xref: /openbmc/linux/mm/filemap.c (revision 36acd5e2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	linux/mm/filemap.c
4  *
5  * Copyright (C) 1994-1999  Linus Torvalds
6  */
7 
8 /*
9  * This file handles the generic file mmap semantics used by
10  * most "normal" filesystems (but you don't /have/ to use this:
11  * the NFS filesystem used to do this differently, for example)
12  */
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
16 #include <linux/fs.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
22 #include <linux/mm.h>
23 #include <linux/swap.h>
24 #include <linux/mman.h>
25 #include <linux/pagemap.h>
26 #include <linux/file.h>
27 #include <linux/uio.h>
28 #include <linux/error-injection.h>
29 #include <linux/hash.h>
30 #include <linux/writeback.h>
31 #include <linux/backing-dev.h>
32 #include <linux/pagevec.h>
33 #include <linux/blkdev.h>
34 #include <linux/security.h>
35 #include <linux/cpuset.h>
36 #include <linux/hugetlb.h>
37 #include <linux/memcontrol.h>
38 #include <linux/cleancache.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/rmap.h>
41 #include <linux/delayacct.h>
42 #include <linux/psi.h>
43 #include <linux/ramfs.h>
44 #include <linux/page_idle.h>
45 #include "internal.h"
46 
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/filemap.h>
49 
50 /*
51  * FIXME: remove all knowledge of the buffer layer from the core VM
52  */
53 #include <linux/buffer_head.h> /* for try_to_free_buffers */
54 
55 #include <asm/mman.h>
56 
57 /*
58  * Shared mappings implemented 30.11.1994. It's not fully working yet,
59  * though.
60  *
61  * Shared mappings now work. 15.8.1995  Bruno.
62  *
63  * finished 'unifying' the page and buffer cache and SMP-threaded the
64  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
65  *
66  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
67  */
68 
69 /*
70  * Lock ordering:
71  *
72  *  ->i_mmap_rwsem		(truncate_pagecache)
73  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
74  *      ->swap_lock		(exclusive_swap_page, others)
75  *        ->i_pages lock
76  *
77  *  ->i_mutex
78  *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
79  *
80  *  ->mmap_lock
81  *    ->i_mmap_rwsem
82  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
83  *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
84  *
85  *  ->mmap_lock
86  *    ->lock_page		(access_process_vm)
87  *
88  *  ->i_mutex			(generic_perform_write)
89  *    ->mmap_lock		(fault_in_pages_readable->do_page_fault)
90  *
91  *  bdi->wb.list_lock
92  *    sb_lock			(fs/fs-writeback.c)
93  *    ->i_pages lock		(__sync_single_inode)
94  *
95  *  ->i_mmap_rwsem
96  *    ->anon_vma.lock		(vma_adjust)
97  *
98  *  ->anon_vma.lock
99  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
100  *
101  *  ->page_table_lock or pte_lock
102  *    ->swap_lock		(try_to_unmap_one)
103  *    ->private_lock		(try_to_unmap_one)
104  *    ->i_pages lock		(try_to_unmap_one)
105  *    ->lruvec->lru_lock	(follow_page->mark_page_accessed)
106  *    ->lruvec->lru_lock	(check_pte_range->isolate_lru_page)
107  *    ->private_lock		(page_remove_rmap->set_page_dirty)
108  *    ->i_pages lock		(page_remove_rmap->set_page_dirty)
109  *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
110  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
111  *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
112  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
113  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
114  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
115  *
116  * ->i_mmap_rwsem
117  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
118  */
119 
120 static void page_cache_delete(struct address_space *mapping,
121 				   struct page *page, void *shadow)
122 {
123 	XA_STATE(xas, &mapping->i_pages, page->index);
124 	unsigned int nr = 1;
125 
126 	mapping_set_update(&xas, mapping);
127 
128 	/* hugetlb pages are represented by a single entry in the xarray */
129 	if (!PageHuge(page)) {
130 		xas_set_order(&xas, page->index, compound_order(page));
131 		nr = compound_nr(page);
132 	}
133 
134 	VM_BUG_ON_PAGE(!PageLocked(page), page);
135 	VM_BUG_ON_PAGE(PageTail(page), page);
136 	VM_BUG_ON_PAGE(nr != 1 && shadow, page);
137 
138 	xas_store(&xas, shadow);
139 	xas_init_marks(&xas);
140 
141 	page->mapping = NULL;
142 	/* Leave page->index set: truncation lookup relies upon it */
143 
144 	if (shadow) {
145 		mapping->nrexceptional += nr;
146 		/*
147 		 * Make sure the nrexceptional update is committed before
148 		 * the nrpages update so that final truncate racing
149 		 * with reclaim does not see both counters 0 at the
150 		 * same time and miss a shadow entry.
151 		 */
152 		smp_wmb();
153 	}
154 	mapping->nrpages -= nr;
155 }
156 
157 static void unaccount_page_cache_page(struct address_space *mapping,
158 				      struct page *page)
159 {
160 	int nr;
161 
162 	/*
163 	 * if we're uptodate, flush out into the cleancache, otherwise
164 	 * invalidate any existing cleancache entries.  We can't leave
165 	 * stale data around in the cleancache once our page is gone
166 	 */
167 	if (PageUptodate(page) && PageMappedToDisk(page))
168 		cleancache_put_page(page);
169 	else
170 		cleancache_invalidate_page(mapping, page);
171 
172 	VM_BUG_ON_PAGE(PageTail(page), page);
173 	VM_BUG_ON_PAGE(page_mapped(page), page);
174 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
175 		int mapcount;
176 
177 		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
178 			 current->comm, page_to_pfn(page));
179 		dump_page(page, "still mapped when deleted");
180 		dump_stack();
181 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
182 
183 		mapcount = page_mapcount(page);
184 		if (mapping_exiting(mapping) &&
185 		    page_count(page) >= mapcount + 2) {
186 			/*
187 			 * All vmas have already been torn down, so it's
188 			 * a good bet that actually the page is unmapped,
189 			 * and we'd prefer not to leak it: if we're wrong,
190 			 * some other bad page check should catch it later.
191 			 */
192 			page_mapcount_reset(page);
193 			page_ref_sub(page, mapcount);
194 		}
195 	}
196 
197 	/* hugetlb pages do not participate in page cache accounting. */
198 	if (PageHuge(page))
199 		return;
200 
201 	nr = thp_nr_pages(page);
202 
203 	__mod_lruvec_page_state(page, NR_FILE_PAGES, -nr);
204 	if (PageSwapBacked(page)) {
205 		__mod_lruvec_page_state(page, NR_SHMEM, -nr);
206 		if (PageTransHuge(page))
207 			__dec_lruvec_page_state(page, NR_SHMEM_THPS);
208 	} else if (PageTransHuge(page)) {
209 		__dec_lruvec_page_state(page, NR_FILE_THPS);
210 		filemap_nr_thps_dec(mapping);
211 	}
212 
213 	/*
214 	 * At this point page must be either written or cleaned by
215 	 * truncate.  Dirty page here signals a bug and loss of
216 	 * unwritten data.
217 	 *
218 	 * This fixes dirty accounting after removing the page entirely
219 	 * but leaves PageDirty set: it has no effect for truncated
220 	 * page and anyway will be cleared before returning page into
221 	 * buddy allocator.
222 	 */
223 	if (WARN_ON_ONCE(PageDirty(page)))
224 		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
225 }
226 
227 /*
228  * Delete a page from the page cache and free it. Caller has to make
229  * sure the page is locked and that nobody else uses it - or that usage
230  * is safe.  The caller must hold the i_pages lock.
231  */
232 void __delete_from_page_cache(struct page *page, void *shadow)
233 {
234 	struct address_space *mapping = page->mapping;
235 
236 	trace_mm_filemap_delete_from_page_cache(page);
237 
238 	unaccount_page_cache_page(mapping, page);
239 	page_cache_delete(mapping, page, shadow);
240 }
241 
242 static void page_cache_free_page(struct address_space *mapping,
243 				struct page *page)
244 {
245 	void (*freepage)(struct page *);
246 
247 	freepage = mapping->a_ops->freepage;
248 	if (freepage)
249 		freepage(page);
250 
251 	if (PageTransHuge(page) && !PageHuge(page)) {
252 		page_ref_sub(page, thp_nr_pages(page));
253 		VM_BUG_ON_PAGE(page_count(page) <= 0, page);
254 	} else {
255 		put_page(page);
256 	}
257 }
258 
259 /**
260  * delete_from_page_cache - delete page from page cache
261  * @page: the page which the kernel is trying to remove from page cache
262  *
263  * This must be called only on pages that have been verified to be in the page
264  * cache and locked.  It will never put the page into the free list, the caller
265  * has a reference on the page.
266  */
267 void delete_from_page_cache(struct page *page)
268 {
269 	struct address_space *mapping = page_mapping(page);
270 	unsigned long flags;
271 
272 	BUG_ON(!PageLocked(page));
273 	xa_lock_irqsave(&mapping->i_pages, flags);
274 	__delete_from_page_cache(page, NULL);
275 	xa_unlock_irqrestore(&mapping->i_pages, flags);
276 
277 	page_cache_free_page(mapping, page);
278 }
279 EXPORT_SYMBOL(delete_from_page_cache);
280 
281 /*
282  * page_cache_delete_batch - delete several pages from page cache
283  * @mapping: the mapping to which pages belong
284  * @pvec: pagevec with pages to delete
285  *
286  * The function walks over mapping->i_pages and removes pages passed in @pvec
287  * from the mapping. The function expects @pvec to be sorted by page index
288  * and is optimised for it to be dense.
289  * It tolerates holes in @pvec (mapping entries at those indices are not
290  * modified). The function expects only THP head pages to be present in the
291  * @pvec.
292  *
293  * The function expects the i_pages lock to be held.
294  */
295 static void page_cache_delete_batch(struct address_space *mapping,
296 			     struct pagevec *pvec)
297 {
298 	XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
299 	int total_pages = 0;
300 	int i = 0;
301 	struct page *page;
302 
303 	mapping_set_update(&xas, mapping);
304 	xas_for_each(&xas, page, ULONG_MAX) {
305 		if (i >= pagevec_count(pvec))
306 			break;
307 
308 		/* A swap/dax/shadow entry got inserted? Skip it. */
309 		if (xa_is_value(page))
310 			continue;
311 		/*
312 		 * A page got inserted in our range? Skip it. We have our
313 		 * pages locked so they are protected from being removed.
314 		 * If we see a page whose index is higher than ours, it
315 		 * means our page has been removed, which shouldn't be
316 		 * possible because we're holding the PageLock.
317 		 */
318 		if (page != pvec->pages[i]) {
319 			VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
320 					page);
321 			continue;
322 		}
323 
324 		WARN_ON_ONCE(!PageLocked(page));
325 
326 		if (page->index == xas.xa_index)
327 			page->mapping = NULL;
328 		/* Leave page->index set: truncation lookup relies on it */
329 
330 		/*
331 		 * Move to the next page in the vector if this is a regular
332 		 * page or the index is of the last sub-page of this compound
333 		 * page.
334 		 */
335 		if (page->index + compound_nr(page) - 1 == xas.xa_index)
336 			i++;
337 		xas_store(&xas, NULL);
338 		total_pages++;
339 	}
340 	mapping->nrpages -= total_pages;
341 }
342 
343 void delete_from_page_cache_batch(struct address_space *mapping,
344 				  struct pagevec *pvec)
345 {
346 	int i;
347 	unsigned long flags;
348 
349 	if (!pagevec_count(pvec))
350 		return;
351 
352 	xa_lock_irqsave(&mapping->i_pages, flags);
353 	for (i = 0; i < pagevec_count(pvec); i++) {
354 		trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
355 
356 		unaccount_page_cache_page(mapping, pvec->pages[i]);
357 	}
358 	page_cache_delete_batch(mapping, pvec);
359 	xa_unlock_irqrestore(&mapping->i_pages, flags);
360 
361 	for (i = 0; i < pagevec_count(pvec); i++)
362 		page_cache_free_page(mapping, pvec->pages[i]);
363 }
364 
365 int filemap_check_errors(struct address_space *mapping)
366 {
367 	int ret = 0;
368 	/* Check for outstanding write errors */
369 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
370 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
371 		ret = -ENOSPC;
372 	if (test_bit(AS_EIO, &mapping->flags) &&
373 	    test_and_clear_bit(AS_EIO, &mapping->flags))
374 		ret = -EIO;
375 	return ret;
376 }
377 EXPORT_SYMBOL(filemap_check_errors);
378 
379 static int filemap_check_and_keep_errors(struct address_space *mapping)
380 {
381 	/* Check for outstanding write errors */
382 	if (test_bit(AS_EIO, &mapping->flags))
383 		return -EIO;
384 	if (test_bit(AS_ENOSPC, &mapping->flags))
385 		return -ENOSPC;
386 	return 0;
387 }
388 
389 /**
390  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
391  * @mapping:	address space structure to write
392  * @start:	offset in bytes where the range starts
393  * @end:	offset in bytes where the range ends (inclusive)
394  * @sync_mode:	enable synchronous operation
395  *
396  * Start writeback against all of a mapping's dirty pages that lie
397  * within the byte offsets <start, end> inclusive.
398  *
399  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
400  * opposed to a regular memory cleansing writeback.  The difference between
401  * these two operations is that if a dirty page/buffer is encountered, it must
402  * be waited upon, and not just skipped over.
403  *
404  * Return: %0 on success, negative error code otherwise.
405  */
406 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
407 				loff_t end, int sync_mode)
408 {
409 	int ret;
410 	struct writeback_control wbc = {
411 		.sync_mode = sync_mode,
412 		.nr_to_write = LONG_MAX,
413 		.range_start = start,
414 		.range_end = end,
415 	};
416 
417 	if (!mapping_can_writeback(mapping) ||
418 	    !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
419 		return 0;
420 
421 	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
422 	ret = do_writepages(mapping, &wbc);
423 	wbc_detach_inode(&wbc);
424 	return ret;
425 }
426 
427 static inline int __filemap_fdatawrite(struct address_space *mapping,
428 	int sync_mode)
429 {
430 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
431 }
432 
433 int filemap_fdatawrite(struct address_space *mapping)
434 {
435 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
436 }
437 EXPORT_SYMBOL(filemap_fdatawrite);
438 
439 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
440 				loff_t end)
441 {
442 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
443 }
444 EXPORT_SYMBOL(filemap_fdatawrite_range);
445 
446 /**
447  * filemap_flush - mostly a non-blocking flush
448  * @mapping:	target address_space
449  *
450  * This is a mostly non-blocking flush.  Not suitable for data-integrity
451  * purposes - I/O may not be started against all dirty pages.
452  *
453  * Return: %0 on success, negative error code otherwise.
454  */
455 int filemap_flush(struct address_space *mapping)
456 {
457 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
458 }
459 EXPORT_SYMBOL(filemap_flush);
460 
461 /**
462  * filemap_range_has_page - check if a page exists in range.
463  * @mapping:           address space within which to check
464  * @start_byte:        offset in bytes where the range starts
465  * @end_byte:          offset in bytes where the range ends (inclusive)
466  *
467  * Find at least one page in the range supplied, usually used to check if
468  * direct writing in this range will trigger a writeback.
469  *
470  * Return: %true if at least one page exists in the specified range,
471  * %false otherwise.
472  */
473 bool filemap_range_has_page(struct address_space *mapping,
474 			   loff_t start_byte, loff_t end_byte)
475 {
476 	struct page *page;
477 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
478 	pgoff_t max = end_byte >> PAGE_SHIFT;
479 
480 	if (end_byte < start_byte)
481 		return false;
482 
483 	rcu_read_lock();
484 	for (;;) {
485 		page = xas_find(&xas, max);
486 		if (xas_retry(&xas, page))
487 			continue;
488 		/* Shadow entries don't count */
489 		if (xa_is_value(page))
490 			continue;
491 		/*
492 		 * We don't need to try to pin this page; we're about to
493 		 * release the RCU lock anyway.  It is enough to know that
494 		 * there was a page here recently.
