xref: /openbmc/linux/mm/filemap.c (revision 359745d7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	linux/mm/filemap.c
4  *
5  * Copyright (C) 1994-1999  Linus Torvalds
6  */
7 
8 /*
9  * This file handles the generic file mmap semantics used by
10  * most "normal" filesystems (but you don't /have/ to use this:
11  * the NFS filesystem used to do this differently, for example)
12  */
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
16 #include <linux/fs.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
22 #include <linux/mm.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/mman.h>
26 #include <linux/pagemap.h>
27 #include <linux/file.h>
28 #include <linux/uio.h>
29 #include <linux/error-injection.h>
30 #include <linux/hash.h>
31 #include <linux/writeback.h>
32 #include <linux/backing-dev.h>
33 #include <linux/pagevec.h>
34 #include <linux/security.h>
35 #include <linux/cpuset.h>
36 #include <linux/hugetlb.h>
37 #include <linux/memcontrol.h>
38 #include <linux/cleancache.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/rmap.h>
41 #include <linux/delayacct.h>
42 #include <linux/psi.h>
43 #include <linux/ramfs.h>
44 #include <linux/page_idle.h>
45 #include <linux/migrate.h>
46 #include <asm/pgalloc.h>
47 #include <asm/tlbflush.h>
48 #include "internal.h"
49 
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/filemap.h>
52 
53 /*
54  * FIXME: remove all knowledge of the buffer layer from the core VM
55  */
56 #include <linux/buffer_head.h> /* for try_to_free_buffers */
57 
58 #include <asm/mman.h>
59 
60 /*
61  * Shared mappings implemented 30.11.1994. It's not fully working yet,
62  * though.
63  *
64  * Shared mappings now work. 15.8.1995  Bruno.
65  *
66  * finished 'unifying' the page and buffer cache and SMP-threaded the
67  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
68  *
69  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
70  */
71 
72 /*
73  * Lock ordering:
74  *
75  *  ->i_mmap_rwsem		(truncate_pagecache)
76  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
77  *      ->swap_lock		(exclusive_swap_page, others)
78  *        ->i_pages lock
79  *
80  *  ->i_rwsem
81  *    ->invalidate_lock		(acquired by fs in truncate path)
82  *      ->i_mmap_rwsem		(truncate->unmap_mapping_range)
83  *
84  *  ->mmap_lock
85  *    ->i_mmap_rwsem
86  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
87  *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
88  *
89  *  ->mmap_lock
90  *    ->invalidate_lock		(filemap_fault)
91  *      ->lock_page		(filemap_fault, access_process_vm)
92  *
93  *  ->i_rwsem			(generic_perform_write)
94  *    ->mmap_lock		(fault_in_readable->do_page_fault)
95  *
96  *  bdi->wb.list_lock
97  *    sb_lock			(fs/fs-writeback.c)
98  *    ->i_pages lock		(__sync_single_inode)
99  *
100  *  ->i_mmap_rwsem
101  *    ->anon_vma.lock		(vma_adjust)
102  *
103  *  ->anon_vma.lock
104  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
105  *
106  *  ->page_table_lock or pte_lock
107  *    ->swap_lock		(try_to_unmap_one)
108  *    ->private_lock		(try_to_unmap_one)
109  *    ->i_pages lock		(try_to_unmap_one)
110  *    ->lruvec->lru_lock	(follow_page->mark_page_accessed)
111  *    ->lruvec->lru_lock	(check_pte_range->isolate_lru_page)
112  *    ->private_lock		(page_remove_rmap->set_page_dirty)
113  *    ->i_pages lock		(page_remove_rmap->set_page_dirty)
114  *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
115  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
116  *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
117  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
118  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
119  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
120  *
121  * ->i_mmap_rwsem
122  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
123  */
124 
125 static void page_cache_delete(struct address_space *mapping,
126 				   struct folio *folio, void *shadow)
127 {
128 	XA_STATE(xas, &mapping->i_pages, folio->index);
129 	long nr = 1;
130 
131 	mapping_set_update(&xas, mapping);
132 
133 	/* hugetlb pages are represented by a single entry in the xarray */
134 	if (!folio_test_hugetlb(folio)) {
135 		xas_set_order(&xas, folio->index, folio_order(folio));
136 		nr = folio_nr_pages(folio);
137 	}
138 
139 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
140 
141 	xas_store(&xas, shadow);
142 	xas_init_marks(&xas);
143 
144 	folio->mapping = NULL;
145 	/* Leave page->index set: truncation lookup relies upon it */
146 	mapping->nrpages -= nr;
147 }
148 
149 static void filemap_unaccount_folio(struct address_space *mapping,
150 		struct folio *folio)
151 {
152 	long nr;
153 
154 	/*
155 	 * if we're uptodate, flush out into the cleancache, otherwise
156 	 * invalidate any existing cleancache entries.  We can't leave
157 	 * stale data around in the cleancache once our page is gone
158 	 */
159 	if (folio_test_uptodate(folio) && folio_test_mappedtodisk(folio))
160 		cleancache_put_page(&folio->page);
161 	else
162 		cleancache_invalidate_page(mapping, &folio->page);
163 
164 	VM_BUG_ON_FOLIO(folio_mapped(folio), folio);
165 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) {
166 		int mapcount;
167 
168 		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
169 			 current->comm, folio_pfn(folio));
170 		dump_page(&folio->page, "still mapped when deleted");
171 		dump_stack();
172 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
173 
174 		mapcount = page_mapcount(&folio->page);
175 		if (mapping_exiting(mapping) &&
176 		    folio_ref_count(folio) >= mapcount + 2) {
177 			/*
178 			 * All vmas have already been torn down, so it's
179 			 * a good bet that actually the folio is unmapped,
180 			 * and we'd prefer not to leak it: if we're wrong,
181 			 * some other bad page check should catch it later.
182 			 */
183 			page_mapcount_reset(&folio->page);
184 			folio_ref_sub(folio, mapcount);
185 		}
186 	}
187 
188 	/* hugetlb folios do not participate in page cache accounting. */
189 	if (folio_test_hugetlb(folio))
190 		return;
191 
192 	nr = folio_nr_pages(folio);
193 
194 	__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
195 	if (folio_test_swapbacked(folio)) {
196 		__lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
197 		if (folio_test_pmd_mappable(folio))
198 			__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr);
199 	} else if (folio_test_pmd_mappable(folio)) {
200 		__lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr);
201 		filemap_nr_thps_dec(mapping);
202 	}
203 
204 	/*
205 	 * At this point folio must be either written or cleaned by
206 	 * truncate.  Dirty folio here signals a bug and loss of
207 	 * unwritten data.
208 	 *
209 	 * This fixes dirty accounting after removing the folio entirely
210 	 * but leaves the dirty flag set: it has no effect for truncated
211 	 * folio and anyway will be cleared before returning folio to
212 	 * buddy allocator.
213 	 */
214 	if (WARN_ON_ONCE(folio_test_dirty(folio)))
215 		folio_account_cleaned(folio, mapping,
216 					inode_to_wb(mapping->host));
217 }
218 
219 /*
220  * Delete a page from the page cache and free it. Caller has to make
221  * sure the page is locked and that nobody else uses it - or that usage
222  * is safe.  The caller must hold the i_pages lock.
223  */
224 void __filemap_remove_folio(struct folio *folio, void *shadow)
225 {
226 	struct address_space *mapping = folio->mapping;
227 
228 	trace_mm_filemap_delete_from_page_cache(folio);
229 	filemap_unaccount_folio(mapping, folio);
230 	page_cache_delete(mapping, folio, shadow);
231 }
232 
233 void filemap_free_folio(struct address_space *mapping, struct folio *folio)
234 {
235 	void (*freepage)(struct page *);
236 
237 	freepage = mapping->a_ops->freepage;
238 	if (freepage)
239 		freepage(&folio->page);
240 
241 	if (folio_test_large(folio) && !folio_test_hugetlb(folio)) {
242 		folio_ref_sub(folio, folio_nr_pages(folio));
243 		VM_BUG_ON_FOLIO(folio_ref_count(folio) <= 0, folio);
244 	} else {
245 		folio_put(folio);
246 	}
247 }
248 
249 /**
250  * filemap_remove_folio - Remove folio from page cache.
251  * @folio: The folio.
252  *
253  * This must be called only on folios that are locked and have been
254  * verified to be in the page cache.  It will never put the folio into
255  * the free list because the caller has a reference on the page.
256  */
257 void filemap_remove_folio(struct folio *folio)
258 {
259 	struct address_space *mapping = folio->mapping;
260 
261 	BUG_ON(!folio_test_locked(folio));
262 	spin_lock(&mapping->host->i_lock);
263 	xa_lock_irq(&mapping->i_pages);
264 	__filemap_remove_folio(folio, NULL);
265 	xa_unlock_irq(&mapping->i_pages);
266 	if (mapping_shrinkable(mapping))
267 		inode_add_lru(mapping->host);
268 	spin_unlock(&mapping->host->i_lock);
269 
270 	filemap_free_folio(mapping, folio);
271 }
272 
273 /*
274  * page_cache_delete_batch - delete several folios from page cache
275  * @mapping: the mapping to which folios belong
276  * @fbatch: batch of folios to delete
277  *
278  * The function walks over mapping->i_pages and removes folios passed in
279  * @fbatch from the mapping. The function expects @fbatch to be sorted
280  * by page index and is optimised for it to be dense.
281  * It tolerates holes in @fbatch (mapping entries at those indices are not
282  * modified).
283  *
284  * The function expects the i_pages lock to be held.
285  */
286 static void page_cache_delete_batch(struct address_space *mapping,
287 			     struct folio_batch *fbatch)
288 {
289 	XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index);
290 	long total_pages = 0;
291 	int i = 0;
292 	struct folio *folio;
293 
294 	mapping_set_update(&xas, mapping);
295 	xas_for_each(&xas, folio, ULONG_MAX) {
296 		if (i >= folio_batch_count(fbatch))
297 			break;
298 
299 		/* A swap/dax/shadow entry got inserted? Skip it. */
300 		if (xa_is_value(folio))
301 			continue;
302 		/*
303 		 * A page got inserted in our range? Skip it. We have our
304 		 * pages locked so they are protected from being removed.
305 		 * If we see a page whose index is higher than ours, it
306 		 * means our page has been removed, which shouldn't be
307 		 * possible because we're holding the PageLock.
308 		 */
309 		if (folio != fbatch->folios[i]) {
310 			VM_BUG_ON_FOLIO(folio->index >
311 					fbatch->folios[i]->index, folio);
312 			continue;
313 		}
314 
315 		WARN_ON_ONCE(!folio_test_locked(folio));
316 
317 		folio->mapping = NULL;
318 		/* Leave folio->index set: truncation lookup relies on it */
319 
320 		i++;
321 		xas_store(&xas, NULL);
322 		total_pages += folio_nr_pages(folio);
323 	}
324 	mapping->nrpages -= total_pages;
325 }
326 
327 void delete_from_page_cache_batch(struct address_space *mapping,
328 				  struct folio_batch *fbatch)
329 {
330 	int i;
331 
332 	if (!folio_batch_count(fbatch))
333 		return;
334 
335 	spin_lock(&mapping->host->i_lock);
336 	xa_lock_irq(&mapping->i_pages);
337 	for (i = 0; i < folio_batch_count(fbatch); i++) {
338 		struct folio *folio = fbatch->folios[i];
339 
340 		trace_mm_filemap_delete_from_page_cache(folio);
341 		filemap_unaccount_folio(mapping, folio);
342 	}
343 	page_cache_delete_batch(mapping, fbatch);
344 	xa_unlock_irq(&mapping->i_pages);
345 	if (mapping_shrinkable(mapping))
346 		inode_add_lru(mapping->host);
347 	spin_unlock(&mapping->host->i_lock);
348 
349 	for (i = 0; i < folio_batch_count(fbatch); i++)
350 		filemap_free_folio(mapping, fbatch->folios[i]);
351 }
352 
353 int filemap_check_errors(struct address_space *mapping)
354 {
355 	int ret = 0;
356 	/* Check for outstanding write errors */
357 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
358 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
359 		ret = -ENOSPC;
360 	if (test_bit(AS_EIO, &mapping->flags) &&
361 	    test_and_clear_bit(AS_EIO, &mapping->flags))
362 		ret = -EIO;
363 	return ret;
364 }
365 EXPORT_SYMBOL(filemap_check_errors);
366 
367 static int filemap_check_and_keep_errors(struct address_space *mapping)
368 {
369 	/* Check for outstanding write errors */
370 	if (test_bit(AS_EIO, &mapping->flags))
371 		return -EIO;
372 	if (test_bit(AS_ENOSPC, &mapping->flags))
373 		return -ENOSPC;
374 	return 0;
375 }
376 
377 /**
378  * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
379  * @mapping:	address space structure to write
380  * @wbc:	the writeback_control controlling the writeout
381  *
382  * Call writepages on the mapping using the provided wbc to control the
383  * writeout.
384  *
385  * Return: %0 on success, negative error code otherwise.
386  */
387 int filemap_fdatawrite_wbc(struct address_space *mapping,
388 			   struct writeback_control *wbc)
389 {
390 	int ret;
391 
392 	if (!mapping_can_writeback(mapping) ||
393 	    !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
394 		return 0;
395 
396 	wbc_attach_fdatawrite_inode(wbc, mapping->host);
397 	ret = do_writepages(mapping, wbc);
398 	wbc_detach_inode(wbc);
399 	return ret;
400 }
401 EXPORT_SYMBOL(filemap_fdatawrite_wbc);
402 
403 /**
404  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
405  * @mapping:	address space structure to write
406  * @start:	offset in bytes where the range starts
407  * @end:	offset in bytes where the range ends (inclusive)
408  * @sync_mode:	enable synchronous operation
409  *
410  * Start writeback against all of a mapping's dirty pages that lie
411  * within the byte offsets <start, end> inclusive.
412  *
413  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
414  * opposed to a regular memory cleansing writeback.  The difference between
415  * these two operations is that if a dirty page/buffer is encountered, it must
416  * be waited upon, and not just skipped over.
417  *
418  * Return: %0 on success, negative error code otherwise.
419  */
420 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
421 				loff_t end, int sync_mode)
422 {
423 	struct writeback_control wbc = {
424 		.sync_mode = sync_mode,
425 		.nr_to_write = LONG_MAX,
426 		.range_start = start,
427 		.range_end = end,
428 	};
429 
430 	return filemap_fdatawrite_wbc(mapping, &wbc);
431 }
432 
433 static inline int __filemap_fdatawrite(struct address_space *mapping,
434 	int sync_mode)
435 {
436 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
437 }
438 
439 int filemap_fdatawrite(struct address_space *mapping)
440 {
441 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
442 }
443 EXPORT_SYMBOL(filemap_fdatawrite);
444 
445 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
446 				loff_t end)
447 {
448 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
449 }
450 EXPORT_SYMBOL(filemap_fdatawrite_range);
451 
452 /**
453  * filemap_flush - mostly a non-blocking flush
454  * @mapping:	target address_space
455  *
456  * This is a mostly non-blocking flush.  Not suitable for data-integrity
457  * purposes - I/O may not be started against all dirty pages.
458  *
459  * Return: %0 on success, negative error code otherwise.
460  */
461 int filemap_flush(struct address_space *mapping)
462 {
463 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
464 }
465 EXPORT_SYMBOL(filemap_flush);
466 
467 /**
468  * filemap_range_has_page - check if a page exists in range.
469  * @mapping:           address space within which to check
470  * @start_byte:        offset in bytes where the range starts
471  * @end_byte:          offset in bytes where the range ends (inclusive)
472  *
473  * Find at least one page in the range supplied, usually used to check if
474  * direct writing in this range will trigger a writeback.
475  *
476  * Return: %true if at least one page exists in the specified range,
477  * %false otherwise.
478  */
479 bool filemap_range_has_page(struct address_space *mapping,
480 			   loff_t start_byte, loff_t end_byte)
481 {
482 	struct page *page;
483 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
484 	pgoff_t max = end_byte >> PAGE_SHIFT;
485 
486 	if (end_byte < start_byte)
487 		return false;
488 
489 	rcu_read_lock();
490 	for (;;) {
491 		page = xas_find(&xas, max);
492 		if (xas_retry(&xas, page))
493 			continue;
494 		/* Shadow entries don't count */
495 		if (xa_is_value(page))
496 			continue;
497 		/*
498 		 * We don't need to try to pin this page; we're about to
499 		 * release the RCU lock anyway.  It is enough to know that
500 		 * there was a page here recently.
501 		 */
502 		break;
503 	}
504 	rcu_read_unlock();
505 
506 	return page != NULL;
507 }
508 EXPORT_SYMBOL(filemap_range_has_page);
509 
510 static void __filemap_fdatawait_range(struct address_space *mapping,
511 				     loff_t start_byte, loff_t end_byte)
512 {
513 	pgoff_t index = start_byte >> PAGE_SHIFT;
514 	pgoff_t end = end_byte >> PAGE_SHIFT;
515 	struct pagevec pvec;
516 	int nr_pages;
517 
518 	if (end_byte < start_byte)
519 		return;
520 
521 	pagevec_init(&pvec);
522 	while (index <= end) {
523 		unsigned i;
524 
525 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
526 				end, PAGECACHE_TAG_WRITEBACK);
527 		if (!nr_pages)
528 			break;
529 
530 		for (i = 0; i < nr_pages; i++) {
531 			struct page *page = pvec.pages[i];
532 
533 			wait_on_page_writeback(page);
534 			ClearPageError(page);
535 		}
536 		pagevec_release(&pvec);
537 		cond_resched();
538 	}
539 }
540 
541 /**
542  * filemap_fdatawait_range - wait for writeback to complete
543  * @mapping:		address space structure to wait for
544  * @start_byte:		offset in bytes where the range starts
545  * @end_byte:		offset in bytes where the range ends (inclusive)
546  *
547  * Walk the list of under-writeback pages of the given address space
548  * in the given range and wait for all of them.  Check error status of
549  * the address space and return it.
