1 /* 2 * linux/mm/filemap.c 3 * 4 * Copyright (C) 1994-1999 Linus Torvalds 5 */ 6 7 /* 8 * This file handles the generic file mmap semantics used by 9 * most "normal" filesystems (but you don't /have/ to use this: 10 * the NFS filesystem used to do this differently, for example) 11 */ 12 #include <linux/module.h> 13 #include <linux/slab.h> 14 #include <linux/compiler.h> 15 #include <linux/fs.h> 16 #include <linux/uaccess.h> 17 #include <linux/aio.h> 18 #include <linux/capability.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/mm.h> 21 #include <linux/swap.h> 22 #include <linux/mman.h> 23 #include <linux/pagemap.h> 24 #include <linux/file.h> 25 #include <linux/uio.h> 26 #include <linux/hash.h> 27 #include <linux/writeback.h> 28 #include <linux/backing-dev.h> 29 #include <linux/pagevec.h> 30 #include <linux/blkdev.h> 31 #include <linux/security.h> 32 #include <linux/syscalls.h> 33 #include <linux/cpuset.h> 34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */ 35 #include <linux/memcontrol.h> 36 #include <linux/mm_inline.h> /* for page_is_file_cache() */ 37 #include "internal.h" 38 39 /* 40 * FIXME: remove all knowledge of the buffer layer from the core VM 41 */ 42 #include <linux/buffer_head.h> /* for generic_osync_inode */ 43 44 #include <asm/mman.h> 45 46 47 /* 48 * Shared mappings implemented 30.11.1994. It's not fully working yet, 49 * though. 50 * 51 * Shared mappings now work. 15.8.1995 Bruno. 52 * 53 * finished 'unifying' the page and buffer cache and SMP-threaded the 54 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 55 * 56 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 57 */ 58 59 /* 60 * Lock ordering: 61 * 62 * ->i_mmap_lock (vmtruncate) 63 * ->private_lock (__free_pte->__set_page_dirty_buffers) 64 * ->swap_lock (exclusive_swap_page, others) 65 * ->mapping->tree_lock 66 * 67 * ->i_mutex 68 * ->i_mmap_lock (truncate->unmap_mapping_range) 69 * 70 * ->mmap_sem 71 * ->i_mmap_lock 72 * ->page_table_lock or pte_lock (various, mainly in memory.c) 73 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock) 74 * 75 * ->mmap_sem 76 * ->lock_page (access_process_vm) 77 * 78 * ->i_mutex (generic_file_buffered_write) 79 * ->mmap_sem (fault_in_pages_readable->do_page_fault) 80 * 81 * ->i_mutex 82 * ->i_alloc_sem (various) 83 * 84 * ->inode_lock 85 * ->sb_lock (fs/fs-writeback.c) 86 * ->mapping->tree_lock (__sync_single_inode) 87 * 88 * ->i_mmap_lock 89 * ->anon_vma.lock (vma_adjust) 90 * 91 * ->anon_vma.lock 92 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 93 * 94 * ->page_table_lock or pte_lock 95 * ->swap_lock (try_to_unmap_one) 96 * ->private_lock (try_to_unmap_one) 97 * ->tree_lock (try_to_unmap_one) 98 * ->zone.lru_lock (follow_page->mark_page_accessed) 99 * ->zone.lru_lock (check_pte_range->isolate_lru_page) 100 * ->private_lock (page_remove_rmap->set_page_dirty) 101 * ->tree_lock (page_remove_rmap->set_page_dirty) 102 * ->inode_lock (page_remove_rmap->set_page_dirty) 103 * ->inode_lock (zap_pte_range->set_page_dirty) 104 * ->private_lock (zap_pte_range->__set_page_dirty_buffers) 105 * 106 * ->task->proc_lock 107 * ->dcache_lock (proc_pid_lookup) 108 */ 109 110 /* 111 * Remove a page from the page cache and free it. Caller has to make 112 * sure the page is locked and that nobody else uses it - or that usage 113 * is safe. The caller must hold the mapping's tree_lock. 114 */ 115 void __remove_from_page_cache(struct page *page) 116 { 117 struct address_space *mapping = page->mapping; 118 119 radix_tree_delete(&mapping->page_tree, page->index); 120 page->mapping = NULL; 121 mapping->nrpages--; 122 __dec_zone_page_state(page, NR_FILE_PAGES); 123 BUG_ON(page_mapped(page)); 124 mem_cgroup_uncharge_cache_page(page); 125 126 /* 127 * Some filesystems seem to re-dirty the page even after 128 * the VM has canceled the dirty bit (eg ext3 journaling). 129 * 130 * Fix it up by doing a final dirty accounting check after 131 * having removed the page entirely. 132 */ 133 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) { 134 dec_zone_page_state(page, NR_FILE_DIRTY); 135 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE); 136 } 137 } 138 139 void remove_from_page_cache(struct page *page) 140 { 141 struct address_space *mapping = page->mapping; 142 143 BUG_ON(!PageLocked(page)); 144 145 spin_lock_irq(&mapping->tree_lock); 146 __remove_from_page_cache(page); 147 spin_unlock_irq(&mapping->tree_lock); 148 } 149 150 static int sync_page(void *word) 151 { 152 struct address_space *mapping; 153 struct page *page; 154 155 page = container_of((unsigned long *)word, struct page, flags); 156 157 /* 158 * page_mapping() is being called without PG_locked held. 159 * Some knowledge of the state and use of the page is used to 160 * reduce the requirements down to a memory barrier. 161 * The danger here is of a stale page_mapping() return value 162 * indicating a struct address_space different from the one it's 163 * associated with when it is associated with one. 164 * After smp_mb(), it's either the correct page_mapping() for 165 * the page, or an old page_mapping() and the page's own 166 * page_mapping() has gone NULL. 167 * The ->sync_page() address_space operation must tolerate 168 * page_mapping() going NULL. By an amazing coincidence, 169 * this comes about because none of the users of the page 170 * in the ->sync_page() methods make essential use of the 171 * page_mapping(), merely passing the page down to the backing 172 * device's unplug functions when it's non-NULL, which in turn 173 * ignore it for all cases but swap, where only page_private(page) is 174 * of interest. When page_mapping() does go NULL, the entire 175 * call stack gracefully ignores the page and returns. 176 * -- wli 177 */ 178 smp_mb(); 179 mapping = page_mapping(page); 180 if (mapping && mapping->a_ops && mapping->a_ops->sync_page) 181 mapping->a_ops->sync_page(page); 182 io_schedule(); 183 return 0; 184 } 185 186 static int sync_page_killable(void *word) 187 { 188 sync_page(word); 189 return fatal_signal_pending(current) ? -EINTR : 0; 190 } 191 192 /** 193 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 194 * @mapping: address space structure to write 195 * @start: offset in bytes where the range starts 196 * @end: offset in bytes where the range ends (inclusive) 197 * @sync_mode: enable synchronous operation 198 * 199 * Start writeback against all of a mapping's dirty pages that lie 200 * within the byte offsets <start, end> inclusive. 201 * 202 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 203 * opposed to a regular memory cleansing writeback. The difference between 204 * these two operations is that if a dirty page/buffer is encountered, it must 205 * be waited upon, and not just skipped over. 206 */ 207 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 208 loff_t end, int sync_mode) 209 { 210 int ret; 211 struct writeback_control wbc = { 212 .sync_mode = sync_mode, 213 .nr_to_write = mapping->nrpages * 2, 214 .range_start = start, 215 .range_end = end, 216 }; 217 218 if (!mapping_cap_writeback_dirty(mapping)) 219 return 0; 220 221 ret = do_writepages(mapping, &wbc); 222 return ret; 223 } 224 225 static inline int __filemap_fdatawrite(struct address_space *mapping, 226 int sync_mode) 227 { 228 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 229 } 230 231 int filemap_fdatawrite(struct address_space *mapping) 232 { 233 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 234 } 235 EXPORT_SYMBOL(filemap_fdatawrite); 236 237 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 238 loff_t end) 239 { 240 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 241 } 242 EXPORT_SYMBOL(filemap_fdatawrite_range); 243 244 /** 245 * filemap_flush - mostly a non-blocking flush 246 * @mapping: target address_space 247 * 248 * This is a mostly non-blocking flush. Not suitable for data-integrity 249 * purposes - I/O may not be started against all dirty pages. 250 */ 251 int filemap_flush(struct address_space *mapping) 252 { 253 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 254 } 255 EXPORT_SYMBOL(filemap_flush); 256 257 /** 258 * wait_on_page_writeback_range - wait for writeback to complete 259 * @mapping: target address_space 260 * @start: beginning page index 261 * @end: ending page index 262 * 263 * Wait for writeback to complete against pages indexed by start->end 264 * inclusive 265 */ 266 int wait_on_page_writeback_range(struct address_space *mapping, 267 pgoff_t start, pgoff_t end) 268 { 269 struct pagevec pvec; 270 int nr_pages; 271 int ret = 0; 272 pgoff_t index; 273 274 if (end < start) 275 return 0; 276 277 pagevec_init(&pvec, 0); 278 index = start; 279 while ((index <= end) && 280 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 281 PAGECACHE_TAG_WRITEBACK, 282 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) { 283 unsigned i; 284 285 for (i = 0; i < nr_pages; i++) { 286 struct page *page = pvec.pages[i]; 287 288 /* until radix tree lookup accepts end_index */ 289 if (page->index > end) 290 continue; 291 292 wait_on_page_writeback(page); 293 if (PageError(page)) 294 ret = -EIO; 295 } 296 pagevec_release(&pvec); 297 cond_resched(); 298 } 299 300 /* Check for outstanding write errors */ 301 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 302 ret = -ENOSPC; 303 if (test_and_clear_bit(AS_EIO, &mapping->flags)) 304 ret = -EIO; 305 306 return ret; 307 } 308 309 /** 310 * sync_page_range - write and wait on all pages in the passed range 311 * @inode: target inode 312 * @mapping: target address_space 313 * @pos: beginning offset in pages to write 314 * @count: number of bytes to write 315 * 316 * Write and wait upon all the pages in the passed range. This is a "data 317 * integrity" operation. It waits upon in-flight writeout before starting and 318 * waiting upon new writeout. If there was an IO error, return it. 319 * 320 * We need to re-take i_mutex during the generic_osync_inode list walk because 321 * it is otherwise livelockable. 