xref: /openbmc/linux/mm/filemap.c (revision 31b90347)
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/memcontrol.h>
35 #include <linux/cleancache.h>
36 #include "internal.h"
37 
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/filemap.h>
40 
41 /*
42  * FIXME: remove all knowledge of the buffer layer from the core VM
43  */
44 #include <linux/buffer_head.h> /* for try_to_free_buffers */
45 
46 #include <asm/mman.h>
47 
48 /*
49  * Shared mappings implemented 30.11.1994. It's not fully working yet,
50  * though.
51  *
52  * Shared mappings now work. 15.8.1995  Bruno.
53  *
54  * finished 'unifying' the page and buffer cache and SMP-threaded the
55  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
56  *
57  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
58  */
59 
60 /*
61  * Lock ordering:
62  *
63  *  ->i_mmap_mutex		(truncate_pagecache)
64  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
65  *      ->swap_lock		(exclusive_swap_page, others)
66  *        ->mapping->tree_lock
67  *
68  *  ->i_mutex
69  *    ->i_mmap_mutex		(truncate->unmap_mapping_range)
70  *
71  *  ->mmap_sem
72  *    ->i_mmap_mutex
73  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
74  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
75  *
76  *  ->mmap_sem
77  *    ->lock_page		(access_process_vm)
78  *
79  *  ->i_mutex			(generic_file_buffered_write)
80  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
81  *
82  *  bdi->wb.list_lock
83  *    sb_lock			(fs/fs-writeback.c)
84  *    ->mapping->tree_lock	(__sync_single_inode)
85  *
86  *  ->i_mmap_mutex
87  *    ->anon_vma.lock		(vma_adjust)
88  *
89  *  ->anon_vma.lock
90  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
91  *
92  *  ->page_table_lock or pte_lock
93  *    ->swap_lock		(try_to_unmap_one)
94  *    ->private_lock		(try_to_unmap_one)
95  *    ->tree_lock		(try_to_unmap_one)
96  *    ->zone.lru_lock		(follow_page->mark_page_accessed)
97  *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
98  *    ->private_lock		(page_remove_rmap->set_page_dirty)
99  *    ->tree_lock		(page_remove_rmap->set_page_dirty)
100  *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
101  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
102  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
103  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
104  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
105  *
106  * ->i_mmap_mutex
107  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
108  */
109 
110 /*
111  * Delete a page from the page cache and free it. Caller has to make
112  * sure the page is locked and that nobody else uses it - or that usage
113  * is safe.  The caller must hold the mapping's tree_lock.
114  */
115 void __delete_from_page_cache(struct page *page)
116 {
117 	struct address_space *mapping = page->mapping;
118 
119 	trace_mm_filemap_delete_from_page_cache(page);
120 	/*
121 	 * if we're uptodate, flush out into the cleancache, otherwise
122 	 * invalidate any existing cleancache entries.  We can't leave
123 	 * stale data around in the cleancache once our page is gone
124 	 */
125 	if (PageUptodate(page) && PageMappedToDisk(page))
126 		cleancache_put_page(page);
127 	else
128 		cleancache_invalidate_page(mapping, page);
129 
130 	radix_tree_delete(&mapping->page_tree, page->index);
131 	page->mapping = NULL;
132 	/* Leave page->index set: truncation lookup relies upon it */
133 	mapping->nrpages--;
134 	__dec_zone_page_state(page, NR_FILE_PAGES);
135 	if (PageSwapBacked(page))
136 		__dec_zone_page_state(page, NR_SHMEM);
137 	BUG_ON(page_mapped(page));
138 
139 	/*
140 	 * Some filesystems seem to re-dirty the page even after
141 	 * the VM has canceled the dirty bit (eg ext3 journaling).
142 	 *
143 	 * Fix it up by doing a final dirty accounting check after
144 	 * having removed the page entirely.
145 	 */
146 	if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
147 		dec_zone_page_state(page, NR_FILE_DIRTY);
148 		dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
149 	}
150 }
151 
152 /**
153  * delete_from_page_cache - delete page from page cache
154  * @page: the page which the kernel is trying to remove from page cache
155  *
156  * This must be called only on pages that have been verified to be in the page
157  * cache and locked.  It will never put the page into the free list, the caller
158  * has a reference on the page.
159  */
160 void delete_from_page_cache(struct page *page)
161 {
162 	struct address_space *mapping = page->mapping;
163 	void (*freepage)(struct page *);
164 
165 	BUG_ON(!PageLocked(page));
166 
167 	freepage = mapping->a_ops->freepage;
168 	spin_lock_irq(&mapping->tree_lock);
169 	__delete_from_page_cache(page);
170 	spin_unlock_irq(&mapping->tree_lock);
171 	mem_cgroup_uncharge_cache_page(page);
172 
173 	if (freepage)
174 		freepage(page);
175 	page_cache_release(page);
176 }
177 EXPORT_SYMBOL(delete_from_page_cache);
178 
179 static int sleep_on_page(void *word)
180 {
181 	io_schedule();
182 	return 0;
183 }
184 
185 static int sleep_on_page_killable(void *word)
186 {
187 	sleep_on_page(word);
188 	return fatal_signal_pending(current) ? -EINTR : 0;
189 }
190 
191 static int filemap_check_errors(struct address_space *mapping)
192 {
193 	int ret = 0;
194 	/* Check for outstanding write errors */
195 	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
196 		ret = -ENOSPC;
197 	if (test_and_clear_bit(AS_EIO, &mapping->flags))
198 		ret = -EIO;
199 	return ret;
200 }
201 
202 /**
203  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
204  * @mapping:	address space structure to write
205  * @start:	offset in bytes where the range starts
206  * @end:	offset in bytes where the range ends (inclusive)
207  * @sync_mode:	enable synchronous operation
208  *
209  * Start writeback against all of a mapping's dirty pages that lie
210  * within the byte offsets <start, end> inclusive.
211  *
212  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
213  * opposed to a regular memory cleansing writeback.  The difference between
214  * these two operations is that if a dirty page/buffer is encountered, it must
215  * be waited upon, and not just skipped over.
216  */
217 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
218 				loff_t end, int sync_mode)
219 {
220 	int ret;
221 	struct writeback_control wbc = {
222 		.sync_mode = sync_mode,
223 		.nr_to_write = LONG_MAX,
224 		.range_start = start,
225 		.range_end = end,
226 	};
227 
228 	if (!mapping_cap_writeback_dirty(mapping))
229 		return 0;
230 
231 	ret = do_writepages(mapping, &wbc);
232 	return ret;
233 }
234 
235 static inline int __filemap_fdatawrite(struct address_space *mapping,
236 	int sync_mode)
237 {
238 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
239 }
240 
241 int filemap_fdatawrite(struct address_space *mapping)
242 {
243 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
244 }
245 EXPORT_SYMBOL(filemap_fdatawrite);
246 
247 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
248 				loff_t end)
249 {
250 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
251 }
252 EXPORT_SYMBOL(filemap_fdatawrite_range);
253 
254 /**
255  * filemap_flush - mostly a non-blocking flush
256  * @mapping:	target address_space
257  *
258  * This is a mostly non-blocking flush.  Not suitable for data-integrity
259  * purposes - I/O may not be started against all dirty pages.
260  */
261 int filemap_flush(struct address_space *mapping)
262 {
263 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
264 }
265 EXPORT_SYMBOL(filemap_flush);
266 
267 /**
268  * filemap_fdatawait_range - wait for writeback to complete
269  * @mapping:		address space structure to wait for
270  * @start_byte:		offset in bytes where the range starts
271  * @end_byte:		offset in bytes where the range ends (inclusive)
272  *
273  * Walk the list of under-writeback pages of the given address space
274  * in the given range and wait for all of them.
275  */
276 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
277 			    loff_t end_byte)
278 {
279 	pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
280 	pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
281 	struct pagevec pvec;
282 	int nr_pages;
283 	int ret2, ret = 0;
284 
285 	if (end_byte < start_byte)
286 		goto out;
287 
288 	pagevec_init(&pvec, 0);
289 	while ((index <= end) &&
290 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
291 			PAGECACHE_TAG_WRITEBACK,
292 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
293 		unsigned i;
294 
295 		for (i = 0; i < nr_pages; i++) {
296 			struct page *page = pvec.pages[i];
297 
298 			/* until radix tree lookup accepts end_index */
299 			if (page->index > end)
300 				continue;
301 
302 			wait_on_page_writeback(page);
303 			if (TestClearPageError(page))
304 				ret = -EIO;
305 		}
306 		pagevec_release(&pvec);
307 		cond_resched();
308 	}
309 out:
310 	ret2 = filemap_check_errors(mapping);
311 	if (!ret)
312 		ret = ret2;
313 
314 	return ret;
315 }
316 EXPORT_SYMBOL(filemap_fdatawait_range);
317 
318 /**
319  * filemap_fdatawait - wait for all under-writeback pages to complete
320  * @mapping: address space structure to wait for
321  *
322  * Walk the list of under-writeback pages of the given address space
323  * and wait for all of them.
324  */
325 int filemap_fdatawait(struct address_space *mapping)
326 {
327 	loff_t i_size = i_size_read(mapping->host);
328 
329 	if (i_size == 0)
330 		return 0;
331 
332 	return filemap_fdatawait_range(mapping, 0, i_size - 1);
333 }
334 EXPORT_SYMBOL(filemap_fdatawait);
335 
336 int filemap_write_and_wait(struct address_space *mapping)
337 {
338 	int err = 0;
339 
340 	if (mapping->nrpages) {
341 		err = filemap_fdatawrite(mapping);
342 		/*
343 		 * Even if the above returned error, the pages may be
344 		 * written partially (e.g. -ENOSPC), so we wait for it.
345 		 * But the -EIO is special case, it may indicate the worst
346 		 * thing (e.g. bug) happened, so we avoid waiting for it.
347 		 */
348 		if (err != -EIO) {
349 			int err2 = filemap_fdatawait(mapping);
350 			if (!err)
351 				err = err2;
352 		}
353 	} else {
354 		err = filemap_check_errors(mapping);
355 	}
356 	return err;
357 }
358 EXPORT_SYMBOL(filemap_write_and_wait);
359 
360 /**
361  * filemap_write_and_wait_range - write out & wait on a file range
362  * @mapping:	the address_space for the pages
363  * @lstart:	offset in bytes where the range starts
364  * @lend:	offset in bytes where the range ends (inclusive)
365  *
366  * Write out and wait upon file offsets lstart->lend, inclusive.
