock, 2671 * but all fault_handlers only check for fatal signals 2672 * if we return VM_FAULT_RETRY, so we need to drop the 2673 * mmap_lock here and return 0 if we don't have a fpin. 2674 */ 2675 if (*fpin == NULL) 2676 mmap_read_unlock(vmf->vma->vm_mm); 2677 return 0; 2678 } 2679 } else 2680 __lock_page(page); 2681 return 1; 2682 } 2683 2684 2685 /* 2686 * Synchronous readahead happens when we don't even find a page in the page 2687 * cache at all. We don't want to perform IO under the mmap sem, so if we have 2688 * to drop the mmap sem we return the file that was pinned in order for us to do 2689 * that. If we didn't pin a file then we return NULL. The file that is 2690 * returned needs to be fput()'ed when we're done with it. 2691 */ 2692 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf) 2693 { 2694 struct file *file = vmf->vma->vm_file; 2695 struct file_ra_state *ra = &file->f_ra; 2696 struct address_space *mapping = file->f_mapping; 2697 DEFINE_READAHEAD(ractl, file, mapping, vmf->pgoff); 2698 struct file *fpin = NULL; 2699 unsigned int mmap_miss; 2700 2701 /* If we don't want any read-ahead, don't bother */ 2702 if (vmf->vma->vm_flags & VM_RAND_READ) 2703 return fpin; 2704 if (!ra->ra_pages) 2705 return fpin; 2706 2707 if (vmf->vma->vm_flags & VM_SEQ_READ) { 2708 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 2709 page_cache_sync_ra(&ractl, ra, ra->ra_pages); 2710 return fpin; 2711 } 2712 2713 /* Avoid banging the cache line if not needed */ 2714 mmap_miss = READ_ONCE(ra->mmap_miss); 2715 if (mmap_miss < MMAP_LOTSAMISS * 10) 2716 WRITE_ONCE(ra->mmap_miss, ++mmap_miss); 2717 2718 /* 2719 * Do we miss much more than hit in this file? If so, 2720 * stop bothering with read-ahead. It will only hurt. 2721 */ 2722 if (mmap_miss > MMAP_LOTSAMISS) 2723 return fpin; 2724 2725 /* 2726 * mmap read-around 2727 */ 2728 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 2729 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2); 2730 ra->size = ra->ra_pages; 2731 ra->async_size = ra->ra_pages / 4; 2732 ractl._index = ra->start; 2733 do_page_cache_ra(&ractl, ra->size, ra->async_size); 2734 return fpin; 2735 } 2736 2737 /* 2738 * Asynchronous readahead happens when we find the page and PG_readahead, 2739 * so we want to possibly extend the readahead further. We return the file that 2740 * was pinned if we have to drop the mmap_lock in order to do IO. 2741 */ 2742 static struct file *do_async_mmap_readahead(struct vm_fault *vmf, 2743 struct page *page) 2744 { 2745 struct file *file = vmf->vma->vm_file; 2746 struct file_ra_state *ra = &file->f_ra; 2747 struct address_space *mapping = file->f_mapping; 2748 struct file *fpin = NULL; 2749 unsigned int mmap_miss; 2750 pgoff_t offset = vmf->pgoff; 2751 2752 /* If we don't want any read-ahead, don't bother */ 2753 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages) 2754 return fpin; 2755 mmap_miss = READ_ONCE(ra->mmap_miss); 2756 if (mmap_miss) 2757 WRITE_ONCE(ra->mmap_miss, --mmap_miss); 2758 if (PageReadahead(page)) { 2759 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 2760 page_cache_async_readahead(mapping, ra, file, 2761 page, offset, ra->ra_pages); 2762 } 2763 return fpin; 2764 } 2765 2766 /** 2767 * filemap_fault - read in file data for page fault handling 2768 * @vmf: struct vm_fault containing details of the fault 2769 * 2770 * filemap_fault() is invoked via the vma operations vector for a 2771 * mapped memory region to read in file data during a page fault. 2772 * 2773 * The goto's are kind of ugly, but this streamlines the normal case of having 2774 * it in the page cache, and handles the special cases reasonably without 2775 * having a lot of duplicated code. 2776 * 2777 * vma->vm_mm->mmap_lock must be held on entry. 