xref: /openbmc/linux/mm/filemap.c (revision 1da177e4)
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/config.h>
13 #include <linux/module.h>
14 #include <linux/slab.h>
15 #include <linux/compiler.h>
16 #include <linux/fs.h>
17 #include <linux/aio.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/mman.h>
22 #include <linux/pagemap.h>
23 #include <linux/file.h>
24 #include <linux/uio.h>
25 #include <linux/hash.h>
26 #include <linux/writeback.h>
27 #include <linux/pagevec.h>
28 #include <linux/blkdev.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 /*
32  * This is needed for the following functions:
33  *  - try_to_release_page
34  *  - block_invalidatepage
35  *  - generic_osync_inode
36  *
37  * FIXME: remove all knowledge of the buffer layer from the core VM
38  */
39 #include <linux/buffer_head.h> /* for generic_osync_inode */
40 
41 #include <asm/uaccess.h>
42 #include <asm/mman.h>
43 
44 /*
45  * Shared mappings implemented 30.11.1994. It's not fully working yet,
46  * though.
47  *
48  * Shared mappings now work. 15.8.1995  Bruno.
49  *
50  * finished 'unifying' the page and buffer cache and SMP-threaded the
51  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
52  *
53  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
54  */
55 
56 /*
57  * Lock ordering:
58  *
59  *  ->i_mmap_lock		(vmtruncate)
60  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
61  *      ->swap_list_lock
62  *        ->swap_device_lock	(exclusive_swap_page, others)
63  *          ->mapping->tree_lock
64  *
65  *  ->i_sem
66  *    ->i_mmap_lock		(truncate->unmap_mapping_range)
67  *
68  *  ->mmap_sem
69  *    ->i_mmap_lock
70  *      ->page_table_lock	(various places, mainly in mmap.c)
71  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
72  *
73  *  ->mmap_sem
74  *    ->lock_page		(access_process_vm)
75  *
76  *  ->mmap_sem
77  *    ->i_sem			(msync)
78  *
79  *  ->i_sem
80  *    ->i_alloc_sem             (various)
81  *
82  *  ->inode_lock
83  *    ->sb_lock			(fs/fs-writeback.c)
84  *    ->mapping->tree_lock	(__sync_single_inode)
85  *
86  *  ->i_mmap_lock
87  *    ->anon_vma.lock		(vma_adjust)
88  *
89  *  ->anon_vma.lock
90  *    ->page_table_lock		(anon_vma_prepare and various)
91  *
92  *  ->page_table_lock
93  *    ->swap_device_lock	(try_to_unmap_one)
94  *    ->private_lock		(try_to_unmap_one)
95  *    ->tree_lock		(try_to_unmap_one)
96  *    ->zone.lru_lock		(follow_page->mark_page_accessed)
97  *    ->private_lock		(page_remove_rmap->set_page_dirty)
98  *    ->tree_lock		(page_remove_rmap->set_page_dirty)
99  *    ->inode_lock		(page_remove_rmap->set_page_dirty)
100  *    ->inode_lock		(zap_pte_range->set_page_dirty)
101  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
102  *
103  *  ->task->proc_lock
104  *    ->dcache_lock		(proc_pid_lookup)
105  */
106 
107 /*
108  * Remove a page from the page cache and free it. Caller has to make
109  * sure the page is locked and that nobody else uses it - or that usage
110  * is safe.  The caller must hold a write_lock on the mapping's tree_lock.
111  */
112 void __remove_from_page_cache(struct page *page)
113 {
114 	struct address_space *mapping = page->mapping;
115 
116 	radix_tree_delete(&mapping->page_tree, page->index);
117 	page->mapping = NULL;
118 	mapping->nrpages--;
119 	pagecache_acct(-1);
120 }
121 
122 void remove_from_page_cache(struct page *page)
123 {
124 	struct address_space *mapping = page->mapping;
125 
126 	if (unlikely(!PageLocked(page)))
127 		PAGE_BUG(page);
128 
129 	write_lock_irq(&mapping->tree_lock);
130 	__remove_from_page_cache(page);
131 	write_unlock_irq(&mapping->tree_lock);
132 }
133 
134 static int sync_page(void *word)
135 {
136 	struct address_space *mapping;
137 	struct page *page;
138 
139 	page = container_of((page_flags_t *)word, struct page, flags);
140 
141 	/*
142 	 * FIXME, fercrissake.  What is this barrier here for?
143 	 */
144 	smp_mb();
145 	mapping = page_mapping(page);
146 	if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
147 		mapping->a_ops->sync_page(page);
148 	io_schedule();
149 	return 0;
150 }
151 
152 /**
153  * filemap_fdatawrite_range - start writeback against all of a mapping's
154  * dirty pages that lie within the byte offsets <start, end>
155  * @mapping: address space structure to write
156  * @start: offset in bytes where the range starts
157  * @end : offset in bytes where the range ends
158  *
159  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
160  * opposed to a regular memory * cleansing writeback.  The difference between
161  * these two operations is that if a dirty page/buffer is encountered, it must
162  * be waited upon, and not just skipped over.
163  */
164 static int __filemap_fdatawrite_range(struct address_space *mapping,
165 	loff_t start, loff_t end, int sync_mode)
166 {
167 	int ret;
168 	struct writeback_control wbc = {
169 		.sync_mode = sync_mode,
170 		.nr_to_write = mapping->nrpages * 2,
171 		.start = start,
172 		.end = end,
173 	};
174 
175 	if (!mapping_cap_writeback_dirty(mapping))
176 		return 0;
177 
178 	ret = do_writepages(mapping, &wbc);
179 	return ret;
180 }
181 
182 static inline int __filemap_fdatawrite(struct address_space *mapping,
183 	int sync_mode)
184 {
185 	return __filemap_fdatawrite_range(mapping, 0, 0, sync_mode);
186 }
187 
188 int filemap_fdatawrite(struct address_space *mapping)
189 {
190 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
191 }
192 EXPORT_SYMBOL(filemap_fdatawrite);
193 
194 static int filemap_fdatawrite_range(struct address_space *mapping,
195 	loff_t start, loff_t end)
196 {
197 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
198 }
199 
200 /*
201  * This is a mostly non-blocking flush.  Not suitable for data-integrity
202  * purposes - I/O may not be started against all dirty pages.
203  */
204 int filemap_flush(struct address_space *mapping)
205 {
206 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
207 }
208 EXPORT_SYMBOL(filemap_flush);
209 
210 /*
211  * Wait for writeback to complete against pages indexed by start->end
212  * inclusive
213  */
214 static int wait_on_page_writeback_range(struct address_space *mapping,
215 				pgoff_t start, pgoff_t end)
216 {
217 	struct pagevec pvec;
218 	int nr_pages;
219 	int ret = 0;
220 	pgoff_t index;
221 
222 	if (end < start)
223 		return 0;
224 
225 	pagevec_init(&pvec, 0);
226 	index = start;
227 	while ((index <= end) &&
228 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
229 			PAGECACHE_TAG_WRITEBACK,
230 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
231 		unsigned i;
232 
233 		for (i = 0; i < nr_pages; i++) {
234 			struct page *page = pvec.pages[i];
235 
236 			/* until radix tree lookup accepts end_index */
237 			if (page->index > end)
238 				continue;
239 
240 			wait_on_page_writeback(page);
241 			if (PageError(page))
242 				ret = -EIO;
243 		}
244 		pagevec_release(&pvec);
245 		cond_resched();
246 	}
247 
248 	/* Check for outstanding write errors */
249 	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
250 		ret = -ENOSPC;
251 	if (test_and_clear_bit(AS_EIO, &mapping->flags))
252 		ret = -EIO;
253 
254 	return ret;
255 }
256 
257 /*
258  * Write and wait upon all the pages in the passed range.  This is a "data
259  * integrity" operation.  It waits upon in-flight writeout before starting and
260  * waiting upon new writeout.  If there was an IO error, return it.
261  *
262  * We need to re-take i_sem during the generic_osync_inode list walk because
263  * it is otherwise livelockable.
