1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/filemap.c 4 * 5 * Copyright (C) 1994-1999 Linus Torvalds 6 */ 7 8 /* 9 * This file handles the generic file mmap semantics used by 10 * most "normal" filesystems (but you don't /have/ to use this: 11 * the NFS filesystem used to do this differently, for example) 12 */ 13 #include <linux/export.h> 14 #include <linux/compiler.h> 15 #include <linux/dax.h> 16 #include <linux/fs.h> 17 #include <linux/sched/signal.h> 18 #include <linux/uaccess.h> 19 #include <linux/capability.h> 20 #include <linux/kernel_stat.h> 21 #include <linux/gfp.h> 22 #include <linux/mm.h> 23 #include <linux/swap.h> 24 #include <linux/mman.h> 25 #include <linux/pagemap.h> 26 #include <linux/file.h> 27 #include <linux/uio.h> 28 #include <linux/error-injection.h> 29 #include <linux/hash.h> 30 #include <linux/writeback.h> 31 #include <linux/backing-dev.h> 32 #include <linux/pagevec.h> 33 #include <linux/blkdev.h> 34 #include <linux/security.h> 35 #include <linux/cpuset.h> 36 #include <linux/hugetlb.h> 37 #include <linux/memcontrol.h> 38 #include <linux/cleancache.h> 39 #include <linux/shmem_fs.h> 40 #include <linux/rmap.h> 41 #include <linux/delayacct.h> 42 #include <linux/psi.h> 43 #include <linux/ramfs.h> 44 #include <linux/page_idle.h> 45 #include <asm/pgalloc.h> 46 #include <asm/tlbflush.h> 47 #include "internal.h" 48 49 #define CREATE_TRACE_POINTS 50 #include <trace/events/filemap.h> 51 52 /* 53 * FIXME: remove all knowledge of the buffer layer from the core VM 54 */ 55 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 56 57 #include <asm/mman.h> 58 59 /* 60 * Shared mappings implemented 30.11.1994. It's not fully working yet, 61 * though. 62 * 63 * Shared mappings now work. 15.8.1995 Bruno. 64 * 65 * finished 'unifying' the page and buffer cache and SMP-threaded the 66 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 67 * 68 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 69 */ 70 71 /* 72 * Lock ordering: 73 * 74 * ->i_mmap_rwsem (truncate_pagecache) 75 * ->private_lock (__free_pte->__set_page_dirty_buffers) 76 * ->swap_lock (exclusive_swap_page, others) 77 * ->i_pages lock 78 * 79 * ->i_rwsem 80 * ->invalidate_lock (acquired by fs in truncate path) 81 * ->i_mmap_rwsem (truncate->unmap_mapping_range) 82 * 83 * ->mmap_lock 84 * ->i_mmap_rwsem 85 * ->page_table_lock or pte_lock (various, mainly in memory.c) 86 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock) 87 * 88 * ->mmap_lock 89 * ->invalidate_lock (filemap_fault) 90 * ->lock_page (filemap_fault, access_process_vm) 91 * 92 * ->i_rwsem (generic_perform_write) 93 * ->mmap_lock (fault_in_pages_readable->do_page_fault) 94 * 95 * bdi->wb.list_lock 96 * sb_lock (fs/fs-writeback.c) 97 * ->i_pages lock (__sync_single_inode) 98 * 99 * ->i_mmap_rwsem 100 * ->anon_vma.lock (vma_adjust) 101 * 102 * ->anon_vma.lock 103 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 104 * 105 * ->page_table_lock or pte_lock 106 * ->swap_lock (try_to_unmap_one) 107 * ->private_lock (try_to_unmap_one) 108 * ->i_pages lock (try_to_unmap_one) 109 * ->lruvec->lru_lock (follow_page->mark_page_accessed) 110 * ->lruvec->lru_lock (check_pte_range->isolate_lru_page) 111 * ->private_lock (page_remove_rmap->set_page_dirty) 112 * ->i_pages lock (page_remove_rmap->set_page_dirty) 113 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty) 114 * ->inode->i_lock (page_remove_rmap->set_page_dirty) 115 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg) 116 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 117 * ->inode->i_lock (zap_pte_range->set_page_dirty) 118 * ->private_lock (zap_pte_range->__set_page_dirty_buffers) 119 * 120 * ->i_mmap_rwsem 121 * ->tasklist_lock (memory_failure, collect_procs_ao) 122 */ 123 124 static void page_cache_delete(struct address_space *mapping, 125 struct page *page, void *shadow) 126 { 127 XA_STATE(xas, &mapping->i_pages, page->index); 128 unsigned int nr = 1; 129 130 mapping_set_update(&xas, mapping); 131 132 /* hugetlb pages are represented by a single entry in the xarray */ 133 if (!PageHuge(page)) { 134 xas_set_order(&xas, page->index, compound_order(page)); 135 nr = compound_nr(page); 136 } 137 138 VM_BUG_ON_PAGE(!PageLocked(page), page); 139 VM_BUG_ON_PAGE(PageTail(page), page); 140 VM_BUG_ON_PAGE(nr != 1 && shadow, page); 141 142 xas_store(&xas, shadow); 143 xas_init_marks(&xas); 144 145 page->mapping = NULL; 146 /* Leave page->index set: truncation lookup relies upon it */ 147 mapping->nrpages -= nr; 148 } 149 150 static void unaccount_page_cache_page(struct address_space *mapping, 151 struct page *page) 152 { 153 int nr; 154 155 /* 156 * if we're uptodate, flush out into the cleancache, otherwise 157 * invalidate any existing cleancache entries. We can't leave 158 * stale data around in the cleancache once our page is gone 159 */ 160 if (PageUptodate(page) && PageMappedToDisk(page)) 161 cleancache_put_page(page); 162 else 163 cleancache_invalidate_page(mapping, page); 164 165 VM_BUG_ON_PAGE(PageTail(page), page); 166 VM_BUG_ON_PAGE(page_mapped(page), page); 167 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) { 168 int mapcount; 169 170 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n", 171 current->comm, page_to_pfn(page)); 172 dump_page(page, "still mapped when deleted"); 173 dump_stack(); 174 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 175 176 mapcount = page_mapcount(page); 177 if (mapping_exiting(mapping) && 178 page_count(page) >= mapcount + 2) { 179 /* 180 * All vmas have already been torn down, so it's 181 * a good bet that actually the page is unmapped, 182 * and we'd prefer not to leak it: if we're wrong, 183 * some other bad page check should catch it later. 184 */ 185 page_mapcount_reset(page); 186 page_ref_sub(page, mapcount); 187 } 188 } 189 190 /* hugetlb pages do not participate in page cache accounting. */ 191 if (PageHuge(page)) 192 return; 193 194 nr = thp_nr_pages(page); 195 196 __mod_lruvec_page_state(page, NR_FILE_PAGES, -nr); 197 if (PageSwapBacked(page)) { 198 __mod_lruvec_page_state(page, NR_SHMEM, -nr); 199 if (PageTransHuge(page)) 200 __mod_lruvec_page_state(page, NR_SHMEM_THPS, -nr); 201 } else if (PageTransHuge(page)) { 202 __mod_lruvec_page_state(page, NR_FILE_THPS, -nr); 203 filemap_nr_thps_dec(mapping); 204 } 205 206 /* 207 * At this point page must be either written or cleaned by 208 * truncate. Dirty page here signals a bug and loss of 209 * unwritten data. 210 * 211 * This fixes dirty accounting after removing the page entirely 212 * but leaves PageDirty set: it has no effect for truncated 213 * page and anyway will be cleared before returning page into 214 * buddy allocator. 215 */ 216 if (WARN_ON_ONCE(PageDirty(page))) 217 account_page_cleaned(page, mapping, inode_to_wb(mapping->host)); 218 } 219 220 /* 221 * Delete a page from the page cache and free it. Caller has to make 222 * sure the page is locked and that nobody else uses it - or that usage 223 * is safe. The caller must hold the i_pages lock. 224 */ 225 void __delete_from_page_cache(struct page *page, void *shadow) 226 { 227 struct address_space *mapping = page->mapping; 228 229 trace_mm_filemap_delete_from_page_cache(page); 230 231 unaccount_page_cache_page(mapping, page); 232 page_cache_delete(mapping, page, shadow); 233 } 234 235 static void page_cache_free_page(struct address_space *mapping, 236 struct page *page) 237 { 238 void (*freepage)(struct page *); 239 240 freepage = mapping->a_ops->freepage; 241 if (freepage) 242 freepage(page); 243 244 if (PageTransHuge(page) && !PageHuge(page)) { 245 page_ref_sub(page, thp_nr_pages(page)); 246 VM_BUG_ON_PAGE(page_count(page) <= 0, page); 247 } else { 248 put_page(page); 249 } 250 } 251 252 /** 253 * delete_from_page_cache - delete page from page cache 254 * @page: the page which the kernel is trying to remove from page cache 255 * 256 * This must be called only on pages that have been verified to be in the page 257 * cache and locked. It will never put the page into the free list, the caller 258 * has a reference on the page. 259 */ 260 void delete_from_page_cache(struct page *page) 261 { 262 struct address_space *mapping = page_mapping(page); 263 264 BUG_ON(!PageLocked(page)); 265 xa_lock_irq(&mapping->i_pages); 266 __delete_from_page_cache(page, NULL); 267 xa_unlock_irq(&mapping->i_pages); 268 269 page_cache_free_page(mapping, page); 270 } 271 EXPORT_SYMBOL(delete_from_page_cache); 272 273 /* 274 * page_cache_delete_batch - delete several pages from page cache 275 * @mapping: the mapping to which pages belong 276 * @pvec: pagevec with pages to delete 277 * 278 * The function walks over mapping->i_pages and removes pages passed in @pvec 279 * from the mapping. The function expects @pvec to be sorted by page index 280 * and is optimised for it to be dense. 281 * It tolerates holes in @pvec (mapping entries at those indices are not 282 * modified). The function expects only THP head pages to be present in the 283 * @pvec. 284 * 285 * The function expects the i_pages lock to be held. 286 */ 287 static void page_cache_delete_batch(struct address_space *mapping, 288 struct pagevec *pvec) 289 { 290 XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index); 291 int total_pages = 0; 292 int i = 0; 293 struct page *page; 294 295 mapping_set_update(&xas, mapping); 296 xas_for_each(&xas, page, ULONG_MAX) { 297 if (i >= pagevec_count(pvec)) 298 break; 299 300 /* A swap/dax/shadow entry got inserted? Skip it. */ 301 if (xa_is_value(page)) 302 continue; 303 /* 304 * A page got inserted in our range? Skip it. We have our 305 * pages locked so they are protected from being removed. 306 * If we see a page whose index is higher than ours, it 307 * means our page has been removed, which shouldn't be 308 * possible because we're holding the PageLock. 309 */ 310 if (page != pvec->pages[i]) { 311 VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index, 312 page); 313 continue; 314 } 315 316 WARN_ON_ONCE(!PageLocked(page)); 317 318 if (page->index == xas.xa_index) 319 page->mapping = NULL; 320 /* Leave page->index set: truncation lookup relies on it */ 321 322 /* 323 * Move to the next page in the vector if this is a regular 324 * page or the index is of the last sub-page of this compound 325 * page. 326 */ 327 if (page->index + compound_nr(page) - 1 == xas.xa_index) 328 i++; 329 xas_store(&xas, NULL); 330 total_pages++; 331 } 332 mapping->nrpages -= total_pages; 333 } 334 335 void delete_from_page_cache_batch(struct address_space *mapping, 336 struct pagevec *pvec) 337 { 338 int i; 339 340 if (!pagevec_count(pvec)) 341 return; 342 343 xa_lock_irq(&mapping->i_pages); 344 for (i = 0; i < pagevec_count(pvec); i++) { 345 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]); 346 347 unaccount_page_cache_page(mapping, pvec->pages[i]); 348 } 349 page_cache_delete_batch(mapping, pvec); 350 xa_unlock_irq(&mapping->i_pages); 351 352 for (i = 0; i < pagevec_count(pvec); i++) 353 page_cache_free_page(mapping, pvec->pages[i]); 354 } 355 356 int filemap_check_errors(struct address_space *mapping) 357 { 358 int ret = 0; 359 /* Check for outstanding write errors */ 360 if (test_bit(AS_ENOSPC, &mapping->flags) && 361 test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 362 ret = -ENOSPC; 363 if (test_bit(AS_EIO, &mapping->flags) && 364 test_and_clear_bit(AS_EIO, &mapping->flags)) 365 ret = -EIO; 366 return ret; 367 } 368 EXPORT_SYMBOL(filemap_check_errors); 369 370 static int filemap_check_and_keep_errors(struct address_space *mapping) 371 { 372 /* Check for outstanding write errors */ 373 if (test_bit(AS_EIO, &mapping->flags)) 374 return -EIO; 375 if (test_bit(AS_ENOSPC, &mapping->flags)) 376 return -ENOSPC; 377 return 0; 378 } 379 380 /** 381 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range 382 * @mapping: address space structure to write 383 * @wbc: the writeback_control controlling the writeout 384 * 385 * Call writepages on the mapping using the provided wbc to control the 386 * writeout. 387 * 388 * Return: %0 on success, negative error code otherwise. 389 */ 390 int filemap_fdatawrite_wbc(struct address_space *mapping, 391 struct writeback_control *wbc) 392 { 393 int ret; 394 395 if (!mapping_can_writeback(mapping) || 396 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 397 return 0; 398 399 wbc_attach_fdatawrite_inode(wbc, mapping->host); 400 ret = do_writepages(mapping, wbc); 401 wbc_detach_inode(wbc); 402 return ret; 403 } 404 EXPORT_SYMBOL(filemap_fdatawrite_wbc); 405 406 /** 407 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 408 * @mapping: address space structure to write 409 * @start: offset in bytes where the range starts 410 * @end: offset in bytes where the range ends (inclusive) 411 * @sync_mode: enable synchronous operation 412 * 413 * Start writeback against all of a mapping's dirty pages that lie 414 * within the byte offsets <start, end> inclusive. 415 * 416 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 417 * opposed to a regular memory cleansing writeback. The difference between 418 * these two operations is that if a dirty page/buffer is encountered, it must 419 * be waited upon, and not just skipped over. 420 * 421 * Return: %0 on success, negative error code otherwise. 422 */ 423 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 424 loff_t end, int sync_mode) 425 { 426 struct writeback_control wbc = { 427 .sync_mode = sync_mode, 428 .nr_to_write = LONG_MAX, 429 .range_start = start, 430 .range_end = end, 431 }; 432 433 return filemap_fdatawrite_wbc(mapping, &wbc); 434 } 435 436 static inline int __filemap_fdatawrite(struct address_space *mapping, 437 int sync_mode) 438 { 439 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 440 } 441 442 int filemap_fdatawrite(struct address_space *mapping) 443 { 444 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 445 } 446 EXPORT_SYMBOL(filemap_fdatawrite); 447 448 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 449 loff_t end) 450 { 451 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 452 } 453 EXPORT_SYMBOL(filemap_fdatawrite_range); 454 455 /** 456 * filemap_flush - mostly a non-blocking flush 457 * @mapping: target address_space 458 * 459 * This is a mostly non-blocking flush. Not suitable for data-integrity 460 * purposes - I/O may not be started against all dirty pages. 461 * 462 * Return: %0 on success, negative error code otherwise. 463 */ 464 int filemap_flush(struct address_space *mapping) 465 { 466 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 467 } 468 EXPORT_SYMBOL(filemap_flush); 469 470 /** 471 * filemap_range_has_page - check if a page exists in range. 472 * @mapping: address space within which to check 473 * @start_byte: offset in bytes where the range starts 474 * @end_byte: offset in bytes where the range ends (inclusive) 475 * 476 * Find at least one page in the range supplied, usually used to check if 477 * direct writing in this range will trigger a writeback. 478 * 479 * Return: %true if at least one page exists in the specified range, 480 * %false otherwise. 481 */ 482 bool filemap_range_has_page(struct address_space *mapping, 483 loff_t start_byte, loff_t end_byte) 484 { 485 struct page *page; 486 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 487 pgoff_t max = end_byte >> PAGE_SHIFT; 488 489 if (end_byte < start_byte) 490 return false; 491 492 rcu_read_lock(); 493 for (;;) { 494 page = xas_find(&xas, max); 495 if (xas_retry(&xas, page)) 496 continue; 497 /* Shadow entries don't count */ 498 if (xa_is_value(page)) 499 continue; 500 /* 501 * We don't need to try to pin this page; we're about to 502 * release the RCU lock anyway. It is enough to know that 503 * there was a page here recently. 