xref: /openbmc/linux/mm/filemap.c (revision 1fa0a7dc)
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/sched/signal.h>
17 #include <linux/uaccess.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/gfp.h>
21 #include <linux/mm.h>
22 #include <linux/swap.h>
23 #include <linux/mman.h>
24 #include <linux/pagemap.h>
25 #include <linux/file.h>
26 #include <linux/uio.h>
27 #include <linux/error-injection.h>
28 #include <linux/hash.h>
29 #include <linux/writeback.h>
30 #include <linux/backing-dev.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/security.h>
34 #include <linux/cpuset.h>
35 #include <linux/hugetlb.h>
36 #include <linux/memcontrol.h>
37 #include <linux/cleancache.h>
38 #include <linux/shmem_fs.h>
39 #include <linux/rmap.h>
40 #include <linux/delayacct.h>
41 #include <linux/psi.h>
42 #include "internal.h"
43 
44 #define CREATE_TRACE_POINTS
45 #include <trace/events/filemap.h>
46 
47 /*
48  * FIXME: remove all knowledge of the buffer layer from the core VM
49  */
50 #include <linux/buffer_head.h> /* for try_to_free_buffers */
51 
52 #include <asm/mman.h>
53 
54 /*
55  * Shared mappings implemented 30.11.1994. It's not fully working yet,
56  * though.
57  *
58  * Shared mappings now work. 15.8.1995  Bruno.
59  *
60  * finished 'unifying' the page and buffer cache and SMP-threaded the
61  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
62  *
63  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
64  */
65 
66 /*
67  * Lock ordering:
68  *
69  *  ->i_mmap_rwsem		(truncate_pagecache)
70  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
71  *      ->swap_lock		(exclusive_swap_page, others)
72  *        ->i_pages lock
73  *
74  *  ->i_mutex
75  *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
76  *
77  *  ->mmap_sem
78  *    ->i_mmap_rwsem
79  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
80  *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
81  *
82  *  ->mmap_sem
83  *    ->lock_page		(access_process_vm)
84  *
85  *  ->i_mutex			(generic_perform_write)
86  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
87  *
88  *  bdi->wb.list_lock
89  *    sb_lock			(fs/fs-writeback.c)
90  *    ->i_pages lock		(__sync_single_inode)
91  *
92  *  ->i_mmap_rwsem
93  *    ->anon_vma.lock		(vma_adjust)
94  *
95  *  ->anon_vma.lock
96  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
97  *
98  *  ->page_table_lock or pte_lock
99  *    ->swap_lock		(try_to_unmap_one)
100  *    ->private_lock		(try_to_unmap_one)
101  *    ->i_pages lock		(try_to_unmap_one)
102  *    ->pgdat->lru_lock		(follow_page->mark_page_accessed)
103  *    ->pgdat->lru_lock		(check_pte_range->isolate_lru_page)
104  *    ->private_lock		(page_remove_rmap->set_page_dirty)
105  *    ->i_pages lock		(page_remove_rmap->set_page_dirty)
106  *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
107  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
108  *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
109  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
110  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
111  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
112  *
113  * ->i_mmap_rwsem
114  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
115  */
116 
117 static void page_cache_delete(struct address_space *mapping,
118 				   struct page *page, void *shadow)
119 {
120 	XA_STATE(xas, &mapping->i_pages, page->index);
121 	unsigned int nr = 1;
122 
123 	mapping_set_update(&xas, mapping);
124 
125 	/* hugetlb pages are represented by a single entry in the xarray */
126 	if (!PageHuge(page)) {
127 		xas_set_order(&xas, page->index, compound_order(page));
128 		nr = 1U << compound_order(page);
129 	}
130 
131 	VM_BUG_ON_PAGE(!PageLocked(page), page);
132 	VM_BUG_ON_PAGE(PageTail(page), page);
133 	VM_BUG_ON_PAGE(nr != 1 && shadow, page);
134 
135 	xas_store(&xas, shadow);
136 	xas_init_marks(&xas);
137 
138 	page->mapping = NULL;
139 	/* Leave page->index set: truncation lookup relies upon it */
140 
141 	if (shadow) {
142 		mapping->nrexceptional += nr;
143 		/*
144 		 * Make sure the nrexceptional update is committed before
145 		 * the nrpages update so that final truncate racing
146 		 * with reclaim does not see both counters 0 at the
147 		 * same time and miss a shadow entry.
148 		 */
149 		smp_wmb();
150 	}
151 	mapping->nrpages -= nr;
152 }
153 
154 static void unaccount_page_cache_page(struct address_space *mapping,
155 				      struct page *page)
156 {
157 	int nr;
158 
159 	/*
160 	 * if we're uptodate, flush out into the cleancache, otherwise
161 	 * invalidate any existing cleancache entries.  We can't leave
162 	 * stale data around in the cleancache once our page is gone
163 	 */
164 	if (PageUptodate(page) && PageMappedToDisk(page))
165 		cleancache_put_page(page);
166 	else
167 		cleancache_invalidate_page(mapping, page);
168 
169 	VM_BUG_ON_PAGE(PageTail(page), page);
170 	VM_BUG_ON_PAGE(page_mapped(page), page);
171 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
172 		int mapcount;
173 
174 		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
175 			 current->comm, page_to_pfn(page));
176 		dump_page(page, "still mapped when deleted");
177 		dump_stack();
178 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
179 
180 		mapcount = page_mapcount(page);
181 		if (mapping_exiting(mapping) &&
182 		    page_count(page) >= mapcount + 2) {
183 			/*
184 			 * All vmas have already been torn down, so it's
185 			 * a good bet that actually the page is unmapped,
186 			 * and we'd prefer not to leak it: if we're wrong,
187 			 * some other bad page check should catch it later.
188 			 */
189 			page_mapcount_reset(page);
190 			page_ref_sub(page, mapcount);
191 		}
192 	}
193 
194 	/* hugetlb pages do not participate in page cache accounting. */
195 	if (PageHuge(page))
196 		return;
197 
198 	nr = hpage_nr_pages(page);
199 
200 	__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
201 	if (PageSwapBacked(page)) {
202 		__mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
203 		if (PageTransHuge(page))
204 			__dec_node_page_state(page, NR_SHMEM_THPS);
205 	} else {
206 		VM_BUG_ON_PAGE(PageTransHuge(page), page);
207 	}
208 
209 	/*
210 	 * At this point page must be either written or cleaned by
211 	 * truncate.  Dirty page here signals a bug and loss of
212 	 * unwritten data.
213 	 *
214 	 * This fixes dirty accounting after removing the page entirely
215 	 * but leaves PageDirty set: it has no effect for truncated
216 	 * page and anyway will be cleared before returning page into
217 	 * buddy allocator.
218 	 */
219 	if (WARN_ON_ONCE(PageDirty(page)))
220 		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
221 }
222 
223 /*
224  * Delete a page from the page cache and free it. Caller has to make
225  * sure the page is locked and that nobody else uses it - or that usage
226  * is safe.  The caller must hold the i_pages lock.
227  */
228 void __delete_from_page_cache(struct page *page, void *shadow)
229 {
230 	struct address_space *mapping = page->mapping;
231 
232 	trace_mm_filemap_delete_from_page_cache(page);
233 
234 	unaccount_page_cache_page(mapping, page);
235 	page_cache_delete(mapping, page, shadow);
236 }
237 
238 static void page_cache_free_page(struct address_space *mapping,
239 				struct page *page)
240 {
241 	void (*freepage)(struct page *);
242 
243 	freepage = mapping->a_ops->freepage;
244 	if (freepage)
245 		freepage(page);
246 
247 	if (PageTransHuge(page) && !PageHuge(page)) {
248 		page_ref_sub(page, HPAGE_PMD_NR);
249 		VM_BUG_ON_PAGE(page_count(page) <= 0, page);
250 	} else {
251 		put_page(page);
252 	}
253 }
254 
255 /**
256  * delete_from_page_cache - delete page from page cache
257  * @page: the page which the kernel is trying to remove from page cache
258  *
259  * This must be called only on pages that have been verified to be in the page
260  * cache and locked.  It will never put the page into the free list, the caller
261  * has a reference on the page.
262  */
263 void delete_from_page_cache(struct page *page)
264 {
265 	struct address_space *mapping = page_mapping(page);
266 	unsigned long flags;
267 
268 	BUG_ON(!PageLocked(page));
269 	xa_lock_irqsave(&mapping->i_pages, flags);
270 	__delete_from_page_cache(page, NULL);
271 	xa_unlock_irqrestore(&mapping->i_pages, flags);
272 
273 	page_cache_free_page(mapping, page);
274 }
275 EXPORT_SYMBOL(delete_from_page_cache);
276 
277 /*
278  * page_cache_delete_batch - delete several pages from page cache
279  * @mapping: the mapping to which pages belong
280  * @pvec: pagevec with pages to delete
281  *
282  * The function walks over mapping->i_pages and removes pages passed in @pvec
283  * from the mapping. The function expects @pvec to be sorted by page index
284  * and is optimised for it to be dense.
285  * It tolerates holes in @pvec (mapping entries at those indices are not
286  * modified). The function expects only THP head pages to be present in the
287  * @pvec.
288  *
289  * The function expects the i_pages lock to be held.
290  */
291 static void page_cache_delete_batch(struct address_space *mapping,
292 			     struct pagevec *pvec)
293 {
294 	XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
295 	int total_pages = 0;
296 	int i = 0;
297 	struct page *page;
298 
299 	mapping_set_update(&xas, mapping);
300 	xas_for_each(&xas, page, ULONG_MAX) {
301 		if (i >= pagevec_count(pvec))
302 			break;
303 
304 		/* A swap/dax/shadow entry got inserted? Skip it. */
305 		if (xa_is_value(page))
306 			continue;
307 		/*
308 		 * A page got inserted in our range? Skip it. We have our
309 		 * pages locked so they are protected from being removed.
310 		 * If we see a page whose index is higher than ours, it
311 		 * means our page has been removed, which shouldn't be
312 		 * possible because we're holding the PageLock.
313 		 */
314 		if (page != pvec->pages[i]) {
315 			VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
316 					page);
317 			continue;
318 		}
319 
320 		WARN_ON_ONCE(!PageLocked(page));
321 
322 		if (page->index == xas.xa_index)
323 			page->mapping = NULL;
324 		/* Leave page->index set: truncation lookup relies on it */
325 
326 		/*
327 		 * Move to the next page in the vector if this is a regular
328 		 * page or the index is of the last sub-page of this compound
329 		 * page.
330 		 */
331 		if (page->index + (1UL << compound_order(page)) - 1 ==
332 				xas.xa_index)
333 			i++;
334 		xas_store(&xas, NULL);
335 		total_pages++;
336 	}
337 	mapping->nrpages -= total_pages;
338 }
339 
340 void delete_from_page_cache_batch(struct address_space *mapping,
341 				  struct pagevec *pvec)
342 {
343 	int i;
344 	unsigned long flags;
345 
346 	if (!pagevec_count(pvec))
347 		return;
348 
349 	xa_lock_irqsave(&mapping->i_pages, flags);
350 	for (i = 0; i < pagevec_count(pvec); i++) {
351 		trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
352 
353 		unaccount_page_cache_page(mapping, pvec->pages[i]);
354 	}
355 	page_cache_delete_batch(mapping, pvec);
356 	xa_unlock_irqrestore(&mapping->i_pages, flags);
357 
358 	for (i = 0; i < pagevec_count(pvec); i++)
359 		page_cache_free_page(mapping, pvec->pages[i]);
360 }
361 
362 int filemap_check_errors(struct address_space *mapping)
363 {
364 	int ret = 0;
365 	/* Check for outstanding write errors */
366 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
367 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
368 		ret = -ENOSPC;
369 	if (test_bit(AS_EIO, &mapping->flags) &&
370 	    test_and_clear_bit(AS_EIO, &mapping->flags))
371 		ret = -EIO;
372 	return ret;
373 }
374 EXPORT_SYMBOL(filemap_check_errors);
375 
376 static int filemap_check_and_keep_errors(struct address_space *mapping)
377 {
378 	/* Check for outstanding write errors */
379 	if (test_bit(AS_EIO, &mapping->flags))
380 		return -EIO;
381 	if (test_bit(AS_ENOSPC, &mapping->flags))
382 		return -ENOSPC;
383 	return 0;
384 }
385 
386 /**
387  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
388  * @mapping:	address space structure to write
389  * @start:	offset in bytes where the range starts
390  * @end:	offset in bytes where the range ends (inclusive)
391  * @sync_mode:	enable synchronous operation
392  *
393  * Start writeback against all of a mapping's dirty pages that lie
394  * within the byte offsets <start, end> inclusive.
395  *
396  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
397  * opposed to a regular memory cleansing writeback.  The difference between
398  * these two operations is that if a dirty page/buffer is encountered, it must
399  * be waited upon, and not just skipped over.
400  *
401  * Return: %0 on success, negative error code otherwise.
402  */
403 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
404 				loff_t end, int sync_mode)
405 {
406 	int ret;
407 	struct writeback_control wbc = {
408 		.sync_mode = sync_mode,
409 		.nr_to_write = LONG_MAX,
410 		.range_start = start,
411 		.range_end = end,
412 	};
413 
414 	if (!mapping_cap_writeback_dirty(mapping))
415 		return 0;
416 
417 	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
418 	ret = do_writepages(mapping, &wbc);
419 	wbc_detach_inode(&wbc);
420 	return ret;
421 }
422 
423 static inline int __filemap_fdatawrite(struct address_space *mapping,
424 	int sync_mode)
425 {
426 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
427 }
428 
429 int filemap_fdatawrite(struct address_space *mapping)
430 {
431 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
432 }
433 EXPORT_SYMBOL(filemap_fdatawrite);
434 
435 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
436 				loff_t end)
437 {
438 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
439 }
440 EXPORT_SYMBOL(filemap_fdatawrite_range);
441 
442 /**
443  * filemap_flush - mostly a non-blocking flush
444  * @mapping:	target address_space
445  *
446  * This is a mostly non-blocking flush.  Not suitable for data-integrity
447  * purposes - I/O may not be started against all dirty pages.
448  *
449  * Return: %0 on success, negative error code otherwise.
450  */
451 int filemap_flush(struct address_space *mapping)
452 {
453 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
454 }
455 EXPORT_SYMBOL(filemap_flush);
456 
457 /**
458  * filemap_range_has_page - check if a page exists in range.
459  * @mapping:           address space within which to check
460  * @start_byte:        offset in bytes where the range starts
461  * @end_byte:          offset in bytes where the range ends (inclusive)
462  *
463  * Find at least one page in the range supplied, usually used to check if
464  * direct writing in this range will trigger a writeback.