264  */
265 int sync_page_range(struct inode *inode, struct address_space *mapping,
266 			loff_t pos, size_t count)
267 {
268 	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
269 	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
270 	int ret;
271 
272 	if (!mapping_cap_writeback_dirty(mapping) || !count)
273 		return 0;
274 	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
275 	if (ret == 0) {
276 		down(&inode->i_sem);
277 		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
278 		up(&inode->i_sem);
279 	}
280 	if (ret == 0)
281 		ret = wait_on_page_writeback_range(mapping, start, end);
282 	return ret;
283 }
284 EXPORT_SYMBOL(sync_page_range);
285 
286 /*
287  * Note: Holding i_sem across sync_page_range_nolock is not a good idea
288  * as it forces O_SYNC writers to different parts of the same file
289  * to be serialised right until io completion.
290  */
291 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
292 			loff_t pos, size_t count)
293 {
294 	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
295 	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
296 	int ret;
297 
298 	if (!mapping_cap_writeback_dirty(mapping) || !count)
299 		return 0;
300 	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
301 	if (ret == 0)
302 		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
303 	if (ret == 0)
304 		ret = wait_on_page_writeback_range(mapping, start, end);
305 	return ret;
306 }
307 EXPORT_SYMBOL(sync_page_range_nolock);
308 
309 /**
310  * filemap_fdatawait - walk the list of under-writeback pages of the given
311  *     address space and wait for all of them.
312  *
313  * @mapping: address space structure to wait for
314  */
315 int filemap_fdatawait(struct address_space *mapping)
316 {
317 	loff_t i_size = i_size_read(mapping->host);
318 
319 	if (i_size == 0)
320 		return 0;
321 
322 	return wait_on_page_writeback_range(mapping, 0,
323 				(i_size - 1) >> PAGE_CACHE_SHIFT);
324 }
325 EXPORT_SYMBOL(filemap_fdatawait);
326 
327 int filemap_write_and_wait(struct address_space *mapping)
328 {
329 	int retval = 0;
330 
331 	if (mapping->nrpages) {
332 		retval = filemap_fdatawrite(mapping);
333 		if (retval == 0)
334 			retval = filemap_fdatawait(mapping);
335 	}
336 	return retval;
337 }
338 
339 int filemap_write_and_wait_range(struct address_space *mapping,
340 				 loff_t lstart, loff_t lend)
341 {
342 	int retval = 0;
343 
344 	if (mapping->nrpages) {
345 		retval = __filemap_fdatawrite_range(mapping, lstart, lend,
346 						    WB_SYNC_ALL);
347 		if (retval == 0)
348 			retval = wait_on_page_writeback_range(mapping,
349 						    lstart >> PAGE_CACHE_SHIFT,
350 						    lend >> PAGE_CACHE_SHIFT);
351 	}
352 	return retval;
353 }
354 
355 /*
356  * This function is used to add newly allocated pagecache pages:
357  * the page is new, so we can just run SetPageLocked() against it.
358  * The other page state flags were set by rmqueue().
359  *
360  * This function does not add the page to the LRU.  The caller must do that.
361  */
362 int add_to_page_cache(struct page *page, struct address_space *mapping,
363 		pgoff_t offset, int gfp_mask)
364 {
365 	int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
366 
367 	if (error == 0) {
368 		write_lock_irq(&mapping->tree_lock);
369 		error = radix_tree_insert(&mapping->page_tree, offset, page);
370 		if (!error) {
371 			page_cache_get(page);
372 			SetPageLocked(page);
373 			page->mapping = mapping;
374 			page->index = offset;
375 			mapping->nrpages++;
376 			pagecache_acct(1);
377 		}
378 		write_unlock_irq(&mapping->tree_lock);
379 		radix_tree_preload_end();
380 	}
381 	return error;
382 }
383 
384 EXPORT_SYMBOL(add_to_page_cache);
385 
386 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
387 				pgoff_t offset, int gfp_mask)
388 {
389 	int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
390 	if (ret == 0)
391 		lru_cache_add(page);
392 	return ret;
393 }
394 
395 /*
396  * In order to wait for pages to become available there must be
397  * waitqueues associated with pages. By using a hash table of
398  * waitqueues where the bucket discipline is to maintain all
399  * waiters on the same queue and wake all when any of the pages
400  * become available, and for the woken contexts to check to be
401  * sure the appropriate page became available, this saves space
402  * at a cost of "thundering herd" phenomena during rare hash
403  * collisions.
404  */
405 static wait_queue_head_t *page_waitqueue(struct page *page)
406 {
407 	const struct zone *zone = page_zone(page);
408 
409 	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
410 }
411 
412 static inline void wake_up_page(struct page *page, int bit)
413 {
414 	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
415 }
416 
417 void fastcall wait_on_page_bit(struct page *page, int bit_nr)
418 {
419 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
420 
421 	if (test_bit(bit_nr, &page->flags))
422 		__wait_on_bit(page_waitqueue(page), &wait, sync_page,
423 							TASK_UNINTERRUPTIBLE);
424 }
425 EXPORT_SYMBOL(wait_on_page_bit);
426 
427 /**
428  * unlock_page() - unlock a locked page
429  *
430  * @page: the page
431  *
432  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
433  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
434  * mechananism between PageLocked pages and PageWriteback pages is shared.
435  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
436  *
437  * The first mb is necessary to safely close the critical section opened by the
438  * TestSetPageLocked(), the second mb is necessary to enforce ordering between
439  * the clear_bit and the read of the waitqueue (to avoid SMP races with a
440  * parallel wait_on_page_locked()).
441  */
442 void fastcall unlock_page(struct page *page)
443 {
444 	smp_mb__before_clear_bit();
445 	if (!TestClearPageLocked(page))
446 		BUG();
447 	smp_mb__after_clear_bit();
448 	wake_up_page(page, PG_locked);
449 }
450 EXPORT_SYMBOL(unlock_page);
451 
452 /*
453  * End writeback against a page.
454  */
455 void end_page_writeback(struct page *page)
456 {
457 	if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) {
458 		if (!test_clear_page_writeback(page))
459 			BUG();
460 	}
461 	smp_mb__after_clear_bit();
462 	wake_up_page(page, PG_writeback);
463 }
464 EXPORT_SYMBOL(end_page_writeback);
465 
466 /*
467  * Get a lock on the page, assuming we need to sleep to get it.
468  *
469  * Ugly: running sync_page() in state TASK_UNINTERRUPTIBLE is scary.  If some
470  * random driver's requestfn sets TASK_RUNNING, we could busywait.  However
471  * chances are that on the second loop, the block layer's plug list is empty,
472  * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
473  */
474 void fastcall __lock_page(struct page *page)
475 {
476 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
477 
478 	__wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
479 							TASK_UNINTERRUPTIBLE);
480 }
481 EXPORT_SYMBOL(__lock_page);
482 
483 /*
484  * a rather lightweight function, finding and getting a reference to a
485  * hashed page atomically.
486  */
487 struct page * find_get_page(struct address_space *mapping, unsigned long offset)
488 {
489 	struct page *page;
490 
491 	read_lock_irq(&mapping->tree_lock);
492 	page = radix_tree_lookup(&mapping->page_tree, offset);
493 	if (page)
494 		page_cache_get(page);
495 	read_unlock_irq(&mapping->tree_lock);
496 	return page;
497 }
498 
499 EXPORT_SYMBOL(find_get_page);
500 
501 /*
502  * Same as above, but trylock it instead of incrementing the count.
503  */
504 struct page *find_trylock_page(struct address_space *mapping, unsigned long offset)
505 {
506 	struct page *page;
507 
508 	read_lock_irq(&mapping->tree_lock);
509 	page = radix_tree_lookup(&mapping->page_tree, offset);
510 	if (page && TestSetPageLocked(page))
511 		page = NULL;
512 	read_unlock_irq(&mapping->tree_lock);
513 	return page;
514 }
515 
516 EXPORT_SYMBOL(find_trylock_page);
517 
518 /**
519  * find_lock_page - locate, pin and lock a pagecache page
520  *
521  * @mapping - the address_space to search
522  * @offset - the page index
523  *
524  * Locates the desired pagecache page, locks it, increments its reference
525  * count and returns its address.