504 */ 505 break; 506 } 507 rcu_read_unlock(); 508 509 return page != NULL; 510 } 511 EXPORT_SYMBOL(filemap_range_has_page); 512 513 static void __filemap_fdatawait_range(struct address_space *mapping, 514 loff_t start_byte, loff_t end_byte) 515 { 516 pgoff_t index = start_byte >> PAGE_SHIFT; 517 pgoff_t end = end_byte >> PAGE_SHIFT; 518 struct pagevec pvec; 519 int nr_pages; 520 521 if (end_byte < start_byte) 522 return; 523 524 pagevec_init(&pvec); 525 while (index <= end) { 526 unsigned i; 527 528 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, 529 end, PAGECACHE_TAG_WRITEBACK); 530 if (!nr_pages) 531 break; 532 533 for (i = 0; i < nr_pages; i++) { 534 struct page *page = pvec.pages[i]; 535 536 wait_on_page_writeback(page); 537 ClearPageError(page); 538 } 539 pagevec_release(&pvec); 540 cond_resched(); 541 } 542 } 543 544 /** 545 * filemap_fdatawait_range - wait for writeback to complete 546 * @mapping: address space structure to wait for 547 * @start_byte: offset in bytes where the range starts 548 * @end_byte: offset in bytes where the range ends (inclusive) 549 * 550 * Walk the list of under-writeback pages of the given address space 551 * in the given range and wait for all of them. Check error status of 552 * the address space and return it. 553 * 554 * Since the error status of the address space is cleared by this function, 555 * callers are responsible for checking the return value and handling and/or 556 * reporting the error. 557 * 558 * Return: error status of the address space. 559 */ 560 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 561 loff_t end_byte) 562 { 563 __filemap_fdatawait_range(mapping, start_byte, end_byte); 564 return filemap_check_errors(mapping); 565 } 566 EXPORT_SYMBOL(filemap_fdatawait_range); 567 568 /** 569 * filemap_fdatawait_range_keep_errors - wait for writeback to complete 570 * @mapping: address space structure to wait for 571 * @start_byte: offset in bytes where the range starts 572 * @end_byte: offset in bytes where the range ends (inclusive) 573 * 574 * Walk the list of under-writeback pages of the given address space in the 575 * given range and wait for all of them. Unlike filemap_fdatawait_range(), 576 * this function does not clear error status of the address space. 577 * 578 * Use this function if callers don't handle errors themselves. Expected 579 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 580 * fsfreeze(8) 581 */ 582 int filemap_fdatawait_range_keep_errors(struct address_space *mapping, 583 loff_t start_byte, loff_t end_byte) 584 { 585 __filemap_fdatawait_range(mapping, start_byte, end_byte); 586 return filemap_check_and_keep_errors(mapping); 587 } 588 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors); 589 590 /** 591 * file_fdatawait_range - wait for writeback to complete 592 * @file: file pointing to address space structure to wait for 593 * @start_byte: offset in bytes where the range starts 594 * @end_byte: offset in bytes where the range ends (inclusive) 595 * 596 * Walk the list of under-writeback pages of the address space that file 597 * refers to, in the given range and wait for all of them. Check error 598 * status of the address space vs. the file->f_wb_err cursor and return it. 599 * 600 * Since the error status of the file is advanced by this function, 601 * callers are responsible for checking the return value and handling and/or 602 * reporting the error. 603 * 604 * Return: error status of the address space vs. the file->f_wb_err cursor. 605 */ 606 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte) 607 { 608 struct address_space *mapping = file->f_mapping; 609 610 __filemap_fdatawait_range(mapping, start_byte, end_byte); 611 return file_check_and_advance_wb_err(file); 612 } 613 EXPORT_SYMBOL(file_fdatawait_range); 614 615 /** 616 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors 617 * @mapping: address space structure to wait for 618 * 619 * Walk the list of under-writeback pages of the given address space 620 * and wait for all of them. Unlike filemap_fdatawait(), this function 621 * does not clear error status of the address space. 622 * 623 * Use this function if callers don't handle errors themselves. Expected 624 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 625 * fsfreeze(8) 626 * 627 * Return: error status of the address space. 628 */ 629 int filemap_fdatawait_keep_errors(struct address_space *mapping) 630 { 631 __filemap_fdatawait_range(mapping, 0, LLONG_MAX); 632 return filemap_check_and_keep_errors(mapping); 633 } 634 EXPORT_SYMBOL(filemap_fdatawait_keep_errors); 635 636 /* Returns true if writeback might be needed or already in progress. */ 637 static bool mapping_needs_writeback(struct address_space *mapping) 638 { 639 return mapping->nrpages; 640 } 641 642 /** 643 * filemap_range_needs_writeback - check if range potentially needs writeback 644 * @mapping: address space within which to check 645 * @start_byte: offset in bytes where the range starts 646 * @end_byte: offset in bytes where the range ends (inclusive) 647 * 648 * Find at least one page in the range supplied, usually used to check if 649 * direct writing in this range will trigger a writeback. Used by O_DIRECT 650 * read/write with IOCB_NOWAIT, to see if the caller needs to do 651 * filemap_write_and_wait_range() before proceeding. 652 * 653 * Return: %true if the caller should do filemap_write_and_wait_range() before 654 * doing O_DIRECT to a page in this range, %false otherwise. 655 */ 656 bool filemap_range_needs_writeback(struct address_space *mapping, 657 loff_t start_byte, loff_t end_byte) 658 { 659 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 660 pgoff_t max = end_byte >> PAGE_SHIFT; 661 struct page *page; 662 663 if (!mapping_needs_writeback(mapping)) 664 return false; 665 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 666 !mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) 667 return false; 668 if (end_byte < start_byte) 669 return false; 670 671 rcu_read_lock(); 672 xas_for_each(&xas, page, max) { 673 if (xas_retry(&xas, page)) 674 continue; 675 if (xa_is_value(page)) 676 continue; 677 if (PageDirty(page) || PageLocked(page) || PageWriteback(page)) 678 break; 679 } 680 rcu_read_unlock(); 681 return page != NULL; 682 } 683 EXPORT_SYMBOL_GPL(filemap_range_needs_writeback); 684 685 /** 686 * filemap_write_and_wait_range - write out & wait on a file range 687 * @mapping: the address_space for the pages 688 * @lstart: offset in bytes where the range starts 689 * @lend: offset in bytes where the range ends (inclusive) 690 * 691 * Write out and wait upon file offsets lstart->lend, inclusive. 692 * 693 * Note that @lend is inclusive (describes the last byte to be written) so 694 * that this function can be used to write to the very end-of-file (end = -1). 695 * 696 * Return: error status of the address space. 697 */ 698 int filemap_write_and_wait_range(struct address_space *mapping, 699 loff_t lstart, loff_t lend) 700 { 701 int err = 0; 702 703 if (mapping_needs_writeback(mapping)) { 704 err = __filemap_fdatawrite_range(mapping, lstart, lend, 705 WB_SYNC_ALL); 706 /* 707 * Even if the above returned error, the pages may be 708 * written partially (e.g. -ENOSPC), so we wait for it. 709 * But the -EIO is special case, it may indicate the worst 710 * thing (e.g. bug) happened, so we avoid waiting for it. 711 */ 712 if (err != -EIO) { 713 int err2 = filemap_fdatawait_range(mapping, 714 lstart, lend); 715 if (!err) 716 err = err2; 717 } else { 718 /* Clear any previously stored errors */ 719 filemap_check_errors(mapping); 720 } 721 } else { 722 err = filemap_check_errors(mapping); 723 } 724 return err; 725 } 726 EXPORT_SYMBOL(filemap_write_and_wait_range); 727 728 void __filemap_set_wb_err(struct address_space *mapping, int err) 729 { 730 errseq_t eseq = errseq_set(&mapping->wb_err, err); 731 732 trace_filemap_set_wb_err(mapping, eseq); 733 } 734 EXPORT_SYMBOL(__filemap_set_wb_err); 735 736 /** 737 * file_check_and_advance_wb_err - report wb error (if any) that was previously 738 * and advance wb_err to current one 739 * @file: struct file on which the error is being reported 740 * 741 * When userland calls fsync (or something like nfsd does the equivalent), we 742 * want to report any writeback errors that occurred since the last fsync (or 743 * since the file was opened if there haven't been any). 744 * 745 * Grab the wb_err from the mapping. If it matches what we have in the file, 746 * then just quickly return 0. The file is all caught up. 747 * 748 * If it doesn't match, then take the mapping value, set the "seen" flag in 749 * it and try to swap it into place. If it works, or another task beat us 750 * to it with the new value, then update the f_wb_err and return the error 751 * portion. The error at this point must be reported via proper channels 752 * (a'la fsync, or NFS COMMIT operation, etc.). 753 * 754 * While we handle mapping->wb_err with atomic operations, the f_wb_err 755 * value is protected by the f_lock since we must ensure that it reflects 756 * the latest value swapped in for this file descriptor. 757 * 758 * Return: %0 on success, negative error code otherwise. 759 */ 760 int file_check_and_advance_wb_err(struct file *file) 761 { 762 int err = 0; 763 errseq_t old = READ_ONCE(file->f_wb_err); 764 struct address_space *mapping = file->f_mapping; 765 766 /* Locklessly handle the common case where nothing has changed */ 767 if (errseq_check(&mapping->wb_err, old)) { 768 /* Something changed, must use slow path */ 769 spin_lock(&file->f_lock); 770 old = file->f_wb_err; 771 err = errseq_check_and_advance(&mapping->wb_err, 772 &file->f_wb_err); 773 trace_file_check_and_advance_wb_err(file, old); 774 spin_unlock(&file->f_lock); 775 } 776 777 /* 778 * We're mostly using this function as a drop in replacement for 779 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect 780 * that the legacy code would have had on these flags. 781 */ 782 clear_bit(AS_EIO, &mapping->flags); 783 clear_bit(AS_ENOSPC, &mapping->flags); 784 return err; 785 } 786 EXPORT_SYMBOL(file_check_and_advance_wb_err); 787 788 /** 789 * file_write_and_wait_range - write out & wait on a file range 790 * @file: file pointing to address_space with pages 791 * @lstart: offset in bytes where the range starts 792 * @lend: offset in bytes where the range ends (inclusive) 793 * 794 * Write out and wait upon file offsets lstart->lend, inclusive. 795 * 796 * Note that @lend is inclusive (describes the last byte to be written) so 797 * that this function can be used to write to the very end-of-file (end = -1). 798 * 799 * After writing out and waiting on the data, we check and advance the 800 * f_wb_err cursor to the latest value, and return any errors detected there. 801 * 802 * Return: %0 on success, negative error code otherwise. 803 */ 804 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend) 805 { 806 int err = 0, err2; 807 struct address_space *mapping = file->f_mapping; 808 809 if (mapping_needs_writeback(mapping)) { 810 err = __filemap_fdatawrite_range(mapping, lstart, lend, 811 WB_SYNC_ALL); 812 /* See comment of filemap_write_and_wait() */ 813 if (err != -EIO) 814 __filemap_fdatawait_range(mapping, lstart, lend); 815 } 816 err2 = file_check_and_advance_wb_err(file); 817 if (!err) 818 err = err2; 819 return err; 820 } 821 EXPORT_SYMBOL(file_write_and_wait_range); 822 823 /** 824 * replace_page_cache_page - replace a pagecache page with a new one 825 * @old: page to be replaced 826 * @new: page to replace with 827 * 828 * This function replaces a page in the pagecache with a new one. On 829 * success it acquires the pagecache reference for the new page and 830 * drops it for the old page. Both the old and new pages must be 831 * locked. This function does not add the new page to the LRU, the 832 * caller must do that. 833 * 834 * The remove + add is atomic. This function cannot fail. 835 */ 836 void replace_page_cache_page(struct page *old, struct page *new) 837 { 838 struct address_space *mapping = old->mapping; 839 void (*freepage)(struct page *) = mapping->a_ops->freepage; 840 pgoff_t offset = old->index; 841 XA_STATE(xas, &mapping->i_pages, offset); 842 843 VM_BUG_ON_PAGE(!PageLocked(old), old); 844 VM_BUG_ON_PAGE(!PageLocked(new), new); 845 VM_BUG_ON_PAGE(new->mapping, new); 846 847 get_page(new); 848 new->mapping = mapping; 849 new->index = offset; 850 851 mem_cgroup_migrate(old, new); 852 853 xas_lock_irq(&xas); 854 xas_store(&xas, new); 855 856 old->mapping = NULL; 857 /* hugetlb pages do not participate in page cache accounting. */ 858 if (!PageHuge(old)) 859 __dec_lruvec_page_state(old, NR_FILE_PAGES); 860 if (!PageHuge(new)) 861 __inc_lruvec_page_state(new, NR_FILE_PAGES); 862 if (PageSwapBacked(old)) 863 __dec_lruvec_page_state(old, NR_SHMEM); 864 if (PageSwapBacked(new)) 865 __inc_lruvec_page_state(new, NR_SHMEM); 866 xas_unlock_irq(&xas); 867 if (freepage) 868 freepage(old); 869 put_page(old); 870 } 871 EXPORT_SYMBOL_GPL(replace_page_cache_page); 872 873 noinline int __add_to_page_cache_locked(struct page *page, 874 struct address_space *mapping, 875 pgoff_t offset, gfp_t gfp, 876 void **shadowp) 877 { 878 XA_STATE(xas, &mapping->i_pages, offset); 879 int huge = PageHuge(page); 880 int error; 881 bool charged = false; 882 883 VM_BUG_ON_PAGE(!PageLocked(page), page); 884 VM_BUG_ON_PAGE(PageSwapBacked(page), page); 885 mapping_set_update(&xas, mapping); 886 887 get_page(page); 888 page->mapping = mapping; 889 page->index = offset; 890 891 if (!huge) { 892 error = mem_cgroup_charge(page, NULL, gfp); 893 if (error) 894 goto error; 895 charged = true; 896 } 897 898 gfp &= GFP_RECLAIM_MASK; 899 900 do { 901 unsigned int order = xa_get_order(xas.xa, xas.xa_index); 902 void *entry, *old = NULL; 903 904 if (order > thp_order(page)) 905 xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index), 906 order, gfp); 907 xas_lock_irq(&xas); 908 xas_for_each_conflict(&xas, entry) { 909 old = entry; 910 if (!xa_is_value(entry)) { 911 xas_set_err(&xas, -EEXIST); 912 goto unlock; 913 } 914 } 915 916 if (old) { 917 if (shadowp) 918 *shadowp = old; 919 /* entry may have been split before we acquired lock */ 920 order = xa_get_order(xas.xa, xas.xa_index); 921 if (order > thp_order(page)) { 922 xas_split(&xas, old, order); 923 xas_reset(&xas); 924 } 925 } 926 927 xas_store(&xas, page); 928 if (xas_error(&xas)) 929 goto unlock; 930 931 mapping->nrpages++; 932 933 /* hugetlb pages do not participate in page cache accounting */ 934 if (!huge) 935 __inc_lruvec_page_state(page, NR_FILE_PAGES); 936 unlock: 937 xas_unlock_irq(&xas); 938 } while (xas_nomem(&xas, gfp)); 939 940 if (xas_error(&xas)) { 941 error = xas_error(&xas); 942 if (charged) 943 mem_cgroup_uncharge(page); 944 goto error; 945 } 946 947 trace_mm_filemap_add_to_page_cache(page); 948 return 0; 949 error: 950 page->mapping = NULL; 951 /* Leave page->index set: truncation relies upon it */ 952 put_page(page); 953 return error; 954 } 955 ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO); 956 957 /** 958 * add_to_page_cache_locked - add a locked page to the pagecache 959 * @page: page to add 960 * @mapping: the page's address_space 961 * @offset: page index 962 * @gfp_mask: page allocation mode 963 * 964 * This function is used to add a page to the pagecache. It must be locked. 965 * This function does not add the page to the LRU. The caller must do that. 966 * 967 * Return: %0 on success, negative error code otherwise. 