367  *
368  * Note that `lend' is inclusive (describes the last byte to be written) so
369  * that this function can be used to write to the very end-of-file (end = -1).
370  */
371 int filemap_write_and_wait_range(struct address_space *mapping,
372 				 loff_t lstart, loff_t lend)
373 {
374 	int err = 0;
375 
376 	if (mapping->nrpages) {
377 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
378 						 WB_SYNC_ALL);
379 		/* See comment of filemap_write_and_wait() */
380 		if (err != -EIO) {
381 			int err2 = filemap_fdatawait_range(mapping,
382 						lstart, lend);
383 			if (!err)
384 				err = err2;
385 		}
386 	} else {
387 		err = filemap_check_errors(mapping);
388 	}
389 	return err;
390 }
391 EXPORT_SYMBOL(filemap_write_and_wait_range);
392 
393 /**
394  * replace_page_cache_page - replace a pagecache page with a new one
395  * @old:	page to be replaced
396  * @new:	page to replace with
397  * @gfp_mask:	allocation mode
398  *
399  * This function replaces a page in the pagecache with a new one.  On
400  * success it acquires the pagecache reference for the new page and
401  * drops it for the old page.  Both the old and new pages must be
402  * locked.  This function does not add the new page to the LRU, the
403  * caller must do that.
404  *
405  * The remove + add is atomic.  The only way this function can fail is
406  * memory allocation failure.
407  */
408 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
409 {
410 	int error;
411 
412 	VM_BUG_ON(!PageLocked(old));
413 	VM_BUG_ON(!PageLocked(new));
414 	VM_BUG_ON(new->mapping);
415 
416 	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
417 	if (!error) {
418 		struct address_space *mapping = old->mapping;
419 		void (*freepage)(struct page *);
420 
421 		pgoff_t offset = old->index;
422 		freepage = mapping->a_ops->freepage;
423 
424 		page_cache_get(new);
425 		new->mapping = mapping;
426 		new->index = offset;
427 
428 		spin_lock_irq(&mapping->tree_lock);
429 		__delete_from_page_cache(old);
430 		error = radix_tree_insert(&mapping->page_tree, offset, new);
431 		BUG_ON(error);
432 		mapping->nrpages++;
433 		__inc_zone_page_state(new, NR_FILE_PAGES);
434 		if (PageSwapBacked(new))
435 			__inc_zone_page_state(new, NR_SHMEM);
436 		spin_unlock_irq(&mapping->tree_lock);
437 		/* mem_cgroup codes must not be called under tree_lock */
438 		mem_cgroup_replace_page_cache(old, new);
439 		radix_tree_preload_end();
440 		if (freepage)
441 			freepage(old);
442 		page_cache_release(old);
443 	}
444 
445 	return error;
446 }
447 EXPORT_SYMBOL_GPL(replace_page_cache_page);
448 
449 /**
450  * add_to_page_cache_locked - add a locked page to the pagecache
451  * @page:	page to add
452  * @mapping:	the page's address_space
453  * @offset:	page index
454  * @gfp_mask:	page allocation mode
455  *
456  * This function is used to add a page to the pagecache. It must be locked.
457  * This function does not add the page to the LRU.  The caller must do that.
458  */
459 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
460 		pgoff_t offset, gfp_t gfp_mask)
461 {
462 	int error;
463 
464 	VM_BUG_ON(!PageLocked(page));
465 	VM_BUG_ON(PageSwapBacked(page));
466 
467 	error = mem_cgroup_cache_charge(page, current->mm,
468 					gfp_mask & GFP_RECLAIM_MASK);
469 	if (error)
470 		return error;
471 
472 	error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
473 	if (error) {
474 		mem_cgroup_uncharge_cache_page(page);
475 		return error;
476 	}
477 
478 	page_cache_get(page);
479 	page->mapping = mapping;
480 	page->index = offset;
481 
482 	spin_lock_irq(&mapping->tree_lock);
483 	error = radix_tree_insert(&mapping->page_tree, offset, page);
484 	radix_tree_preload_end();
485 	if (unlikely(error))
486 		goto err_insert;
487 	mapping->nrpages++;
488 	__inc_zone_page_state(page, NR_FILE_PAGES);
489 	spin_unlock_irq(&mapping->tree_lock);
490 	trace_mm_filemap_add_to_page_cache(page);
491 	return 0;
492 err_insert:
493 	page->mapping = NULL;
494 	/* Leave page->index set: truncation relies upon it */
495 	spin_unlock_irq(&mapping->tree_lock);
496 	mem_cgroup_uncharge_cache_page(page);
497 	page_cache_release(page);
498 	return error;
499 }
500 EXPORT_SYMBOL(add_to_page_cache_locked);
501 
502 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
503 				pgoff_t offset, gfp_t gfp_mask)
504 {
505 	int ret;
506 
507 	ret = add_to_page_cache(page, mapping, offset, gfp_mask);
508 	if (ret == 0)
509 		lru_cache_add_file(page);
510 	return ret;
511 }
512 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
513 
514 #ifdef CONFIG_NUMA
515 struct page *__page_cache_alloc(gfp_t gfp)
516 {
517 	int n;
518 	struct page *page;
519 
520 	if (cpuset_do_page_mem_spread()) {
521 		unsigned int cpuset_mems_cookie;
522 		do {
523 			cpuset_mems_cookie = get_mems_allowed();
524 			n = cpuset_mem_spread_node();
525 			page = alloc_pages_exact_node(n, gfp, 0);
526 		} while (!put_mems_allowed(cpuset_mems_cookie) && !page);
527 
528 		return page;
529 	}
530 	return alloc_pages(gfp, 0);
531 }
532 EXPORT_SYMBOL(__page_cache_alloc);
533 #endif
534 
535 /*
536  * In order to wait for pages to become available there must be
537  * waitqueues associated with pages. By using a hash table of
538  * waitqueues where the bucket discipline is to maintain all
539  * waiters on the same queue and wake all when any of the pages
540  * become available, and for the woken contexts to check to be
541  * sure the appropriate page became available, this saves space
542  * at a cost of "thundering herd" phenomena during rare hash
543  * collisions.
544  */
545 static wait_queue_head_t *page_waitqueue(struct page *page)
546 {
547 	const struct zone *zone = page_zone(page);
548 
549 	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
550 }
551 
552 static inline void wake_up_page(struct page *page, int bit)
553 {
554 	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
555 }
556 
557 void wait_on_page_bit(struct page *page, int bit_nr)
558 {
559 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
560 
561 	if (test_bit(bit_nr, &page->flags))
562 		__wait_on_bit(page_waitqueue(page), &wait, sleep_on_page,
563 							TASK_UNINTERRUPTIBLE);
564 }
565 EXPORT_SYMBOL(wait_on_page_bit);
566 
567 int wait_on_page_bit_killable(struct page *page, int bit_nr)
568 {
569 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
570 
571 	if (!test_bit(bit_nr, &page->flags))
572 		return 0;
573 
574 	return __wait_on_bit(page_waitqueue(page), &wait,
575 			     sleep_on_page_killable, TASK_KILLABLE);
576 }
577 
578 /**
579  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
580  * @page: Page defining the wait queue of interest
581  * @waiter: Waiter to add to the queue
582  *
583  * Add an arbitrary @waiter to the wait queue for the nominated @page.
584  */
585 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
586 {
587 	wait_queue_head_t *q = page_waitqueue(page);
588 	unsigned long flags;
589 
590 	spin_lock_irqsave(&q->lock, flags);
591 	__add_wait_queue(q, waiter);
592 	spin_unlock_irqrestore(&q->lock, flags);
593 }
594 EXPORT_SYMBOL_GPL(add_page_wait_queue);
595 
596 /**
597  * unlock_page - unlock a locked page
598  * @page: the page
599  *
600  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
601  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
602  * mechananism between PageLocked pages and PageWriteback pages is shared.
603  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
604  *
605  * The mb is necessary to enforce ordering between the clear_bit and the read
606  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
607  */
608 void unlock_page(struct page *page)
609 {
610 	VM_BUG_ON(!PageLocked(page));
611 	clear_bit_unlock(PG_locked, &page->flags);
612 	smp_mb__after_clear_bit();
613 	wake_up_page(page, PG_locked);
614 }
615 EXPORT_SYMBOL(unlock_page);
616 
617 /**
618  * end_page_writeback - end writeback against a page
619  * @page: the page
620  */
621 void end_page_writeback(struct page *page)
622 {
623 	if (TestClearPageReclaim(page))
624 		rotate_reclaimable_page(page);
625 
626 	if (!test_clear_page_writeback(page))
627 		BUG();
628 
629 	smp_mb__after_clear_bit();
630 	wake_up_page(page, PG_writeback);
631 }
632 EXPORT_SYMBOL(end_page_writeback);
633 
634 /**
635  * __lock_page - get a lock on the page, assuming we need to sleep to get it
636  * @page: the page to lock
637  */
638 void __lock_page(struct page *page)
639 {
640 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
641 
642 	__wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page,
643 							TASK_UNINTERRUPTIBLE);
644 }
645 EXPORT_SYMBOL(__lock_page);
646 
647 int __lock_page_killable(struct page *page)
648 {
649 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
650 
651 	return __wait_on_bit_lock(page_waitqueue(page), &wait,
652 					sleep_on_page_killable, TASK_KILLABLE);
653 }
654 EXPORT_SYMBOL_GPL(__lock_page_killable);
655 
656 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
657 			 unsigned int flags)
658 {
659 	if (flags & FAULT_FLAG_ALLOW_RETRY) {
660 		/*
661 		 * CAUTION! In this case, mmap_sem is not released
662 		 * even though return 0.
663 		 */
664 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
665 			return 0;
666 
667 		up_read(&mm->mmap_sem);
668 		if (flags & FAULT_FLAG_KILLABLE)
669 			wait_on_page_locked_killable(page);
670 		else
671 			wait_on_page_locked(page);
672 		return 0;
673 	} else {
674 		if (flags & FAULT_FLAG_KILLABLE) {
675 			int ret;
676 
677 			ret = __lock_page_killable(page);
678 			if (ret) {
679 				up_read(&mm->mmap_sem);
680 				return 0;
681 			}
682 		} else
683 			__lock_page(page);
684 		return 1;
685 	}
686 }
687 
688 /**
689  * find_get_page - find and get a page reference
690  * @mapping: the address_space to search
691  * @offset: the page index
692  *
693  * Is there a pagecache struct page at the given (mapping, offset) tuple?
