1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/filemap.c 4 * 5 * Copyright (C) 1994-1999 Linus Torvalds 6 */ 7 8 /* 9 * This file handles the generic file mmap semantics used by 10 * most "normal" filesystems (but you don't /have/ to use this: 11 * the NFS filesystem used to do this differently, for example) 12 */ 13 #include <linux/export.h> 14 #include <linux/compiler.h> 15 #include <linux/dax.h> 16 #include <linux/fs.h> 17 #include <linux/sched/signal.h> 18 #include <linux/uaccess.h> 19 #include <linux/capability.h> 20 #include <linux/kernel_stat.h> 21 #include <linux/gfp.h> 22 #include <linux/mm.h> 23 #include <linux/swap.h> 24 #include <linux/swapops.h> 25 #include <linux/mman.h> 26 #include <linux/pagemap.h> 27 #include <linux/file.h> 28 #include <linux/uio.h> 29 #include <linux/error-injection.h> 30 #include <linux/hash.h> 31 #include <linux/writeback.h> 32 #include <linux/backing-dev.h> 33 #include <linux/pagevec.h> 34 #include <linux/security.h> 35 #include <linux/cpuset.h> 36 #include <linux/hugetlb.h> 37 #include <linux/memcontrol.h> 38 #include <linux/cleancache.h> 39 #include <linux/shmem_fs.h> 40 #include <linux/rmap.h> 41 #include <linux/delayacct.h> 42 #include <linux/psi.h> 43 #include <linux/ramfs.h> 44 #include <linux/page_idle.h> 45 #include <linux/migrate.h> 46 #include <asm/pgalloc.h> 47 #include <asm/tlbflush.h> 48 #include "internal.h" 49 50 #define CREATE_TRACE_POINTS 51 #include <trace/events/filemap.h> 52 53 /* 54 * FIXME: remove all knowledge of the buffer layer from the core VM 55 */ 56 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 57 58 #include <asm/mman.h> 59 60 /* 61 * Shared mappings implemented 30.11.1994. It's not fully working yet, 62 * though. 63 * 64 * Shared mappings now work. 15.8.1995 Bruno. 65 * 66 * finished 'unifying' the page and buffer cache and SMP-threaded the 67 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 68 * 69 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 70 */ 71 72 /* 73 * Lock ordering: 74 * 75 * ->i_mmap_rwsem (truncate_pagecache) 76 * ->private_lock (__free_pte->__set_page_dirty_buffers) 77 * ->swap_lock (exclusive_swap_page, others) 78 * ->i_pages lock 79 * 80 * ->i_rwsem 81 * ->invalidate_lock (acquired by fs in truncate path) 82 * ->i_mmap_rwsem (truncate->unmap_mapping_range) 83 * 84 * ->mmap_lock 85 * ->i_mmap_rwsem 86 * ->page_table_lock or pte_lock (various, mainly in memory.c) 87 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock) 88 * 89 * ->mmap_lock 90 * ->invalidate_lock (filemap_fault) 91 * ->lock_page (filemap_fault, access_process_vm) 92 * 93 * ->i_rwsem (generic_perform_write) 94 * ->mmap_lock (fault_in_readable->do_page_fault) 95 * 96 * bdi->wb.list_lock 97 * sb_lock (fs/fs-writeback.c) 98 * ->i_pages lock (__sync_single_inode) 99 * 100 * ->i_mmap_rwsem 101 * ->anon_vma.lock (vma_adjust) 102 * 103 * ->anon_vma.lock 104 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 105 * 106 * ->page_table_lock or pte_lock 107 * ->swap_lock (try_to_unmap_one) 108 * ->private_lock (try_to_unmap_one) 109 * ->i_pages lock (try_to_unmap_one) 110 * ->lruvec->lru_lock (follow_page->mark_page_accessed) 111 * ->lruvec->lru_lock (check_pte_range->isolate_lru_page) 112 * ->private_lock (page_remove_rmap->set_page_dirty) 113 * ->i_pages lock (page_remove_rmap->set_page_dirty) 114 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty) 115 * ->inode->i_lock (page_remove_rmap->set_page_dirty) 116 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg) 117 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 118 * ->inode->i_lock (zap_pte_range->set_page_dirty) 119 * ->private_lock (zap_pte_range->__set_page_dirty_buffers) 120 * 121 * ->i_mmap_rwsem 122 * ->tasklist_lock (memory_failure, collect_procs_ao) 123 */ 124 125 static void page_cache_delete(struct address_space *mapping, 126 struct folio *folio, void *shadow) 127 { 128 XA_STATE(xas, &mapping->i_pages, folio->index); 129 long nr = 1; 130 131 mapping_set_update(&xas, mapping); 132 133 /* hugetlb pages are represented by a single entry in the xarray */ 134 if (!folio_test_hugetlb(folio)) { 135 xas_set_order(&xas, folio->index, folio_order(folio)); 136 nr = folio_nr_pages(folio); 137 } 138 139 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 140 141 xas_store(&xas, shadow); 142 xas_init_marks(&xas); 143 144 folio->mapping = NULL; 145 /* Leave page->index set: truncation lookup relies upon it */ 146 mapping->nrpages -= nr; 147 } 148 149 static void filemap_unaccount_folio(struct address_space *mapping, 150 struct folio *folio) 151 { 152 long nr; 153 154 /* 155 * if we're uptodate, flush out into the cleancache, otherwise 156 * invalidate any existing cleancache entries. We can't leave 157 * stale data around in the cleancache once our page is gone 158 */ 159 if (folio_test_uptodate(folio) && folio_test_mappedtodisk(folio)) 160 cleancache_put_page(&folio->page); 161 else 162 cleancache_invalidate_page(mapping, &folio->page); 163 164 VM_BUG_ON_FOLIO(folio_mapped(folio), folio); 165 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) { 166 int mapcount; 167 168 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n", 169 current->comm, folio_pfn(folio)); 170 dump_page(&folio->page, "still mapped when deleted"); 171 dump_stack(); 172 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 173 174 mapcount = page_mapcount(&folio->page); 175 if (mapping_exiting(mapping) && 176 folio_ref_count(folio) >= mapcount + 2) { 177 /* 178 * All vmas have already been torn down, so it's 179 * a good bet that actually the folio is unmapped, 180 * and we'd prefer not to leak it: if we're wrong, 181 * some other bad page check should catch it later. 182 */ 183 page_mapcount_reset(&folio->page); 184 folio_ref_sub(folio, mapcount); 185 } 186 } 187 188 /* hugetlb folios do not participate in page cache accounting. */ 189 if (folio_test_hugetlb(folio)) 190 return; 191 192 nr = folio_nr_pages(folio); 193 194 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr); 195 if (folio_test_swapbacked(folio)) { 196 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr); 197 if (folio_test_pmd_mappable(folio)) 198 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr); 199 } else if (folio_test_pmd_mappable(folio)) { 200 __lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr); 201 filemap_nr_thps_dec(mapping); 202 } 203 204 /* 205 * At this point folio must be either written or cleaned by 206 * truncate. Dirty folio here signals a bug and loss of 207 * unwritten data. 208 * 209 * This fixes dirty accounting after removing the folio entirely 210 * but leaves the dirty flag set: it has no effect for truncated 211 * folio and anyway will be cleared before returning folio to 212 * buddy allocator. 213 */ 214 if (WARN_ON_ONCE(folio_test_dirty(folio))) 215 folio_account_cleaned(folio, mapping, 216 inode_to_wb(mapping->host)); 217 } 218 219 /* 220 * Delete a page from the page cache and free it. Caller has to make 221 * sure the page is locked and that nobody else uses it - or that usage 222 * is safe. The caller must hold the i_pages lock. 223 */ 224 void __filemap_remove_folio(struct folio *folio, void *shadow) 225 { 226 struct address_space *mapping = folio->mapping; 227 228 trace_mm_filemap_delete_from_page_cache(folio); 229 filemap_unaccount_folio(mapping, folio); 230 page_cache_delete(mapping, folio, shadow); 231 } 232 233 void filemap_free_folio(struct address_space *mapping, struct folio *folio) 234 { 235 void (*freepage)(struct page *); 236 237 freepage = mapping->a_ops->freepage; 238 if (freepage) 239 freepage(&folio->page); 240 241 if (folio_test_large(folio) && !folio_test_hugetlb(folio)) { 242 folio_ref_sub(folio, folio_nr_pages(folio)); 243 VM_BUG_ON_FOLIO(folio_ref_count(folio) <= 0, folio); 244 } else { 245 folio_put(folio); 246 } 247 } 248 249 /** 250 * filemap_remove_folio - Remove folio from page cache. 251 * @folio: The folio. 252 * 253 * This must be called only on folios that are locked and have been 254 * verified to be in the page cache. It will never put the folio into 255 * the free list because the caller has a reference on the page. 256 */ 257 void filemap_remove_folio(struct folio *folio) 258 { 259 struct address_space *mapping = folio->mapping; 260 261 BUG_ON(!folio_test_locked(folio)); 262 spin_lock(&mapping->host->i_lock); 263 xa_lock_irq(&mapping->i_pages); 264 __filemap_remove_folio(folio, NULL); 265 xa_unlock_irq(&mapping->i_pages); 266 if (mapping_shrinkable(mapping)) 267 inode_add_lru(mapping->host); 268 spin_unlock(&mapping->host->i_lock); 269 270 filemap_free_folio(mapping, folio); 271 } 272 273 /* 274 * page_cache_delete_batch - delete several folios from page cache 275 * @mapping: the mapping to which folios belong 276 * @fbatch: batch of folios to delete 277 * 278 * The function walks over mapping->i_pages and removes folios passed in 279 * @fbatch from the mapping. The function expects @fbatch to be sorted 280 * by page index and is optimised for it to be dense. 281 * It tolerates holes in @fbatch (mapping entries at those indices are not 282 * modified). 283 * 284 * The function expects the i_pages lock to be held. 285 */ 286 static void page_cache_delete_batch(struct address_space *mapping, 287 struct folio_batch *fbatch) 288 { 289 XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index); 290 long total_pages = 0; 291 int i = 0; 292 struct folio *folio; 293 294 mapping_set_update(&xas, mapping); 295 xas_for_each(&xas, folio, ULONG_MAX) { 296 if (i >= folio_batch_count(fbatch)) 297 break; 298 299 /* A swap/dax/shadow entry got inserted? Skip it. */ 300 if (xa_is_value(folio)) 301 continue; 302 /* 303 * A page got inserted in our range? Skip it. We have our 304 * pages locked so they are protected from being removed. 305 * If we see a page whose index is higher than ours, it 306 * means our page has been removed, which shouldn't be 307 * possible because we're holding the PageLock. 308 */ 309 if (folio != fbatch->folios[i]) { 310 VM_BUG_ON_FOLIO(folio->index > 311 fbatch->folios[i]->index, folio); 312 continue; 313 } 314 315 WARN_ON_ONCE(!folio_test_locked(folio)); 316 317 folio->mapping = NULL; 318 /* Leave folio->index set: truncation lookup relies on it */ 319 320 i++; 321 xas_store(&xas, NULL); 322 total_pages += folio_nr_pages(folio); 323 } 324 mapping->nrpages -= total_pages; 325 } 326 327 void delete_from_page_cache_batch(struct address_space *mapping, 328 struct folio_batch *fbatch) 329 { 330 int i; 331 332 if (!folio_batch_count(fbatch)) 333 return; 334 335 spin_lock(&mapping->host->i_lock); 336 xa_lock_irq(&mapping->i_pages); 337 for (i = 0; i < folio_batch_count(fbatch); i++) { 338 struct folio *folio = fbatch->folios[i]; 339 340 trace_mm_filemap_delete_from_page_cache(folio); 341 filemap_unaccount_folio(mapping, folio); 342 } 343 page_cache_delete_batch(mapping, fbatch); 344 xa_unlock_irq(&mapping->i_pages); 345 if (mapping_shrinkable(mapping)) 346 inode_add_lru(mapping->host); 347 spin_unlock(&mapping->host->i_lock); 348 349 for (i = 0; i < folio_batch_count(fbatch); i++) 350 filemap_free_folio(mapping, fbatch->folios[i]); 351 } 352 353 int filemap_check_errors(struct address_space *mapping) 354 { 355 int ret = 0; 356 /* Check for outstanding write errors */ 357 if (test_bit(AS_ENOSPC, &mapping->flags) && 358 test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 359 ret = -ENOSPC; 360 if (test_bit(AS_EIO, &mapping->flags) && 361 test_and_clear_bit(AS_EIO, &mapping->flags)) 362 ret = -EIO; 363 return ret; 364 } 365 EXPORT_SYMBOL(filemap_check_errors); 366 367 static int filemap_check_and_keep_errors(struct address_space *mapping) 368 { 369 /* Check for outstanding write errors */ 370 if (test_bit(AS_EIO, &mapping->flags)) 371 return -EIO; 372 if (test_bit(AS_ENOSPC, &mapping->flags)) 373 return -ENOSPC; 374 return 0; 375 } 376 377 /** 378 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range 379 * @mapping: address space structure to write 380 * @wbc: the writeback_control controlling the writeout 381 * 382 * Call writepages on the mapping using the provided wbc to control the 383 * writeout. 384 * 385 * Return: %0 on success, negative error code otherwise. 386 */ 387 int filemap_fdatawrite_wbc(struct address_space *mapping, 388 struct writeback_control *wbc) 389 { 390 int ret; 391 392 if (!mapping_can_writeback(mapping) || 393 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 394 return 0; 395 396 wbc_attach_fdatawrite_inode(wbc, mapping->host); 397 ret = do_writepages(mapping, wbc); 398 wbc_detach_inode(wbc); 399 return ret; 400 } 401 EXPORT_SYMBOL(filemap_fdatawrite_wbc); 402 403 /** 404 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 405 * @mapping: address space structure to write 406 * @start: offset in bytes where the range starts 407 * @end: offset in bytes where the range ends (inclusive) 408 * @sync_mode: enable synchronous operation 409 * 410 * Start writeback against all of a mapping's dirty pages that lie 411 * within the byte offsets <start, end> inclusive. 412 * 413 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 414 * opposed to a regular memory cleansing writeback. The difference between 415 * these two operations is that if a dirty page/buffer is encountered, it must 416 * be waited upon, and not just skipped over. 417 * 418 * Return: %0 on success, negative error code otherwise. 419 */ 420 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 421 loff_t end, int sync_mode) 422 { 423 struct writeback_control wbc = { 424 .sync_mode = sync_mode, 425 .nr_to_write = LONG_MAX, 426 .range_start = start, 427 .range_end = end, 428 }; 429 430 return filemap_fdatawrite_wbc(mapping, &wbc); 431 } 432 433 static inline int __filemap_fdatawrite(struct address_space *mapping, 434 int sync_mode) 435 { 436 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 437 } 438 439 int filemap_fdatawrite(struct address_space *mapping) 440 { 441 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 442 } 443 EXPORT_SYMBOL(filemap_fdatawrite); 444 445 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 446 loff_t end) 447 { 448 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 449 } 450 EXPORT_SYMBOL(filemap_fdatawrite_range); 451 452 /** 453 * filemap_flush - mostly a non-blocking flush 454 * @mapping: target address_space 455 * 456 * This is a mostly non-blocking flush. Not suitable for data-integrity 457 * purposes - I/O may not be started against all dirty pages. 458 * 459 * Return: %0 on success, negative error code otherwise. 460 */ 461 int filemap_flush(struct address_space *mapping) 462 { 463 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 464 } 465 EXPORT_SYMBOL(filemap_flush); 466 467 /** 468 * filemap_range_has_page - check if a page exists in range. 469 * @mapping: address space within which to check 470 * @start_byte: offset in bytes where the range starts 471 * @end_byte: offset in bytes where the range ends (inclusive) 472 * 473 * Find at least one page in the range supplied, usually used to check if 474 * direct writing in this range will trigger a writeback. 475 * 476 * Return: %true if at least one page exists in the specified range, 477 * %false otherwise. 478 */ 479 bool filemap_range_has_page(struct address_space *mapping, 480 loff_t start_byte, loff_t end_byte) 481 { 482 struct page *page; 483 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 484 pgoff_t max = end_byte >> PAGE_SHIFT; 485 486 if (end_byte < start_byte) 487 return false; 488 489 rcu_read_lock(); 490 for (;;) { 491 page = xas_find(&xas, max); 492 if (xas_retry(&xas, page)) 493 continue; 494 /* Shadow entries don't count */ 495 if (xa_is_value(page)) 496 continue; 497 /* 498 * We don't need to try to pin this page; we're about to 499 * release the RCU lock anyway. It is enough to know that 500 * there was a page here recently. 