465  *
466  * Return: %true if at least one page exists in the specified range,
467  * %false otherwise.
468  */
469 bool filemap_range_has_page(struct address_space *mapping,
470 			   loff_t start_byte, loff_t end_byte)
471 {
472 	struct page *page;
473 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
474 	pgoff_t max = end_byte >> PAGE_SHIFT;
475 
476 	if (end_byte < start_byte)
477 		return false;
478 
479 	rcu_read_lock();
480 	for (;;) {
481 		page = xas_find(&xas, max);
482 		if (xas_retry(&xas, page))
483 			continue;
484 		/* Shadow entries don't count */
485 		if (xa_is_value(page))
486 			continue;
487 		/*
488 		 * We don't need to try to pin this page; we're about to
489 		 * release the RCU lock anyway.  It is enough to know that
490 		 * there was a page here recently.
491 		 */
492 		break;
493 	}
494 	rcu_read_unlock();
495 
496 	return page != NULL;
497 }
498 EXPORT_SYMBOL(filemap_range_has_page);
499 
500 static void __filemap_fdatawait_range(struct address_space *mapping,
501 				     loff_t start_byte, loff_t end_byte)
502 {
503 	pgoff_t index = start_byte >> PAGE_SHIFT;
504 	pgoff_t end = end_byte >> PAGE_SHIFT;
505 	struct pagevec pvec;
506 	int nr_pages;
507 
508 	if (end_byte < start_byte)
509 		return;
510 
511 	pagevec_init(&pvec);
512 	while (index <= end) {
513 		unsigned i;
514 
515 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
516 				end, PAGECACHE_TAG_WRITEBACK);
517 		if (!nr_pages)
518 			break;
519 
520 		for (i = 0; i < nr_pages; i++) {
521 			struct page *page = pvec.pages[i];
522 
523 			wait_on_page_writeback(page);
524 			ClearPageError(page);
525 		}
526 		pagevec_release(&pvec);
527 		cond_resched();
528 	}
529 }
530 
531 /**
532  * filemap_fdatawait_range - wait for writeback to complete
533  * @mapping:		address space structure to wait for
534  * @start_byte:		offset in bytes where the range starts
535  * @end_byte:		offset in bytes where the range ends (inclusive)
536  *
537  * Walk the list of under-writeback pages of the given address space
538  * in the given range and wait for all of them.  Check error status of
539  * the address space and return it.
540  *
541  * Since the error status of the address space is cleared by this function,
542  * callers are responsible for checking the return value and handling and/or
543  * reporting the error.
544  *
545  * Return: error status of the address space.
546  */
547 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
548 			    loff_t end_byte)
549 {
550 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
551 	return filemap_check_errors(mapping);
552 }
553 EXPORT_SYMBOL(filemap_fdatawait_range);
554 
555 /**
556  * file_fdatawait_range - wait for writeback to complete
557  * @file:		file pointing to address space structure to wait for
558  * @start_byte:		offset in bytes where the range starts
559  * @end_byte:		offset in bytes where the range ends (inclusive)
560  *
561  * Walk the list of under-writeback pages of the address space that file
562  * refers to, in the given range and wait for all of them.  Check error
563  * status of the address space vs. the file->f_wb_err cursor and return it.
564  *
565  * Since the error status of the file is advanced by this function,
566  * callers are responsible for checking the return value and handling and/or
567  * reporting the error.
568  *
569  * Return: error status of the address space vs. the file->f_wb_err cursor.
570  */
571 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
572 {
573 	struct address_space *mapping = file->f_mapping;
574 
575 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
576 	return file_check_and_advance_wb_err(file);
577 }
578 EXPORT_SYMBOL(file_fdatawait_range);
579 
580 /**
581  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
582  * @mapping: address space structure to wait for
583  *
584  * Walk the list of under-writeback pages of the given address space
585  * and wait for all of them.  Unlike filemap_fdatawait(), this function
586  * does not clear error status of the address space.
587  *
588  * Use this function if callers don't handle errors themselves.  Expected
589  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
590  * fsfreeze(8)
591  *
592  * Return: error status of the address space.
593  */
594 int filemap_fdatawait_keep_errors(struct address_space *mapping)
595 {
596 	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
597 	return filemap_check_and_keep_errors(mapping);
598 }
599 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
600 
601 static bool mapping_needs_writeback(struct address_space *mapping)
602 {
603 	return (!dax_mapping(mapping) && mapping->nrpages) ||
604 	    (dax_mapping(mapping) && mapping->nrexceptional);
605 }
606 
607 int filemap_write_and_wait(struct address_space *mapping)
608 {
609 	int err = 0;
610 
611 	if (mapping_needs_writeback(mapping)) {
612 		err = filemap_fdatawrite(mapping);
613 		/*
614 		 * Even if the above returned error, the pages may be
615 		 * written partially (e.g. -ENOSPC), so we wait for it.
616 		 * But the -EIO is special case, it may indicate the worst
617 		 * thing (e.g. bug) happened, so we avoid waiting for it.
618 		 */
619 		if (err != -EIO) {
620 			int err2 = filemap_fdatawait(mapping);
621 			if (!err)
622 				err = err2;
623 		} else {
624 			/* Clear any previously stored errors */
625 			filemap_check_errors(mapping);
626 		}
627 	} else {
628 		err = filemap_check_errors(mapping);
629 	}
630 	return err;
631 }
632 EXPORT_SYMBOL(filemap_write_and_wait);
633 
634 /**
635  * filemap_write_and_wait_range - write out & wait on a file range
636  * @mapping:	the address_space for the pages
637  * @lstart:	offset in bytes where the range starts
638  * @lend:	offset in bytes where the range ends (inclusive)
639  *
640  * Write out and wait upon file offsets lstart->lend, inclusive.
641  *
642  * Note that @lend is inclusive (describes the last byte to be written) so
643  * that this function can be used to write to the very end-of-file (end = -1).
644  *
645  * Return: error status of the address space.
646  */
647 int filemap_write_and_wait_range(struct address_space *mapping,
648 				 loff_t lstart, loff_t lend)
649 {
650 	int err = 0;
651 
652 	if (mapping_needs_writeback(mapping)) {
653 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
654 						 WB_SYNC_ALL);
655 		/* See comment of filemap_write_and_wait() */
656 		if (err != -EIO) {
657 			int err2 = filemap_fdatawait_range(mapping,
658 						lstart, lend);
659 			if (!err)
660 				err = err2;
661 		} else {
662 			/* Clear any previously stored errors */
663 			filemap_check_errors(mapping);
664 		}
665 	} else {
666 		err = filemap_check_errors(mapping);
667 	}
668 	return err;
669 }
670 EXPORT_SYMBOL(filemap_write_and_wait_range);
671 
672 void __filemap_set_wb_err(struct address_space *mapping, int err)
673 {
674 	errseq_t eseq = errseq_set(&mapping->wb_err, err);
675 
676 	trace_filemap_set_wb_err(mapping, eseq);
677 }
678 EXPORT_SYMBOL(__filemap_set_wb_err);
679 
680 /**
681  * file_check_and_advance_wb_err - report wb error (if any) that was previously
682  * 				   and advance wb_err to current one
683  * @file: struct file on which the error is being reported
684  *
685  * When userland calls fsync (or something like nfsd does the equivalent), we
686  * want to report any writeback errors that occurred since the last fsync (or
687  * since the file was opened if there haven't been any).
688  *
689  * Grab the wb_err from the mapping. If it matches what we have in the file,
690  * then just quickly return 0. The file is all caught up.
691  *
692  * If it doesn't match, then take the mapping value, set the "seen" flag in
693  * it and try to swap it into place. If it works, or another task beat us
694  * to it with the new value, then update the f_wb_err and return the error
695  * portion. The error at this point must be reported via proper channels
696  * (a'la fsync, or NFS COMMIT operation, etc.).
697  *
698  * While we handle mapping->wb_err with atomic operations, the f_wb_err
699  * value is protected by the f_lock since we must ensure that it reflects
700  * the latest value swapped in for this file descriptor.
701  *
702  * Return: %0 on success, negative error code otherwise.
703  */
704 int file_check_and_advance_wb_err(struct file *file)
705 {
706 	int err = 0;
707 	errseq_t old = READ_ONCE(file->f_wb_err);
708 	struct address_space *mapping = file->f_mapping;
709 
710 	/* Locklessly handle the common case where nothing has changed */
711 	if (errseq_check(&mapping->wb_err, old)) {
712 		/* Something changed, must use slow path */
713 		spin_lock(&file->f_lock);
714 		old = file->f_wb_err;
715 		err = errseq_check_and_advance(&mapping->wb_err,
716 						&file->f_wb_err);
717 		trace_file_check_and_advance_wb_err(file, old);
718 		spin_unlock(&file->f_lock);
719 	}
720 
721 	/*
722 	 * We're mostly using this function as a drop in replacement for
723 	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
724 	 * that the legacy code would have had on these flags.
725 	 */
726 	clear_bit(AS_EIO, &mapping->flags);
727 	clear_bit(AS_ENOSPC, &mapping->flags);
728 	return err;
729 }
730 EXPORT_SYMBOL(file_check_and_advance_wb_err);
731 
732 /**
733  * file_write_and_wait_range - write out & wait on a file range
734  * @file:	file pointing to address_space with pages
735  * @lstart:	offset in bytes where the range starts
736  * @lend:	offset in bytes where the range ends (inclusive)
737  *
738  * Write out and wait upon file offsets lstart->lend, inclusive.
739  *
740  * Note that @lend is inclusive (describes the last byte to be written) so
741  * that this function can be used to write to the very end-of-file (end = -1).
742  *
743  * After writing out and waiting on the data, we check and advance the
744  * f_wb_err cursor to the latest value, and return any errors detected there.
745  *
746  * Return: %0 on success, negative error code otherwise.
747  */
748 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
749 {
750 	int err = 0, err2;
751 	struct address_space *mapping = file->f_mapping;
752 
753 	if (mapping_needs_writeback(mapping)) {
754 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
755 						 WB_SYNC_ALL);
756 		/* See comment of filemap_write_and_wait() */
757 		if (err != -EIO)
758 			__filemap_fdatawait_range(mapping, lstart, lend);
759 	}
760 	err2 = file_check_and_advance_wb_err(file);
761 	if (!err)
762 		err = err2;
763 	return err;
764 }
765 EXPORT_SYMBOL(file_write_and_wait_range);
766 
767 /**
768  * replace_page_cache_page - replace a pagecache page with a new one
769  * @old:	page to be replaced
770  * @new:	page to replace with
771  * @gfp_mask:	allocation mode
772  *
773  * This function replaces a page in the pagecache with a new one.  On
774  * success it acquires the pagecache reference for the new page and
775  * drops it for the old page.  Both the old and new pages must be
776  * locked.  This function does not add the new page to the LRU, the
777  * caller must do that.
778  *
779  * The remove + add is atomic.  This function cannot fail.
780  *
781  * Return: %0
782  */
783 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
784 {
785 	struct address_space *mapping = old->mapping;
786 	void (*freepage)(struct page *) = mapping->a_ops->freepage;
787 	pgoff_t offset = old->index;
788 	XA_STATE(xas, &mapping->i_pages, offset);
789 	unsigned long flags;
790 
791 	VM_BUG_ON_PAGE(!PageLocked(old), old);
792 	VM_BUG_ON_PAGE(!PageLocked(new), new);
793 	VM_BUG_ON_PAGE(new->mapping, new);
794 
795 	get_page(new);
796 	new->mapping = mapping;
797 	new->index = offset;
798 
799 	xas_lock_irqsave(&xas, flags);
800 	xas_store(&xas, new);
801 
802 	old->mapping = NULL;
803 	/* hugetlb pages do not participate in page cache accounting. */
804 	if (!PageHuge(old))
805 		__dec_node_page_state(new, NR_FILE_PAGES);
806 	if (!PageHuge(new))
807 		__inc_node_page_state(new, NR_FILE_PAGES);
808 	if (PageSwapBacked(old))
809 		__dec_node_page_state(new, NR_SHMEM);
810 	if (PageSwapBacked(new))
811 		__inc_node_page_state(new, NR_SHMEM);
812 	xas_unlock_irqrestore(&xas, flags);
813 	mem_cgroup_migrate(old, new);
814 	if (freepage)
815 		freepage(old);
816 	put_page(old);
817 
818 	return 0;
819 }
820 EXPORT_SYMBOL_GPL(replace_page_cache_page);
821 
822 static int __add_to_page_cache_locked(struct page *page,
823 				      struct address_space *mapping,
824 				      pgoff_t offset, gfp_t gfp_mask,
825 				      void **shadowp)
826 {
827 	XA_STATE(xas, &mapping->i_pages, offset);
828 	int huge = PageHuge(page);
829 	struct mem_cgroup *memcg;
830 	int error;
831 	void *old;
832 
833 	VM_BUG_ON_PAGE(!PageLocked(page), page);
834 	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
835 	mapping_set_update(&xas, mapping);
836 
837 	if (!huge) {
838 		error = mem_cgroup_try_charge(page, current->mm,
839 					      gfp_mask, &memcg, false);
840 		if (error)
841 			return error;
842 	}
843 
844 	get_page(page);
845 	page->mapping = mapping;
846 	page->index = offset;
847 
848 	do {
849 		xas_lock_irq(&xas);
850 		old = xas_load(&xas);
851 		if (old && !xa_is_value(old))
852 			xas_set_err(&xas, -EEXIST);
853 		xas_store(&xas, page);
854 		if (xas_error(&xas))
855 			goto unlock;
856 
857 		if (xa_is_value(old)) {
858 			mapping->nrexceptional--;
859 			if (shadowp)
860 				*shadowp = old;
861 		}
862 		mapping->nrpages++;
863 
864 		/* hugetlb pages do not participate in page cache accounting */
865 		if (!huge)
866 			__inc_node_page_state(page, NR_FILE_PAGES);
867 unlock:
868 		xas_unlock_irq(&xas);
869 	} while (xas_nomem(&xas, gfp_mask & GFP_RECLAIM_MASK));
870 
871 	if (xas_error(&xas))
872 		goto error;
873 
874 	if (!huge)
875 		mem_cgroup_commit_charge(page, memcg, false, false);
876 	trace_mm_filemap_add_to_page_cache(page);
877 	return 0;
878 error:
879 	page->mapping = NULL;
880 	/* Leave page->index set: truncation relies upon it */
881 	if (!huge)
882 		mem_cgroup_cancel_charge(page, memcg, false);
883 	put_page(page);
884 	return xas_error(&xas);
885 }
886 ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO);
887 
888 /**
889  * add_to_page_cache_locked - add a locked page to the pagecache
890  * @page:	page to add
891  * @mapping:	the page's address_space
892  * @offset:	page index
893  * @gfp_mask:	page allocation mode
894  *
895  * This function is used to add a page to the pagecache. It must be locked.