526  *
527  * Returns zero if the page was not present. find_lock_page() may sleep.
528  */
529 struct page *find_lock_page(struct address_space *mapping,
530 				unsigned long offset)
531 {
532 	struct page *page;
533 
534 	read_lock_irq(&mapping->tree_lock);
535 repeat:
536 	page = radix_tree_lookup(&mapping->page_tree, offset);
537 	if (page) {
538 		page_cache_get(page);
539 		if (TestSetPageLocked(page)) {
540 			read_unlock_irq(&mapping->tree_lock);
541 			lock_page(page);
542 			read_lock_irq(&mapping->tree_lock);
543 
544 			/* Has the page been truncated while we slept? */
545 			if (page->mapping != mapping || page->index != offset) {
546 				unlock_page(page);
547 				page_cache_release(page);
548 				goto repeat;
549 			}
550 		}
551 	}
552 	read_unlock_irq(&mapping->tree_lock);
553 	return page;
554 }
555 
556 EXPORT_SYMBOL(find_lock_page);
557 
558 /**
559  * find_or_create_page - locate or add a pagecache page
560  *
561  * @mapping - the page's address_space
562  * @index - the page's index into the mapping
563  * @gfp_mask - page allocation mode
564  *
565  * Locates a page in the pagecache.  If the page is not present, a new page
566  * is allocated using @gfp_mask and is added to the pagecache and to the VM's
567  * LRU list.  The returned page is locked and has its reference count
568  * incremented.
569  *
570  * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
571  * allocation!
572  *
573  * find_or_create_page() returns the desired page's address, or zero on
574  * memory exhaustion.
575  */
576 struct page *find_or_create_page(struct address_space *mapping,
577 		unsigned long index, unsigned int gfp_mask)
578 {
579 	struct page *page, *cached_page = NULL;
580 	int err;
581 repeat:
582 	page = find_lock_page(mapping, index);
583 	if (!page) {
584 		if (!cached_page) {
585 			cached_page = alloc_page(gfp_mask);
586 			if (!cached_page)
587 				return NULL;
588 		}
589 		err = add_to_page_cache_lru(cached_page, mapping,
590 					index, gfp_mask);
591 		if (!err) {
592 			page = cached_page;
593 			cached_page = NULL;
594 		} else if (err == -EEXIST)
595 			goto repeat;
596 	}
597 	if (cached_page)
598 		page_cache_release(cached_page);
599 	return page;
600 }
601 
602 EXPORT_SYMBOL(find_or_create_page);
603 
604 /**
605  * find_get_pages - gang pagecache lookup
606  * @mapping:	The address_space to search
607  * @start:	The starting page index
608  * @nr_pages:	The maximum number of pages
609  * @pages:	Where the resulting pages are placed
610  *
611  * find_get_pages() will search for and return a group of up to
612  * @nr_pages pages in the mapping.  The pages are placed at @pages.
613  * find_get_pages() takes a reference against the returned pages.
614  *
615  * The search returns a group of mapping-contiguous pages with ascending
616  * indexes.  There may be holes in the indices due to not-present pages.
617  *
618  * find_get_pages() returns the number of pages which were found.
619  */
620 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
621 			    unsigned int nr_pages, struct page **pages)
622 {
623 	unsigned int i;
624 	unsigned int ret;
625 
626 	read_lock_irq(&mapping->tree_lock);
627 	ret = radix_tree_gang_lookup(&mapping->page_tree,
628 				(void **)pages, start, nr_pages);
629 	for (i = 0; i < ret; i++)
630 		page_cache_get(pages[i]);
631 	read_unlock_irq(&mapping->tree_lock);
632 	return ret;
633 }
634 
635 /*
636  * Like find_get_pages, except we only return pages which are tagged with
637  * `tag'.   We update *index to index the next page for the traversal.
638  */
639 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
640 			int tag, unsigned int nr_pages, struct page **pages)
641 {
642 	unsigned int i;
643 	unsigned int ret;
644 
645 	read_lock_irq(&mapping->tree_lock);
646 	ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
647 				(void **)pages, *index, nr_pages, tag);
648 	for (i = 0; i < ret; i++)
649 		page_cache_get(pages[i]);
650 	if (ret)
651 		*index = pages[ret - 1]->index + 1;
652 	read_unlock_irq(&mapping->tree_lock);
653 	return ret;
654 }
655 
656 /*
657  * Same as grab_cache_page, but do not wait if the page is unavailable.
658  * This is intended for speculative data generators, where the data can
659  * be regenerated if the page couldn't be grabbed.  This routine should
660  * be safe to call while holding the lock for another page.
661  *
662  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
663  * and deadlock against the caller's locked page.
664  */
665 struct page *
666 grab_cache_page_nowait(struct address_space *mapping, unsigned long index)
667 {
668 	struct page *page = find_get_page(mapping, index);
669 	unsigned int gfp_mask;
670 
671 	if (page) {
672 		if (!TestSetPageLocked(page))
673 			return page;
674 		page_cache_release(page);
675 		return NULL;
676 	}
677 	gfp_mask = mapping_gfp_mask(mapping) & ~__GFP_FS;
678 	page = alloc_pages(gfp_mask, 0);
679 	if (page && add_to_page_cache_lru(page, mapping, index, gfp_mask)) {
680 		page_cache_release(page);
681 		page = NULL;
682 	}
683 	return page;
684 }
685 
686 EXPORT_SYMBOL(grab_cache_page_nowait);
687 
688 /*
689  * This is a generic file read routine, and uses the
690  * mapping->a_ops->readpage() function for the actual low-level
691  * stuff.
692  *
693  * This is really ugly. But the goto's actually try to clarify some
694  * of the logic when it comes to error handling etc.
695  *
696  * Note the struct file* is only passed for the use of readpage.  It may be
697  * NULL.
698  */
699 void do_generic_mapping_read(struct address_space *mapping,
700 			     struct file_ra_state *_ra,
701 			     struct file *filp,
702 			     loff_t *ppos,
703 			     read_descriptor_t *desc,
704 			     read_actor_t actor)
705 {
706 	struct inode *inode = mapping->host;
707 	unsigned long index;
708 	unsigned long end_index;
709 	unsigned long offset;
710 	unsigned long last_index;
711 	unsigned long next_index;
712 	unsigned long prev_index;
713 	loff_t isize;
714 	struct page *cached_page;
715 	int error;
716 	struct file_ra_state ra = *_ra;
717 
718 	cached_page = NULL;
719 	index = *ppos >> PAGE_CACHE_SHIFT;
720 	next_index = index;
721 	prev_index = ra.prev_page;
722 	last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
723 	offset = *ppos & ~PAGE_CACHE_MASK;
724 
725 	isize = i_size_read(inode);
726 	if (!isize)
727 		goto out;
728 
729 	end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
730 	for (;;) {
731 		struct page *page;
732 		unsigned long nr, ret;
733 
734 		/* nr is the maximum number of bytes to copy from this page */
735 		nr = PAGE_CACHE_SIZE;
736 		if (index >= end_index) {
737 			if (index > end_index)
738 				goto out;
739 			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
740 			if (nr <= offset) {
741 				goto out;
742 			}
743 		}
744 		nr = nr - offset;
745 
746 		cond_resched();
747 		if (index == next_index)
748 			next_index = page_cache_readahead(mapping, &ra, filp,
749 					index, last_index - index);
750 
751 find_page:
752 		page = find_get_page(mapping, index);
753 		if (unlikely(page == NULL)) {
754 			handle_ra_miss(mapping, &ra, index);
755 			goto no_cached_page;
756 		}
757 		if (!PageUptodate(page))
758 			goto page_not_up_to_date;
759 page_ok:
760 
761 		/* If users can be writing to this page using arbitrary
762 		 * virtual addresses, take care about potential aliasing
763 		 * before reading the page on the kernel side.