501 */ 502 break; 503 } 504 rcu_read_unlock(); 505 506 return page != NULL; 507 } 508 EXPORT_SYMBOL(filemap_range_has_page); 509 510 static void __filemap_fdatawait_range(struct address_space *mapping, 511 loff_t start_byte, loff_t end_byte) 512 { 513 pgoff_t index = start_byte >> PAGE_SHIFT; 514 pgoff_t end = end_byte >> PAGE_SHIFT; 515 struct pagevec pvec; 516 int nr_pages; 517 518 if (end_byte < start_byte) 519 return; 520 521 pagevec_init(&pvec); 522 while (index <= end) { 523 unsigned i; 524 525 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, 526 end, PAGECACHE_TAG_WRITEBACK); 527 if (!nr_pages) 528 break; 529 530 for (i = 0; i < nr_pages; i++) { 531 struct page *page = pvec.pages[i]; 532 533 wait_on_page_writeback(page); 534 ClearPageError(page); 535 } 536 pagevec_release(&pvec); 537 cond_resched(); 538 } 539 } 540 541 /** 542 * filemap_fdatawait_range - wait for writeback to complete 543 * @mapping: address space structure to wait for 544 * @start_byte: offset in bytes where the range starts 545 * @end_byte: offset in bytes where the range ends (inclusive) 546 * 547 * Walk the list of under-writeback pages of the given address space 548 * in the given range and wait for all of them. Check error status of 549 * the address space and return it. 550 * 551 * Since the error status of the address space is cleared by this function, 552 * callers are responsible for checking the return value and handling and/or 553 * reporting the error. 554 * 555 * Return: error status of the address space. 556 */ 557 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 558 loff_t end_byte) 559 { 560 __filemap_fdatawait_range(mapping, start_byte, end_byte); 561 return filemap_check_errors(mapping); 562 } 563 EXPORT_SYMBOL(filemap_fdatawait_range); 564 565 /** 566 * filemap_fdatawait_range_keep_errors - wait for writeback to complete 567 * @mapping: address space structure to wait for 568 * @start_byte: offset in bytes where the range starts 569 * @end_byte: offset in bytes where the range ends (inclusive) 570 * 571 * Walk the list of under-writeback pages of the given address space in the 572 * given range and wait for all of them. Unlike filemap_fdatawait_range(), 573 * this function does not clear error status of the address space. 574 * 575 * Use this function if callers don't handle errors themselves. Expected 576 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 577 * fsfreeze(8) 578 */ 579 int filemap_fdatawait_range_keep_errors(struct address_space *mapping, 580 loff_t start_byte, loff_t end_byte) 581 { 582 __filemap_fdatawait_range(mapping, start_byte, end_byte); 583 return filemap_check_and_keep_errors(mapping); 584 } 585 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors); 586 587 /** 588 * file_fdatawait_range - wait for writeback to complete 589 * @file: file pointing to address space structure to wait for 590 * @start_byte: offset in bytes where the range starts 591 * @end_byte: offset in bytes where the range ends (inclusive) 592 * 593 * Walk the list of under-writeback pages of the address space that file 594 * refers to, in the given range and wait for all of them. Check error 595 * status of the address space vs. the file->f_wb_err cursor and return it. 596 * 597 * Since the error status of the file is advanced by this function, 598 * callers are responsible for checking the return value and handling and/or 599 * reporting the error. 600 * 601 * Return: error status of the address space vs. the file->f_wb_err cursor. 602 */ 603 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte) 604 { 605 struct address_space *mapping = file->f_mapping; 606 607 __filemap_fdatawait_range(mapping, start_byte, end_byte); 608 return file_check_and_advance_wb_err(file); 609 } 610 EXPORT_SYMBOL(file_fdatawait_range); 611 612 /** 613 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors 614 * @mapping: address space structure to wait for 615 * 616 * Walk the list of under-writeback pages of the given address space 617 * and wait for all of them. Unlike filemap_fdatawait(), this function 618 * does not clear error status of the address space. 619 * 620 * Use this function if callers don't handle errors themselves. Expected 621 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 622 * fsfreeze(8) 623 * 624 * Return: error status of the address space. 625 */ 626 int filemap_fdatawait_keep_errors(struct address_space *mapping) 627 { 628 __filemap_fdatawait_range(mapping, 0, LLONG_MAX); 629 return filemap_check_and_keep_errors(mapping); 630 } 631 EXPORT_SYMBOL(filemap_fdatawait_keep_errors); 632 633 /* Returns true if writeback might be needed or already in progress. */ 634 static bool mapping_needs_writeback(struct address_space *mapping) 635 { 636 return mapping->nrpages; 637 } 638 639 bool filemap_range_has_writeback(struct address_space *mapping, 640 loff_t start_byte, loff_t end_byte) 641 { 642 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 643 pgoff_t max = end_byte >> PAGE_SHIFT; 644 struct page *page; 645 646 if (end_byte < start_byte) 647 return false; 648 649 rcu_read_lock(); 650 xas_for_each(&xas, page, max) { 651 if (xas_retry(&xas, page)) 652 continue; 653 if (xa_is_value(page)) 654 continue; 655 if (PageDirty(page) || PageLocked(page) || PageWriteback(page)) 656 break; 657 } 658 rcu_read_unlock(); 659 return page != NULL; 660 } 661 EXPORT_SYMBOL_GPL(filemap_range_has_writeback); 662 663 /** 664 * filemap_write_and_wait_range - write out & wait on a file range 665 * @mapping: the address_space for the pages 666 * @lstart: offset in bytes where the range starts 667 * @lend: offset in bytes where the range ends (inclusive) 668 * 669 * Write out and wait upon file offsets lstart->lend, inclusive. 670 * 671 * Note that @lend is inclusive (describes the last byte to be written) so 672 * that this function can be used to write to the very end-of-file (end = -1). 673 * 674 * Return: error status of the address space. 675 */ 676 int filemap_write_and_wait_range(struct address_space *mapping, 677 loff_t lstart, loff_t lend) 678 { 679 int err = 0; 680 681 if (mapping_needs_writeback(mapping)) { 682 err = __filemap_fdatawrite_range(mapping, lstart, lend, 683 WB_SYNC_ALL); 684 /* 685 * Even if the above returned error, the pages may be 686 * written partially (e.g. -ENOSPC), so we wait for it. 687 * But the -EIO is special case, it may indicate the worst 688 * thing (e.g. bug) happened, so we avoid waiting for it. 689 */ 690 if (err != -EIO) { 691 int err2 = filemap_fdatawait_range(mapping, 692 lstart, lend); 693 if (!err) 694 err = err2; 695 } else { 696 /* Clear any previously stored errors */ 697 filemap_check_errors(mapping); 698 } 699 } else { 700 err = filemap_check_errors(mapping); 701 } 702 return err; 703 } 704 EXPORT_SYMBOL(filemap_write_and_wait_range); 705 706 void __filemap_set_wb_err(struct address_space *mapping, int err) 707 { 708 errseq_t eseq = errseq_set(&mapping->wb_err, err); 709 710 trace_filemap_set_wb_err(mapping, eseq); 711 } 712 EXPORT_SYMBOL(__filemap_set_wb_err); 713 714 /** 715 * file_check_and_advance_wb_err - report wb error (if any) that was previously 716 * and advance wb_err to current one 717 * @file: struct file on which the error is being reported 718 * 719 * When userland calls fsync (or something like nfsd does the equivalent), we 720 * want to report any writeback errors that occurred since the last fsync (or 721 * since the file was opened if there haven't been any). 722 * 723 * Grab the wb_err from the mapping. If it matches what we have in the file, 724 * then just quickly return 0. The file is all caught up. 725 * 726 * If it doesn't match, then take the mapping value, set the "seen" flag in 727 * it and try to swap it into place. If it works, or another task beat us 728 * to it with the new value, then update the f_wb_err and return the error 729 * portion. The error at this point must be reported via proper channels 730 * (a'la fsync, or NFS COMMIT operation, etc.). 731 * 732 * While we handle mapping->wb_err with atomic operations, the f_wb_err 733 * value is protected by the f_lock since we must ensure that it reflects 734 * the latest value swapped in for this file descriptor. 735 * 736 * Return: %0 on success, negative error code otherwise. 737 */ 738 int file_check_and_advance_wb_err(struct file *file) 739 { 740 int err = 0; 741 errseq_t old = READ_ONCE(file->f_wb_err); 742 struct address_space *mapping = file->f_mapping; 743 744 /* Locklessly handle the common case where nothing has changed */ 745 if (errseq_check(&mapping->wb_err, old)) { 746 /* Something changed, must use slow path */ 747 spin_lock(&file->f_lock); 748 old = file->f_wb_err; 749 err = errseq_check_and_advance(&mapping->wb_err, 750 &file->f_wb_err); 751 trace_file_check_and_advance_wb_err(file, old); 752 spin_unlock(&file->f_lock); 753 } 754 755 /* 756 * We're mostly using this function as a drop in replacement for 757 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect 758 * that the legacy code would have had on these flags. 759 */ 760 clear_bit(AS_EIO, &mapping->flags); 761 clear_bit(AS_ENOSPC, &mapping->flags); 762 return err; 763 } 764 EXPORT_SYMBOL(file_check_and_advance_wb_err); 765 766 /** 767 * file_write_and_wait_range - write out & wait on a file range 768 * @file: file pointing to address_space with pages 769 * @lstart: offset in bytes where the range starts 770 * @lend: offset in bytes where the range ends (inclusive) 771 * 772 * Write out and wait upon file offsets lstart->lend, inclusive. 773 * 774 * Note that @lend is inclusive (describes the last byte to be written) so 775 * that this function can be used to write to the very end-of-file (end = -1). 776 * 777 * After writing out and waiting on the data, we check and advance the 778 * f_wb_err cursor to the latest value, and return any errors detected there. 779 * 780 * Return: %0 on success, negative error code otherwise. 781 */ 782 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend) 783 { 784 int err = 0, err2; 785 struct address_space *mapping = file->f_mapping; 786 787 if (mapping_needs_writeback(mapping)) { 788 err = __filemap_fdatawrite_range(mapping, lstart, lend, 789 WB_SYNC_ALL); 790 /* See comment of filemap_write_and_wait() */ 791 if (err != -EIO) 792 __filemap_fdatawait_range(mapping, lstart, lend); 793 } 794 err2 = file_check_and_advance_wb_err(file); 795 if (!err) 796 err = err2; 797 return err; 798 } 799 EXPORT_SYMBOL(file_write_and_wait_range); 800 801 /** 802 * replace_page_cache_page - replace a pagecache page with a new one 803 * @old: page to be replaced 804 * @new: page to replace with 805 * 806 * This function replaces a page in the pagecache with a new one. On 807 * success it acquires the pagecache reference for the new page and 808 * drops it for the old page. Both the old and new pages must be 809 * locked. This function does not add the new page to the LRU, the 810 * caller must do that. 811 * 812 * The remove + add is atomic. This function cannot fail. 813 */ 814 void replace_page_cache_page(struct page *old, struct page *new) 815 { 816 struct folio *fold = page_folio(old); 817 struct folio *fnew = page_folio(new); 818 struct address_space *mapping = old->mapping; 819 void (*freepage)(struct page *) = mapping->a_ops->freepage; 820 pgoff_t offset = old->index; 821 XA_STATE(xas, &mapping->i_pages, offset); 822 823 VM_BUG_ON_PAGE(!PageLocked(old), old); 824 VM_BUG_ON_PAGE(!PageLocked(new), new); 825 VM_BUG_ON_PAGE(new->mapping, new); 826 827 get_page(new); 828 new->mapping = mapping; 829 new->index = offset; 830 831 mem_cgroup_migrate(fold, fnew); 832 833 xas_lock_irq(&xas); 834 xas_store(&xas, new); 835 836 old->mapping = NULL; 837 /* hugetlb pages do not participate in page cache accounting. */ 838 if (!PageHuge(old)) 839 __dec_lruvec_page_state(old, NR_FILE_PAGES); 840 if (!PageHuge(new)) 841 __inc_lruvec_page_state(new, NR_FILE_PAGES); 842 if (PageSwapBacked(old)) 843 __dec_lruvec_page_state(old, NR_SHMEM); 844 if (PageSwapBacked(new)) 845 __inc_lruvec_page_state(new, NR_SHMEM); 846 xas_unlock_irq(&xas); 847 if (freepage) 848 freepage(old); 849 put_page(old); 850 } 851 EXPORT_SYMBOL_GPL(replace_page_cache_page); 852 853 noinline int __filemap_add_folio(struct address_space *mapping, 854 struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp) 855 { 856 XA_STATE(xas, &mapping->i_pages, index); 857 int huge = folio_test_hugetlb(folio); 858 int error; 859 bool charged = false; 860 861 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 862 VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio); 863 mapping_set_update(&xas, mapping); 864 865 folio_get(folio); 866 folio->mapping = mapping; 867 folio->index = index; 868 869 if (!huge) { 870 error = mem_cgroup_charge(folio, NULL, gfp); 871 VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio); 872 if (error) 873 goto error; 874 charged = true; 875 } 876 877 gfp &= GFP_RECLAIM_MASK; 878 879 do { 880 unsigned int order = xa_get_order(xas.xa, xas.xa_index); 881 void *entry, *old = NULL; 882 883 if (order > folio_order(folio)) 884 xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index), 885 order, gfp); 886 xas_lock_irq(&xas); 887 xas_for_each_conflict(&xas, entry) { 888 old = entry; 889 if (!xa_is_value(entry)) { 890 xas_set_err(&xas, -EEXIST); 891 goto unlock; 892 } 893 } 894 895 if (old) { 896 if (shadowp) 897 *shadowp = old; 898 /* entry may have been split before we acquired lock */ 899 order = xa_get_order(xas.xa, xas.xa_index); 900 if (order > folio_order(folio)) { 901 xas_split(&xas, old, order); 902 xas_reset(&xas); 903 } 904 } 905 906 xas_store(&xas, folio); 907 if (xas_error(&xas)) 908 goto unlock; 909 910 mapping->nrpages++; 911 912 /* hugetlb pages do not participate in page cache accounting */ 913 if (!huge) 914 __lruvec_stat_add_folio(folio, NR_FILE_PAGES); 915 unlock: 916 xas_unlock_irq(&xas); 917 } while (xas_nomem(&xas, gfp)); 918 919 if (xas_error(&xas)) { 920 error = xas_error(&xas); 921 if (charged) 922 mem_cgroup_uncharge(folio); 923 goto error; 924 } 925 926 trace_mm_filemap_add_to_page_cache(folio); 927 return 0; 928 error: 929 folio->mapping = NULL; 930 /* Leave page->index set: truncation relies upon it */ 931 folio_put(folio); 932 return error; 933 } 934 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO); 935 936 /** 937 * add_to_page_cache_locked - add a locked page to the pagecache 938 * @page: page to add 939 * @mapping: the page's address_space 940 * @offset: page index 941 * @gfp_mask: page allocation mode 942 * 943 * This function is used to add a page to the pagecache. It must be locked. 944 * This function does not add the page to the LRU. The caller must do that. 945 * 946 * Return: %0 on success, negative error code otherwise. 947 */ 948 int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 949 pgoff_t offset, gfp_t gfp_mask) 950 { 951 return __filemap_add_folio(mapping, page_folio(page), offset, 952 gfp_mask, NULL); 953 } 954 EXPORT_SYMBOL(add_to_page_cache_locked); 955 956 int filemap_add_folio(struct address_space *mapping, struct folio *folio, 957 pgoff_t index, gfp_t gfp) 958 { 959 void *shadow = NULL; 960 int ret; 961 962 __folio_set_locked(folio); 963 ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow); 964 if (unlikely(ret)) 965 __folio_clear_locked(folio); 966 else { 967 /* 968 * The folio might have been evicted from cache only 969 * recently, in which case it should be activated like 970 * any other repeatedly accessed folio. 971 * The exception is folios getting rewritten; evicting other 972 * data from the working set, only to cache data that will 973 * get overwritten with something else, is a waste of memory. 