550  *
551  * Since the error status of the address space is cleared by this function,
552  * callers are responsible for checking the return value and handling and/or
553  * reporting the error.
554  *
555  * Return: error status of the address space.
556  */
557 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
558 			    loff_t end_byte)
559 {
560 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
561 	return filemap_check_errors(mapping);
562 }
563 EXPORT_SYMBOL(filemap_fdatawait_range);
564 
565 /**
566  * filemap_fdatawait_range_keep_errors - wait for writeback to complete
567  * @mapping:		address space structure to wait for
568  * @start_byte:		offset in bytes where the range starts
569  * @end_byte:		offset in bytes where the range ends (inclusive)
570  *
571  * Walk the list of under-writeback pages of the given address space in the
572  * given range and wait for all of them.  Unlike filemap_fdatawait_range(),
573  * this function does not clear error status of the address space.
574  *
575  * Use this function if callers don't handle errors themselves.  Expected
576  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
577  * fsfreeze(8)
578  */
579 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
580 		loff_t start_byte, loff_t end_byte)
581 {
582 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
583 	return filemap_check_and_keep_errors(mapping);
584 }
585 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
586 
587 /**
588  * file_fdatawait_range - wait for writeback to complete
589  * @file:		file pointing to address space structure to wait for
590  * @start_byte:		offset in bytes where the range starts
591  * @end_byte:		offset in bytes where the range ends (inclusive)
592  *
593  * Walk the list of under-writeback pages of the address space that file
594  * refers to, in the given range and wait for all of them.  Check error
595  * status of the address space vs. the file->f_wb_err cursor and return it.
596  *
597  * Since the error status of the file is advanced by this function,
598  * callers are responsible for checking the return value and handling and/or
599  * reporting the error.
600  *
601  * Return: error status of the address space vs. the file->f_wb_err cursor.
602  */
603 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
604 {
605 	struct address_space *mapping = file->f_mapping;
606 
607 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
608 	return file_check_and_advance_wb_err(file);
609 }
610 EXPORT_SYMBOL(file_fdatawait_range);
611 
612 /**
613  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
614  * @mapping: address space structure to wait for
615  *
616  * Walk the list of under-writeback pages of the given address space
617  * and wait for all of them.  Unlike filemap_fdatawait(), this function
618  * does not clear error status of the address space.
619  *
620  * Use this function if callers don't handle errors themselves.  Expected
621  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
622  * fsfreeze(8)
623  *
624  * Return: error status of the address space.
625  */
626 int filemap_fdatawait_keep_errors(struct address_space *mapping)
627 {
628 	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
629 	return filemap_check_and_keep_errors(mapping);
630 }
631 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
632 
633 /* Returns true if writeback might be needed or already in progress. */
634 static bool mapping_needs_writeback(struct address_space *mapping)
635 {
636 	return mapping->nrpages;
637 }
638 
639 bool filemap_range_has_writeback(struct address_space *mapping,
640 				 loff_t start_byte, loff_t end_byte)
641 {
642 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
643 	pgoff_t max = end_byte >> PAGE_SHIFT;
644 	struct page *page;
645 
646 	if (end_byte < start_byte)
647 		return false;
648 
649 	rcu_read_lock();
650 	xas_for_each(&xas, page, max) {
651 		if (xas_retry(&xas, page))
652 			continue;
653 		if (xa_is_value(page))
654 			continue;
655 		if (PageDirty(page) || PageLocked(page) || PageWriteback(page))
656 			break;
657 	}
658 	rcu_read_unlock();
659 	return page != NULL;
660 }
661 EXPORT_SYMBOL_GPL(filemap_range_has_writeback);
662 
663 /**
664  * filemap_write_and_wait_range - write out & wait on a file range
665  * @mapping:	the address_space for the pages
666  * @lstart:	offset in bytes where the range starts
667  * @lend:	offset in bytes where the range ends (inclusive)
668  *
669  * Write out and wait upon file offsets lstart->lend, inclusive.
670  *
671  * Note that @lend is inclusive (describes the last byte to be written) so
672  * that this function can be used to write to the very end-of-file (end = -1).
673  *
674  * Return: error status of the address space.
675  */
676 int filemap_write_and_wait_range(struct address_space *mapping,
677 				 loff_t lstart, loff_t lend)
678 {
679 	int err = 0;
680 
681 	if (mapping_needs_writeback(mapping)) {
682 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
683 						 WB_SYNC_ALL);
684 		/*
685 		 * Even if the above returned error, the pages may be
686 		 * written partially (e.g. -ENOSPC), so we wait for it.
687 		 * But the -EIO is special case, it may indicate the worst
688 		 * thing (e.g. bug) happened, so we avoid waiting for it.
689 		 */
690 		if (err != -EIO) {
691 			int err2 = filemap_fdatawait_range(mapping,
692 						lstart, lend);
693 			if (!err)
694 				err = err2;
695 		} else {
696 			/* Clear any previously stored errors */
697 			filemap_check_errors(mapping);
698 		}
699 	} else {
700 		err = filemap_check_errors(mapping);
701 	}
702 	return err;
703 }
704 EXPORT_SYMBOL(filemap_write_and_wait_range);
705 
706 void __filemap_set_wb_err(struct address_space *mapping, int err)
707 {
708 	errseq_t eseq = errseq_set(&mapping->wb_err, err);
709 
710 	trace_filemap_set_wb_err(mapping, eseq);
711 }
712 EXPORT_SYMBOL(__filemap_set_wb_err);
713 
714 /**
715  * file_check_and_advance_wb_err - report wb error (if any) that was previously
716  * 				   and advance wb_err to current one
717  * @file: struct file on which the error is being reported
718  *
719  * When userland calls fsync (or something like nfsd does the equivalent), we
720  * want to report any writeback errors that occurred since the last fsync (or
721  * since the file was opened if there haven't been any).
722  *
723  * Grab the wb_err from the mapping. If it matches what we have in the file,
724  * then just quickly return 0. The file is all caught up.
725  *
726  * If it doesn't match, then take the mapping value, set the "seen" flag in
727  * it and try to swap it into place. If it works, or another task beat us
728  * to it with the new value, then update the f_wb_err and return the error
729  * portion. The error at this point must be reported via proper channels
730  * (a'la fsync, or NFS COMMIT operation, etc.).
731  *
732  * While we handle mapping->wb_err with atomic operations, the f_wb_err
733  * value is protected by the f_lock since we must ensure that it reflects
734  * the latest value swapped in for this file descriptor.
735  *
736  * Return: %0 on success, negative error code otherwise.
737  */
738 int file_check_and_advance_wb_err(struct file *file)
739 {
740 	int err = 0;
741 	errseq_t old = READ_ONCE(file->f_wb_err);
742 	struct address_space *mapping = file->f_mapping;
743 
744 	/* Locklessly handle the common case where nothing has changed */
745 	if (errseq_check(&mapping->wb_err, old)) {
746 		/* Something changed, must use slow path */
747 		spin_lock(&file->f_lock);
748 		old = file->f_wb_err;
749 		err = errseq_check_and_advance(&mapping->wb_err,
750 						&file->f_wb_err);
751 		trace_file_check_and_advance_wb_err(file, old);
752 		spin_unlock(&file->f_lock);
753 	}
754 
755 	/*
756 	 * We're mostly using this function as a drop in replacement for
757 	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
758 	 * that the legacy code would have had on these flags.
759 	 */
760 	clear_bit(AS_EIO, &mapping->flags);
761 	clear_bit(AS_ENOSPC, &mapping->flags);
762 	return err;
763 }
764 EXPORT_SYMBOL(file_check_and_advance_wb_err);
765 
766 /**
767  * file_write_and_wait_range - write out & wait on a file range
768  * @file:	file pointing to address_space with pages
769  * @lstart:	offset in bytes where the range starts
770  * @lend:	offset in bytes where the range ends (inclusive)
771  *
772  * Write out and wait upon file offsets lstart->lend, inclusive.
773  *
774  * Note that @lend is inclusive (describes the last byte to be written) so
775  * that this function can be used to write to the very end-of-file (end = -1).
776  *
777  * After writing out and waiting on the data, we check and advance the
778  * f_wb_err cursor to the latest value, and return any errors detected there.
779  *
780  * Return: %0 on success, negative error code otherwise.
781  */
782 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
783 {
784 	int err = 0, err2;
785 	struct address_space *mapping = file->f_mapping;
786 
787 	if (mapping_needs_writeback(mapping)) {
788 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
789 						 WB_SYNC_ALL);
790 		/* See comment of filemap_write_and_wait() */
791 		if (err != -EIO)
792 			__filemap_fdatawait_range(mapping, lstart, lend);
793 	}
794 	err2 = file_check_and_advance_wb_err(file);
795 	if (!err)
796 		err = err2;
797 	return err;
798 }
799 EXPORT_SYMBOL(file_write_and_wait_range);
800 
801 /**
802  * replace_page_cache_page - replace a pagecache page with a new one
803  * @old:	page to be replaced
804  * @new:	page to replace with
805  *
806  * This function replaces a page in the pagecache with a new one.  On
807  * success it acquires the pagecache reference for the new page and
808  * drops it for the old page.  Both the old and new pages must be
809  * locked.  This function does not add the new page to the LRU, the
810  * caller must do that.
811  *
812  * The remove + add is atomic.  This function cannot fail.
813  */
814 void replace_page_cache_page(struct page *old, struct page *new)
815 {
816 	struct folio *fold = page_folio(old);
817 	struct folio *fnew = page_folio(new);
818 	struct address_space *mapping = old->mapping;
819 	void (*freepage)(struct page *) = mapping->a_ops->freepage;
820 	pgoff_t offset = old->index;
821 	XA_STATE(xas, &mapping->i_pages, offset);
822 
823 	VM_BUG_ON_PAGE(!PageLocked(old), old);
824 	VM_BUG_ON_PAGE(!PageLocked(new), new);
825 	VM_BUG_ON_PAGE(new->mapping, new);
826 
827 	get_page(new);
828 	new->mapping = mapping;
829 	new->index = offset;
830 
831 	mem_cgroup_migrate(fold, fnew);
832 
833 	xas_lock_irq(&xas);
834 	xas_store(&xas, new);
835 
836 	old->mapping = NULL;
837 	/* hugetlb pages do not participate in page cache accounting. */
838 	if (!PageHuge(old))
839 		__dec_lruvec_page_state(old, NR_FILE_PAGES);
840 	if (!PageHuge(new))
841 		__inc_lruvec_page_state(new, NR_FILE_PAGES);
842 	if (PageSwapBacked(old))
843 		__dec_lruvec_page_state(old, NR_SHMEM);
844 	if (PageSwapBacked(new))
845 		__inc_lruvec_page_state(new, NR_SHMEM);
846 	xas_unlock_irq(&xas);
847 	if (freepage)
848 		freepage(old);
849 	put_page(old);
850 }
851 EXPORT_SYMBOL_GPL(replace_page_cache_page);
852 
853 noinline int __filemap_add_folio(struct address_space *mapping,
854 		struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
855 {
856 	XA_STATE(xas, &mapping->i_pages, index);
857 	int huge = folio_test_hugetlb(folio);
858 	int error;
859 	bool charged = false;
860 
861 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
862 	VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
863 	mapping_set_update(&xas, mapping);
864 
865 	folio_get(folio);
866 	folio->mapping = mapping;
867 	folio->index = index;
868 
869 	if (!huge) {
870 		error = mem_cgroup_charge(folio, NULL, gfp);
871 		VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
872 		if (error)
873 			goto error;
874 		charged = true;
875 	}
876 
877 	gfp &= GFP_RECLAIM_MASK;
878 
879 	do {
880 		unsigned int order = xa_get_order(xas.xa, xas.xa_index);
881 		void *entry, *old = NULL;
882 
883 		if (order > folio_order(folio))
884 			xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
885 					order, gfp);
886 		xas_lock_irq(&xas);
887 		xas_for_each_conflict(&xas, entry) {
888 			old = entry;
889 			if (!xa_is_value(entry)) {
890 				xas_set_err(&xas, -EEXIST);
891 				goto unlock;
892 			}
893 		}
894 
895 		if (old) {
896 			if (shadowp)
897 				*shadowp = old;
898 			/* entry may have been split before we acquired lock */
899 			order = xa_get_order(xas.xa, xas.xa_index);
900 			if (order > folio_order(folio)) {
901 				xas_split(&xas, old, order);
902 				xas_reset(&xas);
903 			}
904 		}
905 
906 		xas_store(&xas, folio);
907 		if (xas_error(&xas))
908 			goto unlock;
909 
910 		mapping->nrpages++;
911 
912 		/* hugetlb pages do not participate in page cache accounting */
913 		if (!huge)
914 			__lruvec_stat_add_folio(folio, NR_FILE_PAGES);
915 unlock:
916 		xas_unlock_irq(&xas);
917 	} while (xas_nomem(&xas, gfp));
918 
919 	if (xas_error(&xas)) {
920 		error = xas_error(&xas);
921 		if (charged)
922 			mem_cgroup_uncharge(folio);
923 		goto error;
924 	}
925 
926 	trace_mm_filemap_add_to_page_cache(folio);
927 	return 0;
928 error:
929 	folio->mapping = NULL;
930 	/* Leave page->index set: truncation relies upon it */
931 	folio_put(folio);
932 	return error;
933 }
934 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
935 
936 /**
937  * add_to_page_cache_locked - add a locked page to the pagecache
938  * @page:	page to add
939  * @mapping:	the page's address_space
940  * @offset:	page index
941  * @gfp_mask:	page allocation mode
942  *
943  * This function is used to add a page to the pagecache. It must be locked.
944  * This function does not add the page to the LRU.  The caller must do that.
945  *
946  * Return: %0 on success, negative error code otherwise.
947  */
948 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
949 		pgoff_t offset, gfp_t gfp_mask)
950 {
951 	return __filemap_add_folio(mapping, page_folio(page), offset,
952 					  gfp_mask, NULL);
953 }
954 EXPORT_SYMBOL(add_to_page_cache_locked);
955 
956 int filemap_add_folio(struct address_space *mapping, struct folio *folio,
957 				pgoff_t index, gfp_t gfp)
958 {
959 	void *shadow = NULL;
960 	int ret;
961 
962 	__folio_set_locked(folio);
963 	ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
964 	if (unlikely(ret))
965 		__folio_clear_locked(folio);
966 	else {
967 		/*
968 		 * The folio might have been evicted from cache only
969 		 * recently, in which case it should be activated like
970 		 * any other repeatedly accessed folio.
971 		 * The exception is folios getting rewritten; evicting other
972 		 * data from the working set, only to cache data that will
973 		 * get overwritten with something else, is a waste of memory.
974 		 */
975 		WARN_ON_ONCE(folio_test_active(folio));
976 		if (!(gfp & __GFP_WRITE) && shadow)
977 			workingset_refault(folio, shadow);
978 		folio_add_lru(folio);
979 	}
980 	return ret;
981 }
982 EXPORT_SYMBOL_GPL(filemap_add_folio);
983 
984 #ifdef CONFIG_NUMA
985 struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order)
986 {
987 	int n;
988 	struct folio *folio;
989 
990 	if (cpuset_do_page_mem_spread()) {
991 		unsigned int cpuset_mems_cookie;
992 		do {
993 			cpuset_mems_cookie = read_mems_allowed_begin();
994 			n = cpuset_mem_spread_node();
995 			folio = __folio_alloc_node(gfp, order, n);
996 		} while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
997 
998 		return folio;
999 	}
1000 	return folio_alloc(gfp, order);
1001 }
1002 EXPORT_SYMBOL(filemap_alloc_folio);
1003 #endif
1004 
1005 /*
1006  * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
1007  *
1008  * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
1009  *
1010  * @mapping1: the first mapping to lock
1011  * @mapping2: the second mapping to lock
1012  */
1013 void filemap_invalidate_lock_two(struct address_space *mapping1,
1014 				 struct address_space *mapping2)
1015 {
1016 	if (mapping1 > mapping2)
1017 		swap(mapping1, mapping2);
1018 	if (mapping1)
1019 		down_write(&mapping1->invalidate_lock);
1020 	if (mapping2 && mapping1 != mapping2)
1021 		down_write_nested(&mapping2->invalidate_lock, 1);
1022 }
1023 EXPORT_SYMBOL(filemap_invalidate_lock_two);
1024 
1025 /*
1026  * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
1027  *
1028  * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1029  *
1030  * @mapping1: the first mapping to unlock
1031  * @mapping2: the second mapping to unlock
1032  */
1033 void filemap_invalidate_unlock_two(struct address_space *mapping1,
1034 				   struct address_space *mapping2)
1035 {
1036 	if (mapping1)
1037 		up_write(&mapping1->invalidate_lock);
1038 	if (mapping2 && mapping1 != mapping2)
1039 		up_write(&mapping2->invalidate_lock);
1040 }
1041 EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1042 
1043 /*
1044  * In order to wait for pages to become available there must be
1045  * waitqueues associated with pages. By using a hash table of
1046  * waitqueues where the bucket discipline is to maintain all
1047  * waiters on the same queue and wake all when any of the pages
1048  * become available, and for the woken contexts to check to be
1049  * sure the appropriate page became available, this saves space
1050  * at a cost of "thundering herd" phenomena during rare hash
1051  * collisions.