968 */ 969 int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 970 pgoff_t offset, gfp_t gfp_mask) 971 { 972 return __add_to_page_cache_locked(page, mapping, offset, 973 gfp_mask, NULL); 974 } 975 EXPORT_SYMBOL(add_to_page_cache_locked); 976 977 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 978 pgoff_t offset, gfp_t gfp_mask) 979 { 980 void *shadow = NULL; 981 int ret; 982 983 __SetPageLocked(page); 984 ret = __add_to_page_cache_locked(page, mapping, offset, 985 gfp_mask, &shadow); 986 if (unlikely(ret)) 987 __ClearPageLocked(page); 988 else { 989 /* 990 * The page might have been evicted from cache only 991 * recently, in which case it should be activated like 992 * any other repeatedly accessed page. 993 * The exception is pages getting rewritten; evicting other 994 * data from the working set, only to cache data that will 995 * get overwritten with something else, is a waste of memory. 996 */ 997 WARN_ON_ONCE(PageActive(page)); 998 if (!(gfp_mask & __GFP_WRITE) && shadow) 999 workingset_refault(page, shadow); 1000 lru_cache_add(page); 1001 } 1002 return ret; 1003 } 1004 EXPORT_SYMBOL_GPL(add_to_page_cache_lru); 1005 1006 #ifdef CONFIG_NUMA 1007 struct page *__page_cache_alloc(gfp_t gfp) 1008 { 1009 int n; 1010 struct page *page; 1011 1012 if (cpuset_do_page_mem_spread()) { 1013 unsigned int cpuset_mems_cookie; 1014 do { 1015 cpuset_mems_cookie = read_mems_allowed_begin(); 1016 n = cpuset_mem_spread_node(); 1017 page = __alloc_pages_node(n, gfp, 0); 1018 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie)); 1019 1020 return page; 1021 } 1022 return alloc_pages(gfp, 0); 1023 } 1024 EXPORT_SYMBOL(__page_cache_alloc); 1025 #endif 1026 1027 /* 1028 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings 1029 * 1030 * Lock exclusively invalidate_lock of any passed mapping that is not NULL. 1031 * 1032 * @mapping1: the first mapping to lock 1033 * @mapping2: the second mapping to lock 1034 */ 1035 void filemap_invalidate_lock_two(struct address_space *mapping1, 1036 struct address_space *mapping2) 1037 { 1038 if (mapping1 > mapping2) 1039 swap(mapping1, mapping2); 1040 if (mapping1) 1041 down_write(&mapping1->invalidate_lock); 1042 if (mapping2 && mapping1 != mapping2) 1043 down_write_nested(&mapping2->invalidate_lock, 1); 1044 } 1045 EXPORT_SYMBOL(filemap_invalidate_lock_two); 1046 1047 /* 1048 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings 1049 * 1050 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL. 1051 * 1052 * @mapping1: the first mapping to unlock 1053 * @mapping2: the second mapping to unlock 1054 */ 1055 void filemap_invalidate_unlock_two(struct address_space *mapping1, 1056 struct address_space *mapping2) 1057 { 1058 if (mapping1) 1059 up_write(&mapping1->invalidate_lock); 1060 if (mapping2 && mapping1 != mapping2) 1061 up_write(&mapping2->invalidate_lock); 1062 } 1063 EXPORT_SYMBOL(filemap_invalidate_unlock_two); 1064 1065 /* 1066 * In order to wait for pages to become available there must be 1067 * waitqueues associated with pages. By using a hash table of 1068 * waitqueues where the bucket discipline is to maintain all 1069 * waiters on the same queue and wake all when any of the pages 1070 * become available, and for the woken contexts to check to be 1071 * sure the appropriate page became available, this saves space 1072 * at a cost of "thundering herd" phenomena during rare hash 1073 * collisions. 1074 */ 1075 #define PAGE_WAIT_TABLE_BITS 8 1076 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS) 1077 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned; 1078 1079 static wait_queue_head_t *page_waitqueue(struct page *page) 1080 { 1081 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)]; 1082 } 1083 1084 void __init pagecache_init(void) 1085 { 1086 int i; 1087 1088 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++) 1089 init_waitqueue_head(&page_wait_table[i]); 1090 1091 page_writeback_init(); 1092 } 1093 1094 /* 1095 * The page wait code treats the "wait->flags" somewhat unusually, because 1096 * we have multiple different kinds of waits, not just the usual "exclusive" 1097 * one. 1098 * 1099 * We have: 1100 * 1101 * (a) no special bits set: 1102 * 1103 * We're just waiting for the bit to be released, and when a waker 1104 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up, 1105 * and remove it from the wait queue. 1106 * 1107 * Simple and straightforward. 1108 * 1109 * (b) WQ_FLAG_EXCLUSIVE: 1110 * 1111 * The waiter is waiting to get the lock, and only one waiter should 1112 * be woken up to avoid any thundering herd behavior. We'll set the 1113 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue. 1114 * 1115 * This is the traditional exclusive wait. 1116 * 1117 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM: 1118 * 1119 * The waiter is waiting to get the bit, and additionally wants the 1120 * lock to be transferred to it for fair lock behavior. If the lock 1121 * cannot be taken, we stop walking the wait queue without waking 1122 * the waiter. 1123 * 1124 * This is the "fair lock handoff" case, and in addition to setting 1125 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see 1126 * that it now has the lock. 1127 */ 1128 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg) 1129 { 1130 unsigned int flags; 1131 struct wait_page_key *key = arg; 1132 struct wait_page_queue *wait_page 1133 = container_of(wait, struct wait_page_queue, wait); 1134 1135 if (!wake_page_match(wait_page, key)) 1136 return 0; 1137 1138 /* 1139 * If it's a lock handoff wait, we get the bit for it, and 1140 * stop walking (and do not wake it up) if we can't. 1141 */ 1142 flags = wait->flags; 1143 if (flags & WQ_FLAG_EXCLUSIVE) { 1144 if (test_bit(key->bit_nr, &key->page->flags)) 1145 return -1; 1146 if (flags & WQ_FLAG_CUSTOM) { 1147 if (test_and_set_bit(key->bit_nr, &key->page->flags)) 1148 return -1; 1149 flags |= WQ_FLAG_DONE; 1150 } 1151 } 1152 1153 /* 1154 * We are holding the wait-queue lock, but the waiter that 1155 * is waiting for this will be checking the flags without 1156 * any locking. 1157 * 1158 * So update the flags atomically, and wake up the waiter 1159 * afterwards to avoid any races. This store-release pairs 1160 * with the load-acquire in wait_on_page_bit_common(). 1161 */ 1162 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN); 1163 wake_up_state(wait->private, mode); 1164 1165 /* 1166 * Ok, we have successfully done what we're waiting for, 1167 * and we can unconditionally remove the wait entry. 1168 * 1169 * Note that this pairs with the "finish_wait()" in the 1170 * waiter, and has to be the absolute last thing we do. 1171 * After this list_del_init(&wait->entry) the wait entry 1172 * might be de-allocated and the process might even have 1173 * exited. 1174 */ 1175 list_del_init_careful(&wait->entry); 1176 return (flags & WQ_FLAG_EXCLUSIVE) != 0; 1177 } 1178 1179 static void wake_up_page_bit(struct page *page, int bit_nr) 1180 { 1181 wait_queue_head_t *q = page_waitqueue(page); 1182 struct wait_page_key key; 1183 unsigned long flags; 1184 wait_queue_entry_t bookmark; 1185 1186 key.page = page; 1187 key.bit_nr = bit_nr; 1188 key.page_match = 0; 1189 1190 bookmark.flags = 0; 1191 bookmark.private = NULL; 1192 bookmark.func = NULL; 1193 INIT_LIST_HEAD(&bookmark.entry); 1194 1195 spin_lock_irqsave(&q->lock, flags); 1196 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); 1197 1198 while (bookmark.flags & WQ_FLAG_BOOKMARK) { 1199 /* 1200 * Take a breather from holding the lock, 1201 * allow pages that finish wake up asynchronously 1202 * to acquire the lock and remove themselves 1203 * from wait queue 1204 */ 1205 spin_unlock_irqrestore(&q->lock, flags); 1206 cpu_relax(); 1207 spin_lock_irqsave(&q->lock, flags); 1208 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); 1209 } 1210 1211 /* 1212 * It is possible for other pages to have collided on the waitqueue 1213 * hash, so in that case check for a page match. That prevents a long- 1214 * term waiter 1215 * 1216 * It is still possible to miss a case here, when we woke page waiters 1217 * and removed them from the waitqueue, but there are still other 1218 * page waiters. 1219 */ 1220 if (!waitqueue_active(q) || !key.page_match) { 1221 ClearPageWaiters(page); 1222 /* 1223 * It's possible to miss clearing Waiters here, when we woke 1224 * our page waiters, but the hashed waitqueue has waiters for 1225 * other pages on it. 1226 * 1227 * That's okay, it's a rare case. The next waker will clear it. 1228 */ 1229 } 1230 spin_unlock_irqrestore(&q->lock, flags); 1231 } 1232 1233 static void wake_up_page(struct page *page, int bit) 1234 { 1235 if (!PageWaiters(page)) 1236 return; 1237 wake_up_page_bit(page, bit); 1238 } 1239 1240 /* 1241 * A choice of three behaviors for wait_on_page_bit_common(): 1242 */ 1243 enum behavior { 1244 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like 1245 * __lock_page() waiting on then setting PG_locked. 1246 */ 1247 SHARED, /* Hold ref to page and check the bit when woken, like 1248 * wait_on_page_writeback() waiting on PG_writeback. 1249 */ 1250 DROP, /* Drop ref to page before wait, no check when woken, 1251 * like put_and_wait_on_page_locked() on PG_locked. 1252 */ 1253 }; 1254 1255 /* 1256 * Attempt to check (or get) the page bit, and mark us done 1257 * if successful. 1258 */ 1259 static inline bool trylock_page_bit_common(struct page *page, int bit_nr, 1260 struct wait_queue_entry *wait) 1261 { 1262 if (wait->flags & WQ_FLAG_EXCLUSIVE) { 1263 if (test_and_set_bit(bit_nr, &page->flags)) 1264 return false; 1265 } else if (test_bit(bit_nr, &page->flags)) 1266 return false; 1267 1268 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE; 1269 return true; 1270 } 1271 1272 /* How many times do we accept lock stealing from under a waiter? */ 1273 int sysctl_page_lock_unfairness = 5; 1274 1275 static inline int wait_on_page_bit_common(wait_queue_head_t *q, 1276 struct page *page, int bit_nr, int state, enum behavior behavior) 1277 { 1278 int unfairness = sysctl_page_lock_unfairness; 1279 struct wait_page_queue wait_page; 1280 wait_queue_entry_t *wait = &wait_page.wait; 1281 bool thrashing = false; 1282 bool delayacct = false; 1283 unsigned long pflags; 1284 1285 if (bit_nr == PG_locked && 1286 !PageUptodate(page) && PageWorkingset(page)) { 1287 if (!PageSwapBacked(page)) { 1288 delayacct_thrashing_start(); 1289 delayacct = true; 1290 } 1291 psi_memstall_enter(&pflags); 1292 thrashing = true; 1293 } 1294 1295 init_wait(wait); 1296 wait->func = wake_page_function; 1297 wait_page.page = page; 1298 wait_page.bit_nr = bit_nr; 1299 1300 repeat: 1301 wait->flags = 0; 1302 if (behavior == EXCLUSIVE) { 1303 wait->flags = WQ_FLAG_EXCLUSIVE; 1304 if (--unfairness < 0) 1305 wait->flags |= WQ_FLAG_CUSTOM; 1306 } 1307 1308 /* 1309 * Do one last check whether we can get the 1310 * page bit synchronously. 1311 * 1312 * Do the SetPageWaiters() marking before that 1313 * to let any waker we _just_ missed know they 1314 * need to wake us up (otherwise they'll never 1315 * even go to the slow case that looks at the 1316 * page queue), and add ourselves to the wait 1317 * queue if we need to sleep. 1318 * 1319 * This part needs to be done under the queue 1320 * lock to avoid races. 1321 */ 1322 spin_lock_irq(&q->lock); 1323 SetPageWaiters(page); 1324 if (!trylock_page_bit_common(page, bit_nr, wait)) 1325 __add_wait_queue_entry_tail(q, wait); 1326 spin_unlock_irq(&q->lock); 1327 1328 /* 1329 * From now on, all the logic will be based on 1330 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to 1331 * see whether the page bit testing has already 1332 * been done by the wake function. 1333 * 1334 * We can drop our reference to the page. 1335 */ 1336 if (behavior == DROP) 1337 put_page(page); 1338 1339 /* 1340 * Note that until the "finish_wait()", or until 1341 * we see the WQ_FLAG_WOKEN flag, we need to 1342 * be very careful with the 'wait->flags', because 1343 * we may race with a waker that sets them. 1344 */ 1345 for (;;) { 1346 unsigned int flags; 1347 1348 set_current_state(state); 1349 1350 /* Loop until we've been woken or interrupted */ 1351 flags = smp_load_acquire(&wait->flags); 1352 if (!(flags & WQ_FLAG_WOKEN)) { 1353 if (signal_pending_state(state, current)) 1354 break; 1355 1356 io_schedule(); 1357 continue; 1358 } 1359 1360 /* If we were non-exclusive, we're done */ 1361 if (behavior != EXCLUSIVE) 1362 break; 1363 1364 /* If the waker got the lock for us, we're done */ 1365 if (flags & WQ_FLAG_DONE) 1366 break; 1367 1368 /* 1369 * Otherwise, if we're getting the lock, we need to 1370 * try to get it ourselves. 1371 * 1372 * And if that fails, we'll have to retry this all. 1373 */ 1374 if (unlikely(test_and_set_bit(bit_nr, &page->flags))) 1375 goto repeat; 1376 1377 wait->flags |= WQ_FLAG_DONE; 1378 break; 1379 } 1380 1381 /* 1382 * If a signal happened, this 'finish_wait()' may remove the last 1383 * waiter from the wait-queues, but the PageWaiters bit will remain 1384 * set. That's ok. The next wakeup will take care of it, and trying 1385 * to do it here would be difficult and prone to races. 1386 */ 1387 finish_wait(q, wait); 1388 1389 if (thrashing) { 1390 if (delayacct) 1391 delayacct_thrashing_end(); 1392 psi_memstall_leave(&pflags); 1393 } 1394 1395 /* 1396 * NOTE! The wait->flags weren't stable until we've done the 1397 * 'finish_wait()', and we could have exited the loop above due 1398 * to a signal, and had a wakeup event happen after the signal 1399 * test but before the 'finish_wait()'. 1400 * 1401 * So only after the finish_wait() can we reliably determine 1402 * if we got woken up or not, so we can now figure out the final 1403 * return value based on that state without races. 1404 * 1405 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive 1406 * waiter, but an exclusive one requires WQ_FLAG_DONE. 1407 */ 1408 if (behavior == EXCLUSIVE) 1409 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR; 1410 1411 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR; 1412 } 1413 1414 void wait_on_page_bit(struct page *page, int bit_nr) 1415 { 1416 wait_queue_head_t *q = page_waitqueue(page); 1417 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED); 1418 } 1419 EXPORT_SYMBOL(wait_on_page_bit); 1420 1421 int wait_on_page_bit_killable(struct page *page, int bit_nr) 1422 { 1423 wait_queue_head_t *q = page_waitqueue(page); 1424 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED); 1425 } 1426 EXPORT_SYMBOL(wait_on_page_bit_killable); 1427 1428 /** 1429 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked 1430 * @page: The page to wait for. 1431 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc). 1432 * 1433 * The caller should hold a reference on @page. They expect the page to 1434 * become unlocked relatively soon, but do not wish to hold up migration 1435 * (for example) by holding the reference while waiting for the page to 1436 * come unlocked. After this function returns, the caller should not 1437 * dereference @page. 1438 * 1439 * Return: 0 if the page was unlocked or -EINTR if interrupted by a signal. 1440 */ 1441 int put_and_wait_on_page_locked(struct page *page, int state) 1442 { 1443 wait_queue_head_t *q; 1444 1445 page = compound_head(page); 1446 q = page_waitqueue(page); 1447 return wait_on_page_bit_common(q, page, PG_locked, state, DROP); 1448 } 1449 1450 /** 1451 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue 1452 * @page: Page defining the wait queue of interest 1453 * @waiter: Waiter to add to the queue 1454 * 1455 * Add an arbitrary @waiter to the wait queue for the nominated @page. 1456 */ 1457 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter) 1458 { 1459 wait_queue_head_t *q = page_waitqueue(page); 1460 unsigned long flags; 1461 1462 spin_lock_irqsave(&q->lock, flags); 1463 __add_wait_queue_entry_tail(q, waiter); 1464 SetPageWaiters(page); 1465 spin_unlock_irqrestore(&q->lock, flags); 1466 } 1467 EXPORT_SYMBOL_GPL(add_page_wait_queue); 1468 1469 #ifndef clear_bit_unlock_is_negative_byte 1470 1471 /* 1472 * PG_waiters is the high bit in the same byte as PG_lock. 1473 * 1474 * On x86 (and on many other architectures), we can clear PG_lock and 1475 * test the sign bit at the same time. But if the architecture does 1476 * not support that special operation, we just do this all by hand 1477 * instead. 