764 		 */
765 		if (mapping_writably_mapped(mapping))
766 			flush_dcache_page(page);
767 
768 		/*
769 		 * When (part of) the same page is read multiple times
770 		 * in succession, only mark it as accessed the first time.
771 		 */
772 		if (prev_index != index)
773 			mark_page_accessed(page);
774 		prev_index = index;
775 
776 		/*
777 		 * Ok, we have the page, and it's up-to-date, so
778 		 * now we can copy it to user space...
779 		 *
780 		 * The actor routine returns how many bytes were actually used..
781 		 * NOTE! This may not be the same as how much of a user buffer
782 		 * we filled up (we may be padding etc), so we can only update
783 		 * "pos" here (the actor routine has to update the user buffer
784 		 * pointers and the remaining count).
785 		 */
786 		ret = actor(desc, page, offset, nr);
787 		offset += ret;
788 		index += offset >> PAGE_CACHE_SHIFT;
789 		offset &= ~PAGE_CACHE_MASK;
790 
791 		page_cache_release(page);
792 		if (ret == nr && desc->count)
793 			continue;
794 		goto out;
795 
796 page_not_up_to_date:
797 		/* Get exclusive access to the page ... */
798 		lock_page(page);
799 
800 		/* Did it get unhashed before we got the lock? */
801 		if (!page->mapping) {
802 			unlock_page(page);
803 			page_cache_release(page);
804 			continue;
805 		}
806 
807 		/* Did somebody else fill it already? */
808 		if (PageUptodate(page)) {
809 			unlock_page(page);
810 			goto page_ok;
811 		}
812 
813 readpage:
814 		/* Start the actual read. The read will unlock the page. */
815 		error = mapping->a_ops->readpage(filp, page);
816 
817 		if (unlikely(error))
818 			goto readpage_error;
819 
820 		if (!PageUptodate(page)) {
821 			lock_page(page);
822 			if (!PageUptodate(page)) {
823 				if (page->mapping == NULL) {
824 					/*
825 					 * invalidate_inode_pages got it
826 					 */
827 					unlock_page(page);
828 					page_cache_release(page);
829 					goto find_page;
830 				}
831 				unlock_page(page);
832 				error = -EIO;
833 				goto readpage_error;
834 			}
835 			unlock_page(page);
836 		}
837 
838 		/*
839 		 * i_size must be checked after we have done ->readpage.
840 		 *
841 		 * Checking i_size after the readpage allows us to calculate
842 		 * the correct value for "nr", which means the zero-filled
843 		 * part of the page is not copied back to userspace (unless
844 		 * another truncate extends the file - this is desired though).
845 		 */
846 		isize = i_size_read(inode);
847 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
848 		if (unlikely(!isize || index > end_index)) {
849 			page_cache_release(page);
850 			goto out;
851 		}
852 
853 		/* nr is the maximum number of bytes to copy from this page */
854 		nr = PAGE_CACHE_SIZE;
855 		if (index == end_index) {
856 			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
857 			if (nr <= offset) {
858 				page_cache_release(page);
859 				goto out;
860 			}
861 		}
862 		nr = nr - offset;
863 		goto page_ok;
864 
865 readpage_error:
866 		/* UHHUH! A synchronous read error occurred. Report it */
867 		desc->error = error;
868 		page_cache_release(page);
869 		goto out;
870 
871 no_cached_page:
872 		/*
873 		 * Ok, it wasn't cached, so we need to create a new
874 		 * page..
875 		 */
876 		if (!cached_page) {
877 			cached_page = page_cache_alloc_cold(mapping);
878 			if (!cached_page) {
879 				desc->error = -ENOMEM;
880 				goto out;
881 			}
882 		}
883 		error = add_to_page_cache_lru(cached_page, mapping,
884 						index, GFP_KERNEL);
885 		if (error) {
886 			if (error == -EEXIST)
887 				goto find_page;
888 			desc->error = error;
889 			goto out;
890 		}
891 		page = cached_page;
892 		cached_page = NULL;
893 		goto readpage;
894 	}
895 
896 out:
897 	*_ra = ra;
898 
899 	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
900 	if (cached_page)
901 		page_cache_release(cached_page);
902 	if (filp)
903 		file_accessed(filp);
904 }
905 
906 EXPORT_SYMBOL(do_generic_mapping_read);
907 
908 int file_read_actor(read_descriptor_t *desc, struct page *page,
909 			unsigned long offset, unsigned long size)
910 {
911 	char *kaddr;
912 	unsigned long left, count = desc->count;
913 
914 	if (size > count)
915 		size = count;
916 
917 	/*
918 	 * Faults on the destination of a read are common, so do it before
919 	 * taking the kmap.
920 	 */
921 	if (!fault_in_pages_writeable(desc->arg.buf, size)) {
922 		kaddr = kmap_atomic(page, KM_USER0);
923 		left = __copy_to_user_inatomic(desc->arg.buf,
924 						kaddr + offset, size);
925 		kunmap_atomic(kaddr, KM_USER0);
926 		if (left == 0)
927 			goto success;
928 	}
929 
930 	/* Do it the slow way */
931 	kaddr = kmap(page);
932 	left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
933 	kunmap(page);
934 
935 	if (left) {
936 		size -= left;
937 		desc->error = -EFAULT;
938 	}
939 success:
940 	desc->count = count - size;
941 	desc->written += size;
942 	desc->arg.buf += size;
943 	return size;
944 }
945 
946 /*
947  * This is the "read()" routine for all filesystems
948  * that can use the page cache directly.
949  */
950 ssize_t
951 __generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
952 		unsigned long nr_segs, loff_t *ppos)
953 {
954 	struct file *filp = iocb->ki_filp;
955 	ssize_t retval;
956 	unsigned long seg;
957 	size_t count;
958 
959 	count = 0;
960 	for (seg = 0; seg < nr_segs; seg++) {
961 		const struct iovec *iv = &iov[seg];
962 
963 		/*
964 		 * If any segment has a negative length, or the cumulative
965 		 * length ever wraps negative then return -EINVAL.