1052  */
1053 #define PAGE_WAIT_TABLE_BITS 8
1054 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1055 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1056 
1057 static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1058 {
1059 	return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
1060 }
1061 
1062 void __init pagecache_init(void)
1063 {
1064 	int i;
1065 
1066 	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1067 		init_waitqueue_head(&folio_wait_table[i]);
1068 
1069 	page_writeback_init();
1070 }
1071 
1072 /*
1073  * The page wait code treats the "wait->flags" somewhat unusually, because
1074  * we have multiple different kinds of waits, not just the usual "exclusive"
1075  * one.
1076  *
1077  * We have:
1078  *
1079  *  (a) no special bits set:
1080  *
1081  *	We're just waiting for the bit to be released, and when a waker
1082  *	calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1083  *	and remove it from the wait queue.
1084  *
1085  *	Simple and straightforward.
1086  *
1087  *  (b) WQ_FLAG_EXCLUSIVE:
1088  *
1089  *	The waiter is waiting to get the lock, and only one waiter should
1090  *	be woken up to avoid any thundering herd behavior. We'll set the
1091  *	WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1092  *
1093  *	This is the traditional exclusive wait.
1094  *
1095  *  (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1096  *
1097  *	The waiter is waiting to get the bit, and additionally wants the
1098  *	lock to be transferred to it for fair lock behavior. If the lock
1099  *	cannot be taken, we stop walking the wait queue without waking
1100  *	the waiter.
1101  *
1102  *	This is the "fair lock handoff" case, and in addition to setting
1103  *	WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1104  *	that it now has the lock.
1105  */
1106 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1107 {
1108 	unsigned int flags;
1109 	struct wait_page_key *key = arg;
1110 	struct wait_page_queue *wait_page
1111 		= container_of(wait, struct wait_page_queue, wait);
1112 
1113 	if (!wake_page_match(wait_page, key))
1114 		return 0;
1115 
1116 	/*
1117 	 * If it's a lock handoff wait, we get the bit for it, and
1118 	 * stop walking (and do not wake it up) if we can't.
1119 	 */
1120 	flags = wait->flags;
1121 	if (flags & WQ_FLAG_EXCLUSIVE) {
1122 		if (test_bit(key->bit_nr, &key->folio->flags))
1123 			return -1;
1124 		if (flags & WQ_FLAG_CUSTOM) {
1125 			if (test_and_set_bit(key->bit_nr, &key->folio->flags))
1126 				return -1;
1127 			flags |= WQ_FLAG_DONE;
1128 		}
1129 	}
1130 
1131 	/*
1132 	 * We are holding the wait-queue lock, but the waiter that
1133 	 * is waiting for this will be checking the flags without
1134 	 * any locking.
1135 	 *
1136 	 * So update the flags atomically, and wake up the waiter
1137 	 * afterwards to avoid any races. This store-release pairs
1138 	 * with the load-acquire in folio_wait_bit_common().
1139 	 */
1140 	smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1141 	wake_up_state(wait->private, mode);
1142 
1143 	/*
1144 	 * Ok, we have successfully done what we're waiting for,
1145 	 * and we can unconditionally remove the wait entry.
1146 	 *
1147 	 * Note that this pairs with the "finish_wait()" in the
1148 	 * waiter, and has to be the absolute last thing we do.
1149 	 * After this list_del_init(&wait->entry) the wait entry
1150 	 * might be de-allocated and the process might even have
1151 	 * exited.
1152 	 */
1153 	list_del_init_careful(&wait->entry);
1154 	return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1155 }
1156 
1157 static void folio_wake_bit(struct folio *folio, int bit_nr)
1158 {
1159 	wait_queue_head_t *q = folio_waitqueue(folio);
1160 	struct wait_page_key key;
1161 	unsigned long flags;
1162 	wait_queue_entry_t bookmark;
1163 
1164 	key.folio = folio;
1165 	key.bit_nr = bit_nr;
1166 	key.page_match = 0;
1167 
1168 	bookmark.flags = 0;
1169 	bookmark.private = NULL;
1170 	bookmark.func = NULL;
1171 	INIT_LIST_HEAD(&bookmark.entry);
1172 
1173 	spin_lock_irqsave(&q->lock, flags);
1174 	__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1175 
1176 	while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1177 		/*
1178 		 * Take a breather from holding the lock,
1179 		 * allow pages that finish wake up asynchronously
1180 		 * to acquire the lock and remove themselves
1181 		 * from wait queue
1182 		 */
1183 		spin_unlock_irqrestore(&q->lock, flags);
1184 		cpu_relax();
1185 		spin_lock_irqsave(&q->lock, flags);
1186 		__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1187 	}
1188 
1189 	/*
1190 	 * It is possible for other pages to have collided on the waitqueue
1191 	 * hash, so in that case check for a page match. That prevents a long-
1192 	 * term waiter
1193 	 *
1194 	 * It is still possible to miss a case here, when we woke page waiters
1195 	 * and removed them from the waitqueue, but there are still other
1196 	 * page waiters.
1197 	 */
1198 	if (!waitqueue_active(q) || !key.page_match) {
1199 		folio_clear_waiters(folio);
1200 		/*
1201 		 * It's possible to miss clearing Waiters here, when we woke
1202 		 * our page waiters, but the hashed waitqueue has waiters for
1203 		 * other pages on it.
1204 		 *
1205 		 * That's okay, it's a rare case. The next waker will clear it.
1206 		 */
1207 	}
1208 	spin_unlock_irqrestore(&q->lock, flags);
1209 }
1210 
1211 static void folio_wake(struct folio *folio, int bit)
1212 {
1213 	if (!folio_test_waiters(folio))
1214 		return;
1215 	folio_wake_bit(folio, bit);
1216 }
1217 
1218 /*
1219  * A choice of three behaviors for folio_wait_bit_common():
1220  */
1221 enum behavior {
1222 	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
1223 			 * __folio_lock() waiting on then setting PG_locked.
1224 			 */
1225 	SHARED,		/* Hold ref to page and check the bit when woken, like
1226 			 * folio_wait_writeback() waiting on PG_writeback.
1227 			 */
1228 	DROP,		/* Drop ref to page before wait, no check when woken,
1229 			 * like folio_put_wait_locked() on PG_locked.
1230 			 */
1231 };
1232 
1233 /*
1234  * Attempt to check (or get) the folio flag, and mark us done
1235  * if successful.
1236  */
1237 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
1238 					struct wait_queue_entry *wait)
1239 {
1240 	if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1241 		if (test_and_set_bit(bit_nr, &folio->flags))
1242 			return false;
1243 	} else if (test_bit(bit_nr, &folio->flags))
1244 		return false;
1245 
1246 	wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1247 	return true;
1248 }
1249 
1250 /* How many times do we accept lock stealing from under a waiter? */
1251 int sysctl_page_lock_unfairness = 5;
1252 
1253 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1254 		int state, enum behavior behavior)
1255 {
1256 	wait_queue_head_t *q = folio_waitqueue(folio);
1257 	int unfairness = sysctl_page_lock_unfairness;
1258 	struct wait_page_queue wait_page;
1259 	wait_queue_entry_t *wait = &wait_page.wait;
1260 	bool thrashing = false;
1261 	bool delayacct = false;
1262 	unsigned long pflags;
1263 
1264 	if (bit_nr == PG_locked &&
1265 	    !folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1266 		if (!folio_test_swapbacked(folio)) {
1267 			delayacct_thrashing_start();
1268 			delayacct = true;
1269 		}
1270 		psi_memstall_enter(&pflags);
1271 		thrashing = true;
1272 	}
1273 
1274 	init_wait(wait);
1275 	wait->func = wake_page_function;
1276 	wait_page.folio = folio;
1277 	wait_page.bit_nr = bit_nr;
1278 
1279 repeat:
1280 	wait->flags = 0;
1281 	if (behavior == EXCLUSIVE) {
1282 		wait->flags = WQ_FLAG_EXCLUSIVE;
1283 		if (--unfairness < 0)
1284 			wait->flags |= WQ_FLAG_CUSTOM;
1285 	}
1286 
1287 	/*
1288 	 * Do one last check whether we can get the
1289 	 * page bit synchronously.
1290 	 *
1291 	 * Do the folio_set_waiters() marking before that
1292 	 * to let any waker we _just_ missed know they
1293 	 * need to wake us up (otherwise they'll never
1294 	 * even go to the slow case that looks at the
1295 	 * page queue), and add ourselves to the wait
1296 	 * queue if we need to sleep.
1297 	 *
1298 	 * This part needs to be done under the queue
1299 	 * lock to avoid races.
1300 	 */
1301 	spin_lock_irq(&q->lock);
1302 	folio_set_waiters(folio);
1303 	if (!folio_trylock_flag(folio, bit_nr, wait))
1304 		__add_wait_queue_entry_tail(q, wait);
1305 	spin_unlock_irq(&q->lock);
1306 
1307 	/*
1308 	 * From now on, all the logic will be based on
1309 	 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1310 	 * see whether the page bit testing has already
1311 	 * been done by the wake function.
1312 	 *
1313 	 * We can drop our reference to the folio.
1314 	 */
1315 	if (behavior == DROP)
1316 		folio_put(folio);
1317 
1318 	/*
1319 	 * Note that until the "finish_wait()", or until
1320 	 * we see the WQ_FLAG_WOKEN flag, we need to
1321 	 * be very careful with the 'wait->flags', because
1322 	 * we may race with a waker that sets them.
1323 	 */
1324 	for (;;) {
1325 		unsigned int flags;
1326 
1327 		set_current_state(state);
1328 
1329 		/* Loop until we've been woken or interrupted */
1330 		flags = smp_load_acquire(&wait->flags);
1331 		if (!(flags & WQ_FLAG_WOKEN)) {
1332 			if (signal_pending_state(state, current))
1333 				break;
1334 
1335 			io_schedule();
1336 			continue;
1337 		}
1338 
1339 		/* If we were non-exclusive, we're done */
1340 		if (behavior != EXCLUSIVE)
1341 			break;
1342 
1343 		/* If the waker got the lock for us, we're done */
1344 		if (flags & WQ_FLAG_DONE)
1345 			break;
1346 
1347 		/*
1348 		 * Otherwise, if we're getting the lock, we need to
1349 		 * try to get it ourselves.
1350 		 *
1351 		 * And if that fails, we'll have to retry this all.
1352 		 */
1353 		if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
1354 			goto repeat;
1355 
1356 		wait->flags |= WQ_FLAG_DONE;
1357 		break;
1358 	}
1359 
1360 	/*
1361 	 * If a signal happened, this 'finish_wait()' may remove the last
1362 	 * waiter from the wait-queues, but the folio waiters bit will remain
1363 	 * set. That's ok. The next wakeup will take care of it, and trying
1364 	 * to do it here would be difficult and prone to races.
1365 	 */
1366 	finish_wait(q, wait);
1367 
1368 	if (thrashing) {
1369 		if (delayacct)
1370 			delayacct_thrashing_end();
1371 		psi_memstall_leave(&pflags);
1372 	}
1373 
1374 	/*
1375 	 * NOTE! The wait->flags weren't stable until we've done the
1376 	 * 'finish_wait()', and we could have exited the loop above due
1377 	 * to a signal, and had a wakeup event happen after the signal
1378 	 * test but before the 'finish_wait()'.
1379 	 *
1380 	 * So only after the finish_wait() can we reliably determine
1381 	 * if we got woken up or not, so we can now figure out the final
1382 	 * return value based on that state without races.
1383 	 *
1384 	 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1385 	 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1386 	 */
1387 	if (behavior == EXCLUSIVE)
1388 		return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1389 
1390 	return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1391 }
1392 
1393 #ifdef CONFIG_MIGRATION
1394 /**
1395  * migration_entry_wait_on_locked - Wait for a migration entry to be removed
1396  * @entry: migration swap entry.
1397  * @ptep: mapped pte pointer. Will return with the ptep unmapped. Only required
1398  *        for pte entries, pass NULL for pmd entries.
1399  * @ptl: already locked ptl. This function will drop the lock.
1400  *
1401  * Wait for a migration entry referencing the given page to be removed. This is
1402  * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except
1403  * this can be called without taking a reference on the page. Instead this
1404  * should be called while holding the ptl for the migration entry referencing
1405  * the page.
1406  *
1407  * Returns after unmapping and unlocking the pte/ptl with pte_unmap_unlock().
1408  *
1409  * This follows the same logic as folio_wait_bit_common() so see the comments
1410  * there.
1411  */
1412 void migration_entry_wait_on_locked(swp_entry_t entry, pte_t *ptep,
1413 				spinlock_t *ptl)
1414 {
1415 	struct wait_page_queue wait_page;
1416 	wait_queue_entry_t *wait = &wait_page.wait;
1417 	bool thrashing = false;
1418 	bool delayacct = false;
1419 	unsigned long pflags;
1420 	wait_queue_head_t *q;
1421 	struct folio *folio = page_folio(pfn_swap_entry_to_page(entry));
1422 
1423 	q = folio_waitqueue(folio);
1424 	if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1425 		if (!folio_test_swapbacked(folio)) {
1426 			delayacct_thrashing_start();
1427 			delayacct = true;
1428 		}
1429 		psi_memstall_enter(&pflags);
1430 		thrashing = true;
1431 	}
1432 
1433 	init_wait(wait);
1434 	wait->func = wake_page_function;
1435 	wait_page.folio = folio;
1436 	wait_page.bit_nr = PG_locked;
1437 	wait->flags = 0;
1438 
1439 	spin_lock_irq(&q->lock);
1440 	folio_set_waiters(folio);
1441 	if (!folio_trylock_flag(folio, PG_locked, wait))
1442 		__add_wait_queue_entry_tail(q, wait);
1443 	spin_unlock_irq(&q->lock);
1444 
1445 	/*
1446 	 * If a migration entry exists for the page the migration path must hold
1447 	 * a valid reference to the page, and it must take the ptl to remove the
1448 	 * migration entry. So the page is valid until the ptl is dropped.
1449 	 */
1450 	if (ptep)
1451 		pte_unmap_unlock(ptep, ptl);
1452 	else
1453 		spin_unlock(ptl);
1454 
1455 	for (;;) {
1456 		unsigned int flags;
1457 
1458 		set_current_state(TASK_UNINTERRUPTIBLE);
1459 
1460 		/* Loop until we've been woken or interrupted */
1461 		flags = smp_load_acquire(&wait->flags);
1462 		if (!(flags & WQ_FLAG_WOKEN)) {
1463 			if (signal_pending_state(TASK_UNINTERRUPTIBLE, current))
1464 				break;
1465 
1466 			io_schedule();
1467 			continue;
1468 		}
1469 		break;
1470 	}
1471 
1472 	finish_wait(q, wait);
1473 
1474 	if (thrashing) {
1475 		if (delayacct)
1476 			delayacct_thrashing_end();
1477 		psi_memstall_leave(&pflags);
1478 	}
1479 }
1480 #endif
1481 
1482 void folio_wait_bit(struct folio *folio, int bit_nr)
1483 {
1484 	folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1485 }
1486 EXPORT_SYMBOL(folio_wait_bit);
1487 
1488 int folio_wait_bit_killable(struct folio *folio, int bit_nr)
1489 {
1490 	return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
1491 }
1492 EXPORT_SYMBOL(folio_wait_bit_killable);
1493 
1494 /**
1495  * folio_put_wait_locked - Drop a reference and wait for it to be unlocked
1496  * @folio: The folio to wait for.
1497  * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1498  *
1499  * The caller should hold a reference on @folio.  They expect the page to
1500  * become unlocked relatively soon, but do not wish to hold up migration
1501  * (for example) by holding the reference while waiting for the folio to
1502  * come unlocked.  After this function returns, the caller should not
1503  * dereference @folio.
1504  *
1505  * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal.
1506  */
1507 int folio_put_wait_locked(struct folio *folio, int state)
1508 {
1509 	return folio_wait_bit_common(folio, PG_locked, state, DROP);
1510 }
1511 
1512 /**
1513  * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue
1514  * @folio: Folio defining the wait queue of interest
1515  * @waiter: Waiter to add to the queue
1516  *
1517  * Add an arbitrary @waiter to the wait queue for the nominated @folio.
1518  */
1519 void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter)
1520 {
1521 	wait_queue_head_t *q = folio_waitqueue(folio);
1522 	unsigned long flags;
1523 
1524 	spin_lock_irqsave(&q->lock, flags);
1525 	__add_wait_queue_entry_tail(q, waiter);
1526 	folio_set_waiters(folio);
1527 	spin_unlock_irqrestore(&q->lock, flags);
1528 }
1529 EXPORT_SYMBOL_GPL(folio_add_wait_queue);
1530 
1531 #ifndef clear_bit_unlock_is_negative_byte
1532 
1533 /*
1534  * PG_waiters is the high bit in the same byte as PG_lock.