974 */ 975 WARN_ON_ONCE(folio_test_active(folio)); 976 if (!(gfp & __GFP_WRITE) && shadow) 977 workingset_refault(folio, shadow); 978 folio_add_lru(folio); 979 } 980 return ret; 981 } 982 EXPORT_SYMBOL_GPL(filemap_add_folio); 983 984 #ifdef CONFIG_NUMA 985 struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order) 986 { 987 int n; 988 struct folio *folio; 989 990 if (cpuset_do_page_mem_spread()) { 991 unsigned int cpuset_mems_cookie; 992 do { 993 cpuset_mems_cookie = read_mems_allowed_begin(); 994 n = cpuset_mem_spread_node(); 995 folio = __folio_alloc_node(gfp, order, n); 996 } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie)); 997 998 return folio; 999 } 1000 return folio_alloc(gfp, order); 1001 } 1002 EXPORT_SYMBOL(filemap_alloc_folio); 1003 #endif 1004 1005 /* 1006 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings 1007 * 1008 * Lock exclusively invalidate_lock of any passed mapping that is not NULL. 1009 * 1010 * @mapping1: the first mapping to lock 1011 * @mapping2: the second mapping to lock 1012 */ 1013 void filemap_invalidate_lock_two(struct address_space *mapping1, 1014 struct address_space *mapping2) 1015 { 1016 if (mapping1 > mapping2) 1017 swap(mapping1, mapping2); 1018 if (mapping1) 1019 down_write(&mapping1->invalidate_lock); 1020 if (mapping2 && mapping1 != mapping2) 1021 down_write_nested(&mapping2->invalidate_lock, 1); 1022 } 1023 EXPORT_SYMBOL(filemap_invalidate_lock_two); 1024 1025 /* 1026 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings 1027 * 1028 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL. 1029 * 1030 * @mapping1: the first mapping to unlock 1031 * @mapping2: the second mapping to unlock 1032 */ 1033 void filemap_invalidate_unlock_two(struct address_space *mapping1, 1034 struct address_space *mapping2) 1035 { 1036 if (mapping1) 1037 up_write(&mapping1->invalidate_lock); 1038 if (mapping2 && mapping1 != mapping2) 1039 up_write(&mapping2->invalidate_lock); 1040 } 1041 EXPORT_SYMBOL(filemap_invalidate_unlock_two); 1042 1043 /* 1044 * In order to wait for pages to become available there must be 1045 * waitqueues associated with pages. By using a hash table of 1046 * waitqueues where the bucket discipline is to maintain all 1047 * waiters on the same queue and wake all when any of the pages 1048 * become available, and for the woken contexts to check to be 1049 * sure the appropriate page became available, this saves space 1050 * at a cost of "thundering herd" phenomena during rare hash 1051 * collisions. 1052 */ 1053 #define PAGE_WAIT_TABLE_BITS 8 1054 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS) 1055 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned; 1056 1057 static wait_queue_head_t *folio_waitqueue(struct folio *folio) 1058 { 1059 return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)]; 1060 } 1061 1062 void __init pagecache_init(void) 1063 { 1064 int i; 1065 1066 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++) 1067 init_waitqueue_head(&folio_wait_table[i]); 1068 1069 page_writeback_init(); 1070 } 1071 1072 /* 1073 * The page wait code treats the "wait->flags" somewhat unusually, because 1074 * we have multiple different kinds of waits, not just the usual "exclusive" 1075 * one. 1076 * 1077 * We have: 1078 * 1079 * (a) no special bits set: 1080 * 1081 * We're just waiting for the bit to be released, and when a waker 1082 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up, 1083 * and remove it from the wait queue. 1084 * 1085 * Simple and straightforward. 1086 * 1087 * (b) WQ_FLAG_EXCLUSIVE: 1088 * 1089 * The waiter is waiting to get the lock, and only one waiter should 1090 * be woken up to avoid any thundering herd behavior. We'll set the 1091 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue. 1092 * 1093 * This is the traditional exclusive wait. 1094 * 1095 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM: 1096 * 1097 * The waiter is waiting to get the bit, and additionally wants the 1098 * lock to be transferred to it for fair lock behavior. If the lock 1099 * cannot be taken, we stop walking the wait queue without waking 1100 * the waiter. 1101 * 1102 * This is the "fair lock handoff" case, and in addition to setting 1103 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see 1104 * that it now has the lock. 1105 */ 1106 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg) 1107 { 1108 unsigned int flags; 1109 struct wait_page_key *key = arg; 1110 struct wait_page_queue *wait_page 1111 = container_of(wait, struct wait_page_queue, wait); 1112 1113 if (!wake_page_match(wait_page, key)) 1114 return 0; 1115 1116 /* 1117 * If it's a lock handoff wait, we get the bit for it, and 1118 * stop walking (and do not wake it up) if we can't. 1119 */ 1120 flags = wait->flags; 1121 if (flags & WQ_FLAG_EXCLUSIVE) { 1122 if (test_bit(key->bit_nr, &key->folio->flags)) 1123 return -1; 1124 if (flags & WQ_FLAG_CUSTOM) { 1125 if (test_and_set_bit(key->bit_nr, &key->folio->flags)) 1126 return -1; 1127 flags |= WQ_FLAG_DONE; 1128 } 1129 } 1130 1131 /* 1132 * We are holding the wait-queue lock, but the waiter that 1133 * is waiting for this will be checking the flags without 1134 * any locking. 1135 * 1136 * So update the flags atomically, and wake up the waiter 1137 * afterwards to avoid any races. This store-release pairs 1138 * with the load-acquire in folio_wait_bit_common(). 1139 */ 1140 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN); 1141 wake_up_state(wait->private, mode); 1142 1143 /* 1144 * Ok, we have successfully done what we're waiting for, 1145 * and we can unconditionally remove the wait entry. 1146 * 1147 * Note that this pairs with the "finish_wait()" in the 1148 * waiter, and has to be the absolute last thing we do. 1149 * After this list_del_init(&wait->entry) the wait entry 1150 * might be de-allocated and the process might even have 1151 * exited. 1152 */ 1153 list_del_init_careful(&wait->entry); 1154 return (flags & WQ_FLAG_EXCLUSIVE) != 0; 1155 } 1156 1157 static void folio_wake_bit(struct folio *folio, int bit_nr) 1158 { 1159 wait_queue_head_t *q = folio_waitqueue(folio); 1160 struct wait_page_key key; 1161 unsigned long flags; 1162 wait_queue_entry_t bookmark; 1163 1164 key.folio = folio; 1165 key.bit_nr = bit_nr; 1166 key.page_match = 0; 1167 1168 bookmark.flags = 0; 1169 bookmark.private = NULL; 1170 bookmark.func = NULL; 1171 INIT_LIST_HEAD(&bookmark.entry); 1172 1173 spin_lock_irqsave(&q->lock, flags); 1174 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); 1175 1176 while (bookmark.flags & WQ_FLAG_BOOKMARK) { 1177 /* 1178 * Take a breather from holding the lock, 1179 * allow pages that finish wake up asynchronously 1180 * to acquire the lock and remove themselves 1181 * from wait queue 1182 */ 1183 spin_unlock_irqrestore(&q->lock, flags); 1184 cpu_relax(); 1185 spin_lock_irqsave(&q->lock, flags); 1186 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); 1187 } 1188 1189 /* 1190 * It is possible for other pages to have collided on the waitqueue 1191 * hash, so in that case check for a page match. That prevents a long- 1192 * term waiter 1193 * 1194 * It is still possible to miss a case here, when we woke page waiters 1195 * and removed them from the waitqueue, but there are still other 1196 * page waiters. 1197 */ 1198 if (!waitqueue_active(q) || !key.page_match) { 1199 folio_clear_waiters(folio); 1200 /* 1201 * It's possible to miss clearing Waiters here, when we woke 1202 * our page waiters, but the hashed waitqueue has waiters for 1203 * other pages on it. 1204 * 1205 * That's okay, it's a rare case. The next waker will clear it. 1206 */ 1207 } 1208 spin_unlock_irqrestore(&q->lock, flags); 1209 } 1210 1211 static void folio_wake(struct folio *folio, int bit) 1212 { 1213 if (!folio_test_waiters(folio)) 1214 return; 1215 folio_wake_bit(folio, bit); 1216 } 1217 1218 /* 1219 * A choice of three behaviors for folio_wait_bit_common(): 1220 */ 1221 enum behavior { 1222 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like 1223 * __folio_lock() waiting on then setting PG_locked. 1224 */ 1225 SHARED, /* Hold ref to page and check the bit when woken, like 1226 * folio_wait_writeback() waiting on PG_writeback. 1227 */ 1228 DROP, /* Drop ref to page before wait, no check when woken, 1229 * like folio_put_wait_locked() on PG_locked. 1230 */ 1231 }; 1232 1233 /* 1234 * Attempt to check (or get) the folio flag, and mark us done 1235 * if successful. 1236 */ 1237 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr, 1238 struct wait_queue_entry *wait) 1239 { 1240 if (wait->flags & WQ_FLAG_EXCLUSIVE) { 1241 if (test_and_set_bit(bit_nr, &folio->flags)) 1242 return false; 1243 } else if (test_bit(bit_nr, &folio->flags)) 1244 return false; 1245 1246 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE; 1247 return true; 1248 } 1249 1250 /* How many times do we accept lock stealing from under a waiter? */ 1251 int sysctl_page_lock_unfairness = 5; 1252 1253 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr, 1254 int state, enum behavior behavior) 1255 { 1256 wait_queue_head_t *q = folio_waitqueue(folio); 1257 int unfairness = sysctl_page_lock_unfairness; 1258 struct wait_page_queue wait_page; 1259 wait_queue_entry_t *wait = &wait_page.wait; 1260 bool thrashing = false; 1261 bool delayacct = false; 1262 unsigned long pflags; 1263 1264 if (bit_nr == PG_locked && 1265 !folio_test_uptodate(folio) && folio_test_workingset(folio)) { 1266 if (!folio_test_swapbacked(folio)) { 1267 delayacct_thrashing_start(); 1268 delayacct = true; 1269 } 1270 psi_memstall_enter(&pflags); 1271 thrashing = true; 1272 } 1273 1274 init_wait(wait); 1275 wait->func = wake_page_function; 1276 wait_page.folio = folio; 1277 wait_page.bit_nr = bit_nr; 1278 1279 repeat: 1280 wait->flags = 0; 1281 if (behavior == EXCLUSIVE) { 1282 wait->flags = WQ_FLAG_EXCLUSIVE; 1283 if (--unfairness < 0) 1284 wait->flags |= WQ_FLAG_CUSTOM; 1285 } 1286 1287 /* 1288 * Do one last check whether we can get the 1289 * page bit synchronously. 1290 * 1291 * Do the folio_set_waiters() marking before that 1292 * to let any waker we _just_ missed know they 1293 * need to wake us up (otherwise they'll never 1294 * even go to the slow case that looks at the 1295 * page queue), and add ourselves to the wait 1296 * queue if we need to sleep. 1297 * 1298 * This part needs to be done under the queue 1299 * lock to avoid races. 1300 */ 1301 spin_lock_irq(&q->lock); 1302 folio_set_waiters(folio); 1303 if (!folio_trylock_flag(folio, bit_nr, wait)) 1304 __add_wait_queue_entry_tail(q, wait); 1305 spin_unlock_irq(&q->lock); 1306 1307 /* 1308 * From now on, all the logic will be based on 1309 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to 1310 * see whether the page bit testing has already 1311 * been done by the wake function. 1312 * 1313 * We can drop our reference to the folio. 1314 */ 1315 if (behavior == DROP) 1316 folio_put(folio); 1317 1318 /* 1319 * Note that until the "finish_wait()", or until 1320 * we see the WQ_FLAG_WOKEN flag, we need to 1321 * be very careful with the 'wait->flags', because 1322 * we may race with a waker that sets them. 1323 */ 1324 for (;;) { 1325 unsigned int flags; 1326 1327 set_current_state(state); 1328 1329 /* Loop until we've been woken or interrupted */ 1330 flags = smp_load_acquire(&wait->flags); 1331 if (!(flags & WQ_FLAG_WOKEN)) { 1332 if (signal_pending_state(state, current)) 1333 break; 1334 1335 io_schedule(); 1336 continue; 1337 } 1338 1339 /* If we were non-exclusive, we're done */ 1340 if (behavior != EXCLUSIVE) 1341 break; 1342 1343 /* If the waker got the lock for us, we're done */ 1344 if (flags & WQ_FLAG_DONE) 1345 break; 1346 1347 /* 1348 * Otherwise, if we're getting the lock, we need to 1349 * try to get it ourselves. 1350 * 1351 * And if that fails, we'll have to retry this all. 1352 */ 1353 if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0)))) 1354 goto repeat; 1355 1356 wait->flags |= WQ_FLAG_DONE; 1357 break; 1358 } 1359 1360 /* 1361 * If a signal happened, this 'finish_wait()' may remove the last 1362 * waiter from the wait-queues, but the folio waiters bit will remain 1363 * set. That's ok. The next wakeup will take care of it, and trying 1364 * to do it here would be difficult and prone to races. 1365 */ 1366 finish_wait(q, wait); 1367 1368 if (thrashing) { 1369 if (delayacct) 1370 delayacct_thrashing_end(); 1371 psi_memstall_leave(&pflags); 1372 } 1373 1374 /* 1375 * NOTE! The wait->flags weren't stable until we've done the 1376 * 'finish_wait()', and we could have exited the loop above due 1377 * to a signal, and had a wakeup event happen after the signal 1378 * test but before the 'finish_wait()'. 1379 * 1380 * So only after the finish_wait() can we reliably determine 1381 * if we got woken up or not, so we can now figure out the final 1382 * return value based on that state without races. 1383 * 1384 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive 1385 * waiter, but an exclusive one requires WQ_FLAG_DONE. 1386 */ 1387 if (behavior == EXCLUSIVE) 1388 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR; 1389 1390 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR; 1391 } 1392 1393 #ifdef CONFIG_MIGRATION 1394 /** 1395 * migration_entry_wait_on_locked - Wait for a migration entry to be removed 1396 * @entry: migration swap entry. 1397 * @ptep: mapped pte pointer. Will return with the ptep unmapped. Only required 1398 * for pte entries, pass NULL for pmd entries. 1399 * @ptl: already locked ptl. This function will drop the lock. 1400 * 1401 * Wait for a migration entry referencing the given page to be removed. This is 1402 * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except 1403 * this can be called without taking a reference on the page. Instead this 1404 * should be called while holding the ptl for the migration entry referencing 1405 * the page. 1406 * 1407 * Returns after unmapping and unlocking the pte/ptl with pte_unmap_unlock(). 1408 * 1409 * This follows the same logic as folio_wait_bit_common() so see the comments 1410 * there. 1411 */ 1412 void migration_entry_wait_on_locked(swp_entry_t entry, pte_t *ptep, 1413 spinlock_t *ptl) 1414 { 1415 struct wait_page_queue wait_page; 1416 wait_queue_entry_t *wait = &wait_page.wait; 1417 bool thrashing = false; 1418 bool delayacct = false; 1419 unsigned long pflags; 1420 wait_queue_head_t *q; 1421 struct folio *folio = page_folio(pfn_swap_entry_to_page(entry)); 1422 1423 q = folio_waitqueue(folio); 1424 if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) { 1425 if (!folio_test_swapbacked(folio)) { 1426 delayacct_thrashing_start(); 1427 delayacct = true; 1428 } 1429 psi_memstall_enter(&pflags); 1430 thrashing = true; 1431 } 1432 1433 init_wait(wait); 1434 wait->func = wake_page_function; 1435 wait_page.folio = folio; 1436 wait_page.bit_nr = PG_locked; 1437 wait->flags = 0; 1438 1439 spin_lock_irq(&q->lock); 1440 folio_set_waiters(folio); 1441 if (!folio_trylock_flag(folio, PG_locked, wait)) 1442 __add_wait_queue_entry_tail(q, wait); 1443 spin_unlock_irq(&q->lock); 1444 1445 /* 1446 * If a migration entry exists for the page the migration path must hold 1447 * a valid reference to the page, and it must take the ptl to remove the 1448 * migration entry. So the page is valid until the ptl is dropped. 1449 */ 1450 if (ptep) 1451 pte_unmap_unlock(ptep, ptl); 1452 else 1453 spin_unlock(ptl); 1454 1455 for (;;) { 1456 unsigned int flags; 1457 1458 set_current_state(TASK_UNINTERRUPTIBLE); 1459 1460 /* Loop until we've been woken or interrupted */ 1461 flags = smp_load_acquire(&wait->flags); 1462 if (!