2778 * 2779 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock 2780 * may be dropped before doing I/O or by lock_page_maybe_drop_mmap(). 2781 * 2782 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock 2783 * has not been released. 2784 * 2785 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. 2786 * 2787 * Return: bitwise-OR of %VM_FAULT_ codes. 2788 */ 2789 vm_fault_t filemap_fault(struct vm_fault *vmf) 2790 { 2791 int error; 2792 struct file *file = vmf->vma->vm_file; 2793 struct file *fpin = NULL; 2794 struct address_space *mapping = file->f_mapping; 2795 struct file_ra_state *ra = &file->f_ra; 2796 struct inode *inode = mapping->host; 2797 pgoff_t offset = vmf->pgoff; 2798 pgoff_t max_off; 2799 struct page *page; 2800 vm_fault_t ret = 0; 2801 2802 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2803 if (unlikely(offset >= max_off)) 2804 return VM_FAULT_SIGBUS; 2805 2806 /* 2807 * Do we have something in the page cache already? 2808 */ 2809 page = find_get_page(mapping, offset); 2810 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) { 2811 /* 2812 * We found the page, so try async readahead before 2813 * waiting for the lock. 2814 */ 2815 fpin = do_async_mmap_readahead(vmf, page); 2816 } else if (!page) { 2817 /* No page in the page cache at all */ 2818 count_vm_event(PGMAJFAULT); 2819 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); 2820 ret = VM_FAULT_MAJOR; 2821 fpin = do_sync_mmap_readahead(vmf); 2822 retry_find: 2823 page = pagecache_get_page(mapping, offset, 2824 FGP_CREAT|FGP_FOR_MMAP, 2825 vmf->gfp_mask); 2826 if (!page) { 2827 if (fpin) 2828 goto out_retry; 2829 return VM_FAULT_OOM; 2830 } 2831 } 2832 2833 if (!lock_page_maybe_drop_mmap(vmf, page, &fpin)) 2834 goto out_retry; 2835 2836 /* Did it get truncated? */ 2837 if (unlikely(compound_head(page)->mapping != mapping)) { 2838 unlock_page(page); 2839 put_page(page); 2840 goto retry_find; 2841 } 2842 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page); 2843 2844 /* 2845 * We have a locked page in the page cache, now we need to check 2846 * that it's up-to-date. If not, it is going to be due to an error. 2847 */ 2848 if (unlikely(!PageUptodate(page))) 2849 goto page_not_uptodate; 2850 2851 /* 2852 * We've made it this far and we had to drop our mmap_lock, now is the 2853 * time to return to the upper layer and have it re-find the vma and 2854 * redo the fault. 2855 */ 2856 if (fpin) { 2857 unlock_page(page); 2858 goto out_retry; 2859 } 2860 2861 /* 2862 * Found the page and have a reference on it. 2863 * We must recheck i_size under page lock. 2864 */ 2865 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2866 if (unlikely(offset >= max_off)) { 2867 unlock_page(page); 2868 put_page(page); 2869 return VM_FAULT_SIGBUS; 2870 } 2871 2872 vmf->page = page; 2873 return ret | VM_FAULT_LOCKED; 2874 2875 page_not_uptodate: 2876 /* 2877 * Umm, take care of errors if the page isn't up-to-date. 2878 * Try to re-read it _once_. We do this synchronously, 2879 * because there really aren't any performance issues here 2880 * and we need to check for errors. 