1535  *
1536  * On x86 (and on many other architectures), we can clear PG_lock and
1537  * test the sign bit at the same time. But if the architecture does
1538  * not support that special operation, we just do this all by hand
1539  * instead.
1540  *
1541  * The read of PG_waiters has to be after (or concurrently with) PG_locked
1542  * being cleared, but a memory barrier should be unnecessary since it is
1543  * in the same byte as PG_locked.
1544  */
1545 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1546 {
1547 	clear_bit_unlock(nr, mem);
1548 	/* smp_mb__after_atomic(); */
1549 	return test_bit(PG_waiters, mem);
1550 }
1551 
1552 #endif
1553 
1554 /**
1555  * folio_unlock - Unlock a locked folio.
1556  * @folio: The folio.
1557  *
1558  * Unlocks the folio and wakes up any thread sleeping on the page lock.
1559  *
1560  * Context: May be called from interrupt or process context.  May not be
1561  * called from NMI context.
1562  */
1563 void folio_unlock(struct folio *folio)
1564 {
1565 	/* Bit 7 allows x86 to check the byte's sign bit */
1566 	BUILD_BUG_ON(PG_waiters != 7);
1567 	BUILD_BUG_ON(PG_locked > 7);
1568 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1569 	if (clear_bit_unlock_is_negative_byte(PG_locked, folio_flags(folio, 0)))
1570 		folio_wake_bit(folio, PG_locked);
1571 }
1572 EXPORT_SYMBOL(folio_unlock);
1573 
1574 /**
1575  * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1576  * @folio: The folio.
1577  *
1578  * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1579  * it.  The folio reference held for PG_private_2 being set is released.
1580  *
1581  * This is, for example, used when a netfs folio is being written to a local
1582  * disk cache, thereby allowing writes to the cache for the same folio to be
1583  * serialised.
1584  */
1585 void folio_end_private_2(struct folio *folio)
1586 {
1587 	VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1588 	clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
1589 	folio_wake_bit(folio, PG_private_2);
1590 	folio_put(folio);
1591 }
1592 EXPORT_SYMBOL(folio_end_private_2);
1593 
1594 /**
1595  * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1596  * @folio: The folio to wait on.
1597  *
1598  * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio.
1599  */
1600 void folio_wait_private_2(struct folio *folio)
1601 {
1602 	while (folio_test_private_2(folio))
1603 		folio_wait_bit(folio, PG_private_2);
1604 }
1605 EXPORT_SYMBOL(folio_wait_private_2);
1606 
1607 /**
1608  * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1609  * @folio: The folio to wait on.
1610  *
1611  * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio or until a
1612  * fatal signal is received by the calling task.
1613  *
1614  * Return:
1615  * - 0 if successful.
1616  * - -EINTR if a fatal signal was encountered.
1617  */
1618 int folio_wait_private_2_killable(struct folio *folio)
1619 {
1620 	int ret = 0;
1621 
1622 	while (folio_test_private_2(folio)) {
1623 		ret = folio_wait_bit_killable(folio, PG_private_2);
1624 		if (ret < 0)
1625 			break;
1626 	}
1627 
1628 	return ret;
1629 }
1630 EXPORT_SYMBOL(folio_wait_private_2_killable);
1631 
1632 /**
1633  * folio_end_writeback - End writeback against a folio.
1634  * @folio: The folio.
1635  */
1636 void folio_end_writeback(struct folio *folio)
1637 {
1638 	/*
1639 	 * folio_test_clear_reclaim() could be used here but it is an
1640 	 * atomic operation and overkill in this particular case. Failing
1641 	 * to shuffle a folio marked for immediate reclaim is too mild
1642 	 * a gain to justify taking an atomic operation penalty at the
1643 	 * end of every folio writeback.
1644 	 */
1645 	if (folio_test_reclaim(folio)) {
1646 		folio_clear_reclaim(folio);
1647 		folio_rotate_reclaimable(folio);
1648 	}
1649 
1650 	/*
1651 	 * Writeback does not hold a folio reference of its own, relying
1652 	 * on truncation to wait for the clearing of PG_writeback.
1653 	 * But here we must make sure that the folio is not freed and
1654 	 * reused before the folio_wake().
1655 	 */
1656 	folio_get(folio);
1657 	if (!__folio_end_writeback(folio))
1658 		BUG();
1659 
1660 	smp_mb__after_atomic();
1661 	folio_wake(folio, PG_writeback);
1662 	acct_reclaim_writeback(folio);
1663 	folio_put(folio);
1664 }
1665 EXPORT_SYMBOL(folio_end_writeback);
1666 
1667 /*
1668  * After completing I/O on a page, call this routine to update the page
1669  * flags appropriately
1670  */
1671 void page_endio(struct page *page, bool is_write, int err)
1672 {
1673 	if (!is_write) {
1674 		if (!err) {
1675 			SetPageUptodate(page);
1676 		} else {
1677 			ClearPageUptodate(page);
1678 			SetPageError(page);
1679 		}
1680 		unlock_page(page);
1681 	} else {
1682 		if (err) {
1683 			struct address_space *mapping;
1684 
1685 			SetPageError(page);
1686 			mapping = page_mapping(page);
1687 			if (mapping)
1688 				mapping_set_error(mapping, err);
1689 		}
1690 		end_page_writeback(page);
1691 	}
1692 }
1693 EXPORT_SYMBOL_GPL(page_endio);
1694 
1695 /**
1696  * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1697  * @folio: The folio to lock
1698  */
1699 void __folio_lock(struct folio *folio)
1700 {
1701 	folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
1702 				EXCLUSIVE);
1703 }
1704 EXPORT_SYMBOL(__folio_lock);
1705 
1706 int __folio_lock_killable(struct folio *folio)
1707 {
1708 	return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
1709 					EXCLUSIVE);
1710 }
1711 EXPORT_SYMBOL_GPL(__folio_lock_killable);
1712 
1713 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
1714 {
1715 	struct wait_queue_head *q = folio_waitqueue(folio);
1716 	int ret = 0;
1717 
1718 	wait->folio = folio;
1719 	wait->bit_nr = PG_locked;
1720 
1721 	spin_lock_irq(&q->lock);
1722 	__add_wait_queue_entry_tail(q, &wait->wait);
1723 	folio_set_waiters(folio);
1724 	ret = !folio_trylock(folio);
1725 	/*
1726 	 * If we were successful now, we know we're still on the
1727 	 * waitqueue as we're still under the lock. This means it's
1728 	 * safe to remove and return success, we know the callback
1729 	 * isn't going to trigger.
1730 	 */
1731 	if (!ret)
1732 		__remove_wait_queue(q, &wait->wait);
1733 	else
1734 		ret = -EIOCBQUEUED;
1735 	spin_unlock_irq(&q->lock);
1736 	return ret;
1737 }
1738 
1739 /*
1740  * Return values:
1741  * true - folio is locked; mmap_lock is still held.
1742  * false - folio is not locked.
1743  *     mmap_lock has been released (mmap_read_unlock(), unless flags had both
1744  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1745  *     which case mmap_lock is still held.
1746  *
1747  * If neither ALLOW_RETRY nor KILLABLE are set, will always return true
1748  * with the folio locked and the mmap_lock unperturbed.
1749  */
1750 bool __folio_lock_or_retry(struct folio *folio, struct mm_struct *mm,
1751 			 unsigned int flags)
1752 {
1753 	if (fault_flag_allow_retry_first(flags)) {
1754 		/*
1755 		 * CAUTION! In this case, mmap_lock is not released
1756 		 * even though return 0.
1757 		 */
1758 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1759 			return false;
1760 
1761 		mmap_read_unlock(mm);
1762 		if (flags & FAULT_FLAG_KILLABLE)
1763 			folio_wait_locked_killable(folio);
1764 		else
1765 			folio_wait_locked(folio);
1766 		return false;
1767 	}
1768 	if (flags & FAULT_FLAG_KILLABLE) {
1769 		bool ret;
1770 
1771 		ret = __folio_lock_killable(folio);
1772 		if (ret) {
1773 			mmap_read_unlock(mm);
1774 			return false;
1775 		}
1776 	} else {
1777 		__folio_lock(folio);
1778 	}
1779 
1780 	return true;
1781 }
1782 
1783 /**
1784  * page_cache_next_miss() - Find the next gap in the page cache.
1785  * @mapping: Mapping.
1786  * @index: Index.
1787  * @max_scan: Maximum range to search.
1788  *
1789  * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1790  * gap with the lowest index.
1791  *
1792  * This function may be called under the rcu_read_lock.  However, this will
1793  * not atomically search a snapshot of the cache at a single point in time.
1794  * For example, if a gap is created at index 5, then subsequently a gap is
1795  * created at index 10, page_cache_next_miss covering both indices may
1796  * return 10 if called under the rcu_read_lock.
1797  *
1798  * Return: The index of the gap if found, otherwise an index outside the
1799  * range specified (in which case 'return - index >= max_scan' will be true).
1800  * In the rare case of index wrap-around, 0 will be returned.
1801  */
1802 pgoff_t page_cache_next_miss(struct address_space *mapping,
1803 			     pgoff_t index, unsigned long max_scan)
1804 {
1805 	XA_STATE(xas, &mapping->i_pages, index);
1806 
1807 	while (max_scan--) {
1808 		void *entry = xas_next(&xas);
1809 		if (!entry || xa_is_value(entry))
1810 			break;
1811 		if (xas.xa_index == 0)
1812 			break;
1813 	}
1814 
1815 	return xas.xa_index;
1816 }
1817 EXPORT_SYMBOL(page_cache_next_miss);
1818 
1819 /**
1820  * page_cache_prev_miss() - Find the previous gap in the page cache.
1821  * @mapping: Mapping.
1822  * @index: Index.
1823  * @max_scan: Maximum range to search.
1824  *
1825  * Search the range [max(index - max_scan + 1, 0), index] for the
1826  * gap with the highest index.
1827  *
1828  * This function may be called under the rcu_read_lock.  However, this will
1829  * not atomically search a snapshot of the cache at a single point in time.
1830  * For example, if a gap is created at index 10, then subsequently a gap is
1831  * created at index 5, page_cache_prev_miss() covering both indices may
1832  * return 5 if called under the rcu_read_lock.
1833  *
1834  * Return: The index of the gap if found, otherwise an index outside the
1835  * range specified (in which case 'index - return >= max_scan' will be true).
1836  * In the rare case of wrap-around, ULONG_MAX will be returned.
1837  */
1838 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1839 			     pgoff_t index, unsigned long max_scan)
1840 {
1841 	XA_STATE(xas, &mapping->i_pages, index);
1842 
1843 	while (max_scan--) {
1844 		void *entry = xas_prev(&xas);
1845 		if (!entry || xa_is_value(entry))
1846 			break;
1847 		if (xas.xa_index == ULONG_MAX)
1848 			break;
1849 	}
1850 
1851 	return xas.xa_index;
1852 }
1853 EXPORT_SYMBOL(page_cache_prev_miss);
1854 
1855 /*
1856  * Lockless page cache protocol:
1857  * On the lookup side:
1858  * 1. Load the folio from i_pages
1859  * 2. Increment the refcount if it's not zero
1860  * 3. If the folio is not found by xas_reload(), put the refcount and retry
1861  *
1862  * On the removal side:
1863  * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1864  * B. Remove the page from i_pages
1865  * C. Return the page to the page allocator
1866  *
1867  * This means that any page may have its reference count temporarily
1868  * increased by a speculative page cache (or fast GUP) lookup as it can
1869  * be allocated by another user before the RCU grace period expires.
1870  * Because the refcount temporarily acquired here may end up being the
1871  * last refcount on the page, any page allocation must be freeable by
1872  * folio_put().
1873  */
1874 
1875 /*
1876  * mapping_get_entry - Get a page cache entry.
1877  * @mapping: the address_space to search
1878  * @index: The page cache index.
1879  *
1880  * Looks up the page cache entry at @mapping & @index.  If it is a folio,
1881  * it is returned with an increased refcount.  If it is a shadow entry
1882  * of a previously evicted folio, or a swap entry from shmem/tmpfs,
1883  * it is returned without further action.
1884  *
1885  * Return: The folio, swap or shadow entry, %NULL if nothing is found.
1886  */
1887 static void *mapping_get_entry(struct address_space *mapping, pgoff_t index)
1888 {
1889 	XA_STATE(xas, &mapping->i_pages, index);
1890 	struct folio *folio;
1891 
1892 	rcu_read_lock();
1893 repeat:
1894 	xas_reset(&xas);
1895 	folio = xas_load(&xas);
1896 	if (xas_retry(&xas, folio))
1897 		goto repeat;
1898 	/*
1899 	 * A shadow entry of a recently evicted page, or a swap entry from
1900 	 * shmem/tmpfs.  Return it without attempting to raise page count.
1901 	 */
1902 	if (!folio || xa_is_value(folio))
1903 		goto out;
1904 
1905 	if (!folio_try_get_rcu(folio))
1906 		goto repeat;
1907 
1908 	if (unlikely(folio != xas_reload(&xas))) {
1909 		folio_put(folio);
1910 		goto repeat;
1911 	}
1912 out:
1913 	rcu_read_unlock();
1914 
1915 	return folio;
1916 }
1917 
1918 /**
1919  * __filemap_get_folio - Find and get a reference to a folio.
1920  * @mapping: The address_space to search.
1921  * @index: The page index.
1922  * @fgp_flags: %FGP flags modify how the folio is returned.
1923  * @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
1924  *
1925  * Looks up the page cache entry at @mapping & @index.
1926  *
1927  * @fgp_flags can be zero or more of these flags:
1928  *
1929  * * %FGP_ACCESSED - The folio will be marked accessed.
1930  * * %FGP_LOCK - The folio is returned locked.
1931  * * %FGP_ENTRY - If there is a shadow / swap / DAX entry, return it
1932  *   instead of allocating a new folio to replace it.
1933  * * %FGP_CREAT - If no page is present then a new page is allocated using
1934  *   @gfp and added to the page cache and the VM's LRU list.
1935  *   The page is returned locked and with an increased refcount.
1936  * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1937  *   page is already in cache.  If the page was allocated, unlock it before
1938  *   returning so the caller can do the same dance.
1939  * * %FGP_WRITE - The page will be written to by the caller.
1940  * * %FGP_NOFS - __GFP_FS will get cleared in gfp.
1941  * * %FGP_NOWAIT - Don't get blocked by page lock.
1942  * * %FGP_STABLE - Wait for the folio to be stable (finished writeback)
1943  *
1944  * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1945  * if the %GFP flags specified for %FGP_CREAT are atomic.
1946  *
1947  * If there is a page cache page, it is returned with an increased refcount.
1948  *
1949  * Return: The found folio or %NULL otherwise.
1950  */
1951 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
1952 		int fgp_flags, gfp_t gfp)
1953 {
1954 	struct folio *folio;
1955 
1956 repeat:
1957 	folio = mapping_get_entry(mapping, index);
1958 	if (xa_is_value(folio)) {
1959 		if (fgp_flags & FGP_ENTRY)
1960 			return folio;
1961 		folio = NULL;
1962 	}
1963 	if (!folio)
1964 		goto no_page;
1965 
1966 	if (fgp_flags & FGP_LOCK) {
1967 		if (fgp_flags & FGP_NOWAIT) {
1968 			if (!folio_trylock(folio)) {
1969 				folio_put(folio);
1970 				return NULL;
1971 			}
1972 		} else {
1973 			folio_lock(folio);
1974 		}
1975 
1976 		/* Has the page been truncated? */
1977 		if (unlikely(folio->mapping != mapping)) {
1978 			folio_unlock(folio);
1979 			folio_put(folio);
1980 			goto repeat;
1981 		}
1982 		VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
1983 	}
1984 
1985 	if (fgp_flags & FGP_ACCESSED)
1986 		folio_mark_accessed(folio);
1987 	else if (fgp_flags & FGP_WRITE) {
1988 		/* Clear idle flag for buffer write */
1989 		if (folio_test_idle(folio))
1990 			folio_clear_idle(folio);
1991 	}
1992 
1993 	if (fgp_flags & FGP_STABLE)
1994 		folio_wait_stable(folio);
1995 no_page:
1996 	if (!folio && (fgp_flags & FGP_CREAT)) {
1997 		int err;
1998 		if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1999 			gfp |= __GFP_WRITE;
2000 		if (fgp_flags & FGP_NOFS)
2001 			gfp &= ~__GFP_FS;
2002 
2003 		folio = filemap_alloc_folio(gfp, 0);
2004 		if (!folio)
2005 			return NULL;
2006 
2007 		if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
2008 			fgp_flags |= FGP_LOCK;
2009 
2010 		/* Init accessed so avoid atomic mark_page_accessed later */
2011 		if (fgp_flags & FGP_ACCESSED)
2012 			__folio_set_referenced(folio);
2013 
2014 		err = filemap_add_folio(mapping, folio, index, gfp);
2015 		if (unlikely(err)) {
2016 			folio_put(folio);
2017 			folio = NULL;
2018 			if (err == -EEXIST)
2019 				goto repeat;
2020 		}
2021 
2022 		/*
2023 		 * filemap_add_folio locks the page, and for mmap
2024 		 * we expect an unlocked page.