966 		 */
967 		count += iv->iov_len;
968 		if (unlikely((ssize_t)(count|iv->iov_len) < 0))
969 			return -EINVAL;
970 		if (access_ok(VERIFY_WRITE, iv->iov_base, iv->iov_len))
971 			continue;
972 		if (seg == 0)
973 			return -EFAULT;
974 		nr_segs = seg;
975 		count -= iv->iov_len;	/* This segment is no good */
976 		break;
977 	}
978 
979 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
980 	if (filp->f_flags & O_DIRECT) {
981 		loff_t pos = *ppos, size;
982 		struct address_space *mapping;
983 		struct inode *inode;
984 
985 		mapping = filp->f_mapping;
986 		inode = mapping->host;
987 		retval = 0;
988 		if (!count)
989 			goto out; /* skip atime */
990 		size = i_size_read(inode);
991 		if (pos < size) {
992 			retval = generic_file_direct_IO(READ, iocb,
993 						iov, pos, nr_segs);
994 			if (retval >= 0 && !is_sync_kiocb(iocb))
995 				retval = -EIOCBQUEUED;
996 			if (retval > 0)
997 				*ppos = pos + retval;
998 		}
999 		file_accessed(filp);
1000 		goto out;
1001 	}
1002 
1003 	retval = 0;
1004 	if (count) {
1005 		for (seg = 0; seg < nr_segs; seg++) {
1006 			read_descriptor_t desc;
1007 
1008 			desc.written = 0;
1009 			desc.arg.buf = iov[seg].iov_base;
1010 			desc.count = iov[seg].iov_len;
1011 			if (desc.count == 0)
1012 				continue;
1013 			desc.error = 0;
1014 			do_generic_file_read(filp,ppos,&desc,file_read_actor);
1015 			retval += desc.written;
1016 			if (!retval) {
1017 				retval = desc.error;
1018 				break;
1019 			}
1020 		}
1021 	}
1022 out:
1023 	return retval;
1024 }
1025 
1026 EXPORT_SYMBOL(__generic_file_aio_read);
1027 
1028 ssize_t
1029 generic_file_aio_read(struct kiocb *iocb, char __user *buf, size_t count, loff_t pos)
1030 {
1031 	struct iovec local_iov = { .iov_base = buf, .iov_len = count };
1032 
1033 	BUG_ON(iocb->ki_pos != pos);
1034 	return __generic_file_aio_read(iocb, &local_iov, 1, &iocb->ki_pos);
1035 }
1036 
1037 EXPORT_SYMBOL(generic_file_aio_read);
1038 
1039 ssize_t
1040 generic_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
1041 {
1042 	struct iovec local_iov = { .iov_base = buf, .iov_len = count };
1043 	struct kiocb kiocb;
1044 	ssize_t ret;
1045 
1046 	init_sync_kiocb(&kiocb, filp);
1047 	ret = __generic_file_aio_read(&kiocb, &local_iov, 1, ppos);
1048 	if (-EIOCBQUEUED == ret)
1049 		ret = wait_on_sync_kiocb(&kiocb);
1050 	return ret;
1051 }
1052 
1053 EXPORT_SYMBOL(generic_file_read);
1054 
1055 int file_send_actor(read_descriptor_t * desc, struct page *page, unsigned long offset, unsigned long size)
1056 {
1057 	ssize_t written;
1058 	unsigned long count = desc->count;
1059 	struct file *file = desc->arg.data;
1060 
1061 	if (size > count)
1062 		size = count;
1063 
1064 	written = file->f_op->sendpage(file, page, offset,
1065 				       size, &file->f_pos, size<count);
1066 	if (written < 0) {
1067 		desc->error = written;
1068 		written = 0;
1069 	}
1070 	desc->count = count - written;
1071 	desc->written += written;
1072 	return written;
1073 }
1074 
1075 ssize_t generic_file_sendfile(struct file *in_file, loff_t *ppos,
1076 			 size_t count, read_actor_t actor, void *target)
1077 {
1078 	read_descriptor_t desc;
1079 
1080 	if (!count)
1081 		return 0;
1082 
1083 	desc.written = 0;
1084 	desc.count = count;
1085 	desc.arg.data = target;
1086 	desc.error = 0;
1087 
1088 	do_generic_file_read(in_file, ppos, &desc, actor);
1089 	if (desc.written)
1090 		return desc.written;
1091 	return desc.error;
1092 }
1093 
1094 EXPORT_SYMBOL(generic_file_sendfile);
1095 
1096 static ssize_t
1097 do_readahead(struct address_space *mapping, struct file *filp,
1098 	     unsigned long index, unsigned long nr)
1099 {
1100 	if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1101 		return -EINVAL;
1102 
1103 	force_page_cache_readahead(mapping, filp, index,
1104 					max_sane_readahead(nr));
1105 	return 0;
1106 }
1107 
1108 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1109 {
1110 	ssize_t ret;
1111 	struct file *file;
1112 
1113 	ret = -EBADF;
1114 	file = fget(fd);
1115 	if (file) {
1116 		if (file->f_mode & FMODE_READ) {
1117 			struct address_space *mapping = file->f_mapping;
1118 			unsigned long start = offset >> PAGE_CACHE_SHIFT;
1119 			unsigned long end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1120 			unsigned long len = end - start + 1;
1121 			ret = do_readahead(mapping, file, start, len);
1122 		}
1123 		fput(file);
1124 	}
1125 	return ret;
1126 }
1127 
1128 #ifdef CONFIG_MMU
1129 /*
1130  * This adds the requested page to the page cache if it isn't already there,
1131  * and schedules an I/O to read in its contents from disk.
1132  */
1133 static int FASTCALL(page_cache_read(struct file * file, unsigned long offset));
1134 static int fastcall page_cache_read(struct file * file, unsigned long offset)
1135 {
1136 	struct address_space *mapping = file->f_mapping;
1137 	struct page *page;
1138 	int error;
1139 
1140 	page = page_cache_alloc_cold(mapping);
1141 	if (!page)
1142 		return -ENOMEM;
1143 
1144 	error = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1145 	if (!error) {
1146 		error = mapping->a_ops->readpage(file, page);
1147 		page_cache_release(page);
1148 		return error;
1149 	}
1150 
1151 	/*
1152 	 * We arrive here in the unlikely event that someone
1153 	 * raced with us and added our page to the cache first
1154 	 * or we are out of memory for radix-tree nodes.
1155 	 */
1156 	page_cache_release(page);
1157 	return error == -EEXIST ? 0 : error;
1158 }
1159 
1160 #define MMAP_LOTSAMISS  (100)
1161 
1162 /*
1163  * filemap_nopage() is invoked via the vma operations vector for a
1164  * mapped memory region to read in file data during a page fault.
1165  *
1166  * The goto's are kind of ugly, but this streamlines the normal case of having
1167  * it in the page cache, and handles the special cases reasonably without
1168  * having a lot of duplicated code.
1169  */
1170 struct page *filemap_nopage(struct vm_area_struct *area,
1171 				unsigned long address, int *type)
1172 {
1173 	int error;
1174 	struct file *file = area->vm_file;
1175 	struct address_space *mapping = file->f_mapping;
1176 	struct file_ra_state *ra = &file->f_ra;
1177 	struct inode *inode = mapping->host;
1178 	struct page *page;
1179 	unsigned long size, pgoff;
1180 	int did_readaround = 0, majmin = VM_FAULT_MINOR;
1181 
1182 	pgoff = ((address-area->vm_start) >> PAGE_CACHE_SHIFT) + area->vm_pgoff;
1183 
1184 retry_all:
1185 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1186 	if (pgoff >= size)
1187 		goto outside_data_content;
1188 
1189 	/* If we don't want any read-ahead, don't bother */
1190 	if (VM_RandomReadHint(area))
1191 		goto no_cached_page;
1192 
1193 	/*
1194 	 * The readahead code wants to be told about each and every page
1195 	 * so it can build and shrink its windows appropriately
1196 	 *
1197 	 * For sequential accesses, we use the generic readahead logic.
1198 	 */
1199 	if (VM_SequentialReadHint(area))
1200 		page_cache_readahead(mapping, ra, file, pgoff, 1);
1201 
1202 	/*
1203 	 * Do we have something in the page cache already?
1204 	 */
1205 retry_find:
1206 	page = find_get_page(mapping, pgoff);
1207 	if (!page) {
1208 		unsigned long ra_pages;
1209 
1210 		if (VM_SequentialReadHint(area)) {
1211 			handle_ra_miss(mapping, ra, pgoff);
1212 			goto no_cached_page;
1213 		}
1214 		ra->mmap_miss++;
1215 
1216 		/*
1217 		 * Do we miss much more than hit in this file? If so,
1218 		 * stop bothering with read-ahead. It will only hurt.
1219 		 */
1220 		if (ra->mmap_miss > ra->mmap_hit + MMAP_LOTSAMISS)
1221 			goto no_cached_page;
1222 
1223 		/*
1224 		 * To keep the pgmajfault counter straight, we need to
1225 		 * check did_readaround, as this is an inner loop.
1226 		 */
1227 		if (!did_readaround) {
1228 			majmin = VM_FAULT_MAJOR;
1229 			inc_page_state(pgmajfault);
1230 		}
1231 		did_readaround = 1;
1232 		ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1233 		if (ra_pages) {
1234 			pgoff_t start = 0;
1235 
1236 			if (pgoff > ra_pages / 2)
1237 				start = pgoff - ra_pages / 2;
1238 			do_page_cache_readahead(mapping, file, start, ra_pages);
1239 		}
1240 		page = find_get_page(mapping, pgoff);
1241 		if (!page)
1242 			goto no_cached_page;
1243 	}
1244 
1245 	if (!did_readaround)
1246 		ra->mmap_hit++;
1247 
1248 	/*
1249 	 * Ok, found a page in the page cache, now we need to check
1250 	 * that it's up-to-date.
1251 	 */
1252 	if (!PageUptodate(page))
1253 		goto page_not_uptodate;
1254 
1255 success:
1256 	/*
1257 	 * Found the page and have a reference on it.