(flags & WQ_FLAG_WOKEN)) { 1463 if (signal_pending_state(TASK_UNINTERRUPTIBLE, current)) 1464 break; 1465 1466 io_schedule(); 1467 continue; 1468 } 1469 break; 1470 } 1471 1472 finish_wait(q, wait); 1473 1474 if (thrashing) { 1475 if (delayacct) 1476 delayacct_thrashing_end(); 1477 psi_memstall_leave(&pflags); 1478 } 1479 } 1480 #endif 1481 1482 void folio_wait_bit(struct folio *folio, int bit_nr) 1483 { 1484 folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED); 1485 } 1486 EXPORT_SYMBOL(folio_wait_bit); 1487 1488 int folio_wait_bit_killable(struct folio *folio, int bit_nr) 1489 { 1490 return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED); 1491 } 1492 EXPORT_SYMBOL(folio_wait_bit_killable); 1493 1494 /** 1495 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked 1496 * @folio: The folio to wait for. 1497 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc). 1498 * 1499 * The caller should hold a reference on @folio. They expect the page to 1500 * become unlocked relatively soon, but do not wish to hold up migration 1501 * (for example) by holding the reference while waiting for the folio to 1502 * come unlocked. After this function returns, the caller should not 1503 * dereference @folio. 1504 * 1505 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal. 1506 */ 1507 int folio_put_wait_locked(struct folio *folio, int state) 1508 { 1509 return folio_wait_bit_common(folio, PG_locked, state, DROP); 1510 } 1511 1512 /** 1513 * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue 1514 * @folio: Folio defining the wait queue of interest 1515 * @waiter: Waiter to add to the queue 1516 * 1517 * Add an arbitrary @waiter to the wait queue for the nominated @folio. 1518 */ 1519 void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter) 1520 { 1521 wait_queue_head_t *q = folio_waitqueue(folio); 1522 unsigned long flags; 1523 1524 spin_lock_irqsave(&q->lock, flags); 1525 __add_wait_queue_entry_tail(q, waiter); 1526 folio_set_waiters(folio); 1527 spin_unlock_irqrestore(&q->lock, flags); 1528 } 1529 EXPORT_SYMBOL_GPL(folio_add_wait_queue); 1530 1531 #ifndef clear_bit_unlock_is_negative_byte 1532 1533 /* 1534 * PG_waiters is the high bit in the same byte as PG_lock. 1535 * 1536 * On x86 (and on many other architectures), we can clear PG_lock and 1537 * test the sign bit at the same time. But if the architecture does 1538 * not support that special operation, we just do this all by hand 1539 * instead. 1540 * 1541 * The read of PG_waiters has to be after (or concurrently with) PG_locked 1542 * being cleared, but a memory barrier should be unnecessary since it is 1543 * in the same byte as PG_locked. 1544 */ 1545 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem) 1546 { 1547 clear_bit_unlock(nr, mem); 1548 /* smp_mb__after_atomic(); */ 1549 return test_bit(PG_waiters, mem); 1550 } 1551 1552 #endif 1553 1554 /** 1555 * folio_unlock - Unlock a locked folio. 1556 * @folio: The folio. 1557 * 1558 * Unlocks the folio and wakes up any thread sleeping on the page lock. 1559 * 1560 * Context: May be called from interrupt or process context. May not be 1561 * called from NMI context. 1562 */ 1563 void folio_unlock(struct folio *folio) 1564 { 1565 /* Bit 7 allows x86 to check the byte's sign bit */ 1566 BUILD_BUG_ON(PG_waiters != 7); 1567 BUILD_BUG_ON(PG_locked > 7); 1568 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1569 if (clear_bit_unlock_is_negative_byte(PG_locked, folio_flags(folio, 0))) 1570 folio_wake_bit(folio, PG_locked); 1571 } 1572 EXPORT_SYMBOL(folio_unlock); 1573 1574 /** 1575 * folio_end_private_2 - Clear PG_private_2 and wake any waiters. 1576 * @folio: The folio. 1577 * 1578 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for 1579 * it. The folio reference held for PG_private_2 being set is released. 1580 * 1581 * This is, for example, used when a netfs folio is being written to a local 1582 * disk cache, thereby allowing writes to the cache for the same folio to be 1583 * serialised. 1584 */ 1585 void folio_end_private_2(struct folio *folio) 1586 { 1587 VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio); 1588 clear_bit_unlock(PG_private_2, folio_flags(folio, 0)); 1589 folio_wake_bit(folio, PG_private_2); 1590 folio_put(folio); 1591 } 1592 EXPORT_SYMBOL(folio_end_private_2); 1593 1594 /** 1595 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio. 1596 * @folio: The folio to wait on. 1597 * 1598 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio. 1599 */ 1600 void folio_wait_private_2(struct folio *folio) 1601 { 1602 while (folio_test_private_2(folio)) 1603 folio_wait_bit(folio, PG_private_2); 1604 } 1605 EXPORT_SYMBOL(folio_wait_private_2); 1606 1607 /** 1608 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio. 1609 * @folio: The folio to wait on. 1610 * 1611 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio or until a 1612 * fatal signal is received by the calling task. 1613 * 1614 * Return: 1615 * - 0 if successful. 1616 * - -EINTR if a fatal signal was encountered. 1617 */ 1618 int folio_wait_private_2_killable(struct folio *folio) 1619 { 1620 int ret = 0; 1621 1622 while (folio_test_private_2(folio)) { 1623 ret = folio_wait_bit_killable(folio, PG_private_2); 1624 if (ret < 0) 1625 break; 1626 } 1627 1628 return ret; 1629 } 1630 EXPORT_SYMBOL(folio_wait_private_2_killable); 1631 1632 /** 1633 * folio_end_writeback - End writeback against a folio. 1634 * @folio: The folio. 1635 */ 1636 void folio_end_writeback(struct folio *folio) 1637 { 1638 /* 1639 * folio_test_clear_reclaim() could be used here but it is an 1640 * atomic operation and overkill in this particular case. Failing 1641 * to shuffle a folio marked for immediate reclaim is too mild 1642 * a gain to justify taking an atomic operation penalty at the 1643 * end of every folio writeback. 1644 */ 1645 if (folio_test_reclaim(folio)) { 1646 folio_clear_reclaim(folio); 1647 folio_rotate_reclaimable(folio); 1648 } 1649 1650 /* 1651 * Writeback does not hold a folio reference of its own, relying 1652 * on truncation to wait for the clearing of PG_writeback. 1653 * But here we must make sure that the folio is not freed and 1654 * reused before the folio_wake(). 1655 */ 1656 folio_get(folio); 1657 if (!__folio_end_writeback(folio)) 1658 BUG(); 1659 1660 smp_mb__after_atomic(); 1661 folio_wake(folio, PG_writeback); 1662 acct_reclaim_writeback(folio); 1663 folio_put(folio); 1664 } 1665 EXPORT_SYMBOL(folio_end_writeback); 1666 1667 /* 1668 * After completing I/O on a page, call this routine to update the page 1669 * flags appropriately 1670 */ 1671 void page_endio(struct page *page, bool is_write, int err) 1672 { 1673 if (!is_write) { 1674 if (!err) { 1675 SetPageUptodate(page); 1676 } else { 1677 ClearPageUptodate(page); 1678 SetPageError(page); 1679 } 1680 unlock_page(page); 1681 } else { 1682 if (err) { 1683 struct address_space *mapping; 1684 1685 SetPageError(page); 1686 mapping = page_mapping(page); 1687 if (mapping) 1688 mapping_set_error(mapping, err); 1689 } 1690 end_page_writeback(page); 1691 } 1692 } 1693 EXPORT_SYMBOL_GPL(page_endio); 1694 1695 /** 1696 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it. 1697 * @folio: The folio to lock 1698 */ 1699 void __folio_lock(struct folio *folio) 1700 { 1701 folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE, 1702 EXCLUSIVE); 1703 } 1704 EXPORT_SYMBOL(__folio_lock); 1705 1706 int __folio_lock_killable(struct folio *folio) 1707 { 1708 return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE, 1709 EXCLUSIVE); 1710 } 1711 EXPORT_SYMBOL_GPL(__folio_lock_killable); 1712 1713 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait) 1714 { 1715 struct wait_queue_head *q = folio_waitqueue(folio); 1716 int ret = 0; 1717 1718 wait->folio = folio; 1719 wait->bit_nr = PG_locked; 1720 1721 spin_lock_irq(&q->lock); 1722 __add_wait_queue_entry_tail(q, &wait->wait); 1723 folio_set_waiters(folio); 1724 ret = !folio_trylock(folio); 1725 /* 1726 * If we were successful now, we know we're still on the 1727 * waitqueue as we're still under the lock. This means it's 1728 * safe to remove and return success, we know the callback 1729 * isn't going to trigger. 1730 */ 1731 if (!ret) 1732 __remove_wait_queue(q, &wait->wait); 1733 else 1734 ret = -EIOCBQUEUED; 1735 spin_unlock_irq(&q->lock); 1736 return ret; 1737 } 1738 1739 /* 1740 * Return values: 1741 * true - folio is locked; mmap_lock is still held. 1742 * false - folio is not locked. 1743 * mmap_lock has been released (mmap_read_unlock(), unless flags had both 1744 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in 1745 * which case mmap_lock is still held. 1746 * 1747 * If neither ALLOW_RETRY nor KILLABLE are set, will always return true 1748 * with the folio locked and the mmap_lock unperturbed. 1749 */ 1750 bool __folio_lock_or_retry(struct folio *folio, struct mm_struct *mm, 1751 unsigned int flags) 1752 { 1753 if (fault_flag_allow_retry_first(flags)) { 1754 /* 1755 * CAUTION! In this case, mmap_lock is not released 1756 * even though return 0. 1757 */ 1758 if (flags & FAULT_FLAG_RETRY_NOWAIT) 1759 return false; 1760 1761 mmap_read_unlock(mm); 1762 if (flags & FAULT_FLAG_KILLABLE) 1763 folio_wait_locked_killable(folio); 1764 else 1765 folio_wait_locked(folio); 1766 return false; 1767 } 1768 if (flags & FAULT_FLAG_KILLABLE) { 1769 bool ret; 1770 1771 ret = __folio_lock_killable(folio); 1772 if (ret) { 1773 mmap_read_unlock(mm); 1774 return false; 1775 } 1776 } else { 1777 __folio_lock(folio); 1778 } 1779 1780 return true; 1781 } 1782 1783 /** 1784 * page_cache_next_miss() - Find the next gap in the page cache. 1785 * @mapping: Mapping. 1786 * @index: Index. 1787 * @max_scan: Maximum range to search. 1788 * 1789 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the 1790 * gap with the lowest index. 1791 * 1792 * This function may be called under the rcu_read_lock. However, this will 1793 * not atomically search a snapshot of the cache at a single point in time. 1794 * For example, if a gap is created at index 5, then subsequently a gap is 1795 * created at index 10, page_cache_next_miss covering both indices may 1796 * return 10 if called under the rcu_read_lock. 1797 * 1798 * Return: The index of the gap if found, otherwise an index outside the 1799 * range specified (in which case 'return - index >= max_scan' will be true). 1800 * In the rare case of index wrap-around, 0 will be returned. 1801 */ 1802 pgoff_t page_cache_next_miss(struct address_space *mapping, 1803 pgoff_t index, unsigned long max_scan) 1804 { 1805 XA_STATE(xas, &mapping->i_pages, index); 1806 1807 while (max_scan--) { 1808 void *entry = xas_next(&xas); 1809 if (!entry || xa_is_value(entry)) 1810 break; 1811 if (xas.xa_index == 0) 1812 break; 1813 } 1814 1815 return xas.xa_index; 1816 } 1817 EXPORT_SYMBOL(page_cache_next_miss); 1818 1819 /** 1820 * page_cache_prev_miss() - Find the previous gap in the page cache. 1821 * @mapping: Mapping. 1822 * @index: Index. 1823 * @max_scan: Maximum range to search. 1824 * 1825 * Search the range [max(index - max_scan + 1, 0), index] for the 1826 * gap with the highest index. 1827 * 1828 * This function may be called under the rcu_read_lock. However, this will 1829 * not atomically search a snapshot of the cache at a single point in time. 1830 * For example, if a gap is created at index 10, then subsequently a gap is 1831 * created at index 5, page_cache_prev_miss() covering both indices may 1832 * return 5 if called under the rcu_read_lock. 1833 * 1834 * Return: The index of the gap if found, otherwise an index outside the 1835 * range specified (in which case 'index - return >= max_scan' will be true). 1836 * In the rare case of wrap-around, ULONG_MAX will be returned. 1837 */ 1838 pgoff_t page_cache_prev_miss(struct address_space *mapping, 1839 pgoff_t index, unsigned long max_scan) 1840 { 1841 XA_STATE(xas, &mapping->i_pages, index); 1842 1843 while (max_scan--) { 1844 void *entry = xas_prev(&xas); 1845 if (!entry || xa_is_value(entry)) 1846 break; 1847 if (xas.xa_index == ULONG_MAX) 1848 break; 1849 } 1850 1851 return xas.xa_index; 1852 } 1853 EXPORT_SYMBOL(page_cache_prev_miss); 1854 1855 /* 1856 * Lockless page cache protocol: 1857 * On the lookup side: 1858 * 1. Load the folio from i_pages 1859 * 2. Increment the refcount if it's not zero 1860 * 3. If the folio is not found by xas_reload(), put the refcount and retry 1861 * 1862 * On the removal side: 1863 * A. Freeze the page (by zeroing the refcount if nobody else has a reference) 1864 * B. Remove the page from i_pages 1865 * C. Return the page to the page allocator 1866 * 1867 * This means that any page may have its reference count temporarily 1868 * increased by a speculative page cache (or fast GUP) lookup as it can 1869 * be allocated by another user before the RCU grace period expires. 1870 * Because the refcount temporarily acquired here may end up being the 1871 * last refcount on the page, any page allocation must be freeable by 1872 * folio_put(). 1873 */ 1874 1875 /* 1876 * mapping_get_entry - Get a page cache entry. 1877 * @mapping: the address_space to search 1878 * @index: The page cache index. 1879 * 1880 * Looks up the page cache entry at @mapping & @index. If it is a folio, 1881 * it is returned with an increased refcount. If it is a shadow entry 1882 * of a previously evicted folio, or a swap entry from shmem/tmpfs, 1883 * it is returned without further action. 1884 * 1885 * Return: The folio, swap or shadow entry, %NULL if nothing is found. 1886 */ 1887 static void *mapping_get_entry(struct address_space *mapping, pgoff_t index) 1888 { 1889 XA_STATE(xas, &mapping->i_pages, index); 1890 struct folio *folio; 1891 1892 rcu_read_lock(); 1893 repeat: 1894 xas_reset(&xas); 1895 folio = xas_load(&xas); 1896 if (xas_retry(&xas, folio)) 1897 goto repeat; 1898 /* 1899 * A shadow entry of a recently evicted page, or a swap entry from 1900 * shmem/tmpfs. Return it without attempting to raise page count. 1901 */ 1902 if (!folio || xa_is_value(folio)) 1903 goto out; 1904 1905 if (!folio_try_get_rcu(folio)) 1906 goto repeat; 1907 1908 if (unlikely(folio != xas_reload(&xas))) { 1909 folio_put(folio); 1910 goto repeat; 1911 } 1912 out: 1913 rcu_read_unlock(); 1914 1915 return folio; 1916 } 1917 1918 /** 1919 * __filemap_get_folio - Find and get a reference to a folio. 1920 * @mapping: The address_space to search. 1921 * @index: The page index. 1922 * @fgp_flags: %FGP flags modify how the folio is returned. 1923 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified. 1924 * 1925 * Looks up the page cache entry at @mapping & @index. 1926 * 1927 * @fgp_flags can be zero or more of these flags: 1928 * 1929 * * %FGP_ACCESSED - The folio will be marked accessed. 1930 * * %FGP_LOCK - The folio is returned locked. 1931 * * %FGP_ENTRY - If there is a shadow / swap / DAX entry, return it 1932 * instead of allocating a new folio to replace it. 1933 * * %FGP_CREAT - If no page is present then a new page is allocated using 1934 * @gfp and added to the page cache and the VM's LRU list. 1935 * The page is returned locked and with an increased refcount. 1936 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the 1937 * page is already in cache. If the page was allocated, unlock it before 1938 * returning so the caller can do the same dance. 1939 * * %FGP_WRITE - The page will be written to by the caller. 1940 * * %FGP_NOFS - __GFP_FS will get cleared in gfp. 1941 * * %FGP_NOWAIT - Don't get blocked by page lock. 1942 * * %FGP_STABLE - Wait for the folio to be stable (finished writeback) 1943 * 1944 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even 1945 * if the %GFP flags specified for %FGP_CREAT are atomic. 