2881 */ 2882 ClearPageError(page); 2883 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 2884 error = mapping->a_ops->readpage(file, page); 2885 if (!error) { 2886 wait_on_page_locked(page); 2887 if (!PageUptodate(page)) 2888 error = -EIO; 2889 } 2890 if (fpin) 2891 goto out_retry; 2892 put_page(page); 2893 2894 if (!error || error == AOP_TRUNCATED_PAGE) 2895 goto retry_find; 2896 2897 shrink_readahead_size_eio(ra); 2898 return VM_FAULT_SIGBUS; 2899 2900 out_retry: 2901 /* 2902 * We dropped the mmap_lock, we need to return to the fault handler to 2903 * re-find the vma and come back and find our hopefully still populated 2904 * page. 2905 */ 2906 if (page) 2907 put_page(page); 2908 if (fpin) 2909 fput(fpin); 2910 return ret | VM_FAULT_RETRY; 2911 } 2912 EXPORT_SYMBOL(filemap_fault); 2913 2914 void filemap_map_pages(struct vm_fault *vmf, 2915 pgoff_t start_pgoff, pgoff_t end_pgoff) 2916 { 2917 struct file *file = vmf->vma->vm_file; 2918 struct address_space *mapping = file->f_mapping; 2919 pgoff_t last_pgoff = start_pgoff; 2920 unsigned long max_idx; 2921 XA_STATE(xas, &mapping->i_pages, start_pgoff); 2922 struct page *head, *page; 2923 unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss); 2924 2925 rcu_read_lock(); 2926 xas_for_each(&xas, head, end_pgoff) { 2927 if (xas_retry(&xas, head)) 2928 continue; 2929 if (xa_is_value(head)) 2930 goto next; 2931 2932 /* 2933 * Check for a locked page first, as a speculative 2934 * reference may adversely influence page migration. 2935 */ 2936 if (PageLocked(head)) 2937 goto next; 2938 if (!page_cache_get_speculative(head)) 2939 goto next; 2940 2941 /* Has the page moved or been split? */ 2942 if (unlikely(head != xas_reload(&xas))) 2943 goto skip; 2944 page = find_subpage(head, xas.xa_index); 2945 2946 if (!PageUptodate(head) || 2947 PageReadahead(page) || 2948 PageHWPoison(page)) 2949 goto skip; 2950 if (!trylock_page(head)) 2951 goto skip; 2952 2953 if (head->mapping != mapping || !PageUptodate(head)) 2954 goto unlock; 2955 2956 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 2957 if (xas.xa_index >= max_idx) 2958 goto unlock; 2959 2960 if (mmap_miss > 0) 2961 mmap_miss--; 2962 2963 vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT; 2964 if (vmf->pte) 2965 vmf->pte += xas.xa_index - last_pgoff; 2966 last_pgoff = xas.xa_index; 2967 if (alloc_set_pte(vmf, page)) 2968 goto unlock; 2969 unlock_page(head); 2970 goto next; 2971 unlock: 2972 unlock_page(head); 2973 skip: 2974 put_page(head); 2975 next: 2976 /* Huge page is mapped? No need to proceed. */ 2977 if (pmd_trans_huge(*vmf->pmd)) 2978 break; 2979 } 2980 rcu_read_unlock(); 2981 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss); 2982 } 2983 EXPORT_SYMBOL(filemap_map_pages); 2984 2985 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 2986 { 2987 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 2988 struct page *page = vmf->page; 2989 vm_fault_t ret = VM_FAULT_LOCKED; 2990 2991 sb_start_pagefault(mapping->host->i_sb); 2992 file_update_time(vmf->vma->vm_file); 2993 lock_page(page); 2994 if (page->mapping != mapping) { 2995 unlock_page(page); 2996 ret = VM_FAULT_NOPAGE; 2997 goto out; 2998 } 2999 /* 3000 * We mark the page dirty already here so that when freeze is in 3001 * progress, we are guaranteed that writeback during freezing will 3002 * see the dirty page and writeprotect it again. 3003 */ 3004 set_page_dirty(page); 3005 wait_for_stable_page(page); 3006 out: 3007 sb_end_pagefault(mapping->host->i_sb); 3008 return ret; 3009 } 3010 3011 const struct vm_operations_struct generic_file_vm_ops = { 3012 .fault = filemap_fault, 3013 .map_pages = filemap_map_pages, 3014 .page_mkwrite = filemap_page_mkwrite, 3015 }; 3016 3017 /* This is used for a general mmap of a disk file */ 3018 3019 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 3020 { 3021 struct address_space *mapping = file->f_mapping; 3022 3023 if (!mapping->a_ops->readpage) 3024 return -ENOEXEC; 3025 file_accessed(file); 3026 vma->vm_ops = &generic_file_vm_ops; 3027 return 0; 3028 } 3029 3030 /* 3031 * This is for filesystems which do not implement ->writepage. 