1478 * 1479 * The read of PG_waiters has to be after (or concurrently with) PG_locked 1480 * being cleared, but a memory barrier should be unnecessary since it is 1481 * in the same byte as PG_locked. 1482 */ 1483 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem) 1484 { 1485 clear_bit_unlock(nr, mem); 1486 /* smp_mb__after_atomic(); */ 1487 return test_bit(PG_waiters, mem); 1488 } 1489 1490 #endif 1491 1492 /** 1493 * unlock_page - unlock a locked page 1494 * @page: the page 1495 * 1496 * Unlocks the page and wakes up sleepers in wait_on_page_locked(). 1497 * Also wakes sleepers in wait_on_page_writeback() because the wakeup 1498 * mechanism between PageLocked pages and PageWriteback pages is shared. 1499 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. 1500 * 1501 * Note that this depends on PG_waiters being the sign bit in the byte 1502 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to 1503 * clear the PG_locked bit and test PG_waiters at the same time fairly 1504 * portably (architectures that do LL/SC can test any bit, while x86 can 1505 * test the sign bit). 1506 */ 1507 void unlock_page(struct page *page) 1508 { 1509 BUILD_BUG_ON(PG_waiters != 7); 1510 page = compound_head(page); 1511 VM_BUG_ON_PAGE(!PageLocked(page), page); 1512 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags)) 1513 wake_up_page_bit(page, PG_locked); 1514 } 1515 EXPORT_SYMBOL(unlock_page); 1516 1517 /** 1518 * end_page_private_2 - Clear PG_private_2 and release any waiters 1519 * @page: The page 1520 * 1521 * Clear the PG_private_2 bit on a page and wake up any sleepers waiting for 1522 * this. The page ref held for PG_private_2 being set is released. 1523 * 1524 * This is, for example, used when a netfs page is being written to a local 1525 * disk cache, thereby allowing writes to the cache for the same page to be 1526 * serialised. 1527 */ 1528 void end_page_private_2(struct page *page) 1529 { 1530 page = compound_head(page); 1531 VM_BUG_ON_PAGE(!PagePrivate2(page), page); 1532 clear_bit_unlock(PG_private_2, &page->flags); 1533 wake_up_page_bit(page, PG_private_2); 1534 put_page(page); 1535 } 1536 EXPORT_SYMBOL(end_page_private_2); 1537 1538 /** 1539 * wait_on_page_private_2 - Wait for PG_private_2 to be cleared on a page 1540 * @page: The page to wait on 1541 * 1542 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a page. 1543 */ 1544 void wait_on_page_private_2(struct page *page) 1545 { 1546 page = compound_head(page); 1547 while (PagePrivate2(page)) 1548 wait_on_page_bit(page, PG_private_2); 1549 } 1550 EXPORT_SYMBOL(wait_on_page_private_2); 1551 1552 /** 1553 * wait_on_page_private_2_killable - Wait for PG_private_2 to be cleared on a page 1554 * @page: The page to wait on 1555 * 1556 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a page or until a 1557 * fatal signal is received by the calling task. 1558 * 1559 * Return: 1560 * - 0 if successful. 1561 * - -EINTR if a fatal signal was encountered. 1562 */ 1563 int wait_on_page_private_2_killable(struct page *page) 1564 { 1565 int ret = 0; 1566 1567 page = compound_head(page); 1568 while (PagePrivate2(page)) { 1569 ret = wait_on_page_bit_killable(page, PG_private_2); 1570 if (ret < 0) 1571 break; 1572 } 1573 1574 return ret; 1575 } 1576 EXPORT_SYMBOL(wait_on_page_private_2_killable); 1577 1578 /** 1579 * end_page_writeback - end writeback against a page 1580 * @page: the page 1581 */ 1582 void end_page_writeback(struct page *page) 1583 { 1584 /* 1585 * TestClearPageReclaim could be used here but it is an atomic 1586 * operation and overkill in this particular case. Failing to 1587 * shuffle a page marked for immediate reclaim is too mild to 1588 * justify taking an atomic operation penalty at the end of 1589 * ever page writeback. 1590 */ 1591 if (PageReclaim(page)) { 1592 ClearPageReclaim(page); 1593 rotate_reclaimable_page(page); 1594 } 1595 1596 /* 1597 * Writeback does not hold a page reference of its own, relying 1598 * on truncation to wait for the clearing of PG_writeback. 1599 * But here we must make sure that the page is not freed and 1600 * reused before the wake_up_page(). 1601 */ 1602 get_page(page); 1603 if (!test_clear_page_writeback(page)) 1604 BUG(); 1605 1606 smp_mb__after_atomic(); 1607 wake_up_page(page, PG_writeback); 1608 put_page(page); 1609 } 1610 EXPORT_SYMBOL(end_page_writeback); 1611 1612 /* 1613 * After completing I/O on a page, call this routine to update the page 1614 * flags appropriately 1615 */ 1616 void page_endio(struct page *page, bool is_write, int err) 1617 { 1618 if (!is_write) { 1619 if (!err) { 1620 SetPageUptodate(page); 1621 } else { 1622 ClearPageUptodate(page); 1623 SetPageError(page); 1624 } 1625 unlock_page(page); 1626 } else { 1627 if (err) { 1628 struct address_space *mapping; 1629 1630 SetPageError(page); 1631 mapping = page_mapping(page); 1632 if (mapping) 1633 mapping_set_error(mapping, err); 1634 } 1635 end_page_writeback(page); 1636 } 1637 } 1638 EXPORT_SYMBOL_GPL(page_endio); 1639 1640 /** 1641 * __lock_page - get a lock on the page, assuming we need to sleep to get it 1642 * @__page: the page to lock 1643 */ 1644 void __lock_page(struct page *__page) 1645 { 1646 struct page *page = compound_head(__page); 1647 wait_queue_head_t *q = page_waitqueue(page); 1648 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, 1649 EXCLUSIVE); 1650 } 1651 EXPORT_SYMBOL(__lock_page); 1652 1653 int __lock_page_killable(struct page *__page) 1654 { 1655 struct page *page = compound_head(__page); 1656 wait_queue_head_t *q = page_waitqueue(page); 1657 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, 1658 EXCLUSIVE); 1659 } 1660 EXPORT_SYMBOL_GPL(__lock_page_killable); 1661 1662 int __lock_page_async(struct page *page, struct wait_page_queue *wait) 1663 { 1664 struct wait_queue_head *q = page_waitqueue(page); 1665 int ret = 0; 1666 1667 wait->page = page; 1668 wait->bit_nr = PG_locked; 1669 1670 spin_lock_irq(&q->lock); 1671 __add_wait_queue_entry_tail(q, &wait->wait); 1672 SetPageWaiters(page); 1673 ret = !trylock_page(page); 1674 /* 1675 * If we were successful now, we know we're still on the 1676 * waitqueue as we're still under the lock. This means it's 1677 * safe to remove and return success, we know the callback 1678 * isn't going to trigger. 1679 */ 1680 if (!ret) 1681 __remove_wait_queue(q, &wait->wait); 1682 else 1683 ret = -EIOCBQUEUED; 1684 spin_unlock_irq(&q->lock); 1685 return ret; 1686 } 1687 1688 /* 1689 * Return values: 1690 * 1 - page is locked; mmap_lock is still held. 1691 * 0 - page is not locked. 1692 * mmap_lock has been released (mmap_read_unlock(), unless flags had both 1693 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in 1694 * which case mmap_lock is still held. 1695 * 1696 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1 1697 * with the page locked and the mmap_lock unperturbed. 1698 */ 1699 int __lock_page_or_retry(struct page *page, struct mm_struct *mm, 1700 unsigned int flags) 1701 { 1702 if (fault_flag_allow_retry_first(flags)) { 1703 /* 1704 * CAUTION! In this case, mmap_lock is not released 1705 * even though return 0. 1706 */ 1707 if (flags & FAULT_FLAG_RETRY_NOWAIT) 1708 return 0; 1709 1710 mmap_read_unlock(mm); 1711 if (flags & FAULT_FLAG_KILLABLE) 1712 wait_on_page_locked_killable(page); 1713 else 1714 wait_on_page_locked(page); 1715 return 0; 1716 } 1717 if (flags & FAULT_FLAG_KILLABLE) { 1718 int ret; 1719 1720 ret = __lock_page_killable(page); 1721 if (ret) { 1722 mmap_read_unlock(mm); 1723 return 0; 1724 } 1725 } else { 1726 __lock_page(page); 1727 } 1728 return 1; 1729 1730 } 1731 1732 /** 1733 * page_cache_next_miss() - Find the next gap in the page cache. 1734 * @mapping: Mapping. 1735 * @index: Index. 1736 * @max_scan: Maximum range to search. 1737 * 1738 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the 1739 * gap with the lowest index. 1740 * 1741 * This function may be called under the rcu_read_lock. However, this will 1742 * not atomically search a snapshot of the cache at a single point in time. 1743 * For example, if a gap is created at index 5, then subsequently a gap is 1744 * created at index 10, page_cache_next_miss covering both indices may 1745 * return 10 if called under the rcu_read_lock. 1746 * 1747 * Return: The index of the gap if found, otherwise an index outside the 1748 * range specified (in which case 'return - index >= max_scan' will be true). 1749 * In the rare case of index wrap-around, 0 will be returned. 1750 */ 1751 pgoff_t page_cache_next_miss(struct address_space *mapping, 1752 pgoff_t index, unsigned long max_scan) 1753 { 1754 XA_STATE(xas, &mapping->i_pages, index); 1755 1756 while (max_scan--) { 1757 void *entry = xas_next(&xas); 1758 if (!entry || xa_is_value(entry)) 1759 break; 1760 if (xas.xa_index == 0) 1761 break; 1762 } 1763 1764 return xas.xa_index; 1765 } 1766 EXPORT_SYMBOL(page_cache_next_miss); 1767 1768 /** 1769 * page_cache_prev_miss() - Find the previous gap in the page cache. 1770 * @mapping: Mapping. 1771 * @index: Index. 1772 * @max_scan: Maximum range to search. 1773 * 1774 * Search the range [max(index - max_scan + 1, 0), index] for the 1775 * gap with the highest index. 1776 * 1777 * This function may be called under the rcu_read_lock. However, this will 1778 * not atomically search a snapshot of the cache at a single point in time. 1779 * For example, if a gap is created at index 10, then subsequently a gap is 1780 * created at index 5, page_cache_prev_miss() covering both indices may 1781 * return 5 if called under the rcu_read_lock. 1782 * 1783 * Return: The index of the gap if found, otherwise an index outside the 1784 * range specified (in which case 'index - return >= max_scan' will be true). 1785 * In the rare case of wrap-around, ULONG_MAX will be returned. 1786 */ 1787 pgoff_t page_cache_prev_miss(struct address_space *mapping, 1788 pgoff_t index, unsigned long max_scan) 1789 { 1790 XA_STATE(xas, &mapping->i_pages, index); 1791 1792 while (max_scan--) { 1793 void *entry = xas_prev(&xas); 1794 if (!entry || xa_is_value(entry)) 1795 break; 1796 if (xas.xa_index == ULONG_MAX) 1797 break; 1798 } 1799 1800 return xas.xa_index; 1801 } 1802 EXPORT_SYMBOL(page_cache_prev_miss); 1803 1804 /* 1805 * mapping_get_entry - Get a page cache entry. 1806 * @mapping: the address_space to search 1807 * @index: The page cache index. 1808 * 1809 * Looks up the page cache slot at @mapping & @index. If there is a 1810 * page cache page, the head page is returned with an increased refcount. 1811 * 1812 * If the slot holds a shadow entry of a previously evicted page, or a 1813 * swap entry from shmem/tmpfs, it is returned. 1814 * 1815 * Return: The head page or shadow entry, %NULL if nothing is found. 1816 */ 1817 static struct page *mapping_get_entry(struct address_space *mapping, 1818 pgoff_t index) 1819 { 1820 XA_STATE(xas, &mapping->i_pages, index); 1821 struct page *page; 1822 1823 rcu_read_lock(); 1824 repeat: 1825 xas_reset(&xas); 1826 page = xas_load(&xas); 1827 if (xas_retry(&xas, page)) 1828 goto repeat; 1829 /* 1830 * A shadow entry of a recently evicted page, or a swap entry from 1831 * shmem/tmpfs. Return it without attempting to raise page count. 1832 */ 1833 if (!page || xa_is_value(page)) 1834 goto out; 1835 1836 if (!page_cache_get_speculative(page)) 1837 goto repeat; 1838 1839 /* 1840 * Has the page moved or been split? 1841 * This is part of the lockless pagecache protocol. See 1842 * include/linux/pagemap.h for details. 1843 */ 1844 if (unlikely(page != xas_reload(&xas))) { 1845 put_page(page); 1846 goto repeat; 1847 } 1848 out: 1849 rcu_read_unlock(); 1850 1851 return page; 1852 } 1853 1854 /** 1855 * pagecache_get_page - Find and get a reference to a page. 1856 * @mapping: The address_space to search. 1857 * @index: The page index. 1858 * @fgp_flags: %FGP flags modify how the page is returned. 1859 * @gfp_mask: Memory allocation flags to use if %FGP_CREAT is specified. 1860 * 1861 * Looks up the page cache entry at @mapping & @index. 1862 * 1863 * @fgp_flags can be zero or more of these flags: 1864 * 1865 * * %FGP_ACCESSED - The page will be marked accessed. 1866 * * %FGP_LOCK - The page is returned locked. 1867 * * %FGP_HEAD - If the page is present and a THP, return the head page 1868 * rather than the exact page specified by the index. 1869 * * %FGP_ENTRY - If there is a shadow / swap / DAX entry, return it 1870 * instead of allocating a new page to replace it. 1871 * * %FGP_CREAT - If no page is present then a new page is allocated using 1872 * @gfp_mask and added to the page cache and the VM's LRU list. 1873 * The page is returned locked and with an increased refcount. 1874 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the 1875 * page is already in cache. If the page was allocated, unlock it before 1876 * returning so the caller can do the same dance. 1877 * * %FGP_WRITE - The page will be written 1878 * * %FGP_NOFS - __GFP_FS will get cleared in gfp mask 1879 * * %FGP_NOWAIT - Don't get blocked by page lock 1880 * 1881 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even 1882 * if the %GFP flags specified for %FGP_CREAT are atomic. 1883 * 1884 * If there is a page cache page, it is returned with an increased refcount. 1885 * 1886 * Return: The found page or %NULL otherwise. 1887 */ 1888 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index, 1889 int fgp_flags, gfp_t gfp_mask) 1890 { 1891 struct page *page; 1892 1893 repeat: 1894 page = mapping_get_entry(mapping, index); 1895 if (xa_is_value(page)) { 1896 if (fgp_flags & FGP_ENTRY) 1897 return page; 1898 page = NULL; 1899 } 1900 if (!page) 1901 goto no_page; 1902 1903 if (fgp_flags & FGP_LOCK) { 1904 if (fgp_flags & FGP_NOWAIT) { 1905 if (!trylock_page(page)) { 1906 put_page(page); 1907 return NULL; 1908 } 1909 } else { 1910 lock_page(page); 1911 } 1912 1913 /* Has the page been truncated? */ 1914 if (unlikely(page->mapping != mapping)) { 1915 unlock_page(page); 1916 put_page(page); 1917 goto repeat; 1918 } 1919 VM_BUG_ON_PAGE(!thp_contains(page, index), page); 1920 } 1921 1922 if (fgp_flags & FGP_ACCESSED) 1923 mark_page_accessed(page); 1924 else if (fgp_flags & FGP_WRITE) { 1925 /* Clear idle flag for buffer write */ 1926 if (page_is_idle(page)) 1927 clear_page_idle(page); 1928 } 1929 if (!(fgp_flags & FGP_HEAD)) 1930 page = find_subpage(page, index); 1931 1932 no_page: 1933 if (!page && (fgp_flags & FGP_CREAT)) { 1934 int err; 1935 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping)) 1936 gfp_mask |= __GFP_WRITE; 1937 if (fgp_flags & FGP_NOFS) 1938 gfp_mask &= ~__GFP_FS; 1939 1940 page = __page_cache_alloc(gfp_mask); 1941 if (!page) 1942 return NULL; 1943 1944 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP)))) 1945 fgp_flags |= FGP_LOCK; 1946 1947 /* Init accessed so avoid atomic mark_page_accessed later */ 1948 if (fgp_flags & FGP_ACCESSED) 1949 __SetPageReferenced(page); 1950 1951 err = add_to_page_cache_lru(page, mapping, index, gfp_mask); 1952 if (unlikely(err)) { 1953 put_page(page); 1954 page = NULL; 1955 if (err == -EEXIST) 1956 goto repeat; 1957 } 1958 1959 /* 1960 * add_to_page_cache_lru locks the page, and for mmap we expect 1961 * an unlocked page. 1962 */ 1963 if (page && (fgp_flags & FGP_FOR_MMAP)) 1964 unlock_page(page); 1965 } 1966 1967 return page; 1968 } 1969 EXPORT_SYMBOL(pagecache_get_page); 1970 1971 static inline struct page *find_get_entry(struct xa_state *xas, pgoff_t max, 1972 xa_mark_t mark) 1973 { 1974 struct page *page; 1975 1976 retry: 1977 if (mark == XA_PRESENT) 1978 page = xas_find(xas, max); 1979 else 1980 page = xas_find_marked(xas, max, mark); 1981 1982 if (xas_retry(xas, page)) 1983 goto retry; 1984 /* 1985 * A shadow entry of a recently evicted page, a swap 1986 * entry from shmem/tmpfs or a DAX entry. Return it 1987 * without attempting to raise page count. 