1946 * 1947 * If there is a page cache page, it is returned with an increased refcount. 1948 * 1949 * Return: The found folio or %NULL otherwise. 1950 */ 1951 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index, 1952 int fgp_flags, gfp_t gfp) 1953 { 1954 struct folio *folio; 1955 1956 repeat: 1957 folio = mapping_get_entry(mapping, index); 1958 if (xa_is_value(folio)) { 1959 if (fgp_flags & FGP_ENTRY) 1960 return folio; 1961 folio = NULL; 1962 } 1963 if (!folio) 1964 goto no_page; 1965 1966 if (fgp_flags & FGP_LOCK) { 1967 if (fgp_flags & FGP_NOWAIT) { 1968 if (!folio_trylock(folio)) { 1969 folio_put(folio); 1970 return NULL; 1971 } 1972 } else { 1973 folio_lock(folio); 1974 } 1975 1976 /* Has the page been truncated? */ 1977 if (unlikely(folio->mapping != mapping)) { 1978 folio_unlock(folio); 1979 folio_put(folio); 1980 goto repeat; 1981 } 1982 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio); 1983 } 1984 1985 if (fgp_flags & FGP_ACCESSED) 1986 folio_mark_accessed(folio); 1987 else if (fgp_flags & FGP_WRITE) { 1988 /* Clear idle flag for buffer write */ 1989 if (folio_test_idle(folio)) 1990 folio_clear_idle(folio); 1991 } 1992 1993 if (fgp_flags & FGP_STABLE) 1994 folio_wait_stable(folio); 1995 no_page: 1996 if (!folio && (fgp_flags & FGP_CREAT)) { 1997 int err; 1998 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping)) 1999 gfp |= __GFP_WRITE; 2000 if (fgp_flags & FGP_NOFS) 2001 gfp &= ~__GFP_FS; 2002 2003 folio = filemap_alloc_folio(gfp, 0); 2004 if (!folio) 2005 return NULL; 2006 2007 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP)))) 2008 fgp_flags |= FGP_LOCK; 2009 2010 /* Init accessed so avoid atomic mark_page_accessed later */ 2011 if (fgp_flags & FGP_ACCESSED) 2012 __folio_set_referenced(folio); 2013 2014 err = filemap_add_folio(mapping, folio, index, gfp); 2015 if (unlikely(err)) { 2016 folio_put(folio); 2017 folio = NULL; 2018 if (err == -EEXIST) 2019 goto repeat; 2020 } 2021 2022 /* 2023 * filemap_add_folio locks the page, and for mmap 2024 * we expect an unlocked page. 2025 */ 2026 if (folio && (fgp_flags & FGP_FOR_MMAP)) 2027 folio_unlock(folio); 2028 } 2029 2030 return folio; 2031 } 2032 EXPORT_SYMBOL(__filemap_get_folio); 2033 2034 static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max, 2035 xa_mark_t mark) 2036 { 2037 struct folio *folio; 2038 2039 retry: 2040 if (mark == XA_PRESENT) 2041 folio = xas_find(xas, max); 2042 else 2043 folio = xas_find_marked(xas, max, mark); 2044 2045 if (xas_retry(xas, folio)) 2046 goto retry; 2047 /* 2048 * A shadow entry of a recently evicted page, a swap 2049 * entry from shmem/tmpfs or a DAX entry. Return it 2050 * without attempting to raise page count. 2051 */ 2052 if (!folio || xa_is_value(folio)) 2053 return folio; 2054 2055 if (!folio_try_get_rcu(folio)) 2056 goto reset; 2057 2058 if (unlikely(folio != xas_reload(xas))) { 2059 folio_put(folio); 2060 goto reset; 2061 } 2062 2063 return folio; 2064 reset: 2065 xas_reset(xas); 2066 goto retry; 2067 } 2068 2069 /** 2070 * find_get_entries - gang pagecache lookup 2071 * @mapping: The address_space to search 2072 * @start: The starting page cache index 2073 * @end: The final page index (inclusive). 2074 * @fbatch: Where the resulting entries are placed. 2075 * @indices: The cache indices corresponding to the entries in @entries 2076 * 2077 * find_get_entries() will search for and return a batch of entries in 2078 * the mapping. The entries are placed in @fbatch. find_get_entries() 2079 * takes a reference on any actual folios it returns. 2080 * 2081 * The entries have ascending indexes. The indices may not be consecutive 2082 * due to not-present entries or large folios. 2083 * 2084 * Any shadow entries of evicted folios, or swap entries from 2085 * shmem/tmpfs, are included in the returned array. 2086 * 2087 * Return: The number of entries which were found. 2088 */ 2089 unsigned find_get_entries(struct address_space *mapping, pgoff_t start, 2090 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices) 2091 { 2092 XA_STATE(xas, &mapping->i_pages, start); 2093 struct folio *folio; 2094 2095 rcu_read_lock(); 2096 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) { 2097 indices[fbatch->nr] = xas.xa_index; 2098 if (!folio_batch_add(fbatch, folio)) 2099 break; 2100 } 2101 rcu_read_unlock(); 2102 2103 return folio_batch_count(fbatch); 2104 } 2105 2106 /** 2107 * find_lock_entries - Find a batch of pagecache entries. 2108 * @mapping: The address_space to search. 2109 * @start: The starting page cache index. 2110 * @end: The final page index (inclusive). 2111 * @fbatch: Where the resulting entries are placed. 2112 * @indices: The cache indices of the entries in @fbatch. 2113 * 2114 * find_lock_entries() will return a batch of entries from @mapping. 2115 * Swap, shadow and DAX entries are included. Folios are returned 2116 * locked and with an incremented refcount. Folios which are locked 2117 * by somebody else or under writeback are skipped. Folios which are 2118 * partially outside the range are not returned. 2119 * 2120 * The entries have ascending indexes. The indices may not be consecutive 2121 * due to not-present entries, large folios, folios which could not be 2122 * locked or folios under writeback. 2123 * 2124 * Return: The number of entries which were found. 2125 */ 2126 unsigned find_lock_entries(struct address_space *mapping, pgoff_t start, 2127 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices) 2128 { 2129 XA_STATE(xas, &mapping->i_pages, start); 2130 struct folio *folio; 2131 2132 rcu_read_lock(); 2133 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) { 2134 if (!xa_is_value(folio)) { 2135 if (folio->index < start) 2136 goto put; 2137 if (folio->index + folio_nr_pages(folio) - 1 > end) 2138 goto put; 2139 if (!folio_trylock(folio)) 2140 goto put; 2141 if (folio->mapping != mapping || 2142 folio_test_writeback(folio)) 2143 goto unlock; 2144 VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index), 2145 folio); 2146 } 2147 indices[fbatch->nr] = xas.xa_index; 2148 if (!folio_batch_add(fbatch, folio)) 2149 break; 2150 continue; 2151 unlock: 2152 folio_unlock(folio); 2153 put: 2154 folio_put(folio); 2155 } 2156 rcu_read_unlock(); 2157 2158 return folio_batch_count(fbatch); 2159 } 2160 2161 static inline 2162 bool folio_more_pages(struct folio *folio, pgoff_t index, pgoff_t max) 2163 { 2164 if (!folio_test_large(folio) || folio_test_hugetlb(folio)) 2165 return false; 2166 if (index >= max) 2167 return false; 2168 return index < folio->index + folio_nr_pages(folio) - 1; 2169 } 2170 2171 /** 2172 * find_get_pages_range - gang pagecache lookup 2173 * @mapping: The address_space to search 2174 * @start: The starting page index 2175 * @end: The final page index (inclusive) 2176 * @nr_pages: The maximum number of pages 2177 * @pages: Where the resulting pages are placed 2178 * 2179 * find_get_pages_range() will search for and return a group of up to @nr_pages 2180 * pages in the mapping starting at index @start and up to index @end 2181 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes 2182 * a reference against the returned pages. 2183 * 2184 * The search returns a group of mapping-contiguous pages with ascending 2185 * indexes. There may be holes in the indices due to not-present pages. 2186 * We also update @start to index the next page for the traversal. 2187 * 2188 * Return: the number of pages which were found. If this number is 2189 * smaller than @nr_pages, the end of specified range has been 2190 * reached. 2191 */ 2192 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start, 2193 pgoff_t end, unsigned int nr_pages, 2194 struct page **pages) 2195 { 2196 XA_STATE(xas, &mapping->i_pages, *start); 2197 struct folio *folio; 2198 unsigned ret = 0; 2199 2200 if (unlikely(!nr_pages)) 2201 return 0; 2202 2203 rcu_read_lock(); 2204 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) { 2205 /* Skip over shadow, swap and DAX entries */ 2206 if (xa_is_value(folio)) 2207 continue; 2208 2209 again: 2210 pages[ret] = folio_file_page(folio, xas.xa_index); 2211 if (++ret == nr_pages) { 2212 *start = xas.xa_index + 1; 2213 goto out; 2214 } 2215 if (folio_more_pages(folio, xas.xa_index, end)) { 2216 xas.xa_index++; 2217 folio_ref_inc(folio); 2218 goto again; 2219 } 2220 } 2221 2222 /* 2223 * We come here when there is no page beyond @end. We take care to not 2224 * overflow the index @start as it confuses some of the callers. This 2225 * breaks the iteration when there is a page at index -1 but that is 2226 * already broken anyway. 2227 */ 2228 if (end == (pgoff_t)-1) 2229 *start = (pgoff_t)-1; 2230 else 2231 *start = end + 1; 2232 out: 2233 rcu_read_unlock(); 2234 2235 return ret; 2236 } 2237 2238 /** 2239 * find_get_pages_contig - gang contiguous pagecache lookup 2240 * @mapping: The address_space to search 2241 * @index: The starting page index 2242 * @nr_pages: The maximum number of pages 2243 * @pages: Where the resulting pages are placed 2244 * 2245 * find_get_pages_contig() works exactly like find_get_pages(), except 2246 * that the returned number of pages are guaranteed to be contiguous. 2247 * 2248 * Return: the number of pages which were found. 2249 */ 2250 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, 2251 unsigned int nr_pages, struct page **pages) 2252 { 2253 XA_STATE(xas, &mapping->i_pages, index); 2254 struct folio *folio; 2255 unsigned int ret = 0; 2256 2257 if (unlikely(!nr_pages)) 2258 return 0; 2259 2260 rcu_read_lock(); 2261 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) { 2262 if (xas_retry(&xas, folio)) 2263 continue; 2264 /* 2265 * If the entry has been swapped out, we can stop looking. 2266 * No current caller is looking for DAX entries. 2267 */ 2268 if (xa_is_value(folio)) 2269 break; 2270 2271 if (!folio_try_get_rcu(folio)) 2272 goto retry; 2273 2274 if (unlikely(folio != xas_reload(&xas))) 2275 goto put_page; 2276 2277 again: 2278 pages[ret] = folio_file_page(folio, xas.xa_index); 2279 if (++ret == nr_pages) 2280 break; 2281 if (folio_more_pages(folio, xas.xa_index, ULONG_MAX)) { 2282 xas.xa_index++; 2283 folio_ref_inc(folio); 2284 goto again; 2285 } 2286 continue; 2287 put_page: 2288 folio_put(folio); 2289 retry: 2290 xas_reset(&xas); 2291 } 2292 rcu_read_unlock(); 2293 return ret; 2294 } 2295 EXPORT_SYMBOL(find_get_pages_contig); 2296 2297 /** 2298 * find_get_pages_range_tag - Find and return head pages matching @tag. 2299 * @mapping: the address_space to search 2300 * @index: the starting page index 2301 * @end: The final page index (inclusive) 2302 * @tag: the tag index 2303 * @nr_pages: the maximum number of pages 2304 * @pages: where the resulting pages are placed 2305 * 2306 * Like find_get_pages(), except we only return head pages which are tagged 2307 * with @tag. @index is updated to the index immediately after the last 2308 * page we return, ready for the next iteration. 2309 * 2310 * Return: the number of pages which were found. 2311 */ 2312 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index, 2313 pgoff_t end, xa_mark_t tag, unsigned int nr_pages, 2314 struct page **pages) 2315 { 2316 XA_STATE(xas, &mapping->i_pages, *index); 2317 struct folio *folio; 2318 unsigned ret = 0; 2319 2320 if (unlikely(!nr_pages)) 2321 return 0; 2322 2323 rcu_read_lock(); 2324 while ((folio = find_get_entry(&xas, end, tag))) { 2325 /* 2326 * Shadow entries should never be tagged, but this iteration 2327 * is lockless so there is a window for page reclaim to evict 2328 * a page we saw tagged. Skip over it. 2329 */ 2330 if (xa_is_value(folio)) 2331 continue; 2332 2333 pages[ret] = &folio->page; 2334 if (++ret == nr_pages) { 2335 *index = folio->index + folio_nr_pages(folio); 2336 goto out; 2337 } 2338 } 2339 2340 /* 2341 * We come here when we got to @end. We take care to not overflow the 2342 * index @index as it confuses some of the callers. This breaks the 2343 * iteration when there is a page at index -1 but that is already 2344 * broken anyway. 2345 */ 2346 if (end == (pgoff_t)-1) 2347 *index = (pgoff_t)-1; 2348 else 2349 *index = end + 1; 2350 out: 2351 rcu_read_unlock(); 2352 2353 return ret; 2354 } 2355 EXPORT_SYMBOL(find_get_pages_range_tag); 2356 2357 /* 2358 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 2359 * a _large_ part of the i/o request. Imagine the worst scenario: 2360 * 2361 * ---R__________________________________________B__________ 2362 * ^ reading here ^ bad block(assume 4k) 2363 * 2364 * read(R) => miss => readahead(R...B) => media error => frustrating retries 2365 * => failing the whole request => read(R) => read(R+1) => 2366 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 2367 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 2368 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 2369 * 2370 * It is going insane. Fix it by quickly scaling down the readahead size. 2371 */ 2372 static void shrink_readahead_size_eio(struct file_ra_state *ra) 2373 { 2374 ra->ra_pages /= 4; 2375 } 2376 2377 /* 2378 * filemap_get_read_batch - Get a batch of folios for read 2379 * 2380 * Get a batch of folios which represent a contiguous range of bytes in 2381 * the file. No exceptional entries will be returned. If @index is in 2382 * the middle of a folio, the entire folio will be returned. The last 2383 * folio in the batch may have the readahead flag set or the uptodate flag 2384 * clear so that the caller can take the appropriate action. 2385 */ 2386 static void filemap_get_read_batch(struct address_space *mapping, 2387 pgoff_t index, pgoff_t max, struct folio_batch *fbatch) 2388 { 2389 XA_STATE(xas, &mapping->i_pages, index); 2390 struct folio *folio; 2391 2392 rcu_read_lock(); 2393 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) { 2394 if (xas_retry(&xas, folio)) 2395 continue; 2396 if (xas.xa_index > max || xa_is_value(folio)) 2397 break; 2398 if (!folio_try_get_rcu(folio)) 2399 goto retry; 2400 2401 if (unlikely(folio != xas_reload(&xas))) 2402 goto put_folio; 2403 2404 if (!folio_batch_add(fbatch, folio)) 2405 break; 2406 if (!folio_test_uptodate(folio)) 2407 break; 2408 if (folio_test_readahead(folio)) 2409 break; 2410 xas_advance(&xas, folio->index + folio_nr_pages(folio) - 1); 2411 continue; 2412 put_folio: 2413 folio_put(folio); 2414 retry: 2415 xas_reset(&xas); 2416 } 2417 rcu_read_unlock(); 2418 } 2419 2420 static int filemap_read_folio(struct file *file, struct address_space *mapping, 2421 struct folio *folio) 2422 { 2423 int error; 2424 2425 /* 2426 * A previous I/O error may have been due to temporary failures, 2427 * eg. multipath errors. PG_error will be set again if readpage 2428 * fails. 2429 */ 2430 folio_clear_error(folio); 2431 /* Start the actual read. The read will unlock the page. */ 2432 error = mapping->a_ops->readpage(file, &folio->page); 2433 if (error) 2434 return error; 2435 2436 error = folio_wait_locked_killable(folio); 2437 if (error) 2438 return error; 2439 if (folio_test_uptodate(folio)) 2440 return 0; 2441 shrink_readahead_size_eio(&file->f_ra); 2442 return -EIO; 2443 } 2444 2445 static bool filemap_range_uptodate(struct address_space *mapping, 2446 loff_t pos, struct iov_iter *iter, struct folio *folio) 2447 { 2448 int count; 2449 2450 if (folio_test_uptodate(folio)) 2451 return true; 2452 /* pipes can't handle partially uptodate pages */ 2453 if (iov_iter_is_pipe(iter)) 2454 return false; 2455 if (!mapping->a_ops->is_partially_uptodate) 2456 return false; 2457 if (mapping->host->i_blkbits >= folio_shift(folio)) 2458 return false; 2459 2460 count = iter->count; 2461 if (folio_pos(folio) > pos) { 2462 count -= folio_pos(folio) - pos; 2463 pos = 0; 2464 } else { 2465 pos -= folio_pos(folio); 2466 } 2467 2468 return mapping->a_ops->is_partially_uptodate(&folio->page, pos, count); 2469 } 2470 2471 static int filemap_update_page(struct kiocb *iocb, 2472 struct address_space *mapping, struct iov_iter *iter, 2473 struct folio *folio) 2474 { 2475 int error; 2476 2477 if (iocb->ki_flags & IOCB_NOWAIT) { 2478 if (!filemap_invalidate_trylock_shared(mapping)) 2479 return -EAGAIN; 2480 } else { 2481 filemap_invalidate_lock_shared(mapping); 2482 } 2483 2484 if (!folio_trylock(folio)) { 2485 error = -EAGAIN; 2486 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) 2487 goto unlock_mapping; 2488 if (!