322 */ 323 int sync_page_range(struct inode *inode, struct address_space *mapping, 324 loff_t pos, loff_t count) 325 { 326 pgoff_t start = pos >> PAGE_CACHE_SHIFT; 327 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT; 328 int ret; 329 330 if (!mapping_cap_writeback_dirty(mapping) || !count) 331 return 0; 332 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1); 333 if (ret == 0) { 334 mutex_lock(&inode->i_mutex); 335 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA); 336 mutex_unlock(&inode->i_mutex); 337 } 338 if (ret == 0) 339 ret = wait_on_page_writeback_range(mapping, start, end); 340 return ret; 341 } 342 EXPORT_SYMBOL(sync_page_range); 343 344 /** 345 * sync_page_range_nolock - write & wait on all pages in the passed range without locking 346 * @inode: target inode 347 * @mapping: target address_space 348 * @pos: beginning offset in pages to write 349 * @count: number of bytes to write 350 * 351 * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea 352 * as it forces O_SYNC writers to different parts of the same file 353 * to be serialised right until io completion. 354 */ 355 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping, 356 loff_t pos, loff_t count) 357 { 358 pgoff_t start = pos >> PAGE_CACHE_SHIFT; 359 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT; 360 int ret; 361 362 if (!mapping_cap_writeback_dirty(mapping) || !count) 363 return 0; 364 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1); 365 if (ret == 0) 366 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA); 367 if (ret == 0) 368 ret = wait_on_page_writeback_range(mapping, start, end); 369 return ret; 370 } 371 EXPORT_SYMBOL(sync_page_range_nolock); 372 373 /** 374 * filemap_fdatawait - wait for all under-writeback pages to complete 375 * @mapping: address space structure to wait for 376 * 377 * Walk the list of under-writeback pages of the given address space 378 * and wait for all of them. 379 */ 380 int filemap_fdatawait(struct address_space *mapping) 381 { 382 loff_t i_size = i_size_read(mapping->host); 383 384 if (i_size == 0) 385 return 0; 386 387 return wait_on_page_writeback_range(mapping, 0, 388 (i_size - 1) >> PAGE_CACHE_SHIFT); 389 } 390 EXPORT_SYMBOL(filemap_fdatawait); 391 392 int filemap_write_and_wait(struct address_space *mapping) 393 { 394 int err = 0; 395 396 if (mapping->nrpages) { 397 err = filemap_fdatawrite(mapping); 398 /* 399 * Even if the above returned error, the pages may be 400 * written partially (e.g. -ENOSPC), so we wait for it. 401 * But the -EIO is special case, it may indicate the worst 402 * thing (e.g. bug) happened, so we avoid waiting for it. 403 */ 404 if (err != -EIO) { 405 int err2 = filemap_fdatawait(mapping); 406 if (!err) 407 err = err2; 408 } 409 } 410 return err; 411 } 412 EXPORT_SYMBOL(filemap_write_and_wait); 413 414 /** 415 * filemap_write_and_wait_range - write out & wait on a file range 416 * @mapping: the address_space for the pages 417 * @lstart: offset in bytes where the range starts 418 * @lend: offset in bytes where the range ends (inclusive) 419 * 420 * Write out and wait upon file offsets lstart->lend, inclusive. 421 * 422 * Note that `lend' is inclusive (describes the last byte to be written) so 423 * that this function can be used to write to the very end-of-file (end = -1). 424 */ 425 int filemap_write_and_wait_range(struct address_space *mapping, 426 loff_t lstart, loff_t lend) 427 { 428 int err = 0; 429 430 if (mapping->nrpages) { 431 err = __filemap_fdatawrite_range(mapping, lstart, lend, 432 WB_SYNC_ALL); 433 /* See comment of filemap_write_and_wait() */ 434 if (err != -EIO) { 435 int err2 = wait_on_page_writeback_range(mapping, 436 lstart >> PAGE_CACHE_SHIFT, 437 lend >> PAGE_CACHE_SHIFT); 438 if (!err) 439 err = err2; 440 } 441 } 442 return err; 443 } 444 445 /** 446 * add_to_page_cache_locked - add a locked page to the pagecache 447 * @page: page to add 448 * @mapping: the page's address_space 449 * @offset: page index 450 * @gfp_mask: page allocation mode 451 * 452 * This function is used to add a page to the pagecache. It must be locked. 453 * This function does not add the page to the LRU. The caller must do that. 454 */ 455 int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 456 pgoff_t offset, gfp_t gfp_mask) 457 { 458 int error; 459 460 VM_BUG_ON(!PageLocked(page)); 461 462 error = mem_cgroup_cache_charge(page, current->mm, 463 gfp_mask & ~__GFP_HIGHMEM); 464 if (error) 465 goto out; 466 467 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM); 468 if (error == 0) { 469 page_cache_get(page); 470 page->mapping = mapping; 471 page->index = offset; 472 473 spin_lock_irq(&mapping->tree_lock); 474 error = radix_tree_insert(&mapping->page_tree, offset, page); 475 if (likely(!error)) { 476 mapping->nrpages++; 477 __inc_zone_page_state(page, NR_FILE_PAGES); 478 } else { 479 page->mapping = NULL; 480 mem_cgroup_uncharge_cache_page(page); 481 page_cache_release(page); 482 } 483 484 spin_unlock_irq(&mapping->tree_lock); 485 radix_tree_preload_end(); 486 } else 487 mem_cgroup_uncharge_cache_page(page); 488 out: 489 return error; 490 } 491 EXPORT_SYMBOL(add_to_page_cache_locked); 492 493 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 494 pgoff_t offset, gfp_t gfp_mask) 495 { 496 int ret; 497 498 /* 499 * Splice_read and readahead add shmem/tmpfs pages into the page cache 500 * before shmem_readpage has a chance to mark them as SwapBacked: they 501 * need to go on the active_anon lru below, and mem_cgroup_cache_charge 502 * (called in add_to_page_cache) needs to know where they're going too. 503 */ 504 if (mapping_cap_swap_backed(mapping)) 505 SetPageSwapBacked(page); 506 507 ret = add_to_page_cache(page, mapping, offset, gfp_mask); 508 if (ret == 0) { 509 if (page_is_file_cache(page)) 510 lru_cache_add_file(page); 511 else 512 lru_cache_add_active_anon(page); 513 } 514 return ret; 515 } 516 517 #ifdef CONFIG_NUMA 518 struct page *__page_cache_alloc(gfp_t gfp) 519 { 520 if (cpuset_do_page_mem_spread()) { 521 int n = cpuset_mem_spread_node(); 522 return alloc_pages_node(n, gfp, 0); 523 } 524 return alloc_pages(gfp, 0); 525 } 526 EXPORT_SYMBOL(__page_cache_alloc); 527 #endif 528 529 static int __sleep_on_page_lock(void *word) 530 { 531 io_schedule(); 532 return 0; 533 } 534 535 /* 536 * In order to wait for pages to become available there must be 537 * waitqueues associated with pages. By using a hash table of 538 * waitqueues where the bucket discipline is to maintain all 539 * waiters on the same queue and wake all when any of the pages 540 * become available, and for the woken contexts to check to be 541 * sure the appropriate page became available, this saves space 542 * at a cost of "thundering herd" phenomena during rare hash 543 * collisions. 544 */ 545 static wait_queue_head_t *page_waitqueue(struct page *page) 546 { 547 const struct zone *zone = page_zone(page); 548 549 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)]; 550 } 551 552 static inline void wake_up_page(struct page *page, int bit) 553 { 554 __wake_up_bit(page_waitqueue(page), &page->flags, bit); 555 } 556 557 void wait_on_page_bit(struct page *page, int bit_nr) 558 { 559 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr); 560 561 if (test_bit(bit_nr, &page->flags)) 562 __wait_on_bit(page_waitqueue(page), &wait, sync_page, 563 TASK_UNINTERRUPTIBLE); 564 } 565 EXPORT_SYMBOL(wait_on_page_bit); 566 567 /** 568 * unlock_page - unlock a locked page 569 * @page: the page 570 * 571 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). 572 * Also wakes sleepers in wait_on_page_writeback() because the wakeup 573 * mechananism between PageLocked pages and PageWriteback pages is shared. 574 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. 575 * 576 * The mb is necessary to enforce ordering between the clear_bit and the read 577 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()). 