694  * If yes, increment its refcount and return it; if no, return NULL.
695  */
696 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
697 {
698 	void **pagep;
699 	struct page *page;
700 
701 	rcu_read_lock();
702 repeat:
703 	page = NULL;
704 	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
705 	if (pagep) {
706 		page = radix_tree_deref_slot(pagep);
707 		if (unlikely(!page))
708 			goto out;
709 		if (radix_tree_exception(page)) {
710 			if (radix_tree_deref_retry(page))
711 				goto repeat;
712 			/*
713 			 * Otherwise, shmem/tmpfs must be storing a swap entry
714 			 * here as an exceptional entry: so return it without
715 			 * attempting to raise page count.
716 			 */
717 			goto out;
718 		}
719 		if (!page_cache_get_speculative(page))
720 			goto repeat;
721 
722 		/*
723 		 * Has the page moved?
724 		 * This is part of the lockless pagecache protocol. See
725 		 * include/linux/pagemap.h for details.
726 		 */
727 		if (unlikely(page != *pagep)) {
728 			page_cache_release(page);
729 			goto repeat;
730 		}
731 	}
732 out:
733 	rcu_read_unlock();
734 
735 	return page;
736 }
737 EXPORT_SYMBOL(find_get_page);
738 
739 /**
740  * find_lock_page - locate, pin and lock a pagecache page
741  * @mapping: the address_space to search
742  * @offset: the page index
743  *
744  * Locates the desired pagecache page, locks it, increments its reference
745  * count and returns its address.
746  *
747  * Returns zero if the page was not present. find_lock_page() may sleep.
748  */
749 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
750 {
751 	struct page *page;
752 
753 repeat:
754 	page = find_get_page(mapping, offset);
755 	if (page && !radix_tree_exception(page)) {
756 		lock_page(page);
757 		/* Has the page been truncated? */
758 		if (unlikely(page->mapping != mapping)) {
759 			unlock_page(page);
760 			page_cache_release(page);
761 			goto repeat;
762 		}
763 		VM_BUG_ON(page->index != offset);
764 	}
765 	return page;
766 }
767 EXPORT_SYMBOL(find_lock_page);
768 
769 /**
770  * find_or_create_page - locate or add a pagecache page
771  * @mapping: the page's address_space
772  * @index: the page's index into the mapping
773  * @gfp_mask: page allocation mode
774  *
775  * Locates a page in the pagecache.  If the page is not present, a new page
776  * is allocated using @gfp_mask and is added to the pagecache and to the VM's
777  * LRU list.  The returned page is locked and has its reference count
778  * incremented.
779  *
780  * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
781  * allocation!
782  *
783  * find_or_create_page() returns the desired page's address, or zero on
784  * memory exhaustion.
785  */
786 struct page *find_or_create_page(struct address_space *mapping,
787 		pgoff_t index, gfp_t gfp_mask)
788 {
789 	struct page *page;
790 	int err;
791 repeat:
792 	page = find_lock_page(mapping, index);
793 	if (!page) {
794 		page = __page_cache_alloc(gfp_mask);
795 		if (!page)
796 			return NULL;
797 		/*
798 		 * We want a regular kernel memory (not highmem or DMA etc)
799 		 * allocation for the radix tree nodes, but we need to honour
800 		 * the context-specific requirements the caller has asked for.
801 		 * GFP_RECLAIM_MASK collects those requirements.
802 		 */
803 		err = add_to_page_cache_lru(page, mapping, index,
804 			(gfp_mask & GFP_RECLAIM_MASK));
805 		if (unlikely(err)) {
806 			page_cache_release(page);
807 			page = NULL;
808 			if (err == -EEXIST)
809 				goto repeat;
810 		}
811 	}
812 	return page;
813 }
814 EXPORT_SYMBOL(find_or_create_page);
815 
816 /**
817  * find_get_pages - gang pagecache lookup
818  * @mapping:	The address_space to search
819  * @start:	The starting page index
820  * @nr_pages:	The maximum number of pages
821  * @pages:	Where the resulting pages are placed
822  *
823  * find_get_pages() will search for and return a group of up to
824  * @nr_pages pages in the mapping.  The pages are placed at @pages.
825  * find_get_pages() takes a reference against the returned pages.
826  *
827  * The search returns a group of mapping-contiguous pages with ascending
828  * indexes.  There may be holes in the indices due to not-present pages.
829  *
830  * find_get_pages() returns the number of pages which were found.
831  */
832 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
833 			    unsigned int nr_pages, struct page **pages)
834 {
835 	struct radix_tree_iter iter;
836 	void **slot;
837 	unsigned ret = 0;
838 
839 	if (unlikely(!nr_pages))
840 		return 0;
841 
842 	rcu_read_lock();
843 restart:
844 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
845 		struct page *page;
846 repeat:
847 		page = radix_tree_deref_slot(slot);
848 		if (unlikely(!page))
849 			continue;
850 
851 		if (radix_tree_exception(page)) {
852 			if (radix_tree_deref_retry(page)) {
853 				/*
854 				 * Transient condition which can only trigger
855 				 * when entry at index 0 moves out of or back
856 				 * to root: none yet gotten, safe to restart.
857 				 */
858 				WARN_ON(iter.index);
859 				goto restart;
860 			}
861 			/*
862 			 * Otherwise, shmem/tmpfs must be storing a swap entry
863 			 * here as an exceptional entry: so skip over it -
864 			 * we only reach this from invalidate_mapping_pages().
865 			 */
866 			continue;
867 		}
868 
869 		if (!page_cache_get_speculative(page))
870 			goto repeat;
871 
872 		/* Has the page moved? */
873 		if (unlikely(page != *slot)) {
874 			page_cache_release(page);
875 			goto repeat;
876 		}
877 
878 		pages[ret] = page;
879 		if (++ret == nr_pages)
880 			break;
881 	}
882 
883 	rcu_read_unlock();
884 	return ret;
885 }
886 
887 /**
888  * find_get_pages_contig - gang contiguous pagecache lookup
889  * @mapping:	The address_space to search
890  * @index:	The starting page index
891  * @nr_pages:	The maximum number of pages
892  * @pages:	Where the resulting pages are placed
893  *
894  * find_get_pages_contig() works exactly like find_get_pages(), except
895  * that the returned number of pages are guaranteed to be contiguous.
896  *
897  * find_get_pages_contig() returns the number of pages which were found.
898  */
899 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
900 			       unsigned int nr_pages, struct page **pages)
901 {
902 	struct radix_tree_iter iter;
903 	void **slot;
904 	unsigned int ret = 0;
905 
906 	if (unlikely(!nr_pages))
907 		return 0;
908 
909 	rcu_read_lock();
910 restart:
911 	radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
912 		struct page *page;
913 repeat:
914 		page = radix_tree_deref_slot(slot);
915 		/* The hole, there no reason to continue */
916 		if (unlikely(!page))
917 			break;
918 
919 		if (radix_tree_exception(page)) {
920 			if (radix_tree_deref_retry(page)) {
921 				/*
922 				 * Transient condition which can only trigger
923 				 * when entry at index 0 moves out of or back
924 				 * to root: none yet gotten, safe to restart.
925 				 */
926 				goto restart;
927 			}
928 			/*
929 			 * Otherwise, shmem/tmpfs must be storing a swap entry
930 			 * here as an exceptional entry: so stop looking for
931 			 * contiguous pages.
932 			 */
933 			break;
934 		}
935 
936 		if (!page_cache_get_speculative(page))
937 			goto repeat;
938 
939 		/* Has the page moved? */
940 		if (unlikely(page != *slot)) {
941 			page_cache_release(page);
942 			goto repeat;
943 		}
944 
945 		/*
946 		 * must check mapping and index after taking the ref.
947 		 * otherwise we can get both false positives and false
948 		 * negatives, which is just confusing to the caller.
949 		 */
950 		if (page->mapping == NULL || page->index != iter.index) {
951 			page_cache_release(page);
952 			break;
953 		}
954 
955 		pages[ret] = page;
956 		if (++ret == nr_pages)
957 			break;
958 	}
959 	rcu_read_unlock();
960 	return ret;
961 }
962 EXPORT_SYMBOL(find_get_pages_contig);
963 
964 /**
965  * find_get_pages_tag - find and return pages that match @tag
966  * @mapping:	the address_space to search
967  * @index:	the starting page index
968  * @tag:	the tag index
969  * @nr_pages:	the maximum number of pages
970  * @pages:	where the resulting pages are placed
971  *
972  * Like find_get_pages, except we only return pages which are tagged with
973  * @tag.   We update @index to index the next page for the traversal.
974  */
975 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
976 			int tag, unsigned int nr_pages, struct page **pages)
977 {
978 	struct radix_tree_iter iter;
979 	void **slot;
980 	unsigned ret = 0;
981 
982 	if (unlikely(!nr_pages))
983 		return 0;
984 
985 	rcu_read_lock();
986 restart:
987 	radix_tree_for_each_tagged(slot, &mapping->page_tree,
988 				   &iter, *index, tag) {
989 		struct page *page;
990 repeat:
991 		page = radix_tree_deref_slot(slot);
992 		if (unlikely(!page))
993 			continue;
994 
995 		if (radix_tree_exception(page)) {
996 			if (radix_tree_deref_retry(page)) {
997 				/*
998 				 * Transient condition which can only trigger
999 				 * when entry at index 0 moves out of or back
1000 				 * to root: none yet gotten, safe to restart.
1001 				 */
1002 				goto restart;
1003 			}
1004 			/*
1005 			 * This function is never used on a shmem/tmpfs
1006 			 * mapping, so a swap entry won't be found here.
1007 			 */
1008 			BUG();
1009 		}
1010 
1011 		if (!page_cache_get_speculative(page))
1012 			goto repeat;
1013 
1014 		/* Has the page moved? */
1015 		if (unlikely(page != *slot)) {
1016 			page_cache_release(page);
1017 			goto repeat;
1018 		}
1019 
1020 		pages[ret] = page;
1021 		if (++ret == nr_pages)
1022 			break;
1023 	}
1024 
1025 	rcu_read_unlock();
1026 
1027 	if (ret)
1028 		*index = pages[ret - 1]->index + 1;
1029 
1030 	return ret;
1031 }
1032 EXPORT_SYMBOL(find_get_pages_tag);
1033 
1034 /**
1035  * grab_cache_page_nowait - returns locked page at given index in given cache
1036  * @mapping: target address_space
1037  * @index: the page index
1038  *
1039  * Same as grab_cache_page(), but do not wait if the page is unavailable.