896  * This function does not add the page to the LRU.  The caller must do that.
897  *
898  * Return: %0 on success, negative error code otherwise.
899  */
900 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
901 		pgoff_t offset, gfp_t gfp_mask)
902 {
903 	return __add_to_page_cache_locked(page, mapping, offset,
904 					  gfp_mask, NULL);
905 }
906 EXPORT_SYMBOL(add_to_page_cache_locked);
907 
908 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
909 				pgoff_t offset, gfp_t gfp_mask)
910 {
911 	void *shadow = NULL;
912 	int ret;
913 
914 	__SetPageLocked(page);
915 	ret = __add_to_page_cache_locked(page, mapping, offset,
916 					 gfp_mask, &shadow);
917 	if (unlikely(ret))
918 		__ClearPageLocked(page);
919 	else {
920 		/*
921 		 * The page might have been evicted from cache only
922 		 * recently, in which case it should be activated like
923 		 * any other repeatedly accessed page.
924 		 * The exception is pages getting rewritten; evicting other
925 		 * data from the working set, only to cache data that will
926 		 * get overwritten with something else, is a waste of memory.
927 		 */
928 		WARN_ON_ONCE(PageActive(page));
929 		if (!(gfp_mask & __GFP_WRITE) && shadow)
930 			workingset_refault(page, shadow);
931 		lru_cache_add(page);
932 	}
933 	return ret;
934 }
935 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
936 
937 #ifdef CONFIG_NUMA
938 struct page *__page_cache_alloc(gfp_t gfp)
939 {
940 	int n;
941 	struct page *page;
942 
943 	if (cpuset_do_page_mem_spread()) {
944 		unsigned int cpuset_mems_cookie;
945 		do {
946 			cpuset_mems_cookie = read_mems_allowed_begin();
947 			n = cpuset_mem_spread_node();
948 			page = __alloc_pages_node(n, gfp, 0);
949 		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
950 
951 		return page;
952 	}
953 	return alloc_pages(gfp, 0);
954 }
955 EXPORT_SYMBOL(__page_cache_alloc);
956 #endif
957 
958 /*
959  * In order to wait for pages to become available there must be
960  * waitqueues associated with pages. By using a hash table of
961  * waitqueues where the bucket discipline is to maintain all
962  * waiters on the same queue and wake all when any of the pages
963  * become available, and for the woken contexts to check to be
964  * sure the appropriate page became available, this saves space
965  * at a cost of "thundering herd" phenomena during rare hash
966  * collisions.
967  */
968 #define PAGE_WAIT_TABLE_BITS 8
969 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
970 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
971 
972 static wait_queue_head_t *page_waitqueue(struct page *page)
973 {
974 	return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
975 }
976 
977 void __init pagecache_init(void)
978 {
979 	int i;
980 
981 	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
982 		init_waitqueue_head(&page_wait_table[i]);
983 
984 	page_writeback_init();
985 }
986 
987 /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
988 struct wait_page_key {
989 	struct page *page;
990 	int bit_nr;
991 	int page_match;
992 };
993 
994 struct wait_page_queue {
995 	struct page *page;
996 	int bit_nr;
997 	wait_queue_entry_t wait;
998 };
999 
1000 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1001 {
1002 	struct wait_page_key *key = arg;
1003 	struct wait_page_queue *wait_page
1004 		= container_of(wait, struct wait_page_queue, wait);
1005 
1006 	if (wait_page->page != key->page)
1007 	       return 0;
1008 	key->page_match = 1;
1009 
1010 	if (wait_page->bit_nr != key->bit_nr)
1011 		return 0;
1012 
1013 	/*
1014 	 * Stop walking if it's locked.
1015 	 * Is this safe if put_and_wait_on_page_locked() is in use?
1016 	 * Yes: the waker must hold a reference to this page, and if PG_locked
1017 	 * has now already been set by another task, that task must also hold
1018 	 * a reference to the *same usage* of this page; so there is no need
1019 	 * to walk on to wake even the put_and_wait_on_page_locked() callers.
1020 	 */
1021 	if (test_bit(key->bit_nr, &key->page->flags))
1022 		return -1;
1023 
1024 	return autoremove_wake_function(wait, mode, sync, key);
1025 }
1026 
1027 static void wake_up_page_bit(struct page *page, int bit_nr)
1028 {
1029 	wait_queue_head_t *q = page_waitqueue(page);
1030 	struct wait_page_key key;
1031 	unsigned long flags;
1032 	wait_queue_entry_t bookmark;
1033 
1034 	key.page = page;
1035 	key.bit_nr = bit_nr;
1036 	key.page_match = 0;
1037 
1038 	bookmark.flags = 0;
1039 	bookmark.private = NULL;
1040 	bookmark.func = NULL;
1041 	INIT_LIST_HEAD(&bookmark.entry);
1042 
1043 	spin_lock_irqsave(&q->lock, flags);
1044 	__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1045 
1046 	while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1047 		/*
1048 		 * Take a breather from holding the lock,
1049 		 * allow pages that finish wake up asynchronously
1050 		 * to acquire the lock and remove themselves
1051 		 * from wait queue
1052 		 */
1053 		spin_unlock_irqrestore(&q->lock, flags);
1054 		cpu_relax();
1055 		spin_lock_irqsave(&q->lock, flags);
1056 		__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1057 	}
1058 
1059 	/*
1060 	 * It is possible for other pages to have collided on the waitqueue
1061 	 * hash, so in that case check for a page match. That prevents a long-
1062 	 * term waiter
1063 	 *
1064 	 * It is still possible to miss a case here, when we woke page waiters
1065 	 * and removed them from the waitqueue, but there are still other
1066 	 * page waiters.
1067 	 */
1068 	if (!waitqueue_active(q) || !key.page_match) {
1069 		ClearPageWaiters(page);
1070 		/*
1071 		 * It's possible to miss clearing Waiters here, when we woke
1072 		 * our page waiters, but the hashed waitqueue has waiters for
1073 		 * other pages on it.
1074 		 *
1075 		 * That's okay, it's a rare case. The next waker will clear it.
1076 		 */
1077 	}
1078 	spin_unlock_irqrestore(&q->lock, flags);
1079 }
1080 
1081 static void wake_up_page(struct page *page, int bit)
1082 {
1083 	if (!PageWaiters(page))
1084 		return;
1085 	wake_up_page_bit(page, bit);
1086 }
1087 
1088 /*
1089  * A choice of three behaviors for wait_on_page_bit_common():
1090  */
1091 enum behavior {
1092 	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
1093 			 * __lock_page() waiting on then setting PG_locked.
1094 			 */
1095 	SHARED,		/* Hold ref to page and check the bit when woken, like
1096 			 * wait_on_page_writeback() waiting on PG_writeback.
1097 			 */
1098 	DROP,		/* Drop ref to page before wait, no check when woken,
1099 			 * like put_and_wait_on_page_locked() on PG_locked.
1100 			 */
1101 };
1102 
1103 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1104 	struct page *page, int bit_nr, int state, enum behavior behavior)
1105 {
1106 	struct wait_page_queue wait_page;
1107 	wait_queue_entry_t *wait = &wait_page.wait;
1108 	bool bit_is_set;
1109 	bool thrashing = false;
1110 	bool delayacct = false;
1111 	unsigned long pflags;
1112 	int ret = 0;
1113 
1114 	if (bit_nr == PG_locked &&
1115 	    !PageUptodate(page) && PageWorkingset(page)) {
1116 		if (!PageSwapBacked(page)) {
1117 			delayacct_thrashing_start();
1118 			delayacct = true;
1119 		}
1120 		psi_memstall_enter(&pflags);
1121 		thrashing = true;
1122 	}
1123 
1124 	init_wait(wait);
1125 	wait->flags = behavior == EXCLUSIVE ? WQ_FLAG_EXCLUSIVE : 0;
1126 	wait->func = wake_page_function;
1127 	wait_page.page = page;
1128 	wait_page.bit_nr = bit_nr;
1129 
1130 	for (;;) {
1131 		spin_lock_irq(&q->lock);
1132 
1133 		if (likely(list_empty(&wait->entry))) {
1134 			__add_wait_queue_entry_tail(q, wait);
1135 			SetPageWaiters(page);
1136 		}
1137 
1138 		set_current_state(state);
1139 
1140 		spin_unlock_irq(&q->lock);
1141 
1142 		bit_is_set = test_bit(bit_nr, &page->flags);
1143 		if (behavior == DROP)
1144 			put_page(page);
1145 
1146 		if (likely(bit_is_set))
1147 			io_schedule();
1148 
1149 		if (behavior == EXCLUSIVE) {
1150 			if (!test_and_set_bit_lock(bit_nr, &page->flags))
1151 				break;
1152 		} else if (behavior == SHARED) {
1153 			if (!test_bit(bit_nr, &page->flags))
1154 				break;
1155 		}
1156 
1157 		if (signal_pending_state(state, current)) {
1158 			ret = -EINTR;
1159 			break;
1160 		}
1161 
1162 		if (behavior == DROP) {
1163 			/*
1164 			 * We can no longer safely access page->flags:
1165 			 * even if CONFIG_MEMORY_HOTREMOVE is not enabled,
1166 			 * there is a risk of waiting forever on a page reused
1167 			 * for something that keeps it locked indefinitely.
1168 			 * But best check for -EINTR above before breaking.
1169 			 */
1170 			break;
1171 		}
1172 	}
1173 
1174 	finish_wait(q, wait);
1175 
1176 	if (thrashing) {
1177 		if (delayacct)
1178 			delayacct_thrashing_end();
1179 		psi_memstall_leave(&pflags);
1180 	}
1181 
1182 	/*
1183 	 * A signal could leave PageWaiters set. Clearing it here if
1184 	 * !waitqueue_active would be possible (by open-coding finish_wait),
1185 	 * but still fail to catch it in the case of wait hash collision. We
1186 	 * already can fail to clear wait hash collision cases, so don't
1187 	 * bother with signals either.
1188 	 */
1189 
1190 	return ret;
1191 }
1192 
1193 void wait_on_page_bit(struct page *page, int bit_nr)
1194 {
1195 	wait_queue_head_t *q = page_waitqueue(page);
1196 	wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1197 }
1198 EXPORT_SYMBOL(wait_on_page_bit);
1199 
1200 int wait_on_page_bit_killable(struct page *page, int bit_nr)
1201 {
1202 	wait_queue_head_t *q = page_waitqueue(page);
1203 	return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
1204 }
1205 EXPORT_SYMBOL(wait_on_page_bit_killable);
1206 
1207 /**
1208  * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1209  * @page: The page to wait for.
1210  *
1211  * The caller should hold a reference on @page.  They expect the page to
1212  * become unlocked relatively soon, but do not wish to hold up migration
1213  * (for example) by holding the reference while waiting for the page to
1214  * come unlocked.  After this function returns, the caller should not
1215  * dereference @page.
1216  */
1217 void put_and_wait_on_page_locked(struct page *page)
1218 {
1219 	wait_queue_head_t *q;
1220 
1221 	page = compound_head(page);
1222 	q = page_waitqueue(page);
1223 	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP);
1224 }
1225 
1226 /**
1227  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1228  * @page: Page defining the wait queue of interest
1229  * @waiter: Waiter to add to the queue
1230  *
1231  * Add an arbitrary @waiter to the wait queue for the nominated @page.
1232  */
1233 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1234 {
1235 	wait_queue_head_t *q = page_waitqueue(page);
1236 	unsigned long flags;
1237 
1238 	spin_lock_irqsave(&q->lock, flags);
1239 	__add_wait_queue_entry_tail(q, waiter);
1240 	SetPageWaiters(page);
1241 	spin_unlock_irqrestore(&q->lock, flags);
1242 }
1243 EXPORT_SYMBOL_GPL(add_page_wait_queue);
1244 
1245 #ifndef clear_bit_unlock_is_negative_byte
1246 
1247 /*
1248  * PG_waiters is the high bit in the same byte as PG_lock.
1249  *
1250  * On x86 (and on many other architectures), we can clear PG_lock and
1251  * test the sign bit at the same time. But if the architecture does
1252  * not support that special operation, we just do this all by hand
1253  * instead.
1254  *
1255  * The read of PG_waiters has to be after (or concurrently with) PG_locked
1256  * being cleared, but a memory barrier should be unneccssary since it is
1257  * in the same byte as PG_locked.
1258  */
1259 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1260 {
1261 	clear_bit_unlock(nr, mem);
1262 	/* smp_mb__after_atomic(); */
1263 	return test_bit(PG_waiters, mem);
1264 }
1265 
1266 #endif
1267 
1268 /**
1269  * unlock_page - unlock a locked page
1270  * @page: the page
1271  *
1272  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1273  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1274  * mechanism between PageLocked pages and PageWriteback pages is shared.
1275  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1276  *
1277  * Note that this depends on PG_waiters being the sign bit in the byte
1278  * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1279  * clear the PG_locked bit and test PG_waiters at the same time fairly
1280  * portably (architectures that do LL/SC can test any bit, while x86 can
1281  * test the sign bit).
1282  */
1283 void unlock_page(struct page *page)
1284 {
1285 	BUILD_BUG_ON(PG_waiters != 7);
1286 	page = compound_head(page);
1287 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1288 	if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1289 		wake_up_page_bit(page, PG_locked);
1290 }
1291 EXPORT_SYMBOL(unlock_page);
1292 
1293 /**
1294  * end_page_writeback - end writeback against a page
1295  * @page: the page
1296  */
1297 void end_page_writeback(struct page *page)
1298 {
1299 	/*
1300 	 * TestClearPageReclaim could be used here but it is an atomic
1301 	 * operation and overkill in this particular case. Failing to
1302 	 * shuffle a page marked for immediate reclaim is too mild to
1303 	 * justify taking an atomic operation penalty at the end of
1304 	 * ever page writeback.