(iocb->ki_flags & IOCB_WAITQ)) { 2489 filemap_invalidate_unlock_shared(mapping); 2490 /* 2491 * This is where we usually end up waiting for a 2492 * previously submitted readahead to finish. 2493 */ 2494 folio_put_wait_locked(folio, TASK_KILLABLE); 2495 return AOP_TRUNCATED_PAGE; 2496 } 2497 error = __folio_lock_async(folio, iocb->ki_waitq); 2498 if (error) 2499 goto unlock_mapping; 2500 } 2501 2502 error = AOP_TRUNCATED_PAGE; 2503 if (!folio->mapping) 2504 goto unlock; 2505 2506 error = 0; 2507 if (filemap_range_uptodate(mapping, iocb->ki_pos, iter, folio)) 2508 goto unlock; 2509 2510 error = -EAGAIN; 2511 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ)) 2512 goto unlock; 2513 2514 error = filemap_read_folio(iocb->ki_filp, mapping, folio); 2515 goto unlock_mapping; 2516 unlock: 2517 folio_unlock(folio); 2518 unlock_mapping: 2519 filemap_invalidate_unlock_shared(mapping); 2520 if (error == AOP_TRUNCATED_PAGE) 2521 folio_put(folio); 2522 return error; 2523 } 2524 2525 static int filemap_create_folio(struct file *file, 2526 struct address_space *mapping, pgoff_t index, 2527 struct folio_batch *fbatch) 2528 { 2529 struct folio *folio; 2530 int error; 2531 2532 folio = filemap_alloc_folio(mapping_gfp_mask(mapping), 0); 2533 if (!folio) 2534 return -ENOMEM; 2535 2536 /* 2537 * Protect against truncate / hole punch. Grabbing invalidate_lock 2538 * here assures we cannot instantiate and bring uptodate new 2539 * pagecache folios after evicting page cache during truncate 2540 * and before actually freeing blocks. Note that we could 2541 * release invalidate_lock after inserting the folio into 2542 * the page cache as the locked folio would then be enough to 2543 * synchronize with hole punching. But there are code paths 2544 * such as filemap_update_page() filling in partially uptodate 2545 * pages or ->readpages() that need to hold invalidate_lock 2546 * while mapping blocks for IO so let's hold the lock here as 2547 * well to keep locking rules simple. 2548 */ 2549 filemap_invalidate_lock_shared(mapping); 2550 error = filemap_add_folio(mapping, folio, index, 2551 mapping_gfp_constraint(mapping, GFP_KERNEL)); 2552 if (error == -EEXIST) 2553 error = AOP_TRUNCATED_PAGE; 2554 if (error) 2555 goto error; 2556 2557 error = filemap_read_folio(file, mapping, folio); 2558 if (error) 2559 goto error; 2560 2561 filemap_invalidate_unlock_shared(mapping); 2562 folio_batch_add(fbatch, folio); 2563 return 0; 2564 error: 2565 filemap_invalidate_unlock_shared(mapping); 2566 folio_put(folio); 2567 return error; 2568 } 2569 2570 static int filemap_readahead(struct kiocb *iocb, struct file *file, 2571 struct address_space *mapping, struct folio *folio, 2572 pgoff_t last_index) 2573 { 2574 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index); 2575 2576 if (iocb->ki_flags & IOCB_NOIO) 2577 return -EAGAIN; 2578 page_cache_async_ra(&ractl, folio, last_index - folio->index); 2579 return 0; 2580 } 2581 2582 static int filemap_get_pages(struct kiocb *iocb, struct iov_iter *iter, 2583 struct folio_batch *fbatch) 2584 { 2585 struct file *filp = iocb->ki_filp; 2586 struct address_space *mapping = filp->f_mapping; 2587 struct file_ra_state *ra = &filp->f_ra; 2588 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT; 2589 pgoff_t last_index; 2590 struct folio *folio; 2591 int err = 0; 2592 2593 last_index = DIV_ROUND_UP(iocb->ki_pos + iter->count, PAGE_SIZE); 2594 retry: 2595 if (fatal_signal_pending(current)) 2596 return -EINTR; 2597 2598 filemap_get_read_batch(mapping, index, last_index, fbatch); 2599 if (!folio_batch_count(fbatch)) { 2600 if (iocb->ki_flags & IOCB_NOIO) 2601 return -EAGAIN; 2602 page_cache_sync_readahead(mapping, ra, filp, index, 2603 last_index - index); 2604 filemap_get_read_batch(mapping, index, last_index, fbatch); 2605 } 2606 if (!folio_batch_count(fbatch)) { 2607 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ)) 2608 return -EAGAIN; 2609 err = filemap_create_folio(filp, mapping, 2610 iocb->ki_pos >> PAGE_SHIFT, fbatch); 2611 if (err == AOP_TRUNCATED_PAGE) 2612 goto retry; 2613 return err; 2614 } 2615 2616 folio = fbatch->folios[folio_batch_count(fbatch) - 1]; 2617 if (folio_test_readahead(folio)) { 2618 err = filemap_readahead(iocb, filp, mapping, folio, last_index); 2619 if (err) 2620 goto err; 2621 } 2622 if (!folio_test_uptodate(folio)) { 2623 if ((iocb->ki_flags & IOCB_WAITQ) && 2624 folio_batch_count(fbatch) > 1) 2625 iocb->ki_flags |= IOCB_NOWAIT; 2626 err = filemap_update_page(iocb, mapping, iter, folio); 2627 if (err) 2628 goto err; 2629 } 2630 2631 return 0; 2632 err: 2633 if (err < 0) 2634 folio_put(folio); 2635 if (likely(--fbatch->nr)) 2636 return 0; 2637 if (err == AOP_TRUNCATED_PAGE) 2638 goto retry; 2639 return err; 2640 } 2641 2642 /** 2643 * filemap_read - Read data from the page cache. 2644 * @iocb: The iocb to read. 2645 * @iter: Destination for the data. 2646 * @already_read: Number of bytes already read by the caller. 2647 * 2648 * Copies data from the page cache. If the data is not currently present, 2649 * uses the readahead and readpage address_space operations to fetch it. 2650 * 2651 * Return: Total number of bytes copied, including those already read by 2652 * the caller. If an error happens before any bytes are copied, returns 2653 * a negative error number. 2654 */ 2655 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter, 2656 ssize_t already_read) 2657 { 2658 struct file *filp = iocb->ki_filp; 2659 struct file_ra_state *ra = &filp->f_ra; 2660 struct address_space *mapping = filp->f_mapping; 2661 struct inode *inode = mapping->host; 2662 struct folio_batch fbatch; 2663 int i, error = 0; 2664 bool writably_mapped; 2665 loff_t isize, end_offset; 2666 2667 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes)) 2668 return 0; 2669 if (unlikely(!iov_iter_count(iter))) 2670 return 0; 2671 2672 iov_iter_truncate(iter, inode->i_sb->s_maxbytes); 2673 folio_batch_init(&fbatch); 2674 2675 do { 2676 cond_resched(); 2677 2678 /* 2679 * If we've already successfully copied some data, then we 2680 * can no longer safely return -EIOCBQUEUED. Hence mark 2681 * an async read NOWAIT at that point. 2682 */ 2683 if ((iocb->ki_flags & IOCB_WAITQ) && already_read) 2684 iocb->ki_flags |= IOCB_NOWAIT; 2685 2686 if (unlikely(iocb->ki_pos >= i_size_read(inode))) 2687 break; 2688 2689 error = filemap_get_pages(iocb, iter, &fbatch); 2690 if (error < 0) 2691 break; 2692 2693 /* 2694 * i_size must be checked after we know the pages are Uptodate. 2695 * 2696 * Checking i_size after the check allows us to calculate 2697 * the correct value for "nr", which means the zero-filled 2698 * part of the page is not copied back to userspace (unless 2699 * another truncate extends the file - this is desired though). 2700 */ 2701 isize = i_size_read(inode); 2702 if (unlikely(iocb->ki_pos >= isize)) 2703 goto put_folios; 2704 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count); 2705 2706 /* 2707 * Once we start copying data, we don't want to be touching any 2708 * cachelines that might be contended: 2709 */ 2710 writably_mapped = mapping_writably_mapped(mapping); 2711 2712 /* 2713 * When a sequential read accesses a page several times, only 2714 * mark it as accessed the first time. 2715 */ 2716 if (iocb->ki_pos >> PAGE_SHIFT != 2717 ra->prev_pos >> PAGE_SHIFT) 2718 folio_mark_accessed(fbatch.folios[0]); 2719 2720 for (i = 0; i < folio_batch_count(&fbatch); i++) { 2721 struct folio *folio = fbatch.folios[i]; 2722 size_t fsize = folio_size(folio); 2723 size_t offset = iocb->ki_pos & (fsize - 1); 2724 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos, 2725 fsize - offset); 2726 size_t copied; 2727 2728 if (end_offset < folio_pos(folio)) 2729 break; 2730 if (i > 0) 2731 folio_mark_accessed(folio); 2732 /* 2733 * If users can be writing to this folio using arbitrary 2734 * virtual addresses, take care of potential aliasing 2735 * before reading the folio on the kernel side. 2736 */ 2737 if (writably_mapped) 2738 flush_dcache_folio(folio); 2739 2740 copied = copy_folio_to_iter(folio, offset, bytes, iter); 2741 2742 already_read += copied; 2743 iocb->ki_pos += copied; 2744 ra->prev_pos = iocb->ki_pos; 2745 2746 if (copied < bytes) { 2747 error = -EFAULT; 2748 break; 2749 } 2750 } 2751 put_folios: 2752 for (i = 0; i < folio_batch_count(&fbatch); i++) 2753 folio_put(fbatch.folios[i]); 2754 folio_batch_init(&fbatch); 2755 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error); 2756 2757 file_accessed(filp); 2758 2759 return already_read ? already_read : error; 2760 } 2761 EXPORT_SYMBOL_GPL(filemap_read); 2762 2763 /** 2764 * generic_file_read_iter - generic filesystem read routine 2765 * @iocb: kernel I/O control block 2766 * @iter: destination for the data read 2767 * 2768 * This is the "read_iter()" routine for all filesystems 2769 * that can use the page cache directly. 2770 * 2771 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall 2772 * be returned when no data can be read without waiting for I/O requests 2773 * to complete; it doesn't prevent readahead. 2774 * 2775 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O 2776 * requests shall be made for the read or for readahead. When no data 2777 * can be read, -EAGAIN shall be returned. When readahead would be 2778 * triggered, a partial, possibly empty read shall be returned. 2779 * 2780 * Return: 2781 * * number of bytes copied, even for partial reads 2782 * * negative error code (or 0 if IOCB_NOIO) if nothing was read 2783 */ 2784 ssize_t 2785 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 2786 { 2787 size_t count = iov_iter_count(iter); 2788 ssize_t retval = 0; 2789 2790 if (!count) 2791 return 0; /* skip atime */ 2792 2793 if (iocb->ki_flags & IOCB_DIRECT) { 2794 struct file *file = iocb->ki_filp; 2795 struct address_space *mapping = file->f_mapping; 2796 struct inode *inode = mapping->host; 2797 2798 if (iocb->ki_flags & IOCB_NOWAIT) { 2799 if (filemap_range_needs_writeback(mapping, iocb->ki_pos, 2800 iocb->ki_pos + count - 1)) 2801 return -EAGAIN; 2802 } else { 2803 retval = filemap_write_and_wait_range(mapping, 2804 iocb->ki_pos, 2805 iocb->ki_pos + count - 1); 2806 if (retval < 0) 2807 return retval; 2808 } 2809 2810 file_accessed(file); 2811 2812 retval = mapping->a_ops->direct_IO(iocb, iter); 2813 if (retval >= 0) { 2814 iocb->ki_pos += retval; 2815 count -= retval; 2816 } 2817 if (retval != -EIOCBQUEUED) 2818 iov_iter_revert(iter, count - iov_iter_count(iter)); 2819 2820 /* 2821 * Btrfs can have a short DIO read if we encounter 2822 * compressed extents, so if there was an error, or if 2823 * we've already read everything we wanted to, or if 2824 * there was a short read because we hit EOF, go ahead 2825 * and return. Otherwise fallthrough to buffered io for 2826 * the rest of the read. Buffered reads will not work for 2827 * DAX files, so don't bother trying. 2828 */ 2829 if (retval < 0 || !count || IS_DAX(inode)) 2830 return retval; 2831 if (iocb->ki_pos >= i_size_read(inode)) 2832 return retval; 2833 } 2834 2835 return filemap_read(iocb, iter, retval); 2836 } 2837 EXPORT_SYMBOL(generic_file_read_iter); 2838 2839 static inline loff_t folio_seek_hole_data(struct xa_state *xas, 2840 struct address_space *mapping, struct folio *folio, 2841 loff_t start, loff_t end, bool seek_data) 2842 { 2843 const struct address_space_operations *ops = mapping->a_ops; 2844 size_t offset, bsz = i_blocksize(mapping->host); 2845 2846 if (xa_is_value(folio) || folio_test_uptodate(folio)) 2847 return seek_data ? start : end; 2848 if (!ops->is_partially_uptodate) 2849 return seek_data ? end : start; 2850 2851 xas_pause(xas); 2852 rcu_read_unlock(); 2853 folio_lock(folio); 2854 if (unlikely(folio->mapping != mapping)) 2855 goto unlock; 2856 2857 offset = offset_in_folio(folio, start) & ~(bsz - 1); 2858 2859 do { 2860 if (ops->is_partially_uptodate(&folio->page, offset, bsz) == 2861 seek_data) 2862 break; 2863 start = (start + bsz) & ~(bsz - 1); 2864 offset += bsz; 2865 } while (offset < folio_size(folio)); 2866 unlock: 2867 folio_unlock(folio); 2868 rcu_read_lock(); 2869 return start; 2870 } 2871 2872 static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio) 2873 { 2874 if (xa_is_value(folio)) 2875 return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index); 2876 return folio_size(folio); 2877 } 2878 2879 /** 2880 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache. 2881 * @mapping: Address space to search. 2882 * @start: First byte to consider. 2883 * @end: Limit of search (exclusive). 2884 * @whence: Either SEEK_HOLE or SEEK_DATA. 2885 * 2886 * If the page cache knows which blocks contain holes and which blocks 2887 * contain data, your filesystem can use this function to implement 2888 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are 2889 * entirely memory-based such as tmpfs, and filesystems which support 2890 * unwritten extents. 2891 * 2892 * Return: The requested offset on success, or -ENXIO if @whence specifies 2893 * SEEK_DATA and there is no data after @start. There is an implicit hole 2894 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start 2895 * and @end contain data. 2896 */ 2897 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start, 2898 loff_t end, int whence) 2899 { 2900 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT); 2901 pgoff_t max = (end - 1) >> PAGE_SHIFT; 2902 bool seek_data = (whence == SEEK_DATA); 2903 struct folio *folio; 2904 2905 if (end <= start) 2906 return -ENXIO; 2907 2908 rcu_read_lock(); 2909 while ((folio = find_get_entry(&xas, max, XA_PRESENT))) { 2910 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT; 2911 size_t seek_size; 2912 2913 if (start < pos) { 2914 if (!seek_data) 2915 goto unlock; 2916 start = pos; 2917 } 2918 2919 seek_size = seek_folio_size(&xas, folio); 2920 pos = round_up((u64)pos + 1, seek_size); 2921 start = folio_seek_hole_data(&xas, mapping, folio, start, pos, 2922 seek_data); 2923 if (start < pos) 2924 goto unlock; 2925 if (start >= end) 2926 break; 2927 if (seek_size > PAGE_SIZE) 2928 xas_set(&xas, pos >> PAGE_SHIFT); 2929 if (!xa_is_value(folio)) 2930 folio_put(folio); 2931 } 2932 if (seek_data) 2933 start = -ENXIO; 2934 unlock: 2935 rcu_read_unlock(); 2936 if (folio && !xa_is_value(folio)) 2937 folio_put(folio); 2938 if (start > end) 2939 return end; 2940 return start; 2941 } 2942 2943 #ifdef CONFIG_MMU 2944 #define MMAP_LOTSAMISS (100) 2945 /* 2946 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock 2947 * @vmf - the vm_fault for this fault. 2948 * @folio - the folio to lock. 2949 * @fpin - the pointer to the file we may pin (or is already pinned). 2950 * 2951 * This works similar to lock_folio_or_retry in that it can drop the 2952 * mmap_lock. It differs in that it actually returns the folio locked 2953 * if it returns 1 and 0 if it couldn't lock the folio. If we did have 2954 * to drop the mmap_lock then fpin will point to the pinned file and 2955 * needs to be fput()'ed at a later point. 