xref: /openbmc/linux/mm/filemap.c (revision 367b8112)
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/compiler.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include <linux/mm_inline.h> /* for page_is_file_cache() */
37 #include "internal.h"
38 
39 /*
40  * FIXME: remove all knowledge of the buffer layer from the core VM
41  */
42 #include <linux/buffer_head.h> /* for generic_osync_inode */
43 
44 #include <asm/mman.h>
45 
46 
47 /*
48  * Shared mappings implemented 30.11.1994. It's not fully working yet,
49  * though.
50  *
51  * Shared mappings now work. 15.8.1995  Bruno.
52  *
53  * finished 'unifying' the page and buffer cache and SMP-threaded the
54  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
55  *
56  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
57  */
58 
59 /*
60  * Lock ordering:
61  *
62  *  ->i_mmap_lock		(vmtruncate)
63  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
64  *      ->swap_lock		(exclusive_swap_page, others)
65  *        ->mapping->tree_lock
66  *
67  *  ->i_mutex
68  *    ->i_mmap_lock		(truncate->unmap_mapping_range)
69  *
70  *  ->mmap_sem
71  *    ->i_mmap_lock
72  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
73  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
74  *
75  *  ->mmap_sem
76  *    ->lock_page		(access_process_vm)
77  *
78  *  ->i_mutex			(generic_file_buffered_write)
79  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
80  *
81  *  ->i_mutex
82  *    ->i_alloc_sem             (various)
83  *
84  *  ->inode_lock
85  *    ->sb_lock			(fs/fs-writeback.c)
86  *    ->mapping->tree_lock	(__sync_single_inode)
87  *
88  *  ->i_mmap_lock
89  *    ->anon_vma.lock		(vma_adjust)
90  *
91  *  ->anon_vma.lock
92  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
93  *
94  *  ->page_table_lock or pte_lock
95  *    ->swap_lock		(try_to_unmap_one)
96  *    ->private_lock		(try_to_unmap_one)
97  *    ->tree_lock		(try_to_unmap_one)
98  *    ->zone.lru_lock		(follow_page->mark_page_accessed)
99  *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
100  *    ->private_lock		(page_remove_rmap->set_page_dirty)
101  *    ->tree_lock		(page_remove_rmap->set_page_dirty)
102  *    ->inode_lock		(page_remove_rmap->set_page_dirty)
103  *    ->inode_lock		(zap_pte_range->set_page_dirty)
104  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
105  *
106  *  ->task->proc_lock
107  *    ->dcache_lock		(proc_pid_lookup)
108  */
109 
110 /*
111  * Remove a page from the page cache and free it. Caller has to make
112  * sure the page is locked and that nobody else uses it - or that usage
113  * is safe.  The caller must hold the mapping's tree_lock.
114  */
115 void __remove_from_page_cache(struct page *page)
116 {
117 	struct address_space *mapping = page->mapping;
118 
119 	radix_tree_delete(&mapping->page_tree, page->index);
120 	page->mapping = NULL;
121 	mapping->nrpages--;
122 	__dec_zone_page_state(page, NR_FILE_PAGES);
123 	BUG_ON(page_mapped(page));
124 	mem_cgroup_uncharge_cache_page(page);
125 
126 	/*
127 	 * Some filesystems seem to re-dirty the page even after
128 	 * the VM has canceled the dirty bit (eg ext3 journaling).
129 	 *
130 	 * Fix it up by doing a final dirty accounting check after
131 	 * having removed the page entirely.
132 	 */
133 	if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
134 		dec_zone_page_state(page, NR_FILE_DIRTY);
135 		dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
136 	}
137 }
138 
139 void remove_from_page_cache(struct page *page)
140 {
141 	struct address_space *mapping = page->mapping;
142 
143 	BUG_ON(!PageLocked(page));
144 
145 	spin_lock_irq(&mapping->tree_lock);
146 	__remove_from_page_cache(page);
147 	spin_unlock_irq(&mapping->tree_lock);
148 }
149 
150 static int sync_page(void *word)
151 {
152 	struct address_space *mapping;
153 	struct page *page;
154 
155 	page = container_of((unsigned long *)word, struct page, flags);
156 
157 	/*
158 	 * page_mapping() is being called without PG_locked held.
159 	 * Some knowledge of the state and use of the page is used to
160 	 * reduce the requirements down to a memory barrier.
161 	 * The danger here is of a stale page_mapping() return value
162 	 * indicating a struct address_space different from the one it's
163 	 * associated with when it is associated with one.
164 	 * After smp_mb(), it's either the correct page_mapping() for
165 	 * the page, or an old page_mapping() and the page's own
166 	 * page_mapping() has gone NULL.
167 	 * The ->sync_page() address_space operation must tolerate
168 	 * page_mapping() going NULL. By an amazing coincidence,
169 	 * this comes about because none of the users of the page
170 	 * in the ->sync_page() methods make essential use of the
171 	 * page_mapping(), merely passing the page down to the backing
172 	 * device's unplug functions when it's non-NULL, which in turn
173 	 * ignore it for all cases but swap, where only page_private(page) is
174 	 * of interest. When page_mapping() does go NULL, the entire
175 	 * call stack gracefully ignores the page and returns.
176 	 * -- wli
177 	 */
178 	smp_mb();
179 	mapping = page_mapping(page);
180 	if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
181 		mapping->a_ops->sync_page(page);
182 	io_schedule();
183 	return 0;
184 }
185 
186 static int sync_page_killable(void *word)
187 {
188 	sync_page(word);
189 	return fatal_signal_pending(current) ? -EINTR : 0;
190 }
191 
192 /**
193  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
194  * @mapping:	address space structure to write
195  * @start:	offset in bytes where the range starts
196  * @end:	offset in bytes where the range ends (inclusive)
197  * @sync_mode:	enable synchronous operation
198  *
199  * Start writeback against all of a mapping's dirty pages that lie
200  * within the byte offsets <start, end> inclusive.
201  *
202  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
203  * opposed to a regular memory cleansing writeback.  The difference between
204  * these two operations is that if a dirty page/buffer is encountered, it must
205  * be waited upon, and not just skipped over.
206  */
207 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
208 				loff_t end, int sync_mode)
209 {
210 	int ret;
211 	struct writeback_control wbc = {
212 		.sync_mode = sync_mode,
213 		.nr_to_write = mapping->nrpages * 2,
214 		.range_start = start,
215 		.range_end = end,
216 	};
217 
218 	if (!mapping_cap_writeback_dirty(mapping))
219 		return 0;
220 
221 	ret = do_writepages(mapping, &wbc);
222 	return ret;
223 }
224 
225 static inline int __filemap_fdatawrite(struct address_space *mapping,
226 	int sync_mode)
227 {
228 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
229 }
230 
231 int filemap_fdatawrite(struct address_space *mapping)
232 {
233 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
234 }
235 EXPORT_SYMBOL(filemap_fdatawrite);
236 
237 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
238 				loff_t end)
239 {
240 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
241 }
242 EXPORT_SYMBOL(filemap_fdatawrite_range);
243 
244 /**
245  * filemap_flush - mostly a non-blocking flush
246  * @mapping:	target address_space
247  *
248  * This is a mostly non-blocking flush.  Not suitable for data-integrity
249  * purposes - I/O may not be started against all dirty pages.
250  */
251 int filemap_flush(struct address_space *mapping)
252 {
253 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
254 }
255 EXPORT_SYMBOL(filemap_flush);
256 
257 /**
258  * wait_on_page_writeback_range - wait for writeback to complete
259  * @mapping:	target address_space
260  * @start:	beginning page index
261  * @end:	ending page index
262  *
263  * Wait for writeback to complete against pages indexed by start->end
264  * inclusive
265  */
266 int wait_on_page_writeback_range(struct address_space *mapping,
267 				pgoff_t start, pgoff_t end)
268 {
269 	struct pagevec pvec;
270 	int nr_pages;
271 	int ret = 0;
272 	pgoff_t index;
273 
274 	if (end < start)
275 		return 0;
276 
277 	pagevec_init(&pvec, 0);
278 	index = start;
279 	while ((index <= end) &&
280 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
281 			PAGECACHE_TAG_WRITEBACK,
282 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
283 		unsigned i;
284 
285 		for (i = 0; i < nr_pages; i++) {
286 			struct page *page = pvec.pages[i];
287 
288 			/* until radix tree lookup accepts end_index */
289 			if (page->index > end)
290 				continue;
291 
292 			wait_on_page_writeback(page);
293 			if (PageError(page))
294 				ret = -EIO;
295 		}
296 		pagevec_release(&pvec);
297 		cond_resched();
298 	}
299 
300 	/* Check for outstanding write errors */
301 	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
302 		ret = -ENOSPC;
303 	if (test_and_clear_bit(AS_EIO, &mapping->flags))
304 		ret = -EIO;
305 
306 	return ret;
307 }
308 
309 /**
310  * sync_page_range - write and wait on all pages in the passed range
311  * @inode:	target inode
312  * @mapping:	target address_space
313  * @pos:	beginning offset in pages to write
314  * @count:	number of bytes to write
315  *
316  * Write and wait upon all the pages in the passed range.  This is a "data
317  * integrity" operation.  It waits upon in-flight writeout before starting and
318  * waiting upon new writeout.  If there was an IO error, return it.
319  *
320  * We need to re-take i_mutex during the generic_osync_inode list walk because
321  * it is otherwise livelockable.
322  */
323 int sync_page_range(struct inode *inode, struct address_space *mapping,
324 			loff_t pos, loff_t count)
325 {
326 	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
327 	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
328 	int ret;
329 
330 	if (!mapping_cap_writeback_dirty(mapping) || !count)
331 		return 0;
332 	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
333 	if (ret == 0) {
334 		mutex_lock(&inode->i_mutex);
335 		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
336 		mutex_unlock(&inode->i_mutex);
337 	}
338 	if (ret == 0)
339 		ret = wait_on_page_writeback_range(mapping, start, end);
340 	return ret;
341 }
342 EXPORT_SYMBOL(sync_page_range);
343 
344 /**
345  * sync_page_range_nolock - write & wait on all pages in the passed range without locking
346  * @inode:	target inode
347  * @mapping:	target address_space
348  * @pos:	beginning offset in pages to write
349  * @count:	number of bytes to write
350  *
351  * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
352  * as it forces O_SYNC writers to different parts of the same file
353  * to be serialised right until io completion.