495 		 */
496 		break;
497 	}
498 	rcu_read_unlock();
499 
500 	return page != NULL;
501 }
502 EXPORT_SYMBOL(filemap_range_has_page);
503 
504 static void __filemap_fdatawait_range(struct address_space *mapping,
505 				     loff_t start_byte, loff_t end_byte)
506 {
507 	pgoff_t index = start_byte >> PAGE_SHIFT;
508 	pgoff_t end = end_byte >> PAGE_SHIFT;
509 	struct pagevec pvec;
510 	int nr_pages;
511 
512 	if (end_byte < start_byte)
513 		return;
514 
515 	pagevec_init(&pvec);
516 	while (index <= end) {
517 		unsigned i;
518 
519 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
520 				end, PAGECACHE_TAG_WRITEBACK);
521 		if (!nr_pages)
522 			break;
523 
524 		for (i = 0; i < nr_pages; i++) {
525 			struct page *page = pvec.pages[i];
526 
527 			wait_on_page_writeback(page);
528 			ClearPageError(page);
529 		}
530 		pagevec_release(&pvec);
531 		cond_resched();
532 	}
533 }
534 
535 /**
536  * filemap_fdatawait_range - wait for writeback to complete
537  * @mapping:		address space structure to wait for
538  * @start_byte:		offset in bytes where the range starts
539  * @end_byte:		offset in bytes where the range ends (inclusive)
540  *
541  * Walk the list of under-writeback pages of the given address space
542  * in the given range and wait for all of them.  Check error status of
543  * the address space and return it.
544  *
545  * Since the error status of the address space is cleared by this function,
546  * callers are responsible for checking the return value and handling and/or
547  * reporting the error.
548  *
549  * Return: error status of the address space.
550  */
551 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
552 			    loff_t end_byte)
553 {
554 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
555 	return filemap_check_errors(mapping);
556 }
557 EXPORT_SYMBOL(filemap_fdatawait_range);
558 
559 /**
560  * filemap_fdatawait_range_keep_errors - wait for writeback to complete
561  * @mapping:		address space structure to wait for
562  * @start_byte:		offset in bytes where the range starts
563  * @end_byte:		offset in bytes where the range ends (inclusive)
564  *
565  * Walk the list of under-writeback pages of the given address space in the
566  * given range and wait for all of them.  Unlike filemap_fdatawait_range(),
567  * this function does not clear error status of the address space.
568  *
569  * Use this function if callers don't handle errors themselves.  Expected
570  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
571  * fsfreeze(8)
572  */
573 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
574 		loff_t start_byte, loff_t end_byte)
575 {
576 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
577 	return filemap_check_and_keep_errors(mapping);
578 }
579 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
580 
581 /**
582  * file_fdatawait_range - wait for writeback to complete
583  * @file:		file pointing to address space structure to wait for
584  * @start_byte:		offset in bytes where the range starts
585  * @end_byte:		offset in bytes where the range ends (inclusive)
586  *
587  * Walk the list of under-writeback pages of the address space that file
588  * refers to, in the given range and wait for all of them.  Check error
589  * status of the address space vs. the file->f_wb_err cursor and return it.
590  *
591  * Since the error status of the file is advanced by this function,
592  * callers are responsible for checking the return value and handling and/or
593  * reporting the error.
594  *
595  * Return: error status of the address space vs. the file->f_wb_err cursor.
596  */
597 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
598 {
599 	struct address_space *mapping = file->f_mapping;
600 
601 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
602 	return file_check_and_advance_wb_err(file);
603 }
604 EXPORT_SYMBOL(file_fdatawait_range);
605 
606 /**
607  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
608  * @mapping: address space structure to wait for
609  *
610  * Walk the list of under-writeback pages of the given address space
611  * and wait for all of them.  Unlike filemap_fdatawait(), this function
612  * does not clear error status of the address space.
613  *
614  * Use this function if callers don't handle errors themselves.  Expected
615  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
616  * fsfreeze(8)
617  *
618  * Return: error status of the address space.
619  */
620 int filemap_fdatawait_keep_errors(struct address_space *mapping)
621 {
622 	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
623 	return filemap_check_and_keep_errors(mapping);
624 }
625 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
626 
627 /* Returns true if writeback might be needed or already in progress. */
628 static bool mapping_needs_writeback(struct address_space *mapping)
629 {
630 	if (dax_mapping(mapping))
631 		return mapping->nrexceptional;
632 
633 	return mapping->nrpages;
634 }
635 
636 /**
637  * filemap_write_and_wait_range - write out & wait on a file range
638  * @mapping:	the address_space for the pages
639  * @lstart:	offset in bytes where the range starts
640  * @lend:	offset in bytes where the range ends (inclusive)
641  *
642  * Write out and wait upon file offsets lstart->lend, inclusive.
643  *
644  * Note that @lend is inclusive (describes the last byte to be written) so
645  * that this function can be used to write to the very end-of-file (end = -1).
646  *
647  * Return: error status of the address space.
648  */
649 int filemap_write_and_wait_range(struct address_space *mapping,
650 				 loff_t lstart, loff_t lend)
651 {
652 	int err = 0;
653 
654 	if (mapping_needs_writeback(mapping)) {
655 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
656 						 WB_SYNC_ALL);
657 		/*
658 		 * Even if the above returned error, the pages may be
659 		 * written partially (e.g. -ENOSPC), so we wait for it.
660 		 * But the -EIO is special case, it may indicate the worst
661 		 * thing (e.g. bug) happened, so we avoid waiting for it.
662 		 */
663 		if (err != -EIO) {
664 			int err2 = filemap_fdatawait_range(mapping,
665 						lstart, lend);
666 			if (!err)
667 				err = err2;
668 		} else {
669 			/* Clear any previously stored errors */
670 			filemap_check_errors(mapping);
671 		}
672 	} else {
673 		err = filemap_check_errors(mapping);
674 	}
675 	return err;
676 }
677 EXPORT_SYMBOL(filemap_write_and_wait_range);
678 
679 void __filemap_set_wb_err(struct address_space *mapping, int err)
680 {
681 	errseq_t eseq = errseq_set(&mapping->wb_err, err);
682 
683 	trace_filemap_set_wb_err(mapping, eseq);
684 }
685 EXPORT_SYMBOL(__filemap_set_wb_err);
686 
687 /**
688  * file_check_and_advance_wb_err - report wb error (if any) that was previously
689  * 				   and advance wb_err to current one
690  * @file: struct file on which the error is being reported
691  *
692  * When userland calls fsync (or something like nfsd does the equivalent), we
693  * want to report any writeback errors that occurred since the last fsync (or
694  * since the file was opened if there haven't been any).
695  *
696  * Grab the wb_err from the mapping. If it matches what we have in the file,
697  * then just quickly return 0. The file is all caught up.
698  *
699  * If it doesn't match, then take the mapping value, set the "seen" flag in
700  * it and try to swap it into place. If it works, or another task beat us
701  * to it with the new value, then update the f_wb_err and return the error
702  * portion. The error at this point must be reported via proper channels
703  * (a'la fsync, or NFS COMMIT operation, etc.).
704  *
705  * While we handle mapping->wb_err with atomic operations, the f_wb_err
706  * value is protected by the f_lock since we must ensure that it reflects
707  * the latest value swapped in for this file descriptor.
708  *
709  * Return: %0 on success, negative error code otherwise.
710  */
711 int file_check_and_advance_wb_err(struct file *file)
712 {
713 	int err = 0;
714 	errseq_t old = READ_ONCE(file->f_wb_err);
715 	struct address_space *mapping = file->f_mapping;
716 
717 	/* Locklessly handle the common case where nothing has changed */
718 	if (errseq_check(&mapping->wb_err, old)) {
719 		/* Something changed, must use slow path */
720 		spin_lock(&file->f_lock);
721 		old = file->f_wb_err;
722 		err = errseq_check_and_advance(&mapping->wb_err,
723 						&file->f_wb_err);
724 		trace_file_check_and_advance_wb_err(file, old);
725 		spin_unlock(&file->f_lock);
726 	}
727 
728 	/*
729 	 * We're mostly using this function as a drop in replacement for
730 	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
731 	 * that the legacy code would have had on these flags.
732 	 */
733 	clear_bit(AS_EIO, &mapping->flags);
734 	clear_bit(AS_ENOSPC, &mapping->flags);
735 	return err;
736 }
737 EXPORT_SYMBOL(file_check_and_advance_wb_err);
738 
739 /**
740  * file_write_and_wait_range - write out & wait on a file range
741  * @file:	file pointing to address_space with pages
742  * @lstart:	offset in bytes where the range starts
743  * @lend:	offset in bytes where the range ends (inclusive)
744  *
745  * Write out and wait upon file offsets lstart->lend, inclusive.
746  *
747  * Note that @lend is inclusive (describes the last byte to be written) so
748  * that this function can be used to write to the very end-of-file (end = -1).
749  *
750  * After writing out and waiting on the data, we check and advance the
751  * f_wb_err cursor to the latest value, and return any errors detected there.
752  *
753  * Return: %0 on success, negative error code otherwise.
754  */
755 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
756 {
757 	int err = 0, err2;
758 	struct address_space *mapping = file->f_mapping;
759 
760 	if (mapping_needs_writeback(mapping)) {
761 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
762 						 WB_SYNC_ALL);
763 		/* See comment of filemap_write_and_wait() */
764 		if (err != -EIO)
765 			__filemap_fdatawait_range(mapping, lstart, lend);
766 	}
767 	err2 = file_check_and_advance_wb_err(file);
768 	if (!err)
769 		err = err2;
770 	return err;
771 }
772 EXPORT_SYMBOL(file_write_and_wait_range);
773 
774 /**
775  * replace_page_cache_page - replace a pagecache page with a new one
776  * @old:	page to be replaced
777  * @new:	page to replace with
778  * @gfp_mask:	allocation mode
779  *
780  * This function replaces a page in the pagecache with a new one.  On
781  * success it acquires the pagecache reference for the new page and
782  * drops it for the old page.  Both the old and new pages must be
783  * locked.  This function does not add the new page to the LRU, the
784  * caller must do that.
785  *
786  * The remove + add is atomic.  This function cannot fail.
787  *
788  * Return: %0
789  */
790 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
791 {
792 	struct address_space *mapping = old->mapping;
793 	void (*freepage)(struct page *) = mapping->a_ops->freepage;
794 	pgoff_t offset = old->index;
795 	XA_STATE(xas, &mapping->i_pages, offset);
796 	unsigned long flags;
797 
798 	VM_BUG_ON_PAGE(!PageLocked(old), old);
799 	VM_BUG_ON_PAGE(!PageLocked(new), new);
800 	VM_BUG_ON_PAGE(new->mapping, new);
801 
802 	get_page(new);
803 	new->mapping = mapping;
804 	new->index = offset;
805 
806 	mem_cgroup_migrate(old, new);
807 
808 	xas_lock_irqsave(&xas, flags);
809 	xas_store(&xas, new);
810 
811 	old->mapping = NULL;
812 	/* hugetlb pages do not participate in page cache accounting. */
813 	if (!PageHuge(old))
814 		__dec_lruvec_page_state(old, NR_FILE_PAGES);
815 	if (!PageHuge(new))
816 		__inc_lruvec_page_state(new, NR_FILE_PAGES);
817 	if (PageSwapBacked(old))
818 		__dec_lruvec_page_state(old, NR_SHMEM);
819 	if (PageSwapBacked(new))
820 		__inc_lruvec_page_state(new, NR_SHMEM);
821 	xas_unlock_irqrestore(&xas, flags);
822 	if (freepage)
823 		freepage(old);
824 	put_page(old);
825 
826 	return 0;
827 }
828 EXPORT_SYMBOL_GPL(replace_page_cache_page);
829 
830 noinline int __add_to_page_cache_locked(struct page *page,
831 					struct address_space *mapping,
832 					pgoff_t offset, gfp_t gfp,
833 					void **shadowp)
834 {
835 	XA_STATE(xas, &mapping->i_pages, offset);
836 	int huge = PageHuge(page);
837 	int error;
838 
839 	VM_BUG_ON_PAGE(!PageLocked(page), page);
840 	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
841 	mapping_set_update(&xas, mapping);
842 
843 	get_page(page);
844 	page->mapping = mapping;
845 	page->index = offset;
846 
847 	if (!huge) {
848 		error = mem_cgroup_charge(page, current->mm, gfp);
849 		if (error)
850 			goto error;
851 	}
852 
853 	gfp &= GFP_RECLAIM_MASK;
854 
855 	do {
856 		unsigned int order = xa_get_order(xas.xa, xas.xa_index);
857 		void *entry, *old = NULL;
858 
859 		if (order > thp_order(page))
860 			xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
861 					order, gfp);
862 		xas_lock_irq(&xas);
863 		xas_for_each_conflict(&xas, entry) {
864 			old = entry;
865 			if (!xa_is_value(entry)) {
866 				xas_set_err(&xas, -EEXIST);
867 				goto unlock;
868 			}
869 		}
870 
871 		if (old) {
872 			if (shadowp)
873 				*shadowp = old;
874 			/* entry may have been split before we acquired lock */
875 			order = xa_get_order(xas.xa, xas.xa_index);
876 			if (order > thp_order(page)) {
877 				xas_split(&xas, old, order);
878 				xas_reset(&xas);
879 			}
880 		}
881 
882 		xas_store(&xas, page);
883 		if (xas_error(&xas))
884 			goto unlock;
885 
886 		if (old)
887 			mapping->nrexceptional--;
888 		mapping->nrpages++;
889 
890 		/* hugetlb pages do not participate in page cache accounting */
891 		if (!huge)
892 			__inc_lruvec_page_state(page, NR_FILE_PAGES);
893 unlock:
894 		xas_unlock_irq(&xas);
895 	} while (xas_nomem(&xas, gfp));
896 
897 	if (xas_error(&xas)) {
898 		error = xas_error(&xas);
899 		goto error;
900 	}
901 
902 	trace_mm_filemap_add_to_page_cache(page);
903 	return 0;
904 error:
905 	page->mapping = NULL;
906 	/* Leave page->index set: truncation relies upon it */
907 	put_page(page);
908 	return error;
909 }
910 ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO);
911 
912 /**
913  * add_to_page_cache_locked - add a locked page to the pagecache
914  * @page:	page to add
915  * @mapping:	the page's address_space
916  * @offset:	page index
917  * @gfp_mask:	page allocation mode
918  *
919  * This function is used to add a page to the pagecache. It must be locked.
920  * This function does not add the page to the LRU.  The caller must do that.
921  *
922  * Return: %0 on success, negative error code otherwise.
923  */
924 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
925 		pgoff_t offset, gfp_t gfp_mask)
926 {
927 	return __add_to_page_cache_locked(page, mapping, offset,
928 					  gfp_mask, NULL);
929 }
930 EXPORT_SYMBOL(add_to_page_cache_locked);
931 
932 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
933 				pgoff_t offset, gfp_t gfp_mask)
934 {
935 	void *shadow = NULL;
936 	int ret;
937 
938 	__SetPageLocked(page);
939 	ret = __add_to_page_cache_locked(page, mapping, offset,
940 					 gfp_mask, &shadow);
941 	if (unlikely(ret))
942 		__ClearPageLocked(page);
943 	else {
944 		/*
945 		 * The page might have been evicted from cache only
946 		 * recently, in which case it should be activated like
947 		 * any other repeatedly accessed page.