3032 */ 3033 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3034 { 3035 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 3036 return -EINVAL; 3037 return generic_file_mmap(file, vma); 3038 } 3039 #else 3040 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3041 { 3042 return VM_FAULT_SIGBUS; 3043 } 3044 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 3045 { 3046 return -ENOSYS; 3047 } 3048 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) 3049 { 3050 return -ENOSYS; 3051 } 3052 #endif /* CONFIG_MMU */ 3053 3054 EXPORT_SYMBOL(filemap_page_mkwrite); 3055 EXPORT_SYMBOL(generic_file_mmap); 3056 EXPORT_SYMBOL(generic_file_readonly_mmap); 3057 3058 static struct page *wait_on_page_read(struct page *page) 3059 { 3060 if (!IS_ERR(page)) { 3061 wait_on_page_locked(page); 3062 if (!PageUptodate(page)) { 3063 put_page(page); 3064 page = ERR_PTR(-EIO); 3065 } 3066 } 3067 return page; 3068 } 3069 3070 static struct page *do_read_cache_page(struct address_space *mapping, 3071 pgoff_t index, 3072 int (*filler)(void *, struct page *), 3073 void *data, 3074 gfp_t gfp) 3075 { 3076 struct page *page; 3077 int err; 3078 repeat: 3079 page = find_get_page(mapping, index); 3080 if (!page) { 3081 page = __page_cache_alloc(gfp); 3082 if (!page) 3083 return ERR_PTR(-ENOMEM); 3084 err = add_to_page_cache_lru(page, mapping, index, gfp); 3085 if (unlikely(err)) { 3086 put_page(page); 3087 if (err == -EEXIST) 3088 goto repeat; 3089 /* Presumably ENOMEM for xarray node */ 3090 return ERR_PTR(err); 3091 } 3092 3093 filler: 3094 if (filler) 3095 err = filler(data, page); 3096 else 3097 err = mapping->a_ops->readpage(data, page); 3098 3099 if (err < 0) { 3100 put_page(page); 3101 return ERR_PTR(err); 3102 } 3103 3104 page = wait_on_page_read(page); 3105 if (IS_ERR(page)) 3106 return page; 3107 goto out; 3108 } 3109 if (PageUptodate(page)) 3110 goto out; 3111 3112 /* 3113 * Page is not up to date and may be locked due to one of the following 3114 * case a: Page is being filled and the page lock is held 3115 * case b: Read/write error clearing the page uptodate status 3116 * case c: Truncation in progress (page locked) 3117 * case d: Reclaim in progress 3118 * 3119 * Case a, the page will be up to date when the page is unlocked. 3120 * There is no need to serialise on the page lock here as the page 3121 * is pinned so the lock gives no additional protection. Even if the 3122 * page is truncated, the data is still valid if PageUptodate as 3123 * it's a race vs truncate race. 3124 * Case b, the page will not be up to date 3125 * Case c, the page may be truncated but in itself, the data may still 3126 * be valid after IO completes as it's a read vs truncate race. The 3127 * operation must restart if the page is not uptodate on unlock but 3128 * otherwise serialising on page lock to stabilise the mapping gives 3129 * no additional guarantees to the caller as the page lock is 3130 * released before return. 3131 * Case d, similar to truncation. If reclaim holds the page lock, it 3132 * will be a race with remove_mapping that determines if the mapping 3133 * is valid on unlock but otherwise the data is valid and there is 3134 * no need to serialise with page lock. 3135 * 3136 * As the page lock gives no additional guarantee, we optimistically 3137 * wait on the page to be unlocked and check if it's up to date and 3138 * use the page if it is. Otherwise, the page lock is required to 3139 * distinguish between the different cases. The motivation is that we 3140 * avoid spurious serialisations and wakeups when multiple processes 3141 * wait on the same page for IO to complete. 