354  */
355 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
356 			   loff_t pos, loff_t count)
357 {
358 	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
359 	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
360 	int ret;
361 
362 	if (!mapping_cap_writeback_dirty(mapping) || !count)
363 		return 0;
364 	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
365 	if (ret == 0)
366 		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
367 	if (ret == 0)
368 		ret = wait_on_page_writeback_range(mapping, start, end);
369 	return ret;
370 }
371 EXPORT_SYMBOL(sync_page_range_nolock);
372 
373 /**
374  * filemap_fdatawait - wait for all under-writeback pages to complete
375  * @mapping: address space structure to wait for
376  *
377  * Walk the list of under-writeback pages of the given address space
378  * and wait for all of them.
379  */
380 int filemap_fdatawait(struct address_space *mapping)
381 {
382 	loff_t i_size = i_size_read(mapping->host);
383 
384 	if (i_size == 0)
385 		return 0;
386 
387 	return wait_on_page_writeback_range(mapping, 0,
388 				(i_size - 1) >> PAGE_CACHE_SHIFT);
389 }
390 EXPORT_SYMBOL(filemap_fdatawait);
391 
392 int filemap_write_and_wait(struct address_space *mapping)
393 {
394 	int err = 0;
395 
396 	if (mapping->nrpages) {
397 		err = filemap_fdatawrite(mapping);
398 		/*
399 		 * Even if the above returned error, the pages may be
400 		 * written partially (e.g. -ENOSPC), so we wait for it.
401 		 * But the -EIO is special case, it may indicate the worst
402 		 * thing (e.g. bug) happened, so we avoid waiting for it.
403 		 */
404 		if (err != -EIO) {
405 			int err2 = filemap_fdatawait(mapping);
406 			if (!err)
407 				err = err2;
408 		}
409 	}
410 	return err;
411 }
412 EXPORT_SYMBOL(filemap_write_and_wait);
413 
414 /**
415  * filemap_write_and_wait_range - write out & wait on a file range
416  * @mapping:	the address_space for the pages
417  * @lstart:	offset in bytes where the range starts
418  * @lend:	offset in bytes where the range ends (inclusive)
419  *
420  * Write out and wait upon file offsets lstart->lend, inclusive.
421  *
422  * Note that `lend' is inclusive (describes the last byte to be written) so
423  * that this function can be used to write to the very end-of-file (end = -1).
424  */
425 int filemap_write_and_wait_range(struct address_space *mapping,
426 				 loff_t lstart, loff_t lend)
427 {
428 	int err = 0;
429 
430 	if (mapping->nrpages) {
431 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
432 						 WB_SYNC_ALL);
433 		/* See comment of filemap_write_and_wait() */
434 		if (err != -EIO) {
435 			int err2 = wait_on_page_writeback_range(mapping,
436 						lstart >> PAGE_CACHE_SHIFT,
437 						lend >> PAGE_CACHE_SHIFT);
438 			if (!err)
439 				err = err2;
440 		}
441 	}
442 	return err;
443 }
444 
445 /**
446  * add_to_page_cache_locked - add a locked page to the pagecache
447  * @page:	page to add
448  * @mapping:	the page's address_space
449  * @offset:	page index
450  * @gfp_mask:	page allocation mode
451  *
452  * This function is used to add a page to the pagecache. It must be locked.
453  * This function does not add the page to the LRU.  The caller must do that.
454  */
455 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
456 		pgoff_t offset, gfp_t gfp_mask)
457 {
458 	int error;
459 
460 	VM_BUG_ON(!PageLocked(page));
461 
462 	error = mem_cgroup_cache_charge(page, current->mm,
463 					gfp_mask & ~__GFP_HIGHMEM);
464 	if (error)
465 		goto out;
466 
467 	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
468 	if (error == 0) {
469 		page_cache_get(page);
470 		page->mapping = mapping;
471 		page->index = offset;
472 
473 		spin_lock_irq(&mapping->tree_lock);
474 		error = radix_tree_insert(&mapping->page_tree, offset, page);
475 		if (likely(!error)) {
476 			mapping->nrpages++;
477 			__inc_zone_page_state(page, NR_FILE_PAGES);
478 		} else {
479 			page->mapping = NULL;
480 			mem_cgroup_uncharge_cache_page(page);
481 			page_cache_release(page);
482 		}
483 
484 		spin_unlock_irq(&mapping->tree_lock);
485 		radix_tree_preload_end();
486 	} else
487 		mem_cgroup_uncharge_cache_page(page);
488 out:
489 	return error;
490 }
491 EXPORT_SYMBOL(add_to_page_cache_locked);
492 
493 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
494 				pgoff_t offset, gfp_t gfp_mask)
495 {
496 	int ret;
497 
498 	/*
499 	 * Splice_read and readahead add shmem/tmpfs pages into the page cache
500 	 * before shmem_readpage has a chance to mark them as SwapBacked: they
501 	 * need to go on the active_anon lru below, and mem_cgroup_cache_charge
502 	 * (called in add_to_page_cache) needs to know where they're going too.
503 	 */
504 	if (mapping_cap_swap_backed(mapping))
505 		SetPageSwapBacked(page);
506 
507 	ret = add_to_page_cache(page, mapping, offset, gfp_mask);
508 	if (ret == 0) {
509 		if (page_is_file_cache(page))
510 			lru_cache_add_file(page);
511 		else
512 			lru_cache_add_active_anon(page);
513 	}
514 	return ret;
515 }
516 
517 #ifdef CONFIG_NUMA
518 struct page *__page_cache_alloc(gfp_t gfp)
519 {
520 	if (cpuset_do_page_mem_spread()) {
521 		int n = cpuset_mem_spread_node();
522 		return alloc_pages_node(n, gfp, 0);
523 	}
524 	return alloc_pages(gfp, 0);
525 }
526 EXPORT_SYMBOL(__page_cache_alloc);
527 #endif
528 
529 static int __sleep_on_page_lock(void *word)
530 {
531 	io_schedule();
532 	return 0;
533 }
534 
535 /*
536  * In order to wait for pages to become available there must be
537  * waitqueues associated with pages. By using a hash table of
538  * waitqueues where the bucket discipline is to maintain all
539  * waiters on the same queue and wake all when any of the pages
540  * become available, and for the woken contexts to check to be
541  * sure the appropriate page became available, this saves space
542  * at a cost of "thundering herd" phenomena during rare hash
543  * collisions.
544  */
545 static wait_queue_head_t *page_waitqueue(struct page *page)
546 {
547 	const struct zone *zone = page_zone(page);
548 
549 	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
550 }
551 
552 static inline void wake_up_page(struct page *page, int bit)
553 {
554 	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
555 }
556 
557 void wait_on_page_bit(struct page *page, int bit_nr)
558 {
559 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
560 
561 	if (test_bit(bit_nr, &page->flags))
562 		__wait_on_bit(page_waitqueue(page), &wait, sync_page,
563 							TASK_UNINTERRUPTIBLE);
564 }
565 EXPORT_SYMBOL(wait_on_page_bit);
566 
567 /**
568  * unlock_page - unlock a locked page
569  * @page: the page
570  *
571  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
572  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
573  * mechananism between PageLocked pages and PageWriteback pages is shared.
574  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
575  *
576  * The mb is necessary to enforce ordering between the clear_bit and the read
577  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
578  */
579 void unlock_page(struct page *page)
580 {
581 	VM_BUG_ON(!PageLocked(page));
582 	clear_bit_unlock(PG_locked, &page->flags);
583 	smp_mb__after_clear_bit();
584 	wake_up_page(page, PG_locked);
585 }
586 EXPORT_SYMBOL(unlock_page);
587 
588 /**
589  * end_page_writeback - end writeback against a page
590  * @page: the page
591  */
592 void end_page_writeback(struct page *page)
593 {
594 	if (TestClearPageReclaim(page))
595 		rotate_reclaimable_page(page);
596 
597 	if (!test_clear_page_writeback(page))
598 		BUG();
599 
600 	smp_mb__after_clear_bit();
601 	wake_up_page(page, PG_writeback);
602 }
603 EXPORT_SYMBOL(end_page_writeback);
604 
605 /**
606  * __lock_page - get a lock on the page, assuming we need to sleep to get it
607  * @page: the page to lock
608  *
609  * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary.  If some
610  * random driver's requestfn sets TASK_RUNNING, we could busywait.  However
611  * chances are that on the second loop, the block layer's plug list is empty,
612  * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
613  */
614 void __lock_page(struct page *page)
615 {
616 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
617 
618 	__wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
619 							TASK_UNINTERRUPTIBLE);
620 }
621 EXPORT_SYMBOL(__lock_page);
622 
623 int __lock_page_killable(struct page *page)
624 {
625 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
626 
627 	return __wait_on_bit_lock(page_waitqueue(page), &wait,
628 					sync_page_killable, TASK_KILLABLE);
629 }
630 
631 /**
632  * __lock_page_nosync - get a lock on the page, without calling sync_page()
633  * @page: the page to lock
634  *
635  * Variant of lock_page that does not require the caller to hold a reference
636  * on the page's mapping.
637  */
638 void __lock_page_nosync(struct page *page)
639 {
640 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
641 	__wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
642 							TASK_UNINTERRUPTIBLE);
643 }
644 
645 /**
646  * find_get_page - find and get a page reference
647  * @mapping: the address_space to search
648  * @offset: the page index
649  *
650  * Is there a pagecache struct page at the given (mapping, offset) tuple?
651  * If yes, increment its refcount and return it; if no, return NULL.