948 		 * The exception is pages getting rewritten; evicting other
949 		 * data from the working set, only to cache data that will
950 		 * get overwritten with something else, is a waste of memory.
951 		 */
952 		WARN_ON_ONCE(PageActive(page));
953 		if (!(gfp_mask & __GFP_WRITE) && shadow)
954 			workingset_refault(page, shadow);
955 		lru_cache_add(page);
956 	}
957 	return ret;
958 }
959 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
960 
961 #ifdef CONFIG_NUMA
962 struct page *__page_cache_alloc(gfp_t gfp)
963 {
964 	int n;
965 	struct page *page;
966 
967 	if (cpuset_do_page_mem_spread()) {
968 		unsigned int cpuset_mems_cookie;
969 		do {
970 			cpuset_mems_cookie = read_mems_allowed_begin();
971 			n = cpuset_mem_spread_node();
972 			page = __alloc_pages_node(n, gfp, 0);
973 		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
974 
975 		return page;
976 	}
977 	return alloc_pages(gfp, 0);
978 }
979 EXPORT_SYMBOL(__page_cache_alloc);
980 #endif
981 
982 /*
983  * In order to wait for pages to become available there must be
984  * waitqueues associated with pages. By using a hash table of
985  * waitqueues where the bucket discipline is to maintain all
986  * waiters on the same queue and wake all when any of the pages
987  * become available, and for the woken contexts to check to be
988  * sure the appropriate page became available, this saves space
989  * at a cost of "thundering herd" phenomena during rare hash
990  * collisions.
991  */
992 #define PAGE_WAIT_TABLE_BITS 8
993 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
994 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
995 
996 static wait_queue_head_t *page_waitqueue(struct page *page)
997 {
998 	return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
999 }
1000 
1001 void __init pagecache_init(void)
1002 {
1003 	int i;
1004 
1005 	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1006 		init_waitqueue_head(&page_wait_table[i]);
1007 
1008 	page_writeback_init();
1009 }
1010 
1011 /*
1012  * The page wait code treats the "wait->flags" somewhat unusually, because
1013  * we have multiple different kinds of waits, not just the usual "exclusive"
1014  * one.
1015  *
1016  * We have:
1017  *
1018  *  (a) no special bits set:
1019  *
1020  *	We're just waiting for the bit to be released, and when a waker
1021  *	calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1022  *	and remove it from the wait queue.
1023  *
1024  *	Simple and straightforward.
1025  *
1026  *  (b) WQ_FLAG_EXCLUSIVE:
1027  *
1028  *	The waiter is waiting to get the lock, and only one waiter should
1029  *	be woken up to avoid any thundering herd behavior. We'll set the
1030  *	WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1031  *
1032  *	This is the traditional exclusive wait.
1033  *
1034  *  (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1035  *
1036  *	The waiter is waiting to get the bit, and additionally wants the
1037  *	lock to be transferred to it for fair lock behavior. If the lock
1038  *	cannot be taken, we stop walking the wait queue without waking
1039  *	the waiter.
1040  *
1041  *	This is the "fair lock handoff" case, and in addition to setting
1042  *	WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1043  *	that it now has the lock.
1044  */
1045 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1046 {
1047 	unsigned int flags;
1048 	struct wait_page_key *key = arg;
1049 	struct wait_page_queue *wait_page
1050 		= container_of(wait, struct wait_page_queue, wait);
1051 
1052 	if (!wake_page_match(wait_page, key))
1053 		return 0;
1054 
1055 	/*
1056 	 * If it's a lock handoff wait, we get the bit for it, and
1057 	 * stop walking (and do not wake it up) if we can't.
1058 	 */
1059 	flags = wait->flags;
1060 	if (flags & WQ_FLAG_EXCLUSIVE) {
1061 		if (test_bit(key->bit_nr, &key->page->flags))
1062 			return -1;
1063 		if (flags & WQ_FLAG_CUSTOM) {
1064 			if (test_and_set_bit(key->bit_nr, &key->page->flags))
1065 				return -1;
1066 			flags |= WQ_FLAG_DONE;
1067 		}
1068 	}
1069 
1070 	/*
1071 	 * We are holding the wait-queue lock, but the waiter that
1072 	 * is waiting for this will be checking the flags without
1073 	 * any locking.
1074 	 *
1075 	 * So update the flags atomically, and wake up the waiter
1076 	 * afterwards to avoid any races. This store-release pairs
1077 	 * with the load-acquire in wait_on_page_bit_common().
1078 	 */
1079 	smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1080 	wake_up_state(wait->private, mode);
1081 
1082 	/*
1083 	 * Ok, we have successfully done what we're waiting for,
1084 	 * and we can unconditionally remove the wait entry.
1085 	 *
1086 	 * Note that this pairs with the "finish_wait()" in the
1087 	 * waiter, and has to be the absolute last thing we do.
1088 	 * After this list_del_init(&wait->entry) the wait entry
1089 	 * might be de-allocated and the process might even have
1090 	 * exited.
1091 	 */
1092 	list_del_init_careful(&wait->entry);
1093 	return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1094 }
1095 
1096 static void wake_up_page_bit(struct page *page, int bit_nr)
1097 {
1098 	wait_queue_head_t *q = page_waitqueue(page);
1099 	struct wait_page_key key;
1100 	unsigned long flags;
1101 	wait_queue_entry_t bookmark;
1102 
1103 	key.page = page;
1104 	key.bit_nr = bit_nr;
1105 	key.page_match = 0;
1106 
1107 	bookmark.flags = 0;
1108 	bookmark.private = NULL;
1109 	bookmark.func = NULL;
1110 	INIT_LIST_HEAD(&bookmark.entry);
1111 
1112 	spin_lock_irqsave(&q->lock, flags);
1113 	__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1114 
1115 	while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1116 		/*
1117 		 * Take a breather from holding the lock,
1118 		 * allow pages that finish wake up asynchronously
1119 		 * to acquire the lock and remove themselves
1120 		 * from wait queue
1121 		 */
1122 		spin_unlock_irqrestore(&q->lock, flags);
1123 		cpu_relax();
1124 		spin_lock_irqsave(&q->lock, flags);
1125 		__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1126 	}
1127 
1128 	/*
1129 	 * It is possible for other pages to have collided on the waitqueue
1130 	 * hash, so in that case check for a page match. That prevents a long-
1131 	 * term waiter
1132 	 *
1133 	 * It is still possible to miss a case here, when we woke page waiters
1134 	 * and removed them from the waitqueue, but there are still other
1135 	 * page waiters.
1136 	 */
1137 	if (!waitqueue_active(q) || !key.page_match) {
1138 		ClearPageWaiters(page);
1139 		/*
1140 		 * It's possible to miss clearing Waiters here, when we woke
1141 		 * our page waiters, but the hashed waitqueue has waiters for
1142 		 * other pages on it.
1143 		 *
1144 		 * That's okay, it's a rare case. The next waker will clear it.
1145 		 */
1146 	}
1147 	spin_unlock_irqrestore(&q->lock, flags);
1148 }
1149 
1150 static void wake_up_page(struct page *page, int bit)
1151 {
1152 	if (!PageWaiters(page))
1153 		return;
1154 	wake_up_page_bit(page, bit);
1155 }
1156 
1157 /*
1158  * A choice of three behaviors for wait_on_page_bit_common():
1159  */
1160 enum behavior {
1161 	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
1162 			 * __lock_page() waiting on then setting PG_locked.
1163 			 */
1164 	SHARED,		/* Hold ref to page and check the bit when woken, like
1165 			 * wait_on_page_writeback() waiting on PG_writeback.
1166 			 */
1167 	DROP,		/* Drop ref to page before wait, no check when woken,
1168 			 * like put_and_wait_on_page_locked() on PG_locked.
1169 			 */
1170 };
1171 
1172 /*
1173  * Attempt to check (or get) the page bit, and mark us done
1174  * if successful.
1175  */
1176 static inline bool trylock_page_bit_common(struct page *page, int bit_nr,
1177 					struct wait_queue_entry *wait)
1178 {
1179 	if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1180 		if (test_and_set_bit(bit_nr, &page->flags))
1181 			return false;
1182 	} else if (test_bit(bit_nr, &page->flags))
1183 		return false;
1184 
1185 	wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1186 	return true;
1187 }
1188 
1189 /* How many times do we accept lock stealing from under a waiter? */
1190 int sysctl_page_lock_unfairness = 5;
1191 
1192 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1193 	struct page *page, int bit_nr, int state, enum behavior behavior)
1194 {
1195 	int unfairness = sysctl_page_lock_unfairness;
1196 	struct wait_page_queue wait_page;
1197 	wait_queue_entry_t *wait = &wait_page.wait;
1198 	bool thrashing = false;
1199 	bool delayacct = false;
1200 	unsigned long pflags;
1201 
1202 	if (bit_nr == PG_locked &&
1203 	    !PageUptodate(page) && PageWorkingset(page)) {
1204 		if (!PageSwapBacked(page)) {
1205 			delayacct_thrashing_start();
1206 			delayacct = true;
1207 		}
1208 		psi_memstall_enter(&pflags);
1209 		thrashing = true;
1210 	}
1211 
1212 	init_wait(wait);
1213 	wait->func = wake_page_function;
1214 	wait_page.page = page;
1215 	wait_page.bit_nr = bit_nr;
1216 
1217 repeat:
1218 	wait->flags = 0;
1219 	if (behavior == EXCLUSIVE) {
1220 		wait->flags = WQ_FLAG_EXCLUSIVE;
1221 		if (--unfairness < 0)
1222 			wait->flags |= WQ_FLAG_CUSTOM;
1223 	}
1224 
1225 	/*
1226 	 * Do one last check whether we can get the
1227 	 * page bit synchronously.
1228 	 *
1229 	 * Do the SetPageWaiters() marking before that
1230 	 * to let any waker we _just_ missed know they
1231 	 * need to wake us up (otherwise they'll never
1232 	 * even go to the slow case that looks at the
1233 	 * page queue), and add ourselves to the wait
1234 	 * queue if we need to sleep.
1235 	 *
1236 	 * This part needs to be done under the queue
1237 	 * lock to avoid races.
1238 	 */
1239 	spin_lock_irq(&q->lock);
1240 	SetPageWaiters(page);
1241 	if (!trylock_page_bit_common(page, bit_nr, wait))
1242 		__add_wait_queue_entry_tail(q, wait);
1243 	spin_unlock_irq(&q->lock);
1244 
1245 	/*
1246 	 * From now on, all the logic will be based on
1247 	 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1248 	 * see whether the page bit testing has already
1249 	 * been done by the wake function.
1250 	 *
1251 	 * We can drop our reference to the page.
1252 	 */
1253 	if (behavior == DROP)
1254 		put_page(page);
1255 
1256 	/*
1257 	 * Note that until the "finish_wait()", or until
1258 	 * we see the WQ_FLAG_WOKEN flag, we need to
1259 	 * be very careful with the 'wait->flags', because
1260 	 * we may race with a waker that sets them.
1261 	 */
1262 	for (;;) {
1263 		unsigned int flags;
1264 
1265 		set_current_state(state);
1266 
1267 		/* Loop until we've been woken or interrupted */
1268 		flags = smp_load_acquire(&wait->flags);
1269 		if (!(flags & WQ_FLAG_WOKEN)) {
1270 			if (signal_pending_state(state, current))
1271 				break;
1272 
1273 			io_schedule();
1274 			continue;
1275 		}
1276 
1277 		/* If we were non-exclusive, we're done */
1278 		if (behavior != EXCLUSIVE)
1279 			break;
1280 
1281 		/* If the waker got the lock for us, we're done */
1282 		if (flags & WQ_FLAG_DONE)
1283 			break;
1284 
1285 		/*
1286 		 * Otherwise, if we're getting the lock, we need to
1287 		 * try to get it ourselves.
1288 		 *
1289 		 * And if that fails, we'll have to retry this all.
1290 		 */
1291 		if (unlikely(test_and_set_bit(bit_nr, &page->flags)))
1292 			goto repeat;
1293 
1294 		wait->flags |= WQ_FLAG_DONE;
1295 		break;
1296 	}
1297 
1298 	/*
1299 	 * If a signal happened, this 'finish_wait()' may remove the last
1300 	 * waiter from the wait-queues, but the PageWaiters bit will remain
1301 	 * set. That's ok. The next wakeup will take care of it, and trying
1302 	 * to do it here would be difficult and prone to races.
1303 	 */
1304 	finish_wait(q, wait);
1305 
1306 	if (thrashing) {
1307 		if (delayacct)
1308 			delayacct_thrashing_end();
1309 		psi_memstall_leave(&pflags);
1310 	}
1311 
1312 	/*
1313 	 * NOTE! The wait->flags weren't stable until we've done the
1314 	 * 'finish_wait()', and we could have exited the loop above due
1315 	 * to a signal, and had a wakeup event happen after the signal
1316 	 * test but before the 'finish_wait()'.
1317 	 *
1318 	 * So only after the finish_wait() can we reliably determine
1319 	 * if we got woken up or not, so we can now figure out the final
1320 	 * return value based on that state without races.
1321 	 *
1322 	 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1323 	 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1324 	 */
1325 	if (behavior == EXCLUSIVE)
1326 		return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1327 
1328 	return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1329 }
1330 
1331 void wait_on_page_bit(struct page *page, int bit_nr)
1332 {
1333 	wait_queue_head_t *q = page_waitqueue(page);
1334 	wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1335 }
1336 EXPORT_SYMBOL(wait_on_page_bit);
1337 
1338 int wait_on_page_bit_killable(struct page *page, int bit_nr)
1339 {
1340 	wait_queue_head_t *q = page_waitqueue(page);
1341 	return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
1342 }
1343 EXPORT_SYMBOL(wait_on_page_bit_killable);
1344 
1345 static int __wait_on_page_locked_async(struct page *page,
1346 				       struct wait_page_queue *wait, bool set)
1347 {
1348 	struct wait_queue_head *q = page_waitqueue(page);
1349 	int ret = 0;
1350 
1351 	wait->page = page;
1352 	wait->bit_nr = PG_locked;
1353 
1354 	spin_lock_irq(&q->lock);
1355 	__add_wait_queue_entry_tail(q, &wait->wait);
1356 	SetPageWaiters(page);
1357 	if (set)
1358 		ret = !trylock_page(page);
1359 	else
1360 		ret = PageLocked(page);
1361 	/*
1362 	 * If we were successful now, we know we're still on the
1363 	 * waitqueue as we're still under the lock. This means it's
1364 	 * safe to remove and return success, we know the callback
1365 	 * isn't going to trigger.
1366 	 */
1367 	if (!ret)
1368 		__remove_wait_queue(q, &wait->wait);
1369 	else
1370 		ret = -EIOCBQUEUED;
1371 	spin_unlock_irq(&q->lock);
1372 	return ret;
1373 }
1374 
1375 static int wait_on_page_locked_async(struct page *page,
1376 				     struct wait_page_queue *wait)
1377 {
1378 	if (!PageLocked(page))
1379 		return 0;
1380 	return __wait_on_page_locked_async(compound_head(page), wait, false);
1381 }
1382 
1383 /**
1384  * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1385  * @page: The page to wait for.
1386  *
1387  * The caller should hold a reference on @page.  They expect the page to
1388  * become unlocked relatively soon, but do not wish to hold up migration
1389  * (for example) by holding the reference while waiting for the page to
1390  * come unlocked.  After this function returns, the caller should not
1391  * dereference @page.
1392  */
1393 void put_and_wait_on_page_locked(struct page *page)
1394 {
1395 	wait_queue_head_t *q;
1396 
1397 	page = compound_head(page);
1398 	q = page_waitqueue(page);
1399 	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP);
1400 }
1401 
1402 /**
1403  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1404  * @page: Page defining the wait queue of interest
1405  * @waiter: Waiter to add to the queue
1406  *
1407  * Add an arbitrary @waiter to the wait queue for the nominated @page.