1040  * This is intended for speculative data generators, where the data can
1041  * be regenerated if the page couldn't be grabbed.  This routine should
1042  * be safe to call while holding the lock for another page.
1043  *
1044  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
1045  * and deadlock against the caller's locked page.
1046  */
1047 struct page *
1048 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
1049 {
1050 	struct page *page = find_get_page(mapping, index);
1051 
1052 	if (page) {
1053 		if (trylock_page(page))
1054 			return page;
1055 		page_cache_release(page);
1056 		return NULL;
1057 	}
1058 	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
1059 	if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
1060 		page_cache_release(page);
1061 		page = NULL;
1062 	}
1063 	return page;
1064 }
1065 EXPORT_SYMBOL(grab_cache_page_nowait);
1066 
1067 /*
1068  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1069  * a _large_ part of the i/o request. Imagine the worst scenario:
1070  *
1071  *      ---R__________________________________________B__________
1072  *         ^ reading here                             ^ bad block(assume 4k)
1073  *
1074  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1075  * => failing the whole request => read(R) => read(R+1) =>
1076  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1077  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1078  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1079  *
1080  * It is going insane. Fix it by quickly scaling down the readahead size.
1081  */
1082 static void shrink_readahead_size_eio(struct file *filp,
1083 					struct file_ra_state *ra)
1084 {
1085 	ra->ra_pages /= 4;
1086 }
1087 
1088 /**
1089  * do_generic_file_read - generic file read routine
1090  * @filp:	the file to read
1091  * @ppos:	current file position
1092  * @desc:	read_descriptor
1093  *
1094  * This is a generic file read routine, and uses the
1095  * mapping->a_ops->readpage() function for the actual low-level stuff.
1096  *
1097  * This is really ugly. But the goto's actually try to clarify some
1098  * of the logic when it comes to error handling etc.
1099  */
1100 static void do_generic_file_read(struct file *filp, loff_t *ppos,
1101 		read_descriptor_t *desc)
1102 {
1103 	struct address_space *mapping = filp->f_mapping;
1104 	struct inode *inode = mapping->host;
1105 	struct file_ra_state *ra = &filp->f_ra;
1106 	pgoff_t index;
1107 	pgoff_t last_index;
1108 	pgoff_t prev_index;
1109 	unsigned long offset;      /* offset into pagecache page */
1110 	unsigned int prev_offset;
1111 	int error;
1112 
1113 	index = *ppos >> PAGE_CACHE_SHIFT;
1114 	prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1115 	prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1116 	last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1117 	offset = *ppos & ~PAGE_CACHE_MASK;
1118 
1119 	for (;;) {
1120 		struct page *page;
1121 		pgoff_t end_index;
1122 		loff_t isize;
1123 		unsigned long nr, ret;
1124 
1125 		cond_resched();
1126 find_page:
1127 		page = find_get_page(mapping, index);
1128 		if (!page) {
1129 			page_cache_sync_readahead(mapping,
1130 					ra, filp,
1131 					index, last_index - index);
1132 			page = find_get_page(mapping, index);
1133 			if (unlikely(page == NULL))
1134 				goto no_cached_page;
1135 		}
1136 		if (PageReadahead(page)) {
1137 			page_cache_async_readahead(mapping,
1138 					ra, filp, page,
1139 					index, last_index - index);
1140 		}
1141 		if (!PageUptodate(page)) {
1142 			if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1143 					!mapping->a_ops->is_partially_uptodate)
1144 				goto page_not_up_to_date;
1145 			if (!trylock_page(page))
1146 				goto page_not_up_to_date;
1147 			/* Did it get truncated before we got the lock? */
1148 			if (!page->mapping)
1149 				goto page_not_up_to_date_locked;
1150 			if (!mapping->a_ops->is_partially_uptodate(page,
1151 								desc, offset))
1152 				goto page_not_up_to_date_locked;
1153 			unlock_page(page);
1154 		}
1155 page_ok:
1156 		/*
1157 		 * i_size must be checked after we know the page is Uptodate.
1158 		 *
1159 		 * Checking i_size after the check allows us to calculate
1160 		 * the correct value for "nr", which means the zero-filled
1161 		 * part of the page is not copied back to userspace (unless
1162 		 * another truncate extends the file - this is desired though).
1163 		 */
1164 
1165 		isize = i_size_read(inode);
1166 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1167 		if (unlikely(!isize || index > end_index)) {
1168 			page_cache_release(page);
1169 			goto out;
1170 		}
1171 
1172 		/* nr is the maximum number of bytes to copy from this page */
1173 		nr = PAGE_CACHE_SIZE;
1174 		if (index == end_index) {
1175 			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1176 			if (nr <= offset) {
1177 				page_cache_release(page);
1178 				goto out;
1179 			}
1180 		}
1181 		nr = nr - offset;
1182 
1183 		/* If users can be writing to this page using arbitrary
1184 		 * virtual addresses, take care about potential aliasing
1185 		 * before reading the page on the kernel side.
1186 		 */
1187 		if (mapping_writably_mapped(mapping))
1188 			flush_dcache_page(page);
1189 
1190 		/*
1191 		 * When a sequential read accesses a page several times,
1192 		 * only mark it as accessed the first time.
1193 		 */
1194 		if (prev_index != index || offset != prev_offset)
1195 			mark_page_accessed(page);
1196 		prev_index = index;
1197 
1198 		/*
1199 		 * Ok, we have the page, and it's up-to-date, so
1200 		 * now we can copy it to user space...
1201 		 *
1202 		 * The file_read_actor routine returns how many bytes were
1203 		 * actually used..
1204 		 * NOTE! This may not be the same as how much of a user buffer
1205 		 * we filled up (we may be padding etc), so we can only update
1206 		 * "pos" here (the actor routine has to update the user buffer
1207 		 * pointers and the remaining count).
1208 		 */
1209 		ret = file_read_actor(desc, page, offset, nr);
1210 		offset += ret;
1211 		index += offset >> PAGE_CACHE_SHIFT;
1212 		offset &= ~PAGE_CACHE_MASK;
1213 		prev_offset = offset;
1214 
1215 		page_cache_release(page);
1216 		if (ret == nr && desc->count)
1217 			continue;
1218 		goto out;
1219 
1220 page_not_up_to_date:
1221 		/* Get exclusive access to the page ... */
1222 		error = lock_page_killable(page);
1223 		if (unlikely(error))
1224 			goto readpage_error;
1225 
1226 page_not_up_to_date_locked:
1227 		/* Did it get truncated before we got the lock? */
1228 		if (!page->mapping) {
1229 			unlock_page(page);
1230 			page_cache_release(page);
1231 			continue;
1232 		}
1233 
1234 		/* Did somebody else fill it already? */
1235 		if (PageUptodate(page)) {
1236 			unlock_page(page);
1237 			goto page_ok;
1238 		}
1239 
1240 readpage:
1241 		/*
1242 		 * A previous I/O error may have been due to temporary
1243 		 * failures, eg. multipath errors.
1244 		 * PG_error will be set again if readpage fails.
1245 		 */
1246 		ClearPageError(page);
1247 		/* Start the actual read. The read will unlock the page. */
1248 		error = mapping->a_ops->readpage(filp, page);
1249 
1250 		if (unlikely(error)) {
1251 			if (error == AOP_TRUNCATED_PAGE) {
1252 				page_cache_release(page);
1253 				goto find_page;
1254 			}
1255 			goto readpage_error;
1256 		}
1257 
1258 		if (!PageUptodate(page)) {
1259 			error = lock_page_killable(page);
1260 			if (unlikely(error))
1261 				goto readpage_error;
1262 			if (!PageUptodate(page)) {
1263 				if (page->mapping == NULL) {
1264 					/*
1265 					 * invalidate_mapping_pages got it
1266 					 */
1267 					unlock_page(page);
1268 					page_cache_release(page);
1269 					goto find_page;
1270 				}
1271 				unlock_page(page);
1272 				shrink_readahead_size_eio(filp, ra);
1273 				error = -EIO;
1274 				goto readpage_error;
1275 			}
1276 			unlock_page(page);
1277 		}
1278 
1279 		goto page_ok;
1280 
1281 readpage_error:
1282 		/* UHHUH! A synchronous read error occurred. Report it */
1283 		desc->error = error;
1284 		page_cache_release(page);
1285 		goto out;
1286 
1287 no_cached_page:
1288 		/*
1289 		 * Ok, it wasn't cached, so we need to create a new
1290 		 * page..
1291 		 */
1292 		page = page_cache_alloc_cold(mapping);
1293 		if (!page) {
1294 			desc->error = -ENOMEM;
1295 			goto out;
1296 		}
1297 		error = add_to_page_cache_lru(page, mapping,
1298 						index, GFP_KERNEL);
1299 		if (error) {
1300 			page_cache_release(page);
1301 			if (error == -EEXIST)
1302 				goto find_page;
1303 			desc->error = error;
1304 			goto out;
1305 		}
1306 		goto readpage;
1307 	}
1308 
1309 out:
1310 	ra->prev_pos = prev_index;
1311 	ra->prev_pos <<= PAGE_CACHE_SHIFT;
1312 	ra->prev_pos |= prev_offset;
1313 
1314 	*ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1315 	file_accessed(filp);
1316 }
1317 
1318 int file_read_actor(read_descriptor_t *desc, struct page *page,
1319 			unsigned long offset, unsigned long size)
1320 {
1321 	char *kaddr;
1322 	unsigned long left, count = desc->count;
1323 
1324 	if (size > count)
1325 		size = count;
1326 
1327 	/*
1328 	 * Faults on the destination of a read are common, so do it before
1329 	 * taking the kmap.
1330 	 */
1331 	if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1332 		kaddr = kmap_atomic(page);
1333 		left = __copy_to_user_inatomic(desc->arg.buf,
1334 						kaddr + offset, size);
1335 		kunmap_atomic(kaddr);
1336 		if (left == 0)
1337 			goto success;
1338 	}
1339 
1340 	/* Do it the slow way */
1341 	kaddr = kmap(page);
1342 	left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1343 	kunmap(page);
1344 
1345 	if (left) {
1346 		size -= left;
1347 		desc->error = -EFAULT;
1348 	}
1349 success:
1350 	desc->count = count - size;
1351 	desc->written += size;
1352 	desc->arg.buf += size;
1353 	return size;
1354 }
1355 
1356 /*
1357  * Performs necessary checks before doing a write
1358  * @iov:	io vector request
1359  * @nr_segs:	number of segments in the iovec
1360  * @count:	number of bytes to write
1361  * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1362  *
1363  * Adjust number of segments and amount of bytes to write (nr_segs should be
1364  * properly initialized first). Returns appropriate error code that caller
1365  * should return or zero in case that write should be allowed.