1258 	 */
1259 	mark_page_accessed(page);
1260 	if (type)
1261 		*type = majmin;
1262 	return page;
1263 
1264 outside_data_content:
1265 	/*
1266 	 * An external ptracer can access pages that normally aren't
1267 	 * accessible..
1268 	 */
1269 	if (area->vm_mm == current->mm)
1270 		return NULL;
1271 	/* Fall through to the non-read-ahead case */
1272 no_cached_page:
1273 	/*
1274 	 * We're only likely to ever get here if MADV_RANDOM is in
1275 	 * effect.
1276 	 */
1277 	error = page_cache_read(file, pgoff);
1278 	grab_swap_token();
1279 
1280 	/*
1281 	 * The page we want has now been added to the page cache.
1282 	 * In the unlikely event that someone removed it in the
1283 	 * meantime, we'll just come back here and read it again.
1284 	 */
1285 	if (error >= 0)
1286 		goto retry_find;
1287 
1288 	/*
1289 	 * An error return from page_cache_read can result if the
1290 	 * system is low on memory, or a problem occurs while trying
1291 	 * to schedule I/O.
1292 	 */
1293 	if (error == -ENOMEM)
1294 		return NOPAGE_OOM;
1295 	return NULL;
1296 
1297 page_not_uptodate:
1298 	if (!did_readaround) {
1299 		majmin = VM_FAULT_MAJOR;
1300 		inc_page_state(pgmajfault);
1301 	}
1302 	lock_page(page);
1303 
1304 	/* Did it get unhashed while we waited for it? */
1305 	if (!page->mapping) {
1306 		unlock_page(page);
1307 		page_cache_release(page);
1308 		goto retry_all;
1309 	}
1310 
1311 	/* Did somebody else get it up-to-date? */
1312 	if (PageUptodate(page)) {
1313 		unlock_page(page);
1314 		goto success;
1315 	}
1316 
1317 	if (!mapping->a_ops->readpage(file, page)) {
1318 		wait_on_page_locked(page);
1319 		if (PageUptodate(page))
1320 			goto success;
1321 	}
1322 
1323 	/*
1324 	 * Umm, take care of errors if the page isn't up-to-date.
1325 	 * Try to re-read it _once_. We do this synchronously,
1326 	 * because there really aren't any performance issues here
1327 	 * and we need to check for errors.
1328 	 */
1329 	lock_page(page);
1330 
1331 	/* Somebody truncated the page on us? */
1332 	if (!page->mapping) {
1333 		unlock_page(page);
1334 		page_cache_release(page);
1335 		goto retry_all;
1336 	}
1337 
1338 	/* Somebody else successfully read it in? */
1339 	if (PageUptodate(page)) {
1340 		unlock_page(page);
1341 		goto success;
1342 	}
1343 	ClearPageError(page);
1344 	if (!mapping->a_ops->readpage(file, page)) {
1345 		wait_on_page_locked(page);
1346 		if (PageUptodate(page))
1347 			goto success;
1348 	}
1349 
1350 	/*
1351 	 * Things didn't work out. Return zero to tell the
1352 	 * mm layer so, possibly freeing the page cache page first.
1353 	 */
1354 	page_cache_release(page);
1355 	return NULL;
1356 }
1357 
1358 EXPORT_SYMBOL(filemap_nopage);
1359 
1360 static struct page * filemap_getpage(struct file *file, unsigned long pgoff,
1361 					int nonblock)
1362 {
1363 	struct address_space *mapping = file->f_mapping;
1364 	struct page *page;
1365 	int error;
1366 
1367 	/*
1368 	 * Do we have something in the page cache already?
1369 	 */
1370 retry_find:
1371 	page = find_get_page(mapping, pgoff);
1372 	if (!page) {
1373 		if (nonblock)
1374 			return NULL;
1375 		goto no_cached_page;
1376 	}
1377 
1378 	/*
1379 	 * Ok, found a page in the page cache, now we need to check
1380 	 * that it's up-to-date.
1381 	 */
1382 	if (!PageUptodate(page))
1383 		goto page_not_uptodate;
1384 
1385 success:
1386 	/*
1387 	 * Found the page and have a reference on it.
1388 	 */
1389 	mark_page_accessed(page);
1390 	return page;
1391 
1392 no_cached_page:
1393 	error = page_cache_read(file, pgoff);
1394 
1395 	/*
1396 	 * The page we want has now been added to the page cache.
1397 	 * In the unlikely event that someone removed it in the
1398 	 * meantime, we'll just come back here and read it again.
1399 	 */
1400 	if (error >= 0)
1401 		goto retry_find;
1402 
1403 	/*
1404 	 * An error return from page_cache_read can result if the
1405 	 * system is low on memory, or a problem occurs while trying
1406 	 * to schedule I/O.
1407 	 */
1408 	return NULL;
1409 
1410 page_not_uptodate:
1411 	lock_page(page);
1412 
1413 	/* Did it get unhashed while we waited for it? */
1414 	if (!page->mapping) {
1415 		unlock_page(page);
1416 		goto err;
1417 	}
1418 
1419 	/* Did somebody else get it up-to-date? */
1420 	if (PageUptodate(page)) {
1421 		unlock_page(page);
1422 		goto success;
1423 	}
1424 
1425 	if (!mapping->a_ops->readpage(file, page)) {
1426 		wait_on_page_locked(page);
1427 		if (PageUptodate(page))
1428 			goto success;
1429 	}
1430 
1431 	/*
1432 	 * Umm, take care of errors if the page isn't up-to-date.
1433 	 * Try to re-read it _once_. We do this synchronously,
1434 	 * because there really aren't any performance issues here
1435 	 * and we need to check for errors.
1436 	 */
1437 	lock_page(page);
1438 
1439 	/* Somebody truncated the page on us? */
1440 	if (!page->mapping) {
1441 		unlock_page(page);
1442 		goto err;
1443 	}
1444 	/* Somebody else successfully read it in? */
1445 	if (PageUptodate(page)) {
1446 		unlock_page(page);
1447 		goto success;
1448 	}
1449 
1450 	ClearPageError(page);
1451 	if (!mapping->a_ops->readpage(file, page)) {
1452 		wait_on_page_locked(page);
1453 		if (PageUptodate(page))
1454 			goto success;
1455 	}
1456 
1457 	/*
1458 	 * Things didn't work out. Return zero to tell the
1459 	 * mm layer so, possibly freeing the page cache page first.
1460 	 */
1461 err:
1462 	page_cache_release(page);
1463 
1464 	return NULL;
1465 }
1466 
1467 int filemap_populate(struct vm_area_struct *vma, unsigned long addr,
1468 		unsigned long len, pgprot_t prot, unsigned long pgoff,
1469 		int nonblock)
1470 {
1471 	struct file *file = vma->vm_file;
1472 	struct address_space *mapping = file->f_mapping;
1473 	struct inode *inode = mapping->host;
1474 	unsigned long size;
1475 	struct mm_struct *mm = vma->vm_mm;
1476 	struct page *page;
1477 	int err;
1478 
1479 	if (!nonblock)
1480 		force_page_cache_readahead(mapping, vma->vm_file,
1481 					pgoff, len >> PAGE_CACHE_SHIFT);
1482 
1483 repeat:
1484 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1485 	if (pgoff + (len >> PAGE_CACHE_SHIFT) > size)
1486 		return -EINVAL;
1487 
1488 	page = filemap_getpage(file, pgoff, nonblock);
1489 	if (!page && !nonblock)
1490 		return -ENOMEM;
1491 	if (page) {
1492 		err = install_page(mm, vma, addr, page, prot);
1493 		if (err) {
1494 			page_cache_release(page);
1495 			return err;
1496 		}
1497 	} else {
1498 		err = install_file_pte(mm, vma, addr, pgoff, prot);
1499 		if (err)
1500 			return err;
1501 	}
1502 
1503 	len -= PAGE_SIZE;
1504 	addr += PAGE_SIZE;
1505 	pgoff++;
1506 	if (len)
1507 		goto repeat;
1508 
1509 	return 0;
1510 }
1511 
1512 struct vm_operations_struct generic_file_vm_ops = {
1513 	.nopage		= filemap_nopage,
1514 	.populate	= filemap_populate,
1515 };
1516 
1517 /* This is used for a general mmap of a disk file */
1518 
1519 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1520 {
1521 	struct address_space *mapping = file->f_mapping;
1522 
1523 	if (!mapping->a_ops->readpage)
1524 		return -ENOEXEC;
1525 	file_accessed(file);
1526 	vma->vm_ops = &generic_file_vm_ops;
1527 	return 0;
1528 }
1529 EXPORT_SYMBOL(filemap_populate);
1530 
1531 /*
1532  * This is for filesystems which do not implement ->writepage.