1408  */
1409 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1410 {
1411 	wait_queue_head_t *q = page_waitqueue(page);
1412 	unsigned long flags;
1413 
1414 	spin_lock_irqsave(&q->lock, flags);
1415 	__add_wait_queue_entry_tail(q, waiter);
1416 	SetPageWaiters(page);
1417 	spin_unlock_irqrestore(&q->lock, flags);
1418 }
1419 EXPORT_SYMBOL_GPL(add_page_wait_queue);
1420 
1421 #ifndef clear_bit_unlock_is_negative_byte
1422 
1423 /*
1424  * PG_waiters is the high bit in the same byte as PG_lock.
1425  *
1426  * On x86 (and on many other architectures), we can clear PG_lock and
1427  * test the sign bit at the same time. But if the architecture does
1428  * not support that special operation, we just do this all by hand
1429  * instead.
1430  *
1431  * The read of PG_waiters has to be after (or concurrently with) PG_locked
1432  * being cleared, but a memory barrier should be unnecessary since it is
1433  * in the same byte as PG_locked.
1434  */
1435 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1436 {
1437 	clear_bit_unlock(nr, mem);
1438 	/* smp_mb__after_atomic(); */
1439 	return test_bit(PG_waiters, mem);
1440 }
1441 
1442 #endif
1443 
1444 /**
1445  * unlock_page - unlock a locked page
1446  * @page: the page
1447  *
1448  * Unlocks the page and wakes up sleepers in wait_on_page_locked().
1449  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1450  * mechanism between PageLocked pages and PageWriteback pages is shared.
1451  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1452  *
1453  * Note that this depends on PG_waiters being the sign bit in the byte
1454  * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1455  * clear the PG_locked bit and test PG_waiters at the same time fairly
1456  * portably (architectures that do LL/SC can test any bit, while x86 can
1457  * test the sign bit).
1458  */
1459 void unlock_page(struct page *page)
1460 {
1461 	BUILD_BUG_ON(PG_waiters != 7);
1462 	page = compound_head(page);
1463 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1464 	if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1465 		wake_up_page_bit(page, PG_locked);
1466 }
1467 EXPORT_SYMBOL(unlock_page);
1468 
1469 /**
1470  * end_page_writeback - end writeback against a page
1471  * @page: the page
1472  */
1473 void end_page_writeback(struct page *page)
1474 {
1475 	/*
1476 	 * TestClearPageReclaim could be used here but it is an atomic
1477 	 * operation and overkill in this particular case. Failing to
1478 	 * shuffle a page marked for immediate reclaim is too mild to
1479 	 * justify taking an atomic operation penalty at the end of
1480 	 * ever page writeback.
1481 	 */
1482 	if (PageReclaim(page)) {
1483 		ClearPageReclaim(page);
1484 		rotate_reclaimable_page(page);
1485 	}
1486 
1487 	/*
1488 	 * Writeback does not hold a page reference of its own, relying
1489 	 * on truncation to wait for the clearing of PG_writeback.
1490 	 * But here we must make sure that the page is not freed and
1491 	 * reused before the wake_up_page().
1492 	 */
1493 	get_page(page);
1494 	if (!test_clear_page_writeback(page))
1495 		BUG();
1496 
1497 	smp_mb__after_atomic();
1498 	wake_up_page(page, PG_writeback);
1499 	put_page(page);
1500 }
1501 EXPORT_SYMBOL(end_page_writeback);
1502 
1503 /*
1504  * After completing I/O on a page, call this routine to update the page
1505  * flags appropriately
1506  */
1507 void page_endio(struct page *page, bool is_write, int err)
1508 {
1509 	if (!is_write) {
1510 		if (!err) {
1511 			SetPageUptodate(page);
1512 		} else {
1513 			ClearPageUptodate(page);
1514 			SetPageError(page);
1515 		}
1516 		unlock_page(page);
1517 	} else {
1518 		if (err) {
1519 			struct address_space *mapping;
1520 
1521 			SetPageError(page);
1522 			mapping = page_mapping(page);
1523 			if (mapping)
1524 				mapping_set_error(mapping, err);
1525 		}
1526 		end_page_writeback(page);
1527 	}
1528 }
1529 EXPORT_SYMBOL_GPL(page_endio);
1530 
1531 /**
1532  * __lock_page - get a lock on the page, assuming we need to sleep to get it
1533  * @__page: the page to lock
1534  */
1535 void __lock_page(struct page *__page)
1536 {
1537 	struct page *page = compound_head(__page);
1538 	wait_queue_head_t *q = page_waitqueue(page);
1539 	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
1540 				EXCLUSIVE);
1541 }
1542 EXPORT_SYMBOL(__lock_page);
1543 
1544 int __lock_page_killable(struct page *__page)
1545 {
1546 	struct page *page = compound_head(__page);
1547 	wait_queue_head_t *q = page_waitqueue(page);
1548 	return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
1549 					EXCLUSIVE);
1550 }
1551 EXPORT_SYMBOL_GPL(__lock_page_killable);
1552 
1553 int __lock_page_async(struct page *page, struct wait_page_queue *wait)
1554 {
1555 	return __wait_on_page_locked_async(page, wait, true);
1556 }
1557 
1558 /*
1559  * Return values:
1560  * 1 - page is locked; mmap_lock is still held.
1561  * 0 - page is not locked.
1562  *     mmap_lock has been released (mmap_read_unlock(), unless flags had both
1563  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1564  *     which case mmap_lock is still held.
1565  *
1566  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1567  * with the page locked and the mmap_lock unperturbed.
1568  */
1569 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1570 			 unsigned int flags)
1571 {
1572 	if (fault_flag_allow_retry_first(flags)) {
1573 		/*
1574 		 * CAUTION! In this case, mmap_lock is not released
1575 		 * even though return 0.
1576 		 */
1577 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1578 			return 0;
1579 
1580 		mmap_read_unlock(mm);
1581 		if (flags & FAULT_FLAG_KILLABLE)
1582 			wait_on_page_locked_killable(page);
1583 		else
1584 			wait_on_page_locked(page);
1585 		return 0;
1586 	}
1587 	if (flags & FAULT_FLAG_KILLABLE) {
1588 		int ret;
1589 
1590 		ret = __lock_page_killable(page);
1591 		if (ret) {
1592 			mmap_read_unlock(mm);
1593 			return 0;
1594 		}
1595 	} else {
1596 		__lock_page(page);
1597 	}
1598 	return 1;
1599 
1600 }
1601 
1602 /**
1603  * page_cache_next_miss() - Find the next gap in the page cache.
1604  * @mapping: Mapping.
1605  * @index: Index.
1606  * @max_scan: Maximum range to search.
1607  *
1608  * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1609  * gap with the lowest index.
1610  *
1611  * This function may be called under the rcu_read_lock.  However, this will
1612  * not atomically search a snapshot of the cache at a single point in time.
1613  * For example, if a gap is created at index 5, then subsequently a gap is
1614  * created at index 10, page_cache_next_miss covering both indices may
1615  * return 10 if called under the rcu_read_lock.
1616  *
1617  * Return: The index of the gap if found, otherwise an index outside the
1618  * range specified (in which case 'return - index >= max_scan' will be true).
1619  * In the rare case of index wrap-around, 0 will be returned.
1620  */
1621 pgoff_t page_cache_next_miss(struct address_space *mapping,
1622 			     pgoff_t index, unsigned long max_scan)
1623 {
1624 	XA_STATE(xas, &mapping->i_pages, index);
1625 
1626 	while (max_scan--) {
1627 		void *entry = xas_next(&xas);
1628 		if (!entry || xa_is_value(entry))
1629 			break;
1630 		if (xas.xa_index == 0)
1631 			break;
1632 	}
1633 
1634 	return xas.xa_index;
1635 }
1636 EXPORT_SYMBOL(page_cache_next_miss);
1637 
1638 /**
1639  * page_cache_prev_miss() - Find the previous gap in the page cache.
1640  * @mapping: Mapping.
1641  * @index: Index.
1642  * @max_scan: Maximum range to search.
1643  *
1644  * Search the range [max(index - max_scan + 1, 0), index] for the
1645  * gap with the highest index.
1646  *
1647  * This function may be called under the rcu_read_lock.  However, this will
1648  * not atomically search a snapshot of the cache at a single point in time.
1649  * For example, if a gap is created at index 10, then subsequently a gap is
1650  * created at index 5, page_cache_prev_miss() covering both indices may
1651  * return 5 if called under the rcu_read_lock.
1652  *
1653  * Return: The index of the gap if found, otherwise an index outside the
1654  * range specified (in which case 'index - return >= max_scan' will be true).
1655  * In the rare case of wrap-around, ULONG_MAX will be returned.
1656  */
1657 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1658 			     pgoff_t index, unsigned long max_scan)
1659 {
1660 	XA_STATE(xas, &mapping->i_pages, index);
1661 
1662 	while (max_scan--) {
1663 		void *entry = xas_prev(&xas);
1664 		if (!entry || xa_is_value(entry))
1665 			break;
1666 		if (xas.xa_index == ULONG_MAX)
1667 			break;
1668 	}
1669 
1670 	return xas.xa_index;
1671 }
1672 EXPORT_SYMBOL(page_cache_prev_miss);
1673 
1674 /**
1675  * find_get_entry - find and get a page cache entry
1676  * @mapping: the address_space to search
1677  * @index: The page cache index.
1678  *
1679  * Looks up the page cache slot at @mapping & @offset.  If there is a
1680  * page cache page, the head page is returned with an increased refcount.
1681  *
1682  * If the slot holds a shadow entry of a previously evicted page, or a
1683  * swap entry from shmem/tmpfs, it is returned.
1684  *
1685  * Return: The head page or shadow entry, %NULL if nothing is found.
1686  */
1687 struct page *find_get_entry(struct address_space *mapping, pgoff_t index)
1688 {
1689 	XA_STATE(xas, &mapping->i_pages, index);
1690 	struct page *page;
1691 
1692 	rcu_read_lock();
1693 repeat:
1694 	xas_reset(&xas);
1695 	page = xas_load(&xas);
1696 	if (xas_retry(&xas, page))
1697 		goto repeat;
1698 	/*
1699 	 * A shadow entry of a recently evicted page, or a swap entry from
1700 	 * shmem/tmpfs.  Return it without attempting to raise page count.
1701 	 */
1702 	if (!page || xa_is_value(page))
1703 		goto out;
1704 
1705 	if (!page_cache_get_speculative(page))
1706 		goto repeat;
1707 
1708 	/*
1709 	 * Has the page moved or been split?
1710 	 * This is part of the lockless pagecache protocol. See
1711 	 * include/linux/pagemap.h for details.
1712 	 */
1713 	if (unlikely(page != xas_reload(&xas))) {
1714 		put_page(page);
1715 		goto repeat;
1716 	}
1717 out:
1718 	rcu_read_unlock();
1719 
1720 	return page;
1721 }
1722 
1723 /**
1724  * find_lock_entry - Locate and lock a page cache entry.
1725  * @mapping: The address_space to search.
1726  * @index: The page cache index.
1727  *
1728  * Looks up the page at @mapping & @index.  If there is a page in the
1729  * cache, the head page is returned locked and with an increased refcount.
1730  *
1731  * If the slot holds a shadow entry of a previously evicted page, or a
1732  * swap entry from shmem/tmpfs, it is returned.
1733  *
1734  * Context: May sleep.
1735  * Return: The head page or shadow entry, %NULL if nothing is found.
1736  */
1737 struct page *find_lock_entry(struct address_space *mapping, pgoff_t index)
1738 {
1739 	struct page *page;
1740 
1741 repeat:
1742 	page = find_get_entry(mapping, index);
1743 	if (page && !xa_is_value(page)) {
1744 		lock_page(page);
1745 		/* Has the page been truncated? */
1746 		if (unlikely(page->mapping != mapping)) {
1747 			unlock_page(page);
1748 			put_page(page);
1749 			goto repeat;
1750 		}
1751 		VM_BUG_ON_PAGE(!thp_contains(page, index), page);
1752 	}
1753 	return page;
1754 }
1755 
1756 /**
1757  * pagecache_get_page - Find and get a reference to a page.
1758  * @mapping: The address_space to search.
1759  * @index: The page index.
1760  * @fgp_flags: %FGP flags modify how the page is returned.
1761  * @gfp_mask: Memory allocation flags to use if %FGP_CREAT is specified.
1762  *
1763  * Looks up the page cache entry at @mapping & @index.
1764  *
1765  * @fgp_flags can be zero or more of these flags:
1766  *
1767  * * %FGP_ACCESSED - The page will be marked accessed.
1768  * * %FGP_LOCK - The page is returned locked.
1769  * * %FGP_HEAD - If the page is present and a THP, return the head page
1770  *   rather than the exact page specified by the index.
1771  * * %FGP_CREAT - If no page is present then a new page is allocated using
1772  *   @gfp_mask and added to the page cache and the VM's LRU list.
1773  *   The page is returned locked and with an increased refcount.
1774  * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1775  *   page is already in cache.  If the page was allocated, unlock it before
1776  *   returning so the caller can do the same dance.
1777  * * %FGP_WRITE - The page will be written
1778  * * %FGP_NOFS - __GFP_FS will get cleared in gfp mask
1779  * * %FGP_NOWAIT - Don't get blocked by page lock
1780  *
1781  * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1782  * if the %GFP flags specified for %FGP_CREAT are atomic.
1783  *
1784  * If there is a page cache page, it is returned with an increased refcount.
1785  *
1786  * Return: The found page or %NULL otherwise.
1787  */
1788 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
1789 		int fgp_flags, gfp_t gfp_mask)
1790 {
1791 	struct page *page;
1792 
1793 repeat:
1794 	page = find_get_entry(mapping, index);
1795 	if (xa_is_value(page))
1796 		page = NULL;
1797 	if (!page)
1798 		goto no_page;
1799 
1800 	if (fgp_flags & FGP_LOCK) {
1801 		if (fgp_flags & FGP_NOWAIT) {
1802 			if (!trylock_page(page)) {
1803 				put_page(page);
1804 				return NULL;
1805 			}
1806 		} else {
1807 			lock_page(page);
1808 		}
1809 
1810 		/* Has the page been truncated? */
1811 		if (unlikely(page->mapping != mapping)) {
1812 			unlock_page(page);
1813 			put_page(page);
1814 			goto repeat;
1815 		}
1816 		VM_BUG_ON_PAGE(!thp_contains(page, index), page);
1817 	}
1818 
1819 	if (fgp_flags & FGP_ACCESSED)
1820 		mark_page_accessed(page);
1821 	else if (fgp_flags & FGP_WRITE) {
1822 		/* Clear idle flag for buffer write */
1823 		if (page_is_idle(page))
1824 			clear_page_idle(page);
1825 	}
1826 	if (!(fgp_flags & FGP_HEAD))
1827 		page = find_subpage(page, index);
1828 
1829 no_page:
1830 	if (!page && (fgp_flags & FGP_CREAT)) {
1831 		int err;
1832 		if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1833 			gfp_mask |= __GFP_WRITE;
1834 		if (fgp_flags & FGP_NOFS)
1835 			gfp_mask &= ~__GFP_FS;
1836 
1837 		page = __page_cache_alloc(gfp_mask);
1838 		if (!page)
1839 			return NULL;
1840 
1841 		if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1842 			fgp_flags |= FGP_LOCK;
1843 
1844 		/* Init accessed so avoid atomic mark_page_accessed later */
1845 		if (fgp_flags & FGP_ACCESSED)
1846 			__SetPageReferenced(page);
1847 
1848 		err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
1849 		if (unlikely(err)) {
1850 			put_page(page);
1851 			page = NULL;
1852 			if (err == -EEXIST)
1853 				goto repeat;
1854 		}
1855 
1856 		/*
1857 		 * add_to_page_cache_lru locks the page, and for mmap we expect
1858 		 * an unlocked page.