2025 		 */
2026 		if (folio && (fgp_flags & FGP_FOR_MMAP))
2027 			folio_unlock(folio);
2028 	}
2029 
2030 	return folio;
2031 }
2032 EXPORT_SYMBOL(__filemap_get_folio);
2033 
2034 static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max,
2035 		xa_mark_t mark)
2036 {
2037 	struct folio *folio;
2038 
2039 retry:
2040 	if (mark == XA_PRESENT)
2041 		folio = xas_find(xas, max);
2042 	else
2043 		folio = xas_find_marked(xas, max, mark);
2044 
2045 	if (xas_retry(xas, folio))
2046 		goto retry;
2047 	/*
2048 	 * A shadow entry of a recently evicted page, a swap
2049 	 * entry from shmem/tmpfs or a DAX entry.  Return it
2050 	 * without attempting to raise page count.
2051 	 */
2052 	if (!folio || xa_is_value(folio))
2053 		return folio;
2054 
2055 	if (!folio_try_get_rcu(folio))
2056 		goto reset;
2057 
2058 	if (unlikely(folio != xas_reload(xas))) {
2059 		folio_put(folio);
2060 		goto reset;
2061 	}
2062 
2063 	return folio;
2064 reset:
2065 	xas_reset(xas);
2066 	goto retry;
2067 }
2068 
2069 /**
2070  * find_get_entries - gang pagecache lookup
2071  * @mapping:	The address_space to search
2072  * @start:	The starting page cache index
2073  * @end:	The final page index (inclusive).
2074  * @fbatch:	Where the resulting entries are placed.
2075  * @indices:	The cache indices corresponding to the entries in @entries
2076  *
2077  * find_get_entries() will search for and return a batch of entries in
2078  * the mapping.  The entries are placed in @fbatch.  find_get_entries()
2079  * takes a reference on any actual folios it returns.
2080  *
2081  * The entries have ascending indexes.  The indices may not be consecutive
2082  * due to not-present entries or large folios.
2083  *
2084  * Any shadow entries of evicted folios, or swap entries from
2085  * shmem/tmpfs, are included in the returned array.
2086  *
2087  * Return: The number of entries which were found.
2088  */
2089 unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
2090 		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2091 {
2092 	XA_STATE(xas, &mapping->i_pages, start);
2093 	struct folio *folio;
2094 
2095 	rcu_read_lock();
2096 	while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2097 		indices[fbatch->nr] = xas.xa_index;
2098 		if (!folio_batch_add(fbatch, folio))
2099 			break;
2100 	}
2101 	rcu_read_unlock();
2102 
2103 	return folio_batch_count(fbatch);
2104 }
2105 
2106 /**
2107  * find_lock_entries - Find a batch of pagecache entries.
2108  * @mapping:	The address_space to search.
2109  * @start:	The starting page cache index.
2110  * @end:	The final page index (inclusive).
2111  * @fbatch:	Where the resulting entries are placed.
2112  * @indices:	The cache indices of the entries in @fbatch.
2113  *
2114  * find_lock_entries() will return a batch of entries from @mapping.
2115  * Swap, shadow and DAX entries are included.  Folios are returned
2116  * locked and with an incremented refcount.  Folios which are locked
2117  * by somebody else or under writeback are skipped.  Folios which are
2118  * partially outside the range are not returned.
2119  *
2120  * The entries have ascending indexes.  The indices may not be consecutive
2121  * due to not-present entries, large folios, folios which could not be
2122  * locked or folios under writeback.
2123  *
2124  * Return: The number of entries which were found.
2125  */
2126 unsigned find_lock_entries(struct address_space *mapping, pgoff_t start,
2127 		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2128 {
2129 	XA_STATE(xas, &mapping->i_pages, start);
2130 	struct folio *folio;
2131 
2132 	rcu_read_lock();
2133 	while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2134 		if (!xa_is_value(folio)) {
2135 			if (folio->index < start)
2136 				goto put;
2137 			if (folio->index + folio_nr_pages(folio) - 1 > end)
2138 				goto put;
2139 			if (!folio_trylock(folio))
2140 				goto put;
2141 			if (folio->mapping != mapping ||
2142 			    folio_test_writeback(folio))
2143 				goto unlock;
2144 			VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index),
2145 					folio);
2146 		}
2147 		indices[fbatch->nr] = xas.xa_index;
2148 		if (!folio_batch_add(fbatch, folio))
2149 			break;
2150 		continue;
2151 unlock:
2152 		folio_unlock(folio);
2153 put:
2154 		folio_put(folio);
2155 	}
2156 	rcu_read_unlock();
2157 
2158 	return folio_batch_count(fbatch);
2159 }
2160 
2161 static inline
2162 bool folio_more_pages(struct folio *folio, pgoff_t index, pgoff_t max)
2163 {
2164 	if (!folio_test_large(folio) || folio_test_hugetlb(folio))
2165 		return false;
2166 	if (index >= max)
2167 		return false;
2168 	return index < folio->index + folio_nr_pages(folio) - 1;
2169 }
2170 
2171 /**
2172  * find_get_pages_range - gang pagecache lookup
2173  * @mapping:	The address_space to search
2174  * @start:	The starting page index
2175  * @end:	The final page index (inclusive)
2176  * @nr_pages:	The maximum number of pages
2177  * @pages:	Where the resulting pages are placed
2178  *
2179  * find_get_pages_range() will search for and return a group of up to @nr_pages
2180  * pages in the mapping starting at index @start and up to index @end
2181  * (inclusive).  The pages are placed at @pages.  find_get_pages_range() takes
2182  * a reference against the returned pages.
2183  *
2184  * The search returns a group of mapping-contiguous pages with ascending
2185  * indexes.  There may be holes in the indices due to not-present pages.
2186  * We also update @start to index the next page for the traversal.
2187  *
2188  * Return: the number of pages which were found. If this number is
2189  * smaller than @nr_pages, the end of specified range has been
2190  * reached.
2191  */
2192 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
2193 			      pgoff_t end, unsigned int nr_pages,
2194 			      struct page **pages)
2195 {
2196 	XA_STATE(xas, &mapping->i_pages, *start);
2197 	struct folio *folio;
2198 	unsigned ret = 0;
2199 
2200 	if (unlikely(!nr_pages))
2201 		return 0;
2202 
2203 	rcu_read_lock();
2204 	while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2205 		/* Skip over shadow, swap and DAX entries */
2206 		if (xa_is_value(folio))
2207 			continue;
2208 
2209 again:
2210 		pages[ret] = folio_file_page(folio, xas.xa_index);
2211 		if (++ret == nr_pages) {
2212 			*start = xas.xa_index + 1;
2213 			goto out;
2214 		}
2215 		if (folio_more_pages(folio, xas.xa_index, end)) {
2216 			xas.xa_index++;
2217 			folio_ref_inc(folio);
2218 			goto again;
2219 		}
2220 	}
2221 
2222 	/*
2223 	 * We come here when there is no page beyond @end. We take care to not
2224 	 * overflow the index @start as it confuses some of the callers. This
2225 	 * breaks the iteration when there is a page at index -1 but that is
2226 	 * already broken anyway.
2227 	 */
2228 	if (end == (pgoff_t)-1)
2229 		*start = (pgoff_t)-1;
2230 	else
2231 		*start = end + 1;
2232 out:
2233 	rcu_read_unlock();
2234 
2235 	return ret;
2236 }
2237 
2238 /**
2239  * find_get_pages_contig - gang contiguous pagecache lookup
2240  * @mapping:	The address_space to search
2241  * @index:	The starting page index
2242  * @nr_pages:	The maximum number of pages
2243  * @pages:	Where the resulting pages are placed
2244  *
2245  * find_get_pages_contig() works exactly like find_get_pages(), except
2246  * that the returned number of pages are guaranteed to be contiguous.
2247  *
2248  * Return: the number of pages which were found.
2249  */
2250 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
2251 			       unsigned int nr_pages, struct page **pages)
2252 {
2253 	XA_STATE(xas, &mapping->i_pages, index);
2254 	struct folio *folio;
2255 	unsigned int ret = 0;
2256 
2257 	if (unlikely(!nr_pages))
2258 		return 0;
2259 
2260 	rcu_read_lock();
2261 	for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2262 		if (xas_retry(&xas, folio))
2263 			continue;
2264 		/*
2265 		 * If the entry has been swapped out, we can stop looking.
2266 		 * No current caller is looking for DAX entries.
2267 		 */
2268 		if (xa_is_value(folio))
2269 			break;
2270 
2271 		if (!folio_try_get_rcu(folio))
2272 			goto retry;
2273 
2274 		if (unlikely(folio != xas_reload(&xas)))
2275 			goto put_page;
2276 
2277 again:
2278 		pages[ret] = folio_file_page(folio, xas.xa_index);
2279 		if (++ret == nr_pages)
2280 			break;
2281 		if (folio_more_pages(folio, xas.xa_index, ULONG_MAX)) {
2282 			xas.xa_index++;
2283 			folio_ref_inc(folio);
2284 			goto again;
2285 		}
2286 		continue;
2287 put_page:
2288 		folio_put(folio);
2289 retry:
2290 		xas_reset(&xas);
2291 	}
2292 	rcu_read_unlock();
2293 	return ret;
2294 }
2295 EXPORT_SYMBOL(find_get_pages_contig);
2296 
2297 /**
2298  * find_get_pages_range_tag - Find and return head pages matching @tag.
2299  * @mapping:	the address_space to search
2300  * @index:	the starting page index
2301  * @end:	The final page index (inclusive)
2302  * @tag:	the tag index
2303  * @nr_pages:	the maximum number of pages
2304  * @pages:	where the resulting pages are placed
2305  *
2306  * Like find_get_pages(), except we only return head pages which are tagged
2307  * with @tag.  @index is updated to the index immediately after the last
2308  * page we return, ready for the next iteration.
2309  *
2310  * Return: the number of pages which were found.
2311  */
2312 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
2313 			pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
2314 			struct page **pages)
2315 {
2316 	XA_STATE(xas, &mapping->i_pages, *index);
2317 	struct folio *folio;
2318 	unsigned ret = 0;
2319 
2320 	if (unlikely(!nr_pages))
2321 		return 0;
2322 
2323 	rcu_read_lock();
2324 	while ((folio = find_get_entry(&xas, end, tag))) {
2325 		/*
2326 		 * Shadow entries should never be tagged, but this iteration
2327 		 * is lockless so there is a window for page reclaim to evict
2328 		 * a page we saw tagged.  Skip over it.
2329 		 */
2330 		if (xa_is_value(folio))
2331 			continue;
2332 
2333 		pages[ret] = &folio->page;
2334 		if (++ret == nr_pages) {
2335 			*index = folio->index + folio_nr_pages(folio);
2336 			goto out;
2337 		}
2338 	}
2339 
2340 	/*
2341 	 * We come here when we got to @end. We take care to not overflow the
2342 	 * index @index as it confuses some of the callers. This breaks the
2343 	 * iteration when there is a page at index -1 but that is already
2344 	 * broken anyway.
2345 	 */
2346 	if (end == (pgoff_t)-1)
2347 		*index = (pgoff_t)-1;
2348 	else
2349 		*index = end + 1;
2350 out:
2351 	rcu_read_unlock();
2352 
2353 	return ret;
2354 }
2355 EXPORT_SYMBOL(find_get_pages_range_tag);
2356 
2357 /*
2358  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2359  * a _large_ part of the i/o request. Imagine the worst scenario:
2360  *
2361  *      ---R__________________________________________B__________
2362  *         ^ reading here                             ^ bad block(assume 4k)
2363  *
2364  * read(R) => miss => readahead(R...B) => media error => frustrating retries
2365  * => failing the whole request => read(R) => read(R+1) =>
2366  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2367  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2368  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2369  *
2370  * It is going insane. Fix it by quickly scaling down the readahead size.
2371  */
2372 static void shrink_readahead_size_eio(struct file_ra_state *ra)
2373 {
2374 	ra->ra_pages /= 4;
2375 }
2376 
2377 /*
2378  * filemap_get_read_batch - Get a batch of folios for read
2379  *
2380  * Get a batch of folios which represent a contiguous range of bytes in
2381  * the file.  No exceptional entries will be returned.  If @index is in
2382  * the middle of a folio, the entire folio will be returned.  The last
2383  * folio in the batch may have the readahead flag set or the uptodate flag
2384  * clear so that the caller can take the appropriate action.
2385  */
2386 static void filemap_get_read_batch(struct address_space *mapping,
2387 		pgoff_t index, pgoff_t max, struct folio_batch *fbatch)
2388 {
2389 	XA_STATE(xas, &mapping->i_pages, index);
2390 	struct folio *folio;
2391 
2392 	rcu_read_lock();
2393 	for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2394 		if (xas_retry(&xas, folio))
2395 			continue;
2396 		if (xas.xa_index > max || xa_is_value(folio))
2397 			break;
2398 		if (!folio_try_get_rcu(folio))
2399 			goto retry;
2400 
2401 		if (unlikely(folio != xas_reload(&xas)))
2402 			goto put_folio;
2403 
2404 		if (!folio_batch_add(fbatch, folio))
2405 			break;
2406 		if (!folio_test_uptodate(folio))
2407 			break;
2408 		if (folio_test_readahead(folio))
2409 			break;
2410 		xas_advance(&xas, folio->index + folio_nr_pages(folio) - 1);
2411 		continue;
2412 put_folio:
2413 		folio_put(folio);
2414 retry:
2415 		xas_reset(&xas);
2416 	}
2417 	rcu_read_unlock();
2418 }
2419 
2420 static int filemap_read_folio(struct file *file, struct address_space *mapping,
2421 		struct folio *folio)
2422 {
2423 	int error;
2424 
2425 	/*
2426 	 * A previous I/O error may have been due to temporary failures,
2427 	 * eg. multipath errors.  PG_error will be set again if readpage
2428 	 * fails.
2429 	 */
2430 	folio_clear_error(folio);
2431 	/* Start the actual read. The read will unlock the page. */
2432 	error = mapping->a_ops->readpage(file, &folio->page);
2433 	if (error)
2434 		return error;
2435 
2436 	error = folio_wait_locked_killable(folio);
2437 	if (error)
2438 		return error;
2439 	if (folio_test_uptodate(folio))
2440 		return 0;
2441 	shrink_readahead_size_eio(&file->f_ra);
2442 	return -EIO;
2443 }
2444 
2445 static bool filemap_range_uptodate(struct address_space *mapping,
2446 		loff_t pos, struct iov_iter *iter, struct folio *folio)
2447 {
2448 	int count;
2449 
2450 	if (folio_test_uptodate(folio))
2451 		return true;
2452 	/* pipes can't handle partially uptodate pages */
2453 	if (iov_iter_is_pipe(iter))
2454 		return false;
2455 	if (!mapping->a_ops->is_partially_uptodate)
2456 		return false;
2457 	if (mapping->host->i_blkbits >= folio_shift(folio))
2458 		return false;
2459 
2460 	count = iter->count;
2461 	if (folio_pos(folio) > pos) {
2462 		count -= folio_pos(folio) - pos;
2463 		pos = 0;
2464 	} else {
2465 		pos -= folio_pos(folio);
2466 	}
2467 
2468 	return mapping->a_ops->is_partially_uptodate(&folio->page, pos, count);
2469 }
2470 
2471 static int filemap_update_page(struct kiocb *iocb,
2472 		struct address_space *mapping, struct iov_iter *iter,
2473 		struct folio *folio)
2474 {
2475 	int error;
2476 
2477 	if (iocb->ki_flags & IOCB_NOWAIT) {
2478 		if (!filemap_invalidate_trylock_shared(mapping))
2479 			return -EAGAIN;
2480 	} else {
2481 		filemap_invalidate_lock_shared(mapping);
2482 	}
2483 
2484 	if (!folio_trylock(folio)) {
2485 		error = -EAGAIN;
2486 		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2487 			goto unlock_mapping;
2488 		if (!(iocb->ki_flags & IOCB_WAITQ)) {
2489 			filemap_invalidate_unlock_shared(mapping);
2490 			/*
2491 			 * This is where we usually end up waiting for a
2492 			 * previously submitted readahead to finish.
2493 			 */
2494 			folio_put_wait_locked(folio, TASK_KILLABLE);
2495 			return AOP_TRUNCATED_PAGE;
2496 		}
2497 		error = __folio_lock_async(folio, iocb->ki_waitq);
2498 		if (error)
2499 			goto unlock_mapping;
2500 	}
2501 
2502 	error = AOP_TRUNCATED_PAGE;
2503 	if (!folio->mapping)
2504 		goto unlock;
2505 
2506 	error = 0;
2507 	if (filemap_range_uptodate(mapping, iocb->ki_pos, iter, folio))
2508 		goto unlock;
2509 
2510 	error = -EAGAIN;
2511 	if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2512 		goto unlock;
2513 
2514 	error = filemap_read_folio(iocb->ki_filp, mapping, folio);
2515 	goto unlock_mapping;
2516 unlock:
2517 	folio_unlock(folio);
2518 unlock_mapping:
2519 	filemap_invalidate_unlock_shared(mapping);
2520 	if (error == AOP_TRUNCATED_PAGE)
2521 		folio_put(folio);
2522 	return error;
2523 }
2524 
2525 static int filemap_create_folio(struct file *file,
2526 		struct address_space *mapping, pgoff_t index,
2527 		struct folio_batch *fbatch)
2528 {
2529 	struct folio *folio;
2530 	int error;
2531 
2532 	folio = filemap_alloc_folio(mapping_gfp_mask(mapping), 0);
2533 	if (!folio)
2534 		return -ENOMEM;
2535 
2536 	/*
2537 	 * Protect against truncate / hole punch. Grabbing invalidate_lock
2538 	 * here assures we cannot instantiate and bring uptodate new
2539 	 * pagecache folios after evicting page cache during truncate
2540 	 * and before actually freeing blocks.	Note that we could
2541 	 * release invalidate_lock after inserting the folio into
2542 	 * the page cache as the locked folio would then be enough to
2543 	 * synchronize with hole punching. But there are code paths
2544 	 * such as filemap_update_page() filling in partially uptodate
2545 	 * pages or ->readpages() that need to hold invalidate_lock
2546 	 * while mapping blocks for IO so let's hold the lock here as
2547 	 * well to keep locking rules simple.