652  */
653 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
654 {
655 	void **pagep;
656 	struct page *page;
657 
658 	rcu_read_lock();
659 repeat:
660 	page = NULL;
661 	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
662 	if (pagep) {
663 		page = radix_tree_deref_slot(pagep);
664 		if (unlikely(!page || page == RADIX_TREE_RETRY))
665 			goto repeat;
666 
667 		if (!page_cache_get_speculative(page))
668 			goto repeat;
669 
670 		/*
671 		 * Has the page moved?
672 		 * This is part of the lockless pagecache protocol. See
673 		 * include/linux/pagemap.h for details.
674 		 */
675 		if (unlikely(page != *pagep)) {
676 			page_cache_release(page);
677 			goto repeat;
678 		}
679 	}
680 	rcu_read_unlock();
681 
682 	return page;
683 }
684 EXPORT_SYMBOL(find_get_page);
685 
686 /**
687  * find_lock_page - locate, pin and lock a pagecache page
688  * @mapping: the address_space to search
689  * @offset: the page index
690  *
691  * Locates the desired pagecache page, locks it, increments its reference
692  * count and returns its address.
693  *
694  * Returns zero if the page was not present. find_lock_page() may sleep.
695  */
696 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
697 {
698 	struct page *page;
699 
700 repeat:
701 	page = find_get_page(mapping, offset);
702 	if (page) {
703 		lock_page(page);
704 		/* Has the page been truncated? */
705 		if (unlikely(page->mapping != mapping)) {
706 			unlock_page(page);
707 			page_cache_release(page);
708 			goto repeat;
709 		}
710 		VM_BUG_ON(page->index != offset);
711 	}
712 	return page;
713 }
714 EXPORT_SYMBOL(find_lock_page);
715 
716 /**
717  * find_or_create_page - locate or add a pagecache page
718  * @mapping: the page's address_space
719  * @index: the page's index into the mapping
720  * @gfp_mask: page allocation mode
721  *
722  * Locates a page in the pagecache.  If the page is not present, a new page
723  * is allocated using @gfp_mask and is added to the pagecache and to the VM's
724  * LRU list.  The returned page is locked and has its reference count
725  * incremented.
726  *
727  * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
728  * allocation!
729  *
730  * find_or_create_page() returns the desired page's address, or zero on
731  * memory exhaustion.
732  */
733 struct page *find_or_create_page(struct address_space *mapping,
734 		pgoff_t index, gfp_t gfp_mask)
735 {
736 	struct page *page;
737 	int err;
738 repeat:
739 	page = find_lock_page(mapping, index);
740 	if (!page) {
741 		page = __page_cache_alloc(gfp_mask);
742 		if (!page)
743 			return NULL;
744 		err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
745 		if (unlikely(err)) {
746 			page_cache_release(page);
747 			page = NULL;
748 			if (err == -EEXIST)
749 				goto repeat;
750 		}
751 	}
752 	return page;
753 }
754 EXPORT_SYMBOL(find_or_create_page);
755 
756 /**
757  * find_get_pages - gang pagecache lookup
758  * @mapping:	The address_space to search
759  * @start:	The starting page index
760  * @nr_pages:	The maximum number of pages
761  * @pages:	Where the resulting pages are placed
762  *
763  * find_get_pages() will search for and return a group of up to
764  * @nr_pages pages in the mapping.  The pages are placed at @pages.
765  * find_get_pages() takes a reference against the returned pages.
766  *
767  * The search returns a group of mapping-contiguous pages with ascending
768  * indexes.  There may be holes in the indices due to not-present pages.
769  *
770  * find_get_pages() returns the number of pages which were found.
771  */
772 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
773 			    unsigned int nr_pages, struct page **pages)
774 {
775 	unsigned int i;
776 	unsigned int ret;
777 	unsigned int nr_found;
778 
779 	rcu_read_lock();
780 restart:
781 	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
782 				(void ***)pages, start, nr_pages);
783 	ret = 0;
784 	for (i = 0; i < nr_found; i++) {
785 		struct page *page;
786 repeat:
787 		page = radix_tree_deref_slot((void **)pages[i]);
788 		if (unlikely(!page))
789 			continue;
790 		/*
791 		 * this can only trigger if nr_found == 1, making livelock
792 		 * a non issue.
793 		 */
794 		if (unlikely(page == RADIX_TREE_RETRY))
795 			goto restart;
796 
797 		if (!page_cache_get_speculative(page))
798 			goto repeat;
799 
800 		/* Has the page moved? */
801 		if (unlikely(page != *((void **)pages[i]))) {
802 			page_cache_release(page);
803 			goto repeat;
804 		}
805 
806 		pages[ret] = page;
807 		ret++;
808 	}
809 	rcu_read_unlock();
810 	return ret;
811 }
812 
813 /**
814  * find_get_pages_contig - gang contiguous pagecache lookup
815  * @mapping:	The address_space to search
816  * @index:	The starting page index
817  * @nr_pages:	The maximum number of pages
818  * @pages:	Where the resulting pages are placed
819  *
820  * find_get_pages_contig() works exactly like find_get_pages(), except
821  * that the returned number of pages are guaranteed to be contiguous.
822  *
823  * find_get_pages_contig() returns the number of pages which were found.
824  */
825 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
826 			       unsigned int nr_pages, struct page **pages)
827 {
828 	unsigned int i;
829 	unsigned int ret;
830 	unsigned int nr_found;
831 
832 	rcu_read_lock();
833 restart:
834 	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
835 				(void ***)pages, index, nr_pages);
836 	ret = 0;
837 	for (i = 0; i < nr_found; i++) {
838 		struct page *page;
839 repeat:
840 		page = radix_tree_deref_slot((void **)pages[i]);
841 		if (unlikely(!page))
842 			continue;
843 		/*
844 		 * this can only trigger if nr_found == 1, making livelock
845 		 * a non issue.
846 		 */
847 		if (unlikely(page == RADIX_TREE_RETRY))
848 			goto restart;
849 
850 		if (page->mapping == NULL || page->index != index)
851 			break;
852 
853 		if (!page_cache_get_speculative(page))
854 			goto repeat;
855 
856 		/* Has the page moved? */
857 		if (unlikely(page != *((void **)pages[i]))) {
858 			page_cache_release(page);
859 			goto repeat;
860 		}
861 
862 		pages[ret] = page;
863 		ret++;
864 		index++;
865 	}
866 	rcu_read_unlock();
867 	return ret;
868 }
869 EXPORT_SYMBOL(find_get_pages_contig);
870 
871 /**
872  * find_get_pages_tag - find and return pages that match @tag
873  * @mapping:	the address_space to search
874  * @index:	the starting page index
875  * @tag:	the tag index
876  * @nr_pages:	the maximum number of pages
877  * @pages:	where the resulting pages are placed
878  *
879  * Like find_get_pages, except we only return pages which are tagged with
880  * @tag.   We update @index to index the next page for the traversal.
881  */
882 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
883 			int tag, unsigned int nr_pages, struct page **pages)
884 {
885 	unsigned int i;
886 	unsigned int ret;
887 	unsigned int nr_found;
888 
889 	rcu_read_lock();
890 restart:
891 	nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
892 				(void ***)pages, *index, nr_pages, tag);
893 	ret = 0;
894 	for (i = 0; i < nr_found; i++) {
895 		struct page *page;
896 repeat:
897 		page = radix_tree_deref_slot((void **)pages[i]);
898 		if (unlikely(!page))
899 			continue;
900 		/*
901 		 * this can only trigger if nr_found == 1, making livelock
902 		 * a non issue.
903 		 */
904 		if (unlikely(page == RADIX_TREE_RETRY))
905 			goto restart;
906 
907 		if (!page_cache_get_speculative(page))
908 			goto repeat;
909 
910 		/* Has the page moved? */
911 		if (unlikely(page != *((void **)pages[i]))) {
912 			page_cache_release(page);
913 			goto repeat;
914 		}
915 
916 		pages[ret] = page;
917 		ret++;
918 	}
919 	rcu_read_unlock();
920 
921 	if (ret)
922 		*index = pages[ret - 1]->index + 1;
923 
924 	return ret;
925 }
926 EXPORT_SYMBOL(find_get_pages_tag);
927 
928 /**
929  * grab_cache_page_nowait - returns locked page at given index in given cache
930  * @mapping: target address_space
931  * @index: the page index
932  *
933  * Same as grab_cache_page(), but do not wait if the page is unavailable.
934  * This is intended for speculative data generators, where the data can
935  * be regenerated if the page couldn't be grabbed.  This routine should
936  * be safe to call while holding the lock for another page.
937  *
938  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
939  * and deadlock against the caller's locked page.
940  */
941 struct page *
942 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
943 {
944 	struct page *page = find_get_page(mapping, index);
945 
946 	if (page) {
947 		if (trylock_page(page))
948 			return page;
949 		page_cache_release(page);
950 		return NULL;
951 	}
952 	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
953 	if (page && add_to_page_cache_lru(page, mapping, index, GFP_KERNEL)) {
954 		page_cache_release(page);
955 		page = NULL;
956 	}
957 	return page;
958 }
959 EXPORT_SYMBOL(grab_cache_page_nowait);
960 
961 /*
962  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
963  * a _large_ part of the i/o request. Imagine the worst scenario:
964  *
965  *      ---R__________________________________________B__________
966  *         ^ reading here                             ^ bad block(assume 4k)
967  *
968  * read(R) => miss => readahead(R...B) => media error => frustrating retries
969  * => failing the whole request => read(R) => read(R+1) =>
970  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
971  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
972  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
973  *
974  * It is going insane. Fix it by quickly scaling down the readahead size.
975  */
976 static void shrink_readahead_size_eio(struct file *filp,
977 					struct file_ra_state *ra)
978 {
979 	if (!ra->ra_pages)
980 		return;
981 
982 	ra->ra_pages /= 4;
983 }
984 
985 /**
986  * do_generic_file_read - generic file read routine
987  * @filp:	the file to read
988  * @ppos:	current file position
989  * @desc:	read_descriptor
990  * @actor:	read method
991  *
992  * This is a generic file read routine, and uses the
993  * mapping->a_ops->readpage() function for the actual low-level stuff.