1988 */ 1989 if (!page || xa_is_value(page)) 1990 return page; 1991 1992 if (!page_cache_get_speculative(page)) 1993 goto reset; 1994 1995 /* Has the page moved or been split? */ 1996 if (unlikely(page != xas_reload(xas))) { 1997 put_page(page); 1998 goto reset; 1999 } 2000 2001 return page; 2002 reset: 2003 xas_reset(xas); 2004 goto retry; 2005 } 2006 2007 /** 2008 * find_get_entries - gang pagecache lookup 2009 * @mapping: The address_space to search 2010 * @start: The starting page cache index 2011 * @end: The final page index (inclusive). 2012 * @pvec: Where the resulting entries are placed. 2013 * @indices: The cache indices corresponding to the entries in @entries 2014 * 2015 * find_get_entries() will search for and return a batch of entries in 2016 * the mapping. The entries are placed in @pvec. find_get_entries() 2017 * takes a reference on any actual pages it returns. 2018 * 2019 * The search returns a group of mapping-contiguous page cache entries 2020 * with ascending indexes. There may be holes in the indices due to 2021 * not-present pages. 2022 * 2023 * Any shadow entries of evicted pages, or swap entries from 2024 * shmem/tmpfs, are included in the returned array. 2025 * 2026 * If it finds a Transparent Huge Page, head or tail, find_get_entries() 2027 * stops at that page: the caller is likely to have a better way to handle 2028 * the compound page as a whole, and then skip its extent, than repeatedly 2029 * calling find_get_entries() to return all its tails. 2030 * 2031 * Return: the number of pages and shadow entries which were found. 2032 */ 2033 unsigned find_get_entries(struct address_space *mapping, pgoff_t start, 2034 pgoff_t end, struct pagevec *pvec, pgoff_t *indices) 2035 { 2036 XA_STATE(xas, &mapping->i_pages, start); 2037 struct page *page; 2038 unsigned int ret = 0; 2039 unsigned nr_entries = PAGEVEC_SIZE; 2040 2041 rcu_read_lock(); 2042 while ((page = find_get_entry(&xas, end, XA_PRESENT))) { 2043 /* 2044 * Terminate early on finding a THP, to allow the caller to 2045 * handle it all at once; but continue if this is hugetlbfs. 2046 */ 2047 if (!xa_is_value(page) && PageTransHuge(page) && 2048 !PageHuge(page)) { 2049 page = find_subpage(page, xas.xa_index); 2050 nr_entries = ret + 1; 2051 } 2052 2053 indices[ret] = xas.xa_index; 2054 pvec->pages[ret] = page; 2055 if (++ret == nr_entries) 2056 break; 2057 } 2058 rcu_read_unlock(); 2059 2060 pvec->nr = ret; 2061 return ret; 2062 } 2063 2064 /** 2065 * find_lock_entries - Find a batch of pagecache entries. 2066 * @mapping: The address_space to search. 2067 * @start: The starting page cache index. 2068 * @end: The final page index (inclusive). 2069 * @pvec: Where the resulting entries are placed. 2070 * @indices: The cache indices of the entries in @pvec. 2071 * 2072 * find_lock_entries() will return a batch of entries from @mapping. 2073 * Swap, shadow and DAX entries are included. Pages are returned 2074 * locked and with an incremented refcount. Pages which are locked by 2075 * somebody else or under writeback are skipped. Only the head page of 2076 * a THP is returned. Pages which are partially outside the range are 2077 * not returned. 2078 * 2079 * The entries have ascending indexes. The indices may not be consecutive 2080 * due to not-present entries, THP pages, pages which could not be locked 2081 * or pages under writeback. 2082 * 2083 * Return: The number of entries which were found. 2084 */ 2085 unsigned find_lock_entries(struct address_space *mapping, pgoff_t start, 2086 pgoff_t end, struct pagevec *pvec, pgoff_t *indices) 2087 { 2088 XA_STATE(xas, &mapping->i_pages, start); 2089 struct page *page; 2090 2091 rcu_read_lock(); 2092 while ((page = find_get_entry(&xas, end, XA_PRESENT))) { 2093 if (!xa_is_value(page)) { 2094 if (page->index < start) 2095 goto put; 2096 VM_BUG_ON_PAGE(page->index != xas.xa_index, page); 2097 if (page->index + thp_nr_pages(page) - 1 > end) 2098 goto put; 2099 if (!trylock_page(page)) 2100 goto put; 2101 if (page->mapping != mapping || PageWriteback(page)) 2102 goto unlock; 2103 VM_BUG_ON_PAGE(!thp_contains(page, xas.xa_index), 2104 page); 2105 } 2106 indices[pvec->nr] = xas.xa_index; 2107 if (!pagevec_add(pvec, page)) 2108 break; 2109 goto next; 2110 unlock: 2111 unlock_page(page); 2112 put: 2113 put_page(page); 2114 next: 2115 if (!xa_is_value(page) && PageTransHuge(page)) { 2116 unsigned int nr_pages = thp_nr_pages(page); 2117 2118 /* Final THP may cross MAX_LFS_FILESIZE on 32-bit */ 2119 xas_set(&xas, page->index + nr_pages); 2120 if (xas.xa_index < nr_pages) 2121 break; 2122 } 2123 } 2124 rcu_read_unlock(); 2125 2126 return pagevec_count(pvec); 2127 } 2128 2129 /** 2130 * find_get_pages_range - gang pagecache lookup 2131 * @mapping: The address_space to search 2132 * @start: The starting page index 2133 * @end: The final page index (inclusive) 2134 * @nr_pages: The maximum number of pages 2135 * @pages: Where the resulting pages are placed 2136 * 2137 * find_get_pages_range() will search for and return a group of up to @nr_pages 2138 * pages in the mapping starting at index @start and up to index @end 2139 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes 2140 * a reference against the returned pages. 2141 * 2142 * The search returns a group of mapping-contiguous pages with ascending 2143 * indexes. There may be holes in the indices due to not-present pages. 2144 * We also update @start to index the next page for the traversal. 2145 * 2146 * Return: the number of pages which were found. If this number is 2147 * smaller than @nr_pages, the end of specified range has been 2148 * reached. 2149 */ 2150 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start, 2151 pgoff_t end, unsigned int nr_pages, 2152 struct page **pages) 2153 { 2154 XA_STATE(xas, &mapping->i_pages, *start); 2155 struct page *page; 2156 unsigned ret = 0; 2157 2158 if (unlikely(!nr_pages)) 2159 return 0; 2160 2161 rcu_read_lock(); 2162 while ((page = find_get_entry(&xas, end, XA_PRESENT))) { 2163 /* Skip over shadow, swap and DAX entries */ 2164 if (xa_is_value(page)) 2165 continue; 2166 2167 pages[ret] = find_subpage(page, xas.xa_index); 2168 if (++ret == nr_pages) { 2169 *start = xas.xa_index + 1; 2170 goto out; 2171 } 2172 } 2173 2174 /* 2175 * We come here when there is no page beyond @end. We take care to not 2176 * overflow the index @start as it confuses some of the callers. This 2177 * breaks the iteration when there is a page at index -1 but that is 2178 * already broken anyway. 2179 */ 2180 if (end == (pgoff_t)-1) 2181 *start = (pgoff_t)-1; 2182 else 2183 *start = end + 1; 2184 out: 2185 rcu_read_unlock(); 2186 2187 return ret; 2188 } 2189 2190 /** 2191 * find_get_pages_contig - gang contiguous pagecache lookup 2192 * @mapping: The address_space to search 2193 * @index: The starting page index 2194 * @nr_pages: The maximum number of pages 2195 * @pages: Where the resulting pages are placed 2196 * 2197 * find_get_pages_contig() works exactly like find_get_pages(), except 2198 * that the returned number of pages are guaranteed to be contiguous. 2199 * 2200 * Return: the number of pages which were found. 2201 */ 2202 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, 2203 unsigned int nr_pages, struct page **pages) 2204 { 2205 XA_STATE(xas, &mapping->i_pages, index); 2206 struct page *page; 2207 unsigned int ret = 0; 2208 2209 if (unlikely(!nr_pages)) 2210 return 0; 2211 2212 rcu_read_lock(); 2213 for (page = xas_load(&xas); page; page = xas_next(&xas)) { 2214 if (xas_retry(&xas, page)) 2215 continue; 2216 /* 2217 * If the entry has been swapped out, we can stop looking. 2218 * No current caller is looking for DAX entries. 2219 */ 2220 if (xa_is_value(page)) 2221 break; 2222 2223 if (!page_cache_get_speculative(page)) 2224 goto retry; 2225 2226 /* Has the page moved or been split? */ 2227 if (unlikely(page != xas_reload(&xas))) 2228 goto put_page; 2229 2230 pages[ret] = find_subpage(page, xas.xa_index); 2231 if (++ret == nr_pages) 2232 break; 2233 continue; 2234 put_page: 2235 put_page(page); 2236 retry: 2237 xas_reset(&xas); 2238 } 2239 rcu_read_unlock(); 2240 return ret; 2241 } 2242 EXPORT_SYMBOL(find_get_pages_contig); 2243 2244 /** 2245 * find_get_pages_range_tag - Find and return head pages matching @tag. 2246 * @mapping: the address_space to search 2247 * @index: the starting page index 2248 * @end: The final page index (inclusive) 2249 * @tag: the tag index 2250 * @nr_pages: the maximum number of pages 2251 * @pages: where the resulting pages are placed 2252 * 2253 * Like find_get_pages(), except we only return head pages which are tagged 2254 * with @tag. @index is updated to the index immediately after the last 2255 * page we return, ready for the next iteration. 2256 * 2257 * Return: the number of pages which were found. 2258 */ 2259 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index, 2260 pgoff_t end, xa_mark_t tag, unsigned int nr_pages, 2261 struct page **pages) 2262 { 2263 XA_STATE(xas, &mapping->i_pages, *index); 2264 struct page *page; 2265 unsigned ret = 0; 2266 2267 if (unlikely(!nr_pages)) 2268 return 0; 2269 2270 rcu_read_lock(); 2271 while ((page = find_get_entry(&xas, end, tag))) { 2272 /* 2273 * Shadow entries should never be tagged, but this iteration 2274 * is lockless so there is a window for page reclaim to evict 2275 * a page we saw tagged. Skip over it. 2276 */ 2277 if (xa_is_value(page)) 2278 continue; 2279 2280 pages[ret] = page; 2281 if (++ret == nr_pages) { 2282 *index = page->index + thp_nr_pages(page); 2283 goto out; 2284 } 2285 } 2286 2287 /* 2288 * We come here when we got to @end. We take care to not overflow the 2289 * index @index as it confuses some of the callers. This breaks the 2290 * iteration when there is a page at index -1 but that is already 2291 * broken anyway. 2292 */ 2293 if (end == (pgoff_t)-1) 2294 *index = (pgoff_t)-1; 2295 else 2296 *index = end + 1; 2297 out: 2298 rcu_read_unlock(); 2299 2300 return ret; 2301 } 2302 EXPORT_SYMBOL(find_get_pages_range_tag); 2303 2304 /* 2305 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 2306 * a _large_ part of the i/o request. Imagine the worst scenario: 2307 * 2308 * ---R__________________________________________B__________ 2309 * ^ reading here ^ bad block(assume 4k) 2310 * 2311 * read(R) => miss => readahead(R...B) => media error => frustrating retries 2312 * => failing the whole request => read(R) => read(R+1) => 2313 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 2314 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 2315 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 2316 * 2317 * It is going insane. Fix it by quickly scaling down the readahead size. 2318 */ 2319 static void shrink_readahead_size_eio(struct file_ra_state *ra) 2320 { 2321 ra->ra_pages /= 4; 2322 } 2323 2324 /* 2325 * filemap_get_read_batch - Get a batch of pages for read 2326 * 2327 * Get a batch of pages which represent a contiguous range of bytes 2328 * in the file. No tail pages will be returned. If @index is in the 2329 * middle of a THP, the entire THP will be returned. The last page in 2330 * the batch may have Readahead set or be not Uptodate so that the 2331 * caller can take the appropriate action. 2332 */ 2333 static void filemap_get_read_batch(struct address_space *mapping, 2334 pgoff_t index, pgoff_t max, struct pagevec *pvec) 2335 { 2336 XA_STATE(xas, &mapping->i_pages, index); 2337 struct page *head; 2338 2339 rcu_read_lock(); 2340 for (head = xas_load(&xas); head; head = xas_next(&xas)) { 2341 if (xas_retry(&xas, head)) 2342 continue; 2343 if (xas.xa_index > max || xa_is_value(head)) 2344 break; 2345 if (!page_cache_get_speculative(head)) 2346 goto retry; 2347 2348 /* Has the page moved or been split? */ 2349 if (unlikely(head != xas_reload(&xas))) 2350 goto put_page; 2351 2352 if (!pagevec_add(pvec, head)) 2353 break; 2354 if (!PageUptodate(head)) 2355 break; 2356 if (PageReadahead(head)) 2357 break; 2358 xas.xa_index = head->index + thp_nr_pages(head) - 1; 2359 xas.xa_offset = (xas.xa_index >> xas.xa_shift) & XA_CHUNK_MASK; 2360 continue; 2361 put_page: 2362 put_page(head); 2363 retry: 2364 xas_reset(&xas); 2365 } 2366 rcu_read_unlock(); 2367 } 2368 2369 static int filemap_read_page(struct file *file, struct address_space *mapping, 2370 struct page *page) 2371 { 2372 int error; 2373 2374 /* 2375 * A previous I/O error may have been due to temporary failures, 2376 * eg. multipath errors. PG_error will be set again if readpage 2377 * fails. 2378 */ 2379 ClearPageError(page); 2380 /* Start the actual read. The read will unlock the page. */ 2381 error = mapping->a_ops->readpage(file, page); 2382 if (error) 2383 return error; 2384 2385 error = wait_on_page_locked_killable(page); 2386 if (error) 2387 return error; 2388 if (PageUptodate(page)) 2389 return 0; 2390 shrink_readahead_size_eio(&file->f_ra); 2391 return -EIO; 2392 } 2393 2394 static bool filemap_range_uptodate(struct address_space *mapping, 2395 loff_t pos, struct iov_iter *iter, struct page *page) 2396 { 2397 int count; 2398 2399 if (PageUptodate(page)) 2400 return true; 2401 /* pipes can't handle partially uptodate pages */ 2402 if (iov_iter_is_pipe(iter)) 2403 return false; 2404 if (!mapping->a_ops->is_partially_uptodate) 2405 return false; 2406 if (mapping->host->i_blkbits >= (PAGE_SHIFT + thp_order(page))) 2407 return false; 2408 2409 count = iter->count; 2410 if (page_offset(page) > pos) { 2411 count -= page_offset(page) - pos; 2412 pos = 0; 2413 } else { 2414 pos -= page_offset(page); 2415 } 2416 2417 return mapping->a_ops->is_partially_uptodate(page, pos, count); 2418 } 2419 2420 static int filemap_update_page(struct kiocb *iocb, 2421 struct address_space *mapping, struct iov_iter *iter, 2422 struct page *page) 2423 { 2424 int error; 2425 2426 if (iocb->ki_flags & IOCB_NOWAIT) { 2427 if (!filemap_invalidate_trylock_shared(mapping)) 2428 return -EAGAIN; 2429 } else { 2430 filemap_invalidate_lock_shared(mapping); 2431 } 2432 2433 if (!trylock_page(page)) { 2434 error = -EAGAIN; 2435 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) 2436 goto unlock_mapping; 2437 if (!(iocb->ki_flags & IOCB_WAITQ)) { 2438 filemap_invalidate_unlock_shared(mapping); 2439 put_and_wait_on_page_locked(page, TASK_KILLABLE); 2440 return AOP_TRUNCATED_PAGE; 2441 } 2442 error = __lock_page_async(page, iocb->ki_waitq); 2443 if (error) 2444 goto unlock_mapping; 2445 } 2446 2447 error = AOP_TRUNCATED_PAGE; 2448 if (!page->mapping) 2449 goto unlock; 2450 2451 error = 0; 2452 if (filemap_range_uptodate(mapping, iocb->ki_pos, iter, page)) 2453 goto unlock; 2454 2455 error = -EAGAIN; 2456 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ)) 2457 goto unlock; 2458 2459 error = filemap_read_page(iocb->ki_filp, mapping, page); 2460 goto unlock_mapping; 2461 unlock: 2462 unlock_page(page); 2463 unlock_mapping: 2464 filemap_invalidate_unlock_shared(mapping); 2465 if (error == AOP_TRUNCATED_PAGE) 2466 put_page(page); 2467 return error; 2468 } 2469 2470 static int filemap_create_page(struct file *file, 2471 struct address_space *mapping, pgoff_t index, 2472 struct pagevec *pvec) 2473 { 2474 struct page *page; 2475 int error; 2476 2477 page = page_cache_alloc(mapping); 2478 if (!page) 2479 return -ENOMEM; 2480 2481 /* 2482 * Protect against truncate / hole punch. Grabbing invalidate_lock here 2483 * assures we cannot instantiate and bring uptodate new pagecache pages 2484 * after evicting page cache during truncate and before actually 2485 * freeing blocks. Note that we could release invalidate_lock after 2486 * inserting the page into page cache as the locked page would then be 2487 * enough to synchronize with hole punching. But there are code paths 2488 * such as filemap_update_page() filling in partially uptodate pages or 2489 * ->readpages() that need to hold invalidate_lock while mapping blocks 2490 * for IO so let's hold the lock here as well to keep locking rules 2491 * simple. 