3142 */ 3143 wait_on_page_locked(page); 3144 if (PageUptodate(page)) 3145 goto out; 3146 3147 /* Distinguish between all the cases under the safety of the lock */ 3148 lock_page(page); 3149 3150 /* Case c or d, restart the operation */ 3151 if (!page->mapping) { 3152 unlock_page(page); 3153 put_page(page); 3154 goto repeat; 3155 } 3156 3157 /* Someone else locked and filled the page in a very small window */ 3158 if (PageUptodate(page)) { 3159 unlock_page(page); 3160 goto out; 3161 } 3162 3163 /* 3164 * A previous I/O error may have been due to temporary 3165 * failures. 3166 * Clear page error before actual read, PG_error will be 3167 * set again if read page fails. 3168 */ 3169 ClearPageError(page); 3170 goto filler; 3171 3172 out: 3173 mark_page_accessed(page); 3174 return page; 3175 } 3176 3177 /** 3178 * read_cache_page - read into page cache, fill it if needed 3179 * @mapping: the page's address_space 3180 * @index: the page index 3181 * @filler: function to perform the read 3182 * @data: first arg to filler(data, page) function, often left as NULL 3183 * 3184 * Read into the page cache. If a page already exists, and PageUptodate() is 3185 * not set, try to fill the page and wait for it to become unlocked. 3186 * 3187 * If the page does not get brought uptodate, return -EIO. 3188 * 3189 * Return: up to date page on success, ERR_PTR() on failure. 3190 */ 3191 struct page *read_cache_page(struct address_space *mapping, 3192 pgoff_t index, 3193 int (*filler)(void *, struct page *), 3194 void *data) 3195 { 3196 return do_read_cache_page(mapping, index, filler, data, 3197 mapping_gfp_mask(mapping)); 3198 } 3199 EXPORT_SYMBOL(read_cache_page); 3200 3201 /** 3202 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 3203 * @mapping: the page's address_space 3204 * @index: the page index 3205 * @gfp: the page allocator flags to use if allocating 3206 * 3207 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 3208 * any new page allocations done using the specified allocation flags. 3209 * 3210 * If the page does not get brought uptodate, return -EIO. 3211 * 3212 * Return: up to date page on success, ERR_PTR() on failure. 3213 */ 3214 struct page *read_cache_page_gfp(struct address_space *mapping, 3215 pgoff_t index, 3216 gfp_t gfp) 3217 { 3218 return do_read_cache_page(mapping, index, NULL, NULL, gfp); 3219 } 3220 EXPORT_SYMBOL(read_cache_page_gfp); 3221 3222 int pagecache_write_begin(struct file *file, struct address_space *mapping, 3223 loff_t pos, unsigned len, unsigned flags, 3224 struct page **pagep, void **fsdata) 3225 { 3226 const struct address_space_operations *aops = mapping->a_ops; 3227 3228 return aops->write_begin(file, mapping, pos, len, flags, 3229 pagep, fsdata); 3230 } 3231 EXPORT_SYMBOL(pagecache_write_begin); 3232 3233 int pagecache_write_end(struct file *file, struct address_space *mapping, 3234 loff_t pos, unsigned len, unsigned copied, 3235 struct page *page, void *fsdata) 3236 { 3237 const struct address_space_operations *aops = mapping->a_ops; 3238 3239 return aops->write_end(file, mapping, pos, len, copied, page, fsdata); 3240 } 3241 EXPORT_SYMBOL(pagecache_write_end); 3242 3243 /* 3244 * Warn about a page cache invalidation failure during a direct I/O write. 3245 */ 3246 void dio_warn_stale_pagecache(struct file *filp) 3247 { 3248 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST); 3249 char pathname[128]; 3250 char *path; 3251 3252 errseq_set(&filp->f_mapping->wb_err, -EIO); 3253 if (__ratelimit(&_rs)) { 3254 path = file_path(filp, pathname, sizeof(pathname)); 3255 if (IS_ERR(path)) 3256 path = "(unknown)"; 3257 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n"); 3258 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid, 3259 current->comm); 3260 } 3261 } 3262 3263 ssize_t 3264 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) 3265 { 3266 struct file *file = iocb->ki_filp; 3267 struct address_space *mapping = file->f_mapping; 3268 struct inode *inode = mapping->host; 3269 loff_t pos = iocb->ki_pos; 3270 ssize_t written; 3271 size_t write_len; 3272 pgoff_t end; 3273 3274 write_len = iov_iter_count(from); 3275 end = (pos + write_len - 1) >> PAGE_SHIFT; 3276 3277 if (iocb->ki_flags & IOCB_NOWAIT) { 3278 /* If there are pages to writeback, return */ 3279 if (filemap_range_has_page(file->f_mapping, pos, 3280 pos + write_len - 1)) 3281 return -EAGAIN; 3282 } else { 3283 written = filemap_write_and_wait_range(mapping, pos, 3284 pos + write_len - 1); 3285 if (written) 3286 goto out; 3287 } 3288 3289 /* 3290 * After a write we want buffered reads to be sure to go to disk to get 3291 * the new data. We invalidate clean cached page from the region we're 3292 * about to write. We do this *before* the write so that we can return 3293 * without clobbering -EIOCBQUEUED from ->direct_IO(). 3294 */ 3295 written = invalidate_inode_pages2_range(mapping, 3296 pos >> PAGE_SHIFT, end); 3297 /* 3298 * If a page can not be invalidated, return 0 to fall back 3299 * to buffered write. 3300 */ 3301 if (written) { 3302 if (written == -EBUSY) 3303 return 0; 3304 goto out; 3305 } 3306 3307 written = mapping->a_ops->direct_IO(iocb, from); 3308 3309 /* 3310 * Finally, try again to invalidate clean pages which might have been 3311 * cached by non-direct readahead, or faulted in by get_user_pages() 3312 * if the source of the write was an mmap'ed region of the file 3313 * we're writing. Either one is a pretty crazy thing to do, 3314 * so we don't support it 100%. If this invalidation 3315 * fails, tough, the write still worked... 3316 * 3317 * Most of the time we do not need this since dio_complete() will do 3318 * the invalidation for us. However there are some file systems that 3319 * do not end up with dio_complete() being called, so let's not break 3320 * them by removing it completely. 3321 * 3322 * Noticeable example is a blkdev_direct_IO(). 3323 * 3324 * Skip invalidation for async writes or if mapping has no pages. 3325 */ 3326 if (written > 0 && mapping->nrpages && 3327 invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end)) 3328 dio_warn_stale_pagecache(file); 3329 3330 if (written > 0) { 3331 pos += written; 3332 write_len -= written; 3333 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 3334 i_size_write(inode, pos); 3335 mark_inode_dirty(inode); 3336 } 3337 iocb->ki_pos = pos; 3338 } 3339 iov_iter_revert(from, write_len - iov_iter_count(from)); 3340 out: 3341 return written; 3342 } 3343 EXPORT_SYMBOL(generic_file_direct_write); 3344 3345 /* 3346 * Find or create a page at the given pagecache position. Return the locked 3347 * page. This function is specifically for buffered writes. 3348 */ 3349 struct page *grab_cache_page_write_begin(struct address_space *mapping, 3350 pgoff_t index, unsigned flags) 3351 { 3352 struct page *page; 3353 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT; 3354 3355 if (flags & AOP_FLAG_NOFS) 3356 fgp_flags |= FGP_NOFS; 3357 3358 page = pagecache_get_page(mapping, index, fgp_flags, 3359 mapping_gfp_mask(mapping)); 3360 if (page) 3361 wait_for_stable_page(page); 3362 3363 return page; 3364 } 3365 EXPORT_SYMBOL(grab_cache_page_write_begin); 3366 3367 ssize_t generic_perform_write(struct file *file, 3368 struct iov_iter *i, loff_t pos) 3369 { 3370 struct address_space *mapping = file->f_mapping; 3371 const struct address_space_operations *a_ops = mapping->a_ops; 3372 long status = 0; 3373 ssize_t written = 0; 3374 unsigned int flags = 0; 3375 3376 do { 3377 struct page *page; 3378 unsigned long offset; /* Offset into pagecache page */ 3379 unsigned long bytes; /* Bytes to write to page */ 3380 size_t copied; /* Bytes copied from user */ 3381 void *fsdata; 3382 3383 offset = (pos & (PAGE_SIZE - 1)); 3384 bytes = min_t(unsigned long, PAGE_SIZE - offset, 3385 iov_iter_count(i)); 3386 3387 again: 3388 /* 3389 * Bring in the user page that we will copy from _first_. 