1533  */
1534 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1535 {
1536 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1537 		return -EINVAL;
1538 	return generic_file_mmap(file, vma);
1539 }
1540 #else
1541 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1542 {
1543 	return -ENOSYS;
1544 }
1545 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1546 {
1547 	return -ENOSYS;
1548 }
1549 #endif /* CONFIG_MMU */
1550 
1551 EXPORT_SYMBOL(generic_file_mmap);
1552 EXPORT_SYMBOL(generic_file_readonly_mmap);
1553 
1554 static inline struct page *__read_cache_page(struct address_space *mapping,
1555 				unsigned long index,
1556 				int (*filler)(void *,struct page*),
1557 				void *data)
1558 {
1559 	struct page *page, *cached_page = NULL;
1560 	int err;
1561 repeat:
1562 	page = find_get_page(mapping, index);
1563 	if (!page) {
1564 		if (!cached_page) {
1565 			cached_page = page_cache_alloc_cold(mapping);
1566 			if (!cached_page)
1567 				return ERR_PTR(-ENOMEM);
1568 		}
1569 		err = add_to_page_cache_lru(cached_page, mapping,
1570 					index, GFP_KERNEL);
1571 		if (err == -EEXIST)
1572 			goto repeat;
1573 		if (err < 0) {
1574 			/* Presumably ENOMEM for radix tree node */
1575 			page_cache_release(cached_page);
1576 			return ERR_PTR(err);
1577 		}
1578 		page = cached_page;
1579 		cached_page = NULL;
1580 		err = filler(data, page);
1581 		if (err < 0) {
1582 			page_cache_release(page);
1583 			page = ERR_PTR(err);
1584 		}
1585 	}
1586 	if (cached_page)
1587 		page_cache_release(cached_page);
1588 	return page;
1589 }
1590 
1591 /*
1592  * Read into the page cache. If a page already exists,
1593  * and PageUptodate() is not set, try to fill the page.
1594  */
1595 struct page *read_cache_page(struct address_space *mapping,
1596 				unsigned long index,
1597 				int (*filler)(void *,struct page*),
1598 				void *data)
1599 {
1600 	struct page *page;
1601 	int err;
1602 
1603 retry:
1604 	page = __read_cache_page(mapping, index, filler, data);
1605 	if (IS_ERR(page))
1606 		goto out;
1607 	mark_page_accessed(page);
1608 	if (PageUptodate(page))
1609 		goto out;
1610 
1611 	lock_page(page);
1612 	if (!page->mapping) {
1613 		unlock_page(page);
1614 		page_cache_release(page);
1615 		goto retry;
1616 	}
1617 	if (PageUptodate(page)) {
1618 		unlock_page(page);
1619 		goto out;
1620 	}
1621 	err = filler(data, page);
1622 	if (err < 0) {
1623 		page_cache_release(page);
1624 		page = ERR_PTR(err);
1625 	}
1626  out:
1627 	return page;
1628 }
1629 
1630 EXPORT_SYMBOL(read_cache_page);
1631 
1632 /*
1633  * If the page was newly created, increment its refcount and add it to the
1634  * caller's lru-buffering pagevec.  This function is specifically for
1635  * generic_file_write().
1636  */
1637 static inline struct page *
1638 __grab_cache_page(struct address_space *mapping, unsigned long index,
1639 			struct page **cached_page, struct pagevec *lru_pvec)
1640 {
1641 	int err;
1642 	struct page *page;
1643 repeat:
1644 	page = find_lock_page(mapping, index);
1645 	if (!page) {
1646 		if (!*cached_page) {
1647 			*cached_page = page_cache_alloc(mapping);
1648 			if (!*cached_page)
1649 				return NULL;
1650 		}
1651 		err = add_to_page_cache(*cached_page, mapping,
1652 					index, GFP_KERNEL);
1653 		if (err == -EEXIST)
1654 			goto repeat;
1655 		if (err == 0) {
1656 			page = *cached_page;
1657 			page_cache_get(page);
1658 			if (!pagevec_add(lru_pvec, page))
1659 				__pagevec_lru_add(lru_pvec);
1660 			*cached_page = NULL;
1661 		}
1662 	}
1663 	return page;
1664 }
1665 
1666 /*
1667  * The logic we want is
1668  *
1669  *	if suid or (sgid and xgrp)
1670  *		remove privs
1671  */
1672 int remove_suid(struct dentry *dentry)
1673 {
1674 	mode_t mode = dentry->d_inode->i_mode;
1675 	int kill = 0;
1676 	int result = 0;
1677 
1678 	/* suid always must be killed */
1679 	if (unlikely(mode & S_ISUID))
1680 		kill = ATTR_KILL_SUID;
1681 
1682 	/*
1683 	 * sgid without any exec bits is just a mandatory locking mark; leave
1684 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1685 	 */
1686 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1687 		kill |= ATTR_KILL_SGID;
1688 
1689 	if (unlikely(kill && !capable(CAP_FSETID))) {
1690 		struct iattr newattrs;
1691 
1692 		newattrs.ia_valid = ATTR_FORCE | kill;
1693 		result = notify_change(dentry, &newattrs);
1694 	}
1695 	return result;
1696 }
1697 EXPORT_SYMBOL(remove_suid);
1698 
1699 /*
1700  * Copy as much as we can into the page and return the number of bytes which
1701  * were sucessfully copied.  If a fault is encountered then clear the page
1702  * out to (offset+bytes) and return the number of bytes which were copied.
1703  */
1704 static inline size_t
1705 filemap_copy_from_user(struct page *page, unsigned long offset,
1706 			const char __user *buf, unsigned bytes)
1707 {
1708 	char *kaddr;
1709 	int left;
1710 
1711 	kaddr = kmap_atomic(page, KM_USER0);
1712 	left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
1713 	kunmap_atomic(kaddr, KM_USER0);
1714 
1715 	if (left != 0) {
1716 		/* Do it the slow way */
1717 		kaddr = kmap(page);
1718 		left = __copy_from_user(kaddr + offset, buf, bytes);
1719 		kunmap(page);
1720 	}
1721 	return bytes - left;
1722 }
1723 
1724 static size_t
1725 __filemap_copy_from_user_iovec(char *vaddr,
1726 			const struct iovec *iov, size_t base, size_t bytes)
1727 {
1728 	size_t copied = 0, left = 0;
1729 
1730 	while (bytes) {
1731 		char __user *buf = iov->iov_base + base;
1732 		int copy = min(bytes, iov->iov_len - base);
1733 
1734 		base = 0;
1735 		left = __copy_from_user_inatomic(vaddr, buf, copy);
1736 		copied += copy;
1737 		bytes -= copy;
1738 		vaddr += copy;
1739 		iov++;
1740 
1741 		if (unlikely(left)) {
1742 			/* zero the rest of the target like __copy_from_user */
1743 			if (bytes)
1744 				memset(vaddr, 0, bytes);
1745 			break;
1746 		}
1747 	}
1748 	return copied - left;
1749 }
1750 
1751 /*
1752  * This has the same sideeffects and return value as filemap_copy_from_user().
1753  * The difference is that on a fault we need to memset the remainder of the
1754  * page (out to offset+bytes), to emulate filemap_copy_from_user()'s
1755  * single-segment behaviour.