2492 */ 2493 filemap_invalidate_lock_shared(mapping); 2494 error = add_to_page_cache_lru(page, mapping, index, 2495 mapping_gfp_constraint(mapping, GFP_KERNEL)); 2496 if (error == -EEXIST) 2497 error = AOP_TRUNCATED_PAGE; 2498 if (error) 2499 goto error; 2500 2501 error = filemap_read_page(file, mapping, page); 2502 if (error) 2503 goto error; 2504 2505 filemap_invalidate_unlock_shared(mapping); 2506 pagevec_add(pvec, page); 2507 return 0; 2508 error: 2509 filemap_invalidate_unlock_shared(mapping); 2510 put_page(page); 2511 return error; 2512 } 2513 2514 static int filemap_readahead(struct kiocb *iocb, struct file *file, 2515 struct address_space *mapping, struct page *page, 2516 pgoff_t last_index) 2517 { 2518 if (iocb->ki_flags & IOCB_NOIO) 2519 return -EAGAIN; 2520 page_cache_async_readahead(mapping, &file->f_ra, file, page, 2521 page->index, last_index - page->index); 2522 return 0; 2523 } 2524 2525 static int filemap_get_pages(struct kiocb *iocb, struct iov_iter *iter, 2526 struct pagevec *pvec) 2527 { 2528 struct file *filp = iocb->ki_filp; 2529 struct address_space *mapping = filp->f_mapping; 2530 struct file_ra_state *ra = &filp->f_ra; 2531 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT; 2532 pgoff_t last_index; 2533 struct page *page; 2534 int err = 0; 2535 2536 last_index = DIV_ROUND_UP(iocb->ki_pos + iter->count, PAGE_SIZE); 2537 retry: 2538 if (fatal_signal_pending(current)) 2539 return -EINTR; 2540 2541 filemap_get_read_batch(mapping, index, last_index, pvec); 2542 if (!pagevec_count(pvec)) { 2543 if (iocb->ki_flags & IOCB_NOIO) 2544 return -EAGAIN; 2545 page_cache_sync_readahead(mapping, ra, filp, index, 2546 last_index - index); 2547 filemap_get_read_batch(mapping, index, last_index, pvec); 2548 } 2549 if (!pagevec_count(pvec)) { 2550 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ)) 2551 return -EAGAIN; 2552 err = filemap_create_page(filp, mapping, 2553 iocb->ki_pos >> PAGE_SHIFT, pvec); 2554 if (err == AOP_TRUNCATED_PAGE) 2555 goto retry; 2556 return err; 2557 } 2558 2559 page = pvec->pages[pagevec_count(pvec) - 1]; 2560 if (PageReadahead(page)) { 2561 err = filemap_readahead(iocb, filp, mapping, page, last_index); 2562 if (err) 2563 goto err; 2564 } 2565 if (!PageUptodate(page)) { 2566 if ((iocb->ki_flags & IOCB_WAITQ) && pagevec_count(pvec) > 1) 2567 iocb->ki_flags |= IOCB_NOWAIT; 2568 err = filemap_update_page(iocb, mapping, iter, page); 2569 if (err) 2570 goto err; 2571 } 2572 2573 return 0; 2574 err: 2575 if (err < 0) 2576 put_page(page); 2577 if (likely(--pvec->nr)) 2578 return 0; 2579 if (err == AOP_TRUNCATED_PAGE) 2580 goto retry; 2581 return err; 2582 } 2583 2584 /** 2585 * filemap_read - Read data from the page cache. 2586 * @iocb: The iocb to read. 2587 * @iter: Destination for the data. 2588 * @already_read: Number of bytes already read by the caller. 2589 * 2590 * Copies data from the page cache. If the data is not currently present, 2591 * uses the readahead and readpage address_space operations to fetch it. 2592 * 2593 * Return: Total number of bytes copied, including those already read by 2594 * the caller. If an error happens before any bytes are copied, returns 2595 * a negative error number. 2596 */ 2597 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter, 2598 ssize_t already_read) 2599 { 2600 struct file *filp = iocb->ki_filp; 2601 struct file_ra_state *ra = &filp->f_ra; 2602 struct address_space *mapping = filp->f_mapping; 2603 struct inode *inode = mapping->host; 2604 struct pagevec pvec; 2605 int i, error = 0; 2606 bool writably_mapped; 2607 loff_t isize, end_offset; 2608 2609 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes)) 2610 return 0; 2611 if (unlikely(!iov_iter_count(iter))) 2612 return 0; 2613 2614 iov_iter_truncate(iter, inode->i_sb->s_maxbytes); 2615 pagevec_init(&pvec); 2616 2617 do { 2618 cond_resched(); 2619 2620 /* 2621 * If we've already successfully copied some data, then we 2622 * can no longer safely return -EIOCBQUEUED. Hence mark 2623 * an async read NOWAIT at that point. 2624 */ 2625 if ((iocb->ki_flags & IOCB_WAITQ) && already_read) 2626 iocb->ki_flags |= IOCB_NOWAIT; 2627 2628 error = filemap_get_pages(iocb, iter, &pvec); 2629 if (error < 0) 2630 break; 2631 2632 /* 2633 * i_size must be checked after we know the pages are Uptodate. 2634 * 2635 * Checking i_size after the check allows us to calculate 2636 * the correct value for "nr", which means the zero-filled 2637 * part of the page is not copied back to userspace (unless 2638 * another truncate extends the file - this is desired though). 2639 */ 2640 isize = i_size_read(inode); 2641 if (unlikely(iocb->ki_pos >= isize)) 2642 goto put_pages; 2643 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count); 2644 2645 /* 2646 * Once we start copying data, we don't want to be touching any 2647 * cachelines that might be contended: 2648 */ 2649 writably_mapped = mapping_writably_mapped(mapping); 2650 2651 /* 2652 * When a sequential read accesses a page several times, only 2653 * mark it as accessed the first time. 2654 */ 2655 if (iocb->ki_pos >> PAGE_SHIFT != 2656 ra->prev_pos >> PAGE_SHIFT) 2657 mark_page_accessed(pvec.pages[0]); 2658 2659 for (i = 0; i < pagevec_count(&pvec); i++) { 2660 struct page *page = pvec.pages[i]; 2661 size_t page_size = thp_size(page); 2662 size_t offset = iocb->ki_pos & (page_size - 1); 2663 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos, 2664 page_size - offset); 2665 size_t copied; 2666 2667 if (end_offset < page_offset(page)) 2668 break; 2669 if (i > 0) 2670 mark_page_accessed(page); 2671 /* 2672 * If users can be writing to this page using arbitrary 2673 * virtual addresses, take care about potential aliasing 2674 * before reading the page on the kernel side. 2675 */ 2676 if (writably_mapped) { 2677 int j; 2678 2679 for (j = 0; j < thp_nr_pages(page); j++) 2680 flush_dcache_page(page + j); 2681 } 2682 2683 copied = copy_page_to_iter(page, offset, bytes, iter); 2684 2685 already_read += copied; 2686 iocb->ki_pos += copied; 2687 ra->prev_pos = iocb->ki_pos; 2688 2689 if (copied < bytes) { 2690 error = -EFAULT; 2691 break; 2692 } 2693 } 2694 put_pages: 2695 for (i = 0; i < pagevec_count(&pvec); i++) 2696 put_page(pvec.pages[i]); 2697 pagevec_reinit(&pvec); 2698 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error); 2699 2700 file_accessed(filp); 2701 2702 return already_read ? already_read : error; 2703 } 2704 EXPORT_SYMBOL_GPL(filemap_read); 2705 2706 /** 2707 * generic_file_read_iter - generic filesystem read routine 2708 * @iocb: kernel I/O control block 2709 * @iter: destination for the data read 2710 * 2711 * This is the "read_iter()" routine for all filesystems 2712 * that can use the page cache directly. 2713 * 2714 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall 2715 * be returned when no data can be read without waiting for I/O requests 2716 * to complete; it doesn't prevent readahead. 2717 * 2718 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O 2719 * requests shall be made for the read or for readahead. When no data 2720 * can be read, -EAGAIN shall be returned. When readahead would be 2721 * triggered, a partial, possibly empty read shall be returned. 2722 * 2723 * Return: 2724 * * number of bytes copied, even for partial reads 2725 * * negative error code (or 0 if IOCB_NOIO) if nothing was read 2726 */ 2727 ssize_t 2728 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 2729 { 2730 size_t count = iov_iter_count(iter); 2731 ssize_t retval = 0; 2732 2733 if (!count) 2734 return 0; /* skip atime */ 2735 2736 if (iocb->ki_flags & IOCB_DIRECT) { 2737 struct file *file = iocb->ki_filp; 2738 struct address_space *mapping = file->f_mapping; 2739 struct inode *inode = mapping->host; 2740 loff_t size; 2741 2742 size = i_size_read(inode); 2743 if (iocb->ki_flags & IOCB_NOWAIT) { 2744 if (filemap_range_needs_writeback(mapping, iocb->ki_pos, 2745 iocb->ki_pos + count - 1)) 2746 return -EAGAIN; 2747 } else { 2748 retval = filemap_write_and_wait_range(mapping, 2749 iocb->ki_pos, 2750 iocb->ki_pos + count - 1); 2751 if (retval < 0) 2752 return retval; 2753 } 2754 2755 file_accessed(file); 2756 2757 retval = mapping->a_ops->direct_IO(iocb, iter); 2758 if (retval >= 0) { 2759 iocb->ki_pos += retval; 2760 count -= retval; 2761 } 2762 if (retval != -EIOCBQUEUED) 2763 iov_iter_revert(iter, count - iov_iter_count(iter)); 2764 2765 /* 2766 * Btrfs can have a short DIO read if we encounter 2767 * compressed extents, so if there was an error, or if 2768 * we've already read everything we wanted to, or if 2769 * there was a short read because we hit EOF, go ahead 2770 * and return. Otherwise fallthrough to buffered io for 2771 * the rest of the read. Buffered reads will not work for 2772 * DAX files, so don't bother trying. 2773 */ 2774 if (retval < 0 || !count || iocb->ki_pos >= size || 2775 IS_DAX(inode)) 2776 return retval; 2777 } 2778 2779 return filemap_read(iocb, iter, retval); 2780 } 2781 EXPORT_SYMBOL(generic_file_read_iter); 2782 2783 static inline loff_t page_seek_hole_data(struct xa_state *xas, 2784 struct address_space *mapping, struct page *page, 2785 loff_t start, loff_t end, bool seek_data) 2786 { 2787 const struct address_space_operations *ops = mapping->a_ops; 2788 size_t offset, bsz = i_blocksize(mapping->host); 2789 2790 if (xa_is_value(page) || PageUptodate(page)) 2791 return seek_data ? start : end; 2792 if (!ops->is_partially_uptodate) 2793 return seek_data ? end : start; 2794 2795 xas_pause(xas); 2796 rcu_read_unlock(); 2797 lock_page(page); 2798 if (unlikely(page->mapping != mapping)) 2799 goto unlock; 2800 2801 offset = offset_in_thp(page, start) & ~(bsz - 1); 2802 2803 do { 2804 if (ops->is_partially_uptodate(page, offset, bsz) == seek_data) 2805 break; 2806 start = (start + bsz) & ~(bsz - 1); 2807 offset += bsz; 2808 } while (offset < thp_size(page)); 2809 unlock: 2810 unlock_page(page); 2811 rcu_read_lock(); 2812 return start; 2813 } 2814 2815 static inline 2816 unsigned int seek_page_size(struct xa_state *xas, struct page *page) 2817 { 2818 if (xa_is_value(page)) 2819 return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index); 2820 return thp_size(page); 2821 } 2822 2823 /** 2824 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache. 2825 * @mapping: Address space to search. 2826 * @start: First byte to consider. 2827 * @end: Limit of search (exclusive). 2828 * @whence: Either SEEK_HOLE or SEEK_DATA. 2829 * 2830 * If the page cache knows which blocks contain holes and which blocks 2831 * contain data, your filesystem can use this function to implement 2832 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are 2833 * entirely memory-based such as tmpfs, and filesystems which support 2834 * unwritten extents. 2835 * 2836 * Return: The requested offset on success, or -ENXIO if @whence specifies 2837 * SEEK_DATA and there is no data after @start. There is an implicit hole 2838 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start 2839 * and @end contain data. 2840 */ 2841 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start, 2842 loff_t end, int whence) 2843 { 2844 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT); 2845 pgoff_t max = (end - 1) >> PAGE_SHIFT; 2846 bool seek_data = (whence == SEEK_DATA); 2847 struct page *page; 2848 2849 if (end <= start) 2850 return -ENXIO; 2851 2852 rcu_read_lock(); 2853 while ((page = find_get_entry(&xas, max, XA_PRESENT))) { 2854 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT; 2855 unsigned int seek_size; 2856 2857 if (start < pos) { 2858 if (!seek_data) 2859 goto unlock; 2860 start = pos; 2861 } 2862 2863 seek_size = seek_page_size(&xas, page); 2864 pos = round_up(pos + 1, seek_size); 2865 start = page_seek_hole_data(&xas, mapping, page, start, pos, 2866 seek_data); 2867 if (start < pos) 2868 goto unlock; 2869 if (start >= end) 2870 break; 2871 if (seek_size > PAGE_SIZE) 2872 xas_set(&xas, pos >> PAGE_SHIFT); 2873 if (!xa_is_value(page)) 2874 put_page(page); 2875 } 2876 if (seek_data) 2877 start = -ENXIO; 2878 unlock: 2879 rcu_read_unlock(); 2880 if (page && !xa_is_value(page)) 2881 put_page(page); 2882 if (start > end) 2883 return end; 2884 return start; 2885 } 2886 2887 #ifdef CONFIG_MMU 2888 #define MMAP_LOTSAMISS (100) 2889 /* 2890 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock 2891 * @vmf - the vm_fault for this fault. 2892 * @page - the page to lock. 2893 * @fpin - the pointer to the file we may pin (or is already pinned). 2894 * 2895 * This works similar to lock_page_or_retry in that it can drop the mmap_lock. 2896 * It differs in that it actually returns the page locked if it returns 1 and 0 2897 * if it couldn't lock the page. If we did have to drop the mmap_lock then fpin 2898 * will point to the pinned file and needs to be fput()'ed at a later point. 2899 */ 2900 static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page, 2901 struct file **fpin) 2902 { 2903 if (trylock_page(page)) 2904 return 1; 2905 2906 /* 2907 * NOTE! This will make us return with VM_FAULT_RETRY, but with 2908 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT 2909 * is supposed to work. We have way too many special cases.. 