578 */ 579 void unlock_page(struct page *page) 580 { 581 VM_BUG_ON(!PageLocked(page)); 582 clear_bit_unlock(PG_locked, &page->flags); 583 smp_mb__after_clear_bit(); 584 wake_up_page(page, PG_locked); 585 } 586 EXPORT_SYMBOL(unlock_page); 587 588 /** 589 * end_page_writeback - end writeback against a page 590 * @page: the page 591 */ 592 void end_page_writeback(struct page *page) 593 { 594 if (TestClearPageReclaim(page)) 595 rotate_reclaimable_page(page); 596 597 if (!test_clear_page_writeback(page)) 598 BUG(); 599 600 smp_mb__after_clear_bit(); 601 wake_up_page(page, PG_writeback); 602 } 603 EXPORT_SYMBOL(end_page_writeback); 604 605 /** 606 * __lock_page - get a lock on the page, assuming we need to sleep to get it 607 * @page: the page to lock 608 * 609 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some 610 * random driver's requestfn sets TASK_RUNNING, we could busywait. However 611 * chances are that on the second loop, the block layer's plug list is empty, 612 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE. 613 */ 614 void __lock_page(struct page *page) 615 { 616 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 617 618 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page, 619 TASK_UNINTERRUPTIBLE); 620 } 621 EXPORT_SYMBOL(__lock_page); 622 623 int __lock_page_killable(struct page *page) 624 { 625 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 626 627 return __wait_on_bit_lock(page_waitqueue(page), &wait, 628 sync_page_killable, TASK_KILLABLE); 629 } 630 631 /** 632 * __lock_page_nosync - get a lock on the page, without calling sync_page() 633 * @page: the page to lock 634 * 635 * Variant of lock_page that does not require the caller to hold a reference 636 * on the page's mapping. 637 */ 638 void __lock_page_nosync(struct page *page) 639 { 640 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 641 __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock, 642 TASK_UNINTERRUPTIBLE); 643 } 644 645 /** 646 * find_get_page - find and get a page reference 647 * @mapping: the address_space to search 648 * @offset: the page index 649 * 650 * Is there a pagecache struct page at the given (mapping, offset) tuple? 651 * If yes, increment its refcount and return it; if no, return NULL. 652 */ 653 struct page *find_get_page(struct address_space *mapping, pgoff_t offset) 654 { 655 void **pagep; 656 struct page *page; 657 658 rcu_read_lock(); 659 repeat: 660 page = NULL; 661 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset); 662 if (pagep) { 663 page = radix_tree_deref_slot(pagep); 664 if (unlikely(!page || page == RADIX_TREE_RETRY)) 665 goto repeat; 666 667 if (!page_cache_get_speculative(page)) 668 goto repeat; 669 670 /* 671 * Has the page moved? 672 * This is part of the lockless pagecache protocol. See 673 * include/linux/pagemap.h for details. 674 */ 675 if (unlikely(page != *pagep)) { 676 page_cache_release(page); 677 goto repeat; 678 } 679 } 680 rcu_read_unlock(); 681 682 return page; 683 } 684 EXPORT_SYMBOL(find_get_page); 685 686 /** 687 * find_lock_page - locate, pin and lock a pagecache page 688 * @mapping: the address_space to search 689 * @offset: the page index 690 * 691 * Locates the desired pagecache page, locks it, increments its reference 692 * count and returns its address. 693 * 694 * Returns zero if the page was not present. find_lock_page() may sleep. 695 */ 696 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset) 697 { 698 struct page *page; 699 700 repeat: 701 page = find_get_page(mapping, offset); 702 if (page) { 703 lock_page(page); 704 /* Has the page been truncated? */ 705 if (unlikely(page->mapping != mapping)) { 706 unlock_page(page); 707 page_cache_release(page); 708 goto repeat; 709 } 710 VM_BUG_ON(page->index != offset); 711 } 712 return page; 713 } 714 EXPORT_SYMBOL(find_lock_page); 715 716 /** 717 * find_or_create_page - locate or add a pagecache page 718 * @mapping: the page's address_space 719 * @index: the page's index into the mapping 720 * @gfp_mask: page allocation mode 721 * 722 * Locates a page in the pagecache. If the page is not present, a new page 723 * is allocated using @gfp_mask and is added to the pagecache and to the VM's 724 * LRU list. The returned page is locked and has its reference count 725 * incremented. 726 * 727 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic 728 * allocation! 729 * 730 * find_or_create_page() returns the desired page's address, or zero on 731 * memory exhaustion. 732 */ 733 struct page *find_or_create_page(struct address_space *mapping, 734 pgoff_t index, gfp_t gfp_mask) 735 { 736 struct page *page; 737 int err; 738 repeat: 739 page = find_lock_page(mapping, index); 740 if (!page) { 741 page = __page_cache_alloc(gfp_mask); 742 if (!page) 743 return NULL; 744 err = add_to_page_cache_lru(page, mapping, index, gfp_mask); 745 if (unlikely(err)) { 746 page_cache_release(page); 747 page = NULL; 748 if (err == -EEXIST) 749 goto repeat; 750 } 751 } 752 return page; 753 } 754 EXPORT_SYMBOL(find_or_create_page); 755 756 /** 757 * find_get_pages - gang pagecache lookup 758 * @mapping: The address_space to search 759 * @start: The starting page index 760 * @nr_pages: The maximum number of pages 761 * @pages: Where the resulting pages are placed 762 * 763 * find_get_pages() will search for and return a group of up to 764 * @nr_pages pages in the mapping. The pages are placed at @pages. 765 * find_get_pages() takes a reference against the returned pages. 766 * 767 * The search returns a group of mapping-contiguous pages with ascending 768 * indexes. There may be holes in the indices due to not-present pages. 769 * 770 * find_get_pages() returns the number of pages which were found. 771 */ 772 unsigned find_get_pages(struct address_space *mapping, pgoff_t start, 773 unsigned int nr_pages, struct page **pages) 774 { 775 unsigned int i; 776 unsigned int ret; 777 unsigned int nr_found; 778 779 rcu_read_lock(); 780 restart: 781 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree, 782 (void ***)pages, start, nr_pages); 783 ret = 0; 784 for (i = 0; i < nr_found; i++) { 785 struct page *page; 786 repeat: 787 page = radix_tree_deref_slot((void **)pages[i]); 788 if (unlikely(!page)) 789 continue; 790 /* 791 * this can only trigger if nr_found == 1, making livelock 792 * a non issue. 793 */ 794 if (unlikely(page == RADIX_TREE_RETRY)) 795 goto restart; 796 797 if (!page_cache_get_speculative(page)) 798 goto repeat; 799 800 /* Has the page moved? */ 801 if (unlikely(page != *((void **)pages[i]))) { 802 page_cache_release(page); 803 goto repeat; 804 } 805 806 pages[ret] = page; 807 ret++; 808 } 809 rcu_read_unlock(); 810 return ret; 811 } 812 813 /** 814 * find_get_pages_contig - gang contiguous pagecache lookup 815 * @mapping: The address_space to search 816 * @index: The starting page index 817 * @nr_pages: The maximum number of pages 818 * @pages: Where the resulting pages are placed 819 * 820 * find_get_pages_contig() works exactly like find_get_pages(), except 821 * that the returned number of pages are guaranteed to be contiguous. 822 * 823 * find_get_pages_contig() returns the number of pages which were found. 824 */ 825 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, 826 unsigned int nr_pages, struct page **pages) 827 { 828 unsigned int i; 829 unsigned int ret; 830 unsigned int nr_found; 831 832 rcu_read_lock(); 833 restart: 834 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree, 835 (void ***)pages, index, nr_pages); 836 ret = 0; 837 for (i = 0; i < nr_found; i++) { 838 struct page *page; 839 repeat: 840 page = radix_tree_deref_slot((void **)pages[i]); 841 if (unlikely(!page)) 842 continue; 843 /* 844 * this can only trigger if nr_found == 1, making livelock 845 * a non issue. 846 */ 847 if (unlikely(page == RADIX_TREE_RETRY)) 848 goto restart; 849 850 if (page->mapping == NULL || page->index != index) 851 break; 852 853 if (!page_cache_get_speculative(page)) 854 goto repeat; 855 856 /* Has the page moved? */ 857 if (unlikely(page != *((void **)pages[i]))) { 858 page_cache_release(page); 859 goto repeat; 860 } 861 862 pages[ret] = page; 863 ret++; 864 index++; 865 } 866 rcu_read_unlock(); 867 return ret; 868 } 869 EXPORT_SYMBOL(find_get_pages_contig); 870 871 /** 872 * find_get_pages_tag - find and return pages that match @tag 873 * @mapping: the address_space to search 874 * @index: the starting page index 875 * @tag: the tag index 876 * @nr_pages: the maximum number of pages 877 * @pages: where the resulting pages are placed 878 * 879 * Like find_get_pages, except we only return pages which are tagged with 880 * @tag. We update @index to index the next page for the traversal. 881 */ 882 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, 883 int tag, unsigned int nr_pages, struct page **pages) 884 { 885 unsigned int i; 886 unsigned int ret; 887 unsigned int nr_found; 888 889 rcu_read_lock(); 890 restart: 891 nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree, 892 (void ***)pages, *index, nr_pages, tag); 893 ret = 0; 894 for (i = 0; i < nr_found; i++) { 895 struct page *page; 896 repeat: 897 page = radix_tree_deref_slot((void **)pages[i]); 898 if (unlikely(!page)) 899 continue; 900 /* 901 * this can only trigger if nr_found == 1, making livelock 902 * a non issue. 