994  *
995  * This is really ugly. But the goto's actually try to clarify some
996  * of the logic when it comes to error handling etc.
997  */
998 static void do_generic_file_read(struct file *filp, loff_t *ppos,
999 		read_descriptor_t *desc, read_actor_t actor)
1000 {
1001 	struct address_space *mapping = filp->f_mapping;
1002 	struct inode *inode = mapping->host;
1003 	struct file_ra_state *ra = &filp->f_ra;
1004 	pgoff_t index;
1005 	pgoff_t last_index;
1006 	pgoff_t prev_index;
1007 	unsigned long offset;      /* offset into pagecache page */
1008 	unsigned int prev_offset;
1009 	int error;
1010 
1011 	index = *ppos >> PAGE_CACHE_SHIFT;
1012 	prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1013 	prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1014 	last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1015 	offset = *ppos & ~PAGE_CACHE_MASK;
1016 
1017 	for (;;) {
1018 		struct page *page;
1019 		pgoff_t end_index;
1020 		loff_t isize;
1021 		unsigned long nr, ret;
1022 
1023 		cond_resched();
1024 find_page:
1025 		page = find_get_page(mapping, index);
1026 		if (!page) {
1027 			page_cache_sync_readahead(mapping,
1028 					ra, filp,
1029 					index, last_index - index);
1030 			page = find_get_page(mapping, index);
1031 			if (unlikely(page == NULL))
1032 				goto no_cached_page;
1033 		}
1034 		if (PageReadahead(page)) {
1035 			page_cache_async_readahead(mapping,
1036 					ra, filp, page,
1037 					index, last_index - index);
1038 		}
1039 		if (!PageUptodate(page)) {
1040 			if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1041 					!mapping->a_ops->is_partially_uptodate)
1042 				goto page_not_up_to_date;
1043 			if (!trylock_page(page))
1044 				goto page_not_up_to_date;
1045 			if (!mapping->a_ops->is_partially_uptodate(page,
1046 								desc, offset))
1047 				goto page_not_up_to_date_locked;
1048 			unlock_page(page);
1049 		}
1050 page_ok:
1051 		/*
1052 		 * i_size must be checked after we know the page is Uptodate.
1053 		 *
1054 		 * Checking i_size after the check allows us to calculate
1055 		 * the correct value for "nr", which means the zero-filled
1056 		 * part of the page is not copied back to userspace (unless
1057 		 * another truncate extends the file - this is desired though).
1058 		 */
1059 
1060 		isize = i_size_read(inode);
1061 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1062 		if (unlikely(!isize || index > end_index)) {
1063 			page_cache_release(page);
1064 			goto out;
1065 		}
1066 
1067 		/* nr is the maximum number of bytes to copy from this page */
1068 		nr = PAGE_CACHE_SIZE;
1069 		if (index == end_index) {
1070 			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1071 			if (nr <= offset) {
1072 				page_cache_release(page);
1073 				goto out;
1074 			}
1075 		}
1076 		nr = nr - offset;
1077 
1078 		/* If users can be writing to this page using arbitrary
1079 		 * virtual addresses, take care about potential aliasing
1080 		 * before reading the page on the kernel side.
1081 		 */
1082 		if (mapping_writably_mapped(mapping))
1083 			flush_dcache_page(page);
1084 
1085 		/*
1086 		 * When a sequential read accesses a page several times,
1087 		 * only mark it as accessed the first time.
1088 		 */
1089 		if (prev_index != index || offset != prev_offset)
1090 			mark_page_accessed(page);
1091 		prev_index = index;
1092 
1093 		/*
1094 		 * Ok, we have the page, and it's up-to-date, so
1095 		 * now we can copy it to user space...
1096 		 *
1097 		 * The actor routine returns how many bytes were actually used..
1098 		 * NOTE! This may not be the same as how much of a user buffer
1099 		 * we filled up (we may be padding etc), so we can only update
1100 		 * "pos" here (the actor routine has to update the user buffer
1101 		 * pointers and the remaining count).
1102 		 */
1103 		ret = actor(desc, page, offset, nr);
1104 		offset += ret;
1105 		index += offset >> PAGE_CACHE_SHIFT;
1106 		offset &= ~PAGE_CACHE_MASK;
1107 		prev_offset = offset;
1108 
1109 		page_cache_release(page);
1110 		if (ret == nr && desc->count)
1111 			continue;
1112 		goto out;
1113 
1114 page_not_up_to_date:
1115 		/* Get exclusive access to the page ... */
1116 		error = lock_page_killable(page);
1117 		if (unlikely(error))
1118 			goto readpage_error;
1119 
1120 page_not_up_to_date_locked:
1121 		/* Did it get truncated before we got the lock? */
1122 		if (!page->mapping) {
1123 			unlock_page(page);
1124 			page_cache_release(page);
1125 			continue;
1126 		}
1127 
1128 		/* Did somebody else fill it already? */
1129 		if (PageUptodate(page)) {
1130 			unlock_page(page);
1131 			goto page_ok;
1132 		}
1133 
1134 readpage:
1135 		/* Start the actual read. The read will unlock the page. */
1136 		error = mapping->a_ops->readpage(filp, page);
1137 
1138 		if (unlikely(error)) {
1139 			if (error == AOP_TRUNCATED_PAGE) {
1140 				page_cache_release(page);
1141 				goto find_page;
1142 			}
1143 			goto readpage_error;
1144 		}
1145 
1146 		if (!PageUptodate(page)) {
1147 			error = lock_page_killable(page);
1148 			if (unlikely(error))
1149 				goto readpage_error;
1150 			if (!PageUptodate(page)) {
1151 				if (page->mapping == NULL) {
1152 					/*
1153 					 * invalidate_inode_pages got it
1154 					 */
1155 					unlock_page(page);
1156 					page_cache_release(page);
1157 					goto find_page;
1158 				}
1159 				unlock_page(page);
1160 				shrink_readahead_size_eio(filp, ra);
1161 				error = -EIO;
1162 				goto readpage_error;
1163 			}
1164 			unlock_page(page);
1165 		}
1166 
1167 		goto page_ok;
1168 
1169 readpage_error:
1170 		/* UHHUH! A synchronous read error occurred. Report it */
1171 		desc->error = error;
1172 		page_cache_release(page);
1173 		goto out;
1174 
1175 no_cached_page:
1176 		/*
1177 		 * Ok, it wasn't cached, so we need to create a new
1178 		 * page..
1179 		 */
1180 		page = page_cache_alloc_cold(mapping);
1181 		if (!page) {
1182 			desc->error = -ENOMEM;
1183 			goto out;
1184 		}
1185 		error = add_to_page_cache_lru(page, mapping,
1186 						index, GFP_KERNEL);
1187 		if (error) {
1188 			page_cache_release(page);
1189 			if (error == -EEXIST)
1190 				goto find_page;
1191 			desc->error = error;
1192 			goto out;
1193 		}
1194 		goto readpage;
1195 	}
1196 
1197 out:
1198 	ra->prev_pos = prev_index;
1199 	ra->prev_pos <<= PAGE_CACHE_SHIFT;
1200 	ra->prev_pos |= prev_offset;
1201 
1202 	*ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1203 	file_accessed(filp);
1204 }
1205 
1206 int file_read_actor(read_descriptor_t *desc, struct page *page,
1207 			unsigned long offset, unsigned long size)
1208 {
1209 	char *kaddr;
1210 	unsigned long left, count = desc->count;
1211 
1212 	if (size > count)
1213 		size = count;
1214 
1215 	/*
1216 	 * Faults on the destination of a read are common, so do it before
1217 	 * taking the kmap.
1218 	 */
1219 	if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1220 		kaddr = kmap_atomic(page, KM_USER0);
1221 		left = __copy_to_user_inatomic(desc->arg.buf,
1222 						kaddr + offset, size);
1223 		kunmap_atomic(kaddr, KM_USER0);
1224 		if (left == 0)
1225 			goto success;
1226 	}
1227 
1228 	/* Do it the slow way */
1229 	kaddr = kmap(page);
1230 	left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1231 	kunmap(page);
1232 
1233 	if (left) {
1234 		size -= left;
1235 		desc->error = -EFAULT;
1236 	}
1237 success:
1238 	desc->count = count - size;
1239 	desc->written += size;
1240 	desc->arg.buf += size;
1241 	return size;
1242 }
1243 
1244 /*
1245  * Performs necessary checks before doing a write
1246  * @iov:	io vector request
1247  * @nr_segs:	number of segments in the iovec
1248  * @count:	number of bytes to write
1249  * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1250  *
1251  * Adjust number of segments and amount of bytes to write (nr_segs should be
1252  * properly initialized first). Returns appropriate error code that caller
1253  * should return or zero in case that write should be allowed.
1254  */
1255 int generic_segment_checks(const struct iovec *iov,
1256 			unsigned long *nr_segs, size_t *count, int access_flags)
1257 {
1258 	unsigned long   seg;
1259 	size_t cnt = 0;
1260 	for (seg = 0; seg < *nr_segs; seg++) {
1261 		const struct iovec *iv = &iov[seg];
1262 
1263 		/*
1264 		 * If any segment has a negative length, or the cumulative
1265 		 * length ever wraps negative then return -EINVAL.
1266 		 */
1267 		cnt += iv->iov_len;
1268 		if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1269 			return -EINVAL;
1270 		if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1271 			continue;
1272 		if (seg == 0)
1273 			return -EFAULT;
1274 		*nr_segs = seg;
1275 		cnt -= iv->iov_len;	/* This segment is no good */
1276 		break;
1277 	}
1278 	*count = cnt;
1279 	return 0;
1280 }
1281 EXPORT_SYMBOL(generic_segment_checks);
1282 
1283 /**
1284  * generic_file_aio_read - generic filesystem read routine
1285  * @iocb:	kernel I/O control block
1286  * @iov:	io vector request
1287  * @nr_segs:	number of segments in the iovec
1288  * @pos:	current file position
1289  *
1290  * This is the "read()" routine for all filesystems
1291  * that can use the page cache directly.