3390 * Otherwise there's a nasty deadlock on copying from the 3391 * same page as we're writing to, without it being marked 3392 * up-to-date. 3393 * 3394 * Not only is this an optimisation, but it is also required 3395 * to check that the address is actually valid, when atomic 3396 * usercopies are used, below. 3397 */ 3398 if (unlikely(iov_iter_fault_in_readable(i, bytes))) { 3399 status = -EFAULT; 3400 break; 3401 } 3402 3403 if (fatal_signal_pending(current)) { 3404 status = -EINTR; 3405 break; 3406 } 3407 3408 status = a_ops->write_begin(file, mapping, pos, bytes, flags, 3409 &page, &fsdata); 3410 if (unlikely(status < 0)) 3411 break; 3412 3413 if (mapping_writably_mapped(mapping)) 3414 flush_dcache_page(page); 3415 3416 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); 3417 flush_dcache_page(page); 3418 3419 status = a_ops->write_end(file, mapping, pos, bytes, copied, 3420 page, fsdata); 3421 if (unlikely(status < 0)) 3422 break; 3423 copied = status; 3424 3425 cond_resched(); 3426 3427 iov_iter_advance(i, copied); 3428 if (unlikely(copied == 0)) { 3429 /* 3430 * If we were unable to copy any data at all, we must 3431 * fall back to a single segment length write. 3432 * 3433 * If we didn't fallback here, we could livelock 3434 * because not all segments in the iov can be copied at 3435 * once without a pagefault. 3436 */ 3437 bytes = min_t(unsigned long, PAGE_SIZE - offset, 3438 iov_iter_single_seg_count(i)); 3439 goto again; 3440 } 3441 pos += copied; 3442 written += copied; 3443 3444 balance_dirty_pages_ratelimited(mapping); 3445 } while (iov_iter_count(i)); 3446 3447 return written ? written : status; 3448 } 3449 EXPORT_SYMBOL(generic_perform_write); 3450 3451 /** 3452 * __generic_file_write_iter - write data to a file 3453 * @iocb: IO state structure (file, offset, etc.) 3454 * @from: iov_iter with data to write 3455 * 3456 * This function does all the work needed for actually writing data to a 3457 * file. It does all basic checks, removes SUID from the file, updates 3458 * modification times and calls proper subroutines depending on whether we 3459 * do direct IO or a standard buffered write. 3460 * 3461 * It expects i_mutex to be grabbed unless we work on a block device or similar 3462 * object which does not need locking at all. 3463 * 3464 * This function does *not* take care of syncing data in case of O_SYNC write. 3465 * A caller has to handle it. This is mainly due to the fact that we want to 3466 * avoid syncing under i_mutex. 3467 * 3468 * Return: 3469 * * number of bytes written, even for truncated writes 3470 * * negative error code if no data has been written at all 3471 */ 3472 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3473 { 3474 struct file *file = iocb->ki_filp; 3475 struct address_space * mapping = file->f_mapping; 3476 struct inode *inode = mapping->host; 3477 ssize_t written = 0; 3478 ssize_t err; 3479 ssize_t status; 3480 3481 /* We can write back this queue in page reclaim */ 3482 current->backing_dev_info = inode_to_bdi(inode); 3483 err = file_remove_privs(file); 3484 if (err) 3485 goto out; 3486 3487 err = file_update_time(file); 3488 if (err) 3489 goto out; 3490 3491 if (iocb->ki_flags & IOCB_DIRECT) { 3492 loff_t pos, endbyte; 3493 3494 written = generic_file_direct_write(iocb, from); 3495 /* 3496 * If the write stopped short of completing, fall back to 3497 * buffered writes. Some filesystems do this for writes to 3498 * holes, for example. For DAX files, a buffered write will 3499 * not succeed (even if it did, DAX does not handle dirty 3500 * page-cache pages correctly). 