1366  */
1367 int generic_segment_checks(const struct iovec *iov,
1368 			unsigned long *nr_segs, size_t *count, int access_flags)
1369 {
1370 	unsigned long   seg;
1371 	size_t cnt = 0;
1372 	for (seg = 0; seg < *nr_segs; seg++) {
1373 		const struct iovec *iv = &iov[seg];
1374 
1375 		/*
1376 		 * If any segment has a negative length, or the cumulative
1377 		 * length ever wraps negative then return -EINVAL.
1378 		 */
1379 		cnt += iv->iov_len;
1380 		if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1381 			return -EINVAL;
1382 		if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1383 			continue;
1384 		if (seg == 0)
1385 			return -EFAULT;
1386 		*nr_segs = seg;
1387 		cnt -= iv->iov_len;	/* This segment is no good */
1388 		break;
1389 	}
1390 	*count = cnt;
1391 	return 0;
1392 }
1393 EXPORT_SYMBOL(generic_segment_checks);
1394 
1395 /**
1396  * generic_file_aio_read - generic filesystem read routine
1397  * @iocb:	kernel I/O control block
1398  * @iov:	io vector request
1399  * @nr_segs:	number of segments in the iovec
1400  * @pos:	current file position
1401  *
1402  * This is the "read()" routine for all filesystems
1403  * that can use the page cache directly.
1404  */
1405 ssize_t
1406 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1407 		unsigned long nr_segs, loff_t pos)
1408 {
1409 	struct file *filp = iocb->ki_filp;
1410 	ssize_t retval;
1411 	unsigned long seg = 0;
1412 	size_t count;
1413 	loff_t *ppos = &iocb->ki_pos;
1414 
1415 	count = 0;
1416 	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1417 	if (retval)
1418 		return retval;
1419 
1420 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1421 	if (filp->f_flags & O_DIRECT) {
1422 		loff_t size;
1423 		struct address_space *mapping;
1424 		struct inode *inode;
1425 
1426 		mapping = filp->f_mapping;
1427 		inode = mapping->host;
1428 		if (!count)
1429 			goto out; /* skip atime */
1430 		size = i_size_read(inode);
1431 		if (pos < size) {
1432 			retval = filemap_write_and_wait_range(mapping, pos,
1433 					pos + iov_length(iov, nr_segs) - 1);
1434 			if (!retval) {
1435 				retval = mapping->a_ops->direct_IO(READ, iocb,
1436 							iov, pos, nr_segs);
1437 			}
1438 			if (retval > 0) {
1439 				*ppos = pos + retval;
1440 				count -= retval;
1441 			}
1442 
1443 			/*
1444 			 * Btrfs can have a short DIO read if we encounter
1445 			 * compressed extents, so if there was an error, or if
1446 			 * we've already read everything we wanted to, or if
1447 			 * there was a short read because we hit EOF, go ahead
1448 			 * and return.  Otherwise fallthrough to buffered io for
1449 			 * the rest of the read.
1450 			 */
1451 			if (retval < 0 || !count || *ppos >= size) {
1452 				file_accessed(filp);
1453 				goto out;
1454 			}
1455 		}
1456 	}
1457 
1458 	count = retval;
1459 	for (seg = 0; seg < nr_segs; seg++) {
1460 		read_descriptor_t desc;
1461 		loff_t offset = 0;
1462 
1463 		/*
1464 		 * If we did a short DIO read we need to skip the section of the
1465 		 * iov that we've already read data into.
1466 		 */
1467 		if (count) {
1468 			if (count > iov[seg].iov_len) {
1469 				count -= iov[seg].iov_len;
1470 				continue;
1471 			}
1472 			offset = count;
1473 			count = 0;
1474 		}
1475 
1476 		desc.written = 0;
1477 		desc.arg.buf = iov[seg].iov_base + offset;
1478 		desc.count = iov[seg].iov_len - offset;
1479 		if (desc.count == 0)
1480 			continue;
1481 		desc.error = 0;
1482 		do_generic_file_read(filp, ppos, &desc);
1483 		retval += desc.written;
1484 		if (desc.error) {
1485 			retval = retval ?: desc.error;
1486 			break;
1487 		}
1488 		if (desc.count > 0)
1489 			break;
1490 	}
1491 out:
1492 	return retval;
1493 }
1494 EXPORT_SYMBOL(generic_file_aio_read);
1495 
1496 #ifdef CONFIG_MMU
1497 /**
1498  * page_cache_read - adds requested page to the page cache if not already there
1499  * @file:	file to read
1500  * @offset:	page index
1501  *
1502  * This adds the requested page to the page cache if it isn't already there,
1503  * and schedules an I/O to read in its contents from disk.
1504  */
1505 static int page_cache_read(struct file *file, pgoff_t offset)
1506 {
1507 	struct address_space *mapping = file->f_mapping;
1508 	struct page *page;
1509 	int ret;
1510 
1511 	do {
1512 		page = page_cache_alloc_cold(mapping);
1513 		if (!page)
1514 			return -ENOMEM;
1515 
1516 		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1517 		if (ret == 0)
1518 			ret = mapping->a_ops->readpage(file, page);
1519 		else if (ret == -EEXIST)
1520 			ret = 0; /* losing race to add is OK */
1521 
1522 		page_cache_release(page);
1523 
1524 	} while (ret == AOP_TRUNCATED_PAGE);
1525 
1526 	return ret;
1527 }
1528 
1529 #define MMAP_LOTSAMISS  (100)
1530 
1531 /*
1532  * Synchronous readahead happens when we don't even find
1533  * a page in the page cache at all.
1534  */
1535 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1536 				   struct file_ra_state *ra,
1537 				   struct file *file,
1538 				   pgoff_t offset)
1539 {
1540 	unsigned long ra_pages;
1541 	struct address_space *mapping = file->f_mapping;
1542 
1543 	/* If we don't want any read-ahead, don't bother */
1544 	if (vma->vm_flags & VM_RAND_READ)
1545 		return;
1546 	if (!ra->ra_pages)
1547 		return;
1548 
1549 	if (vma->vm_flags & VM_SEQ_READ) {
1550 		page_cache_sync_readahead(mapping, ra, file, offset,
1551 					  ra->ra_pages);
1552 		return;
1553 	}
1554 
1555 	/* Avoid banging the cache line if not needed */
1556 	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1557 		ra->mmap_miss++;
1558 
1559 	/*
1560 	 * Do we miss much more than hit in this file? If so,
1561 	 * stop bothering with read-ahead. It will only hurt.
1562 	 */
1563 	if (ra->mmap_miss > MMAP_LOTSAMISS)
1564 		return;
1565 
1566 	/*
1567 	 * mmap read-around
1568 	 */
1569 	ra_pages = max_sane_readahead(ra->ra_pages);
1570 	ra->start = max_t(long, 0, offset - ra_pages / 2);
1571 	ra->size = ra_pages;
1572 	ra->async_size = ra_pages / 4;
1573 	ra_submit(ra, mapping, file);
1574 }
1575 
1576 /*
1577  * Asynchronous readahead happens when we find the page and PG_readahead,
1578  * so we want to possibly extend the readahead further..
1579  */
1580 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1581 				    struct file_ra_state *ra,
1582 				    struct file *file,
1583 				    struct page *page,
1584 				    pgoff_t offset)
1585 {
1586 	struct address_space *mapping = file->f_mapping;
1587 
1588 	/* If we don't want any read-ahead, don't bother */
1589 	if (vma->vm_flags & VM_RAND_READ)
1590 		return;
1591 	if (ra->mmap_miss > 0)
1592 		ra->mmap_miss--;
1593 	if (PageReadahead(page))
1594 		page_cache_async_readahead(mapping, ra, file,
1595 					   page, offset, ra->ra_pages);
1596 }
1597 
1598 /**
1599  * filemap_fault - read in file data for page fault handling
1600  * @vma:	vma in which the fault was taken
1601  * @vmf:	struct vm_fault containing details of the fault
1602  *
1603  * filemap_fault() is invoked via the vma operations vector for a
1604  * mapped memory region to read in file data during a page fault.
1605  *
1606  * The goto's are kind of ugly, but this streamlines the normal case of having
1607  * it in the page cache, and handles the special cases reasonably without
1608  * having a lot of duplicated code.
1609  */
1610 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1611 {
1612 	int error;
1613 	struct file *file = vma->vm_file;
1614 	struct address_space *mapping = file->f_mapping;
1615 	struct file_ra_state *ra = &file->f_ra;
1616 	struct inode *inode = mapping->host;
1617 	pgoff_t offset = vmf->pgoff;
1618 	struct page *page;
1619 	pgoff_t size;
1620 	int ret = 0;
1621 
1622 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1623 	if (offset >= size)
1624 		return VM_FAULT_SIGBUS;
1625 
1626 	/*
1627 	 * Do we have something in the page cache already?
1628 	 */
1629 	page = find_get_page(mapping, offset);
1630 	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1631 		/*
1632 		 * We found the page, so try async readahead before
1633 		 * waiting for the lock.
1634 		 */
1635 		do_async_mmap_readahead(vma, ra, file, page, offset);
1636 	} else if (!page) {
1637 		/* No page in the page cache at all */
1638 		do_sync_mmap_readahead(vma, ra, file, offset);
1639 		count_vm_event(PGMAJFAULT);
1640 		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1641 		ret = VM_FAULT_MAJOR;
1642 retry_find:
1643 		page = find_get_page(mapping, offset);
1644 		if (!page)
1645 			goto no_cached_page;
1646 	}
1647 
1648 	if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1649 		page_cache_release(page);
1650 		return ret | VM_FAULT_RETRY;
1651 	}
1652 
1653 	/* Did it get truncated? */
1654 	if (unlikely(page->mapping != mapping)) {
1655 		unlock_page(page);
1656 		put_page(page);
1657 		goto retry_find;
1658 	}
1659 	VM_BUG_ON(page->index != offset);
1660 
1661 	/*
1662 	 * We have a locked page in the page cache, now we need to check
1663 	 * that it's up-to-date. If not, it is going to be due to an error.