1292  */
1293 ssize_t
1294 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1295 		unsigned long nr_segs, loff_t pos)
1296 {
1297 	struct file *filp = iocb->ki_filp;
1298 	ssize_t retval;
1299 	unsigned long seg;
1300 	size_t count;
1301 	loff_t *ppos = &iocb->ki_pos;
1302 
1303 	count = 0;
1304 	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1305 	if (retval)
1306 		return retval;
1307 
1308 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1309 	if (filp->f_flags & O_DIRECT) {
1310 		loff_t size;
1311 		struct address_space *mapping;
1312 		struct inode *inode;
1313 
1314 		mapping = filp->f_mapping;
1315 		inode = mapping->host;
1316 		if (!count)
1317 			goto out; /* skip atime */
1318 		size = i_size_read(inode);
1319 		if (pos < size) {
1320 			retval = filemap_write_and_wait(mapping);
1321 			if (!retval) {
1322 				retval = mapping->a_ops->direct_IO(READ, iocb,
1323 							iov, pos, nr_segs);
1324 			}
1325 			if (retval > 0)
1326 				*ppos = pos + retval;
1327 			if (retval) {
1328 				file_accessed(filp);
1329 				goto out;
1330 			}
1331 		}
1332 	}
1333 
1334 	for (seg = 0; seg < nr_segs; seg++) {
1335 		read_descriptor_t desc;
1336 
1337 		desc.written = 0;
1338 		desc.arg.buf = iov[seg].iov_base;
1339 		desc.count = iov[seg].iov_len;
1340 		if (desc.count == 0)
1341 			continue;
1342 		desc.error = 0;
1343 		do_generic_file_read(filp, ppos, &desc, file_read_actor);
1344 		retval += desc.written;
1345 		if (desc.error) {
1346 			retval = retval ?: desc.error;
1347 			break;
1348 		}
1349 		if (desc.count > 0)
1350 			break;
1351 	}
1352 out:
1353 	return retval;
1354 }
1355 EXPORT_SYMBOL(generic_file_aio_read);
1356 
1357 static ssize_t
1358 do_readahead(struct address_space *mapping, struct file *filp,
1359 	     pgoff_t index, unsigned long nr)
1360 {
1361 	if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1362 		return -EINVAL;
1363 
1364 	force_page_cache_readahead(mapping, filp, index,
1365 					max_sane_readahead(nr));
1366 	return 0;
1367 }
1368 
1369 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1370 {
1371 	ssize_t ret;
1372 	struct file *file;
1373 
1374 	ret = -EBADF;
1375 	file = fget(fd);
1376 	if (file) {
1377 		if (file->f_mode & FMODE_READ) {
1378 			struct address_space *mapping = file->f_mapping;
1379 			pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1380 			pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1381 			unsigned long len = end - start + 1;
1382 			ret = do_readahead(mapping, file, start, len);
1383 		}
1384 		fput(file);
1385 	}
1386 	return ret;
1387 }
1388 
1389 #ifdef CONFIG_MMU
1390 /**
1391  * page_cache_read - adds requested page to the page cache if not already there
1392  * @file:	file to read
1393  * @offset:	page index
1394  *
1395  * This adds the requested page to the page cache if it isn't already there,
1396  * and schedules an I/O to read in its contents from disk.
1397  */
1398 static int page_cache_read(struct file *file, pgoff_t offset)
1399 {
1400 	struct address_space *mapping = file->f_mapping;
1401 	struct page *page;
1402 	int ret;
1403 
1404 	do {
1405 		page = page_cache_alloc_cold(mapping);
1406 		if (!page)
1407 			return -ENOMEM;
1408 
1409 		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1410 		if (ret == 0)
1411 			ret = mapping->a_ops->readpage(file, page);
1412 		else if (ret == -EEXIST)
1413 			ret = 0; /* losing race to add is OK */
1414 
1415 		page_cache_release(page);
1416 
1417 	} while (ret == AOP_TRUNCATED_PAGE);
1418 
1419 	return ret;
1420 }
1421 
1422 #define MMAP_LOTSAMISS  (100)
1423 
1424 /**
1425  * filemap_fault - read in file data for page fault handling
1426  * @vma:	vma in which the fault was taken
1427  * @vmf:	struct vm_fault containing details of the fault
1428  *
1429  * filemap_fault() is invoked via the vma operations vector for a
1430  * mapped memory region to read in file data during a page fault.
1431  *
1432  * The goto's are kind of ugly, but this streamlines the normal case of having
1433  * it in the page cache, and handles the special cases reasonably without
1434  * having a lot of duplicated code.
1435  */
1436 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1437 {
1438 	int error;
1439 	struct file *file = vma->vm_file;
1440 	struct address_space *mapping = file->f_mapping;
1441 	struct file_ra_state *ra = &file->f_ra;
1442 	struct inode *inode = mapping->host;
1443 	struct page *page;
1444 	pgoff_t size;
1445 	int did_readaround = 0;
1446 	int ret = 0;
1447 
1448 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1449 	if (vmf->pgoff >= size)
1450 		return VM_FAULT_SIGBUS;
1451 
1452 	/* If we don't want any read-ahead, don't bother */
1453 	if (VM_RandomReadHint(vma))
1454 		goto no_cached_page;
1455 
1456 	/*
1457 	 * Do we have something in the page cache already?
1458 	 */
1459 retry_find:
1460 	page = find_lock_page(mapping, vmf->pgoff);
1461 	/*
1462 	 * For sequential accesses, we use the generic readahead logic.
1463 	 */
1464 	if (VM_SequentialReadHint(vma)) {
1465 		if (!page) {
1466 			page_cache_sync_readahead(mapping, ra, file,
1467 							   vmf->pgoff, 1);
1468 			page = find_lock_page(mapping, vmf->pgoff);
1469 			if (!page)
1470 				goto no_cached_page;
1471 		}
1472 		if (PageReadahead(page)) {
1473 			page_cache_async_readahead(mapping, ra, file, page,
1474 							   vmf->pgoff, 1);
1475 		}
1476 	}
1477 
1478 	if (!page) {
1479 		unsigned long ra_pages;
1480 
1481 		ra->mmap_miss++;
1482 
1483 		/*
1484 		 * Do we miss much more than hit in this file? If so,
1485 		 * stop bothering with read-ahead. It will only hurt.
1486 		 */
1487 		if (ra->mmap_miss > MMAP_LOTSAMISS)
1488 			goto no_cached_page;
1489 
1490 		/*
1491 		 * To keep the pgmajfault counter straight, we need to
1492 		 * check did_readaround, as this is an inner loop.
1493 		 */
1494 		if (!did_readaround) {
1495 			ret = VM_FAULT_MAJOR;
1496 			count_vm_event(PGMAJFAULT);
1497 		}
1498 		did_readaround = 1;
1499 		ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1500 		if (ra_pages) {
1501 			pgoff_t start = 0;
1502 
1503 			if (vmf->pgoff > ra_pages / 2)
1504 				start = vmf->pgoff - ra_pages / 2;
1505 			do_page_cache_readahead(mapping, file, start, ra_pages);
1506 		}
1507 		page = find_lock_page(mapping, vmf->pgoff);
1508 		if (!page)
1509 			goto no_cached_page;
1510 	}
1511 
1512 	if (!did_readaround)
1513 		ra->mmap_miss--;
1514 
1515 	/*
1516 	 * We have a locked page in the page cache, now we need to check
1517 	 * that it's up-to-date. If not, it is going to be due to an error.
1518 	 */
1519 	if (unlikely(!PageUptodate(page)))
1520 		goto page_not_uptodate;
1521 
1522 	/* Must recheck i_size under page lock */
1523 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1524 	if (unlikely(vmf->pgoff >= size)) {
1525 		unlock_page(page);
1526 		page_cache_release(page);
1527 		return VM_FAULT_SIGBUS;
1528 	}
1529 
1530 	/*
1531 	 * Found the page and have a reference on it.
1532 	 */
1533 	mark_page_accessed(page);
1534 	ra->prev_pos = (loff_t)page->index << PAGE_CACHE_SHIFT;
1535 	vmf->page = page;
1536 	return ret | VM_FAULT_LOCKED;
1537 
1538 no_cached_page:
1539 	/*
1540 	 * We're only likely to ever get here if MADV_RANDOM is in
1541 	 * effect.
1542 	 */
1543 	error = page_cache_read(file, vmf->pgoff);
1544 
1545 	/*
1546 	 * The page we want has now been added to the page cache.
1547 	 * In the unlikely event that someone removed it in the
1548 	 * meantime, we'll just come back here and read it again.
1549 	 */
1550 	if (error >= 0)
1551 		goto retry_find;
1552 
1553 	/*
1554 	 * An error return from page_cache_read can result if the
1555 	 * system is low on memory, or a problem occurs while trying
1556 	 * to schedule I/O.
1557 	 */
1558 	if (error == -ENOMEM)
1559 		return VM_FAULT_OOM;
1560 	return VM_FAULT_SIGBUS;
1561 
1562 page_not_uptodate:
1563 	/* IO error path */
1564 	if (!did_readaround) {
1565 		ret = VM_FAULT_MAJOR;
1566 		count_vm_event(PGMAJFAULT);
1567 	}
1568 
1569 	/*
1570 	 * Umm, take care of errors if the page isn't up-to-date.
1571 	 * Try to re-read it _once_. We do this synchronously,
1572 	 * because there really aren't any performance issues here
1573 	 * and we need to check for errors.