903 */ 904 if (unlikely(page == RADIX_TREE_RETRY)) 905 goto restart; 906 907 if (!page_cache_get_speculative(page)) 908 goto repeat; 909 910 /* Has the page moved? */ 911 if (unlikely(page != *((void **)pages[i]))) { 912 page_cache_release(page); 913 goto repeat; 914 } 915 916 pages[ret] = page; 917 ret++; 918 } 919 rcu_read_unlock(); 920 921 if (ret) 922 *index = pages[ret - 1]->index + 1; 923 924 return ret; 925 } 926 EXPORT_SYMBOL(find_get_pages_tag); 927 928 /** 929 * grab_cache_page_nowait - returns locked page at given index in given cache 930 * @mapping: target address_space 931 * @index: the page index 932 * 933 * Same as grab_cache_page(), but do not wait if the page is unavailable. 934 * This is intended for speculative data generators, where the data can 935 * be regenerated if the page couldn't be grabbed. This routine should 936 * be safe to call while holding the lock for another page. 937 * 938 * Clear __GFP_FS when allocating the page to avoid recursion into the fs 939 * and deadlock against the caller's locked page. 940 */ 941 struct page * 942 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index) 943 { 944 struct page *page = find_get_page(mapping, index); 945 946 if (page) { 947 if (trylock_page(page)) 948 return page; 949 page_cache_release(page); 950 return NULL; 951 } 952 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS); 953 if (page && add_to_page_cache_lru(page, mapping, index, GFP_KERNEL)) { 954 page_cache_release(page); 955 page = NULL; 956 } 957 return page; 958 } 959 EXPORT_SYMBOL(grab_cache_page_nowait); 960 961 /* 962 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 963 * a _large_ part of the i/o request. Imagine the worst scenario: 964 * 965 * ---R__________________________________________B__________ 966 * ^ reading here ^ bad block(assume 4k) 967 * 968 * read(R) => miss => readahead(R...B) => media error => frustrating retries 969 * => failing the whole request => read(R) => read(R+1) => 970 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 971 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 972 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 973 * 974 * It is going insane. Fix it by quickly scaling down the readahead size. 975 */ 976 static void shrink_readahead_size_eio(struct file *filp, 977 struct file_ra_state *ra) 978 { 979 if (!ra->ra_pages) 980 return; 981 982 ra->ra_pages /= 4; 983 } 984 985 /** 986 * do_generic_file_read - generic file read routine 987 * @filp: the file to read 988 * @ppos: current file position 989 * @desc: read_descriptor 990 * @actor: read method 991 * 992 * This is a generic file read routine, and uses the 993 * mapping->a_ops->readpage() function for the actual low-level stuff. 994 * 995 * This is really ugly. But the goto's actually try to clarify some 996 * of the logic when it comes to error handling etc. 997 */ 998 static void do_generic_file_read(struct file *filp, loff_t *ppos, 999 read_descriptor_t *desc, read_actor_t actor) 1000 { 1001 struct address_space *mapping = filp->f_mapping; 1002 struct inode *inode = mapping->host; 1003 struct file_ra_state *ra = &filp->f_ra; 1004 pgoff_t index; 1005 pgoff_t last_index; 1006 pgoff_t prev_index; 1007 unsigned long offset; /* offset into pagecache page */ 1008 unsigned int prev_offset; 1009 int error; 1010 1011 index = *ppos >> PAGE_CACHE_SHIFT; 1012 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT; 1013 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1); 1014 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT; 1015 offset = *ppos & ~PAGE_CACHE_MASK; 1016 1017 for (;;) { 1018 struct page *page; 1019 pgoff_t end_index; 1020 loff_t isize; 1021 unsigned long nr, ret; 1022 1023 cond_resched(); 1024 find_page: 1025 page = find_get_page(mapping, index); 1026 if (!page) { 1027 page_cache_sync_readahead(mapping, 1028 ra, filp, 1029 index, last_index - index); 1030 page = find_get_page(mapping, index); 1031 if (unlikely(page == NULL)) 1032 goto no_cached_page; 1033 } 1034 if (PageReadahead(page)) { 1035 page_cache_async_readahead(mapping, 1036 ra, filp, page, 1037 index, last_index - index); 1038 } 1039 if (!PageUptodate(page)) { 1040 if (inode->i_blkbits == PAGE_CACHE_SHIFT || 1041 !mapping->a_ops->is_partially_uptodate) 1042 goto page_not_up_to_date; 1043 if (!trylock_page(page)) 1044 goto page_not_up_to_date; 1045 if (!mapping->a_ops->is_partially_uptodate(page, 1046 desc, offset)) 1047 goto page_not_up_to_date_locked; 1048 unlock_page(page); 1049 } 1050 page_ok: 1051 /* 1052 * i_size must be checked after we know the page is Uptodate. 1053 * 1054 * Checking i_size after the check allows us to calculate 1055 * the correct value for "nr", which means the zero-filled 1056 * part of the page is not copied back to userspace (unless 1057 * another truncate extends the file - this is desired though). 1058 */ 1059 1060 isize = i_size_read(inode); 1061 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 1062 if (unlikely(!isize || index > end_index)) { 1063 page_cache_release(page); 1064 goto out; 1065 } 1066 1067 /* nr is the maximum number of bytes to copy from this page */ 1068 nr = PAGE_CACHE_SIZE; 1069 if (index == end_index) { 1070 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 1071 if (nr <= offset) { 1072 page_cache_release(page); 1073 goto out; 1074 } 1075 } 1076 nr = nr - offset; 1077 1078 /* If users can be writing to this page using arbitrary 1079 * virtual addresses, take care about potential aliasing 1080 * before reading the page on the kernel side. 1081 */ 1082 if (mapping_writably_mapped(mapping)) 1083 flush_dcache_page(page); 1084 1085 /* 1086 * When a sequential read accesses a page several times, 1087 * only mark it as accessed the first time. 1088 */ 1089 if (prev_index != index || offset != prev_offset) 1090 mark_page_accessed(page); 1091 prev_index = index; 1092 1093 /* 1094 * Ok, we have the page, and it's up-to-date, so 1095 * now we can copy it to user space... 1096 * 1097 * The actor routine returns how many bytes were actually used.. 1098 * NOTE! This may not be the same as how much of a user buffer 1099 * we filled up (we may be padding etc), so we can only update 1100 * "pos" here (the actor routine has to update the user buffer 1101 * pointers and the remaining count). 1102 */ 1103 ret = actor(desc, page, offset, nr); 1104 offset += ret; 1105 index += offset >> PAGE_CACHE_SHIFT; 1106 offset &= ~PAGE_CACHE_MASK; 1107 prev_offset = offset; 1108 1109 page_cache_release(page); 1110 if (ret == nr && desc->count) 1111 continue; 1112 goto out; 1113 1114 page_not_up_to_date: 1115 /* Get exclusive access to the page ... */ 1116 error = lock_page_killable(page); 1117 if (unlikely(error)) 1118 goto readpage_error; 1119 1120 page_not_up_to_date_locked: 1121 /* Did it get truncated before we got the lock? */ 1122 if (!page->mapping) { 1123 unlock_page(page); 1124 page_cache_release(page); 1125 continue; 1126 } 1127 1128 /* Did somebody else fill it already? */ 1129 if (PageUptodate(page)) { 1130 unlock_page(page); 1131 goto page_ok; 1132 } 1133 1134 readpage: 1135 /* Start the actual read. The read will unlock the page. */ 1136 error = mapping->a_ops->readpage(filp, page); 1137 1138 if (unlikely(error)) { 1139 if (error == AOP_TRUNCATED_PAGE) { 1140 page_cache_release(page); 1141 goto find_page; 1142 } 1143 goto readpage_error; 1144 } 1145 1146 if (!PageUptodate(page)) { 1147 error = lock_page_killable(page); 1148 if (unlikely(error)) 1149 goto readpage_error; 1150 if (!PageUptodate(page)) { 1151 if (page->mapping == NULL) { 1152 /* 1153 * invalidate_inode_pages got it 1154 */ 1155 unlock_page(page); 1156 page_cache_release(page); 1157 goto find_page; 1158 } 1159 unlock_page(page); 1160 shrink_readahead_size_eio(filp, ra); 1161 error = -EIO; 1162 goto readpage_error; 1163 } 1164 unlock_page(page); 1165 } 1166 1167 goto page_ok; 1168 1169 readpage_error: 1170 /* UHHUH! A synchronous read error occurred. Report it */ 1171 desc->error = error; 1172 page_cache_release(page); 1173 goto out; 1174 1175 no_cached_page: 1176 /* 1177 * Ok, it wasn't cached, so we need to create a new 1178 * page.. 1179 */ 1180 page = page_cache_alloc_cold(mapping); 1181 if (!page) { 1182 desc->error = -ENOMEM; 1183 goto out; 1184 } 1185 error = add_to_page_cache_lru(page, mapping, 1186 index, GFP_KERNEL); 1187 if (error) { 1188 page_cache_release(page); 1189 if (error == -EEXIST) 1190 goto find_page; 1191 desc->error = error; 1192 goto out; 1193 } 1194 goto readpage; 1195 } 1196 1197 out: 1198 ra->prev_pos = prev_index; 1199 ra->prev_pos <<= PAGE_CACHE_SHIFT; 1200 ra->prev_pos |= prev_offset; 1201 1202 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset; 1203 file_accessed(filp); 1204 } 1205 1206 int file_read_actor(read_descriptor_t *desc, struct page *page, 1207 unsigned long offset, unsigned long size) 1208 { 1209 char *kaddr; 1210 unsigned long left, count = desc->count; 1211 1212 if (size > count) 1213 size = count; 1214 1215 /* 1216 * Faults on the destination of a read are common, so do it before 1217 * taking the kmap. 1218 */ 1219 if (!fault_in_pages_writeable(desc->arg.buf, size)) { 1220 kaddr = kmap_atomic(page, KM_USER0); 1221 left = __copy_to_user_inatomic(desc->arg.buf, 1222 kaddr + offset, size); 1223 kunmap_atomic(kaddr, KM_USER0); 1224 if (left == 0) 1225 goto success; 1226 } 1227 1228 /* Do it the slow way */ 1229 kaddr = kmap(page); 1230 left = __copy_to_user(desc->arg.buf, kaddr + offset, size); 1231 kunmap(page); 1232 1233 if (left) { 1234 size -= left; 1235 desc->error = -EFAULT; 1236 } 1237 success: 1238 desc->count = count - size; 1239 desc->written += size; 1240 desc->arg.buf += size; 1241 return size; 1242 } 1243 1244 /* 1245 * Performs necessary checks before doing a write 1246 * @iov: io vector request 1247 * @nr_segs: number of segments in the iovec 1248 * @count: number of bytes to write 1249 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE 1250 * 1251 * Adjust number of segments and amount of bytes to write (nr_segs should be 1252 * properly initialized first). Returns appropriate error code that caller 1253 * should return or zero in case that write should be allowed. 