2548 	 */
2549 	filemap_invalidate_lock_shared(mapping);
2550 	error = filemap_add_folio(mapping, folio, index,
2551 			mapping_gfp_constraint(mapping, GFP_KERNEL));
2552 	if (error == -EEXIST)
2553 		error = AOP_TRUNCATED_PAGE;
2554 	if (error)
2555 		goto error;
2556 
2557 	error = filemap_read_folio(file, mapping, folio);
2558 	if (error)
2559 		goto error;
2560 
2561 	filemap_invalidate_unlock_shared(mapping);
2562 	folio_batch_add(fbatch, folio);
2563 	return 0;
2564 error:
2565 	filemap_invalidate_unlock_shared(mapping);
2566 	folio_put(folio);
2567 	return error;
2568 }
2569 
2570 static int filemap_readahead(struct kiocb *iocb, struct file *file,
2571 		struct address_space *mapping, struct folio *folio,
2572 		pgoff_t last_index)
2573 {
2574 	DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index);
2575 
2576 	if (iocb->ki_flags & IOCB_NOIO)
2577 		return -EAGAIN;
2578 	page_cache_async_ra(&ractl, folio, last_index - folio->index);
2579 	return 0;
2580 }
2581 
2582 static int filemap_get_pages(struct kiocb *iocb, struct iov_iter *iter,
2583 		struct folio_batch *fbatch)
2584 {
2585 	struct file *filp = iocb->ki_filp;
2586 	struct address_space *mapping = filp->f_mapping;
2587 	struct file_ra_state *ra = &filp->f_ra;
2588 	pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2589 	pgoff_t last_index;
2590 	struct folio *folio;
2591 	int err = 0;
2592 
2593 	last_index = DIV_ROUND_UP(iocb->ki_pos + iter->count, PAGE_SIZE);
2594 retry:
2595 	if (fatal_signal_pending(current))
2596 		return -EINTR;
2597 
2598 	filemap_get_read_batch(mapping, index, last_index, fbatch);
2599 	if (!folio_batch_count(fbatch)) {
2600 		if (iocb->ki_flags & IOCB_NOIO)
2601 			return -EAGAIN;
2602 		page_cache_sync_readahead(mapping, ra, filp, index,
2603 				last_index - index);
2604 		filemap_get_read_batch(mapping, index, last_index, fbatch);
2605 	}
2606 	if (!folio_batch_count(fbatch)) {
2607 		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2608 			return -EAGAIN;
2609 		err = filemap_create_folio(filp, mapping,
2610 				iocb->ki_pos >> PAGE_SHIFT, fbatch);
2611 		if (err == AOP_TRUNCATED_PAGE)
2612 			goto retry;
2613 		return err;
2614 	}
2615 
2616 	folio = fbatch->folios[folio_batch_count(fbatch) - 1];
2617 	if (folio_test_readahead(folio)) {
2618 		err = filemap_readahead(iocb, filp, mapping, folio, last_index);
2619 		if (err)
2620 			goto err;
2621 	}
2622 	if (!folio_test_uptodate(folio)) {
2623 		if ((iocb->ki_flags & IOCB_WAITQ) &&
2624 		    folio_batch_count(fbatch) > 1)
2625 			iocb->ki_flags |= IOCB_NOWAIT;
2626 		err = filemap_update_page(iocb, mapping, iter, folio);
2627 		if (err)
2628 			goto err;
2629 	}
2630 
2631 	return 0;
2632 err:
2633 	if (err < 0)
2634 		folio_put(folio);
2635 	if (likely(--fbatch->nr))
2636 		return 0;
2637 	if (err == AOP_TRUNCATED_PAGE)
2638 		goto retry;
2639 	return err;
2640 }
2641 
2642 /**
2643  * filemap_read - Read data from the page cache.
2644  * @iocb: The iocb to read.
2645  * @iter: Destination for the data.
2646  * @already_read: Number of bytes already read by the caller.
2647  *
2648  * Copies data from the page cache.  If the data is not currently present,
2649  * uses the readahead and readpage address_space operations to fetch it.
2650  *
2651  * Return: Total number of bytes copied, including those already read by
2652  * the caller.  If an error happens before any bytes are copied, returns
2653  * a negative error number.
2654  */
2655 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2656 		ssize_t already_read)
2657 {
2658 	struct file *filp = iocb->ki_filp;
2659 	struct file_ra_state *ra = &filp->f_ra;
2660 	struct address_space *mapping = filp->f_mapping;
2661 	struct inode *inode = mapping->host;
2662 	struct folio_batch fbatch;
2663 	int i, error = 0;
2664 	bool writably_mapped;
2665 	loff_t isize, end_offset;
2666 
2667 	if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2668 		return 0;
2669 	if (unlikely(!iov_iter_count(iter)))
2670 		return 0;
2671 
2672 	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2673 	folio_batch_init(&fbatch);
2674 
2675 	do {
2676 		cond_resched();
2677 
2678 		/*
2679 		 * If we've already successfully copied some data, then we
2680 		 * can no longer safely return -EIOCBQUEUED. Hence mark
2681 		 * an async read NOWAIT at that point.
2682 		 */
2683 		if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2684 			iocb->ki_flags |= IOCB_NOWAIT;
2685 
2686 		if (unlikely(iocb->ki_pos >= i_size_read(inode)))
2687 			break;
2688 
2689 		error = filemap_get_pages(iocb, iter, &fbatch);
2690 		if (error < 0)
2691 			break;
2692 
2693 		/*
2694 		 * i_size must be checked after we know the pages are Uptodate.
2695 		 *
2696 		 * Checking i_size after the check allows us to calculate
2697 		 * the correct value for "nr", which means the zero-filled
2698 		 * part of the page is not copied back to userspace (unless
2699 		 * another truncate extends the file - this is desired though).
2700 		 */
2701 		isize = i_size_read(inode);
2702 		if (unlikely(iocb->ki_pos >= isize))
2703 			goto put_folios;
2704 		end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2705 
2706 		/*
2707 		 * Once we start copying data, we don't want to be touching any
2708 		 * cachelines that might be contended:
2709 		 */
2710 		writably_mapped = mapping_writably_mapped(mapping);
2711 
2712 		/*
2713 		 * When a sequential read accesses a page several times, only
2714 		 * mark it as accessed the first time.
2715 		 */
2716 		if (iocb->ki_pos >> PAGE_SHIFT !=
2717 		    ra->prev_pos >> PAGE_SHIFT)
2718 			folio_mark_accessed(fbatch.folios[0]);
2719 
2720 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
2721 			struct folio *folio = fbatch.folios[i];
2722 			size_t fsize = folio_size(folio);
2723 			size_t offset = iocb->ki_pos & (fsize - 1);
2724 			size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2725 					     fsize - offset);
2726 			size_t copied;
2727 
2728 			if (end_offset < folio_pos(folio))
2729 				break;
2730 			if (i > 0)
2731 				folio_mark_accessed(folio);
2732 			/*
2733 			 * If users can be writing to this folio using arbitrary
2734 			 * virtual addresses, take care of potential aliasing
2735 			 * before reading the folio on the kernel side.
2736 			 */
2737 			if (writably_mapped)
2738 				flush_dcache_folio(folio);
2739 
2740 			copied = copy_folio_to_iter(folio, offset, bytes, iter);
2741 
2742 			already_read += copied;
2743 			iocb->ki_pos += copied;
2744 			ra->prev_pos = iocb->ki_pos;
2745 
2746 			if (copied < bytes) {
2747 				error = -EFAULT;
2748 				break;
2749 			}
2750 		}
2751 put_folios:
2752 		for (i = 0; i < folio_batch_count(&fbatch); i++)
2753 			folio_put(fbatch.folios[i]);
2754 		folio_batch_init(&fbatch);
2755 	} while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2756 
2757 	file_accessed(filp);
2758 
2759 	return already_read ? already_read : error;
2760 }
2761 EXPORT_SYMBOL_GPL(filemap_read);
2762 
2763 /**
2764  * generic_file_read_iter - generic filesystem read routine
2765  * @iocb:	kernel I/O control block
2766  * @iter:	destination for the data read
2767  *
2768  * This is the "read_iter()" routine for all filesystems
2769  * that can use the page cache directly.
2770  *
2771  * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2772  * be returned when no data can be read without waiting for I/O requests
2773  * to complete; it doesn't prevent readahead.
2774  *
2775  * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2776  * requests shall be made for the read or for readahead.  When no data
2777  * can be read, -EAGAIN shall be returned.  When readahead would be
2778  * triggered, a partial, possibly empty read shall be returned.
2779  *
2780  * Return:
2781  * * number of bytes copied, even for partial reads
2782  * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2783  */
2784 ssize_t
2785 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2786 {
2787 	size_t count = iov_iter_count(iter);
2788 	ssize_t retval = 0;
2789 
2790 	if (!count)
2791 		return 0; /* skip atime */
2792 
2793 	if (iocb->ki_flags & IOCB_DIRECT) {
2794 		struct file *file = iocb->ki_filp;
2795 		struct address_space *mapping = file->f_mapping;
2796 		struct inode *inode = mapping->host;
2797 
2798 		if (iocb->ki_flags & IOCB_NOWAIT) {
2799 			if (filemap_range_needs_writeback(mapping, iocb->ki_pos,
2800 						iocb->ki_pos + count - 1))
2801 				return -EAGAIN;
2802 		} else {
2803 			retval = filemap_write_and_wait_range(mapping,
2804 						iocb->ki_pos,
2805 					        iocb->ki_pos + count - 1);
2806 			if (retval < 0)
2807 				return retval;
2808 		}
2809 
2810 		file_accessed(file);
2811 
2812 		retval = mapping->a_ops->direct_IO(iocb, iter);
2813 		if (retval >= 0) {
2814 			iocb->ki_pos += retval;
2815 			count -= retval;
2816 		}
2817 		if (retval != -EIOCBQUEUED)
2818 			iov_iter_revert(iter, count - iov_iter_count(iter));
2819 
2820 		/*
2821 		 * Btrfs can have a short DIO read if we encounter
2822 		 * compressed extents, so if there was an error, or if
2823 		 * we've already read everything we wanted to, or if
2824 		 * there was a short read because we hit EOF, go ahead
2825 		 * and return.  Otherwise fallthrough to buffered io for
2826 		 * the rest of the read.  Buffered reads will not work for
2827 		 * DAX files, so don't bother trying.
2828 		 */
2829 		if (retval < 0 || !count || IS_DAX(inode))
2830 			return retval;
2831 		if (iocb->ki_pos >= i_size_read(inode))
2832 			return retval;
2833 	}
2834 
2835 	return filemap_read(iocb, iter, retval);
2836 }
2837 EXPORT_SYMBOL(generic_file_read_iter);
2838 
2839 static inline loff_t folio_seek_hole_data(struct xa_state *xas,
2840 		struct address_space *mapping, struct folio *folio,
2841 		loff_t start, loff_t end, bool seek_data)
2842 {
2843 	const struct address_space_operations *ops = mapping->a_ops;
2844 	size_t offset, bsz = i_blocksize(mapping->host);
2845 
2846 	if (xa_is_value(folio) || folio_test_uptodate(folio))
2847 		return seek_data ? start : end;
2848 	if (!ops->is_partially_uptodate)
2849 		return seek_data ? end : start;
2850 
2851 	xas_pause(xas);
2852 	rcu_read_unlock();
2853 	folio_lock(folio);
2854 	if (unlikely(folio->mapping != mapping))
2855 		goto unlock;
2856 
2857 	offset = offset_in_folio(folio, start) & ~(bsz - 1);
2858 
2859 	do {
2860 		if (ops->is_partially_uptodate(&folio->page, offset, bsz) ==
2861 							seek_data)
2862 			break;
2863 		start = (start + bsz) & ~(bsz - 1);
2864 		offset += bsz;
2865 	} while (offset < folio_size(folio));
2866 unlock:
2867 	folio_unlock(folio);
2868 	rcu_read_lock();
2869 	return start;
2870 }
2871 
2872 static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio)
2873 {
2874 	if (xa_is_value(folio))
2875 		return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
2876 	return folio_size(folio);
2877 }
2878 
2879 /**
2880  * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
2881  * @mapping: Address space to search.
2882  * @start: First byte to consider.
2883  * @end: Limit of search (exclusive).
2884  * @whence: Either SEEK_HOLE or SEEK_DATA.
2885  *
2886  * If the page cache knows which blocks contain holes and which blocks
2887  * contain data, your filesystem can use this function to implement
2888  * SEEK_HOLE and SEEK_DATA.  This is useful for filesystems which are
2889  * entirely memory-based such as tmpfs, and filesystems which support
2890  * unwritten extents.
2891  *
2892  * Return: The requested offset on success, or -ENXIO if @whence specifies
2893  * SEEK_DATA and there is no data after @start.  There is an implicit hole
2894  * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
2895  * and @end contain data.
2896  */
2897 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
2898 		loff_t end, int whence)
2899 {
2900 	XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
2901 	pgoff_t max = (end - 1) >> PAGE_SHIFT;
2902 	bool seek_data = (whence == SEEK_DATA);
2903 	struct folio *folio;
2904 
2905 	if (end <= start)
2906 		return -ENXIO;
2907 
2908 	rcu_read_lock();
2909 	while ((folio = find_get_entry(&xas, max, XA_PRESENT))) {
2910 		loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
2911 		size_t seek_size;
2912 
2913 		if (start < pos) {
2914 			if (!seek_data)
2915 				goto unlock;
2916 			start = pos;
2917 		}
2918 
2919 		seek_size = seek_folio_size(&xas, folio);
2920 		pos = round_up((u64)pos + 1, seek_size);
2921 		start = folio_seek_hole_data(&xas, mapping, folio, start, pos,
2922 				seek_data);
2923 		if (start < pos)
2924 			goto unlock;
2925 		if (start >= end)
2926 			break;
2927 		if (seek_size > PAGE_SIZE)
2928 			xas_set(&xas, pos >> PAGE_SHIFT);
2929 		if (!xa_is_value(folio))
2930 			folio_put(folio);
2931 	}
2932 	if (seek_data)
2933 		start = -ENXIO;
2934 unlock:
2935 	rcu_read_unlock();
2936 	if (folio && !xa_is_value(folio))
2937 		folio_put(folio);
2938 	if (start > end)
2939 		return end;
2940 	return start;
2941 }
2942 
2943 #ifdef CONFIG_MMU
2944 #define MMAP_LOTSAMISS  (100)
2945 /*
2946  * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
2947  * @vmf - the vm_fault for this fault.
2948  * @folio - the folio to lock.
2949  * @fpin - the pointer to the file we may pin (or is already pinned).
2950  *
2951  * This works similar to lock_folio_or_retry in that it can drop the
2952  * mmap_lock.  It differs in that it actually returns the folio locked
2953  * if it returns 1 and 0 if it couldn't lock the folio.  If we did have
2954  * to drop the mmap_lock then fpin will point to the pinned file and
2955  * needs to be fput()'ed at a later point.
2956  */
2957 static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio,
2958 				     struct file **fpin)
2959 {
2960 	if (folio_trylock(folio))
2961 		return 1;
2962 
2963 	/*
2964 	 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2965 	 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
2966 	 * is supposed to work. We have way too many special cases..
2967 	 */
2968 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2969 		return 0;
2970 
2971 	*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2972 	if (vmf->flags & FAULT_FLAG_KILLABLE) {
2973 		if (__folio_lock_killable(folio)) {
2974 			/*
2975 			 * We didn't have the right flags to drop the mmap_lock,
2976 			 * but all fault_handlers only check for fatal signals
2977 			 * if we return VM_FAULT_RETRY, so we need to drop the
2978 			 * mmap_lock here and return 0 if we don't have a fpin.
2979 			 */
2980 			if (*fpin == NULL)
2981 				mmap_read_unlock(vmf->vma->vm_mm);
2982 			return 0;
2983 		}
2984 	} else
2985 		__folio_lock(folio);
2986 
2987 	return 1;
2988 }
2989 
2990 /*
2991  * Synchronous readahead happens when we don't even find a page in the page
2992  * cache at all.  We don't want to perform IO under the mmap sem, so if we have
2993  * to drop the mmap sem we return the file that was pinned in order for us to do
2994  * that.  If we didn't pin a file then we return NULL.  The file that is
2995  * returned needs to be fput()'ed when we're done with it.