1305 	 */
1306 	if (PageReclaim(page)) {
1307 		ClearPageReclaim(page);
1308 		rotate_reclaimable_page(page);
1309 	}
1310 
1311 	if (!test_clear_page_writeback(page))
1312 		BUG();
1313 
1314 	smp_mb__after_atomic();
1315 	wake_up_page(page, PG_writeback);
1316 }
1317 EXPORT_SYMBOL(end_page_writeback);
1318 
1319 /*
1320  * After completing I/O on a page, call this routine to update the page
1321  * flags appropriately
1322  */
1323 void page_endio(struct page *page, bool is_write, int err)
1324 {
1325 	if (!is_write) {
1326 		if (!err) {
1327 			SetPageUptodate(page);
1328 		} else {
1329 			ClearPageUptodate(page);
1330 			SetPageError(page);
1331 		}
1332 		unlock_page(page);
1333 	} else {
1334 		if (err) {
1335 			struct address_space *mapping;
1336 
1337 			SetPageError(page);
1338 			mapping = page_mapping(page);
1339 			if (mapping)
1340 				mapping_set_error(mapping, err);
1341 		}
1342 		end_page_writeback(page);
1343 	}
1344 }
1345 EXPORT_SYMBOL_GPL(page_endio);
1346 
1347 /**
1348  * __lock_page - get a lock on the page, assuming we need to sleep to get it
1349  * @__page: the page to lock
1350  */
1351 void __lock_page(struct page *__page)
1352 {
1353 	struct page *page = compound_head(__page);
1354 	wait_queue_head_t *q = page_waitqueue(page);
1355 	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
1356 				EXCLUSIVE);
1357 }
1358 EXPORT_SYMBOL(__lock_page);
1359 
1360 int __lock_page_killable(struct page *__page)
1361 {
1362 	struct page *page = compound_head(__page);
1363 	wait_queue_head_t *q = page_waitqueue(page);
1364 	return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
1365 					EXCLUSIVE);
1366 }
1367 EXPORT_SYMBOL_GPL(__lock_page_killable);
1368 
1369 /*
1370  * Return values:
1371  * 1 - page is locked; mmap_sem is still held.
1372  * 0 - page is not locked.
1373  *     mmap_sem has been released (up_read()), unless flags had both
1374  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1375  *     which case mmap_sem is still held.
1376  *
1377  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1378  * with the page locked and the mmap_sem unperturbed.
1379  */
1380 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1381 			 unsigned int flags)
1382 {
1383 	if (flags & FAULT_FLAG_ALLOW_RETRY) {
1384 		/*
1385 		 * CAUTION! In this case, mmap_sem is not released
1386 		 * even though return 0.
1387 		 */
1388 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1389 			return 0;
1390 
1391 		up_read(&mm->mmap_sem);
1392 		if (flags & FAULT_FLAG_KILLABLE)
1393 			wait_on_page_locked_killable(page);
1394 		else
1395 			wait_on_page_locked(page);
1396 		return 0;
1397 	} else {
1398 		if (flags & FAULT_FLAG_KILLABLE) {
1399 			int ret;
1400 
1401 			ret = __lock_page_killable(page);
1402 			if (ret) {
1403 				up_read(&mm->mmap_sem);
1404 				return 0;
1405 			}
1406 		} else
1407 			__lock_page(page);
1408 		return 1;
1409 	}
1410 }
1411 
1412 /**
1413  * page_cache_next_miss() - Find the next gap in the page cache.
1414  * @mapping: Mapping.
1415  * @index: Index.
1416  * @max_scan: Maximum range to search.
1417  *
1418  * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1419  * gap with the lowest index.
1420  *
1421  * This function may be called under the rcu_read_lock.  However, this will
1422  * not atomically search a snapshot of the cache at a single point in time.
1423  * For example, if a gap is created at index 5, then subsequently a gap is
1424  * created at index 10, page_cache_next_miss covering both indices may
1425  * return 10 if called under the rcu_read_lock.
1426  *
1427  * Return: The index of the gap if found, otherwise an index outside the
1428  * range specified (in which case 'return - index >= max_scan' will be true).
1429  * In the rare case of index wrap-around, 0 will be returned.
1430  */
1431 pgoff_t page_cache_next_miss(struct address_space *mapping,
1432 			     pgoff_t index, unsigned long max_scan)
1433 {
1434 	XA_STATE(xas, &mapping->i_pages, index);
1435 
1436 	while (max_scan--) {
1437 		void *entry = xas_next(&xas);
1438 		if (!entry || xa_is_value(entry))
1439 			break;
1440 		if (xas.xa_index == 0)
1441 			break;
1442 	}
1443 
1444 	return xas.xa_index;
1445 }
1446 EXPORT_SYMBOL(page_cache_next_miss);
1447 
1448 /**
1449  * page_cache_prev_miss() - Find the previous gap in the page cache.
1450  * @mapping: Mapping.
1451  * @index: Index.
1452  * @max_scan: Maximum range to search.
1453  *
1454  * Search the range [max(index - max_scan + 1, 0), index] for the
1455  * gap with the highest index.
1456  *
1457  * This function may be called under the rcu_read_lock.  However, this will
1458  * not atomically search a snapshot of the cache at a single point in time.
1459  * For example, if a gap is created at index 10, then subsequently a gap is
1460  * created at index 5, page_cache_prev_miss() covering both indices may
1461  * return 5 if called under the rcu_read_lock.
1462  *
1463  * Return: The index of the gap if found, otherwise an index outside the
1464  * range specified (in which case 'index - return >= max_scan' will be true).
1465  * In the rare case of wrap-around, ULONG_MAX will be returned.
1466  */
1467 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1468 			     pgoff_t index, unsigned long max_scan)
1469 {
1470 	XA_STATE(xas, &mapping->i_pages, index);
1471 
1472 	while (max_scan--) {
1473 		void *entry = xas_prev(&xas);
1474 		if (!entry || xa_is_value(entry))
1475 			break;
1476 		if (xas.xa_index == ULONG_MAX)
1477 			break;
1478 	}
1479 
1480 	return xas.xa_index;
1481 }
1482 EXPORT_SYMBOL(page_cache_prev_miss);
1483 
1484 /**
1485  * find_get_entry - find and get a page cache entry
1486  * @mapping: the address_space to search
1487  * @offset: the page cache index
1488  *
1489  * Looks up the page cache slot at @mapping & @offset.  If there is a
1490  * page cache page, it is returned with an increased refcount.
1491  *
1492  * If the slot holds a shadow entry of a previously evicted page, or a
1493  * swap entry from shmem/tmpfs, it is returned.
1494  *
1495  * Return: the found page or shadow entry, %NULL if nothing is found.
1496  */
1497 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1498 {
1499 	XA_STATE(xas, &mapping->i_pages, offset);
1500 	struct page *page;
1501 
1502 	rcu_read_lock();
1503 repeat:
1504 	xas_reset(&xas);
1505 	page = xas_load(&xas);
1506 	if (xas_retry(&xas, page))
1507 		goto repeat;
1508 	/*
1509 	 * A shadow entry of a recently evicted page, or a swap entry from
1510 	 * shmem/tmpfs.  Return it without attempting to raise page count.
1511 	 */
1512 	if (!page || xa_is_value(page))
1513 		goto out;
1514 
1515 	if (!page_cache_get_speculative(page))
1516 		goto repeat;
1517 
1518 	/*
1519 	 * Has the page moved or been split?
1520 	 * This is part of the lockless pagecache protocol. See
1521 	 * include/linux/pagemap.h for details.
1522 	 */
1523 	if (unlikely(page != xas_reload(&xas))) {
1524 		put_page(page);
1525 		goto repeat;
1526 	}
1527 	page = find_subpage(page, offset);
1528 out:
1529 	rcu_read_unlock();
1530 
1531 	return page;
1532 }
1533 EXPORT_SYMBOL(find_get_entry);
1534 
1535 /**
1536  * find_lock_entry - locate, pin and lock a page cache entry
1537  * @mapping: the address_space to search
1538  * @offset: the page cache index
1539  *
1540  * Looks up the page cache slot at @mapping & @offset.  If there is a
1541  * page cache page, it is returned locked and with an increased
1542  * refcount.
1543  *
1544  * If the slot holds a shadow entry of a previously evicted page, or a
1545  * swap entry from shmem/tmpfs, it is returned.
1546  *
1547  * find_lock_entry() may sleep.
1548  *
1549  * Return: the found page or shadow entry, %NULL if nothing is found.
1550  */
1551 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1552 {
1553 	struct page *page;
1554 
1555 repeat:
1556 	page = find_get_entry(mapping, offset);
1557 	if (page && !xa_is_value(page)) {
1558 		lock_page(page);
1559 		/* Has the page been truncated? */
1560 		if (unlikely(page_mapping(page) != mapping)) {
1561 			unlock_page(page);
1562 			put_page(page);
1563 			goto repeat;
1564 		}
1565 		VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1566 	}
1567 	return page;
1568 }
1569 EXPORT_SYMBOL(find_lock_entry);
1570 
1571 /**
1572  * pagecache_get_page - find and get a page reference
1573  * @mapping: the address_space to search
1574  * @offset: the page index
1575  * @fgp_flags: PCG flags
1576  * @gfp_mask: gfp mask to use for the page cache data page allocation
1577  *
1578  * Looks up the page cache slot at @mapping & @offset.
1579  *
1580  * PCG flags modify how the page is returned.
1581  *
1582  * @fgp_flags can be:
1583  *
1584  * - FGP_ACCESSED: the page will be marked accessed
1585  * - FGP_LOCK: Page is return locked
1586  * - FGP_CREAT: If page is not present then a new page is allocated using
1587  *   @gfp_mask and added to the page cache and the VM's LRU
1588  *   list. The page is returned locked and with an increased
1589  *   refcount.
1590  * - FGP_FOR_MMAP: Similar to FGP_CREAT, only we want to allow the caller to do
1591  *   its own locking dance if the page is already in cache, or unlock the page
1592  *   before returning if we had to add the page to pagecache.
1593  *
1594  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1595  * if the GFP flags specified for FGP_CREAT are atomic.
1596  *
1597  * If there is a page cache page, it is returned with an increased refcount.
1598  *
1599  * Return: the found page or %NULL otherwise.
1600  */
1601 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1602 	int fgp_flags, gfp_t gfp_mask)
1603 {
1604 	struct page *page;
1605 
1606 repeat:
1607 	page = find_get_entry(mapping, offset);
1608 	if (xa_is_value(page))
1609 		page = NULL;
1610 	if (!page)
1611 		goto no_page;
1612 
1613 	if (fgp_flags & FGP_LOCK) {
1614 		if (fgp_flags & FGP_NOWAIT) {
1615 			if (!trylock_page(page)) {
1616 				put_page(page);
1617 				return NULL;
1618 			}
1619 		} else {
1620 			lock_page(page);
1621 		}
1622 
1623 		/* Has the page been truncated? */
1624 		if (unlikely(page->mapping != mapping)) {
1625 			unlock_page(page);
1626 			put_page(page);
1627 			goto repeat;
1628 		}
1629 		VM_BUG_ON_PAGE(page->index != offset, page);
1630 	}
1631 
1632 	if (fgp_flags & FGP_ACCESSED)
1633 		mark_page_accessed(page);
1634 
1635 no_page:
1636 	if (!page && (fgp_flags & FGP_CREAT)) {
1637 		int err;
1638 		if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1639 			gfp_mask |= __GFP_WRITE;
1640 		if (fgp_flags & FGP_NOFS)
1641 			gfp_mask &= ~__GFP_FS;
1642 
1643 		page = __page_cache_alloc(gfp_mask);
1644 		if (!page)
1645 			return NULL;
1646 
1647 		if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1648 			fgp_flags |= FGP_LOCK;
1649 
1650 		/* Init accessed so avoid atomic mark_page_accessed later */
1651 		if (fgp_flags & FGP_ACCESSED)
1652 			__SetPageReferenced(page);
1653 
1654 		err = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
1655 		if (unlikely(err)) {
1656 			put_page(page);
1657 			page = NULL;
1658 			if (err == -EEXIST)
1659 				goto repeat;
1660 		}
1661 
1662 		/*
1663 		 * add_to_page_cache_lru locks the page, and for mmap we expect
1664 		 * an unlocked page.
1665 		 */
1666 		if (page && (fgp_flags & FGP_FOR_MMAP))
1667 			unlock_page(page);
1668 	}
1669 
1670 	return page;
1671 }
1672 EXPORT_SYMBOL(pagecache_get_page);
1673 
1674 /**
1675  * find_get_entries - gang pagecache lookup
1676  * @mapping:	The address_space to search
1677  * @start:	The starting page cache index
1678  * @nr_entries:	The maximum number of entries
1679  * @entries:	Where the resulting entries are placed
1680  * @indices:	The cache indices corresponding to the entries in @entries
1681  *
1682  * find_get_entries() will search for and return a group of up to
1683  * @nr_entries entries in the mapping.  The entries are placed at
1684  * @entries.  find_get_entries() takes a reference against any actual
1685  * pages it returns.
1686  *
1687  * The search returns a group of mapping-contiguous page cache entries
1688  * with ascending indexes.  There may be holes in the indices due to
1689  * not-present pages.
1690  *
1691  * Any shadow entries of evicted pages, or swap entries from
1692  * shmem/tmpfs, are included in the returned array.
1693  *
1694  * Return: the number of pages and shadow entries which were found.
1695  */
1696 unsigned find_get_entries(struct address_space *mapping,
1697 			  pgoff_t start, unsigned int nr_entries,
1698 			  struct page **entries, pgoff_t *indices)
1699 {
1700 	XA_STATE(xas, &mapping->i_pages, start);
1701 	struct page *page;
1702 	unsigned int ret = 0;
1703 
1704 	if (!nr_entries)
1705 		return 0;
1706 
1707 	rcu_read_lock();
1708 	xas_for_each(&xas, page, ULONG_MAX) {
1709 		if (xas_retry(&xas, page))
1710 			continue;
1711 		/*
1712 		 * A shadow entry of a recently evicted page, a swap
1713 		 * entry from shmem/tmpfs or a DAX entry.  Return it
1714 		 * without attempting to raise page count.
1715 		 */
1716 		if (xa_is_value(page))
1717 			goto export;
1718 
1719 		if (!page_cache_get_speculative(page))
1720 			goto retry;
1721 
1722 		/* Has the page moved or been split? */
1723 		if (unlikely(page != xas_reload(&xas)))
1724 			goto put_page;
1725 		page = find_subpage(page, xas.xa_index);
1726 
1727 export:
1728 		indices[ret] = xas.xa_index;
1729 		entries[ret] = page;
1730 		if (++ret == nr_entries)
1731 			break;
1732 		continue;
1733 put_page:
1734 		put_page(page);
1735 retry:
1736 		xas_reset(&xas);
1737 	}
1738 	rcu_read_unlock();
1739 	return ret;
1740 }
1741 
1742 /**
1743  * find_get_pages_range - gang pagecache lookup
1744  * @mapping:	The address_space to search
1745  * @start:	The starting page index
1746  * @end:	The final page index (inclusive)
1747  * @nr_pages:	The maximum number of pages
1748  * @pages:	Where the resulting pages are placed
1749  *
1750  * find_get_pages_range() will search for and return a group of up to @nr_pages
1751  * pages in the mapping starting at index @start and up to index @end
1752  * (inclusive).  The pages are placed at @pages.  find_get_pages_range() takes
1753  * a reference against the returned pages.