1254 */ 1255 int generic_segment_checks(const struct iovec *iov, 1256 unsigned long *nr_segs, size_t *count, int access_flags) 1257 { 1258 unsigned long seg; 1259 size_t cnt = 0; 1260 for (seg = 0; seg < *nr_segs; seg++) { 1261 const struct iovec *iv = &iov[seg]; 1262 1263 /* 1264 * If any segment has a negative length, or the cumulative 1265 * length ever wraps negative then return -EINVAL. 1266 */ 1267 cnt += iv->iov_len; 1268 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0)) 1269 return -EINVAL; 1270 if (access_ok(access_flags, iv->iov_base, iv->iov_len)) 1271 continue; 1272 if (seg == 0) 1273 return -EFAULT; 1274 *nr_segs = seg; 1275 cnt -= iv->iov_len; /* This segment is no good */ 1276 break; 1277 } 1278 *count = cnt; 1279 return 0; 1280 } 1281 EXPORT_SYMBOL(generic_segment_checks); 1282 1283 /** 1284 * generic_file_aio_read - generic filesystem read routine 1285 * @iocb: kernel I/O control block 1286 * @iov: io vector request 1287 * @nr_segs: number of segments in the iovec 1288 * @pos: current file position 1289 * 1290 * This is the "read()" routine for all filesystems 1291 * that can use the page cache directly. 1292 */ 1293 ssize_t 1294 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov, 1295 unsigned long nr_segs, loff_t pos) 1296 { 1297 struct file *filp = iocb->ki_filp; 1298 ssize_t retval; 1299 unsigned long seg; 1300 size_t count; 1301 loff_t *ppos = &iocb->ki_pos; 1302 1303 count = 0; 1304 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE); 1305 if (retval) 1306 return retval; 1307 1308 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ 1309 if (filp->f_flags & O_DIRECT) { 1310 loff_t size; 1311 struct address_space *mapping; 1312 struct inode *inode; 1313 1314 mapping = filp->f_mapping; 1315 inode = mapping->host; 1316 if (!count) 1317 goto out; /* skip atime */ 1318 size = i_size_read(inode); 1319 if (pos < size) { 1320 retval = filemap_write_and_wait(mapping); 1321 if (!retval) { 1322 retval = mapping->a_ops->direct_IO(READ, iocb, 1323 iov, pos, nr_segs); 1324 } 1325 if (retval > 0) 1326 *ppos = pos + retval; 1327 if (retval) { 1328 file_accessed(filp); 1329 goto out; 1330 } 1331 } 1332 } 1333 1334 for (seg = 0; seg < nr_segs; seg++) { 1335 read_descriptor_t desc; 1336 1337 desc.written = 0; 1338 desc.arg.buf = iov[seg].iov_base; 1339 desc.count = iov[seg].iov_len; 1340 if (desc.count == 0) 1341 continue; 1342 desc.error = 0; 1343 do_generic_file_read(filp, ppos, &desc, file_read_actor); 1344 retval += desc.written; 1345 if (desc.error) { 1346 retval = retval ?: desc.error; 1347 break; 1348 } 1349 if (desc.count > 0) 1350 break; 1351 } 1352 out: 1353 return retval; 1354 } 1355 EXPORT_SYMBOL(generic_file_aio_read); 1356 1357 static ssize_t 1358 do_readahead(struct address_space *mapping, struct file *filp, 1359 pgoff_t index, unsigned long nr) 1360 { 1361 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage) 1362 return -EINVAL; 1363 1364 force_page_cache_readahead(mapping, filp, index, 1365 max_sane_readahead(nr)); 1366 return 0; 1367 } 1368 1369 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count) 1370 { 1371 ssize_t ret; 1372 struct file *file; 1373 1374 ret = -EBADF; 1375 file = fget(fd); 1376 if (file) { 1377 if (file->f_mode & FMODE_READ) { 1378 struct address_space *mapping = file->f_mapping; 1379 pgoff_t start = offset >> PAGE_CACHE_SHIFT; 1380 pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT; 1381 unsigned long len = end - start + 1; 1382 ret = do_readahead(mapping, file, start, len); 1383 } 1384 fput(file); 1385 } 1386 return ret; 1387 } 1388 1389 #ifdef CONFIG_MMU 1390 /** 1391 * page_cache_read - adds requested page to the page cache if not already there 1392 * @file: file to read 1393 * @offset: page index 1394 * 1395 * This adds the requested page to the page cache if it isn't already there, 1396 * and schedules an I/O to read in its contents from disk. 1397 */ 1398 static int page_cache_read(struct file *file, pgoff_t offset) 1399 { 1400 struct address_space *mapping = file->f_mapping; 1401 struct page *page; 1402 int ret; 1403 1404 do { 1405 page = page_cache_alloc_cold(mapping); 1406 if (!page) 1407 return -ENOMEM; 1408 1409 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL); 1410 if (ret == 0) 1411 ret = mapping->a_ops->readpage(file, page); 1412 else if (ret == -EEXIST) 1413 ret = 0; /* losing race to add is OK */ 1414 1415 page_cache_release(page); 1416 1417 } while (ret == AOP_TRUNCATED_PAGE); 1418 1419 return ret; 1420 } 1421 1422 #define MMAP_LOTSAMISS (100) 1423 1424 /** 1425 * filemap_fault - read in file data for page fault handling 1426 * @vma: vma in which the fault was taken 1427 * @vmf: struct vm_fault containing details of the fault 1428 * 1429 * filemap_fault() is invoked via the vma operations vector for a 1430 * mapped memory region to read in file data during a page fault. 1431 * 1432 * The goto's are kind of ugly, but this streamlines the normal case of having 1433 * it in the page cache, and handles the special cases reasonably without 1434 * having a lot of duplicated code. 1435 */ 1436 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1437 { 1438 int error; 1439 struct file *file = vma->vm_file; 1440 struct address_space *mapping = file->f_mapping; 1441 struct file_ra_state *ra = &file->f_ra; 1442 struct inode *inode = mapping->host; 1443 struct page *page; 1444 pgoff_t size; 1445 int did_readaround = 0; 1446 int ret = 0; 1447 1448 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1449 if (vmf->pgoff >= size) 1450 return VM_FAULT_SIGBUS; 1451 1452 /* If we don't want any read-ahead, don't bother */ 1453 if (VM_RandomReadHint(vma)) 1454 goto no_cached_page; 1455 1456 /* 1457 * Do we have something in the page cache already? 1458 */ 1459 retry_find: 1460 page = find_lock_page(mapping, vmf->pgoff); 1461 /* 1462 * For sequential accesses, we use the generic readahead logic. 1463 */ 1464 if (VM_SequentialReadHint(vma)) { 1465 if (!page) { 1466 page_cache_sync_readahead(mapping, ra, file, 1467 vmf->pgoff, 1); 1468 page = find_lock_page(mapping, vmf->pgoff); 1469 if (!page) 1470 goto no_cached_page; 1471 } 1472 if (PageReadahead(page)) { 1473 page_cache_async_readahead(mapping, ra, file, page, 1474 vmf->pgoff, 1); 1475 } 1476 } 1477 1478 if (!page) { 1479 unsigned long ra_pages; 1480 1481 ra->mmap_miss++; 1482 1483 /* 1484 * Do we miss much more than hit in this file? If so, 1485 * stop bothering with read-ahead. It will only hurt. 1486 */ 1487 if (ra->mmap_miss > MMAP_LOTSAMISS) 1488 goto no_cached_page; 1489 1490 /* 1491 * To keep the pgmajfault counter straight, we need to 1492 * check did_readaround, as this is an inner loop. 1493 */ 1494 if (!did_readaround) { 1495 ret = VM_FAULT_MAJOR; 1496 count_vm_event(PGMAJFAULT); 1497 } 1498 did_readaround = 1; 1499 ra_pages = max_sane_readahead(file->f_ra.ra_pages); 1500 if (ra_pages) { 1501 pgoff_t start = 0; 1502 1503 if (vmf->pgoff > ra_pages / 2) 1504 start = vmf->pgoff - ra_pages / 2; 1505 do_page_cache_readahead(mapping, file, start, ra_pages); 1506 } 1507 page = find_lock_page(mapping, vmf->pgoff); 1508 if (!page) 1509 goto no_cached_page; 1510 } 1511 1512 if (!did_readaround) 1513 ra->mmap_miss--; 1514 1515 /* 1516 * We have a locked page in the page cache, now we need to check 1517 * that it's up-to-date. If not, it is going to be due to an error. 1518 */ 1519 if (unlikely(!PageUptodate(page))) 1520 goto page_not_uptodate; 1521 1522 /* Must recheck i_size under page lock */ 1523 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1524 if (unlikely(vmf->pgoff >= size)) { 1525 unlock_page(page); 1526 page_cache_release(page); 1527 return VM_FAULT_SIGBUS; 1528 } 1529 1530 /* 1531 * Found the page and have a reference on it. 1532 */ 1533 mark_page_accessed(page); 1534 ra->prev_pos = (loff_t)page->index << PAGE_CACHE_SHIFT; 1535 vmf->page = page; 1536 return ret | VM_FAULT_LOCKED; 1537 1538 no_cached_page: 1539 /* 1540 * We're only likely to ever get here if MADV_RANDOM is in 1541 * effect. 1542 */ 1543 error = page_cache_read(file, vmf->pgoff); 1544 1545 /* 1546 * The page we want has now been added to the page cache. 