1574 	 */
1575 	ClearPageError(page);
1576 	error = mapping->a_ops->readpage(file, page);
1577 	if (!error) {
1578 		wait_on_page_locked(page);
1579 		if (!PageUptodate(page))
1580 			error = -EIO;
1581 	}
1582 	page_cache_release(page);
1583 
1584 	if (!error || error == AOP_TRUNCATED_PAGE)
1585 		goto retry_find;
1586 
1587 	/* Things didn't work out. Return zero to tell the mm layer so. */
1588 	shrink_readahead_size_eio(file, ra);
1589 	return VM_FAULT_SIGBUS;
1590 }
1591 EXPORT_SYMBOL(filemap_fault);
1592 
1593 struct vm_operations_struct generic_file_vm_ops = {
1594 	.fault		= filemap_fault,
1595 };
1596 
1597 /* This is used for a general mmap of a disk file */
1598 
1599 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1600 {
1601 	struct address_space *mapping = file->f_mapping;
1602 
1603 	if (!mapping->a_ops->readpage)
1604 		return -ENOEXEC;
1605 	file_accessed(file);
1606 	vma->vm_ops = &generic_file_vm_ops;
1607 	vma->vm_flags |= VM_CAN_NONLINEAR;
1608 	return 0;
1609 }
1610 
1611 /*
1612  * This is for filesystems which do not implement ->writepage.
1613  */
1614 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1615 {
1616 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1617 		return -EINVAL;
1618 	return generic_file_mmap(file, vma);
1619 }
1620 #else
1621 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1622 {
1623 	return -ENOSYS;
1624 }
1625 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1626 {
1627 	return -ENOSYS;
1628 }
1629 #endif /* CONFIG_MMU */
1630 
1631 EXPORT_SYMBOL(generic_file_mmap);
1632 EXPORT_SYMBOL(generic_file_readonly_mmap);
1633 
1634 static struct page *__read_cache_page(struct address_space *mapping,
1635 				pgoff_t index,
1636 				int (*filler)(void *,struct page*),
1637 				void *data)
1638 {
1639 	struct page *page;
1640 	int err;
1641 repeat:
1642 	page = find_get_page(mapping, index);
1643 	if (!page) {
1644 		page = page_cache_alloc_cold(mapping);
1645 		if (!page)
1646 			return ERR_PTR(-ENOMEM);
1647 		err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1648 		if (unlikely(err)) {
1649 			page_cache_release(page);
1650 			if (err == -EEXIST)
1651 				goto repeat;
1652 			/* Presumably ENOMEM for radix tree node */
1653 			return ERR_PTR(err);
1654 		}
1655 		err = filler(data, page);
1656 		if (err < 0) {
1657 			page_cache_release(page);
1658 			page = ERR_PTR(err);
1659 		}
1660 	}
1661 	return page;
1662 }
1663 
1664 /**
1665  * read_cache_page_async - read into page cache, fill it if needed
1666  * @mapping:	the page's address_space
1667  * @index:	the page index
1668  * @filler:	function to perform the read
1669  * @data:	destination for read data
1670  *
1671  * Same as read_cache_page, but don't wait for page to become unlocked
1672  * after submitting it to the filler.
1673  *
1674  * Read into the page cache. If a page already exists, and PageUptodate() is
1675  * not set, try to fill the page but don't wait for it to become unlocked.
1676  *
1677  * If the page does not get brought uptodate, return -EIO.
1678  */
1679 struct page *read_cache_page_async(struct address_space *mapping,
1680 				pgoff_t index,
1681 				int (*filler)(void *,struct page*),
1682 				void *data)
1683 {
1684 	struct page *page;
1685 	int err;
1686 
1687 retry:
1688 	page = __read_cache_page(mapping, index, filler, data);
1689 	if (IS_ERR(page))
1690 		return page;
1691 	if (PageUptodate(page))
1692 		goto out;
1693 
1694 	lock_page(page);
1695 	if (!page->mapping) {
1696 		unlock_page(page);
1697 		page_cache_release(page);
1698 		goto retry;
1699 	}
1700 	if (PageUptodate(page)) {
1701 		unlock_page(page);
1702 		goto out;
1703 	}
1704 	err = filler(data, page);
1705 	if (err < 0) {
1706 		page_cache_release(page);
1707 		return ERR_PTR(err);
1708 	}
1709 out:
1710 	mark_page_accessed(page);
1711 	return page;
1712 }
1713 EXPORT_SYMBOL(read_cache_page_async);
1714 
1715 /**
1716  * read_cache_page - read into page cache, fill it if needed
1717  * @mapping:	the page's address_space
1718  * @index:	the page index
1719  * @filler:	function to perform the read
1720  * @data:	destination for read data
1721  *
1722  * Read into the page cache. If a page already exists, and PageUptodate() is
1723  * not set, try to fill the page then wait for it to become unlocked.
1724  *
1725  * If the page does not get brought uptodate, return -EIO.
1726  */
1727 struct page *read_cache_page(struct address_space *mapping,
1728 				pgoff_t index,
1729 				int (*filler)(void *,struct page*),
1730 				void *data)
1731 {
1732 	struct page *page;
1733 
1734 	page = read_cache_page_async(mapping, index, filler, data);
1735 	if (IS_ERR(page))
1736 		goto out;
1737 	wait_on_page_locked(page);
1738 	if (!PageUptodate(page)) {
1739 		page_cache_release(page);
1740 		page = ERR_PTR(-EIO);
1741 	}
1742  out:
1743 	return page;
1744 }
1745 EXPORT_SYMBOL(read_cache_page);
1746 
1747 /*
1748  * The logic we want is
1749  *
1750  *	if suid or (sgid and xgrp)
1751  *		remove privs
1752  */
1753 int should_remove_suid(struct dentry *dentry)
1754 {
1755 	mode_t mode = dentry->d_inode->i_mode;
1756 	int kill = 0;
1757 
1758 	/* suid always must be killed */
1759 	if (unlikely(mode & S_ISUID))
1760 		kill = ATTR_KILL_SUID;
1761 
1762 	/*
1763 	 * sgid without any exec bits is just a mandatory locking mark; leave
1764 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1765 	 */
1766 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1767 		kill |= ATTR_KILL_SGID;
1768 
1769 	if (unlikely(kill && !capable(CAP_FSETID)))
1770 		return kill;
1771 
1772 	return 0;
1773 }
1774 EXPORT_SYMBOL(should_remove_suid);
1775 
1776 static int __remove_suid(struct dentry *dentry, int kill)
1777 {
1778 	struct iattr newattrs;
1779 
1780 	newattrs.ia_valid = ATTR_FORCE | kill;
1781 	return notify_change(dentry, &newattrs);
1782 }
1783 
1784 int file_remove_suid(struct file *file)
1785 {
1786 	struct dentry *dentry = file->f_path.dentry;
1787 	int killsuid = should_remove_suid(dentry);
1788 	int killpriv = security_inode_need_killpriv(dentry);
1789 	int error = 0;
1790 
1791 	if (killpriv < 0)
1792 		return killpriv;
1793 	if (killpriv)
1794 		error = security_inode_killpriv(dentry);
1795 	if (!error && killsuid)
1796 		error = __remove_suid(dentry, killsuid);
1797 
1798 	return error;
1799 }
1800 EXPORT_SYMBOL(file_remove_suid);
1801 
1802 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1803 			const struct iovec *iov, size_t base, size_t bytes)
1804 {
1805 	size_t copied = 0, left = 0;
1806 
1807 	while (bytes) {
1808 		char __user *buf = iov->iov_base + base;
1809 		int copy = min(bytes, iov->iov_len - base);
1810 
1811 		base = 0;
1812 		left = __copy_from_user_inatomic_nocache(vaddr, buf, copy);
1813 		copied += copy;
1814 		bytes -= copy;
1815 		vaddr += copy;
1816 		iov++;
1817 
1818 		if (unlikely(left))
1819 			break;
1820 	}
1821 	return copied - left;
1822 }
1823 
1824 /*
1825  * Copy as much as we can into the page and return the number of bytes which
1826  * were sucessfully copied.  If a fault is encountered then return the number of
1827  * bytes which were copied.
1828  */
1829 size_t iov_iter_copy_from_user_atomic(struct page *page,
1830 		struct iov_iter *i, unsigned long offset, size_t bytes)
1831 {
1832 	char *kaddr;
1833 	size_t copied;
1834 
1835 	BUG_ON(!in_atomic());
1836 	kaddr = kmap_atomic(page, KM_USER0);
1837 	if (likely(i->nr_segs == 1)) {
1838 		int left;
1839 		char __user *buf = i->iov->iov_base + i->iov_offset;
1840 		left = __copy_from_user_inatomic_nocache(kaddr + offset,
1841 							buf, bytes);
1842 		copied = bytes - left;
1843 	} else {
1844 		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1845 						i->iov, i->iov_offset, bytes);
1846 	}
1847 	kunmap_atomic(kaddr, KM_USER0);
1848 
1849 	return copied;
1850 }
1851 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1852 
1853 /*
1854  * This has the same sideeffects and return value as
1855  * iov_iter_copy_from_user_atomic().
1856  * The difference is that it attempts to resolve faults.
1857  * Page must not be locked.
1858  */
1859 size_t iov_iter_copy_from_user(struct page *page,
1860 		struct iov_iter *i, unsigned long offset, size_t bytes)
1861 {
1862 	char *kaddr;
1863 	size_t copied;
1864 
1865 	kaddr = kmap(page);
1866 	if (likely(i->nr_segs == 1)) {
1867 		int left;
1868 		char __user *buf = i->iov->iov_base + i->iov_offset;
1869 		left = __copy_from_user_nocache(kaddr + offset, buf, bytes);
1870 		copied = bytes - left;
1871 	} else {
1872 		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1873 						i->iov, i->iov_offset, bytes);
1874 	}
1875 	kunmap(page);
1876 	return copied;
1877 }
1878 EXPORT_SYMBOL(iov_iter_copy_from_user);
1879 
1880 void iov_iter_advance(struct iov_iter *i, size_t bytes)
1881 {
1882 	BUG_ON(i->count < bytes);
1883 
1884 	if (likely(i->nr_segs == 1)) {
1885 		i->iov_offset += bytes;
1886 		i->count -= bytes;
1887 	} else {
1888 		const struct iovec *iov = i->iov;
1889 		size_t base = i->iov_offset;
1890 
1891 		/*
1892 		 * The !iov->iov_len check ensures we skip over unlikely
1893 		 * zero-length segments (without overruning the iovec).