1754  *
1755  * The search returns a group of mapping-contiguous pages with ascending
1756  * indexes.  There may be holes in the indices due to not-present pages.
1757  * We also update @start to index the next page for the traversal.
1758  *
1759  * Return: the number of pages which were found. If this number is
1760  * smaller than @nr_pages, the end of specified range has been
1761  * reached.
1762  */
1763 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1764 			      pgoff_t end, unsigned int nr_pages,
1765 			      struct page **pages)
1766 {
1767 	XA_STATE(xas, &mapping->i_pages, *start);
1768 	struct page *page;
1769 	unsigned ret = 0;
1770 
1771 	if (unlikely(!nr_pages))
1772 		return 0;
1773 
1774 	rcu_read_lock();
1775 	xas_for_each(&xas, page, end) {
1776 		if (xas_retry(&xas, page))
1777 			continue;
1778 		/* Skip over shadow, swap and DAX entries */
1779 		if (xa_is_value(page))
1780 			continue;
1781 
1782 		if (!page_cache_get_speculative(page))
1783 			goto retry;
1784 
1785 		/* Has the page moved or been split? */
1786 		if (unlikely(page != xas_reload(&xas)))
1787 			goto put_page;
1788 
1789 		pages[ret] = find_subpage(page, xas.xa_index);
1790 		if (++ret == nr_pages) {
1791 			*start = xas.xa_index + 1;
1792 			goto out;
1793 		}
1794 		continue;
1795 put_page:
1796 		put_page(page);
1797 retry:
1798 		xas_reset(&xas);
1799 	}
1800 
1801 	/*
1802 	 * We come here when there is no page beyond @end. We take care to not
1803 	 * overflow the index @start as it confuses some of the callers. This
1804 	 * breaks the iteration when there is a page at index -1 but that is
1805 	 * already broken anyway.
1806 	 */
1807 	if (end == (pgoff_t)-1)
1808 		*start = (pgoff_t)-1;
1809 	else
1810 		*start = end + 1;
1811 out:
1812 	rcu_read_unlock();
1813 
1814 	return ret;
1815 }
1816 
1817 /**
1818  * find_get_pages_contig - gang contiguous pagecache lookup
1819  * @mapping:	The address_space to search
1820  * @index:	The starting page index
1821  * @nr_pages:	The maximum number of pages
1822  * @pages:	Where the resulting pages are placed
1823  *
1824  * find_get_pages_contig() works exactly like find_get_pages(), except
1825  * that the returned number of pages are guaranteed to be contiguous.
1826  *
1827  * Return: the number of pages which were found.
1828  */
1829 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1830 			       unsigned int nr_pages, struct page **pages)
1831 {
1832 	XA_STATE(xas, &mapping->i_pages, index);
1833 	struct page *page;
1834 	unsigned int ret = 0;
1835 
1836 	if (unlikely(!nr_pages))
1837 		return 0;
1838 
1839 	rcu_read_lock();
1840 	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1841 		if (xas_retry(&xas, page))
1842 			continue;
1843 		/*
1844 		 * If the entry has been swapped out, we can stop looking.
1845 		 * No current caller is looking for DAX entries.
1846 		 */
1847 		if (xa_is_value(page))
1848 			break;
1849 
1850 		if (!page_cache_get_speculative(page))
1851 			goto retry;
1852 
1853 		/* Has the page moved or been split? */
1854 		if (unlikely(page != xas_reload(&xas)))
1855 			goto put_page;
1856 
1857 		pages[ret] = find_subpage(page, xas.xa_index);
1858 		if (++ret == nr_pages)
1859 			break;
1860 		continue;
1861 put_page:
1862 		put_page(page);
1863 retry:
1864 		xas_reset(&xas);
1865 	}
1866 	rcu_read_unlock();
1867 	return ret;
1868 }
1869 EXPORT_SYMBOL(find_get_pages_contig);
1870 
1871 /**
1872  * find_get_pages_range_tag - find and return pages in given range matching @tag
1873  * @mapping:	the address_space to search
1874  * @index:	the starting page index
1875  * @end:	The final page index (inclusive)
1876  * @tag:	the tag index
1877  * @nr_pages:	the maximum number of pages
1878  * @pages:	where the resulting pages are placed
1879  *
1880  * Like find_get_pages, except we only return pages which are tagged with
1881  * @tag.   We update @index to index the next page for the traversal.
1882  *
1883  * Return: the number of pages which were found.
1884  */
1885 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
1886 			pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
1887 			struct page **pages)
1888 {
1889 	XA_STATE(xas, &mapping->i_pages, *index);
1890 	struct page *page;
1891 	unsigned ret = 0;
1892 
1893 	if (unlikely(!nr_pages))
1894 		return 0;
1895 
1896 	rcu_read_lock();
1897 	xas_for_each_marked(&xas, page, end, tag) {
1898 		if (xas_retry(&xas, page))
1899 			continue;
1900 		/*
1901 		 * Shadow entries should never be tagged, but this iteration
1902 		 * is lockless so there is a window for page reclaim to evict
1903 		 * a page we saw tagged.  Skip over it.
1904 		 */
1905 		if (xa_is_value(page))
1906 			continue;
1907 
1908 		if (!page_cache_get_speculative(page))
1909 			goto retry;
1910 
1911 		/* Has the page moved or been split? */
1912 		if (unlikely(page != xas_reload(&xas)))
1913 			goto put_page;
1914 
1915 		pages[ret] = find_subpage(page, xas.xa_index);
1916 		if (++ret == nr_pages) {
1917 			*index = xas.xa_index + 1;
1918 			goto out;
1919 		}
1920 		continue;
1921 put_page:
1922 		put_page(page);
1923 retry:
1924 		xas_reset(&xas);
1925 	}
1926 
1927 	/*
1928 	 * We come here when we got to @end. We take care to not overflow the
1929 	 * index @index as it confuses some of the callers. This breaks the
1930 	 * iteration when there is a page at index -1 but that is already
1931 	 * broken anyway.
1932 	 */
1933 	if (end == (pgoff_t)-1)
1934 		*index = (pgoff_t)-1;
1935 	else
1936 		*index = end + 1;
1937 out:
1938 	rcu_read_unlock();
1939 
1940 	return ret;
1941 }
1942 EXPORT_SYMBOL(find_get_pages_range_tag);
1943 
1944 /*
1945  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1946  * a _large_ part of the i/o request. Imagine the worst scenario:
1947  *
1948  *      ---R__________________________________________B__________
1949  *         ^ reading here                             ^ bad block(assume 4k)
1950  *
1951  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1952  * => failing the whole request => read(R) => read(R+1) =>
1953  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1954  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1955  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1956  *
1957  * It is going insane. Fix it by quickly scaling down the readahead size.
1958  */
1959 static void shrink_readahead_size_eio(struct file *filp,
1960 					struct file_ra_state *ra)
1961 {
1962 	ra->ra_pages /= 4;
1963 }
1964 
1965 /**
1966  * generic_file_buffered_read - generic file read routine
1967  * @iocb:	the iocb to read
1968  * @iter:	data destination
1969  * @written:	already copied
1970  *
1971  * This is a generic file read routine, and uses the
1972  * mapping->a_ops->readpage() function for the actual low-level stuff.
1973  *
1974  * This is really ugly. But the goto's actually try to clarify some
1975  * of the logic when it comes to error handling etc.
1976  *
1977  * Return:
1978  * * total number of bytes copied, including those the were already @written
1979  * * negative error code if nothing was copied
1980  */
1981 static ssize_t generic_file_buffered_read(struct kiocb *iocb,
1982 		struct iov_iter *iter, ssize_t written)
1983 {
1984 	struct file *filp = iocb->ki_filp;
1985 	struct address_space *mapping = filp->f_mapping;
1986 	struct inode *inode = mapping->host;
1987 	struct file_ra_state *ra = &filp->f_ra;
1988 	loff_t *ppos = &iocb->ki_pos;
1989 	pgoff_t index;
1990 	pgoff_t last_index;
1991 	pgoff_t prev_index;
1992 	unsigned long offset;      /* offset into pagecache page */
1993 	unsigned int prev_offset;
1994 	int error = 0;
1995 
1996 	if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
1997 		return 0;
1998 	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
1999 
2000 	index = *ppos >> PAGE_SHIFT;
2001 	prev_index = ra->prev_pos >> PAGE_SHIFT;
2002 	prev_offset = ra->prev_pos & (PAGE_SIZE-1);
2003 	last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
2004 	offset = *ppos & ~PAGE_MASK;
2005 
2006 	for (;;) {
2007 		struct page *page;
2008 		pgoff_t end_index;
2009 		loff_t isize;
2010 		unsigned long nr, ret;
2011 
2012 		cond_resched();
2013 find_page:
2014 		if (fatal_signal_pending(current)) {
2015 			error = -EINTR;
2016 			goto out;
2017 		}
2018 
2019 		page = find_get_page(mapping, index);
2020 		if (!page) {
2021 			if (iocb->ki_flags & IOCB_NOWAIT)
2022 				goto would_block;
2023 			page_cache_sync_readahead(mapping,
2024 					ra, filp,
2025 					index, last_index - index);
2026 			page = find_get_page(mapping, index);
2027 			if (unlikely(page == NULL))
2028 				goto no_cached_page;
2029 		}
2030 		if (PageReadahead(page)) {
2031 			page_cache_async_readahead(mapping,
2032 					ra, filp, page,
2033 					index, last_index - index);
2034 		}
2035 		if (!PageUptodate(page)) {
2036 			if (iocb->ki_flags & IOCB_NOWAIT) {
2037 				put_page(page);
2038 				goto would_block;
2039 			}
2040 
2041 			/*
2042 			 * See comment in do_read_cache_page on why
2043 			 * wait_on_page_locked is used to avoid unnecessarily
2044 			 * serialisations and why it's safe.
2045 			 */
2046 			error = wait_on_page_locked_killable(page);
2047 			if (unlikely(error))
2048 				goto readpage_error;
2049 			if (PageUptodate(page))
2050 				goto page_ok;
2051 
2052 			if (inode->i_blkbits == PAGE_SHIFT ||
2053 					!mapping->a_ops->is_partially_uptodate)
2054 				goto page_not_up_to_date;
2055 			/* pipes can't handle partially uptodate pages */
2056 			if (unlikely(iov_iter_is_pipe(iter)))
2057 				goto page_not_up_to_date;
2058 			if (!trylock_page(page))
2059 				goto page_not_up_to_date;
2060 			/* Did it get truncated before we got the lock? */
2061 			if (!page->mapping)
2062 				goto page_not_up_to_date_locked;
2063 			if (!mapping->a_ops->is_partially_uptodate(page,
2064 							offset, iter->count))
2065 				goto page_not_up_to_date_locked;
2066 			unlock_page(page);
2067 		}
2068 page_ok:
2069 		/*
2070 		 * i_size must be checked after we know the page is Uptodate.
2071 		 *
2072 		 * Checking i_size after the check allows us to calculate
2073 		 * the correct value for "nr", which means the zero-filled
2074 		 * part of the page is not copied back to userspace (unless
2075 		 * another truncate extends the file - this is desired though).
2076 		 */
2077 
2078 		isize = i_size_read(inode);
2079 		end_index = (isize - 1) >> PAGE_SHIFT;
2080 		if (unlikely(!isize || index > end_index)) {
2081 			put_page(page);
2082 			goto out;
2083 		}
2084 
2085 		/* nr is the maximum number of bytes to copy from this page */
2086 		nr = PAGE_SIZE;
2087 		if (index == end_index) {
2088 			nr = ((isize - 1) & ~PAGE_MASK) + 1;
2089 			if (nr <= offset) {
2090 				put_page(page);
2091 				goto out;
2092 			}
2093 		}
2094 		nr = nr - offset;
2095 
2096 		/* If users can be writing to this page using arbitrary
2097 		 * virtual addresses, take care about potential aliasing
2098 		 * before reading the page on the kernel side.
2099 		 */
2100 		if (mapping_writably_mapped(mapping))
2101 			flush_dcache_page(page);
2102 
2103 		/*
2104 		 * When a sequential read accesses a page several times,
2105 		 * only mark it as accessed the first time.
2106 		 */
2107 		if (prev_index != index || offset != prev_offset)
2108 			mark_page_accessed(page);
2109 		prev_index = index;
2110 
2111 		/*
2112 		 * Ok, we have the page, and it's up-to-date, so
2113 		 * now we can copy it to user space...
2114 		 */
2115 
2116 		ret = copy_page_to_iter(page, offset, nr, iter);
2117 		offset += ret;
2118 		index += offset >> PAGE_SHIFT;
2119 		offset &= ~PAGE_MASK;
2120 		prev_offset = offset;
2121 
2122 		put_page(page);
2123 		written += ret;
2124 		if (!iov_iter_count(iter))
2125 			goto out;
2126 		if (ret < nr) {
2127 			error = -EFAULT;
2128 			goto out;
2129 		}
2130 		continue;
2131 
2132 page_not_up_to_date:
2133 		/* Get exclusive access to the page ... */
2134 		error = lock_page_killable(page);
2135 		if (unlikely(error))
2136 			goto readpage_error;
2137 
2138 page_not_up_to_date_locked:
2139 		/* Did it get truncated before we got the lock? */
2140 		if (!page->mapping) {
2141 			unlock_page(page);
2142 			put_page(page);
2143 			continue;
2144 		}
2145 
2146 		/* Did somebody else fill it already? */
2147 		if (PageUptodate(page)) {
2148 			unlock_page(page);
2149 			goto page_ok;
2150 		}
2151 
2152 readpage:
2153 		/*
2154 		 * A previous I/O error may have been due to temporary
2155 		 * failures, eg. multipath errors.
2156 		 * PG_error will be set again if readpage fails.