2956 */ 2957 static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio, 2958 struct file **fpin) 2959 { 2960 if (folio_trylock(folio)) 2961 return 1; 2962 2963 /* 2964 * NOTE! This will make us return with VM_FAULT_RETRY, but with 2965 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT 2966 * is supposed to work. We have way too many special cases.. 2967 */ 2968 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 2969 return 0; 2970 2971 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin); 2972 if (vmf->flags & FAULT_FLAG_KILLABLE) { 2973 if (__folio_lock_killable(folio)) { 2974 /* 2975 * We didn't have the right flags to drop the mmap_lock, 2976 * but all fault_handlers only check for fatal signals 2977 * if we return VM_FAULT_RETRY, so we need to drop the 2978 * mmap_lock here and return 0 if we don't have a fpin. 2979 */ 2980 if (*fpin == NULL) 2981 mmap_read_unlock(vmf->vma->vm_mm); 2982 return 0; 2983 } 2984 } else 2985 __folio_lock(folio); 2986 2987 return 1; 2988 } 2989 2990 /* 2991 * Synchronous readahead happens when we don't even find a page in the page 2992 * cache at all. We don't want to perform IO under the mmap sem, so if we have 2993 * to drop the mmap sem we return the file that was pinned in order for us to do 2994 * that. If we didn't pin a file then we return NULL. The file that is 2995 * returned needs to be fput()'ed when we're done with it. 2996 */ 2997 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf) 2998 { 2999 struct file *file = vmf->vma->vm_file; 3000 struct file_ra_state *ra = &file->f_ra; 3001 struct address_space *mapping = file->f_mapping; 3002 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff); 3003 struct file *fpin = NULL; 3004 unsigned int mmap_miss; 3005 3006 /* If we don't want any read-ahead, don't bother */ 3007 if (vmf->vma->vm_flags & VM_RAND_READ) 3008 return fpin; 3009 if (!ra->ra_pages) 3010 return fpin; 3011 3012 if (vmf->vma->vm_flags & VM_SEQ_READ) { 3013 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3014 page_cache_sync_ra(&ractl, ra->ra_pages); 3015 return fpin; 3016 } 3017 3018 /* Avoid banging the cache line if not needed */ 3019 mmap_miss = READ_ONCE(ra->mmap_miss); 3020 if (mmap_miss < MMAP_LOTSAMISS * 10) 3021 WRITE_ONCE(ra->mmap_miss, ++mmap_miss); 3022 3023 /* 3024 * Do we miss much more than hit in this file? If so, 3025 * stop bothering with read-ahead. It will only hurt. 3026 */ 3027 if (mmap_miss > MMAP_LOTSAMISS) 3028 return fpin; 3029 3030 /* 3031 * mmap read-around 3032 */ 3033 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3034 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2); 3035 ra->size = ra->ra_pages; 3036 ra->async_size = ra->ra_pages / 4; 3037 ractl._index = ra->start; 3038 do_page_cache_ra(&ractl, ra->size, ra->async_size); 3039 return fpin; 3040 } 3041 3042 /* 3043 * Asynchronous readahead happens when we find the page and PG_readahead, 3044 * so we want to possibly extend the readahead further. We return the file that 3045 * was pinned if we have to drop the mmap_lock in order to do IO. 3046 */ 3047 static struct file *do_async_mmap_readahead(struct vm_fault *vmf, 3048 struct folio *folio) 3049 { 3050 struct file *file = vmf->vma->vm_file; 3051 struct file_ra_state *ra = &file->f_ra; 3052 DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff); 3053 struct file *fpin = NULL; 3054 unsigned int mmap_miss; 3055 3056 /* If we don't want any read-ahead, don't bother */ 3057 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages) 3058 return fpin; 3059 3060 mmap_miss = READ_ONCE(ra->mmap_miss); 3061 if (mmap_miss) 3062 WRITE_ONCE(ra->mmap_miss, --mmap_miss); 3063 3064 if (folio_test_readahead(folio)) { 3065 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3066 page_cache_async_ra(&ractl, folio, ra->ra_pages); 3067 } 3068 return fpin; 3069 } 3070 3071 /** 3072 * filemap_fault - read in file data for page fault handling 3073 * @vmf: struct vm_fault containing details of the fault 3074 * 3075 * filemap_fault() is invoked via the vma operations vector for a 3076 * mapped memory region to read in file data during a page fault. 3077 * 3078 * The goto's are kind of ugly, but this streamlines the normal case of having 3079 * it in the page cache, and handles the special cases reasonably without 3080 * having a lot of duplicated code. 3081 * 3082 * vma->vm_mm->mmap_lock must be held on entry. 3083 * 3084 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock 3085 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap(). 3086 * 3087 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock 3088 * has not been released. 3089 * 3090 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. 3091 * 3092 * Return: bitwise-OR of %VM_FAULT_ codes. 3093 */ 3094 vm_fault_t filemap_fault(struct vm_fault *vmf) 3095 { 3096 int error; 3097 struct file *file = vmf->vma->vm_file; 3098 struct file *fpin = NULL; 3099 struct address_space *mapping = file->f_mapping; 3100 struct inode *inode = mapping->host; 3101 pgoff_t max_idx, index = vmf->pgoff; 3102 struct folio *folio; 3103 vm_fault_t ret = 0; 3104 bool mapping_locked = false; 3105 3106 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3107 if (unlikely(index >= max_idx)) 3108 return VM_FAULT_SIGBUS; 3109 3110 /* 3111 * Do we have something in the page cache already? 3112 */ 3113 folio = filemap_get_folio(mapping, index); 3114 if (likely(folio)) { 3115 /* 3116 * We found the page, so try async readahead before waiting for 3117 * the lock. 3118 */ 3119 if (!(vmf->flags & FAULT_FLAG_TRIED)) 3120 fpin = do_async_mmap_readahead(vmf, folio); 3121 if (unlikely(!folio_test_uptodate(folio))) { 3122 filemap_invalidate_lock_shared(mapping); 3123 mapping_locked = true; 3124 } 3125 } else { 3126 /* No page in the page cache at all */ 3127 count_vm_event(PGMAJFAULT); 3128 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); 3129 ret = VM_FAULT_MAJOR; 3130 fpin = do_sync_mmap_readahead(vmf); 3131 retry_find: 3132 /* 3133 * See comment in filemap_create_folio() why we need 3134 * invalidate_lock 3135 */ 3136 if (!mapping_locked) { 3137 filemap_invalidate_lock_shared(mapping); 3138 mapping_locked = true; 3139 } 3140 folio = __filemap_get_folio(mapping, index, 3141 FGP_CREAT|FGP_FOR_MMAP, 3142 vmf->gfp_mask); 3143 if (!folio) { 3144 if (fpin) 3145 goto out_retry; 3146 filemap_invalidate_unlock_shared(mapping); 3147 return VM_FAULT_OOM; 3148 } 3149 } 3150 3151 if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin)) 3152 goto out_retry; 3153 3154 /* Did it get truncated? */ 3155 if (unlikely(folio->mapping != mapping)) { 3156 folio_unlock(folio); 3157 folio_put(folio); 3158 goto retry_find; 3159 } 3160 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio); 3161 3162 /* 3163 * We have a locked page in the page cache, now we need to check 3164 * that it's up-to-date. If not, it is going to be due to an error. 3165 */ 3166 if (unlikely(!folio_test_uptodate(folio))) { 3167 /* 3168 * The page was in cache and uptodate and now it is not. 3169 * Strange but possible since we didn't hold the page lock all 3170 * the time. Let's drop everything get the invalidate lock and 3171 * try again. 3172 */ 3173 if (!mapping_locked) { 3174 folio_unlock(folio); 3175 folio_put(folio); 3176 goto retry_find; 3177 } 3178 goto page_not_uptodate; 3179 } 3180 3181 /* 3182 * We've made it this far and we had to drop our mmap_lock, now is the 3183 * time to return to the upper layer and have it re-find the vma and 3184 * redo the fault. 3185 */ 3186 if (fpin) { 3187 folio_unlock(folio); 3188 goto out_retry; 3189 } 3190 if (mapping_locked) 3191 filemap_invalidate_unlock_shared(mapping); 3192 3193 /* 3194 * Found the page and have a reference on it. 3195 * We must recheck i_size under page lock. 3196 */ 3197 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3198 if (unlikely(index >= max_idx)) { 3199 folio_unlock(folio); 3200 folio_put(folio); 3201 return VM_FAULT_SIGBUS; 3202 } 3203 3204 vmf->page = folio_file_page(folio, index); 3205 return ret | VM_FAULT_LOCKED; 3206 3207 page_not_uptodate: 3208 /* 3209 * Umm, take care of errors if the page isn't up-to-date. 3210 * Try to re-read it _once_. We do this synchronously, 3211 * because there really aren't any performance issues here 3212 * and we need to check for errors. 3213 */ 3214 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3215 error = filemap_read_folio(file, mapping, folio); 3216 if (fpin) 3217 goto out_retry; 3218 folio_put(folio); 3219 3220 if (!error || error == AOP_TRUNCATED_PAGE) 3221 goto retry_find; 3222 filemap_invalidate_unlock_shared(mapping); 3223 3224 return VM_FAULT_SIGBUS; 3225 3226 out_retry: 3227 /* 3228 * We dropped the mmap_lock, we need to return to the fault handler to 3229 * re-find the vma and come back and find our hopefully still populated 3230 * page. 3231 */ 3232 if (folio) 3233 folio_put(folio); 3234 if (mapping_locked) 3235 filemap_invalidate_unlock_shared(mapping); 3236 if (fpin) 3237 fput(fpin); 3238 return ret | VM_FAULT_RETRY; 3239 } 3240 EXPORT_SYMBOL(filemap_fault); 3241 3242 static bool filemap_map_pmd(struct vm_fault *vmf, struct page *page) 3243 { 3244 struct mm_struct *mm = vmf->vma->vm_mm; 3245 3246 /* Huge page is mapped? No need to proceed. */ 3247 if (pmd_trans_huge(*vmf->pmd)) { 3248 unlock_page(page); 3249 put_page(page); 3250 return true; 3251 } 3252 3253 if (pmd_none(*vmf->pmd) && PageTransHuge(page)) { 3254 vm_fault_t ret = do_set_pmd(vmf, page); 3255 if (!ret) { 3256 /* The page is mapped successfully, reference consumed. */ 3257 unlock_page(page); 3258 return true; 3259 } 3260 } 3261 3262 if (pmd_none(*vmf->pmd)) 3263 pmd_install(mm, vmf->pmd, &vmf->prealloc_pte); 3264 3265 /* See comment in handle_pte_fault() */ 3266 if (pmd_devmap_trans_unstable(vmf->pmd)) { 3267 unlock_page(page); 3268 put_page(page); 3269 return true; 3270 } 3271 3272 return false; 3273 } 3274 3275 static struct folio *next_uptodate_page(struct folio *folio, 3276 struct address_space *mapping, 3277 struct xa_state *xas, pgoff_t end_pgoff) 3278 { 3279 unsigned long max_idx; 3280 3281 do { 3282 if (!folio) 3283 return NULL; 3284 if (xas_retry(xas, folio)) 3285 continue; 3286 if (xa_is_value(folio)) 3287 continue; 3288 if (folio_test_locked(folio)) 3289 continue; 3290 if (!folio_try_get_rcu(folio)) 3291 continue; 3292 /* Has the page moved or been split? */ 3293 if (unlikely(folio != xas_reload(xas))) 3294 goto skip; 3295 if (!folio_test_uptodate(folio) || folio_test_readahead(folio)) 3296 goto skip; 3297 if (!folio_trylock(folio)) 3298 goto skip; 3299 if (folio->mapping != mapping) 3300 goto unlock; 3301 if (!folio_test_uptodate(folio)) 3302 goto unlock; 3303 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 3304 if (xas->xa_index >= max_idx) 3305 goto unlock; 3306 return folio; 3307 unlock: 3308 folio_unlock(folio); 3309 skip: 3310 folio_put(folio); 3311 } while ((folio = xas_next_entry(xas, end_pgoff)) != NULL); 3312 3313 return NULL; 3314 } 3315 3316 static inline struct folio *first_map_page(struct address_space *mapping, 3317 struct xa_state *xas, 3318 pgoff_t end_pgoff) 3319 { 3320 return next_uptodate_page(xas_find(xas, end_pgoff), 3321 mapping, xas, end_pgoff); 3322 } 3323 3324 static inline struct folio *next_map_page(struct address_space *mapping, 3325 struct xa_state *xas, 3326 pgoff_t end_pgoff) 3327 { 3328 return next_uptodate_page(xas_next_entry(xas, end_pgoff), 3329 mapping, xas, end_pgoff); 3330 } 3331 3332 vm_fault_t filemap_map_pages(struct vm_fault *vmf, 3333 pgoff_t start_pgoff, pgoff_t end_pgoff) 3334 { 3335 struct vm_area_struct *vma = vmf->vma; 3336 struct file *file = vma->vm_file; 3337 struct address_space *mapping = file->f_mapping; 3338 pgoff_t last_pgoff = start_pgoff; 3339 unsigned long addr; 3340 XA_STATE(xas, &mapping->i_pages, start_pgoff); 3341 struct folio *folio; 3342 struct page *page; 3343 unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss); 3344 vm_fault_t ret = 0; 3345 3346 rcu_read_lock(); 3347 folio = first_map_page(mapping, &xas, end_pgoff); 3348 if (!folio) 3349 goto out; 3350 3351 if (filemap_map_pmd(vmf, &folio->page)) { 3352 ret = VM_FAULT_NOPAGE; 3353 goto out; 3354 } 3355 3356 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT); 3357 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl); 3358 do { 3359 again: 3360 page = folio_file_page(folio, xas.xa_index); 3361 if (PageHWPoison(page)) 3362 goto unlock; 3363 3364 if (mmap_miss > 0) 3365 mmap_miss--; 3366 3367 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT; 3368 vmf->pte += xas.xa_index - last_pgoff; 3369 last_pgoff = xas.xa_index; 3370 3371 if (!pte_none(*vmf->pte)) 3372 goto unlock; 3373 3374 /* We're about to handle the fault */ 3375 if (vmf->address == addr) 3376 ret = VM_FAULT_NOPAGE; 3377 3378 do_set_pte(vmf, page, addr); 3379 /* no need to invalidate: a not-present page won't be cached */ 3380 update_mmu_cache(vma, addr, vmf->pte); 3381 if (folio_more_pages(folio, xas.xa_index, end_pgoff)) { 3382 xas.xa_index++; 3383 folio_ref_inc(folio); 3384 goto again; 3385 } 3386 folio_unlock(folio); 3387 continue; 3388 unlock: 3389 if (folio_more_pages(folio, xas.xa_index, end_pgoff)) { 3390 xas.xa_index++; 3391 goto again; 3392 } 3393 folio_unlock(folio); 3394 folio_put(folio); 3395 } while ((folio = next_map_page(mapping, &xas, end_pgoff)) != NULL); 3396 pte_unmap_unlock(vmf->pte, vmf->ptl); 3397 out: 3398 rcu_read_unlock(); 3399 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss); 3400 return ret; 3401 } 3402 EXPORT_SYMBOL(filemap_map_pages); 3403 3404 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3405 { 3406 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 3407 struct folio *folio = page_folio(vmf->page); 3408 vm_fault_t ret = VM_FAULT_LOCKED; 3409 3410 sb_start_pagefault(mapping->host->i_sb); 3411 file_update_time(vmf->vma->vm_file); 3412 folio_lock(folio); 3413 if (folio->mapping != mapping) { 3414 folio_unlock(folio); 3415 ret = VM_FAULT_NOPAGE; 3416 goto out; 3417 } 3418 /* 3419 * We mark the folio dirty already here so that when freeze is in 3420 * progress, we are guaranteed that writeback during freezing will 3421 * see the dirty folio and writeprotect it again. 3422 */ 3423 folio_mark_dirty(folio); 3424 folio_wait_stable(folio); 3425 out: 3426 sb_end_pagefault(mapping->host->i_sb); 3427 return ret; 3428 } 3429 3430 const struct vm_operations_struct generic_file_vm_ops = { 3431 .fault = filemap_fault, 3432 .map_pages = filemap_map_pages, 3433 .page_mkwrite = filemap_page_mkwrite, 3434 }; 3435 3436 /* This is used for a general mmap of a disk file */ 3437 3438 int generic_file_mmap(struct file *file, struct vm_area_struct *vma) 3439 { 3440 struct address_space *mapping = file->f_mapping; 3441 3442 if (!mapping->a_ops->readpage) 3443 return -ENOEXEC; 3444 file_accessed(file); 3445 vma->vm_ops = &generic_file_vm_ops; 3446 return 0; 3447 } 3448 3449 /* 3450 * This is for filesystems which do not implement ->writepage. 