2996  */
2997 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
2998 {
2999 	struct file *file = vmf->vma->vm_file;
3000 	struct file_ra_state *ra = &file->f_ra;
3001 	struct address_space *mapping = file->f_mapping;
3002 	DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
3003 	struct file *fpin = NULL;
3004 	unsigned int mmap_miss;
3005 
3006 	/* If we don't want any read-ahead, don't bother */
3007 	if (vmf->vma->vm_flags & VM_RAND_READ)
3008 		return fpin;
3009 	if (!ra->ra_pages)
3010 		return fpin;
3011 
3012 	if (vmf->vma->vm_flags & VM_SEQ_READ) {
3013 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3014 		page_cache_sync_ra(&ractl, ra->ra_pages);
3015 		return fpin;
3016 	}
3017 
3018 	/* Avoid banging the cache line if not needed */
3019 	mmap_miss = READ_ONCE(ra->mmap_miss);
3020 	if (mmap_miss < MMAP_LOTSAMISS * 10)
3021 		WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
3022 
3023 	/*
3024 	 * Do we miss much more than hit in this file? If so,
3025 	 * stop bothering with read-ahead. It will only hurt.
3026 	 */
3027 	if (mmap_miss > MMAP_LOTSAMISS)
3028 		return fpin;
3029 
3030 	/*
3031 	 * mmap read-around
3032 	 */
3033 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3034 	ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
3035 	ra->size = ra->ra_pages;
3036 	ra->async_size = ra->ra_pages / 4;
3037 	ractl._index = ra->start;
3038 	do_page_cache_ra(&ractl, ra->size, ra->async_size);
3039 	return fpin;
3040 }
3041 
3042 /*
3043  * Asynchronous readahead happens when we find the page and PG_readahead,
3044  * so we want to possibly extend the readahead further.  We return the file that
3045  * was pinned if we have to drop the mmap_lock in order to do IO.
3046  */
3047 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
3048 					    struct folio *folio)
3049 {
3050 	struct file *file = vmf->vma->vm_file;
3051 	struct file_ra_state *ra = &file->f_ra;
3052 	DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff);
3053 	struct file *fpin = NULL;
3054 	unsigned int mmap_miss;
3055 
3056 	/* If we don't want any read-ahead, don't bother */
3057 	if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
3058 		return fpin;
3059 
3060 	mmap_miss = READ_ONCE(ra->mmap_miss);
3061 	if (mmap_miss)
3062 		WRITE_ONCE(ra->mmap_miss, --mmap_miss);
3063 
3064 	if (folio_test_readahead(folio)) {
3065 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3066 		page_cache_async_ra(&ractl, folio, ra->ra_pages);
3067 	}
3068 	return fpin;
3069 }
3070 
3071 /**
3072  * filemap_fault - read in file data for page fault handling
3073  * @vmf:	struct vm_fault containing details of the fault
3074  *
3075  * filemap_fault() is invoked via the vma operations vector for a
3076  * mapped memory region to read in file data during a page fault.
3077  *
3078  * The goto's are kind of ugly, but this streamlines the normal case of having
3079  * it in the page cache, and handles the special cases reasonably without
3080  * having a lot of duplicated code.
3081  *
3082  * vma->vm_mm->mmap_lock must be held on entry.
3083  *
3084  * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
3085  * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap().
3086  *
3087  * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
3088  * has not been released.
3089  *
3090  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
3091  *
3092  * Return: bitwise-OR of %VM_FAULT_ codes.
3093  */
3094 vm_fault_t filemap_fault(struct vm_fault *vmf)
3095 {
3096 	int error;
3097 	struct file *file = vmf->vma->vm_file;
3098 	struct file *fpin = NULL;
3099 	struct address_space *mapping = file->f_mapping;
3100 	struct inode *inode = mapping->host;
3101 	pgoff_t max_idx, index = vmf->pgoff;
3102 	struct folio *folio;
3103 	vm_fault_t ret = 0;
3104 	bool mapping_locked = false;
3105 
3106 	max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3107 	if (unlikely(index >= max_idx))
3108 		return VM_FAULT_SIGBUS;
3109 
3110 	/*
3111 	 * Do we have something in the page cache already?
3112 	 */
3113 	folio = filemap_get_folio(mapping, index);
3114 	if (likely(folio)) {
3115 		/*
3116 		 * We found the page, so try async readahead before waiting for
3117 		 * the lock.
3118 		 */
3119 		if (!(vmf->flags & FAULT_FLAG_TRIED))
3120 			fpin = do_async_mmap_readahead(vmf, folio);
3121 		if (unlikely(!folio_test_uptodate(folio))) {
3122 			filemap_invalidate_lock_shared(mapping);
3123 			mapping_locked = true;
3124 		}
3125 	} else {
3126 		/* No page in the page cache at all */
3127 		count_vm_event(PGMAJFAULT);
3128 		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
3129 		ret = VM_FAULT_MAJOR;
3130 		fpin = do_sync_mmap_readahead(vmf);
3131 retry_find:
3132 		/*
3133 		 * See comment in filemap_create_folio() why we need
3134 		 * invalidate_lock
3135 		 */
3136 		if (!mapping_locked) {
3137 			filemap_invalidate_lock_shared(mapping);
3138 			mapping_locked = true;
3139 		}
3140 		folio = __filemap_get_folio(mapping, index,
3141 					  FGP_CREAT|FGP_FOR_MMAP,
3142 					  vmf->gfp_mask);
3143 		if (!folio) {
3144 			if (fpin)
3145 				goto out_retry;
3146 			filemap_invalidate_unlock_shared(mapping);
3147 			return VM_FAULT_OOM;
3148 		}
3149 	}
3150 
3151 	if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin))
3152 		goto out_retry;
3153 
3154 	/* Did it get truncated? */
3155 	if (unlikely(folio->mapping != mapping)) {
3156 		folio_unlock(folio);
3157 		folio_put(folio);
3158 		goto retry_find;
3159 	}
3160 	VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
3161 
3162 	/*
3163 	 * We have a locked page in the page cache, now we need to check
3164 	 * that it's up-to-date. If not, it is going to be due to an error.
3165 	 */
3166 	if (unlikely(!folio_test_uptodate(folio))) {
3167 		/*
3168 		 * The page was in cache and uptodate and now it is not.
3169 		 * Strange but possible since we didn't hold the page lock all
3170 		 * the time. Let's drop everything get the invalidate lock and
3171 		 * try again.
3172 		 */
3173 		if (!mapping_locked) {
3174 			folio_unlock(folio);
3175 			folio_put(folio);
3176 			goto retry_find;
3177 		}
3178 		goto page_not_uptodate;
3179 	}
3180 
3181 	/*
3182 	 * We've made it this far and we had to drop our mmap_lock, now is the
3183 	 * time to return to the upper layer and have it re-find the vma and
3184 	 * redo the fault.
3185 	 */
3186 	if (fpin) {
3187 		folio_unlock(folio);
3188 		goto out_retry;
3189 	}
3190 	if (mapping_locked)
3191 		filemap_invalidate_unlock_shared(mapping);
3192 
3193 	/*
3194 	 * Found the page and have a reference on it.
3195 	 * We must recheck i_size under page lock.
3196 	 */
3197 	max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3198 	if (unlikely(index >= max_idx)) {
3199 		folio_unlock(folio);
3200 		folio_put(folio);
3201 		return VM_FAULT_SIGBUS;
3202 	}
3203 
3204 	vmf->page = folio_file_page(folio, index);
3205 	return ret | VM_FAULT_LOCKED;
3206 
3207 page_not_uptodate:
3208 	/*
3209 	 * Umm, take care of errors if the page isn't up-to-date.
3210 	 * Try to re-read it _once_. We do this synchronously,
3211 	 * because there really aren't any performance issues here
3212 	 * and we need to check for errors.
3213 	 */
3214 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3215 	error = filemap_read_folio(file, mapping, folio);
3216 	if (fpin)
3217 		goto out_retry;
3218 	folio_put(folio);
3219 
3220 	if (!error || error == AOP_TRUNCATED_PAGE)
3221 		goto retry_find;
3222 	filemap_invalidate_unlock_shared(mapping);
3223 
3224 	return VM_FAULT_SIGBUS;
3225 
3226 out_retry:
3227 	/*
3228 	 * We dropped the mmap_lock, we need to return to the fault handler to
3229 	 * re-find the vma and come back and find our hopefully still populated
3230 	 * page.
3231 	 */
3232 	if (folio)
3233 		folio_put(folio);
3234 	if (mapping_locked)
3235 		filemap_invalidate_unlock_shared(mapping);
3236 	if (fpin)
3237 		fput(fpin);
3238 	return ret | VM_FAULT_RETRY;
3239 }
3240 EXPORT_SYMBOL(filemap_fault);
3241 
3242 static bool filemap_map_pmd(struct vm_fault *vmf, struct page *page)
3243 {
3244 	struct mm_struct *mm = vmf->vma->vm_mm;
3245 
3246 	/* Huge page is mapped? No need to proceed. */
3247 	if (pmd_trans_huge(*vmf->pmd)) {
3248 		unlock_page(page);
3249 		put_page(page);
3250 		return true;
3251 	}
3252 
3253 	if (pmd_none(*vmf->pmd) && PageTransHuge(page)) {
3254 		vm_fault_t ret = do_set_pmd(vmf, page);
3255 		if (!ret) {
3256 			/* The page is mapped successfully, reference consumed. */
3257 			unlock_page(page);
3258 			return true;
3259 		}
3260 	}
3261 
3262 	if (pmd_none(*vmf->pmd))
3263 		pmd_install(mm, vmf->pmd, &vmf->prealloc_pte);
3264 
3265 	/* See comment in handle_pte_fault() */
3266 	if (pmd_devmap_trans_unstable(vmf->pmd)) {
3267 		unlock_page(page);
3268 		put_page(page);
3269 		return true;
3270 	}
3271 
3272 	return false;
3273 }
3274 
3275 static struct folio *next_uptodate_page(struct folio *folio,
3276 				       struct address_space *mapping,
3277 				       struct xa_state *xas, pgoff_t end_pgoff)
3278 {
3279 	unsigned long max_idx;
3280 
3281 	do {
3282 		if (!folio)
3283 			return NULL;
3284 		if (xas_retry(xas, folio))
3285 			continue;
3286 		if (xa_is_value(folio))
3287 			continue;
3288 		if (folio_test_locked(folio))
3289 			continue;
3290 		if (!folio_try_get_rcu(folio))
3291 			continue;
3292 		/* Has the page moved or been split? */
3293 		if (unlikely(folio != xas_reload(xas)))
3294 			goto skip;
3295 		if (!folio_test_uptodate(folio) || folio_test_readahead(folio))
3296 			goto skip;
3297 		if (!folio_trylock(folio))
3298 			goto skip;
3299 		if (folio->mapping != mapping)
3300 			goto unlock;
3301 		if (!folio_test_uptodate(folio))
3302 			goto unlock;
3303 		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3304 		if (xas->xa_index >= max_idx)
3305 			goto unlock;
3306 		return folio;
3307 unlock:
3308 		folio_unlock(folio);
3309 skip:
3310 		folio_put(folio);
3311 	} while ((folio = xas_next_entry(xas, end_pgoff)) != NULL);
3312 
3313 	return NULL;
3314 }
3315 
3316 static inline struct folio *first_map_page(struct address_space *mapping,
3317 					  struct xa_state *xas,
3318 					  pgoff_t end_pgoff)
3319 {
3320 	return next_uptodate_page(xas_find(xas, end_pgoff),
3321 				  mapping, xas, end_pgoff);
3322 }
3323 
3324 static inline struct folio *next_map_page(struct address_space *mapping,
3325 					 struct xa_state *xas,
3326 					 pgoff_t end_pgoff)
3327 {
3328 	return next_uptodate_page(xas_next_entry(xas, end_pgoff),
3329 				  mapping, xas, end_pgoff);
3330 }
3331 
3332 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3333 			     pgoff_t start_pgoff, pgoff_t end_pgoff)
3334 {
3335 	struct vm_area_struct *vma = vmf->vma;
3336 	struct file *file = vma->vm_file;
3337 	struct address_space *mapping = file->f_mapping;
3338 	pgoff_t last_pgoff = start_pgoff;
3339 	unsigned long addr;
3340 	XA_STATE(xas, &mapping->i_pages, start_pgoff);
3341 	struct folio *folio;
3342 	struct page *page;
3343 	unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss);
3344 	vm_fault_t ret = 0;
3345 
3346 	rcu_read_lock();
3347 	folio = first_map_page(mapping, &xas, end_pgoff);
3348 	if (!folio)
3349 		goto out;
3350 
3351 	if (filemap_map_pmd(vmf, &folio->page)) {
3352 		ret = VM_FAULT_NOPAGE;
3353 		goto out;
3354 	}
3355 
3356 	addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3357 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3358 	do {
3359 again:
3360 		page = folio_file_page(folio, xas.xa_index);
3361 		if (PageHWPoison(page))
3362 			goto unlock;
3363 
3364 		if (mmap_miss > 0)
3365 			mmap_miss--;
3366 
3367 		addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3368 		vmf->pte += xas.xa_index - last_pgoff;
3369 		last_pgoff = xas.xa_index;
3370 
3371 		if (!pte_none(*vmf->pte))
3372 			goto unlock;
3373 
3374 		/* We're about to handle the fault */
3375 		if (vmf->address == addr)
3376 			ret = VM_FAULT_NOPAGE;
3377 
3378 		do_set_pte(vmf, page, addr);
3379 		/* no need to invalidate: a not-present page won't be cached */
3380 		update_mmu_cache(vma, addr, vmf->pte);
3381 		if (folio_more_pages(folio, xas.xa_index, end_pgoff)) {
3382 			xas.xa_index++;
3383 			folio_ref_inc(folio);
3384 			goto again;
3385 		}
3386 		folio_unlock(folio);
3387 		continue;
3388 unlock:
3389 		if (folio_more_pages(folio, xas.xa_index, end_pgoff)) {
3390 			xas.xa_index++;
3391 			goto again;
3392 		}
3393 		folio_unlock(folio);
3394 		folio_put(folio);
3395 	} while ((folio = next_map_page(mapping, &xas, end_pgoff)) != NULL);
3396 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3397 out:
3398 	rcu_read_unlock();
3399 	WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss);
3400 	return ret;
3401 }
3402 EXPORT_SYMBOL(filemap_map_pages);
3403 
3404 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3405 {
3406 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3407 	struct folio *folio = page_folio(vmf->page);
3408 	vm_fault_t ret = VM_FAULT_LOCKED;
3409 
3410 	sb_start_pagefault(mapping->host->i_sb);
3411 	file_update_time(vmf->vma->vm_file);
3412 	folio_lock(folio);
3413 	if (folio->mapping != mapping) {
3414 		folio_unlock(folio);
3415 		ret = VM_FAULT_NOPAGE;
3416 		goto out;
3417 	}
3418 	/*
3419 	 * We mark the folio dirty already here so that when freeze is in
3420 	 * progress, we are guaranteed that writeback during freezing will
3421 	 * see the dirty folio and writeprotect it again.
3422 	 */
3423 	folio_mark_dirty(folio);
3424 	folio_wait_stable(folio);
3425 out:
3426 	sb_end_pagefault(mapping->host->i_sb);
3427 	return ret;
3428 }
3429 
3430 const struct vm_operations_struct generic_file_vm_ops = {
3431 	.fault		= filemap_fault,
3432 	.map_pages	= filemap_map_pages,
3433 	.page_mkwrite	= filemap_page_mkwrite,
3434 };
3435 
3436 /* This is used for a general mmap of a disk file */
3437 
3438 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3439 {
3440 	struct address_space *mapping = file->f_mapping;
3441 
3442 	if (!mapping->a_ops->readpage)
3443 		return -ENOEXEC;
3444 	file_accessed(file);
3445 	vma->vm_ops = &generic_file_vm_ops;
3446 	return 0;
3447 }
3448 
3449 /*
3450  * This is for filesystems which do not implement ->writepage.
3451  */
3452 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3453 {
3454 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
3455 		return -EINVAL;
3456 	return generic_file_mmap(file, vma);
3457 }
3458 #else
3459 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3460 {
3461 	return VM_FAULT_SIGBUS;
3462 }
3463 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3464 {
3465 	return -ENOSYS;
3466 }
3467 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3468 {
3469 	return -ENOSYS;
3470 }
3471 #endif /* CONFIG_MMU */
3472 
3473 EXPORT_SYMBOL(filemap_page_mkwrite);
3474 EXPORT_SYMBOL(generic_file_mmap);
3475 EXPORT_SYMBOL(generic_file_readonly_mmap);
3476 
3477 static struct folio *do_read_cache_folio(struct address_space *mapping,
3478 		pgoff_t index, filler_t filler, void *data, gfp_t gfp)
3479 {
3480 	struct folio *folio;
3481 	int err;
3482 repeat:
3483 	folio = filemap_get_folio(mapping, index);
3484 	if (!folio) {
3485 		folio = filemap_alloc_folio(gfp, 0);
3486 		if (!folio)
3487 			return ERR_PTR(-ENOMEM);
3488 		err = filemap_add_folio(mapping, folio, index, gfp);
3489 		if (unlikely(err)) {
3490 			folio_put(folio);
3491 			if (err == -EEXIST)
3492 				goto repeat;
3493 			/* Presumably ENOMEM for xarray node */
3494 			return ERR_PTR(err);
3495 		}
3496 
3497 filler:
3498 		if (filler)
3499 			err = filler(data, &folio->page);
3500 		else
3501 			err = mapping->a_ops->readpage(data, &folio->page);
3502 
3503 		if (err < 0) {
3504 			folio_put(folio);
3505 			return ERR_PTR(err);
3506 		}
3507 
3508 		folio_wait_locked(folio);
3509 		if (!folio_test_uptodate(folio)) {
3510 			folio_put(folio);
3511 			return ERR_PTR(-EIO);
3512 		}
3513 
3514 		goto out;
3515 	}
3516 	if (folio_test_uptodate(folio))
3517 		goto out;
3518 
3519 	if (!folio_trylock(folio)) {
3520 		folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE);
3521 		goto repeat;
3522 	}
3523 
3524 	/* Folio was truncated from mapping */
3525 	if (!folio->mapping) {
3526 		folio_unlock(folio);
3527 		folio_put(folio);
3528 		goto repeat;
3529 	}
3530 
3531 	/* Someone else locked and filled the page in a very small window */
3532 	if (folio_test_uptodate(folio)) {
3533 		folio_unlock(folio);
3534 		goto out;
3535 	}
3536 
3537 	/*
3538 	 * A previous I/O error may have been due to temporary
3539 	 * failures.