1894 		 */
1895 		while (bytes || unlikely(i->count && !iov->iov_len)) {
1896 			int copy;
1897 
1898 			copy = min(bytes, iov->iov_len - base);
1899 			BUG_ON(!i->count || i->count < copy);
1900 			i->count -= copy;
1901 			bytes -= copy;
1902 			base += copy;
1903 			if (iov->iov_len == base) {
1904 				iov++;
1905 				base = 0;
1906 			}
1907 		}
1908 		i->iov = iov;
1909 		i->iov_offset = base;
1910 	}
1911 }
1912 EXPORT_SYMBOL(iov_iter_advance);
1913 
1914 /*
1915  * Fault in the first iovec of the given iov_iter, to a maximum length
1916  * of bytes. Returns 0 on success, or non-zero if the memory could not be
1917  * accessed (ie. because it is an invalid address).
1918  *
1919  * writev-intensive code may want this to prefault several iovecs -- that
1920  * would be possible (callers must not rely on the fact that _only_ the
1921  * first iovec will be faulted with the current implementation).
1922  */
1923 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
1924 {
1925 	char __user *buf = i->iov->iov_base + i->iov_offset;
1926 	bytes = min(bytes, i->iov->iov_len - i->iov_offset);
1927 	return fault_in_pages_readable(buf, bytes);
1928 }
1929 EXPORT_SYMBOL(iov_iter_fault_in_readable);
1930 
1931 /*
1932  * Return the count of just the current iov_iter segment.
1933  */
1934 size_t iov_iter_single_seg_count(struct iov_iter *i)
1935 {
1936 	const struct iovec *iov = i->iov;
1937 	if (i->nr_segs == 1)
1938 		return i->count;
1939 	else
1940 		return min(i->count, iov->iov_len - i->iov_offset);
1941 }
1942 EXPORT_SYMBOL(iov_iter_single_seg_count);
1943 
1944 /*
1945  * Performs necessary checks before doing a write
1946  *
1947  * Can adjust writing position or amount of bytes to write.
1948  * Returns appropriate error code that caller should return or
1949  * zero in case that write should be allowed.
1950  */
1951 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1952 {
1953 	struct inode *inode = file->f_mapping->host;
1954 	unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1955 
1956         if (unlikely(*pos < 0))
1957                 return -EINVAL;
1958 
1959 	if (!isblk) {
1960 		/* FIXME: this is for backwards compatibility with 2.4 */
1961 		if (file->f_flags & O_APPEND)
1962                         *pos = i_size_read(inode);
1963 
1964 		if (limit != RLIM_INFINITY) {
1965 			if (*pos >= limit) {
1966 				send_sig(SIGXFSZ, current, 0);
1967 				return -EFBIG;
1968 			}
1969 			if (*count > limit - (typeof(limit))*pos) {
1970 				*count = limit - (typeof(limit))*pos;
1971 			}
1972 		}
1973 	}
1974 
1975 	/*
1976 	 * LFS rule
1977 	 */
1978 	if (unlikely(*pos + *count > MAX_NON_LFS &&
1979 				!(file->f_flags & O_LARGEFILE))) {
1980 		if (*pos >= MAX_NON_LFS) {
1981 			return -EFBIG;
1982 		}
1983 		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1984 			*count = MAX_NON_LFS - (unsigned long)*pos;
1985 		}
1986 	}
1987 
1988 	/*
1989 	 * Are we about to exceed the fs block limit ?
1990 	 *
1991 	 * If we have written data it becomes a short write.  If we have
1992 	 * exceeded without writing data we send a signal and return EFBIG.
1993 	 * Linus frestrict idea will clean these up nicely..
1994 	 */
1995 	if (likely(!isblk)) {
1996 		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
1997 			if (*count || *pos > inode->i_sb->s_maxbytes) {
1998 				return -EFBIG;
1999 			}
2000 			/* zero-length writes at ->s_maxbytes are OK */
2001 		}
2002 
2003 		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2004 			*count = inode->i_sb->s_maxbytes - *pos;
2005 	} else {
2006 #ifdef CONFIG_BLOCK
2007 		loff_t isize;
2008 		if (bdev_read_only(I_BDEV(inode)))
2009 			return -EPERM;
2010 		isize = i_size_read(inode);
2011 		if (*pos >= isize) {
2012 			if (*count || *pos > isize)
2013 				return -ENOSPC;
2014 		}
2015 
2016 		if (*pos + *count > isize)
2017 			*count = isize - *pos;
2018 #else
2019 		return -EPERM;
2020 #endif
2021 	}
2022 	return 0;
2023 }
2024 EXPORT_SYMBOL(generic_write_checks);
2025 
2026 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2027 				loff_t pos, unsigned len, unsigned flags,
2028 				struct page **pagep, void **fsdata)
2029 {
2030 	const struct address_space_operations *aops = mapping->a_ops;
2031 
2032 	return aops->write_begin(file, mapping, pos, len, flags,
2033 							pagep, fsdata);
2034 }
2035 EXPORT_SYMBOL(pagecache_write_begin);
2036 
2037 int pagecache_write_end(struct file *file, struct address_space *mapping,
2038 				loff_t pos, unsigned len, unsigned copied,
2039 				struct page *page, void *fsdata)
2040 {
2041 	const struct address_space_operations *aops = mapping->a_ops;
2042 
2043 	mark_page_accessed(page);
2044 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2045 }
2046 EXPORT_SYMBOL(pagecache_write_end);
2047 
2048 ssize_t
2049 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2050 		unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2051 		size_t count, size_t ocount)
2052 {
2053 	struct file	*file = iocb->ki_filp;
2054 	struct address_space *mapping = file->f_mapping;
2055 	struct inode	*inode = mapping->host;
2056 	ssize_t		written;
2057 	size_t		write_len;
2058 	pgoff_t		end;
2059 
2060 	if (count != ocount)
2061 		*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2062 
2063 	/*
2064 	 * Unmap all mmappings of the file up-front.
2065 	 *
2066 	 * This will cause any pte dirty bits to be propagated into the
2067 	 * pageframes for the subsequent filemap_write_and_wait().
2068 	 */
2069 	write_len = iov_length(iov, *nr_segs);
2070 	end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2071 	if (mapping_mapped(mapping))
2072 		unmap_mapping_range(mapping, pos, write_len, 0);
2073 
2074 	written = filemap_write_and_wait(mapping);
2075 	if (written)
2076 		goto out;
2077 
2078 	/*
2079 	 * After a write we want buffered reads to be sure to go to disk to get
2080 	 * the new data.  We invalidate clean cached page from the region we're
2081 	 * about to write.  We do this *before* the write so that we can return
2082 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2083 	 */
2084 	if (mapping->nrpages) {
2085 		written = invalidate_inode_pages2_range(mapping,
2086 					pos >> PAGE_CACHE_SHIFT, end);
2087 		/*
2088 		 * If a page can not be invalidated, return 0 to fall back
2089 		 * to buffered write.
2090 		 */
2091 		if (written) {
2092 			if (written == -EBUSY)
2093 				return 0;
2094 			goto out;
2095 		}
2096 	}
2097 
2098 	written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2099 
2100 	/*
2101 	 * Finally, try again to invalidate clean pages which might have been
2102 	 * cached by non-direct readahead, or faulted in by get_user_pages()
2103 	 * if the source of the write was an mmap'ed region of the file
2104 	 * we're writing.  Either one is a pretty crazy thing to do,
2105 	 * so we don't support it 100%.  If this invalidation
2106 	 * fails, tough, the write still worked...
2107 	 */
2108 	if (mapping->nrpages) {
2109 		invalidate_inode_pages2_range(mapping,
2110 					      pos >> PAGE_CACHE_SHIFT, end);
2111 	}
2112 
2113 	if (written > 0) {
2114 		loff_t end = pos + written;
2115 		if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2116 			i_size_write(inode,  end);
2117 			mark_inode_dirty(inode);
2118 		}
2119 		*ppos = end;
2120 	}
2121 
2122 	/*
2123 	 * Sync the fs metadata but not the minor inode changes and
2124 	 * of course not the data as we did direct DMA for the IO.
2125 	 * i_mutex is held, which protects generic_osync_inode() from
2126 	 * livelocking.  AIO O_DIRECT ops attempt to sync metadata here.
2127 	 */
2128 out:
2129 	if ((written >= 0 || written == -EIOCBQUEUED) &&
2130 	    ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2131 		int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
2132 		if (err < 0)
2133 			written = err;
2134 	}
2135 	return written;
2136 }
2137 EXPORT_SYMBOL(generic_file_direct_write);
2138 
2139 /*
2140  * Find or create a page at the given pagecache position. Return the locked
2141  * page. This function is specifically for buffered writes.
2142  */
2143 struct page *__grab_cache_page(struct address_space *mapping, pgoff_t index)
2144 {
2145 	int status;
2146 	struct page *page;
2147 repeat:
2148 	page = find_lock_page(mapping, index);
2149 	if (likely(page))
2150 		return page;
2151 
2152 	page = page_cache_alloc(mapping);
2153 	if (!page)
2154 		return NULL;
2155 	status = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
2156 	if (unlikely(status)) {
2157 		page_cache_release(page);
2158 		if (status == -EEXIST)
2159 			goto repeat;
2160 		return NULL;
2161 	}
2162 	return page;
2163 }
2164 EXPORT_SYMBOL(__grab_cache_page);
2165 
2166 static ssize_t generic_perform_write(struct file *file,
2167 				struct iov_iter *i, loff_t pos)
2168 {
2169 	struct address_space *mapping = file->f_mapping;
2170 	const struct address_space_operations *a_ops = mapping->a_ops;
2171 	long status = 0;
2172 	ssize_t written = 0;
2173 	unsigned int flags = 0;
2174 
2175 	/*
2176 	 * Copies from kernel address space cannot fail (NFSD is a big user).