2157 		 */
2158 		ClearPageError(page);
2159 		/* Start the actual read. The read will unlock the page. */
2160 		error = mapping->a_ops->readpage(filp, page);
2161 
2162 		if (unlikely(error)) {
2163 			if (error == AOP_TRUNCATED_PAGE) {
2164 				put_page(page);
2165 				error = 0;
2166 				goto find_page;
2167 			}
2168 			goto readpage_error;
2169 		}
2170 
2171 		if (!PageUptodate(page)) {
2172 			error = lock_page_killable(page);
2173 			if (unlikely(error))
2174 				goto readpage_error;
2175 			if (!PageUptodate(page)) {
2176 				if (page->mapping == NULL) {
2177 					/*
2178 					 * invalidate_mapping_pages got it
2179 					 */
2180 					unlock_page(page);
2181 					put_page(page);
2182 					goto find_page;
2183 				}
2184 				unlock_page(page);
2185 				shrink_readahead_size_eio(filp, ra);
2186 				error = -EIO;
2187 				goto readpage_error;
2188 			}
2189 			unlock_page(page);
2190 		}
2191 
2192 		goto page_ok;
2193 
2194 readpage_error:
2195 		/* UHHUH! A synchronous read error occurred. Report it */
2196 		put_page(page);
2197 		goto out;
2198 
2199 no_cached_page:
2200 		/*
2201 		 * Ok, it wasn't cached, so we need to create a new
2202 		 * page..
2203 		 */
2204 		page = page_cache_alloc(mapping);
2205 		if (!page) {
2206 			error = -ENOMEM;
2207 			goto out;
2208 		}
2209 		error = add_to_page_cache_lru(page, mapping, index,
2210 				mapping_gfp_constraint(mapping, GFP_KERNEL));
2211 		if (error) {
2212 			put_page(page);
2213 			if (error == -EEXIST) {
2214 				error = 0;
2215 				goto find_page;
2216 			}
2217 			goto out;
2218 		}
2219 		goto readpage;
2220 	}
2221 
2222 would_block:
2223 	error = -EAGAIN;
2224 out:
2225 	ra->prev_pos = prev_index;
2226 	ra->prev_pos <<= PAGE_SHIFT;
2227 	ra->prev_pos |= prev_offset;
2228 
2229 	*ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2230 	file_accessed(filp);
2231 	return written ? written : error;
2232 }
2233 
2234 /**
2235  * generic_file_read_iter - generic filesystem read routine
2236  * @iocb:	kernel I/O control block
2237  * @iter:	destination for the data read
2238  *
2239  * This is the "read_iter()" routine for all filesystems
2240  * that can use the page cache directly.
2241  * Return:
2242  * * number of bytes copied, even for partial reads
2243  * * negative error code if nothing was read
2244  */
2245 ssize_t
2246 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2247 {
2248 	size_t count = iov_iter_count(iter);
2249 	ssize_t retval = 0;
2250 
2251 	if (!count)
2252 		goto out; /* skip atime */
2253 
2254 	if (iocb->ki_flags & IOCB_DIRECT) {
2255 		struct file *file = iocb->ki_filp;
2256 		struct address_space *mapping = file->f_mapping;
2257 		struct inode *inode = mapping->host;
2258 		loff_t size;
2259 
2260 		size = i_size_read(inode);
2261 		if (iocb->ki_flags & IOCB_NOWAIT) {
2262 			if (filemap_range_has_page(mapping, iocb->ki_pos,
2263 						   iocb->ki_pos + count - 1))
2264 				return -EAGAIN;
2265 		} else {
2266 			retval = filemap_write_and_wait_range(mapping,
2267 						iocb->ki_pos,
2268 					        iocb->ki_pos + count - 1);
2269 			if (retval < 0)
2270 				goto out;
2271 		}
2272 
2273 		file_accessed(file);
2274 
2275 		retval = mapping->a_ops->direct_IO(iocb, iter);
2276 		if (retval >= 0) {
2277 			iocb->ki_pos += retval;
2278 			count -= retval;
2279 		}
2280 		iov_iter_revert(iter, count - iov_iter_count(iter));
2281 
2282 		/*
2283 		 * Btrfs can have a short DIO read if we encounter
2284 		 * compressed extents, so if there was an error, or if
2285 		 * we've already read everything we wanted to, or if
2286 		 * there was a short read because we hit EOF, go ahead
2287 		 * and return.  Otherwise fallthrough to buffered io for
2288 		 * the rest of the read.  Buffered reads will not work for
2289 		 * DAX files, so don't bother trying.
2290 		 */
2291 		if (retval < 0 || !count || iocb->ki_pos >= size ||
2292 		    IS_DAX(inode))
2293 			goto out;
2294 	}
2295 
2296 	retval = generic_file_buffered_read(iocb, iter, retval);
2297 out:
2298 	return retval;
2299 }
2300 EXPORT_SYMBOL(generic_file_read_iter);
2301 
2302 #ifdef CONFIG_MMU
2303 #define MMAP_LOTSAMISS  (100)
2304 static struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf,
2305 					     struct file *fpin)
2306 {
2307 	int flags = vmf->flags;
2308 
2309 	if (fpin)
2310 		return fpin;
2311 
2312 	/*
2313 	 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or
2314 	 * anything, so we only pin the file and drop the mmap_sem if only
2315 	 * FAULT_FLAG_ALLOW_RETRY is set.
2316 	 */
2317 	if ((flags & (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT)) ==
2318 	    FAULT_FLAG_ALLOW_RETRY) {
2319 		fpin = get_file(vmf->vma->vm_file);
2320 		up_read(&vmf->vma->vm_mm->mmap_sem);
2321 	}
2322 	return fpin;
2323 }
2324 
2325 /*
2326  * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_sem
2327  * @vmf - the vm_fault for this fault.
2328  * @page - the page to lock.
2329  * @fpin - the pointer to the file we may pin (or is already pinned).
2330  *
2331  * This works similar to lock_page_or_retry in that it can drop the mmap_sem.
2332  * It differs in that it actually returns the page locked if it returns 1 and 0
2333  * if it couldn't lock the page.  If we did have to drop the mmap_sem then fpin
2334  * will point to the pinned file and needs to be fput()'ed at a later point.
2335  */
2336 static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
2337 				     struct file **fpin)
2338 {
2339 	if (trylock_page(page))
2340 		return 1;
2341 
2342 	/*
2343 	 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2344 	 * the mmap_sem still held. That's how FAULT_FLAG_RETRY_NOWAIT
2345 	 * is supposed to work. We have way too many special cases..
2346 	 */
2347 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2348 		return 0;
2349 
2350 	*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2351 	if (vmf->flags & FAULT_FLAG_KILLABLE) {
2352 		if (__lock_page_killable(page)) {
2353 			/*
2354 			 * We didn't have the right flags to drop the mmap_sem,
2355 			 * but all fault_handlers only check for fatal signals
2356 			 * if we return VM_FAULT_RETRY, so we need to drop the
2357 			 * mmap_sem here and return 0 if we don't have a fpin.
2358 			 */
2359 			if (*fpin == NULL)
2360 				up_read(&vmf->vma->vm_mm->mmap_sem);
2361 			return 0;
2362 		}
2363 	} else
2364 		__lock_page(page);
2365 	return 1;
2366 }
2367 
2368 
2369 /*
2370  * Synchronous readahead happens when we don't even find a page in the page
2371  * cache at all.  We don't want to perform IO under the mmap sem, so if we have
2372  * to drop the mmap sem we return the file that was pinned in order for us to do
2373  * that.  If we didn't pin a file then we return NULL.  The file that is
2374  * returned needs to be fput()'ed when we're done with it.
2375  */
2376 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
2377 {
2378 	struct file *file = vmf->vma->vm_file;
2379 	struct file_ra_state *ra = &file->f_ra;
2380 	struct address_space *mapping = file->f_mapping;
2381 	struct file *fpin = NULL;
2382 	pgoff_t offset = vmf->pgoff;
2383 
2384 	/* If we don't want any read-ahead, don't bother */
2385 	if (vmf->vma->vm_flags & VM_RAND_READ)
2386 		return fpin;
2387 	if (!ra->ra_pages)
2388 		return fpin;
2389 
2390 	if (vmf->vma->vm_flags & VM_SEQ_READ) {
2391 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2392 		page_cache_sync_readahead(mapping, ra, file, offset,
2393 					  ra->ra_pages);
2394 		return fpin;
2395 	}
2396 
2397 	/* Avoid banging the cache line if not needed */
2398 	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2399 		ra->mmap_miss++;
2400 
2401 	/*
2402 	 * Do we miss much more than hit in this file? If so,
2403 	 * stop bothering with read-ahead. It will only hurt.
2404 	 */
2405 	if (ra->mmap_miss > MMAP_LOTSAMISS)
2406 		return fpin;
2407 
2408 	/*
2409 	 * mmap read-around
2410 	 */
2411 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2412 	ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2413 	ra->size = ra->ra_pages;
2414 	ra->async_size = ra->ra_pages / 4;
2415 	ra_submit(ra, mapping, file);
2416 	return fpin;
2417 }
2418 
2419 /*
2420  * Asynchronous readahead happens when we find the page and PG_readahead,
2421  * so we want to possibly extend the readahead further.  We return the file that
2422  * was pinned if we have to drop the mmap_sem in order to do IO.
2423  */
2424 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
2425 					    struct page *page)
2426 {
2427 	struct file *file = vmf->vma->vm_file;
2428 	struct file_ra_state *ra = &file->f_ra;
2429 	struct address_space *mapping = file->f_mapping;
2430 	struct file *fpin = NULL;
2431 	pgoff_t offset = vmf->pgoff;
2432 
2433 	/* If we don't want any read-ahead, don't bother */
2434 	if (vmf->vma->vm_flags & VM_RAND_READ)
2435 		return fpin;
2436 	if (ra->mmap_miss > 0)
2437 		ra->mmap_miss--;
2438 	if (PageReadahead(page)) {
2439 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2440 		page_cache_async_readahead(mapping, ra, file,
2441 					   page, offset, ra->ra_pages);
2442 	}
2443 	return fpin;
2444 }
2445 
2446 /**
2447  * filemap_fault - read in file data for page fault handling
2448  * @vmf:	struct vm_fault containing details of the fault
2449  *
2450  * filemap_fault() is invoked via the vma operations vector for a
2451  * mapped memory region to read in file data during a page fault.
2452  *
2453  * The goto's are kind of ugly, but this streamlines the normal case of having
2454  * it in the page cache, and handles the special cases reasonably without
2455  * having a lot of duplicated code.
2456  *
2457  * vma->vm_mm->mmap_sem must be held on entry.
2458  *
2459  * If our return value has VM_FAULT_RETRY set, it's because
2460  * lock_page_or_retry() returned 0.
2461  * The mmap_sem has usually been released in this case.
2462  * See __lock_page_or_retry() for the exception.
2463  *
2464  * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2465  * has not been released.
2466  *
2467  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2468  *
2469  * Return: bitwise-OR of %VM_FAULT_ codes.
2470  */
2471 vm_fault_t filemap_fault(struct vm_fault *vmf)
2472 {
2473 	int error;
2474 	struct file *file = vmf->vma->vm_file;
2475 	struct file *fpin = NULL;
2476 	struct address_space *mapping = file->f_mapping;
2477 	struct file_ra_state *ra = &file->f_ra;
2478 	struct inode *inode = mapping->host;
2479 	pgoff_t offset = vmf->pgoff;
2480 	pgoff_t max_off;
2481 	struct page *page;
2482 	vm_fault_t ret = 0;
2483 
2484 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2485 	if (unlikely(offset >= max_off))
2486 		return VM_FAULT_SIGBUS;
2487 
2488 	/*
2489 	 * Do we have something in the page cache already?
2490 	 */
2491 	page = find_get_page(mapping, offset);
2492 	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2493 		/*
2494 		 * We found the page, so try async readahead before
2495 		 * waiting for the lock.
2496 		 */
2497 		fpin = do_async_mmap_readahead(vmf, page);
2498 	} else if (!page) {
2499 		/* No page in the page cache at all */
2500 		count_vm_event(PGMAJFAULT);
2501 		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2502 		ret = VM_FAULT_MAJOR;
2503 		fpin = do_sync_mmap_readahead(vmf);
2504 retry_find:
2505 		page = pagecache_get_page(mapping, offset,
2506 					  FGP_CREAT|FGP_FOR_MMAP,
2507 					  vmf->gfp_mask);
2508 		if (!page) {
2509 			if (fpin)
2510 				goto out_retry;
2511 			return vmf_error(-ENOMEM);
2512 		}
2513 	}
2514 
2515 	if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
2516 		goto out_retry;
2517 
2518 	/* Did it get truncated? */
2519 	if (unlikely(page->mapping != mapping)) {
2520 		unlock_page(page);
2521 		put_page(page);
2522 		goto retry_find;
2523 	}
2524 	VM_BUG_ON_PAGE(page->index != offset, page);
2525 
2526 	/*
2527 	 * We have a locked page in the page cache, now we need to check
2528 	 * that it's up-to-date. If not, it is going to be due to an error.
2529 	 */
2530 	if (unlikely(!PageUptodate(page)))
2531 		goto page_not_uptodate;
2532 
2533 	/*
2534 	 * We've made it this far and we had to drop our mmap_sem, now is the
2535 	 * time to return to the upper layer and have it re-find the vma and
2536 	 * redo the fault.
2537 	 */
2538 	if (fpin) {
2539 		unlock_page(page);
2540 		goto out_retry;
2541 	}
2542 
2543 	/*
2544 	 * Found the page and have a reference on it.
2545 	 * We must recheck i_size under page lock.
2546 	 */
2547 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2548 	if (unlikely(offset >= max_off)) {
2549 		unlock_page(page);
2550 		put_page(page);
2551 		return VM_FAULT_SIGBUS;
2552 	}
2553 
2554 	vmf->page = page;
2555 	return ret | VM_FAULT_LOCKED;
2556 
2557 page_not_uptodate:
2558 	/*
2559 	 * Umm, take care of errors if the page isn't up-to-date.
2560 	 * Try to re-read it _once_. We do this synchronously,
2561 	 * because there really aren't any performance issues here
2562 	 * and we need to check for errors.
2563 	 */
2564 	ClearPageError(page);
2565 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2566 	error = mapping->a_ops->readpage(file, page);
2567 	if (!error) {
2568 		wait_on_page_locked(page);
2569 		if (!PageUptodate(page))
2570 			error = -EIO;
2571 	}
2572 	if (fpin)
2573 		goto out_retry;
2574 	put_page(page);
2575 
2576 	if (!error || error == AOP_TRUNCATED_PAGE)
2577 		goto retry_find;
2578 
2579 	/* Things didn't work out. Return zero to tell the mm layer so. */
2580 	shrink_readahead_size_eio(file, ra);
2581 	return VM_FAULT_SIGBUS;
2582 
2583 out_retry:
2584 	/*
2585 	 * We dropped the mmap_sem, we need to return to the fault handler to
2586 	 * re-find the vma and come back and find our hopefully still populated
2587 	 * page.