1547 * In the unlikely event that someone removed it in the 1548 * meantime, we'll just come back here and read it again. 1549 */ 1550 if (error >= 0) 1551 goto retry_find; 1552 1553 /* 1554 * An error return from page_cache_read can result if the 1555 * system is low on memory, or a problem occurs while trying 1556 * to schedule I/O. 1557 */ 1558 if (error == -ENOMEM) 1559 return VM_FAULT_OOM; 1560 return VM_FAULT_SIGBUS; 1561 1562 page_not_uptodate: 1563 /* IO error path */ 1564 if (!did_readaround) { 1565 ret = VM_FAULT_MAJOR; 1566 count_vm_event(PGMAJFAULT); 1567 } 1568 1569 /* 1570 * Umm, take care of errors if the page isn't up-to-date. 1571 * Try to re-read it _once_. We do this synchronously, 1572 * because there really aren't any performance issues here 1573 * and we need to check for errors. 1574 */ 1575 ClearPageError(page); 1576 error = mapping->a_ops->readpage(file, page); 1577 if (!error) { 1578 wait_on_page_locked(page); 1579 if (!PageUptodate(page)) 1580 error = -EIO; 1581 } 1582 page_cache_release(page); 1583 1584 if (!error || error == AOP_TRUNCATED_PAGE) 1585 goto retry_find; 1586 1587 /* Things didn't work out. Return zero to tell the mm layer so. */ 1588 shrink_readahead_size_eio(file, ra); 1589 return VM_FAULT_SIGBUS; 1590 } 1591 EXPORT_SYMBOL(filemap_fault); 1592 1593 struct vm_operations_struct generic_file_vm_ops = { 1594 .fault = filemap_fault, 1595 }; 1596 1597 /* This is used for a general mmap of a disk file */ 1598 1599 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 1600 { 1601 struct address_space *mapping = file->f_mapping; 1602 1603 if (!mapping->a_ops->readpage) 1604 return -ENOEXEC; 1605 file_accessed(file); 1606 vma->vm_ops = &generic_file_vm_ops; 1607 vma->vm_flags |= VM_CAN_NONLINEAR; 1608 return 0; 1609 } 1610 1611 /* 1612 * This is for filesystems which do not implement ->writepage. 1613 */ 1614 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 1615 { 1616 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 1617 return -EINVAL; 1618 return generic_file_mmap(file, vma); 1619 } 1620 #else 1621 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 1622 { 1623 return -ENOSYS; 1624 } 1625 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) 1626 { 1627 return -ENOSYS; 1628 } 1629 #endif /* CONFIG_MMU */ 1630 1631 EXPORT_SYMBOL(generic_file_mmap); 1632 EXPORT_SYMBOL(generic_file_readonly_mmap); 1633 1634 static struct page *__read_cache_page(struct address_space *mapping, 1635 pgoff_t index, 1636 int (*filler)(void *,struct page*), 1637 void *data) 1638 { 1639 struct page *page; 1640 int err; 1641 repeat: 1642 page = find_get_page(mapping, index); 1643 if (!page) { 1644 page = page_cache_alloc_cold(mapping); 1645 if (!page) 1646 return ERR_PTR(-ENOMEM); 1647 err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL); 1648 if (unlikely(err)) { 1649 page_cache_release(page); 1650 if (err == -EEXIST) 1651 goto repeat; 1652 /* Presumably ENOMEM for radix tree node */ 1653 return ERR_PTR(err); 1654 } 1655 err = filler(data, page); 1656 if (err < 0) { 1657 page_cache_release(page); 1658 page = ERR_PTR(err); 1659 } 1660 } 1661 return page; 1662 } 1663 1664 /** 1665 * read_cache_page_async - read into page cache, fill it if needed 1666 * @mapping: the page's address_space 1667 * @index: the page index 1668 * @filler: function to perform the read 1669 * @data: destination for read data 1670 * 1671 * Same as read_cache_page, but don't wait for page to become unlocked 1672 * after submitting it to the filler. 1673 * 1674 * Read into the page cache. If a page already exists, and PageUptodate() is 1675 * not set, try to fill the page but don't wait for it to become unlocked. 1676 * 1677 * If the page does not get brought uptodate, return -EIO. 1678 */ 1679 struct page *read_cache_page_async(struct address_space *mapping, 1680 pgoff_t index, 1681 int (*filler)(void *,struct page*), 1682 void *data) 1683 { 1684 struct page *page; 1685 int err; 1686 1687 retry: 1688 page = __read_cache_page(mapping, index, filler, data); 1689 if (IS_ERR(page)) 1690 return page; 1691 if (PageUptodate(page)) 1692 goto out; 1693 1694 lock_page(page); 1695 if (!page->mapping) { 1696 unlock_page(page); 1697 page_cache_release(page); 1698 goto retry; 1699 } 1700 if (PageUptodate(page)) { 1701 unlock_page(page); 1702 goto out; 1703 } 1704 err = filler(data, page); 1705 if (err < 0) { 1706 page_cache_release(page); 1707 return ERR_PTR(err); 1708 } 1709 out: 1710 mark_page_accessed(page); 1711 return page; 1712 } 1713 EXPORT_SYMBOL(read_cache_page_async); 1714 1715 /** 1716 * read_cache_page - read into page cache, fill it if needed 1717 * @mapping: the page's address_space 1718 * @index: the page index 1719 * @filler: function to perform the read 1720 * @data: destination for read data 1721 * 1722 * Read into the page cache. If a page already exists, and PageUptodate() is 1723 * not set, try to fill the page then wait for it to become unlocked. 1724 * 1725 * If the page does not get brought uptodate, return -EIO. 1726 */ 1727 struct page *read_cache_page(struct address_space *mapping, 1728 pgoff_t index, 1729 int (*filler)(void *,struct page*), 1730 void *data) 1731 { 1732 struct page *page; 1733 1734 page = read_cache_page_async(mapping, index, filler, data); 1735 if (IS_ERR(page)) 1736 goto out; 1737 wait_on_page_locked(page); 1738 if (!PageUptodate(page)) { 1739 page_cache_release(page); 1740 page = ERR_PTR(-EIO); 1741 } 1742 out: 1743 return page; 1744 } 1745 EXPORT_SYMBOL(read_cache_page); 1746 1747 /* 1748 * The logic we want is 1749 * 1750 * if suid or (sgid and xgrp) 1751 * remove privs 1752 */ 1753 int should_remove_suid(struct dentry *dentry) 1754 { 1755 mode_t mode = dentry->d_inode->i_mode; 1756 int kill = 0; 1757 1758 /* suid always must be killed */ 1759 if (unlikely(mode & S_ISUID)) 1760 kill = ATTR_KILL_SUID; 1761 1762 /* 1763 * sgid without any exec bits is just a mandatory locking mark; leave 1764 * it alone. If some exec bits are set, it's a real sgid; kill it. 1765 */ 1766 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP))) 1767 kill |= ATTR_KILL_SGID; 1768 1769 if (unlikely(kill && !capable(CAP_FSETID))) 1770 return kill; 1771 1772 return 0; 1773 } 1774 EXPORT_SYMBOL(should_remove_suid); 1775 1776 static int __remove_suid(struct dentry *dentry, int kill) 1777 { 1778 struct iattr newattrs; 1779 1780 newattrs.ia_valid = ATTR_FORCE | kill; 1781 return notify_change(dentry, &newattrs); 1782 } 1783 1784 int file_remove_suid(struct file *file) 1785 { 1786 struct dentry *dentry = file->f_path.dentry; 1787 int killsuid = should_remove_suid(dentry); 1788 int killpriv = security_inode_need_killpriv(dentry); 1789 int error = 0; 1790 1791 if (killpriv < 0) 1792 return killpriv; 1793 if (killpriv) 1794 error = security_inode_killpriv(dentry); 1795 if (!error && killsuid) 1796 error = __remove_suid(dentry, killsuid); 1797 1798 return error; 1799 } 1800 EXPORT_SYMBOL(file_remove_suid); 1801 1802 static size_t __iovec_copy_from_user_inatomic(char *vaddr, 1803 const struct iovec *iov, size_t base, size_t bytes) 1804 { 1805 size_t copied = 0, left = 0; 1806 1807 while (bytes) { 1808 char __user *buf = iov->iov_base + base; 1809 int copy = min(bytes, iov->iov_len - base); 1810 1811 base = 0; 1812 left = __copy_from_user_inatomic_nocache(vaddr, buf, copy); 1813 copied += copy; 1814 bytes -= copy; 1815 vaddr += copy; 1816 iov++; 1817 1818 if (unlikely(left)) 1819 break; 1820 } 1821 return copied - left; 1822 } 1823 1824 /* 1825 * Copy as much as we can into the page and return the number of bytes which 1826 * were sucessfully copied. If a fault is encountered then return the number of 1827 * bytes which were copied. 1828 */ 1829 size_t iov_iter_copy_from_user_atomic(struct page *page, 1830 struct iov_iter *i, unsigned long offset, size_t bytes) 1831 { 1832 char *kaddr; 1833 size_t copied; 1834 1835 BUG_ON(!in_atomic()); 1836 kaddr = kmap_atomic(page, KM_USER0); 1837 if (likely(i->nr_segs == 1)) { 1838 int left; 1839 char __user *buf = i->iov->iov_base + i->iov_offset; 1840 left = __copy_from_user_inatomic_nocache(kaddr + offset, 1841 buf, bytes); 1842 copied = bytes - left; 1843 } else { 1844 copied = __iovec_copy_from_user_inatomic(kaddr + offset, 1845 i->iov, i->iov_offset, bytes); 1846 } 1847 kunmap_atomic(kaddr, KM_USER0); 1848 1849 return copied; 1850 } 1851 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic); 1852 1853 /* 1854 * This has the same sideeffects and return value as 1855 * iov_iter_copy_from_user_atomic(). 1856 * The difference is that it attempts to resolve faults. 1857 * Page must not be locked. 