2177 	 */
2178 	if (segment_eq(get_fs(), KERNEL_DS))
2179 		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2180 
2181 	do {
2182 		struct page *page;
2183 		pgoff_t index;		/* Pagecache index for current page */
2184 		unsigned long offset;	/* Offset into pagecache page */
2185 		unsigned long bytes;	/* Bytes to write to page */
2186 		size_t copied;		/* Bytes copied from user */
2187 		void *fsdata;
2188 
2189 		offset = (pos & (PAGE_CACHE_SIZE - 1));
2190 		index = pos >> PAGE_CACHE_SHIFT;
2191 		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2192 						iov_iter_count(i));
2193 
2194 again:
2195 
2196 		/*
2197 		 * Bring in the user page that we will copy from _first_.
2198 		 * Otherwise there's a nasty deadlock on copying from the
2199 		 * same page as we're writing to, without it being marked
2200 		 * up-to-date.
2201 		 *
2202 		 * Not only is this an optimisation, but it is also required
2203 		 * to check that the address is actually valid, when atomic
2204 		 * usercopies are used, below.
2205 		 */
2206 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2207 			status = -EFAULT;
2208 			break;
2209 		}
2210 
2211 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2212 						&page, &fsdata);
2213 		if (unlikely(status))
2214 			break;
2215 
2216 		pagefault_disable();
2217 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2218 		pagefault_enable();
2219 		flush_dcache_page(page);
2220 
2221 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2222 						page, fsdata);
2223 		if (unlikely(status < 0))
2224 			break;
2225 		copied = status;
2226 
2227 		cond_resched();
2228 
2229 		iov_iter_advance(i, copied);
2230 		if (unlikely(copied == 0)) {
2231 			/*
2232 			 * If we were unable to copy any data at all, we must
2233 			 * fall back to a single segment length write.
2234 			 *
2235 			 * If we didn't fallback here, we could livelock
2236 			 * because not all segments in the iov can be copied at
2237 			 * once without a pagefault.
2238 			 */
2239 			bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2240 						iov_iter_single_seg_count(i));
2241 			goto again;
2242 		}
2243 		pos += copied;
2244 		written += copied;
2245 
2246 		balance_dirty_pages_ratelimited(mapping);
2247 
2248 	} while (iov_iter_count(i));
2249 
2250 	return written ? written : status;
2251 }
2252 
2253 ssize_t
2254 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2255 		unsigned long nr_segs, loff_t pos, loff_t *ppos,
2256 		size_t count, ssize_t written)
2257 {
2258 	struct file *file = iocb->ki_filp;
2259 	struct address_space *mapping = file->f_mapping;
2260 	const struct address_space_operations *a_ops = mapping->a_ops;
2261 	struct inode *inode = mapping->host;
2262 	ssize_t status;
2263 	struct iov_iter i;
2264 
2265 	iov_iter_init(&i, iov, nr_segs, count, written);
2266 	status = generic_perform_write(file, &i, pos);
2267 
2268 	if (likely(status >= 0)) {
2269 		written += status;
2270 		*ppos = pos + status;
2271 
2272 		/*
2273 		 * For now, when the user asks for O_SYNC, we'll actually give
2274 		 * O_DSYNC
2275 		 */
2276 		if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2277 			if (!a_ops->writepage || !is_sync_kiocb(iocb))
2278 				status = generic_osync_inode(inode, mapping,
2279 						OSYNC_METADATA|OSYNC_DATA);
2280 		}
2281   	}
2282 
2283 	/*
2284 	 * If we get here for O_DIRECT writes then we must have fallen through
2285 	 * to buffered writes (block instantiation inside i_size).  So we sync
2286 	 * the file data here, to try to honour O_DIRECT expectations.
2287 	 */
2288 	if (unlikely(file->f_flags & O_DIRECT) && written)
2289 		status = filemap_write_and_wait(mapping);
2290 
2291 	return written ? written : status;
2292 }
2293 EXPORT_SYMBOL(generic_file_buffered_write);
2294 
2295 static ssize_t
2296 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2297 				unsigned long nr_segs, loff_t *ppos)
2298 {
2299 	struct file *file = iocb->ki_filp;
2300 	struct address_space * mapping = file->f_mapping;
2301 	size_t ocount;		/* original count */
2302 	size_t count;		/* after file limit checks */
2303 	struct inode 	*inode = mapping->host;
2304 	loff_t		pos;
2305 	ssize_t		written;
2306 	ssize_t		err;
2307 
2308 	ocount = 0;
2309 	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2310 	if (err)
2311 		return err;
2312 
2313 	count = ocount;
2314 	pos = *ppos;
2315 
2316 	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2317 
2318 	/* We can write back this queue in page reclaim */
2319 	current->backing_dev_info = mapping->backing_dev_info;
2320 	written = 0;
2321 
2322 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2323 	if (err)
2324 		goto out;
2325 
2326 	if (count == 0)
2327 		goto out;
2328 
2329 	err = file_remove_suid(file);
2330 	if (err)
2331 		goto out;
2332 
2333 	file_update_time(file);
2334 
2335 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2336 	if (unlikely(file->f_flags & O_DIRECT)) {
2337 		loff_t endbyte;
2338 		ssize_t written_buffered;
2339 
2340 		written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2341 							ppos, count, ocount);
2342 		if (written < 0 || written == count)
2343 			goto out;
2344 		/*
2345 		 * direct-io write to a hole: fall through to buffered I/O
2346 		 * for completing the rest of the request.
2347 		 */
2348 		pos += written;
2349 		count -= written;
2350 		written_buffered = generic_file_buffered_write(iocb, iov,
2351 						nr_segs, pos, ppos, count,
2352 						written);
2353 		/*
2354 		 * If generic_file_buffered_write() retuned a synchronous error
2355 		 * then we want to return the number of bytes which were
2356 		 * direct-written, or the error code if that was zero.  Note
2357 		 * that this differs from normal direct-io semantics, which
2358 		 * will return -EFOO even if some bytes were written.
2359 		 */
2360 		if (written_buffered < 0) {
2361 			err = written_buffered;
2362 			goto out;
2363 		}
2364 
2365 		/*
2366 		 * We need to ensure that the page cache pages are written to
2367 		 * disk and invalidated to preserve the expected O_DIRECT
2368 		 * semantics.
2369 		 */
2370 		endbyte = pos + written_buffered - written - 1;
2371 		err = do_sync_mapping_range(file->f_mapping, pos, endbyte,
2372 					    SYNC_FILE_RANGE_WAIT_BEFORE|
2373 					    SYNC_FILE_RANGE_WRITE|
2374 					    SYNC_FILE_RANGE_WAIT_AFTER);
2375 		if (err == 0) {
2376 			written = written_buffered;
2377 			invalidate_mapping_pages(mapping,
2378 						 pos >> PAGE_CACHE_SHIFT,
2379 						 endbyte >> PAGE_CACHE_SHIFT);
2380 		} else {
2381 			/*
2382 			 * We don't know how much we wrote, so just return
2383 			 * the number of bytes which were direct-written
2384 			 */
2385 		}
2386 	} else {
2387 		written = generic_file_buffered_write(iocb, iov, nr_segs,
2388 				pos, ppos, count, written);
2389 	}
2390 out:
2391 	current->backing_dev_info = NULL;
2392 	return written ? written : err;
2393 }
2394 
2395 ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
2396 		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
2397 {
2398 	struct file *file = iocb->ki_filp;
2399 	struct address_space *mapping = file->f_mapping;
2400 	struct inode *inode = mapping->host;
2401 	ssize_t ret;
2402 
2403 	BUG_ON(iocb->ki_pos != pos);
2404 
2405 	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2406 			&iocb->ki_pos);
2407 
2408 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2409 		ssize_t err;
2410 
2411 		err = sync_page_range_nolock(inode, mapping, pos, ret);
2412 		if (err < 0)
2413 			ret = err;
2414 	}
2415 	return ret;
2416 }
2417 EXPORT_SYMBOL(generic_file_aio_write_nolock);
2418 
2419 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2420 		unsigned long nr_segs, loff_t pos)
2421 {
2422 	struct file *file = iocb->ki_filp;
2423 	struct address_space *mapping = file->f_mapping;
2424 	struct inode *inode = mapping->host;
2425 	ssize_t ret;
2426 
2427 	BUG_ON(iocb->ki_pos != pos);
2428 
2429 	mutex_lock(&inode->i_mutex);
2430 	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2431 			&iocb->ki_pos);
2432 	mutex_unlock(&inode->i_mutex);
2433 
2434 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2435 		ssize_t err;
2436 
2437 		err = sync_page_range(inode, mapping, pos, ret);
2438 		if (err < 0)
2439 			ret = err;
2440 	}
2441 	return ret;
2442 }
2443 EXPORT_SYMBOL(generic_file_aio_write);
2444 
2445 /**
2446  * try_to_release_page() - release old fs-specific metadata on a page
2447  *
2448  * @page: the page which the kernel is trying to free
2449  * @gfp_mask: memory allocation flags (and I/O mode)
2450  *
2451  * The address_space is to try to release any data against the page
2452  * (presumably at page->private).  If the release was successful, return `1'.
2453  * Otherwise return zero.
2454  *
2455  * The @gfp_mask argument specifies whether I/O may be performed to release
2456  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2457  *
2458  */
2459 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2460 {
2461 	struct address_space * const mapping = page->mapping;
2462 
2463 	BUG_ON(!PageLocked(page));
2464 	if (PageWriteback(page))
2465 		return 0;
2466 
2467 	if (mapping && mapping->a_ops->releasepage)
2468 		return mapping->a_ops->releasepage(page, gfp_mask);
2469 	return try_to_free_buffers(page);
2470 }
2471 
2472 EXPORT_SYMBOL(try_to_release_page);
2473