2588 	 */
2589 	if (page)
2590 		put_page(page);
2591 	if (fpin)
2592 		fput(fpin);
2593 	return ret | VM_FAULT_RETRY;
2594 }
2595 EXPORT_SYMBOL(filemap_fault);
2596 
2597 void filemap_map_pages(struct vm_fault *vmf,
2598 		pgoff_t start_pgoff, pgoff_t end_pgoff)
2599 {
2600 	struct file *file = vmf->vma->vm_file;
2601 	struct address_space *mapping = file->f_mapping;
2602 	pgoff_t last_pgoff = start_pgoff;
2603 	unsigned long max_idx;
2604 	XA_STATE(xas, &mapping->i_pages, start_pgoff);
2605 	struct page *page;
2606 
2607 	rcu_read_lock();
2608 	xas_for_each(&xas, page, end_pgoff) {
2609 		if (xas_retry(&xas, page))
2610 			continue;
2611 		if (xa_is_value(page))
2612 			goto next;
2613 
2614 		/*
2615 		 * Check for a locked page first, as a speculative
2616 		 * reference may adversely influence page migration.
2617 		 */
2618 		if (PageLocked(page))
2619 			goto next;
2620 		if (!page_cache_get_speculative(page))
2621 			goto next;
2622 
2623 		/* Has the page moved or been split? */
2624 		if (unlikely(page != xas_reload(&xas)))
2625 			goto skip;
2626 		page = find_subpage(page, xas.xa_index);
2627 
2628 		if (!PageUptodate(page) ||
2629 				PageReadahead(page) ||
2630 				PageHWPoison(page))
2631 			goto skip;
2632 		if (!trylock_page(page))
2633 			goto skip;
2634 
2635 		if (page->mapping != mapping || !PageUptodate(page))
2636 			goto unlock;
2637 
2638 		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2639 		if (page->index >= max_idx)
2640 			goto unlock;
2641 
2642 		if (file->f_ra.mmap_miss > 0)
2643 			file->f_ra.mmap_miss--;
2644 
2645 		vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
2646 		if (vmf->pte)
2647 			vmf->pte += xas.xa_index - last_pgoff;
2648 		last_pgoff = xas.xa_index;
2649 		if (alloc_set_pte(vmf, NULL, page))
2650 			goto unlock;
2651 		unlock_page(page);
2652 		goto next;
2653 unlock:
2654 		unlock_page(page);
2655 skip:
2656 		put_page(page);
2657 next:
2658 		/* Huge page is mapped? No need to proceed. */
2659 		if (pmd_trans_huge(*vmf->pmd))
2660 			break;
2661 	}
2662 	rcu_read_unlock();
2663 }
2664 EXPORT_SYMBOL(filemap_map_pages);
2665 
2666 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2667 {
2668 	struct page *page = vmf->page;
2669 	struct inode *inode = file_inode(vmf->vma->vm_file);
2670 	vm_fault_t ret = VM_FAULT_LOCKED;
2671 
2672 	sb_start_pagefault(inode->i_sb);
2673 	file_update_time(vmf->vma->vm_file);
2674 	lock_page(page);
2675 	if (page->mapping != inode->i_mapping) {
2676 		unlock_page(page);
2677 		ret = VM_FAULT_NOPAGE;
2678 		goto out;
2679 	}
2680 	/*
2681 	 * We mark the page dirty already here so that when freeze is in
2682 	 * progress, we are guaranteed that writeback during freezing will
2683 	 * see the dirty page and writeprotect it again.
2684 	 */
2685 	set_page_dirty(page);
2686 	wait_for_stable_page(page);
2687 out:
2688 	sb_end_pagefault(inode->i_sb);
2689 	return ret;
2690 }
2691 
2692 const struct vm_operations_struct generic_file_vm_ops = {
2693 	.fault		= filemap_fault,
2694 	.map_pages	= filemap_map_pages,
2695 	.page_mkwrite	= filemap_page_mkwrite,
2696 };
2697 
2698 /* This is used for a general mmap of a disk file */
2699 
2700 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2701 {
2702 	struct address_space *mapping = file->f_mapping;
2703 
2704 	if (!mapping->a_ops->readpage)
2705 		return -ENOEXEC;
2706 	file_accessed(file);
2707 	vma->vm_ops = &generic_file_vm_ops;
2708 	return 0;
2709 }
2710 
2711 /*
2712  * This is for filesystems which do not implement ->writepage.
2713  */
2714 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2715 {
2716 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2717 		return -EINVAL;
2718 	return generic_file_mmap(file, vma);
2719 }
2720 #else
2721 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2722 {
2723 	return VM_FAULT_SIGBUS;
2724 }
2725 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2726 {
2727 	return -ENOSYS;
2728 }
2729 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2730 {
2731 	return -ENOSYS;
2732 }
2733 #endif /* CONFIG_MMU */
2734 
2735 EXPORT_SYMBOL(filemap_page_mkwrite);
2736 EXPORT_SYMBOL(generic_file_mmap);
2737 EXPORT_SYMBOL(generic_file_readonly_mmap);
2738 
2739 static struct page *wait_on_page_read(struct page *page)
2740 {
2741 	if (!IS_ERR(page)) {
2742 		wait_on_page_locked(page);
2743 		if (!PageUptodate(page)) {
2744 			put_page(page);
2745 			page = ERR_PTR(-EIO);
2746 		}
2747 	}
2748 	return page;
2749 }
2750 
2751 static struct page *do_read_cache_page(struct address_space *mapping,
2752 				pgoff_t index,
2753 				int (*filler)(void *, struct page *),
2754 				void *data,
2755 				gfp_t gfp)
2756 {
2757 	struct page *page;
2758 	int err;
2759 repeat:
2760 	page = find_get_page(mapping, index);
2761 	if (!page) {
2762 		page = __page_cache_alloc(gfp);
2763 		if (!page)
2764 			return ERR_PTR(-ENOMEM);
2765 		err = add_to_page_cache_lru(page, mapping, index, gfp);
2766 		if (unlikely(err)) {
2767 			put_page(page);
2768 			if (err == -EEXIST)
2769 				goto repeat;
2770 			/* Presumably ENOMEM for xarray node */
2771 			return ERR_PTR(err);
2772 		}
2773 
2774 filler:
2775 		err = filler(data, page);
2776 		if (err < 0) {
2777 			put_page(page);
2778 			return ERR_PTR(err);
2779 		}
2780 
2781 		page = wait_on_page_read(page);
2782 		if (IS_ERR(page))
2783 			return page;
2784 		goto out;
2785 	}
2786 	if (PageUptodate(page))
2787 		goto out;
2788 
2789 	/*
2790 	 * Page is not up to date and may be locked due one of the following
2791 	 * case a: Page is being filled and the page lock is held
2792 	 * case b: Read/write error clearing the page uptodate status
2793 	 * case c: Truncation in progress (page locked)
2794 	 * case d: Reclaim in progress
2795 	 *
2796 	 * Case a, the page will be up to date when the page is unlocked.
2797 	 *    There is no need to serialise on the page lock here as the page
2798 	 *    is pinned so the lock gives no additional protection. Even if the
2799 	 *    the page is truncated, the data is still valid if PageUptodate as
2800 	 *    it's a race vs truncate race.
2801 	 * Case b, the page will not be up to date
2802 	 * Case c, the page may be truncated but in itself, the data may still
2803 	 *    be valid after IO completes as it's a read vs truncate race. The
2804 	 *    operation must restart if the page is not uptodate on unlock but
2805 	 *    otherwise serialising on page lock to stabilise the mapping gives
2806 	 *    no additional guarantees to the caller as the page lock is
2807 	 *    released before return.
2808 	 * Case d, similar to truncation. If reclaim holds the page lock, it
2809 	 *    will be a race with remove_mapping that determines if the mapping
2810 	 *    is valid on unlock but otherwise the data is valid and there is
2811 	 *    no need to serialise with page lock.
2812 	 *
2813 	 * As the page lock gives no additional guarantee, we optimistically
2814 	 * wait on the page to be unlocked and check if it's up to date and
2815 	 * use the page if it is. Otherwise, the page lock is required to
2816 	 * distinguish between the different cases. The motivation is that we
2817 	 * avoid spurious serialisations and wakeups when multiple processes
2818 	 * wait on the same page for IO to complete.
2819 	 */
2820 	wait_on_page_locked(page);
2821 	if (PageUptodate(page))
2822 		goto out;
2823 
2824 	/* Distinguish between all the cases under the safety of the lock */
2825 	lock_page(page);
2826 
2827 	/* Case c or d, restart the operation */
2828 	if (!page->mapping) {
2829 		unlock_page(page);
2830 		put_page(page);
2831 		goto repeat;
2832 	}
2833 
2834 	/* Someone else locked and filled the page in a very small window */
2835 	if (PageUptodate(page)) {
2836 		unlock_page(page);
2837 		goto out;
2838 	}
2839 	goto filler;
2840 
2841 out:
2842 	mark_page_accessed(page);
2843 	return page;
2844 }
2845 
2846 /**
2847  * read_cache_page - read into page cache, fill it if needed
2848  * @mapping:	the page's address_space
2849  * @index:	the page index
2850  * @filler:	function to perform the read
2851  * @data:	first arg to filler(data, page) function, often left as NULL
2852  *
2853  * Read into the page cache. If a page already exists, and PageUptodate() is
2854  * not set, try to fill the page and wait for it to become unlocked.
2855  *
2856  * If the page does not get brought uptodate, return -EIO.
2857  *
2858  * Return: up to date page on success, ERR_PTR() on failure.
2859  */
2860 struct page *read_cache_page(struct address_space *mapping,
2861 				pgoff_t index,
2862 				int (*filler)(void *, struct page *),
2863 				void *data)
2864 {
2865 	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2866 }
2867 EXPORT_SYMBOL(read_cache_page);
2868 
2869 /**
2870  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2871  * @mapping:	the page's address_space
2872  * @index:	the page index
2873  * @gfp:	the page allocator flags to use if allocating
2874  *
2875  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2876  * any new page allocations done using the specified allocation flags.
2877  *
2878  * If the page does not get brought uptodate, return -EIO.
2879  *
2880  * Return: up to date page on success, ERR_PTR() on failure.
2881  */
2882 struct page *read_cache_page_gfp(struct address_space *mapping,
2883 				pgoff_t index,
2884 				gfp_t gfp)
2885 {
2886 	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2887 
2888 	return do_read_cache_page(mapping, index, filler, NULL, gfp);
2889 }
2890 EXPORT_SYMBOL(read_cache_page_gfp);
2891 
2892 /*
2893  * Don't operate on ranges the page cache doesn't support, and don't exceed the
2894  * LFS limits.  If pos is under the limit it becomes a short access.  If it
2895  * exceeds the limit we return -EFBIG.
2896  */
2897 static int generic_access_check_limits(struct file *file, loff_t pos,
2898 				       loff_t *count)
2899 {
2900 	struct inode *inode = file->f_mapping->host;
2901 	loff_t max_size = inode->i_sb->s_maxbytes;
2902 
2903 	if (!(file->f_flags & O_LARGEFILE))
2904 		max_size = MAX_NON_LFS;
2905 
2906 	if (unlikely(pos >= max_size))
2907 		return -EFBIG;
2908 	*count = min(*count, max_size - pos);
2909 	return 0;
2910 }
2911 
2912 static int generic_write_check_limits(struct file *file, loff_t pos,
2913 				      loff_t *count)
2914 {
2915 	loff_t limit = rlimit(RLIMIT_FSIZE);
2916 
2917 	if (limit != RLIM_INFINITY) {
2918 		if (pos >= limit) {
2919 			send_sig(SIGXFSZ, current, 0);
2920 			return -EFBIG;
2921 		}
2922 		*count = min(*count, limit - pos);
2923 	}
2924 
2925 	return generic_access_check_limits(file, pos, count);
2926 }
2927 
2928 /*
2929  * Performs necessary checks before doing a write
2930  *
2931  * Can adjust writing position or amount of bytes to write.
2932  * Returns appropriate error code that caller should return or
2933  * zero in case that write should be allowed.
2934  */
2935 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2936 {
2937 	struct file *file = iocb->ki_filp;
2938 	struct inode *inode = file->f_mapping->host;
2939 	loff_t count;
2940 	int ret;
2941 
2942 	if (!iov_iter_count(from))
2943 		return 0;
2944 
2945 	/* FIXME: this is for backwards compatibility with 2.4 */
2946 	if (iocb->ki_flags & IOCB_APPEND)
2947 		iocb->ki_pos = i_size_read(inode);
2948 
2949 	if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2950 		return -EINVAL;
2951 
2952 	count = iov_iter_count(from);
2953 	ret = generic_write_check_limits(file, iocb->ki_pos, &count);
2954 	if (ret)
2955 		return ret;
2956 
2957 	iov_iter_truncate(from, count);
2958 	return iov_iter_count(from);
2959 }
2960 EXPORT_SYMBOL(generic_write_checks);
2961 
2962 /*
2963  * Performs necessary checks before doing a clone.
2964  *
2965  * Can adjust amount of bytes to clone.
2966  * Returns appropriate error code that caller should return or
2967  * zero in case the clone should be allowed.
2968  */
2969 int generic_remap_checks(struct file *file_in, loff_t pos_in,
2970 			 struct file *file_out, loff_t pos_out,
2971 			 loff_t *req_count, unsigned int remap_flags)
2972 {
2973 	struct inode *inode_in = file_in->f_mapping->host;
2974 	struct inode *inode_out = file_out->f_mapping->host;
2975 	uint64_t count = *req_count;
2976 	uint64_t bcount;
2977 	loff_t size_in, size_out;
2978 	loff_t bs = inode_out->i_sb->s_blocksize;
2979 	int ret;
2980 
2981 	/* The start of both ranges must be aligned to an fs block. */
2982 	if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_out, bs))
2983 		return -EINVAL;
2984 
2985 	/* Ensure offsets don't wrap. */
2986 	if (pos_in + count < pos_in || pos_out + count < pos_out)
2987 		return -EINVAL;
2988 
2989 	size_in = i_size_read(inode_in);
2990 	size_out = i_size_read(inode_out);
2991 
2992 	/* Dedupe requires both ranges to be within EOF. */
2993 	if ((remap_flags & REMAP_FILE_DEDUP) &&
2994 	    (pos_in >= size_in || pos_in + count > size_in ||
2995 	     pos_out >= size_out || pos_out + count > size_out))
2996 		return -EINVAL;
2997 
2998 	/* Ensure the infile range is within the infile. */
2999 	if (pos_in >= size_in)
3000 		return -EINVAL;
3001 	count = min(count, size_in - (uint64_t)pos_in);
3002 
3003 	ret = generic_access_check_limits(file_in, pos_in, &count);
3004 	if (ret)
3005 		return ret;
3006 
3007 	ret = generic_write_check_limits(file_out, pos_out, &count);
3008 	if (ret)
3009 		return ret;
3010 
3011 	/*
3012 	 * If the user wanted us to link to the infile's EOF, round up to the
3013 	 * next block boundary for this check.