3540 	 * Clear page error before actual read, PG_error will be
3541 	 * set again if read page fails.
3542 	 */
3543 	folio_clear_error(folio);
3544 	goto filler;
3545 
3546 out:
3547 	folio_mark_accessed(folio);
3548 	return folio;
3549 }
3550 
3551 /**
3552  * read_cache_folio - read into page cache, fill it if needed
3553  * @mapping:	the page's address_space
3554  * @index:	the page index
3555  * @filler:	function to perform the read
3556  * @data:	first arg to filler(data, page) function, often left as NULL
3557  *
3558  * Read into the page cache. If a page already exists, and PageUptodate() is
3559  * not set, try to fill the page and wait for it to become unlocked.
3560  *
3561  * If the page does not get brought uptodate, return -EIO.
3562  *
3563  * The function expects mapping->invalidate_lock to be already held.
3564  *
3565  * Return: up to date page on success, ERR_PTR() on failure.
3566  */
3567 struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index,
3568 		filler_t filler, void *data)
3569 {
3570 	return do_read_cache_folio(mapping, index, filler, data,
3571 			mapping_gfp_mask(mapping));
3572 }
3573 EXPORT_SYMBOL(read_cache_folio);
3574 
3575 static struct page *do_read_cache_page(struct address_space *mapping,
3576 		pgoff_t index, filler_t *filler, void *data, gfp_t gfp)
3577 {
3578 	struct folio *folio;
3579 
3580 	folio = do_read_cache_folio(mapping, index, filler, data, gfp);
3581 	if (IS_ERR(folio))
3582 		return &folio->page;
3583 	return folio_file_page(folio, index);
3584 }
3585 
3586 struct page *read_cache_page(struct address_space *mapping,
3587 				pgoff_t index, filler_t *filler, void *data)
3588 {
3589 	return do_read_cache_page(mapping, index, filler, data,
3590 			mapping_gfp_mask(mapping));
3591 }
3592 EXPORT_SYMBOL(read_cache_page);
3593 
3594 /**
3595  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3596  * @mapping:	the page's address_space
3597  * @index:	the page index
3598  * @gfp:	the page allocator flags to use if allocating
3599  *
3600  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3601  * any new page allocations done using the specified allocation flags.
3602  *
3603  * If the page does not get brought uptodate, return -EIO.
3604  *
3605  * The function expects mapping->invalidate_lock to be already held.
3606  *
3607  * Return: up to date page on success, ERR_PTR() on failure.
3608  */
3609 struct page *read_cache_page_gfp(struct address_space *mapping,
3610 				pgoff_t index,
3611 				gfp_t gfp)
3612 {
3613 	return do_read_cache_page(mapping, index, NULL, NULL, gfp);
3614 }
3615 EXPORT_SYMBOL(read_cache_page_gfp);
3616 
3617 int pagecache_write_begin(struct file *file, struct address_space *mapping,
3618 				loff_t pos, unsigned len, unsigned flags,
3619 				struct page **pagep, void **fsdata)
3620 {
3621 	const struct address_space_operations *aops = mapping->a_ops;
3622 
3623 	return aops->write_begin(file, mapping, pos, len, flags,
3624 							pagep, fsdata);
3625 }
3626 EXPORT_SYMBOL(pagecache_write_begin);
3627 
3628 int pagecache_write_end(struct file *file, struct address_space *mapping,
3629 				loff_t pos, unsigned len, unsigned copied,
3630 				struct page *page, void *fsdata)
3631 {
3632 	const struct address_space_operations *aops = mapping->a_ops;
3633 
3634 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3635 }
3636 EXPORT_SYMBOL(pagecache_write_end);
3637 
3638 /*
3639  * Warn about a page cache invalidation failure during a direct I/O write.
3640  */
3641 void dio_warn_stale_pagecache(struct file *filp)
3642 {
3643 	static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3644 	char pathname[128];
3645 	char *path;
3646 
3647 	errseq_set(&filp->f_mapping->wb_err, -EIO);
3648 	if (__ratelimit(&_rs)) {
3649 		path = file_path(filp, pathname, sizeof(pathname));
3650 		if (IS_ERR(path))
3651 			path = "(unknown)";
3652 		pr_crit("Page cache invalidation failure on direct I/O.  Possible data corruption due to collision with buffered I/O!\n");
3653 		pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3654 			current->comm);
3655 	}
3656 }
3657 
3658 ssize_t
3659 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3660 {
3661 	struct file	*file = iocb->ki_filp;
3662 	struct address_space *mapping = file->f_mapping;
3663 	struct inode	*inode = mapping->host;
3664 	loff_t		pos = iocb->ki_pos;
3665 	ssize_t		written;
3666 	size_t		write_len;
3667 	pgoff_t		end;
3668 
3669 	write_len = iov_iter_count(from);
3670 	end = (pos + write_len - 1) >> PAGE_SHIFT;
3671 
3672 	if (iocb->ki_flags & IOCB_NOWAIT) {
3673 		/* If there are pages to writeback, return */
3674 		if (filemap_range_has_page(file->f_mapping, pos,
3675 					   pos + write_len - 1))
3676 			return -EAGAIN;
3677 	} else {
3678 		written = filemap_write_and_wait_range(mapping, pos,
3679 							pos + write_len - 1);
3680 		if (written)
3681 			goto out;
3682 	}
3683 
3684 	/*
3685 	 * After a write we want buffered reads to be sure to go to disk to get
3686 	 * the new data.  We invalidate clean cached page from the region we're
3687 	 * about to write.  We do this *before* the write so that we can return
3688 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
3689 	 */
3690 	written = invalidate_inode_pages2_range(mapping,
3691 					pos >> PAGE_SHIFT, end);
3692 	/*
3693 	 * If a page can not be invalidated, return 0 to fall back
3694 	 * to buffered write.
3695 	 */
3696 	if (written) {
3697 		if (written == -EBUSY)
3698 			return 0;
3699 		goto out;
3700 	}
3701 
3702 	written = mapping->a_ops->direct_IO(iocb, from);
3703 
3704 	/*
3705 	 * Finally, try again to invalidate clean pages which might have been
3706 	 * cached by non-direct readahead, or faulted in by get_user_pages()
3707 	 * if the source of the write was an mmap'ed region of the file
3708 	 * we're writing.  Either one is a pretty crazy thing to do,
3709 	 * so we don't support it 100%.  If this invalidation
3710 	 * fails, tough, the write still worked...
3711 	 *
3712 	 * Most of the time we do not need this since dio_complete() will do
3713 	 * the invalidation for us. However there are some file systems that
3714 	 * do not end up with dio_complete() being called, so let's not break
3715 	 * them by removing it completely.
3716 	 *
3717 	 * Noticeable example is a blkdev_direct_IO().
3718 	 *
3719 	 * Skip invalidation for async writes or if mapping has no pages.
3720 	 */
3721 	if (written > 0 && mapping->nrpages &&
3722 	    invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3723 		dio_warn_stale_pagecache(file);
3724 
3725 	if (written > 0) {
3726 		pos += written;
3727 		write_len -= written;
3728 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3729 			i_size_write(inode, pos);
3730 			mark_inode_dirty(inode);
3731 		}
3732 		iocb->ki_pos = pos;
3733 	}
3734 	if (written != -EIOCBQUEUED)
3735 		iov_iter_revert(from, write_len - iov_iter_count(from));
3736 out:
3737 	return written;
3738 }
3739 EXPORT_SYMBOL(generic_file_direct_write);
3740 
3741 ssize_t generic_perform_write(struct file *file,
3742 				struct iov_iter *i, loff_t pos)
3743 {
3744 	struct address_space *mapping = file->f_mapping;
3745 	const struct address_space_operations *a_ops = mapping->a_ops;
3746 	long status = 0;
3747 	ssize_t written = 0;
3748 	unsigned int flags = 0;
3749 
3750 	do {
3751 		struct page *page;
3752 		unsigned long offset;	/* Offset into pagecache page */
3753 		unsigned long bytes;	/* Bytes to write to page */
3754 		size_t copied;		/* Bytes copied from user */
3755 		void *fsdata;
3756 
3757 		offset = (pos & (PAGE_SIZE - 1));
3758 		bytes = min_t(unsigned long, PAGE_SIZE - offset,
3759 						iov_iter_count(i));
3760 
3761 again:
3762 		/*
3763 		 * Bring in the user page that we will copy from _first_.
3764 		 * Otherwise there's a nasty deadlock on copying from the
3765 		 * same page as we're writing to, without it being marked
3766 		 * up-to-date.
3767 		 */
3768 		if (unlikely(fault_in_iov_iter_readable(i, bytes))) {
3769 			status = -EFAULT;
3770 			break;
3771 		}
3772 
3773 		if (fatal_signal_pending(current)) {
3774 			status = -EINTR;
3775 			break;
3776 		}
3777 
3778 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3779 						&page, &fsdata);
3780 		if (unlikely(status < 0))
3781 			break;
3782 
3783 		if (mapping_writably_mapped(mapping))
3784 			flush_dcache_page(page);
3785 
3786 		copied = copy_page_from_iter_atomic(page, offset, bytes, i);
3787 		flush_dcache_page(page);
3788 
3789 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
3790 						page, fsdata);
3791 		if (unlikely(status != copied)) {
3792 			iov_iter_revert(i, copied - max(status, 0L));
3793 			if (unlikely(status < 0))
3794 				break;
3795 		}
3796 		cond_resched();
3797 
3798 		if (unlikely(status == 0)) {
3799 			/*
3800 			 * A short copy made ->write_end() reject the
3801 			 * thing entirely.  Might be memory poisoning
3802 			 * halfway through, might be a race with munmap,
3803 			 * might be severe memory pressure.
3804 			 */
3805 			if (copied)
3806 				bytes = copied;
3807 			goto again;
3808 		}
3809 		pos += status;
3810 		written += status;
3811 
3812 		balance_dirty_pages_ratelimited(mapping);
3813 	} while (iov_iter_count(i));
3814 
3815 	return written ? written : status;
3816 }
3817 EXPORT_SYMBOL(generic_perform_write);
3818 
3819 /**
3820  * __generic_file_write_iter - write data to a file
3821  * @iocb:	IO state structure (file, offset, etc.)
3822  * @from:	iov_iter with data to write
3823  *
3824  * This function does all the work needed for actually writing data to a
3825  * file. It does all basic checks, removes SUID from the file, updates
3826  * modification times and calls proper subroutines depending on whether we
3827  * do direct IO or a standard buffered write.
3828  *
3829  * It expects i_rwsem to be grabbed unless we work on a block device or similar
3830  * object which does not need locking at all.
3831  *
3832  * This function does *not* take care of syncing data in case of O_SYNC write.
3833  * A caller has to handle it. This is mainly due to the fact that we want to
3834  * avoid syncing under i_rwsem.
3835  *
3836  * Return:
3837  * * number of bytes written, even for truncated writes
3838  * * negative error code if no data has been written at all
3839  */
3840 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3841 {
3842 	struct file *file = iocb->ki_filp;
3843 	struct address_space *mapping = file->f_mapping;
3844 	struct inode 	*inode = mapping->host;
3845 	ssize_t		written = 0;
3846 	ssize_t		err;
3847 	ssize_t		status;
3848 
3849 	/* We can write back this queue in page reclaim */
3850 	current->backing_dev_info = inode_to_bdi(inode);
3851 	err = file_remove_privs(file);
3852 	if (err)
3853 		goto out;
3854 
3855 	err = file_update_time(file);
3856 	if (err)
3857 		goto out;
3858 
3859 	if (iocb->ki_flags & IOCB_DIRECT) {
3860 		loff_t pos, endbyte;
3861 
3862 		written = generic_file_direct_write(iocb, from);
3863 		/*
3864 		 * If the write stopped short of completing, fall back to
3865 		 * buffered writes.  Some filesystems do this for writes to
3866 		 * holes, for example.  For DAX files, a buffered write will
3867 		 * not succeed (even if it did, DAX does not handle dirty
3868 		 * page-cache pages correctly).
3869 		 */
3870 		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3871 			goto out;
3872 
3873 		status = generic_perform_write(file, from, pos = iocb->ki_pos);
3874 		/*
3875 		 * If generic_perform_write() returned a synchronous error
3876 		 * then we want to return the number of bytes which were
3877 		 * direct-written, or the error code if that was zero.  Note
3878 		 * that this differs from normal direct-io semantics, which
3879 		 * will return -EFOO even if some bytes were written.
3880 		 */
3881 		if (unlikely(status < 0)) {
3882 			err = status;
3883 			goto out;
3884 		}
3885 		/*
3886 		 * We need to ensure that the page cache pages are written to
3887 		 * disk and invalidated to preserve the expected O_DIRECT
3888 		 * semantics.
3889 		 */
3890 		endbyte = pos + status - 1;
3891 		err = filemap_write_and_wait_range(mapping, pos, endbyte);
3892 		if (err == 0) {
3893 			iocb->ki_pos = endbyte + 1;
3894 			written += status;
3895 			invalidate_mapping_pages(mapping,
3896 						 pos >> PAGE_SHIFT,
3897 						 endbyte >> PAGE_SHIFT);
3898 		} else {
3899 			/*
3900 			 * We don't know how much we wrote, so just return
3901 			 * the number of bytes which were direct-written
3902 			 */
3903 		}
3904 	} else {
3905 		written = generic_perform_write(file, from, iocb->ki_pos);
3906 		if (likely(written > 0))
3907 			iocb->ki_pos += written;
3908 	}
3909 out:
3910 	current->backing_dev_info = NULL;
3911 	return written ? written : err;
3912 }
3913 EXPORT_SYMBOL(__generic_file_write_iter);
3914 
3915 /**
3916  * generic_file_write_iter - write data to a file
3917  * @iocb:	IO state structure
3918  * @from:	iov_iter with data to write
3919  *
3920  * This is a wrapper around __generic_file_write_iter() to be used by most
3921  * filesystems. It takes care of syncing the file in case of O_SYNC file
3922  * and acquires i_rwsem as needed.
3923  * Return:
3924  * * negative error code if no data has been written at all of
3925  *   vfs_fsync_range() failed for a synchronous write
3926  * * number of bytes written, even for truncated writes
3927  */
3928 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3929 {
3930 	struct file *file = iocb->ki_filp;
3931 	struct inode *inode = file->f_mapping->host;
3932 	ssize_t ret;
3933 
3934 	inode_lock(inode);
3935 	ret = generic_write_checks(iocb, from);
3936 	if (ret > 0)
3937 		ret = __generic_file_write_iter(iocb, from);
3938 	inode_unlock(inode);
3939 
3940 	if (ret > 0)
3941 		ret = generic_write_sync(iocb, ret);
3942 	return ret;
3943 }
3944 EXPORT_SYMBOL(generic_file_write_iter);
3945 
3946 /**
3947  * filemap_release_folio() - Release fs-specific metadata on a folio.
3948  * @folio: The folio which the kernel is trying to free.
3949  * @gfp: Memory allocation flags (and I/O mode).
3950  *
3951  * The address_space is trying to release any data attached to a folio
3952  * (presumably at folio->private).
3953  *
3954  * This will also be called if the private_2 flag is set on a page,
3955  * indicating that the folio has other metadata associated with it.
3956  *
3957  * The @gfp argument specifies whether I/O may be performed to release
3958  * this page (__GFP_IO), and whether the call may block
3959  * (__GFP_RECLAIM & __GFP_FS).
3960  *
3961  * Return: %true if the release was successful, otherwise %false.
3962  */
3963 bool filemap_release_folio(struct folio *folio, gfp_t gfp)
3964 {
3965 	struct address_space * const mapping = folio->mapping;
3966 
3967 	BUG_ON(!folio_test_locked(folio));
3968 	if (folio_test_writeback(folio))
3969 		return false;
3970 
3971 	if (mapping && mapping->a_ops->releasepage)
3972 		return mapping->a_ops->releasepage(&folio->page, gfp);
3973 	return try_to_free_buffers(&folio->page);
3974 }
3975 EXPORT_SYMBOL(filemap_release_folio);
3976