1664 	 */
1665 	if (unlikely(!PageUptodate(page)))
1666 		goto page_not_uptodate;
1667 
1668 	/*
1669 	 * Found the page and have a reference on it.
1670 	 * We must recheck i_size under page lock.
1671 	 */
1672 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1673 	if (unlikely(offset >= size)) {
1674 		unlock_page(page);
1675 		page_cache_release(page);
1676 		return VM_FAULT_SIGBUS;
1677 	}
1678 
1679 	vmf->page = page;
1680 	return ret | VM_FAULT_LOCKED;
1681 
1682 no_cached_page:
1683 	/*
1684 	 * We're only likely to ever get here if MADV_RANDOM is in
1685 	 * effect.
1686 	 */
1687 	error = page_cache_read(file, offset);
1688 
1689 	/*
1690 	 * The page we want has now been added to the page cache.
1691 	 * In the unlikely event that someone removed it in the
1692 	 * meantime, we'll just come back here and read it again.
1693 	 */
1694 	if (error >= 0)
1695 		goto retry_find;
1696 
1697 	/*
1698 	 * An error return from page_cache_read can result if the
1699 	 * system is low on memory, or a problem occurs while trying
1700 	 * to schedule I/O.
1701 	 */
1702 	if (error == -ENOMEM)
1703 		return VM_FAULT_OOM;
1704 	return VM_FAULT_SIGBUS;
1705 
1706 page_not_uptodate:
1707 	/*
1708 	 * Umm, take care of errors if the page isn't up-to-date.
1709 	 * Try to re-read it _once_. We do this synchronously,
1710 	 * because there really aren't any performance issues here
1711 	 * and we need to check for errors.
1712 	 */
1713 	ClearPageError(page);
1714 	error = mapping->a_ops->readpage(file, page);
1715 	if (!error) {
1716 		wait_on_page_locked(page);
1717 		if (!PageUptodate(page))
1718 			error = -EIO;
1719 	}
1720 	page_cache_release(page);
1721 
1722 	if (!error || error == AOP_TRUNCATED_PAGE)
1723 		goto retry_find;
1724 
1725 	/* Things didn't work out. Return zero to tell the mm layer so. */
1726 	shrink_readahead_size_eio(file, ra);
1727 	return VM_FAULT_SIGBUS;
1728 }
1729 EXPORT_SYMBOL(filemap_fault);
1730 
1731 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
1732 {
1733 	struct page *page = vmf->page;
1734 	struct inode *inode = file_inode(vma->vm_file);
1735 	int ret = VM_FAULT_LOCKED;
1736 
1737 	sb_start_pagefault(inode->i_sb);
1738 	file_update_time(vma->vm_file);
1739 	lock_page(page);
1740 	if (page->mapping != inode->i_mapping) {
1741 		unlock_page(page);
1742 		ret = VM_FAULT_NOPAGE;
1743 		goto out;
1744 	}
1745 	/*
1746 	 * We mark the page dirty already here so that when freeze is in
1747 	 * progress, we are guaranteed that writeback during freezing will
1748 	 * see the dirty page and writeprotect it again.
1749 	 */
1750 	set_page_dirty(page);
1751 	wait_for_stable_page(page);
1752 out:
1753 	sb_end_pagefault(inode->i_sb);
1754 	return ret;
1755 }
1756 EXPORT_SYMBOL(filemap_page_mkwrite);
1757 
1758 const struct vm_operations_struct generic_file_vm_ops = {
1759 	.fault		= filemap_fault,
1760 	.page_mkwrite	= filemap_page_mkwrite,
1761 	.remap_pages	= generic_file_remap_pages,
1762 };
1763 
1764 /* This is used for a general mmap of a disk file */
1765 
1766 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1767 {
1768 	struct address_space *mapping = file->f_mapping;
1769 
1770 	if (!mapping->a_ops->readpage)
1771 		return -ENOEXEC;
1772 	file_accessed(file);
1773 	vma->vm_ops = &generic_file_vm_ops;
1774 	return 0;
1775 }
1776 
1777 /*
1778  * This is for filesystems which do not implement ->writepage.
1779  */
1780 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1781 {
1782 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1783 		return -EINVAL;
1784 	return generic_file_mmap(file, vma);
1785 }
1786 #else
1787 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1788 {
1789 	return -ENOSYS;
1790 }
1791 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1792 {
1793 	return -ENOSYS;
1794 }
1795 #endif /* CONFIG_MMU */
1796 
1797 EXPORT_SYMBOL(generic_file_mmap);
1798 EXPORT_SYMBOL(generic_file_readonly_mmap);
1799 
1800 static struct page *__read_cache_page(struct address_space *mapping,
1801 				pgoff_t index,
1802 				int (*filler)(void *, struct page *),
1803 				void *data,
1804 				gfp_t gfp)
1805 {
1806 	struct page *page;
1807 	int err;
1808 repeat:
1809 	page = find_get_page(mapping, index);
1810 	if (!page) {
1811 		page = __page_cache_alloc(gfp | __GFP_COLD);
1812 		if (!page)
1813 			return ERR_PTR(-ENOMEM);
1814 		err = add_to_page_cache_lru(page, mapping, index, gfp);
1815 		if (unlikely(err)) {
1816 			page_cache_release(page);
1817 			if (err == -EEXIST)
1818 				goto repeat;
1819 			/* Presumably ENOMEM for radix tree node */
1820 			return ERR_PTR(err);
1821 		}
1822 		err = filler(data, page);
1823 		if (err < 0) {
1824 			page_cache_release(page);
1825 			page = ERR_PTR(err);
1826 		}
1827 	}
1828 	return page;
1829 }
1830 
1831 static struct page *do_read_cache_page(struct address_space *mapping,
1832 				pgoff_t index,
1833 				int (*filler)(void *, struct page *),
1834 				void *data,
1835 				gfp_t gfp)
1836 
1837 {
1838 	struct page *page;
1839 	int err;
1840 
1841 retry:
1842 	page = __read_cache_page(mapping, index, filler, data, gfp);
1843 	if (IS_ERR(page))
1844 		return page;
1845 	if (PageUptodate(page))
1846 		goto out;
1847 
1848 	lock_page(page);
1849 	if (!page->mapping) {
1850 		unlock_page(page);
1851 		page_cache_release(page);
1852 		goto retry;
1853 	}
1854 	if (PageUptodate(page)) {
1855 		unlock_page(page);
1856 		goto out;
1857 	}
1858 	err = filler(data, page);
1859 	if (err < 0) {
1860 		page_cache_release(page);
1861 		return ERR_PTR(err);
1862 	}
1863 out:
1864 	mark_page_accessed(page);
1865 	return page;
1866 }
1867 
1868 /**
1869  * read_cache_page_async - read into page cache, fill it if needed
1870  * @mapping:	the page's address_space
1871  * @index:	the page index
1872  * @filler:	function to perform the read
1873  * @data:	first arg to filler(data, page) function, often left as NULL
1874  *
1875  * Same as read_cache_page, but don't wait for page to become unlocked
1876  * after submitting it to the filler.
1877  *
1878  * Read into the page cache. If a page already exists, and PageUptodate() is
1879  * not set, try to fill the page but don't wait for it to become unlocked.
1880  *
1881  * If the page does not get brought uptodate, return -EIO.
1882  */
1883 struct page *read_cache_page_async(struct address_space *mapping,
1884 				pgoff_t index,
1885 				int (*filler)(void *, struct page *),
1886 				void *data)
1887 {
1888 	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
1889 }
1890 EXPORT_SYMBOL(read_cache_page_async);
1891 
1892 static struct page *wait_on_page_read(struct page *page)
1893 {
1894 	if (!IS_ERR(page)) {
1895 		wait_on_page_locked(page);
1896 		if (!PageUptodate(page)) {
1897 			page_cache_release(page);
1898 			page = ERR_PTR(-EIO);
1899 		}
1900 	}
1901 	return page;
1902 }
1903 
1904 /**
1905  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1906  * @mapping:	the page's address_space
1907  * @index:	the page index
1908  * @gfp:	the page allocator flags to use if allocating
1909  *
1910  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1911  * any new page allocations done using the specified allocation flags.
1912  *
1913  * If the page does not get brought uptodate, return -EIO.
1914  */
1915 struct page *read_cache_page_gfp(struct address_space *mapping,
1916 				pgoff_t index,
1917 				gfp_t gfp)
1918 {
1919 	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
1920 
1921 	return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
1922 }
1923 EXPORT_SYMBOL(read_cache_page_gfp);
1924 
1925 /**
1926  * read_cache_page - read into page cache, fill it if needed
1927  * @mapping:	the page's address_space
1928  * @index:	the page index
1929  * @filler:	function to perform the read
1930  * @data:	first arg to filler(data, page) function, often left as NULL
1931  *
1932  * Read into the page cache. If a page already exists, and PageUptodate() is
1933  * not set, try to fill the page then wait for it to become unlocked.
1934  *
1935  * If the page does not get brought uptodate, return -EIO.
1936  */
1937 struct page *read_cache_page(struct address_space *mapping,
1938 				pgoff_t index,
1939 				int (*filler)(void *, struct page *),
1940 				void *data)
1941 {
1942 	return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1943 }
1944 EXPORT_SYMBOL(read_cache_page);
1945 
1946 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1947 			const struct iovec *iov, size_t base, size_t bytes)
1948 {
1949 	size_t copied = 0, left = 0;
1950 
1951 	while (bytes) {
1952 		char __user *buf = iov->iov_base + base;
1953 		int copy = min(bytes, iov->iov_len - base);
1954 
1955 		base = 0;
1956 		left = __copy_from_user_inatomic(vaddr, buf, copy);
1957 		copied += copy;
1958 		bytes -= copy;
1959 		vaddr += copy;
1960 		iov++;
1961 
1962 		if (unlikely(left))
1963 			break;
1964 	}
1965 	return copied - left;
1966 }
1967 
1968 /*
1969  * Copy as much as we can into the page and return the number of bytes which
1970  * were successfully copied.  If a fault is encountered then return the number of
1971  * bytes which were copied.