1859 		 */
1860 		if (page && (fgp_flags & FGP_FOR_MMAP))
1861 			unlock_page(page);
1862 	}
1863 
1864 	return page;
1865 }
1866 EXPORT_SYMBOL(pagecache_get_page);
1867 
1868 /**
1869  * find_get_entries - gang pagecache lookup
1870  * @mapping:	The address_space to search
1871  * @start:	The starting page cache index
1872  * @nr_entries:	The maximum number of entries
1873  * @entries:	Where the resulting entries are placed
1874  * @indices:	The cache indices corresponding to the entries in @entries
1875  *
1876  * find_get_entries() will search for and return a group of up to
1877  * @nr_entries entries in the mapping.  The entries are placed at
1878  * @entries.  find_get_entries() takes a reference against any actual
1879  * pages it returns.
1880  *
1881  * The search returns a group of mapping-contiguous page cache entries
1882  * with ascending indexes.  There may be holes in the indices due to
1883  * not-present pages.
1884  *
1885  * Any shadow entries of evicted pages, or swap entries from
1886  * shmem/tmpfs, are included in the returned array.
1887  *
1888  * If it finds a Transparent Huge Page, head or tail, find_get_entries()
1889  * stops at that page: the caller is likely to have a better way to handle
1890  * the compound page as a whole, and then skip its extent, than repeatedly
1891  * calling find_get_entries() to return all its tails.
1892  *
1893  * Return: the number of pages and shadow entries which were found.
1894  */
1895 unsigned find_get_entries(struct address_space *mapping,
1896 			  pgoff_t start, unsigned int nr_entries,
1897 			  struct page **entries, pgoff_t *indices)
1898 {
1899 	XA_STATE(xas, &mapping->i_pages, start);
1900 	struct page *page;
1901 	unsigned int ret = 0;
1902 
1903 	if (!nr_entries)
1904 		return 0;
1905 
1906 	rcu_read_lock();
1907 	xas_for_each(&xas, page, ULONG_MAX) {
1908 		if (xas_retry(&xas, page))
1909 			continue;
1910 		/*
1911 		 * A shadow entry of a recently evicted page, a swap
1912 		 * entry from shmem/tmpfs or a DAX entry.  Return it
1913 		 * without attempting to raise page count.
1914 		 */
1915 		if (xa_is_value(page))
1916 			goto export;
1917 
1918 		if (!page_cache_get_speculative(page))
1919 			goto retry;
1920 
1921 		/* Has the page moved or been split? */
1922 		if (unlikely(page != xas_reload(&xas)))
1923 			goto put_page;
1924 
1925 		/*
1926 		 * Terminate early on finding a THP, to allow the caller to
1927 		 * handle it all at once; but continue if this is hugetlbfs.
1928 		 */
1929 		if (PageTransHuge(page) && !PageHuge(page)) {
1930 			page = find_subpage(page, xas.xa_index);
1931 			nr_entries = ret + 1;
1932 		}
1933 export:
1934 		indices[ret] = xas.xa_index;
1935 		entries[ret] = page;
1936 		if (++ret == nr_entries)
1937 			break;
1938 		continue;
1939 put_page:
1940 		put_page(page);
1941 retry:
1942 		xas_reset(&xas);
1943 	}
1944 	rcu_read_unlock();
1945 	return ret;
1946 }
1947 
1948 /**
1949  * find_get_pages_range - gang pagecache lookup
1950  * @mapping:	The address_space to search
1951  * @start:	The starting page index
1952  * @end:	The final page index (inclusive)
1953  * @nr_pages:	The maximum number of pages
1954  * @pages:	Where the resulting pages are placed
1955  *
1956  * find_get_pages_range() will search for and return a group of up to @nr_pages
1957  * pages in the mapping starting at index @start and up to index @end
1958  * (inclusive).  The pages are placed at @pages.  find_get_pages_range() takes
1959  * a reference against the returned pages.
1960  *
1961  * The search returns a group of mapping-contiguous pages with ascending
1962  * indexes.  There may be holes in the indices due to not-present pages.
1963  * We also update @start to index the next page for the traversal.
1964  *
1965  * Return: the number of pages which were found. If this number is
1966  * smaller than @nr_pages, the end of specified range has been
1967  * reached.
1968  */
1969 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1970 			      pgoff_t end, unsigned int nr_pages,
1971 			      struct page **pages)
1972 {
1973 	XA_STATE(xas, &mapping->i_pages, *start);
1974 	struct page *page;
1975 	unsigned ret = 0;
1976 
1977 	if (unlikely(!nr_pages))
1978 		return 0;
1979 
1980 	rcu_read_lock();
1981 	xas_for_each(&xas, page, end) {
1982 		if (xas_retry(&xas, page))
1983 			continue;
1984 		/* Skip over shadow, swap and DAX entries */
1985 		if (xa_is_value(page))
1986 			continue;
1987 
1988 		if (!page_cache_get_speculative(page))
1989 			goto retry;
1990 
1991 		/* Has the page moved or been split? */
1992 		if (unlikely(page != xas_reload(&xas)))
1993 			goto put_page;
1994 
1995 		pages[ret] = find_subpage(page, xas.xa_index);
1996 		if (++ret == nr_pages) {
1997 			*start = xas.xa_index + 1;
1998 			goto out;
1999 		}
2000 		continue;
2001 put_page:
2002 		put_page(page);
2003 retry:
2004 		xas_reset(&xas);
2005 	}
2006 
2007 	/*
2008 	 * We come here when there is no page beyond @end. We take care to not
2009 	 * overflow the index @start as it confuses some of the callers. This
2010 	 * breaks the iteration when there is a page at index -1 but that is
2011 	 * already broken anyway.
2012 	 */
2013 	if (end == (pgoff_t)-1)
2014 		*start = (pgoff_t)-1;
2015 	else
2016 		*start = end + 1;
2017 out:
2018 	rcu_read_unlock();
2019 
2020 	return ret;
2021 }
2022 
2023 /**
2024  * find_get_pages_contig - gang contiguous pagecache lookup
2025  * @mapping:	The address_space to search
2026  * @index:	The starting page index
2027  * @nr_pages:	The maximum number of pages
2028  * @pages:	Where the resulting pages are placed
2029  *
2030  * find_get_pages_contig() works exactly like find_get_pages(), except
2031  * that the returned number of pages are guaranteed to be contiguous.
2032  *
2033  * Return: the number of pages which were found.
2034  */
2035 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
2036 			       unsigned int nr_pages, struct page **pages)
2037 {
2038 	XA_STATE(xas, &mapping->i_pages, index);
2039 	struct page *page;
2040 	unsigned int ret = 0;
2041 
2042 	if (unlikely(!nr_pages))
2043 		return 0;
2044 
2045 	rcu_read_lock();
2046 	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
2047 		if (xas_retry(&xas, page))
2048 			continue;
2049 		/*
2050 		 * If the entry has been swapped out, we can stop looking.
2051 		 * No current caller is looking for DAX entries.
2052 		 */
2053 		if (xa_is_value(page))
2054 			break;
2055 
2056 		if (!page_cache_get_speculative(page))
2057 			goto retry;
2058 
2059 		/* Has the page moved or been split? */
2060 		if (unlikely(page != xas_reload(&xas)))
2061 			goto put_page;
2062 
2063 		pages[ret] = find_subpage(page, xas.xa_index);
2064 		if (++ret == nr_pages)
2065 			break;
2066 		continue;
2067 put_page:
2068 		put_page(page);
2069 retry:
2070 		xas_reset(&xas);
2071 	}
2072 	rcu_read_unlock();
2073 	return ret;
2074 }
2075 EXPORT_SYMBOL(find_get_pages_contig);
2076 
2077 /**
2078  * find_get_pages_range_tag - find and return pages in given range matching @tag
2079  * @mapping:	the address_space to search
2080  * @index:	the starting page index
2081  * @end:	The final page index (inclusive)
2082  * @tag:	the tag index
2083  * @nr_pages:	the maximum number of pages
2084  * @pages:	where the resulting pages are placed
2085  *
2086  * Like find_get_pages, except we only return pages which are tagged with
2087  * @tag.   We update @index to index the next page for the traversal.
2088  *
2089  * Return: the number of pages which were found.
2090  */
2091 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
2092 			pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
2093 			struct page **pages)
2094 {
2095 	XA_STATE(xas, &mapping->i_pages, *index);
2096 	struct page *page;
2097 	unsigned ret = 0;
2098 
2099 	if (unlikely(!nr_pages))
2100 		return 0;
2101 
2102 	rcu_read_lock();
2103 	xas_for_each_marked(&xas, page, end, tag) {
2104 		if (xas_retry(&xas, page))
2105 			continue;
2106 		/*
2107 		 * Shadow entries should never be tagged, but this iteration
2108 		 * is lockless so there is a window for page reclaim to evict
2109 		 * a page we saw tagged.  Skip over it.
2110 		 */
2111 		if (xa_is_value(page))
2112 			continue;
2113 
2114 		if (!page_cache_get_speculative(page))
2115 			goto retry;
2116 
2117 		/* Has the page moved or been split? */
2118 		if (unlikely(page != xas_reload(&xas)))
2119 			goto put_page;
2120 
2121 		pages[ret] = find_subpage(page, xas.xa_index);
2122 		if (++ret == nr_pages) {
2123 			*index = xas.xa_index + 1;
2124 			goto out;
2125 		}
2126 		continue;
2127 put_page:
2128 		put_page(page);
2129 retry:
2130 		xas_reset(&xas);
2131 	}
2132 
2133 	/*
2134 	 * We come here when we got to @end. We take care to not overflow the
2135 	 * index @index as it confuses some of the callers. This breaks the
2136 	 * iteration when there is a page at index -1 but that is already
2137 	 * broken anyway.
2138 	 */
2139 	if (end == (pgoff_t)-1)
2140 		*index = (pgoff_t)-1;
2141 	else
2142 		*index = end + 1;
2143 out:
2144 	rcu_read_unlock();
2145 
2146 	return ret;
2147 }
2148 EXPORT_SYMBOL(find_get_pages_range_tag);
2149 
2150 /*
2151  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2152  * a _large_ part of the i/o request. Imagine the worst scenario:
2153  *
2154  *      ---R__________________________________________B__________
2155  *         ^ reading here                             ^ bad block(assume 4k)
2156  *
2157  * read(R) => miss => readahead(R...B) => media error => frustrating retries
2158  * => failing the whole request => read(R) => read(R+1) =>
2159  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2160  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2161  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2162  *
2163  * It is going insane. Fix it by quickly scaling down the readahead size.
2164  */
2165 static void shrink_readahead_size_eio(struct file_ra_state *ra)
2166 {
2167 	ra->ra_pages /= 4;
2168 }
2169 
2170 static int lock_page_for_iocb(struct kiocb *iocb, struct page *page)
2171 {
2172 	if (iocb->ki_flags & IOCB_WAITQ)
2173 		return lock_page_async(page, iocb->ki_waitq);
2174 	else if (iocb->ki_flags & IOCB_NOWAIT)
2175 		return trylock_page(page) ? 0 : -EAGAIN;
2176 	else
2177 		return lock_page_killable(page);
2178 }
2179 
2180 static struct page *
2181 generic_file_buffered_read_readpage(struct kiocb *iocb,
2182 				    struct file *filp,
2183 				    struct address_space *mapping,
2184 				    struct page *page)
2185 {
2186 	struct file_ra_state *ra = &filp->f_ra;
2187 	int error;
2188 
2189 	if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT)) {
2190 		unlock_page(page);
2191 		put_page(page);
2192 		return ERR_PTR(-EAGAIN);
2193 	}
2194 
2195 	/*
2196 	 * A previous I/O error may have been due to temporary
2197 	 * failures, eg. multipath errors.
2198 	 * PG_error will be set again if readpage fails.
2199 	 */
2200 	ClearPageError(page);
2201 	/* Start the actual read. The read will unlock the page. */
2202 	error = mapping->a_ops->readpage(filp, page);
2203 
2204 	if (unlikely(error)) {
2205 		put_page(page);
2206 		return error != AOP_TRUNCATED_PAGE ? ERR_PTR(error) : NULL;
2207 	}
2208 
2209 	if (!PageUptodate(page)) {
2210 		error = lock_page_for_iocb(iocb, page);
2211 		if (unlikely(error)) {
2212 			put_page(page);
2213 			return ERR_PTR(error);
2214 		}
2215 		if (!PageUptodate(page)) {
2216 			if (page->mapping == NULL) {
2217 				/*
2218 				 * invalidate_mapping_pages got it
2219 				 */
2220 				unlock_page(page);
2221 				put_page(page);
2222 				return NULL;
2223 			}
2224 			unlock_page(page);
2225 			shrink_readahead_size_eio(ra);
2226 			put_page(page);
2227 			return ERR_PTR(-EIO);
2228 		}
2229 		unlock_page(page);
2230 	}
2231 
2232 	return page;
2233 }
2234 
2235 static struct page *
2236 generic_file_buffered_read_pagenotuptodate(struct kiocb *iocb,
2237 					   struct file *filp,
2238 					   struct iov_iter *iter,
2239 					   struct page *page,
2240 					   loff_t pos, loff_t count)
2241 {
2242 	struct address_space *mapping = filp->f_mapping;
2243 	struct inode *inode = mapping->host;
2244 	int error;
2245 
2246 	/*
2247 	 * See comment in do_read_cache_page on why
2248 	 * wait_on_page_locked is used to avoid unnecessarily
2249 	 * serialisations and why it's safe.
2250 	 */
2251 	if (iocb->ki_flags & IOCB_WAITQ) {
2252 		error = wait_on_page_locked_async(page,
2253 						iocb->ki_waitq);
2254 	} else {
2255 		error = wait_on_page_locked_killable(page);
2256 	}
2257 	if (unlikely(error)) {
2258 		put_page(page);
2259 		return ERR_PTR(error);
2260 	}
2261 	if (PageUptodate(page))
2262 		return page;
2263 
2264 	if (inode->i_blkbits == PAGE_SHIFT ||
2265 			!mapping->a_ops->is_partially_uptodate)
2266 		goto page_not_up_to_date;
2267 	/* pipes can't handle partially uptodate pages */
2268 	if (unlikely(iov_iter_is_pipe(iter)))
2269 		goto page_not_up_to_date;
2270 	if (!trylock_page(page))
2271 		goto page_not_up_to_date;
2272 	/* Did it get truncated before we got the lock? */
2273 	if (!page->mapping)
2274 		goto page_not_up_to_date_locked;
2275 	if (!mapping->a_ops->is_partially_uptodate(page,
2276 				pos & ~PAGE_MASK, count))
2277 		goto page_not_up_to_date_locked;
2278 	unlock_page(page);
2279 	return page;
2280 
2281 page_not_up_to_date:
2282 	/* Get exclusive access to the page ... */
2283 	error = lock_page_for_iocb(iocb, page);
2284 	if (unlikely(error)) {
2285 		put_page(page);
2286 		return ERR_PTR(error);
2287 	}
2288 
2289 page_not_up_to_date_locked:
2290 	/* Did it get truncated before we got the lock? */
2291 	if (!page->mapping) {
2292 		unlock_page(page);
2293 		put_page(page);
2294 		return NULL;
2295 	}
2296 
2297 	/* Did somebody else fill it already? */
2298 	if (PageUptodate(page)) {
2299 		unlock_page(page);
2300 		return page;
2301 	}
2302 
2303 	return generic_file_buffered_read_readpage(iocb, filp, mapping, page);
2304 }
2305 
2306 static struct page *
2307 generic_file_buffered_read_no_cached_page(struct kiocb *iocb,
2308 					  struct iov_iter *iter)
2309 {
2310 	struct file *filp = iocb->ki_filp;
2311 	struct address_space *mapping = filp->f_mapping;
2312 	pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2313 	struct page *page;
2314 	int error;
2315 
2316 	if (iocb->ki_flags & IOCB_NOIO)
2317 		return ERR_PTR(-EAGAIN);
2318 
2319 	/*
2320 	 * Ok, it wasn't cached, so we need to create a new
2321 	 * page..