3451 */ 3452 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3453 { 3454 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 3455 return -EINVAL; 3456 return generic_file_mmap(file, vma); 3457 } 3458 #else 3459 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3460 { 3461 return VM_FAULT_SIGBUS; 3462 } 3463 int generic_file_mmap(struct file *file, struct vm_area_struct *vma) 3464 { 3465 return -ENOSYS; 3466 } 3467 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3468 { 3469 return -ENOSYS; 3470 } 3471 #endif /* CONFIG_MMU */ 3472 3473 EXPORT_SYMBOL(filemap_page_mkwrite); 3474 EXPORT_SYMBOL(generic_file_mmap); 3475 EXPORT_SYMBOL(generic_file_readonly_mmap); 3476 3477 static struct folio *do_read_cache_folio(struct address_space *mapping, 3478 pgoff_t index, filler_t filler, void *data, gfp_t gfp) 3479 { 3480 struct folio *folio; 3481 int err; 3482 repeat: 3483 folio = filemap_get_folio(mapping, index); 3484 if (!folio) { 3485 folio = filemap_alloc_folio(gfp, 0); 3486 if (!folio) 3487 return ERR_PTR(-ENOMEM); 3488 err = filemap_add_folio(mapping, folio, index, gfp); 3489 if (unlikely(err)) { 3490 folio_put(folio); 3491 if (err == -EEXIST) 3492 goto repeat; 3493 /* Presumably ENOMEM for xarray node */ 3494 return ERR_PTR(err); 3495 } 3496 3497 filler: 3498 if (filler) 3499 err = filler(data, &folio->page); 3500 else 3501 err = mapping->a_ops->readpage(data, &folio->page); 3502 3503 if (err < 0) { 3504 folio_put(folio); 3505 return ERR_PTR(err); 3506 } 3507 3508 folio_wait_locked(folio); 3509 if (!folio_test_uptodate(folio)) { 3510 folio_put(folio); 3511 return ERR_PTR(-EIO); 3512 } 3513 3514 goto out; 3515 } 3516 if (folio_test_uptodate(folio)) 3517 goto out; 3518 3519 if (!folio_trylock(folio)) { 3520 folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE); 3521 goto repeat; 3522 } 3523 3524 /* Folio was truncated from mapping */ 3525 if (!folio->mapping) { 3526 folio_unlock(folio); 3527 folio_put(folio); 3528 goto repeat; 3529 } 3530 3531 /* Someone else locked and filled the page in a very small window */ 3532 if (folio_test_uptodate(folio)) { 3533 folio_unlock(folio); 3534 goto out; 3535 } 3536 3537 /* 3538 * A previous I/O error may have been due to temporary 3539 * failures. 3540 * Clear page error before actual read, PG_error will be 3541 * set again if read page fails. 3542 */ 3543 folio_clear_error(folio); 3544 goto filler; 3545 3546 out: 3547 folio_mark_accessed(folio); 3548 return folio; 3549 } 3550 3551 /** 3552 * read_cache_folio - read into page cache, fill it if needed 3553 * @mapping: the page's address_space 3554 * @index: the page index 3555 * @filler: function to perform the read 3556 * @data: first arg to filler(data, page) function, often left as NULL 3557 * 3558 * Read into the page cache. If a page already exists, and PageUptodate() is 3559 * not set, try to fill the page and wait for it to become unlocked. 3560 * 3561 * If the page does not get brought uptodate, return -EIO. 3562 * 3563 * The function expects mapping->invalidate_lock to be already held. 3564 * 3565 * Return: up to date page on success, ERR_PTR() on failure. 3566 */ 3567 struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index, 3568 filler_t filler, void *data) 3569 { 3570 return do_read_cache_folio(mapping, index, filler, data, 3571 mapping_gfp_mask(mapping)); 3572 } 3573 EXPORT_SYMBOL(read_cache_folio); 3574 3575 static struct page *do_read_cache_page(struct address_space *mapping, 3576 pgoff_t index, filler_t *filler, void *data, gfp_t gfp) 3577 { 3578 struct folio *folio; 3579 3580 folio = do_read_cache_folio(mapping, index, filler, data, gfp); 3581 if (IS_ERR(folio)) 3582 return &folio->page; 3583 return folio_file_page(folio, index); 3584 } 3585 3586 struct page *read_cache_page(struct address_space *mapping, 3587 pgoff_t index, filler_t *filler, void *data) 3588 { 3589 return do_read_cache_page(mapping, index, filler, data, 3590 mapping_gfp_mask(mapping)); 3591 } 3592 EXPORT_SYMBOL(read_cache_page); 3593 3594 /** 3595 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 3596 * @mapping: the page's address_space 3597 * @index: the page index 3598 * @gfp: the page allocator flags to use if allocating 3599 * 3600 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 3601 * any new page allocations done using the specified allocation flags. 3602 * 3603 * If the page does not get brought uptodate, return -EIO. 3604 * 3605 * The function expects mapping->invalidate_lock to be already held. 3606 * 3607 * Return: up to date page on success, ERR_PTR() on failure. 3608 */ 3609 struct page *read_cache_page_gfp(struct address_space *mapping, 3610 pgoff_t index, 3611 gfp_t gfp) 3612 { 3613 return do_read_cache_page(mapping, index, NULL, NULL, gfp); 3614 } 3615 EXPORT_SYMBOL(read_cache_page_gfp); 3616 3617 int pagecache_write_begin(struct file *file, struct address_space *mapping, 3618 loff_t pos, unsigned len, unsigned flags, 3619 struct page **pagep, void **fsdata) 3620 { 3621 const struct address_space_operations *aops = mapping->a_ops; 3622 3623 return aops->write_begin(file, mapping, pos, len, flags, 3624 pagep, fsdata); 3625 } 3626 EXPORT_SYMBOL(pagecache_write_begin); 3627 3628 int pagecache_write_end(struct file *file, struct address_space *mapping, 3629 loff_t pos, unsigned len, unsigned copied, 3630 struct page *page, void *fsdata) 3631 { 3632 const struct address_space_operations *aops = mapping->a_ops; 3633 3634 return aops->write_end(file, mapping, pos, len, copied, page, fsdata); 3635 } 3636 EXPORT_SYMBOL(pagecache_write_end); 3637 3638 /* 3639 * Warn about a page cache invalidation failure during a direct I/O write. 3640 */ 3641 void dio_warn_stale_pagecache(struct file *filp) 3642 { 3643 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST); 3644 char pathname[128]; 3645 char *path; 3646 3647 errseq_set(&filp->f_mapping->wb_err, -EIO); 3648 if (__ratelimit(&_rs)) { 3649 path = file_path(filp, pathname, sizeof(pathname)); 3650 if (IS_ERR(path)) 3651 path = "(unknown)"; 3652 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n"); 3653 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid, 3654 current->comm); 3655 } 3656 } 3657 3658 ssize_t 3659 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) 3660 { 3661 struct file *file = iocb->ki_filp; 3662 struct address_space *mapping = file->f_mapping; 3663 struct inode *inode = mapping->host; 3664 loff_t pos = iocb->ki_pos; 3665 ssize_t written; 3666 size_t write_len; 3667 pgoff_t end; 3668 3669 write_len = iov_iter_count(from); 3670 end = (pos + write_len - 1) >> PAGE_SHIFT; 3671 3672 if (iocb->ki_flags & IOCB_NOWAIT) { 3673 /* If there are pages to writeback, return */ 3674 if (filemap_range_has_page(file->f_mapping, pos, 3675 pos + write_len - 1)) 3676 return -EAGAIN; 3677 } else { 3678 written = filemap_write_and_wait_range(mapping, pos, 3679 pos + write_len - 1); 3680 if (written) 3681 goto out; 3682 } 3683 3684 /* 3685 * After a write we want buffered reads to be sure to go to disk to get 3686 * the new data. We invalidate clean cached page from the region we're 3687 * about to write. We do this *before* the write so that we can return 3688 * without clobbering -EIOCBQUEUED from ->direct_IO(). 3689 */ 3690 written = invalidate_inode_pages2_range(mapping, 3691 pos >> PAGE_SHIFT, end); 3692 /* 3693 * If a page can not be invalidated, return 0 to fall back 3694 * to buffered write. 3695 */ 3696 if (written) { 3697 if (written == -EBUSY) 3698 return 0; 3699 goto out; 3700 } 3701 3702 written = mapping->a_ops->direct_IO(iocb, from); 3703 3704 /* 3705 * Finally, try again to invalidate clean pages which might have been 3706 * cached by non-direct readahead, or faulted in by get_user_pages() 3707 * if the source of the write was an mmap'ed region of the file 3708 * we're writing. Either one is a pretty crazy thing to do, 3709 * so we don't support it 100%. If this invalidation 3710 * fails, tough, the write still worked... 3711 * 3712 * Most of the time we do not need this since dio_complete() will do 3713 * the invalidation for us. However there are some file systems that 3714 * do not end up with dio_complete() being called, so let's not break 3715 * them by removing it completely. 3716 * 3717 * Noticeable example is a blkdev_direct_IO(). 3718 * 3719 * Skip invalidation for async writes or if mapping has no pages. 3720 */ 3721 if (written > 0 && mapping->nrpages && 3722 invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end)) 3723 dio_warn_stale_pagecache(file); 3724 3725 if (written > 0) { 3726 pos += written; 3727 write_len -= written; 3728 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 3729 i_size_write(inode, pos); 3730 mark_inode_dirty(inode); 3731 } 3732 iocb->ki_pos = pos; 3733 } 3734 if (written != -EIOCBQUEUED) 3735 iov_iter_revert(from, write_len - iov_iter_count(from)); 3736 out: 3737 return written; 3738 } 3739 EXPORT_SYMBOL(generic_file_direct_write); 3740 3741 ssize_t generic_perform_write(struct file *file, 3742 struct iov_iter *i, loff_t pos) 3743 { 3744 struct address_space *mapping = file->f_mapping; 3745 const struct address_space_operations *a_ops = mapping->a_ops; 3746 long status = 0; 3747 ssize_t written = 0; 3748 unsigned int flags = 0; 3749 3750 do { 3751 struct page *page; 3752 unsigned long offset; /* Offset into pagecache page */ 3753 unsigned long bytes; /* Bytes to write to page */ 3754 size_t copied; /* Bytes copied from user */ 3755 void *fsdata; 3756 3757 offset = (pos & (PAGE_SIZE - 1)); 3758 bytes = min_t(unsigned long, PAGE_SIZE - offset, 3759 iov_iter_count(i)); 3760 3761 again: 3762 /* 3763 * Bring in the user page that we will copy from _first_. 3764 * Otherwise there's a nasty deadlock on copying from the 3765 * same page as we're writing to, without it being marked 3766 * up-to-date. 3767 */ 3768 if (unlikely(fault_in_iov_iter_readable(i, bytes))) { 3769 status = -EFAULT; 3770 break; 3771 } 3772 3773 if (fatal_signal_pending(current)) { 3774 status = -EINTR; 3775 break; 3776 } 3777 3778 status = a_ops->write_begin(file, mapping, pos, bytes, flags, 3779 &page, &fsdata); 3780 if (unlikely(status < 0)) 3781 break; 3782 3783 if (mapping_writably_mapped(mapping)) 3784 flush_dcache_page(page); 3785 3786 copied = copy_page_from_iter_atomic(page, offset, bytes, i); 3787 flush_dcache_page(page); 3788 3789 status = a_ops->write_end(file, mapping, pos, bytes, copied, 3790 page, fsdata); 3791 if (unlikely(status != copied)) { 3792 iov_iter_revert(i, copied - max(status, 0L)); 3793 if (unlikely(status < 0)) 3794 break; 3795 } 3796 cond_resched(); 3797 3798 if (unlikely(status == 0)) { 3799 /* 3800 * A short copy made ->write_end() reject the 3801 * thing entirely. Might be memory poisoning 3802 * halfway through, might be a race with munmap, 3803 * might be severe memory pressure. 3804 */ 3805 if (copied) 3806 bytes = copied; 3807 goto again; 3808 } 3809 pos += status; 3810 written += status; 3811 3812 balance_dirty_pages_ratelimited(mapping); 3813 } while (iov_iter_count(i)); 3814 3815 return written ? written : status; 3816 } 3817 EXPORT_SYMBOL(generic_perform_write); 3818 3819 /** 3820 * __generic_file_write_iter - write data to a file 3821 * @iocb: IO state structure (file, offset, etc.) 3822 * @from: iov_iter with data to write 3823 * 3824 * This function does all the work needed for actually writing data to a 3825 * file. It does all basic checks, removes SUID from the file, updates 3826 * modification times and calls proper subroutines depending on whether we 3827 * do direct IO or a standard buffered write. 3828 * 3829 * It expects i_rwsem to be grabbed unless we work on a block device or similar 3830 * object which does not need locking at all. 3831 * 3832 * This function does *not* take care of syncing data in case of O_SYNC write. 3833 * A caller has to handle it. This is mainly due to the fact that we want to 3834 * avoid syncing under i_rwsem. 3835 * 3836 * Return: 3837 * * number of bytes written, even for truncated writes 3838 * * negative error code if no data has been written at all 3839 */ 3840 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3841 { 3842 struct file *file = iocb->ki_filp; 3843 struct address_space *mapping = file->f_mapping; 3844 struct inode *inode = mapping->host; 3845 ssize_t written = 0; 3846 ssize_t err; 3847 ssize_t status; 3848 3849 /* We can write back this queue in page reclaim */ 3850 current->backing_dev_info = inode_to_bdi(inode); 3851 err = file_remove_privs(file); 3852 if (err) 3853 goto out; 3854 3855 err = file_update_time(file); 3856 if (err) 3857 goto out; 3858 3859 if (iocb->ki_flags & IOCB_DIRECT) { 3860 loff_t pos, endbyte; 3861 3862 written = generic_file_direct_write(iocb, from); 3863 /* 3864 * If the write stopped short of completing, fall back to 3865 * buffered writes. Some filesystems do this for writes to 3866 * holes, for example. For DAX files, a buffered write will 3867 * not succeed (even if it did, DAX does not handle dirty 3868 * page-cache pages correctly). 3869 */ 3870 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode)) 3871 goto out; 3872 3873 status = generic_perform_write(file, from, pos = iocb->ki_pos); 3874 /* 3875 * If generic_perform_write() returned a synchronous error 3876 * then we want to return the number of bytes which were 3877 * direct-written, or the error code if that was zero. Note 3878 * that this differs from normal direct-io semantics, which 3879 * will return -EFOO even if some bytes were written. 3880 */ 3881 if (unlikely(status < 0)) { 3882 err = status; 3883 goto out; 3884 } 3885 /* 3886 * We need to ensure that the page cache pages are written to 3887 * disk and invalidated to preserve the expected O_DIRECT 3888 * semantics. 3889 */ 3890 endbyte = pos + status - 1; 3891 err = filemap_write_and_wait_range(mapping, pos, endbyte); 3892 if (err == 0) { 3893 iocb->ki_pos = endbyte + 1; 3894 written += status; 3895 invalidate_mapping_pages(mapping, 3896 pos >> PAGE_SHIFT, 3897 endbyte >> PAGE_SHIFT); 3898 } else { 3899 /* 3900 * We don't know how much we wrote, so just return 3901 * the number of bytes which were direct-written 3902 */ 3903 } 3904 } else { 3905 written = generic_perform_write(file, from, iocb->ki_pos); 3906 if (likely(written > 0)) 3907 iocb->ki_pos += written; 3908 } 3909 out: 3910 current->backing_dev_info = NULL; 3911 return written ? written : err; 3912 } 3913 EXPORT_SYMBOL(__generic_file_write_iter); 3914 3915 /** 3916 * generic_file_write_iter - write data to a file 3917 * @iocb: IO state structure 3918 * @from: iov_iter with data to write 3919 * 3920 * This is a wrapper around __generic_file_write_iter() to be used by most 3921 * filesystems. It takes care of syncing the file in case of O_SYNC file 3922 * and acquires i_rwsem as needed. 3923 * Return: 3924 * * negative error code if no data has been written at all of 3925 * vfs_fsync_range() failed for a synchronous write 3926 * * number of bytes written, even for truncated writes 3927 */ 3928 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3929 { 3930 struct file *file = iocb->ki_filp; 3931 struct inode *inode = file->f_mapping->host; 3932 ssize_t ret; 3933 3934 inode_lock(inode); 3935 ret = generic_write_checks(iocb, from); 3936 if (ret > 0) 3937 ret = __generic_file_write_iter(iocb, from); 3938 inode_unlock(inode); 3939 3940 if (ret > 0) 3941 ret = generic_write_sync(iocb, ret); 3942 return ret; 3943 } 3944 EXPORT_SYMBOL(generic_file_write_iter); 3945 3946 /** 3947 * filemap_release_folio() - Release fs-specific metadata on a folio. 3948 * @folio: The folio which the kernel is trying to free. 3949 * @gfp: Memory allocation flags (and I/O mode). 3950 * 3951 * The address_space is trying to release any data attached to a folio 3952 * (presumably at folio->private). 3953 * 3954 * This will also be called if the private_2 flag is set on a page, 3955 * indicating that the folio has other metadata associated with it. 3956 * 3957 * The @gfp argument specifies whether I/O may be performed to release 3958 * this page (__GFP_IO), and whether the call may block 3959 * (__GFP_RECLAIM & __GFP_FS). 3960 * 3961 * Return: %true if the release was successful, otherwise %false. 3962 */ 3963 bool filemap_release_folio(struct folio *folio, gfp_t gfp) 3964 { 3965 struct address_space * const mapping = folio->mapping; 3966 3967 BUG_ON(!folio_test_locked(folio)); 3968 if (folio_test_writeback(folio)) 3969 return false; 3970 3971 if (mapping && mapping->a_ops->releasepage) 3972 return mapping->a_ops->releasepage(&folio->page, gfp); 3973 return try_to_free_buffers(&folio->page); 3974 } 3975 EXPORT_SYMBOL(filemap_release_folio); 3976