2910 */ 2911 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 2912 return 0; 2913 2914 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin); 2915 if (vmf->flags & FAULT_FLAG_KILLABLE) { 2916 if (__lock_page_killable(page)) { 2917 /* 2918 * We didn't have the right flags to drop the mmap_lock, 2919 * but all fault_handlers only check for fatal signals 2920 * if we return VM_FAULT_RETRY, so we need to drop the 2921 * mmap_lock here and return 0 if we don't have a fpin. 2922 */ 2923 if (*fpin == NULL) 2924 mmap_read_unlock(vmf->vma->vm_mm); 2925 return 0; 2926 } 2927 } else 2928 __lock_page(page); 2929 return 1; 2930 } 2931 2932 2933 /* 2934 * Synchronous readahead happens when we don't even find a page in the page 2935 * cache at all. We don't want to perform IO under the mmap sem, so if we have 2936 * to drop the mmap sem we return the file that was pinned in order for us to do 2937 * that. If we didn't pin a file then we return NULL. The file that is 2938 * returned needs to be fput()'ed when we're done with it. 2939 */ 2940 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf) 2941 { 2942 struct file *file = vmf->vma->vm_file; 2943 struct file_ra_state *ra = &file->f_ra; 2944 struct address_space *mapping = file->f_mapping; 2945 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff); 2946 struct file *fpin = NULL; 2947 unsigned int mmap_miss; 2948 2949 /* If we don't want any read-ahead, don't bother */ 2950 if (vmf->vma->vm_flags & VM_RAND_READ) 2951 return fpin; 2952 if (!ra->ra_pages) 2953 return fpin; 2954 2955 if (vmf->vma->vm_flags & VM_SEQ_READ) { 2956 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 2957 page_cache_sync_ra(&ractl, ra->ra_pages); 2958 return fpin; 2959 } 2960 2961 /* Avoid banging the cache line if not needed */ 2962 mmap_miss = READ_ONCE(ra->mmap_miss); 2963 if (mmap_miss < MMAP_LOTSAMISS * 10) 2964 WRITE_ONCE(ra->mmap_miss, ++mmap_miss); 2965 2966 /* 2967 * Do we miss much more than hit in this file? If so, 2968 * stop bothering with read-ahead. It will only hurt. 2969 */ 2970 if (mmap_miss > MMAP_LOTSAMISS) 2971 return fpin; 2972 2973 /* 2974 * mmap read-around 2975 */ 2976 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 2977 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2); 2978 ra->size = ra->ra_pages; 2979 ra->async_size = ra->ra_pages / 4; 2980 ractl._index = ra->start; 2981 do_page_cache_ra(&ractl, ra->size, ra->async_size); 2982 return fpin; 2983 } 2984 2985 /* 2986 * Asynchronous readahead happens when we find the page and PG_readahead, 2987 * so we want to possibly extend the readahead further. We return the file that 2988 * was pinned if we have to drop the mmap_lock in order to do IO. 2989 */ 2990 static struct file *do_async_mmap_readahead(struct vm_fault *vmf, 2991 struct page *page) 2992 { 2993 struct file *file = vmf->vma->vm_file; 2994 struct file_ra_state *ra = &file->f_ra; 2995 struct address_space *mapping = file->f_mapping; 2996 struct file *fpin = NULL; 2997 unsigned int mmap_miss; 2998 pgoff_t offset = vmf->pgoff; 2999 3000 /* If we don't want any read-ahead, don't bother */ 3001 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages) 3002 return fpin; 3003 mmap_miss = READ_ONCE(ra->mmap_miss); 3004 if (mmap_miss) 3005 WRITE_ONCE(ra->mmap_miss, --mmap_miss); 3006 if (PageReadahead(page)) { 3007 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3008 page_cache_async_readahead(mapping, ra, file, 3009 page, offset, ra->ra_pages); 3010 } 3011 return fpin; 3012 } 3013 3014 /** 3015 * filemap_fault - read in file data for page fault handling 3016 * @vmf: struct vm_fault containing details of the fault 3017 * 3018 * filemap_fault() is invoked via the vma operations vector for a 3019 * mapped memory region to read in file data during a page fault. 3020 * 3021 * The goto's are kind of ugly, but this streamlines the normal case of having 3022 * it in the page cache, and handles the special cases reasonably without 3023 * having a lot of duplicated code. 3024 * 3025 * vma->vm_mm->mmap_lock must be held on entry. 3026 * 3027 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock 3028 * may be dropped before doing I/O or by lock_page_maybe_drop_mmap(). 3029 * 3030 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock 3031 * has not been released. 3032 * 3033 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. 3034 * 3035 * Return: bitwise-OR of %VM_FAULT_ codes. 3036 */ 3037 vm_fault_t filemap_fault(struct vm_fault *vmf) 3038 { 3039 int error; 3040 struct file *file = vmf->vma->vm_file; 3041 struct file *fpin = NULL; 3042 struct address_space *mapping = file->f_mapping; 3043 struct inode *inode = mapping->host; 3044 pgoff_t offset = vmf->pgoff; 3045 pgoff_t max_off; 3046 struct page *page; 3047 vm_fault_t ret = 0; 3048 bool mapping_locked = false; 3049 3050 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3051 if (unlikely(offset >= max_off)) 3052 return VM_FAULT_SIGBUS; 3053 3054 /* 3055 * Do we have something in the page cache already? 3056 */ 3057 page = find_get_page(mapping, offset); 3058 if (likely(page)) { 3059 /* 3060 * We found the page, so try async readahead before waiting for 3061 * the lock. 3062 */ 3063 if (!(vmf->flags & FAULT_FLAG_TRIED)) 3064 fpin = do_async_mmap_readahead(vmf, page); 3065 if (unlikely(!PageUptodate(page))) { 3066 filemap_invalidate_lock_shared(mapping); 3067 mapping_locked = true; 3068 } 3069 } else { 3070 /* No page in the page cache at all */ 3071 count_vm_event(PGMAJFAULT); 3072 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); 3073 ret = VM_FAULT_MAJOR; 3074 fpin = do_sync_mmap_readahead(vmf); 3075 retry_find: 3076 /* 3077 * See comment in filemap_create_page() why we need 3078 * invalidate_lock 3079 */ 3080 if (!mapping_locked) { 3081 filemap_invalidate_lock_shared(mapping); 3082 mapping_locked = true; 3083 } 3084 page = pagecache_get_page(mapping, offset, 3085 FGP_CREAT|FGP_FOR_MMAP, 3086 vmf->gfp_mask); 3087 if (!page) { 3088 if (fpin) 3089 goto out_retry; 3090 filemap_invalidate_unlock_shared(mapping); 3091 return VM_FAULT_OOM; 3092 } 3093 } 3094 3095 if (!lock_page_maybe_drop_mmap(vmf, page, &fpin)) 3096 goto out_retry; 3097 3098 /* Did it get truncated? */ 3099 if (unlikely(compound_head(page)->mapping != mapping)) { 3100 unlock_page(page); 3101 put_page(page); 3102 goto retry_find; 3103 } 3104 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page); 3105 3106 /* 3107 * We have a locked page in the page cache, now we need to check 3108 * that it's up-to-date. If not, it is going to be due to an error. 3109 */ 3110 if (unlikely(!PageUptodate(page))) { 3111 /* 3112 * The page was in cache and uptodate and now it is not. 3113 * Strange but possible since we didn't hold the page lock all 3114 * the time. Let's drop everything get the invalidate lock and 3115 * try again. 3116 */ 3117 if (!mapping_locked) { 3118 unlock_page(page); 3119 put_page(page); 3120 goto retry_find; 3121 } 3122 goto page_not_uptodate; 3123 } 3124 3125 /* 3126 * We've made it this far and we had to drop our mmap_lock, now is the 3127 * time to return to the upper layer and have it re-find the vma and 3128 * redo the fault. 3129 */ 3130 if (fpin) { 3131 unlock_page(page); 3132 goto out_retry; 3133 } 3134 if (mapping_locked) 3135 filemap_invalidate_unlock_shared(mapping); 3136 3137 /* 3138 * Found the page and have a reference on it. 3139 * We must recheck i_size under page lock. 3140 */ 3141 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3142 if (unlikely(offset >= max_off)) { 3143 unlock_page(page); 3144 put_page(page); 3145 return VM_FAULT_SIGBUS; 3146 } 3147 3148 vmf->page = page; 3149 return ret | VM_FAULT_LOCKED; 3150 3151 page_not_uptodate: 3152 /* 3153 * Umm, take care of errors if the page isn't up-to-date. 3154 * Try to re-read it _once_. We do this synchronously, 3155 * because there really aren't any performance issues here 3156 * and we need to check for errors. 3157 */ 3158 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3159 error = filemap_read_page(file, mapping, page); 3160 if (fpin) 3161 goto out_retry; 3162 put_page(page); 3163 3164 if (!error || error == AOP_TRUNCATED_PAGE) 3165 goto retry_find; 3166 filemap_invalidate_unlock_shared(mapping); 3167 3168 return VM_FAULT_SIGBUS; 3169 3170 out_retry: 3171 /* 3172 * We dropped the mmap_lock, we need to return to the fault handler to 3173 * re-find the vma and come back and find our hopefully still populated 3174 * page. 3175 */ 3176 if (page) 3177 put_page(page); 3178 if (mapping_locked) 3179 filemap_invalidate_unlock_shared(mapping); 3180 if (fpin) 3181 fput(fpin); 3182 return ret | VM_FAULT_RETRY; 3183 } 3184 EXPORT_SYMBOL(filemap_fault); 3185 3186 static bool filemap_map_pmd(struct vm_fault *vmf, struct page *page) 3187 { 3188 struct mm_struct *mm = vmf->vma->vm_mm; 3189 3190 /* Huge page is mapped? No need to proceed. */ 3191 if (pmd_trans_huge(*vmf->pmd)) { 3192 unlock_page(page); 3193 put_page(page); 3194 return true; 3195 } 3196 3197 if (pmd_none(*vmf->pmd) && PageTransHuge(page)) { 3198 vm_fault_t ret = do_set_pmd(vmf, page); 3199 if (!ret) { 3200 /* The page is mapped successfully, reference consumed. */ 3201 unlock_page(page); 3202 return true; 3203 } 3204 } 3205 3206 if (pmd_none(*vmf->pmd)) { 3207 vmf->ptl = pmd_lock(mm, vmf->pmd); 3208 if (likely(pmd_none(*vmf->pmd))) { 3209 mm_inc_nr_ptes(mm); 3210 pmd_populate(mm, vmf->pmd, vmf->prealloc_pte); 3211 vmf->prealloc_pte = NULL; 3212 } 3213 spin_unlock(vmf->ptl); 3214 } 3215 3216 /* See comment in handle_pte_fault() */ 3217 if (pmd_devmap_trans_unstable(vmf->pmd)) { 3218 unlock_page(page); 3219 put_page(page); 3220 return true; 3221 } 3222 3223 return false; 3224 } 3225 3226 static struct page *next_uptodate_page(struct page *page, 3227 struct address_space *mapping, 3228 struct xa_state *xas, pgoff_t end_pgoff) 3229 { 3230 unsigned long max_idx; 3231 3232 do { 3233 if (!page) 3234 return NULL; 3235 if (xas_retry(xas, page)) 3236 continue; 3237 if (xa_is_value(page)) 3238 continue; 3239 if (PageLocked(page)) 3240 continue; 3241 if (!page_cache_get_speculative(page)) 3242 continue; 3243 /* Has the page moved or been split? */ 3244 if (unlikely(page != xas_reload(xas))) 3245 goto skip; 3246 if (!PageUptodate(page) || PageReadahead(page)) 3247 goto skip; 3248 if (PageHWPoison(page)) 3249 goto skip; 3250 if (!trylock_page(page)) 3251 goto skip; 3252 if (page->mapping != mapping) 3253 goto unlock; 3254 if (!PageUptodate(page)) 3255 goto unlock; 3256 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 3257 if (xas->xa_index >= max_idx) 3258 goto unlock; 3259 return page; 3260 unlock: 3261 unlock_page(page); 3262 skip: 3263 put_page(page); 3264 } while ((page = xas_next_entry(xas, end_pgoff)) != NULL); 3265 3266 return NULL; 3267 } 3268 3269 static inline struct page *first_map_page(struct address_space *mapping, 3270 struct xa_state *xas, 3271 pgoff_t end_pgoff) 3272 { 3273 return next_uptodate_page(xas_find(xas, end_pgoff), 3274 mapping, xas, end_pgoff); 3275 } 3276 3277 static inline struct page *next_map_page(struct address_space *mapping, 3278 struct xa_state *xas, 3279 pgoff_t end_pgoff) 3280 { 3281 return next_uptodate_page(xas_next_entry(xas, end_pgoff), 3282 mapping, xas, end_pgoff); 3283 } 3284 3285 vm_fault_t filemap_map_pages(struct vm_fault *vmf, 3286 pgoff_t start_pgoff, pgoff_t end_pgoff) 3287 { 3288 struct vm_area_struct *vma = vmf->vma; 3289 struct file *file = vma->vm_file; 3290 struct address_space *mapping = file->f_mapping; 3291 pgoff_t last_pgoff = start_pgoff; 3292 unsigned long addr; 3293 XA_STATE(xas, &mapping->i_pages, start_pgoff); 3294 struct page *head, *page; 3295 unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss); 3296 vm_fault_t ret = 0; 3297 3298 rcu_read_lock(); 3299 head = first_map_page(mapping, &xas, end_pgoff); 3300 if (!head) 3301 goto out; 3302 3303 if (filemap_map_pmd(vmf, head)) { 3304 ret = VM_FAULT_NOPAGE; 3305 goto out; 3306 } 3307 3308 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT); 3309 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl); 3310 do { 3311 page = find_subpage(head, xas.xa_index); 3312 if (PageHWPoison(page)) 3313 goto unlock; 3314 3315 if (mmap_miss > 0) 3316 mmap_miss--; 3317 3318 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT; 3319 vmf->pte += xas.xa_index - last_pgoff; 3320 last_pgoff = xas.xa_index; 3321 3322 if (!pte_none(*vmf->pte)) 3323 goto unlock; 3324 3325 /* We're about to handle the fault */ 3326 if (vmf->address == addr) 3327 ret = VM_FAULT_NOPAGE; 3328 3329 do_set_pte(vmf, page, addr); 3330 /* no need to invalidate: a not-present page won't be cached */ 3331 update_mmu_cache(vma, addr, vmf->pte); 3332 unlock_page(head); 3333 continue; 3334 unlock: 3335 unlock_page(head); 3336 put_page(head); 3337 } while ((head = next_map_page(mapping, &xas, end_pgoff)) != NULL); 3338 pte_unmap_unlock(vmf->pte, vmf->ptl); 3339 out: 3340 rcu_read_unlock(); 3341 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss); 3342 return ret; 3343 } 3344 EXPORT_SYMBOL(filemap_map_pages); 3345 3346 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3347 { 3348 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 3349 struct page *page = vmf->page; 3350 vm_fault_t ret = VM_FAULT_LOCKED; 3351 3352 sb_start_pagefault(mapping->host->i_sb); 3353 file_update_time(vmf->vma->vm_file); 3354 lock_page(page); 3355 if (page->mapping != mapping) { 3356 unlock_page(page); 3357 ret = VM_FAULT_NOPAGE; 3358 goto out; 3359 } 3360 /* 3361 * We mark the page dirty already here so that when freeze is in 3362 * progress, we are guaranteed that writeback during freezing will 3363 * see the dirty page and writeprotect it again. 3364 */ 3365 set_page_dirty(page); 3366 wait_for_stable_page(page); 3367 out: 3368 sb_end_pagefault(mapping->host->i_sb); 3369 return ret; 3370 } 3371 3372 const struct vm_operations_struct generic_file_vm_ops = { 3373 .fault = filemap_fault, 3374 .map_pages = filemap_map_pages, 3375 .page_mkwrite = filemap_page_mkwrite, 3376 }; 3377 3378 /* This is used for a general mmap of a disk file */ 3379 3380 int generic_file_mmap(struct file *file, struct vm_area_struct *vma) 3381 { 3382 struct address_space *mapping = file->f_mapping; 3383 3384 if (!mapping->a_ops->readpage) 3385 return -ENOEXEC; 3386 file_accessed(file); 3387 vma->vm_ops = &generic_file_vm_ops; 3388 return 0; 3389 } 3390 3391 /* 3392 * This is for filesystems which do not implement ->writepage. 3393 */ 3394 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3395 { 3396 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 3397 return -EINVAL; 3398 return generic_file_mmap(file, vma); 3399 } 3400 #else 3401 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3402 { 3403 return VM_FAULT_SIGBUS; 3404 } 3405 int generic_file_mmap(struct file *file, struct vm_area_struct *vma) 3406 { 3407 return -ENOSYS; 3408 } 3409 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3410 { 3411 return -ENOSYS; 3412 } 3413 #endif /* CONFIG_MMU */ 3414 3415 EXPORT_SYMBOL(filemap_page_mkwrite); 3416 EXPORT_SYMBOL(generic_file_mmap); 3417 EXPORT_SYMBOL(generic_file_readonly_mmap); 3418 3419 static struct page *wait_on_page_read(struct page *page) 3420 { 3421 if (!IS_ERR(page)) { 3422 wait_on_page_locked(page); 3423 if (!PageUptodate(page)) { 3424 put_page(page); 3425 page = ERR_PTR(-EIO); 3426 } 3427 } 3428 return page; 3429 } 3430 3431 static struct page *do_read_cache_page(struct address_space *mapping, 3432 pgoff_t index, 3433 int (*filler)(void *, struct page *), 3434 void *data, 3435 gfp_t gfp) 3436 { 3437 struct page *page; 3438 int err; 3439 repeat: 3440 page = find_get_page(mapping, index); 3441 if (!page) { 3442 page = __page_cache_alloc(gfp); 3443 if (!page) 3444 return ERR_PTR(-ENOMEM); 3445 err = add_to_page_cache_lru(page, mapping, index, gfp); 3446 if (unlikely(err)) { 3447 put_page(page); 3448 if (err == -EEXIST) 3449 goto repeat; 3450 /* Presumably ENOMEM for xarray node */ 3451 return ERR_PTR(err); 3452 } 3453 3454 filler: 3455 if (filler) 3456 err = filler(data, page); 3457 else 3458 err = mapping->a_ops->readpage(data, page); 3459 3460 if (err < 0) { 3461 put_page(page); 3462 return ERR_PTR(err); 3463 } 3464 3465 page = wait_on_page_read(page); 3466 if (IS_ERR(page)) 3467 return page; 3468 goto out; 3469 } 3470 if (PageUptodate(page)) 3471 goto out; 3472 3473 /* 3474 * Page is not up to date and may be locked due to one of the following 3475 * case a: Page is being filled and the page lock is held 3476 * case b: Read/write error clearing the page uptodate status 3477 * case c: Truncation in progress (page locked) 3478 * case d: Reclaim in progress 3479 * 3480 * Case a, the page will be up to date when the page is unlocked. 3481 * There is no need to serialise on the page lock here as the page 3482 * is pinned so the lock gives no additional protection. Even if the 3483 * page is truncated, the data is still valid if PageUptodate as 3484 * it's a race vs truncate race. 3485 * Case b, the page will not be up to date 3486 * Case c, the page may be truncated but in itself, the data may still 3487 * be valid after IO completes as it's a read vs truncate race. The 3488 * operation must restart if the page is not uptodate on unlock but 3489 * otherwise serialising on page lock to stabilise the mapping gives 3490 * no additional guarantees to the caller as the page lock is 3491 * released before return. 