2322 	 */
2323 	page = page_cache_alloc(mapping);
2324 	if (!page)
2325 		return ERR_PTR(-ENOMEM);
2326 
2327 	error = add_to_page_cache_lru(page, mapping, index,
2328 				      mapping_gfp_constraint(mapping, GFP_KERNEL));
2329 	if (error) {
2330 		put_page(page);
2331 		return error != -EEXIST ? ERR_PTR(error) : NULL;
2332 	}
2333 
2334 	return generic_file_buffered_read_readpage(iocb, filp, mapping, page);
2335 }
2336 
2337 static int generic_file_buffered_read_get_pages(struct kiocb *iocb,
2338 						struct iov_iter *iter,
2339 						struct page **pages,
2340 						unsigned int nr)
2341 {
2342 	struct file *filp = iocb->ki_filp;
2343 	struct address_space *mapping = filp->f_mapping;
2344 	struct file_ra_state *ra = &filp->f_ra;
2345 	pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2346 	pgoff_t last_index = (iocb->ki_pos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
2347 	int i, j, nr_got, err = 0;
2348 
2349 	nr = min_t(unsigned long, last_index - index, nr);
2350 find_page:
2351 	if (fatal_signal_pending(current))
2352 		return -EINTR;
2353 
2354 	nr_got = find_get_pages_contig(mapping, index, nr, pages);
2355 	if (nr_got)
2356 		goto got_pages;
2357 
2358 	if (iocb->ki_flags & IOCB_NOIO)
2359 		return -EAGAIN;
2360 
2361 	page_cache_sync_readahead(mapping, ra, filp, index, last_index - index);
2362 
2363 	nr_got = find_get_pages_contig(mapping, index, nr, pages);
2364 	if (nr_got)
2365 		goto got_pages;
2366 
2367 	pages[0] = generic_file_buffered_read_no_cached_page(iocb, iter);
2368 	err = PTR_ERR_OR_ZERO(pages[0]);
2369 	if (!IS_ERR_OR_NULL(pages[0]))
2370 		nr_got = 1;
2371 got_pages:
2372 	for (i = 0; i < nr_got; i++) {
2373 		struct page *page = pages[i];
2374 		pgoff_t pg_index = index + i;
2375 		loff_t pg_pos = max(iocb->ki_pos,
2376 				    (loff_t) pg_index << PAGE_SHIFT);
2377 		loff_t pg_count = iocb->ki_pos + iter->count - pg_pos;
2378 
2379 		if (PageReadahead(page)) {
2380 			if (iocb->ki_flags & IOCB_NOIO) {
2381 				for (j = i; j < nr_got; j++)
2382 					put_page(pages[j]);
2383 				nr_got = i;
2384 				err = -EAGAIN;
2385 				break;
2386 			}
2387 			page_cache_async_readahead(mapping, ra, filp, page,
2388 					pg_index, last_index - pg_index);
2389 		}
2390 
2391 		if (!PageUptodate(page)) {
2392 			if ((iocb->ki_flags & IOCB_NOWAIT) ||
2393 			    ((iocb->ki_flags & IOCB_WAITQ) && i)) {
2394 				for (j = i; j < nr_got; j++)
2395 					put_page(pages[j]);
2396 				nr_got = i;
2397 				err = -EAGAIN;
2398 				break;
2399 			}
2400 
2401 			page = generic_file_buffered_read_pagenotuptodate(iocb,
2402 					filp, iter, page, pg_pos, pg_count);
2403 			if (IS_ERR_OR_NULL(page)) {
2404 				for (j = i + 1; j < nr_got; j++)
2405 					put_page(pages[j]);
2406 				nr_got = i;
2407 				err = PTR_ERR_OR_ZERO(page);
2408 				break;
2409 			}
2410 		}
2411 	}
2412 
2413 	if (likely(nr_got))
2414 		return nr_got;
2415 	if (err)
2416 		return err;
2417 	/*
2418 	 * No pages and no error means we raced and should retry:
2419 	 */
2420 	goto find_page;
2421 }
2422 
2423 /**
2424  * generic_file_buffered_read - generic file read routine
2425  * @iocb:	the iocb to read
2426  * @iter:	data destination
2427  * @written:	already copied
2428  *
2429  * This is a generic file read routine, and uses the
2430  * mapping->a_ops->readpage() function for the actual low-level stuff.
2431  *
2432  * This is really ugly. But the goto's actually try to clarify some
2433  * of the logic when it comes to error handling etc.
2434  *
2435  * Return:
2436  * * total number of bytes copied, including those the were already @written
2437  * * negative error code if nothing was copied
2438  */
2439 ssize_t generic_file_buffered_read(struct kiocb *iocb,
2440 		struct iov_iter *iter, ssize_t written)
2441 {
2442 	struct file *filp = iocb->ki_filp;
2443 	struct file_ra_state *ra = &filp->f_ra;
2444 	struct address_space *mapping = filp->f_mapping;
2445 	struct inode *inode = mapping->host;
2446 	struct page *pages_onstack[PAGEVEC_SIZE], **pages = NULL;
2447 	unsigned int nr_pages = min_t(unsigned int, 512,
2448 			((iocb->ki_pos + iter->count + PAGE_SIZE - 1) >> PAGE_SHIFT) -
2449 			(iocb->ki_pos >> PAGE_SHIFT));
2450 	int i, pg_nr, error = 0;
2451 	bool writably_mapped;
2452 	loff_t isize, end_offset;
2453 
2454 	if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2455 		return 0;
2456 	if (unlikely(!iov_iter_count(iter)))
2457 		return 0;
2458 
2459 	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2460 
2461 	if (nr_pages > ARRAY_SIZE(pages_onstack))
2462 		pages = kmalloc_array(nr_pages, sizeof(void *), GFP_KERNEL);
2463 
2464 	if (!pages) {
2465 		pages = pages_onstack;
2466 		nr_pages = min_t(unsigned int, nr_pages, ARRAY_SIZE(pages_onstack));
2467 	}
2468 
2469 	do {
2470 		cond_resched();
2471 
2472 		/*
2473 		 * If we've already successfully copied some data, then we
2474 		 * can no longer safely return -EIOCBQUEUED. Hence mark
2475 		 * an async read NOWAIT at that point.
2476 		 */
2477 		if ((iocb->ki_flags & IOCB_WAITQ) && written)
2478 			iocb->ki_flags |= IOCB_NOWAIT;
2479 
2480 		i = 0;
2481 		pg_nr = generic_file_buffered_read_get_pages(iocb, iter,
2482 							     pages, nr_pages);
2483 		if (pg_nr < 0) {
2484 			error = pg_nr;
2485 			break;
2486 		}
2487 
2488 		/*
2489 		 * i_size must be checked after we know the pages are Uptodate.
2490 		 *
2491 		 * Checking i_size after the check allows us to calculate
2492 		 * the correct value for "nr", which means the zero-filled
2493 		 * part of the page is not copied back to userspace (unless
2494 		 * another truncate extends the file - this is desired though).
2495 		 */
2496 		isize = i_size_read(inode);
2497 		if (unlikely(iocb->ki_pos >= isize))
2498 			goto put_pages;
2499 
2500 		end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2501 
2502 		while ((iocb->ki_pos >> PAGE_SHIFT) + pg_nr >
2503 		       (end_offset + PAGE_SIZE - 1) >> PAGE_SHIFT)
2504 			put_page(pages[--pg_nr]);
2505 
2506 		/*
2507 		 * Once we start copying data, we don't want to be touching any
2508 		 * cachelines that might be contended:
2509 		 */
2510 		writably_mapped = mapping_writably_mapped(mapping);
2511 
2512 		/*
2513 		 * When a sequential read accesses a page several times, only
2514 		 * mark it as accessed the first time.
2515 		 */
2516 		if (iocb->ki_pos >> PAGE_SHIFT !=
2517 		    ra->prev_pos >> PAGE_SHIFT)
2518 			mark_page_accessed(pages[0]);
2519 		for (i = 1; i < pg_nr; i++)
2520 			mark_page_accessed(pages[i]);
2521 
2522 		for (i = 0; i < pg_nr; i++) {
2523 			unsigned int offset = iocb->ki_pos & ~PAGE_MASK;
2524 			unsigned int bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2525 						   PAGE_SIZE - offset);
2526 			unsigned int copied;
2527 
2528 			/*
2529 			 * If users can be writing to this page using arbitrary
2530 			 * virtual addresses, take care about potential aliasing
2531 			 * before reading the page on the kernel side.
2532 			 */
2533 			if (writably_mapped)
2534 				flush_dcache_page(pages[i]);
2535 
2536 			copied = copy_page_to_iter(pages[i], offset, bytes, iter);
2537 
2538 			written += copied;
2539 			iocb->ki_pos += copied;
2540 			ra->prev_pos = iocb->ki_pos;
2541 
2542 			if (copied < bytes) {
2543 				error = -EFAULT;
2544 				break;
2545 			}
2546 		}
2547 put_pages:
2548 		for (i = 0; i < pg_nr; i++)
2549 			put_page(pages[i]);
2550 	} while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2551 
2552 	file_accessed(filp);
2553 
2554 	if (pages != pages_onstack)
2555 		kfree(pages);
2556 
2557 	return written ? written : error;
2558 }
2559 EXPORT_SYMBOL_GPL(generic_file_buffered_read);
2560 
2561 /**
2562  * generic_file_read_iter - generic filesystem read routine
2563  * @iocb:	kernel I/O control block
2564  * @iter:	destination for the data read
2565  *
2566  * This is the "read_iter()" routine for all filesystems
2567  * that can use the page cache directly.
2568  *
2569  * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2570  * be returned when no data can be read without waiting for I/O requests
2571  * to complete; it doesn't prevent readahead.
2572  *
2573  * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2574  * requests shall be made for the read or for readahead.  When no data
2575  * can be read, -EAGAIN shall be returned.  When readahead would be
2576  * triggered, a partial, possibly empty read shall be returned.
2577  *
2578  * Return:
2579  * * number of bytes copied, even for partial reads
2580  * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2581  */
2582 ssize_t
2583 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2584 {
2585 	size_t count = iov_iter_count(iter);
2586 	ssize_t retval = 0;
2587 
2588 	if (!count)
2589 		goto out; /* skip atime */
2590 
2591 	if (iocb->ki_flags & IOCB_DIRECT) {
2592 		struct file *file = iocb->ki_filp;
2593 		struct address_space *mapping = file->f_mapping;
2594 		struct inode *inode = mapping->host;
2595 		loff_t size;
2596 
2597 		size = i_size_read(inode);
2598 		if (iocb->ki_flags & IOCB_NOWAIT) {
2599 			if (filemap_range_has_page(mapping, iocb->ki_pos,
2600 						   iocb->ki_pos + count - 1))
2601 				return -EAGAIN;
2602 		} else {
2603 			retval = filemap_write_and_wait_range(mapping,
2604 						iocb->ki_pos,
2605 					        iocb->ki_pos + count - 1);
2606 			if (retval < 0)
2607 				goto out;
2608 		}
2609 
2610 		file_accessed(file);
2611 
2612 		retval = mapping->a_ops->direct_IO(iocb, iter);
2613 		if (retval >= 0) {
2614 			iocb->ki_pos += retval;
2615 			count -= retval;
2616 		}
2617 		iov_iter_revert(iter, count - iov_iter_count(iter));
2618 
2619 		/*
2620 		 * Btrfs can have a short DIO read if we encounter
2621 		 * compressed extents, so if there was an error, or if
2622 		 * we've already read everything we wanted to, or if
2623 		 * there was a short read because we hit EOF, go ahead
2624 		 * and return.  Otherwise fallthrough to buffered io for
2625 		 * the rest of the read.  Buffered reads will not work for
2626 		 * DAX files, so don't bother trying.
2627 		 */
2628 		if (retval < 0 || !count || iocb->ki_pos >= size ||
2629 		    IS_DAX(inode))
2630 			goto out;
2631 	}
2632 
2633 	retval = generic_file_buffered_read(iocb, iter, retval);
2634 out:
2635 	return retval;
2636 }
2637 EXPORT_SYMBOL(generic_file_read_iter);
2638 
2639 #ifdef CONFIG_MMU
2640 #define MMAP_LOTSAMISS  (100)
2641 /*
2642  * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
2643  * @vmf - the vm_fault for this fault.
2644  * @page - the page to lock.
2645  * @fpin - the pointer to the file we may pin (or is already pinned).
2646  *
2647  * This works similar to lock_page_or_retry in that it can drop the mmap_lock.
2648  * It differs in that it actually returns the page locked if it returns 1 and 0
2649  * if it couldn't lock the page.  If we did have to drop the mmap_lock then fpin
2650  * will point to the pinned file and needs to be fput()'ed at a later point.
2651  */
2652 static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
2653 				     struct file **fpin)
2654 {
2655 	if (trylock_page(page))
2656 		return 1;
2657 
2658 	/*
2659 	 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2660 	 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
2661 	 * is supposed to work. We have way too many special cases..
2662 	 */
2663 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2664 		return 0;
2665 
2666 	*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2667 	if (vmf->flags & FAULT_FLAG_KILLABLE) {
2668 		if (__lock_page_killable(page)) {
2669 			/*
2670 			 * We didn't have the right flags to drop the mmap_lock,
2671 			 * but all fault_handlers only check for fatal signals
2672 			 * if we return VM_FAULT_RETRY, so we need to drop the
2673 			 * mmap_lock here and return 0 if we don't have a fpin.
2674 			 */
2675 			if (*fpin == NULL)
2676 				mmap_read_unlock(vmf->vma->vm_mm);
2677 			return 0;
2678 		}
2679 	} else
2680 		__lock_page(page);
2681 	return 1;
2682 }
2683 
2684 
2685 /*
2686  * Synchronous readahead happens when we don't even find a page in the page
2687  * cache at all.  We don't want to perform IO under the mmap sem, so if we have
2688  * to drop the mmap sem we return the file that was pinned in order for us to do
2689  * that.  If we didn't pin a file then we return NULL.  The file that is
2690  * returned needs to be fput()'ed when we're done with it.
2691  */
2692 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
2693 {
2694 	struct file *file = vmf->vma->vm_file;
2695 	struct file_ra_state *ra = &file->f_ra;
2696 	struct address_space *mapping = file->f_mapping;
2697 	DEFINE_READAHEAD(ractl, file, mapping, vmf->pgoff);
2698 	struct file *fpin = NULL;
2699 	unsigned int mmap_miss;
2700 
2701 	/* If we don't want any read-ahead, don't bother */
2702 	if (vmf->vma->vm_flags & VM_RAND_READ)
2703 		return fpin;
2704 	if (!ra->ra_pages)
2705 		return fpin;
2706 
2707 	if (vmf->vma->vm_flags & VM_SEQ_READ) {
2708 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2709 		page_cache_sync_ra(&ractl, ra, ra->ra_pages);
2710 		return fpin;
2711 	}
2712 
2713 	/* Avoid banging the cache line if not needed */
2714 	mmap_miss = READ_ONCE(ra->mmap_miss);
2715 	if (mmap_miss < MMAP_LOTSAMISS * 10)
2716 		WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
2717 
2718 	/*
2719 	 * Do we miss much more than hit in this file? If so,
2720 	 * stop bothering with read-ahead. It will only hurt.