1858 */ 1859 size_t iov_iter_copy_from_user(struct page *page, 1860 struct iov_iter *i, unsigned long offset, size_t bytes) 1861 { 1862 char *kaddr; 1863 size_t copied; 1864 1865 kaddr = kmap(page); 1866 if (likely(i->nr_segs == 1)) { 1867 int left; 1868 char __user *buf = i->iov->iov_base + i->iov_offset; 1869 left = __copy_from_user_nocache(kaddr + offset, buf, bytes); 1870 copied = bytes - left; 1871 } else { 1872 copied = __iovec_copy_from_user_inatomic(kaddr + offset, 1873 i->iov, i->iov_offset, bytes); 1874 } 1875 kunmap(page); 1876 return copied; 1877 } 1878 EXPORT_SYMBOL(iov_iter_copy_from_user); 1879 1880 void iov_iter_advance(struct iov_iter *i, size_t bytes) 1881 { 1882 BUG_ON(i->count < bytes); 1883 1884 if (likely(i->nr_segs == 1)) { 1885 i->iov_offset += bytes; 1886 i->count -= bytes; 1887 } else { 1888 const struct iovec *iov = i->iov; 1889 size_t base = i->iov_offset; 1890 1891 /* 1892 * The !iov->iov_len check ensures we skip over unlikely 1893 * zero-length segments (without overruning the iovec). 1894 */ 1895 while (bytes || unlikely(i->count && !iov->iov_len)) { 1896 int copy; 1897 1898 copy = min(bytes, iov->iov_len - base); 1899 BUG_ON(!i->count || i->count < copy); 1900 i->count -= copy; 1901 bytes -= copy; 1902 base += copy; 1903 if (iov->iov_len == base) { 1904 iov++; 1905 base = 0; 1906 } 1907 } 1908 i->iov = iov; 1909 i->iov_offset = base; 1910 } 1911 } 1912 EXPORT_SYMBOL(iov_iter_advance); 1913 1914 /* 1915 * Fault in the first iovec of the given iov_iter, to a maximum length 1916 * of bytes. Returns 0 on success, or non-zero if the memory could not be 1917 * accessed (ie. because it is an invalid address). 1918 * 1919 * writev-intensive code may want this to prefault several iovecs -- that 1920 * would be possible (callers must not rely on the fact that _only_ the 1921 * first iovec will be faulted with the current implementation). 1922 */ 1923 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes) 1924 { 1925 char __user *buf = i->iov->iov_base + i->iov_offset; 1926 bytes = min(bytes, i->iov->iov_len - i->iov_offset); 1927 return fault_in_pages_readable(buf, bytes); 1928 } 1929 EXPORT_SYMBOL(iov_iter_fault_in_readable); 1930 1931 /* 1932 * Return the count of just the current iov_iter segment. 1933 */ 1934 size_t iov_iter_single_seg_count(struct iov_iter *i) 1935 { 1936 const struct iovec *iov = i->iov; 1937 if (i->nr_segs == 1) 1938 return i->count; 1939 else 1940 return min(i->count, iov->iov_len - i->iov_offset); 1941 } 1942 EXPORT_SYMBOL(iov_iter_single_seg_count); 1943 1944 /* 1945 * Performs necessary checks before doing a write 1946 * 1947 * Can adjust writing position or amount of bytes to write. 1948 * Returns appropriate error code that caller should return or 1949 * zero in case that write should be allowed. 1950 */ 1951 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk) 1952 { 1953 struct inode *inode = file->f_mapping->host; 1954 unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; 1955 1956 if (unlikely(*pos < 0)) 1957 return -EINVAL; 1958 1959 if (!isblk) { 1960 /* FIXME: this is for backwards compatibility with 2.4 */ 1961 if (file->f_flags & O_APPEND) 1962 *pos = i_size_read(inode); 1963 1964 if (limit != RLIM_INFINITY) { 1965 if (*pos >= limit) { 1966 send_sig(SIGXFSZ, current, 0); 1967 return -EFBIG; 1968 } 1969 if (*count > limit - (typeof(limit))*pos) { 1970 *count = limit - (typeof(limit))*pos; 1971 } 1972 } 1973 } 1974 1975 /* 1976 * LFS rule 1977 */ 1978 if (unlikely(*pos + *count > MAX_NON_LFS && 1979 !(file->f_flags & O_LARGEFILE))) { 1980 if (*pos >= MAX_NON_LFS) { 1981 return -EFBIG; 1982 } 1983 if (*count > MAX_NON_LFS - (unsigned long)*pos) { 1984 *count = MAX_NON_LFS - (unsigned long)*pos; 1985 } 1986 } 1987 1988 /* 1989 * Are we about to exceed the fs block limit ? 1990 * 1991 * If we have written data it becomes a short write. If we have 1992 * exceeded without writing data we send a signal and return EFBIG. 1993 * Linus frestrict idea will clean these up nicely.. 1994 */ 1995 if (likely(!isblk)) { 1996 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) { 1997 if (*count || *pos > inode->i_sb->s_maxbytes) { 1998 return -EFBIG; 1999 } 2000 /* zero-length writes at ->s_maxbytes are OK */ 2001 } 2002 2003 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes)) 2004 *count = inode->i_sb->s_maxbytes - *pos; 2005 } else { 2006 #ifdef CONFIG_BLOCK 2007 loff_t isize; 2008 if (bdev_read_only(I_BDEV(inode))) 2009 return -EPERM; 2010 isize = i_size_read(inode); 2011 if (*pos >= isize) { 2012 if (*count || *pos > isize) 2013 return -ENOSPC; 2014 } 2015 2016 if (*pos + *count > isize) 2017 *count = isize - *pos; 2018 #else 2019 return -EPERM; 2020 #endif 2021 } 2022 return 0; 2023 } 2024 EXPORT_SYMBOL(generic_write_checks); 2025 2026 int pagecache_write_begin(struct file *file, struct address_space *mapping, 2027 loff_t pos, unsigned len, unsigned flags, 2028 struct page **pagep, void **fsdata) 2029 { 2030 const struct address_space_operations *aops = mapping->a_ops; 2031 2032 return aops->write_begin(file, mapping, pos, len, flags, 2033 pagep, fsdata); 2034 } 2035 EXPORT_SYMBOL(pagecache_write_begin); 2036 2037 int pagecache_write_end(struct file *file, struct address_space *mapping, 2038 loff_t pos, unsigned len, unsigned copied, 2039 struct page *page, void *fsdata) 2040 { 2041 const struct address_space_operations *aops = mapping->a_ops; 2042 2043 mark_page_accessed(page); 2044 return aops->write_end(file, mapping, pos, len, copied, page, fsdata); 2045 } 2046 EXPORT_SYMBOL(pagecache_write_end); 2047 2048 ssize_t 2049 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov, 2050 unsigned long *nr_segs, loff_t pos, loff_t *ppos, 2051 size_t count, size_t ocount) 2052 { 2053 struct file *file = iocb->ki_filp; 2054 struct address_space *mapping = file->f_mapping; 2055 struct inode *inode = mapping->host; 2056 ssize_t written; 2057 size_t write_len; 2058 pgoff_t end; 2059 2060 if (count != ocount) 2061 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count); 2062 2063 /* 2064 * Unmap all mmappings of the file up-front. 2065 * 2066 * This will cause any pte dirty bits to be propagated into the 2067 * pageframes for the subsequent filemap_write_and_wait(). 2068 */ 2069 write_len = iov_length(iov, *nr_segs); 2070 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT; 2071 if (mapping_mapped(mapping)) 2072 unmap_mapping_range(mapping, pos, write_len, 0); 2073 2074 written = filemap_write_and_wait(mapping); 2075 if (written) 2076 goto out; 2077 2078 /* 2079 * After a write we want buffered reads to be sure to go to disk to get 2080 * the new data. We invalidate clean cached page from the region we're 2081 * about to write. We do this *before* the write so that we can return 2082 * without clobbering -EIOCBQUEUED from ->direct_IO(). 2083 */ 2084 if (mapping->nrpages) { 2085 written = invalidate_inode_pages2_range(mapping, 2086 pos >> PAGE_CACHE_SHIFT, end); 2087 /* 2088 * If a page can not be invalidated, return 0 to fall back 2089 * to buffered write. 2090 */ 2091 if (written) { 2092 if (written == -EBUSY) 2093 return 0; 2094 goto out; 2095 } 2096 } 2097 2098 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs); 2099 2100 /* 2101 * Finally, try again to invalidate clean pages which might have been 2102 * cached by non-direct readahead, or faulted in by get_user_pages() 2103 * if the source of the write was an mmap'ed region of the file 2104 * we're writing. Either one is a pretty crazy thing to do, 2105 * so we don't support it 100%. If this invalidation 2106 * fails, tough, the write still worked... 2107 */ 2108 if (mapping->nrpages) { 2109 invalidate_inode_pages2_range(mapping, 2110 pos >> PAGE_CACHE_SHIFT, end); 2111 } 2112 2113 if (written > 0) { 2114 loff_t end = pos + written; 2115 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 2116 i_size_write(inode, end); 2117 mark_inode_dirty(inode); 2118 } 2119 *ppos = end; 2120 } 2121 2122 /* 2123 * Sync the fs metadata but not the minor inode changes and 2124 * of course not the data as we did direct DMA for the IO. 2125 * i_mutex is held, which protects generic_osync_inode() from 2126 * livelocking. AIO O_DIRECT ops attempt to sync metadata here. 2127 */ 2128 out: 2129 if ((written >= 0 || written == -EIOCBQUEUED) && 2130 ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 2131 int err = generic_osync_inode(inode, mapping, OSYNC_METADATA); 2132 if (err < 0) 2133 written = err; 2134 } 2135 return written; 2136 } 2137 EXPORT_SYMBOL(generic_file_direct_write); 2138 2139 /* 2140 * Find or create a page at the given pagecache position. Return the locked 2141 * page. This function is specifically for buffered writes. 2142 */ 2143 struct page *__grab_cache_page(struct address_space *mapping, pgoff_t index) 2144 { 2145 int status; 2146 struct page *page; 2147 repeat: 2148 page = find_lock_page(mapping, index); 2149 if (likely(page)) 2150 return page; 2151 2152 page = page_cache_alloc(mapping); 2153 if (!page) 2154 return NULL; 2155 status = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL); 2156 if (unlikely(status)) { 2157 page_cache_release(page); 2158 if (status == -EEXIST) 2159 goto repeat; 2160 return NULL; 2161 } 2162 return page; 2163 } 2164 EXPORT_SYMBOL(__grab_cache_page); 2165 2166 static ssize_t generic_perform_write(struct file *file, 2167 struct iov_iter *i, loff_t pos) 2168 { 2169 struct address_space *mapping = file->f_mapping; 2170 const struct address_space_operations *a_ops = mapping->a_ops; 2171 long status = 0; 2172 ssize_t written = 0; 2173 unsigned int flags = 0; 2174 2175 /* 2176 * Copies from kernel address space cannot fail (NFSD is a big user). 