3492 * Case d, similar to truncation. If reclaim holds the page lock, it 3493 * will be a race with remove_mapping that determines if the mapping 3494 * is valid on unlock but otherwise the data is valid and there is 3495 * no need to serialise with page lock. 3496 * 3497 * As the page lock gives no additional guarantee, we optimistically 3498 * wait on the page to be unlocked and check if it's up to date and 3499 * use the page if it is. Otherwise, the page lock is required to 3500 * distinguish between the different cases. The motivation is that we 3501 * avoid spurious serialisations and wakeups when multiple processes 3502 * wait on the same page for IO to complete. 3503 */ 3504 wait_on_page_locked(page); 3505 if (PageUptodate(page)) 3506 goto out; 3507 3508 /* Distinguish between all the cases under the safety of the lock */ 3509 lock_page(page); 3510 3511 /* Case c or d, restart the operation */ 3512 if (!page->mapping) { 3513 unlock_page(page); 3514 put_page(page); 3515 goto repeat; 3516 } 3517 3518 /* Someone else locked and filled the page in a very small window */ 3519 if (PageUptodate(page)) { 3520 unlock_page(page); 3521 goto out; 3522 } 3523 3524 /* 3525 * A previous I/O error may have been due to temporary 3526 * failures. 3527 * Clear page error before actual read, PG_error will be 3528 * set again if read page fails. 3529 */ 3530 ClearPageError(page); 3531 goto filler; 3532 3533 out: 3534 mark_page_accessed(page); 3535 return page; 3536 } 3537 3538 /** 3539 * read_cache_page - read into page cache, fill it if needed 3540 * @mapping: the page's address_space 3541 * @index: the page index 3542 * @filler: function to perform the read 3543 * @data: first arg to filler(data, page) function, often left as NULL 3544 * 3545 * Read into the page cache. If a page already exists, and PageUptodate() is 3546 * not set, try to fill the page and wait for it to become unlocked. 3547 * 3548 * If the page does not get brought uptodate, return -EIO. 3549 * 3550 * The function expects mapping->invalidate_lock to be already held. 3551 * 3552 * Return: up to date page on success, ERR_PTR() on failure. 3553 */ 3554 struct page *read_cache_page(struct address_space *mapping, 3555 pgoff_t index, 3556 int (*filler)(void *, struct page *), 3557 void *data) 3558 { 3559 return do_read_cache_page(mapping, index, filler, data, 3560 mapping_gfp_mask(mapping)); 3561 } 3562 EXPORT_SYMBOL(read_cache_page); 3563 3564 /** 3565 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 3566 * @mapping: the page's address_space 3567 * @index: the page index 3568 * @gfp: the page allocator flags to use if allocating 3569 * 3570 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 3571 * any new page allocations done using the specified allocation flags. 3572 * 3573 * If the page does not get brought uptodate, return -EIO. 3574 * 3575 * The function expects mapping->invalidate_lock to be already held. 3576 * 3577 * Return: up to date page on success, ERR_PTR() on failure. 3578 */ 3579 struct page *read_cache_page_gfp(struct address_space *mapping, 3580 pgoff_t index, 3581 gfp_t gfp) 3582 { 3583 return do_read_cache_page(mapping, index, NULL, NULL, gfp); 3584 } 3585 EXPORT_SYMBOL(read_cache_page_gfp); 3586 3587 int pagecache_write_begin(struct file *file, struct address_space *mapping, 3588 loff_t pos, unsigned len, unsigned flags, 3589 struct page **pagep, void **fsdata) 3590 { 3591 const struct address_space_operations *aops = mapping->a_ops; 3592 3593 return aops->write_begin(file, mapping, pos, len, flags, 3594 pagep, fsdata); 3595 } 3596 EXPORT_SYMBOL(pagecache_write_begin); 3597 3598 int pagecache_write_end(struct file *file, struct address_space *mapping, 3599 loff_t pos, unsigned len, unsigned copied, 3600 struct page *page, void *fsdata) 3601 { 3602 const struct address_space_operations *aops = mapping->a_ops; 3603 3604 return aops->write_end(file, mapping, pos, len, copied, page, fsdata); 3605 } 3606 EXPORT_SYMBOL(pagecache_write_end); 3607 3608 /* 3609 * Warn about a page cache invalidation failure during a direct I/O write. 3610 */ 3611 void dio_warn_stale_pagecache(struct file *filp) 3612 { 3613 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST); 3614 char pathname[128]; 3615 char *path; 3616 3617 errseq_set(&filp->f_mapping->wb_err, -EIO); 3618 if (__ratelimit(&_rs)) { 3619 path = file_path(filp, pathname, sizeof(pathname)); 3620 if (IS_ERR(path)) 3621 path = "(unknown)"; 3622 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n"); 3623 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid, 3624 current->comm); 3625 } 3626 } 3627 3628 ssize_t 3629 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) 3630 { 3631 struct file *file = iocb->ki_filp; 3632 struct address_space *mapping = file->f_mapping; 3633 struct inode *inode = mapping->host; 3634 loff_t pos = iocb->ki_pos; 3635 ssize_t written; 3636 size_t write_len; 3637 pgoff_t end; 3638 3639 write_len = iov_iter_count(from); 3640 end = (pos + write_len - 1) >> PAGE_SHIFT; 3641 3642 if (iocb->ki_flags & IOCB_NOWAIT) { 3643 /* If there are pages to writeback, return */ 3644 if (filemap_range_has_page(file->f_mapping, pos, 3645 pos + write_len - 1)) 3646 return -EAGAIN; 3647 } else { 3648 written = filemap_write_and_wait_range(mapping, pos, 3649 pos + write_len - 1); 3650 if (written) 3651 goto out; 3652 } 3653 3654 /* 3655 * After a write we want buffered reads to be sure to go to disk to get 3656 * the new data. We invalidate clean cached page from the region we're 3657 * about to write. We do this *before* the write so that we can return 3658 * without clobbering -EIOCBQUEUED from ->direct_IO(). 3659 */ 3660 written = invalidate_inode_pages2_range(mapping, 3661 pos >> PAGE_SHIFT, end); 3662 /* 3663 * If a page can not be invalidated, return 0 to fall back 3664 * to buffered write. 3665 */ 3666 if (written) { 3667 if (written == -EBUSY) 3668 return 0; 3669 goto out; 3670 } 3671 3672 written = mapping->a_ops->direct_IO(iocb, from); 3673 3674 /* 3675 * Finally, try again to invalidate clean pages which might have been 3676 * cached by non-direct readahead, or faulted in by get_user_pages() 3677 * if the source of the write was an mmap'ed region of the file 3678 * we're writing. Either one is a pretty crazy thing to do, 3679 * so we don't support it 100%. If this invalidation 3680 * fails, tough, the write still worked... 3681 * 3682 * Most of the time we do not need this since dio_complete() will do 3683 * the invalidation for us. However there are some file systems that 3684 * do not end up with dio_complete() being called, so let's not break 3685 * them by removing it completely. 3686 * 3687 * Noticeable example is a blkdev_direct_IO(). 3688 * 3689 * Skip invalidation for async writes or if mapping has no pages. 3690 */ 3691 if (written > 0 && mapping->nrpages && 3692 invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end)) 3693 dio_warn_stale_pagecache(file); 3694 3695 if (written > 0) { 3696 pos += written; 3697 write_len -= written; 3698 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 3699 i_size_write(inode, pos); 3700 mark_inode_dirty(inode); 3701 } 3702 iocb->ki_pos = pos; 3703 } 3704 if (written != -EIOCBQUEUED) 3705 iov_iter_revert(from, write_len - iov_iter_count(from)); 3706 out: 3707 return written; 3708 } 3709 EXPORT_SYMBOL(generic_file_direct_write); 3710 3711 /* 3712 * Find or create a page at the given pagecache position. Return the locked 3713 * page. This function is specifically for buffered writes. 3714 */ 3715 struct page *grab_cache_page_write_begin(struct address_space *mapping, 3716 pgoff_t index, unsigned flags) 3717 { 3718 struct page *page; 3719 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT; 3720 3721 if (flags & AOP_FLAG_NOFS) 3722 fgp_flags |= FGP_NOFS; 3723 3724 page = pagecache_get_page(mapping, index, fgp_flags, 3725 mapping_gfp_mask(mapping)); 3726 if (page) 3727 wait_for_stable_page(page); 3728 3729 return page; 3730 } 3731 EXPORT_SYMBOL(grab_cache_page_write_begin); 3732 3733 ssize_t generic_perform_write(struct file *file, 3734 struct iov_iter *i, loff_t pos) 3735 { 3736 struct address_space *mapping = file->f_mapping; 3737 const struct address_space_operations *a_ops = mapping->a_ops; 3738 long status = 0; 3739 ssize_t written = 0; 3740 unsigned int flags = 0; 3741 3742 do { 3743 struct page *page; 3744 unsigned long offset; /* Offset into pagecache page */ 3745 unsigned long bytes; /* Bytes to write to page */ 3746 size_t copied; /* Bytes copied from user */ 3747 void *fsdata; 3748 3749 offset = (pos & (PAGE_SIZE - 1)); 3750 bytes = min_t(unsigned long, PAGE_SIZE - offset, 3751 iov_iter_count(i)); 3752 3753 again: 3754 /* 3755 * Bring in the user page that we will copy from _first_. 3756 * Otherwise there's a nasty deadlock on copying from the 3757 * same page as we're writing to, without it being marked 3758 * up-to-date. 3759 */ 3760 if (unlikely(iov_iter_fault_in_readable(i, bytes))) { 3761 status = -EFAULT; 3762 break; 3763 } 3764 3765 if (fatal_signal_pending(current)) { 3766 status = -EINTR; 3767 break; 3768 } 3769 3770 status = a_ops->write_begin(file, mapping, pos, bytes, flags, 3771 &page, &fsdata); 3772 if (unlikely(status < 0)) 3773 break; 3774 3775 if (mapping_writably_mapped(mapping)) 3776 flush_dcache_page(page); 3777 3778 copied = copy_page_from_iter_atomic(page, offset, bytes, i); 3779 flush_dcache_page(page); 3780 3781 status = a_ops->write_end(file, mapping, pos, bytes, copied, 3782 page, fsdata); 3783 if (unlikely(status != copied)) { 3784 iov_iter_revert(i, copied - max(status, 0L)); 3785 if (unlikely(status < 0)) 3786 break; 3787 } 3788 cond_resched(); 3789 3790 if (unlikely(status == 0)) { 3791 /* 3792 * A short copy made ->write_end() reject the 3793 * thing entirely. Might be memory poisoning 3794 * halfway through, might be a race with munmap, 3795 * might be severe memory pressure. 3796 */ 3797 if (copied) 3798 bytes = copied; 3799 goto again; 3800 } 3801 pos += status; 3802 written += status; 3803 3804 balance_dirty_pages_ratelimited(mapping); 3805 } while (iov_iter_count(i)); 3806 3807 return written ? written : status; 3808 } 3809 EXPORT_SYMBOL(generic_perform_write); 3810 3811 /** 3812 * __generic_file_write_iter - write data to a file 3813 * @iocb: IO state structure (file, offset, etc.) 3814 * @from: iov_iter with data to write 3815 * 3816 * This function does all the work needed for actually writing data to a 3817 * file. It does all basic checks, removes SUID from the file, updates 3818 * modification times and calls proper subroutines depending on whether we 3819 * do direct IO or a standard buffered write. 3820 * 3821 * It expects i_rwsem to be grabbed unless we work on a block device or similar 3822 * object which does not need locking at all. 3823 * 3824 * This function does *not* take care of syncing data in case of O_SYNC write. 3825 * A caller has to handle it. This is mainly due to the fact that we want to 3826 * avoid syncing under i_rwsem. 3827 * 3828 * Return: 3829 * * number of bytes written, even for truncated writes 3830 * * negative error code if no data has been written at all 3831 */ 3832 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3833 { 3834 struct file *file = iocb->ki_filp; 3835 struct address_space *mapping = file->f_mapping; 3836 struct inode *inode = mapping->host; 3837 ssize_t written = 0; 3838 ssize_t err; 3839 ssize_t status; 3840 3841 /* We can write back this queue in page reclaim */ 3842 current->backing_dev_info = inode_to_bdi(inode); 3843 err = file_remove_privs(file); 3844 if (err) 3845 goto out; 3846 3847 err = file_update_time(file); 3848 if (err) 3849 goto out; 3850 3851 if (iocb->ki_flags & IOCB_DIRECT) { 3852 loff_t pos, endbyte; 3853 3854 written = generic_file_direct_write(iocb, from); 3855 /* 3856 * If the write stopped short of completing, fall back to 3857 * buffered writes. Some filesystems do this for writes to 3858 * holes, for example. For DAX files, a buffered write will 3859 * not succeed (even if it did, DAX does not handle dirty 3860 * page-cache pages correctly). 3861 */ 3862 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode)) 3863 goto out; 3864 3865 status = generic_perform_write(file, from, pos = iocb->ki_pos); 3866 /* 3867 * If generic_perform_write() returned a synchronous error 3868 * then we want to return the number of bytes which were 3869 * direct-written, or the error code if that was zero. Note 3870 * that this differs from normal direct-io semantics, which 3871 * will return -EFOO even if some bytes were written. 3872 */ 3873 if (unlikely(status < 0)) { 3874 err = status; 3875 goto out; 3876 } 3877 /* 3878 * We need to ensure that the page cache pages are written to 3879 * disk and invalidated to preserve the expected O_DIRECT 3880 * semantics. 3881 */ 3882 endbyte = pos + status - 1; 3883 err = filemap_write_and_wait_range(mapping, pos, endbyte); 3884 if (err == 0) { 3885 iocb->ki_pos = endbyte + 1; 3886 written += status; 3887 invalidate_mapping_pages(mapping, 3888 pos >> PAGE_SHIFT, 3889 endbyte >> PAGE_SHIFT); 3890 } else { 3891 /* 3892 * We don't know how much we wrote, so just return 3893 * the number of bytes which were direct-written 3894 */ 3895 } 3896 } else { 3897 written = generic_perform_write(file, from, iocb->ki_pos); 3898 if (likely(written > 0)) 3899 iocb->ki_pos += written; 3900 } 3901 out: 3902 current->backing_dev_info = NULL; 3903 return written ? written : err; 3904 } 3905 EXPORT_SYMBOL(__generic_file_write_iter); 3906 3907 /** 3908 * generic_file_write_iter - write data to a file 3909 * @iocb: IO state structure 3910 * @from: iov_iter with data to write 3911 * 3912 * This is a wrapper around __generic_file_write_iter() to be used by most 3913 * filesystems. It takes care of syncing the file in case of O_SYNC file 3914 * and acquires i_rwsem as needed. 3915 * Return: 3916 * * negative error code if no data has been written at all of 3917 * vfs_fsync_range() failed for a synchronous write 3918 * * number of bytes written, even for truncated writes 3919 */ 3920 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3921 { 3922 struct file *file = iocb->ki_filp; 3923 struct inode *inode = file->f_mapping->host; 3924 ssize_t ret; 3925 3926 inode_lock(inode); 3927 ret = generic_write_checks(iocb, from); 3928 if (ret > 0) 3929 ret = __generic_file_write_iter(iocb, from); 3930 inode_unlock(inode); 3931 3932 if (ret > 0) 3933 ret = generic_write_sync(iocb, ret); 3934 return ret; 3935 } 3936 EXPORT_SYMBOL(generic_file_write_iter); 3937 3938 /** 3939 * try_to_release_page() - release old fs-specific metadata on a page 3940 * 3941 * @page: the page which the kernel is trying to free 3942 * @gfp_mask: memory allocation flags (and I/O mode) 3943 * 3944 * The address_space is to try to release any data against the page 3945 * (presumably at page->private). 3946 * 3947 * This may also be called if PG_fscache is set on a page, indicating that the 3948 * page is known to the local caching routines. 3949 * 3950 * The @gfp_mask argument specifies whether I/O may be performed to release 3951 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS). 3952 * 3953 * Return: %1 if the release was successful, otherwise return zero. 3954 */ 3955 int try_to_release_page(struct page *page, gfp_t gfp_mask) 3956 { 3957 struct address_space * const mapping = page->mapping; 3958 3959 BUG_ON(!PageLocked(page)); 3960 if (PageWriteback(page)) 3961 return 0; 3962 3963 if (mapping && mapping->a_ops->releasepage) 3964 return mapping->a_ops->releasepage(page, gfp_mask); 3965 return try_to_free_buffers(page); 3966 } 3967 3968 EXPORT_SYMBOL(try_to_release_page); 3969