2721 	 */
2722 	if (mmap_miss > MMAP_LOTSAMISS)
2723 		return fpin;
2724 
2725 	/*
2726 	 * mmap read-around
2727 	 */
2728 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2729 	ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
2730 	ra->size = ra->ra_pages;
2731 	ra->async_size = ra->ra_pages / 4;
2732 	ractl._index = ra->start;
2733 	do_page_cache_ra(&ractl, ra->size, ra->async_size);
2734 	return fpin;
2735 }
2736 
2737 /*
2738  * Asynchronous readahead happens when we find the page and PG_readahead,
2739  * so we want to possibly extend the readahead further.  We return the file that
2740  * was pinned if we have to drop the mmap_lock in order to do IO.
2741  */
2742 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
2743 					    struct page *page)
2744 {
2745 	struct file *file = vmf->vma->vm_file;
2746 	struct file_ra_state *ra = &file->f_ra;
2747 	struct address_space *mapping = file->f_mapping;
2748 	struct file *fpin = NULL;
2749 	unsigned int mmap_miss;
2750 	pgoff_t offset = vmf->pgoff;
2751 
2752 	/* If we don't want any read-ahead, don't bother */
2753 	if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
2754 		return fpin;
2755 	mmap_miss = READ_ONCE(ra->mmap_miss);
2756 	if (mmap_miss)
2757 		WRITE_ONCE(ra->mmap_miss, --mmap_miss);
2758 	if (PageReadahead(page)) {
2759 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2760 		page_cache_async_readahead(mapping, ra, file,
2761 					   page, offset, ra->ra_pages);
2762 	}
2763 	return fpin;
2764 }
2765 
2766 /**
2767  * filemap_fault - read in file data for page fault handling
2768  * @vmf:	struct vm_fault containing details of the fault
2769  *
2770  * filemap_fault() is invoked via the vma operations vector for a
2771  * mapped memory region to read in file data during a page fault.
2772  *
2773  * The goto's are kind of ugly, but this streamlines the normal case of having
2774  * it in the page cache, and handles the special cases reasonably without
2775  * having a lot of duplicated code.
2776  *
2777  * vma->vm_mm->mmap_lock must be held on entry.
2778  *
2779  * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
2780  * may be dropped before doing I/O or by lock_page_maybe_drop_mmap().
2781  *
2782  * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
2783  * has not been released.
2784  *
2785  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2786  *
2787  * Return: bitwise-OR of %VM_FAULT_ codes.
2788  */
2789 vm_fault_t filemap_fault(struct vm_fault *vmf)
2790 {
2791 	int error;
2792 	struct file *file = vmf->vma->vm_file;
2793 	struct file *fpin = NULL;
2794 	struct address_space *mapping = file->f_mapping;
2795 	struct file_ra_state *ra = &file->f_ra;
2796 	struct inode *inode = mapping->host;
2797 	pgoff_t offset = vmf->pgoff;
2798 	pgoff_t max_off;
2799 	struct page *page;
2800 	vm_fault_t ret = 0;
2801 
2802 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2803 	if (unlikely(offset >= max_off))
2804 		return VM_FAULT_SIGBUS;
2805 
2806 	/*
2807 	 * Do we have something in the page cache already?
2808 	 */
2809 	page = find_get_page(mapping, offset);
2810 	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2811 		/*
2812 		 * We found the page, so try async readahead before
2813 		 * waiting for the lock.
2814 		 */
2815 		fpin = do_async_mmap_readahead(vmf, page);
2816 	} else if (!page) {
2817 		/* No page in the page cache at all */
2818 		count_vm_event(PGMAJFAULT);
2819 		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2820 		ret = VM_FAULT_MAJOR;
2821 		fpin = do_sync_mmap_readahead(vmf);
2822 retry_find:
2823 		page = pagecache_get_page(mapping, offset,
2824 					  FGP_CREAT|FGP_FOR_MMAP,
2825 					  vmf->gfp_mask);
2826 		if (!page) {
2827 			if (fpin)
2828 				goto out_retry;
2829 			return VM_FAULT_OOM;
2830 		}
2831 	}
2832 
2833 	if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
2834 		goto out_retry;
2835 
2836 	/* Did it get truncated? */
2837 	if (unlikely(compound_head(page)->mapping != mapping)) {
2838 		unlock_page(page);
2839 		put_page(page);
2840 		goto retry_find;
2841 	}
2842 	VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
2843 
2844 	/*
2845 	 * We have a locked page in the page cache, now we need to check
2846 	 * that it's up-to-date. If not, it is going to be due to an error.
2847 	 */
2848 	if (unlikely(!PageUptodate(page)))
2849 		goto page_not_uptodate;
2850 
2851 	/*
2852 	 * We've made it this far and we had to drop our mmap_lock, now is the
2853 	 * time to return to the upper layer and have it re-find the vma and
2854 	 * redo the fault.
2855 	 */
2856 	if (fpin) {
2857 		unlock_page(page);
2858 		goto out_retry;
2859 	}
2860 
2861 	/*
2862 	 * Found the page and have a reference on it.
2863 	 * We must recheck i_size under page lock.
2864 	 */
2865 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2866 	if (unlikely(offset >= max_off)) {
2867 		unlock_page(page);
2868 		put_page(page);
2869 		return VM_FAULT_SIGBUS;
2870 	}
2871 
2872 	vmf->page = page;
2873 	return ret | VM_FAULT_LOCKED;
2874 
2875 page_not_uptodate:
2876 	/*
2877 	 * Umm, take care of errors if the page isn't up-to-date.
2878 	 * Try to re-read it _once_. We do this synchronously,
2879 	 * because there really aren't any performance issues here
2880 	 * and we need to check for errors.
2881 	 */
2882 	ClearPageError(page);
2883 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2884 	error = mapping->a_ops->readpage(file, page);
2885 	if (!error) {
2886 		wait_on_page_locked(page);
2887 		if (!PageUptodate(page))
2888 			error = -EIO;
2889 	}
2890 	if (fpin)
2891 		goto out_retry;
2892 	put_page(page);
2893 
2894 	if (!error || error == AOP_TRUNCATED_PAGE)
2895 		goto retry_find;
2896 
2897 	shrink_readahead_size_eio(ra);
2898 	return VM_FAULT_SIGBUS;
2899 
2900 out_retry:
2901 	/*
2902 	 * We dropped the mmap_lock, we need to return to the fault handler to
2903 	 * re-find the vma and come back and find our hopefully still populated
2904 	 * page.
2905 	 */
2906 	if (page)
2907 		put_page(page);
2908 	if (fpin)
2909 		fput(fpin);
2910 	return ret | VM_FAULT_RETRY;
2911 }
2912 EXPORT_SYMBOL(filemap_fault);
2913 
2914 void filemap_map_pages(struct vm_fault *vmf,
2915 		pgoff_t start_pgoff, pgoff_t end_pgoff)
2916 {
2917 	struct file *file = vmf->vma->vm_file;
2918 	struct address_space *mapping = file->f_mapping;
2919 	pgoff_t last_pgoff = start_pgoff;
2920 	unsigned long max_idx;
2921 	XA_STATE(xas, &mapping->i_pages, start_pgoff);
2922 	struct page *head, *page;
2923 	unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss);
2924 
2925 	rcu_read_lock();
2926 	xas_for_each(&xas, head, end_pgoff) {
2927 		if (xas_retry(&xas, head))
2928 			continue;
2929 		if (xa_is_value(head))
2930 			goto next;
2931 
2932 		/*
2933 		 * Check for a locked page first, as a speculative
2934 		 * reference may adversely influence page migration.
2935 		 */
2936 		if (PageLocked(head))
2937 			goto next;
2938 		if (!page_cache_get_speculative(head))
2939 			goto next;
2940 
2941 		/* Has the page moved or been split? */
2942 		if (unlikely(head != xas_reload(&xas)))
2943 			goto skip;
2944 		page = find_subpage(head, xas.xa_index);
2945 
2946 		if (!PageUptodate(head) ||
2947 				PageReadahead(page) ||
2948 				PageHWPoison(page))
2949 			goto skip;
2950 		if (!trylock_page(head))
2951 			goto skip;
2952 
2953 		if (head->mapping != mapping || !PageUptodate(head))
2954 			goto unlock;
2955 
2956 		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2957 		if (xas.xa_index >= max_idx)
2958 			goto unlock;
2959 
2960 		if (mmap_miss > 0)
2961 			mmap_miss--;
2962 
2963 		vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
2964 		if (vmf->pte)
2965 			vmf->pte += xas.xa_index - last_pgoff;
2966 		last_pgoff = xas.xa_index;
2967 		if (alloc_set_pte(vmf, page))
2968 			goto unlock;
2969 		unlock_page(head);
2970 		goto next;
2971 unlock:
2972 		unlock_page(head);
2973 skip:
2974 		put_page(head);
2975 next:
2976 		/* Huge page is mapped? No need to proceed. */
2977 		if (pmd_trans_huge(*vmf->pmd))
2978 			break;
2979 	}
2980 	rcu_read_unlock();
2981 	WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss);
2982 }
2983 EXPORT_SYMBOL(filemap_map_pages);
2984 
2985 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2986 {
2987 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
2988 	struct page *page = vmf->page;
2989 	vm_fault_t ret = VM_FAULT_LOCKED;
2990 
2991 	sb_start_pagefault(mapping->host->i_sb);
2992 	file_update_time(vmf->vma->vm_file);
2993 	lock_page(page);
2994 	if (page->mapping != mapping) {
2995 		unlock_page(page);
2996 		ret = VM_FAULT_NOPAGE;
2997 		goto out;
2998 	}
2999 	/*
3000 	 * We mark the page dirty already here so that when freeze is in
3001 	 * progress, we are guaranteed that writeback during freezing will
3002 	 * see the dirty page and writeprotect it again.
3003 	 */
3004 	set_page_dirty(page);
3005 	wait_for_stable_page(page);
3006 out:
3007 	sb_end_pagefault(mapping->host->i_sb);
3008 	return ret;
3009 }
3010 
3011 const struct vm_operations_struct generic_file_vm_ops = {
3012 	.fault		= filemap_fault,
3013 	.map_pages	= filemap_map_pages,
3014 	.page_mkwrite	= filemap_page_mkwrite,
3015 };
3016 
3017 /* This is used for a general mmap of a disk file */
3018 
3019 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
3020 {
3021 	struct address_space *mapping = file->f_mapping;
3022 
3023 	if (!mapping->a_ops->readpage)
3024 		return -ENOEXEC;
3025 	file_accessed(file);
3026 	vma->vm_ops = &generic_file_vm_ops;
3027 	return 0;
3028 }
3029 
3030 /*
3031  * This is for filesystems which do not implement ->writepage.
3032  */
3033 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3034 {
3035 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
3036 		return -EINVAL;
3037 	return generic_file_mmap(file, vma);
3038 }
3039 #else
3040 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3041 {
3042 	return VM_FAULT_SIGBUS;
3043 }
3044 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
3045 {
3046 	return -ENOSYS;
3047 }
3048 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
3049 {
3050 	return -ENOSYS;
3051 }
3052 #endif /* CONFIG_MMU */
3053 
3054 EXPORT_SYMBOL(filemap_page_mkwrite);
3055 EXPORT_SYMBOL(generic_file_mmap);
3056 EXPORT_SYMBOL(generic_file_readonly_mmap);
3057 
3058 static struct page *wait_on_page_read(struct page *page)
3059 {
3060 	if (!IS_ERR(page)) {
3061 		wait_on_page_locked(page);
3062 		if (!PageUptodate(page)) {
3063 			put_page(page);
3064 			page = ERR_PTR(-EIO);
3065 		}
3066 	}
3067 	return page;
3068 }
3069 
3070 static struct page *do_read_cache_page(struct address_space *mapping,
3071 				pgoff_t index,
3072 				int (*filler)(void *, struct page *),
3073 				void *data,
3074 				gfp_t gfp)
3075 {
3076 	struct page *page;
3077 	int err;
3078 repeat:
3079 	page = find_get_page(mapping, index);
3080 	if (!page) {
3081 		page = __page_cache_alloc(gfp);
3082 		if (!page)
3083 			return ERR_PTR(-ENOMEM);
3084 		err = add_to_page_cache_lru(page, mapping, index, gfp);
3085 		if (unlikely(err)) {
3086 			put_page(page);
3087 			if (err == -EEXIST)
3088 				goto repeat;
3089 			/* Presumably ENOMEM for xarray node */
3090 			return ERR_PTR(err);
3091 		}
3092 
3093 filler:
3094 		if (filler)
3095 			err = filler(data, page);
3096 		else
3097 			err = mapping->a_ops->readpage(data, page);
3098 
3099 		if (err < 0) {
3100 			put_page(page);
3101 			return ERR_PTR(err);
3102 		}
3103 
3104 		page = wait_on_page_read(page);
3105 		if (IS_ERR(page))
3106 			return page;
3107 		goto out;
3108 	}
3109 	if (PageUptodate(page))
3110 		goto out;
3111 
3112 	/*
3113 	 * Page is not up to date and may be locked due to one of the following
3114 	 * case a: Page is being filled and the page lock is held
3115 	 * case b: Read/write error clearing the page uptodate status
3116 	 * case c: Truncation in progress (page locked)
3117 	 * case d: Reclaim in progress
3118 	 *
3119 	 * Case a, the page will be up to date when the page is unlocked.
3120 	 *    There is no need to serialise on the page lock here as the page
3121 	 *    is pinned so the lock gives no additional protection. Even if the
3122 	 *    page is truncated, the data is still valid if PageUptodate as
3123 	 *    it's a race vs truncate race.
3124 	 * Case b, the page will not be up to date
3125 	 * Case c, the page may be truncated but in itself, the data may still
3126 	 *    be valid after IO completes as it's a read vs truncate race. The
3127 	 *    operation must restart if the page is not uptodate on unlock but
3128 	 *    otherwise serialising on page lock to stabilise the mapping gives
3129 	 *    no additional guarantees to the caller as the page lock is
3130 	 *    released before return.
3131 	 * Case d, similar to truncation. If reclaim holds the page lock, it
3132 	 *    will be a race with remove_mapping that determines if the mapping
3133 	 *    is valid on unlock but otherwise the data is valid and there is
3134 	 *    no need to serialise with page lock.
3135 	 *
3136 	 * As the page lock gives no additional guarantee, we optimistically
3137 	 * wait on the page to be unlocked and check if it's up to date and
3138 	 * use the page if it is. Otherwise, the page lock is required to
3139 	 * distinguish between the different cases. The motivation is that we
3140 	 * avoid spurious serialisations and wakeups when multiple processes
3141 	 * wait on the same page for IO to complete.
3142 	 */
3143 	wait_on_page_locked(page);
3144 	if (PageUptodate(page))
3145 		goto out;
3146 
3147 	/* Distinguish between all the cases under the safety of the lock */
3148 	lock_page(page);
3149 
3150 	/* Case c or d, restart the operation */
3151 	if (!page->mapping) {
3152 		unlock_page(page);
3153 		put_page(page);
3154 		goto repeat;
3155 	}
3156 
3157 	/* Someone else locked and filled the page in a very small window */
3158 	if (PageUptodate(page)) {
3159 		unlock_page(page);
3160 		goto out;
3161 	}
3162 
3163 	/*
3164 	 * A previous I/O error may have been due to temporary
3165 	 * failures.
3166 	 * Clear page error before actual read, PG_error will be
3167 	 * set again if read page fails.