1972  */
1973 size_t iov_iter_copy_from_user_atomic(struct page *page,
1974 		struct iov_iter *i, unsigned long offset, size_t bytes)
1975 {
1976 	char *kaddr;
1977 	size_t copied;
1978 
1979 	BUG_ON(!in_atomic());
1980 	kaddr = kmap_atomic(page);
1981 	if (likely(i->nr_segs == 1)) {
1982 		int left;
1983 		char __user *buf = i->iov->iov_base + i->iov_offset;
1984 		left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
1985 		copied = bytes - left;
1986 	} else {
1987 		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1988 						i->iov, i->iov_offset, bytes);
1989 	}
1990 	kunmap_atomic(kaddr);
1991 
1992 	return copied;
1993 }
1994 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1995 
1996 /*
1997  * This has the same sideeffects and return value as
1998  * iov_iter_copy_from_user_atomic().
1999  * The difference is that it attempts to resolve faults.
2000  * Page must not be locked.
2001  */
2002 size_t iov_iter_copy_from_user(struct page *page,
2003 		struct iov_iter *i, unsigned long offset, size_t bytes)
2004 {
2005 	char *kaddr;
2006 	size_t copied;
2007 
2008 	kaddr = kmap(page);
2009 	if (likely(i->nr_segs == 1)) {
2010 		int left;
2011 		char __user *buf = i->iov->iov_base + i->iov_offset;
2012 		left = __copy_from_user(kaddr + offset, buf, bytes);
2013 		copied = bytes - left;
2014 	} else {
2015 		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2016 						i->iov, i->iov_offset, bytes);
2017 	}
2018 	kunmap(page);
2019 	return copied;
2020 }
2021 EXPORT_SYMBOL(iov_iter_copy_from_user);
2022 
2023 void iov_iter_advance(struct iov_iter *i, size_t bytes)
2024 {
2025 	BUG_ON(i->count < bytes);
2026 
2027 	if (likely(i->nr_segs == 1)) {
2028 		i->iov_offset += bytes;
2029 		i->count -= bytes;
2030 	} else {
2031 		const struct iovec *iov = i->iov;
2032 		size_t base = i->iov_offset;
2033 		unsigned long nr_segs = i->nr_segs;
2034 
2035 		/*
2036 		 * The !iov->iov_len check ensures we skip over unlikely
2037 		 * zero-length segments (without overruning the iovec).
2038 		 */
2039 		while (bytes || unlikely(i->count && !iov->iov_len)) {
2040 			int copy;
2041 
2042 			copy = min(bytes, iov->iov_len - base);
2043 			BUG_ON(!i->count || i->count < copy);
2044 			i->count -= copy;
2045 			bytes -= copy;
2046 			base += copy;
2047 			if (iov->iov_len == base) {
2048 				iov++;
2049 				nr_segs--;
2050 				base = 0;
2051 			}
2052 		}
2053 		i->iov = iov;
2054 		i->iov_offset = base;
2055 		i->nr_segs = nr_segs;
2056 	}
2057 }
2058 EXPORT_SYMBOL(iov_iter_advance);
2059 
2060 /*
2061  * Fault in the first iovec of the given iov_iter, to a maximum length
2062  * of bytes. Returns 0 on success, or non-zero if the memory could not be
2063  * accessed (ie. because it is an invalid address).
2064  *
2065  * writev-intensive code may want this to prefault several iovecs -- that
2066  * would be possible (callers must not rely on the fact that _only_ the
2067  * first iovec will be faulted with the current implementation).
2068  */
2069 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2070 {
2071 	char __user *buf = i->iov->iov_base + i->iov_offset;
2072 	bytes = min(bytes, i->iov->iov_len - i->iov_offset);
2073 	return fault_in_pages_readable(buf, bytes);
2074 }
2075 EXPORT_SYMBOL(iov_iter_fault_in_readable);
2076 
2077 /*
2078  * Return the count of just the current iov_iter segment.
2079  */
2080 size_t iov_iter_single_seg_count(const struct iov_iter *i)
2081 {
2082 	const struct iovec *iov = i->iov;
2083 	if (i->nr_segs == 1)
2084 		return i->count;
2085 	else
2086 		return min(i->count, iov->iov_len - i->iov_offset);
2087 }
2088 EXPORT_SYMBOL(iov_iter_single_seg_count);
2089 
2090 /*
2091  * Performs necessary checks before doing a write
2092  *
2093  * Can adjust writing position or amount of bytes to write.
2094  * Returns appropriate error code that caller should return or
2095  * zero in case that write should be allowed.
2096  */
2097 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2098 {
2099 	struct inode *inode = file->f_mapping->host;
2100 	unsigned long limit = rlimit(RLIMIT_FSIZE);
2101 
2102         if (unlikely(*pos < 0))
2103                 return -EINVAL;
2104 
2105 	if (!isblk) {
2106 		/* FIXME: this is for backwards compatibility with 2.4 */
2107 		if (file->f_flags & O_APPEND)
2108                         *pos = i_size_read(inode);
2109 
2110 		if (limit != RLIM_INFINITY) {
2111 			if (*pos >= limit) {
2112 				send_sig(SIGXFSZ, current, 0);
2113 				return -EFBIG;
2114 			}
2115 			if (*count > limit - (typeof(limit))*pos) {
2116 				*count = limit - (typeof(limit))*pos;
2117 			}
2118 		}
2119 	}
2120 
2121 	/*
2122 	 * LFS rule
2123 	 */
2124 	if (unlikely(*pos + *count > MAX_NON_LFS &&
2125 				!(file->f_flags & O_LARGEFILE))) {
2126 		if (*pos >= MAX_NON_LFS) {
2127 			return -EFBIG;
2128 		}
2129 		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2130 			*count = MAX_NON_LFS - (unsigned long)*pos;
2131 		}
2132 	}
2133 
2134 	/*
2135 	 * Are we about to exceed the fs block limit ?
2136 	 *
2137 	 * If we have written data it becomes a short write.  If we have
2138 	 * exceeded without writing data we send a signal and return EFBIG.
2139 	 * Linus frestrict idea will clean these up nicely..
2140 	 */
2141 	if (likely(!isblk)) {
2142 		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2143 			if (*count || *pos > inode->i_sb->s_maxbytes) {
2144 				return -EFBIG;
2145 			}
2146 			/* zero-length writes at ->s_maxbytes are OK */
2147 		}
2148 
2149 		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2150 			*count = inode->i_sb->s_maxbytes - *pos;
2151 	} else {
2152 #ifdef CONFIG_BLOCK
2153 		loff_t isize;
2154 		if (bdev_read_only(I_BDEV(inode)))
2155 			return -EPERM;
2156 		isize = i_size_read(inode);
2157 		if (*pos >= isize) {
2158 			if (*count || *pos > isize)
2159 				return -ENOSPC;
2160 		}
2161 
2162 		if (*pos + *count > isize)
2163 			*count = isize - *pos;
2164 #else
2165 		return -EPERM;
2166 #endif
2167 	}
2168 	return 0;
2169 }
2170 EXPORT_SYMBOL(generic_write_checks);
2171 
2172 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2173 				loff_t pos, unsigned len, unsigned flags,
2174 				struct page **pagep, void **fsdata)
2175 {
2176 	const struct address_space_operations *aops = mapping->a_ops;
2177 
2178 	return aops->write_begin(file, mapping, pos, len, flags,
2179 							pagep, fsdata);
2180 }
2181 EXPORT_SYMBOL(pagecache_write_begin);
2182 
2183 int pagecache_write_end(struct file *file, struct address_space *mapping,
2184 				loff_t pos, unsigned len, unsigned copied,
2185 				struct page *page, void *fsdata)
2186 {
2187 	const struct address_space_operations *aops = mapping->a_ops;
2188 
2189 	mark_page_accessed(page);
2190 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2191 }
2192 EXPORT_SYMBOL(pagecache_write_end);
2193 
2194 ssize_t
2195 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2196 		unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2197 		size_t count, size_t ocount)
2198 {
2199 	struct file	*file = iocb->ki_filp;
2200 	struct address_space *mapping = file->f_mapping;
2201 	struct inode	*inode = mapping->host;
2202 	ssize_t		written;
2203 	size_t		write_len;
2204 	pgoff_t		end;
2205 
2206 	if (count != ocount)
2207 		*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2208 
2209 	write_len = iov_length(iov, *nr_segs);
2210 	end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2211 
2212 	written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2213 	if (written)
2214 		goto out;
2215 
2216 	/*
2217 	 * After a write we want buffered reads to be sure to go to disk to get
2218 	 * the new data.  We invalidate clean cached page from the region we're
2219 	 * about to write.  We do this *before* the write so that we can return
2220 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2221 	 */
2222 	if (mapping->nrpages) {
2223 		written = invalidate_inode_pages2_range(mapping,
2224 					pos >> PAGE_CACHE_SHIFT, end);
2225 		/*
2226 		 * If a page can not be invalidated, return 0 to fall back
2227 		 * to buffered write.
2228 		 */
2229 		if (written) {
2230 			if (written == -EBUSY)
2231 				return 0;
2232 			goto out;
2233 		}
2234 	}
2235 
2236 	written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2237 
2238 	/*
2239 	 * Finally, try again to invalidate clean pages which might have been
2240 	 * cached by non-direct readahead, or faulted in by get_user_pages()
2241 	 * if the source of the write was an mmap'ed region of the file
2242 	 * we're writing.  Either one is a pretty crazy thing to do,
2243 	 * so we don't support it 100%.  If this invalidation
2244 	 * fails, tough, the write still worked...
2245 	 */
2246 	if (mapping->nrpages) {
2247 		invalidate_inode_pages2_range(mapping,
2248 					      pos >> PAGE_CACHE_SHIFT, end);
2249 	}
2250 
2251 	if (written > 0) {
2252 		pos += written;
2253 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2254 			i_size_write(inode, pos);
2255 			mark_inode_dirty(inode);
2256 		}
2257 		*ppos = pos;
2258 	}
2259 out:
2260 	return written;
2261 }
2262 EXPORT_SYMBOL(generic_file_direct_write);
2263 
2264 /*
2265  * Find or create a page at the given pagecache position. Return the locked
2266  * page. This function is specifically for buffered writes.