2177 */ 2178 if (segment_eq(get_fs(), KERNEL_DS)) 2179 flags |= AOP_FLAG_UNINTERRUPTIBLE; 2180 2181 do { 2182 struct page *page; 2183 pgoff_t index; /* Pagecache index for current page */ 2184 unsigned long offset; /* Offset into pagecache page */ 2185 unsigned long bytes; /* Bytes to write to page */ 2186 size_t copied; /* Bytes copied from user */ 2187 void *fsdata; 2188 2189 offset = (pos & (PAGE_CACHE_SIZE - 1)); 2190 index = pos >> PAGE_CACHE_SHIFT; 2191 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset, 2192 iov_iter_count(i)); 2193 2194 again: 2195 2196 /* 2197 * Bring in the user page that we will copy from _first_. 2198 * Otherwise there's a nasty deadlock on copying from the 2199 * same page as we're writing to, without it being marked 2200 * up-to-date. 2201 * 2202 * Not only is this an optimisation, but it is also required 2203 * to check that the address is actually valid, when atomic 2204 * usercopies are used, below. 2205 */ 2206 if (unlikely(iov_iter_fault_in_readable(i, bytes))) { 2207 status = -EFAULT; 2208 break; 2209 } 2210 2211 status = a_ops->write_begin(file, mapping, pos, bytes, flags, 2212 &page, &fsdata); 2213 if (unlikely(status)) 2214 break; 2215 2216 pagefault_disable(); 2217 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); 2218 pagefault_enable(); 2219 flush_dcache_page(page); 2220 2221 status = a_ops->write_end(file, mapping, pos, bytes, copied, 2222 page, fsdata); 2223 if (unlikely(status < 0)) 2224 break; 2225 copied = status; 2226 2227 cond_resched(); 2228 2229 iov_iter_advance(i, copied); 2230 if (unlikely(copied == 0)) { 2231 /* 2232 * If we were unable to copy any data at all, we must 2233 * fall back to a single segment length write. 2234 * 2235 * If we didn't fallback here, we could livelock 2236 * because not all segments in the iov can be copied at 2237 * once without a pagefault. 2238 */ 2239 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset, 2240 iov_iter_single_seg_count(i)); 2241 goto again; 2242 } 2243 pos += copied; 2244 written += copied; 2245 2246 balance_dirty_pages_ratelimited(mapping); 2247 2248 } while (iov_iter_count(i)); 2249 2250 return written ? written : status; 2251 } 2252 2253 ssize_t 2254 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov, 2255 unsigned long nr_segs, loff_t pos, loff_t *ppos, 2256 size_t count, ssize_t written) 2257 { 2258 struct file *file = iocb->ki_filp; 2259 struct address_space *mapping = file->f_mapping; 2260 const struct address_space_operations *a_ops = mapping->a_ops; 2261 struct inode *inode = mapping->host; 2262 ssize_t status; 2263 struct iov_iter i; 2264 2265 iov_iter_init(&i, iov, nr_segs, count, written); 2266 status = generic_perform_write(file, &i, pos); 2267 2268 if (likely(status >= 0)) { 2269 written += status; 2270 *ppos = pos + status; 2271 2272 /* 2273 * For now, when the user asks for O_SYNC, we'll actually give 2274 * O_DSYNC 2275 */ 2276 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 2277 if (!a_ops->writepage || !is_sync_kiocb(iocb)) 2278 status = generic_osync_inode(inode, mapping, 2279 OSYNC_METADATA|OSYNC_DATA); 2280 } 2281 } 2282 2283 /* 2284 * If we get here for O_DIRECT writes then we must have fallen through 2285 * to buffered writes (block instantiation inside i_size). So we sync 2286 * the file data here, to try to honour O_DIRECT expectations. 2287 */ 2288 if (unlikely(file->f_flags & O_DIRECT) && written) 2289 status = filemap_write_and_wait(mapping); 2290 2291 return written ? written : status; 2292 } 2293 EXPORT_SYMBOL(generic_file_buffered_write); 2294 2295 static ssize_t 2296 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov, 2297 unsigned long nr_segs, loff_t *ppos) 2298 { 2299 struct file *file = iocb->ki_filp; 2300 struct address_space * mapping = file->f_mapping; 2301 size_t ocount; /* original count */ 2302 size_t count; /* after file limit checks */ 2303 struct inode *inode = mapping->host; 2304 loff_t pos; 2305 ssize_t written; 2306 ssize_t err; 2307 2308 ocount = 0; 2309 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ); 2310 if (err) 2311 return err; 2312 2313 count = ocount; 2314 pos = *ppos; 2315 2316 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE); 2317 2318 /* We can write back this queue in page reclaim */ 2319 current->backing_dev_info = mapping->backing_dev_info; 2320 written = 0; 2321 2322 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode)); 2323 if (err) 2324 goto out; 2325 2326 if (count == 0) 2327 goto out; 2328 2329 err = file_remove_suid(file); 2330 if (err) 2331 goto out; 2332 2333 file_update_time(file); 2334 2335 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ 2336 if (unlikely(file->f_flags & O_DIRECT)) { 2337 loff_t endbyte; 2338 ssize_t written_buffered; 2339 2340 written = generic_file_direct_write(iocb, iov, &nr_segs, pos, 2341 ppos, count, ocount); 2342 if (written < 0 || written == count) 2343 goto out; 2344 /* 2345 * direct-io write to a hole: fall through to buffered I/O 2346 * for completing the rest of the request. 2347 */ 2348 pos += written; 2349 count -= written; 2350 written_buffered = generic_file_buffered_write(iocb, iov, 2351 nr_segs, pos, ppos, count, 2352 written); 2353 /* 2354 * If generic_file_buffered_write() retuned a synchronous error 2355 * then we want to return the number of bytes which were 2356 * direct-written, or the error code if that was zero. Note 2357 * that this differs from normal direct-io semantics, which 2358 * will return -EFOO even if some bytes were written. 2359 */ 2360 if (written_buffered < 0) { 2361 err = written_buffered; 2362 goto out; 2363 } 2364 2365 /* 2366 * We need to ensure that the page cache pages are written to 2367 * disk and invalidated to preserve the expected O_DIRECT 2368 * semantics. 2369 */ 2370 endbyte = pos + written_buffered - written - 1; 2371 err = do_sync_mapping_range(file->f_mapping, pos, endbyte, 2372 SYNC_FILE_RANGE_WAIT_BEFORE| 2373 SYNC_FILE_RANGE_WRITE| 2374 SYNC_FILE_RANGE_WAIT_AFTER); 2375 if (err == 0) { 2376 written = written_buffered; 2377 invalidate_mapping_pages(mapping, 2378 pos >> PAGE_CACHE_SHIFT, 2379 endbyte >> PAGE_CACHE_SHIFT); 2380 } else { 2381 /* 2382 * We don't know how much we wrote, so just return 2383 * the number of bytes which were direct-written 2384 */ 2385 } 2386 } else { 2387 written = generic_file_buffered_write(iocb, iov, nr_segs, 2388 pos, ppos, count, written); 2389 } 2390 out: 2391 current->backing_dev_info = NULL; 2392 return written ? written : err; 2393 } 2394 2395 ssize_t generic_file_aio_write_nolock(struct kiocb *iocb, 2396 const struct iovec *iov, unsigned long nr_segs, loff_t pos) 2397 { 2398 struct file *file = iocb->ki_filp; 2399 struct address_space *mapping = file->f_mapping; 2400 struct inode *inode = mapping->host; 2401 ssize_t ret; 2402 2403 BUG_ON(iocb->ki_pos != pos); 2404 2405 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs, 2406 &iocb->ki_pos); 2407 2408 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 2409 ssize_t err; 2410 2411 err = sync_page_range_nolock(inode, mapping, pos, ret); 2412 if (err < 0) 2413 ret = err; 2414 } 2415 return ret; 2416 } 2417 EXPORT_SYMBOL(generic_file_aio_write_nolock); 2418 2419 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov, 2420 unsigned long nr_segs, loff_t pos) 2421 { 2422 struct file *file = iocb->ki_filp; 2423 struct address_space *mapping = file->f_mapping; 2424 struct inode *inode = mapping->host; 2425 ssize_t ret; 2426 2427 BUG_ON(iocb->ki_pos != pos); 2428 2429 mutex_lock(&inode->i_mutex); 2430 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs, 2431 &iocb->ki_pos); 2432 mutex_unlock(&inode->i_mutex); 2433 2434 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 2435 ssize_t err; 2436 2437 err = sync_page_range(inode, mapping, pos, ret); 2438 if (err < 0) 2439 ret = err; 2440 } 2441 return ret; 2442 } 2443 EXPORT_SYMBOL(generic_file_aio_write); 2444 2445 /** 2446 * try_to_release_page() - release old fs-specific metadata on a page 2447 * 2448 * @page: the page which the kernel is trying to free 2449 * @gfp_mask: memory allocation flags (and I/O mode) 2450 * 2451 * The address_space is to try to release any data against the page 2452 * (presumably at page->private). If the release was successful, return `1'. 2453 * Otherwise return zero. 2454 * 2455 * The @gfp_mask argument specifies whether I/O may be performed to release 2456 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS). 2457 * 2458 */ 2459 int try_to_release_page(struct page *page, gfp_t gfp_mask) 2460 { 2461 struct address_space * const mapping = page->mapping; 2462 2463 BUG_ON(!PageLocked(page)); 2464 if (PageWriteback(page)) 2465 return 0; 2466 2467 if (mapping && mapping->a_ops->releasepage) 2468 return mapping->a_ops->releasepage(page, gfp_mask); 2469 return try_to_free_buffers(page); 2470 } 2471 2472 EXPORT_SYMBOL(try_to_release_page); 2473