3168 	 */
3169 	ClearPageError(page);
3170 	goto filler;
3171 
3172 out:
3173 	mark_page_accessed(page);
3174 	return page;
3175 }
3176 
3177 /**
3178  * read_cache_page - read into page cache, fill it if needed
3179  * @mapping:	the page's address_space
3180  * @index:	the page index
3181  * @filler:	function to perform the read
3182  * @data:	first arg to filler(data, page) function, often left as NULL
3183  *
3184  * Read into the page cache. If a page already exists, and PageUptodate() is
3185  * not set, try to fill the page and wait for it to become unlocked.
3186  *
3187  * If the page does not get brought uptodate, return -EIO.
3188  *
3189  * Return: up to date page on success, ERR_PTR() on failure.
3190  */
3191 struct page *read_cache_page(struct address_space *mapping,
3192 				pgoff_t index,
3193 				int (*filler)(void *, struct page *),
3194 				void *data)
3195 {
3196 	return do_read_cache_page(mapping, index, filler, data,
3197 			mapping_gfp_mask(mapping));
3198 }
3199 EXPORT_SYMBOL(read_cache_page);
3200 
3201 /**
3202  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3203  * @mapping:	the page's address_space
3204  * @index:	the page index
3205  * @gfp:	the page allocator flags to use if allocating
3206  *
3207  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3208  * any new page allocations done using the specified allocation flags.
3209  *
3210  * If the page does not get brought uptodate, return -EIO.
3211  *
3212  * Return: up to date page on success, ERR_PTR() on failure.
3213  */
3214 struct page *read_cache_page_gfp(struct address_space *mapping,
3215 				pgoff_t index,
3216 				gfp_t gfp)
3217 {
3218 	return do_read_cache_page(mapping, index, NULL, NULL, gfp);
3219 }
3220 EXPORT_SYMBOL(read_cache_page_gfp);
3221 
3222 int pagecache_write_begin(struct file *file, struct address_space *mapping,
3223 				loff_t pos, unsigned len, unsigned flags,
3224 				struct page **pagep, void **fsdata)
3225 {
3226 	const struct address_space_operations *aops = mapping->a_ops;
3227 
3228 	return aops->write_begin(file, mapping, pos, len, flags,
3229 							pagep, fsdata);
3230 }
3231 EXPORT_SYMBOL(pagecache_write_begin);
3232 
3233 int pagecache_write_end(struct file *file, struct address_space *mapping,
3234 				loff_t pos, unsigned len, unsigned copied,
3235 				struct page *page, void *fsdata)
3236 {
3237 	const struct address_space_operations *aops = mapping->a_ops;
3238 
3239 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3240 }
3241 EXPORT_SYMBOL(pagecache_write_end);
3242 
3243 /*
3244  * Warn about a page cache invalidation failure during a direct I/O write.
3245  */
3246 void dio_warn_stale_pagecache(struct file *filp)
3247 {
3248 	static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3249 	char pathname[128];
3250 	char *path;
3251 
3252 	errseq_set(&filp->f_mapping->wb_err, -EIO);
3253 	if (__ratelimit(&_rs)) {
3254 		path = file_path(filp, pathname, sizeof(pathname));
3255 		if (IS_ERR(path))
3256 			path = "(unknown)";
3257 		pr_crit("Page cache invalidation failure on direct I/O.  Possible data corruption due to collision with buffered I/O!\n");
3258 		pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3259 			current->comm);
3260 	}
3261 }
3262 
3263 ssize_t
3264 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3265 {
3266 	struct file	*file = iocb->ki_filp;
3267 	struct address_space *mapping = file->f_mapping;
3268 	struct inode	*inode = mapping->host;
3269 	loff_t		pos = iocb->ki_pos;
3270 	ssize_t		written;
3271 	size_t		write_len;
3272 	pgoff_t		end;
3273 
3274 	write_len = iov_iter_count(from);
3275 	end = (pos + write_len - 1) >> PAGE_SHIFT;
3276 
3277 	if (iocb->ki_flags & IOCB_NOWAIT) {
3278 		/* If there are pages to writeback, return */
3279 		if (filemap_range_has_page(file->f_mapping, pos,
3280 					   pos + write_len - 1))
3281 			return -EAGAIN;
3282 	} else {
3283 		written = filemap_write_and_wait_range(mapping, pos,
3284 							pos + write_len - 1);
3285 		if (written)
3286 			goto out;
3287 	}
3288 
3289 	/*
3290 	 * After a write we want buffered reads to be sure to go to disk to get
3291 	 * the new data.  We invalidate clean cached page from the region we're
3292 	 * about to write.  We do this *before* the write so that we can return
3293 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
3294 	 */
3295 	written = invalidate_inode_pages2_range(mapping,
3296 					pos >> PAGE_SHIFT, end);
3297 	/*
3298 	 * If a page can not be invalidated, return 0 to fall back
3299 	 * to buffered write.
3300 	 */
3301 	if (written) {
3302 		if (written == -EBUSY)
3303 			return 0;
3304 		goto out;
3305 	}
3306 
3307 	written = mapping->a_ops->direct_IO(iocb, from);
3308 
3309 	/*
3310 	 * Finally, try again to invalidate clean pages which might have been
3311 	 * cached by non-direct readahead, or faulted in by get_user_pages()
3312 	 * if the source of the write was an mmap'ed region of the file
3313 	 * we're writing.  Either one is a pretty crazy thing to do,
3314 	 * so we don't support it 100%.  If this invalidation
3315 	 * fails, tough, the write still worked...
3316 	 *
3317 	 * Most of the time we do not need this since dio_complete() will do
3318 	 * the invalidation for us. However there are some file systems that
3319 	 * do not end up with dio_complete() being called, so let's not break
3320 	 * them by removing it completely.
3321 	 *
3322 	 * Noticeable example is a blkdev_direct_IO().
3323 	 *
3324 	 * Skip invalidation for async writes or if mapping has no pages.
3325 	 */
3326 	if (written > 0 && mapping->nrpages &&
3327 	    invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3328 		dio_warn_stale_pagecache(file);
3329 
3330 	if (written > 0) {
3331 		pos += written;
3332 		write_len -= written;
3333 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3334 			i_size_write(inode, pos);
3335 			mark_inode_dirty(inode);
3336 		}
3337 		iocb->ki_pos = pos;
3338 	}
3339 	iov_iter_revert(from, write_len - iov_iter_count(from));
3340 out:
3341 	return written;
3342 }
3343 EXPORT_SYMBOL(generic_file_direct_write);
3344 
3345 /*
3346  * Find or create a page at the given pagecache position. Return the locked
3347  * page. This function is specifically for buffered writes.
3348  */
3349 struct page *grab_cache_page_write_begin(struct address_space *mapping,
3350 					pgoff_t index, unsigned flags)
3351 {
3352 	struct page *page;
3353 	int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3354 
3355 	if (flags & AOP_FLAG_NOFS)
3356 		fgp_flags |= FGP_NOFS;
3357 
3358 	page = pagecache_get_page(mapping, index, fgp_flags,
3359 			mapping_gfp_mask(mapping));
3360 	if (page)
3361 		wait_for_stable_page(page);
3362 
3363 	return page;
3364 }
3365 EXPORT_SYMBOL(grab_cache_page_write_begin);
3366 
3367 ssize_t generic_perform_write(struct file *file,
3368 				struct iov_iter *i, loff_t pos)
3369 {
3370 	struct address_space *mapping = file->f_mapping;
3371 	const struct address_space_operations *a_ops = mapping->a_ops;
3372 	long status = 0;
3373 	ssize_t written = 0;
3374 	unsigned int flags = 0;
3375 
3376 	do {
3377 		struct page *page;
3378 		unsigned long offset;	/* Offset into pagecache page */
3379 		unsigned long bytes;	/* Bytes to write to page */
3380 		size_t copied;		/* Bytes copied from user */
3381 		void *fsdata;
3382 
3383 		offset = (pos & (PAGE_SIZE - 1));
3384 		bytes = min_t(unsigned long, PAGE_SIZE - offset,
3385 						iov_iter_count(i));
3386 
3387 again:
3388 		/*
3389 		 * Bring in the user page that we will copy from _first_.
3390 		 * Otherwise there's a nasty deadlock on copying from the
3391 		 * same page as we're writing to, without it being marked
3392 		 * up-to-date.
3393 		 *
3394 		 * Not only is this an optimisation, but it is also required
3395 		 * to check that the address is actually valid, when atomic
3396 		 * usercopies are used, below.
3397 		 */
3398 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3399 			status = -EFAULT;
3400 			break;
3401 		}
3402 
3403 		if (fatal_signal_pending(current)) {
3404 			status = -EINTR;
3405 			break;
3406 		}
3407 
3408 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3409 						&page, &fsdata);
3410 		if (unlikely(status < 0))
3411 			break;
3412 
3413 		if (mapping_writably_mapped(mapping))
3414 			flush_dcache_page(page);
3415 
3416 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
3417 		flush_dcache_page(page);
3418 
3419 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
3420 						page, fsdata);
3421 		if (unlikely(status < 0))
3422 			break;
3423 		copied = status;
3424 
3425 		cond_resched();
3426 
3427 		iov_iter_advance(i, copied);
3428 		if (unlikely(copied == 0)) {
3429 			/*
3430 			 * If we were unable to copy any data at all, we must
3431 			 * fall back to a single segment length write.
3432 			 *
3433 			 * If we didn't fallback here, we could livelock
3434 			 * because not all segments in the iov can be copied at
3435 			 * once without a pagefault.
3436 			 */
3437 			bytes = min_t(unsigned long, PAGE_SIZE - offset,
3438 						iov_iter_single_seg_count(i));
3439 			goto again;
3440 		}
3441 		pos += copied;
3442 		written += copied;
3443 
3444 		balance_dirty_pages_ratelimited(mapping);
3445 	} while (iov_iter_count(i));
3446 
3447 	return written ? written : status;
3448 }
3449 EXPORT_SYMBOL(generic_perform_write);
3450 
3451 /**
3452  * __generic_file_write_iter - write data to a file
3453  * @iocb:	IO state structure (file, offset, etc.)
3454  * @from:	iov_iter with data to write
3455  *
3456  * This function does all the work needed for actually writing data to a
3457  * file. It does all basic checks, removes SUID from the file, updates
3458  * modification times and calls proper subroutines depending on whether we
3459  * do direct IO or a standard buffered write.
3460  *
3461  * It expects i_mutex to be grabbed unless we work on a block device or similar
3462  * object which does not need locking at all.
3463  *
3464  * This function does *not* take care of syncing data in case of O_SYNC write.
3465  * A caller has to handle it. This is mainly due to the fact that we want to
3466  * avoid syncing under i_mutex.
3467  *
3468  * Return:
3469  * * number of bytes written, even for truncated writes
3470  * * negative error code if no data has been written at all
3471  */
3472 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3473 {
3474 	struct file *file = iocb->ki_filp;
3475 	struct address_space * mapping = file->f_mapping;
3476 	struct inode 	*inode = mapping->host;
3477 	ssize_t		written = 0;
3478 	ssize_t		err;
3479 	ssize_t		status;
3480 
3481 	/* We can write back this queue in page reclaim */
3482 	current->backing_dev_info = inode_to_bdi(inode);
3483 	err = file_remove_privs(file);
3484 	if (err)
3485 		goto out;
3486 
3487 	err = file_update_time(file);
3488 	if (err)
3489 		goto out;
3490 
3491 	if (iocb->ki_flags & IOCB_DIRECT) {
3492 		loff_t pos, endbyte;
3493 
3494 		written = generic_file_direct_write(iocb, from);
3495 		/*
3496 		 * If the write stopped short of completing, fall back to
3497 		 * buffered writes.  Some filesystems do this for writes to
3498 		 * holes, for example.  For DAX files, a buffered write will
3499 		 * not succeed (even if it did, DAX does not handle dirty
3500 		 * page-cache pages correctly).
3501 		 */
3502 		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3503 			goto out;
3504 
3505 		status = generic_perform_write(file, from, pos = iocb->ki_pos);
3506 		/*
3507 		 * If generic_perform_write() returned a synchronous error
3508 		 * then we want to return the number of bytes which were
3509 		 * direct-written, or the error code if that was zero.  Note
3510 		 * that this differs from normal direct-io semantics, which
3511 		 * will return -EFOO even if some bytes were written.
3512 		 */
3513 		if (unlikely(status < 0)) {
3514 			err = status;
3515 			goto out;
3516 		}
3517 		/*
3518 		 * We need to ensure that the page cache pages are written to
3519 		 * disk and invalidated to preserve the expected O_DIRECT
3520 		 * semantics.
3521 		 */
3522 		endbyte = pos + status - 1;
3523 		err = filemap_write_and_wait_range(mapping, pos, endbyte);
3524 		if (err == 0) {
3525 			iocb->ki_pos = endbyte + 1;
3526 			written += status;
3527 			invalidate_mapping_pages(mapping,
3528 						 pos >> PAGE_SHIFT,
3529 						 endbyte >> PAGE_SHIFT);
3530 		} else {
3531 			/*
3532 			 * We don't know how much we wrote, so just return
3533 			 * the number of bytes which were direct-written
3534 			 */
3535 		}
3536 	} else {
3537 		written = generic_perform_write(file, from, iocb->ki_pos);
3538 		if (likely(written > 0))
3539 			iocb->ki_pos += written;
3540 	}
3541 out:
3542 	current->backing_dev_info = NULL;
3543 	return written ? written : err;
3544 }
3545 EXPORT_SYMBOL(__generic_file_write_iter);
3546 
3547 /**
3548  * generic_file_write_iter - write data to a file
3549  * @iocb:	IO state structure
3550  * @from:	iov_iter with data to write
3551  *
3552  * This is a wrapper around __generic_file_write_iter() to be used by most
3553  * filesystems. It takes care of syncing the file in case of O_SYNC file
3554  * and acquires i_mutex as needed.
3555  * Return:
3556  * * negative error code if no data has been written at all of
3557  *   vfs_fsync_range() failed for a synchronous write
3558  * * number of bytes written, even for truncated writes
3559  */
3560 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3561 {
3562 	struct file *file = iocb->ki_filp;
3563 	struct inode *inode = file->f_mapping->host;
3564 	ssize_t ret;
3565 
3566 	inode_lock(inode);
3567 	ret = generic_write_checks(iocb, from);
3568 	if (ret > 0)
3569 		ret = __generic_file_write_iter(iocb, from);
3570 	inode_unlock(inode);
3571 
3572 	if (ret > 0)
3573 		ret = generic_write_sync(iocb, ret);
3574 	return ret;
3575 }
3576 EXPORT_SYMBOL(generic_file_write_iter);
3577 
3578 /**
3579  * try_to_release_page() - release old fs-specific metadata on a page
3580  *
3581  * @page: the page which the kernel is trying to free
3582  * @gfp_mask: memory allocation flags (and I/O mode)
3583  *
3584  * The address_space is to try to release any data against the page
3585  * (presumably at page->private).
3586  *
3587  * This may also be called if PG_fscache is set on a page, indicating that the
3588  * page is known to the local caching routines.
3589  *
3590  * The @gfp_mask argument specifies whether I/O may be performed to release
3591  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3592  *
3593  * Return: %1 if the release was successful, otherwise return zero.
3594  */
3595 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3596 {
3597 	struct address_space * const mapping = page->mapping;
3598 
3599 	BUG_ON(!PageLocked(page));
3600 	if (PageWriteback(page))
3601 		return 0;
3602 
3603 	if (mapping && mapping->a_ops->releasepage)
3604 		return mapping->a_ops->releasepage(page, gfp_mask);
3605 	return try_to_free_buffers(page);
3606 }
3607 
3608 EXPORT_SYMBOL(try_to_release_page);
3609