3501 */ 3502 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode)) 3503 goto out; 3504 3505 status = generic_perform_write(file, from, pos = iocb->ki_pos); 3506 /* 3507 * If generic_perform_write() returned a synchronous error 3508 * then we want to return the number of bytes which were 3509 * direct-written, or the error code if that was zero. Note 3510 * that this differs from normal direct-io semantics, which 3511 * will return -EFOO even if some bytes were written. 3512 */ 3513 if (unlikely(status < 0)) { 3514 err = status; 3515 goto out; 3516 } 3517 /* 3518 * We need to ensure that the page cache pages are written to 3519 * disk and invalidated to preserve the expected O_DIRECT 3520 * semantics. 3521 */ 3522 endbyte = pos + status - 1; 3523 err = filemap_write_and_wait_range(mapping, pos, endbyte); 3524 if (err == 0) { 3525 iocb->ki_pos = endbyte + 1; 3526 written += status; 3527 invalidate_mapping_pages(mapping, 3528 pos >> PAGE_SHIFT, 3529 endbyte >> PAGE_SHIFT); 3530 } else { 3531 /* 3532 * We don't know how much we wrote, so just return 3533 * the number of bytes which were direct-written 3534 */ 3535 } 3536 } else { 3537 written = generic_perform_write(file, from, iocb->ki_pos); 3538 if (likely(written > 0)) 3539 iocb->ki_pos += written; 3540 } 3541 out: 3542 current->backing_dev_info = NULL; 3543 return written ? written : err; 3544 } 3545 EXPORT_SYMBOL(__generic_file_write_iter); 3546 3547 /** 3548 * generic_file_write_iter - write data to a file 3549 * @iocb: IO state structure 3550 * @from: iov_iter with data to write 3551 * 3552 * This is a wrapper around __generic_file_write_iter() to be used by most 3553 * filesystems. It takes care of syncing the file in case of O_SYNC file 3554 * and acquires i_mutex as needed. 3555 * Return: 3556 * * negative error code if no data has been written at all of 3557 * vfs_fsync_range() failed for a synchronous write 3558 * * number of bytes written, even for truncated writes 3559 */ 3560 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3561 { 3562 struct file *file = iocb->ki_filp; 3563 struct inode *inode = file->f_mapping->host; 3564 ssize_t ret; 3565 3566 inode_lock(inode); 3567 ret = generic_write_checks(iocb, from); 3568 if (ret > 0) 3569 ret = __generic_file_write_iter(iocb, from); 3570 inode_unlock(inode); 3571 3572 if (ret > 0) 3573 ret = generic_write_sync(iocb, ret); 3574 return ret; 3575 } 3576 EXPORT_SYMBOL(generic_file_write_iter); 3577 3578 /** 3579 * try_to_release_page() - release old fs-specific metadata on a page 3580 * 3581 * @page: the page which the kernel is trying to free 3582 * @gfp_mask: memory allocation flags (and I/O mode) 3583 * 3584 * The address_space is to try to release any data against the page 3585 * (presumably at page->private). 3586 * 3587 * This may also be called if PG_fscache is set on a page, indicating that the 3588 * page is known to the local caching routines. 3589 * 3590 * The @gfp_mask argument specifies whether I/O may be performed to release 3591 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS). 3592 * 3593 * Return: %1 if the release was successful, otherwise return zero. 3594 */ 3595 int try_to_release_page(struct page *page, gfp_t gfp_mask) 3596 { 3597 struct address_space * const mapping = page->mapping; 3598 3599 BUG_ON(!PageLocked(page)); 3600 if (PageWriteback(page)) 3601 return 0; 3602 3603 if (mapping && mapping->a_ops->releasepage) 3604 return mapping->a_ops->releasepage(page, gfp_mask); 3605 return try_to_free_buffers(page); 3606 } 3607 3608 EXPORT_SYMBOL(try_to_release_page); 3609