2267  */
2268 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2269 					pgoff_t index, unsigned flags)
2270 {
2271 	int status;
2272 	gfp_t gfp_mask;
2273 	struct page *page;
2274 	gfp_t gfp_notmask = 0;
2275 
2276 	gfp_mask = mapping_gfp_mask(mapping);
2277 	if (mapping_cap_account_dirty(mapping))
2278 		gfp_mask |= __GFP_WRITE;
2279 	if (flags & AOP_FLAG_NOFS)
2280 		gfp_notmask = __GFP_FS;
2281 repeat:
2282 	page = find_lock_page(mapping, index);
2283 	if (page)
2284 		goto found;
2285 
2286 	page = __page_cache_alloc(gfp_mask & ~gfp_notmask);
2287 	if (!page)
2288 		return NULL;
2289 	status = add_to_page_cache_lru(page, mapping, index,
2290 						GFP_KERNEL & ~gfp_notmask);
2291 	if (unlikely(status)) {
2292 		page_cache_release(page);
2293 		if (status == -EEXIST)
2294 			goto repeat;
2295 		return NULL;
2296 	}
2297 found:
2298 	wait_for_stable_page(page);
2299 	return page;
2300 }
2301 EXPORT_SYMBOL(grab_cache_page_write_begin);
2302 
2303 static ssize_t generic_perform_write(struct file *file,
2304 				struct iov_iter *i, loff_t pos)
2305 {
2306 	struct address_space *mapping = file->f_mapping;
2307 	const struct address_space_operations *a_ops = mapping->a_ops;
2308 	long status = 0;
2309 	ssize_t written = 0;
2310 	unsigned int flags = 0;
2311 
2312 	/*
2313 	 * Copies from kernel address space cannot fail (NFSD is a big user).
2314 	 */
2315 	if (segment_eq(get_fs(), KERNEL_DS))
2316 		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2317 
2318 	do {
2319 		struct page *page;
2320 		unsigned long offset;	/* Offset into pagecache page */
2321 		unsigned long bytes;	/* Bytes to write to page */
2322 		size_t copied;		/* Bytes copied from user */
2323 		void *fsdata;
2324 
2325 		offset = (pos & (PAGE_CACHE_SIZE - 1));
2326 		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2327 						iov_iter_count(i));
2328 
2329 again:
2330 		/*
2331 		 * Bring in the user page that we will copy from _first_.
2332 		 * Otherwise there's a nasty deadlock on copying from the
2333 		 * same page as we're writing to, without it being marked
2334 		 * up-to-date.
2335 		 *
2336 		 * Not only is this an optimisation, but it is also required
2337 		 * to check that the address is actually valid, when atomic
2338 		 * usercopies are used, below.
2339 		 */
2340 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2341 			status = -EFAULT;
2342 			break;
2343 		}
2344 
2345 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2346 						&page, &fsdata);
2347 		if (unlikely(status))
2348 			break;
2349 
2350 		if (mapping_writably_mapped(mapping))
2351 			flush_dcache_page(page);
2352 
2353 		pagefault_disable();
2354 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2355 		pagefault_enable();
2356 		flush_dcache_page(page);
2357 
2358 		mark_page_accessed(page);
2359 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2360 						page, fsdata);
2361 		if (unlikely(status < 0))
2362 			break;
2363 		copied = status;
2364 
2365 		cond_resched();
2366 
2367 		iov_iter_advance(i, copied);
2368 		if (unlikely(copied == 0)) {
2369 			/*
2370 			 * If we were unable to copy any data at all, we must
2371 			 * fall back to a single segment length write.
2372 			 *
2373 			 * If we didn't fallback here, we could livelock
2374 			 * because not all segments in the iov can be copied at
2375 			 * once without a pagefault.
2376 			 */
2377 			bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2378 						iov_iter_single_seg_count(i));
2379 			goto again;
2380 		}
2381 		pos += copied;
2382 		written += copied;
2383 
2384 		balance_dirty_pages_ratelimited(mapping);
2385 		if (fatal_signal_pending(current)) {
2386 			status = -EINTR;
2387 			break;
2388 		}
2389 	} while (iov_iter_count(i));
2390 
2391 	return written ? written : status;
2392 }
2393 
2394 ssize_t
2395 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2396 		unsigned long nr_segs, loff_t pos, loff_t *ppos,
2397 		size_t count, ssize_t written)
2398 {
2399 	struct file *file = iocb->ki_filp;
2400 	ssize_t status;
2401 	struct iov_iter i;
2402 
2403 	iov_iter_init(&i, iov, nr_segs, count, written);
2404 	status = generic_perform_write(file, &i, pos);
2405 
2406 	if (likely(status >= 0)) {
2407 		written += status;
2408 		*ppos = pos + status;
2409   	}
2410 
2411 	return written ? written : status;
2412 }
2413 EXPORT_SYMBOL(generic_file_buffered_write);
2414 
2415 /**
2416  * __generic_file_aio_write - write data to a file
2417  * @iocb:	IO state structure (file, offset, etc.)
2418  * @iov:	vector with data to write
2419  * @nr_segs:	number of segments in the vector
2420  * @ppos:	position where to write
2421  *
2422  * This function does all the work needed for actually writing data to a
2423  * file. It does all basic checks, removes SUID from the file, updates
2424  * modification times and calls proper subroutines depending on whether we
2425  * do direct IO or a standard buffered write.
2426  *
2427  * It expects i_mutex to be grabbed unless we work on a block device or similar
2428  * object which does not need locking at all.
2429  *
2430  * This function does *not* take care of syncing data in case of O_SYNC write.
2431  * A caller has to handle it. This is mainly due to the fact that we want to
2432  * avoid syncing under i_mutex.
2433  */
2434 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2435 				 unsigned long nr_segs, loff_t *ppos)
2436 {
2437 	struct file *file = iocb->ki_filp;
2438 	struct address_space * mapping = file->f_mapping;
2439 	size_t ocount;		/* original count */
2440 	size_t count;		/* after file limit checks */
2441 	struct inode 	*inode = mapping->host;
2442 	loff_t		pos;
2443 	ssize_t		written;
2444 	ssize_t		err;
2445 
2446 	ocount = 0;
2447 	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2448 	if (err)
2449 		return err;
2450 
2451 	count = ocount;
2452 	pos = *ppos;
2453 
2454 	/* We can write back this queue in page reclaim */
2455 	current->backing_dev_info = mapping->backing_dev_info;
2456 	written = 0;
2457 
2458 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2459 	if (err)
2460 		goto out;
2461 
2462 	if (count == 0)
2463 		goto out;
2464 
2465 	err = file_remove_suid(file);
2466 	if (err)
2467 		goto out;
2468 
2469 	err = file_update_time(file);
2470 	if (err)
2471 		goto out;
2472 
2473 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2474 	if (unlikely(file->f_flags & O_DIRECT)) {
2475 		loff_t endbyte;
2476 		ssize_t written_buffered;
2477 
2478 		written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2479 							ppos, count, ocount);
2480 		if (written < 0 || written == count)
2481 			goto out;
2482 		/*
2483 		 * direct-io write to a hole: fall through to buffered I/O
2484 		 * for completing the rest of the request.
2485 		 */
2486 		pos += written;
2487 		count -= written;
2488 		written_buffered = generic_file_buffered_write(iocb, iov,
2489 						nr_segs, pos, ppos, count,
2490 						written);
2491 		/*
2492 		 * If generic_file_buffered_write() retuned a synchronous error
2493 		 * then we want to return the number of bytes which were
2494 		 * direct-written, or the error code if that was zero.  Note
2495 		 * that this differs from normal direct-io semantics, which
2496 		 * will return -EFOO even if some bytes were written.
2497 		 */
2498 		if (written_buffered < 0) {
2499 			err = written_buffered;
2500 			goto out;
2501 		}
2502 
2503 		/*
2504 		 * We need to ensure that the page cache pages are written to
2505 		 * disk and invalidated to preserve the expected O_DIRECT
2506 		 * semantics.
2507 		 */
2508 		endbyte = pos + written_buffered - written - 1;
2509 		err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2510 		if (err == 0) {
2511 			written = written_buffered;
2512 			invalidate_mapping_pages(mapping,
2513 						 pos >> PAGE_CACHE_SHIFT,
2514 						 endbyte >> PAGE_CACHE_SHIFT);
2515 		} else {
2516 			/*
2517 			 * We don't know how much we wrote, so just return
2518 			 * the number of bytes which were direct-written
2519 			 */
2520 		}
2521 	} else {
2522 		written = generic_file_buffered_write(iocb, iov, nr_segs,
2523 				pos, ppos, count, written);
2524 	}
2525 out:
2526 	current->backing_dev_info = NULL;
2527 	return written ? written : err;
2528 }
2529 EXPORT_SYMBOL(__generic_file_aio_write);
2530 
2531 /**
2532  * generic_file_aio_write - write data to a file
2533  * @iocb:	IO state structure
2534  * @iov:	vector with data to write
2535  * @nr_segs:	number of segments in the vector
2536  * @pos:	position in file where to write
2537  *
2538  * This is a wrapper around __generic_file_aio_write() to be used by most
2539  * filesystems. It takes care of syncing the file in case of O_SYNC file
2540  * and acquires i_mutex as needed.
2541  */
2542 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2543 		unsigned long nr_segs, loff_t pos)
2544 {
2545 	struct file *file = iocb->ki_filp;
2546 	struct inode *inode = file->f_mapping->host;
2547 	ssize_t ret;
2548 
2549 	BUG_ON(iocb->ki_pos != pos);
2550 
2551 	mutex_lock(&inode->i_mutex);
2552 	ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
2553 	mutex_unlock(&inode->i_mutex);
2554 
2555 	if (ret > 0) {
2556 		ssize_t err;
2557 
2558 		err = generic_write_sync(file, pos, ret);
2559 		if (err < 0 && ret > 0)
2560 			ret = err;
2561 	}
2562 	return ret;
2563 }
2564 EXPORT_SYMBOL(generic_file_aio_write);
2565 
2566 /**
2567  * try_to_release_page() - release old fs-specific metadata on a page
2568  *
2569  * @page: the page which the kernel is trying to free
2570  * @gfp_mask: memory allocation flags (and I/O mode)
2571  *
2572  * The address_space is to try to release any data against the page
2573  * (presumably at page->private).  If the release was successful, return `1'.
2574  * Otherwise return zero.
2575  *
2576  * This may also be called if PG_fscache is set on a page, indicating that the
2577  * page is known to the local caching routines.
2578  *
2579  * The @gfp_mask argument specifies whether I/O may be performed to release
2580  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2581  *
2582  */
2583 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2584 {
2585 	struct address_space * const mapping = page->mapping;
2586 
2587 	BUG_ON(!PageLocked(page));
2588 	if (PageWriteback(page))
2589 		return 0;
2590 
2591 	if (mapping && mapping->a_ops->releasepage)
2592 		return mapping->a_ops->releasepage(page, gfp_mask);
2593 	return try_to_free_buffers(page);
2594 }
2595 
2596 EXPORT_SYMBOL(try_to_release_page);
2597