3014 	 *
3015 	 * Otherwise, make sure the count is also block-aligned, having
3016 	 * already confirmed the starting offsets' block alignment.
3017 	 */
3018 	if (pos_in + count == size_in) {
3019 		bcount = ALIGN(size_in, bs) - pos_in;
3020 	} else {
3021 		if (!IS_ALIGNED(count, bs))
3022 			count = ALIGN_DOWN(count, bs);
3023 		bcount = count;
3024 	}
3025 
3026 	/* Don't allow overlapped cloning within the same file. */
3027 	if (inode_in == inode_out &&
3028 	    pos_out + bcount > pos_in &&
3029 	    pos_out < pos_in + bcount)
3030 		return -EINVAL;
3031 
3032 	/*
3033 	 * We shortened the request but the caller can't deal with that, so
3034 	 * bounce the request back to userspace.
3035 	 */
3036 	if (*req_count != count && !(remap_flags & REMAP_FILE_CAN_SHORTEN))
3037 		return -EINVAL;
3038 
3039 	*req_count = count;
3040 	return 0;
3041 }
3042 
3043 int pagecache_write_begin(struct file *file, struct address_space *mapping,
3044 				loff_t pos, unsigned len, unsigned flags,
3045 				struct page **pagep, void **fsdata)
3046 {
3047 	const struct address_space_operations *aops = mapping->a_ops;
3048 
3049 	return aops->write_begin(file, mapping, pos, len, flags,
3050 							pagep, fsdata);
3051 }
3052 EXPORT_SYMBOL(pagecache_write_begin);
3053 
3054 int pagecache_write_end(struct file *file, struct address_space *mapping,
3055 				loff_t pos, unsigned len, unsigned copied,
3056 				struct page *page, void *fsdata)
3057 {
3058 	const struct address_space_operations *aops = mapping->a_ops;
3059 
3060 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3061 }
3062 EXPORT_SYMBOL(pagecache_write_end);
3063 
3064 ssize_t
3065 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3066 {
3067 	struct file	*file = iocb->ki_filp;
3068 	struct address_space *mapping = file->f_mapping;
3069 	struct inode	*inode = mapping->host;
3070 	loff_t		pos = iocb->ki_pos;
3071 	ssize_t		written;
3072 	size_t		write_len;
3073 	pgoff_t		end;
3074 
3075 	write_len = iov_iter_count(from);
3076 	end = (pos + write_len - 1) >> PAGE_SHIFT;
3077 
3078 	if (iocb->ki_flags & IOCB_NOWAIT) {
3079 		/* If there are pages to writeback, return */
3080 		if (filemap_range_has_page(inode->i_mapping, pos,
3081 					   pos + write_len - 1))
3082 			return -EAGAIN;
3083 	} else {
3084 		written = filemap_write_and_wait_range(mapping, pos,
3085 							pos + write_len - 1);
3086 		if (written)
3087 			goto out;
3088 	}
3089 
3090 	/*
3091 	 * After a write we want buffered reads to be sure to go to disk to get
3092 	 * the new data.  We invalidate clean cached page from the region we're
3093 	 * about to write.  We do this *before* the write so that we can return
3094 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
3095 	 */
3096 	written = invalidate_inode_pages2_range(mapping,
3097 					pos >> PAGE_SHIFT, end);
3098 	/*
3099 	 * If a page can not be invalidated, return 0 to fall back
3100 	 * to buffered write.
3101 	 */
3102 	if (written) {
3103 		if (written == -EBUSY)
3104 			return 0;
3105 		goto out;
3106 	}
3107 
3108 	written = mapping->a_ops->direct_IO(iocb, from);
3109 
3110 	/*
3111 	 * Finally, try again to invalidate clean pages which might have been
3112 	 * cached by non-direct readahead, or faulted in by get_user_pages()
3113 	 * if the source of the write was an mmap'ed region of the file
3114 	 * we're writing.  Either one is a pretty crazy thing to do,
3115 	 * so we don't support it 100%.  If this invalidation
3116 	 * fails, tough, the write still worked...
3117 	 *
3118 	 * Most of the time we do not need this since dio_complete() will do
3119 	 * the invalidation for us. However there are some file systems that
3120 	 * do not end up with dio_complete() being called, so let's not break
3121 	 * them by removing it completely
3122 	 */
3123 	if (mapping->nrpages)
3124 		invalidate_inode_pages2_range(mapping,
3125 					pos >> PAGE_SHIFT, end);
3126 
3127 	if (written > 0) {
3128 		pos += written;
3129 		write_len -= written;
3130 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3131 			i_size_write(inode, pos);
3132 			mark_inode_dirty(inode);
3133 		}
3134 		iocb->ki_pos = pos;
3135 	}
3136 	iov_iter_revert(from, write_len - iov_iter_count(from));
3137 out:
3138 	return written;
3139 }
3140 EXPORT_SYMBOL(generic_file_direct_write);
3141 
3142 /*
3143  * Find or create a page at the given pagecache position. Return the locked
3144  * page. This function is specifically for buffered writes.
3145  */
3146 struct page *grab_cache_page_write_begin(struct address_space *mapping,
3147 					pgoff_t index, unsigned flags)
3148 {
3149 	struct page *page;
3150 	int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3151 
3152 	if (flags & AOP_FLAG_NOFS)
3153 		fgp_flags |= FGP_NOFS;
3154 
3155 	page = pagecache_get_page(mapping, index, fgp_flags,
3156 			mapping_gfp_mask(mapping));
3157 	if (page)
3158 		wait_for_stable_page(page);
3159 
3160 	return page;
3161 }
3162 EXPORT_SYMBOL(grab_cache_page_write_begin);
3163 
3164 ssize_t generic_perform_write(struct file *file,
3165 				struct iov_iter *i, loff_t pos)
3166 {
3167 	struct address_space *mapping = file->f_mapping;
3168 	const struct address_space_operations *a_ops = mapping->a_ops;
3169 	long status = 0;
3170 	ssize_t written = 0;
3171 	unsigned int flags = 0;
3172 
3173 	do {
3174 		struct page *page;
3175 		unsigned long offset;	/* Offset into pagecache page */
3176 		unsigned long bytes;	/* Bytes to write to page */
3177 		size_t copied;		/* Bytes copied from user */
3178 		void *fsdata;
3179 
3180 		offset = (pos & (PAGE_SIZE - 1));
3181 		bytes = min_t(unsigned long, PAGE_SIZE - offset,
3182 						iov_iter_count(i));
3183 
3184 again:
3185 		/*
3186 		 * Bring in the user page that we will copy from _first_.
3187 		 * Otherwise there's a nasty deadlock on copying from the
3188 		 * same page as we're writing to, without it being marked
3189 		 * up-to-date.
3190 		 *
3191 		 * Not only is this an optimisation, but it is also required
3192 		 * to check that the address is actually valid, when atomic
3193 		 * usercopies are used, below.
3194 		 */
3195 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3196 			status = -EFAULT;
3197 			break;
3198 		}
3199 
3200 		if (fatal_signal_pending(current)) {
3201 			status = -EINTR;
3202 			break;
3203 		}
3204 
3205 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3206 						&page, &fsdata);
3207 		if (unlikely(status < 0))
3208 			break;
3209 
3210 		if (mapping_writably_mapped(mapping))
3211 			flush_dcache_page(page);
3212 
3213 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
3214 		flush_dcache_page(page);
3215 
3216 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
3217 						page, fsdata);
3218 		if (unlikely(status < 0))
3219 			break;
3220 		copied = status;
3221 
3222 		cond_resched();
3223 
3224 		iov_iter_advance(i, copied);
3225 		if (unlikely(copied == 0)) {
3226 			/*
3227 			 * If we were unable to copy any data at all, we must
3228 			 * fall back to a single segment length write.
3229 			 *
3230 			 * If we didn't fallback here, we could livelock
3231 			 * because not all segments in the iov can be copied at
3232 			 * once without a pagefault.
3233 			 */
3234 			bytes = min_t(unsigned long, PAGE_SIZE - offset,
3235 						iov_iter_single_seg_count(i));
3236 			goto again;
3237 		}
3238 		pos += copied;
3239 		written += copied;
3240 
3241 		balance_dirty_pages_ratelimited(mapping);
3242 	} while (iov_iter_count(i));
3243 
3244 	return written ? written : status;
3245 }
3246 EXPORT_SYMBOL(generic_perform_write);
3247 
3248 /**
3249  * __generic_file_write_iter - write data to a file
3250  * @iocb:	IO state structure (file, offset, etc.)
3251  * @from:	iov_iter with data to write
3252  *
3253  * This function does all the work needed for actually writing data to a
3254  * file. It does all basic checks, removes SUID from the file, updates
3255  * modification times and calls proper subroutines depending on whether we
3256  * do direct IO or a standard buffered write.
3257  *
3258  * It expects i_mutex to be grabbed unless we work on a block device or similar
3259  * object which does not need locking at all.
3260  *
3261  * This function does *not* take care of syncing data in case of O_SYNC write.
3262  * A caller has to handle it. This is mainly due to the fact that we want to
3263  * avoid syncing under i_mutex.
3264  *
3265  * Return:
3266  * * number of bytes written, even for truncated writes
3267  * * negative error code if no data has been written at all
3268  */
3269 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3270 {
3271 	struct file *file = iocb->ki_filp;
3272 	struct address_space * mapping = file->f_mapping;
3273 	struct inode 	*inode = mapping->host;
3274 	ssize_t		written = 0;
3275 	ssize_t		err;
3276 	ssize_t		status;
3277 
3278 	/* We can write back this queue in page reclaim */
3279 	current->backing_dev_info = inode_to_bdi(inode);
3280 	err = file_remove_privs(file);
3281 	if (err)
3282 		goto out;
3283 
3284 	err = file_update_time(file);
3285 	if (err)
3286 		goto out;
3287 
3288 	if (iocb->ki_flags & IOCB_DIRECT) {
3289 		loff_t pos, endbyte;
3290 
3291 		written = generic_file_direct_write(iocb, from);
3292 		/*
3293 		 * If the write stopped short of completing, fall back to
3294 		 * buffered writes.  Some filesystems do this for writes to
3295 		 * holes, for example.  For DAX files, a buffered write will
3296 		 * not succeed (even if it did, DAX does not handle dirty
3297 		 * page-cache pages correctly).
3298 		 */
3299 		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3300 			goto out;
3301 
3302 		status = generic_perform_write(file, from, pos = iocb->ki_pos);
3303 		/*
3304 		 * If generic_perform_write() returned a synchronous error
3305 		 * then we want to return the number of bytes which were
3306 		 * direct-written, or the error code if that was zero.  Note
3307 		 * that this differs from normal direct-io semantics, which
3308 		 * will return -EFOO even if some bytes were written.
3309 		 */
3310 		if (unlikely(status < 0)) {
3311 			err = status;
3312 			goto out;
3313 		}
3314 		/*
3315 		 * We need to ensure that the page cache pages are written to
3316 		 * disk and invalidated to preserve the expected O_DIRECT
3317 		 * semantics.
3318 		 */
3319 		endbyte = pos + status - 1;
3320 		err = filemap_write_and_wait_range(mapping, pos, endbyte);
3321 		if (err == 0) {
3322 			iocb->ki_pos = endbyte + 1;
3323 			written += status;
3324 			invalidate_mapping_pages(mapping,
3325 						 pos >> PAGE_SHIFT,
3326 						 endbyte >> PAGE_SHIFT);
3327 		} else {
3328 			/*
3329 			 * We don't know how much we wrote, so just return
3330 			 * the number of bytes which were direct-written
3331 			 */
3332 		}
3333 	} else {
3334 		written = generic_perform_write(file, from, iocb->ki_pos);
3335 		if (likely(written > 0))
3336 			iocb->ki_pos += written;
3337 	}
3338 out:
3339 	current->backing_dev_info = NULL;
3340 	return written ? written : err;
3341 }
3342 EXPORT_SYMBOL(__generic_file_write_iter);
3343 
3344 /**
3345  * generic_file_write_iter - write data to a file
3346  * @iocb:	IO state structure
3347  * @from:	iov_iter with data to write
3348  *
3349  * This is a wrapper around __generic_file_write_iter() to be used by most
3350  * filesystems. It takes care of syncing the file in case of O_SYNC file
3351  * and acquires i_mutex as needed.
3352  * Return:
3353  * * negative error code if no data has been written at all of
3354  *   vfs_fsync_range() failed for a synchronous write
3355  * * number of bytes written, even for truncated writes
3356  */
3357 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3358 {
3359 	struct file *file = iocb->ki_filp;
3360 	struct inode *inode = file->f_mapping->host;
3361 	ssize_t ret;
3362 
3363 	inode_lock(inode);
3364 	ret = generic_write_checks(iocb, from);
3365 	if (ret > 0)
3366 		ret = __generic_file_write_iter(iocb, from);
3367 	inode_unlock(inode);
3368 
3369 	if (ret > 0)
3370 		ret = generic_write_sync(iocb, ret);
3371 	return ret;
3372 }
3373 EXPORT_SYMBOL(generic_file_write_iter);
3374 
3375 /**
3376  * try_to_release_page() - release old fs-specific metadata on a page
3377  *
3378  * @page: the page which the kernel is trying to free
3379  * @gfp_mask: memory allocation flags (and I/O mode)
3380  *
3381  * The address_space is to try to release any data against the page
3382  * (presumably at page->private).
3383  *
3384  * This may also be called if PG_fscache is set on a page, indicating that the
3385  * page is known to the local caching routines.
3386  *
3387  * The @gfp_mask argument specifies whether I/O may be performed to release
3388  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3389  *
3390  * Return: %1 if the release was successful, otherwise return zero.
3391  */
3392 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3393 {
3394 	struct address_space * const mapping = page->mapping;
3395 
3396 	BUG_ON(!PageLocked(page));
3397 	if (PageWriteback(page))
3398 		return 0;
3399 
3400 	if (mapping && mapping->a_ops->releasepage)
3401 		return mapping->a_ops->releasepage(page, gfp_mask);
3402 	return try_to_free_buffers(page);
3403 }
3404 
3405 EXPORT_SYMBOL(try_to_release_page);
3406