1756  */
1757 static inline size_t
1758 filemap_copy_from_user_iovec(struct page *page, unsigned long offset,
1759 			const struct iovec *iov, size_t base, size_t bytes)
1760 {
1761 	char *kaddr;
1762 	size_t copied;
1763 
1764 	kaddr = kmap_atomic(page, KM_USER0);
1765 	copied = __filemap_copy_from_user_iovec(kaddr + offset, iov,
1766 						base, bytes);
1767 	kunmap_atomic(kaddr, KM_USER0);
1768 	if (copied != bytes) {
1769 		kaddr = kmap(page);
1770 		copied = __filemap_copy_from_user_iovec(kaddr + offset, iov,
1771 							base, bytes);
1772 		kunmap(page);
1773 	}
1774 	return copied;
1775 }
1776 
1777 static inline void
1778 filemap_set_next_iovec(const struct iovec **iovp, size_t *basep, size_t bytes)
1779 {
1780 	const struct iovec *iov = *iovp;
1781 	size_t base = *basep;
1782 
1783 	while (bytes) {
1784 		int copy = min(bytes, iov->iov_len - base);
1785 
1786 		bytes -= copy;
1787 		base += copy;
1788 		if (iov->iov_len == base) {
1789 			iov++;
1790 			base = 0;
1791 		}
1792 	}
1793 	*iovp = iov;
1794 	*basep = base;
1795 }
1796 
1797 /*
1798  * Performs necessary checks before doing a write
1799  *
1800  * Can adjust writing position aor amount of bytes to write.
1801  * Returns appropriate error code that caller should return or
1802  * zero in case that write should be allowed.
1803  */
1804 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1805 {
1806 	struct inode *inode = file->f_mapping->host;
1807 	unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1808 
1809         if (unlikely(*pos < 0))
1810                 return -EINVAL;
1811 
1812         if (unlikely(file->f_error)) {
1813                 int err = file->f_error;
1814                 file->f_error = 0;
1815                 return err;
1816         }
1817 
1818 	if (!isblk) {
1819 		/* FIXME: this is for backwards compatibility with 2.4 */
1820 		if (file->f_flags & O_APPEND)
1821                         *pos = i_size_read(inode);
1822 
1823 		if (limit != RLIM_INFINITY) {
1824 			if (*pos >= limit) {
1825 				send_sig(SIGXFSZ, current, 0);
1826 				return -EFBIG;
1827 			}
1828 			if (*count > limit - (typeof(limit))*pos) {
1829 				*count = limit - (typeof(limit))*pos;
1830 			}
1831 		}
1832 	}
1833 
1834 	/*
1835 	 * LFS rule
1836 	 */
1837 	if (unlikely(*pos + *count > MAX_NON_LFS &&
1838 				!(file->f_flags & O_LARGEFILE))) {
1839 		if (*pos >= MAX_NON_LFS) {
1840 			send_sig(SIGXFSZ, current, 0);
1841 			return -EFBIG;
1842 		}
1843 		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1844 			*count = MAX_NON_LFS - (unsigned long)*pos;
1845 		}
1846 	}
1847 
1848 	/*
1849 	 * Are we about to exceed the fs block limit ?
1850 	 *
1851 	 * If we have written data it becomes a short write.  If we have
1852 	 * exceeded without writing data we send a signal and return EFBIG.
1853 	 * Linus frestrict idea will clean these up nicely..
1854 	 */
1855 	if (likely(!isblk)) {
1856 		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
1857 			if (*count || *pos > inode->i_sb->s_maxbytes) {
1858 				send_sig(SIGXFSZ, current, 0);
1859 				return -EFBIG;
1860 			}
1861 			/* zero-length writes at ->s_maxbytes are OK */
1862 		}
1863 
1864 		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
1865 			*count = inode->i_sb->s_maxbytes - *pos;
1866 	} else {
1867 		loff_t isize;
1868 		if (bdev_read_only(I_BDEV(inode)))
1869 			return -EPERM;
1870 		isize = i_size_read(inode);
1871 		if (*pos >= isize) {
1872 			if (*count || *pos > isize)
1873 				return -ENOSPC;
1874 		}
1875 
1876 		if (*pos + *count > isize)
1877 			*count = isize - *pos;
1878 	}
1879 	return 0;
1880 }
1881 EXPORT_SYMBOL(generic_write_checks);
1882 
1883 ssize_t
1884 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
1885 		unsigned long *nr_segs, loff_t pos, loff_t *ppos,
1886 		size_t count, size_t ocount)
1887 {
1888 	struct file	*file = iocb->ki_filp;
1889 	struct address_space *mapping = file->f_mapping;
1890 	struct inode	*inode = mapping->host;
1891 	ssize_t		written;
1892 
1893 	if (count != ocount)
1894 		*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
1895 
1896 	written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
1897 	if (written > 0) {
1898 		loff_t end = pos + written;
1899 		if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
1900 			i_size_write(inode,  end);
1901 			mark_inode_dirty(inode);
1902 		}
1903 		*ppos = end;
1904 	}
1905 
1906 	/*
1907 	 * Sync the fs metadata but not the minor inode changes and
1908 	 * of course not the data as we did direct DMA for the IO.
1909 	 * i_sem is held, which protects generic_osync_inode() from
1910 	 * livelocking.
1911 	 */
1912 	if (written >= 0 && file->f_flags & O_SYNC)
1913 		generic_osync_inode(inode, mapping, OSYNC_METADATA);
1914 	if (written == count && !is_sync_kiocb(iocb))
1915 		written = -EIOCBQUEUED;
1916 	return written;
1917 }
1918 EXPORT_SYMBOL(generic_file_direct_write);
1919 
1920 ssize_t
1921 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
1922 		unsigned long nr_segs, loff_t pos, loff_t *ppos,
1923 		size_t count, ssize_t written)
1924 {
1925 	struct file *file = iocb->ki_filp;
1926 	struct address_space * mapping = file->f_mapping;
1927 	struct address_space_operations *a_ops = mapping->a_ops;
1928 	struct inode 	*inode = mapping->host;
1929 	long		status = 0;
1930 	struct page	*page;
1931 	struct page	*cached_page = NULL;
1932 	size_t		bytes;
1933 	struct pagevec	lru_pvec;
1934 	const struct iovec *cur_iov = iov; /* current iovec */
1935 	size_t		iov_base = 0;	   /* offset in the current iovec */
1936 	char __user	*buf;
1937 
1938 	pagevec_init(&lru_pvec, 0);
1939 
1940 	/*
1941 	 * handle partial DIO write.  Adjust cur_iov if needed.
1942 	 */
1943 	if (likely(nr_segs == 1))
1944 		buf = iov->iov_base + written;
1945 	else {
1946 		filemap_set_next_iovec(&cur_iov, &iov_base, written);
1947 		buf = iov->iov_base + iov_base;
1948 	}
1949 
1950 	do {
1951 		unsigned long index;
1952 		unsigned long offset;
1953 		size_t copied;
1954 
1955 		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
1956 		index = pos >> PAGE_CACHE_SHIFT;
1957 		bytes = PAGE_CACHE_SIZE - offset;
1958 		if (bytes > count)
1959 			bytes = count;
1960 
1961 		/*
1962 		 * Bring in the user page that we will copy from _first_.
1963 		 * Otherwise there's a nasty deadlock on copying from the
1964 		 * same page as we're writing to, without it being marked
1965 		 * up-to-date.
1966 		 */
1967 		fault_in_pages_readable(buf, bytes);
1968 
1969 		page = __grab_cache_page(mapping,index,&cached_page,&lru_pvec);
1970 		if (!page) {
1971 			status = -ENOMEM;
1972 			break;
1973 		}
1974 
1975 		status = a_ops->prepare_write(file, page, offset, offset+bytes);
1976 		if (unlikely(status)) {
1977 			loff_t isize = i_size_read(inode);
1978 			/*
1979 			 * prepare_write() may have instantiated a few blocks
1980 			 * outside i_size.  Trim these off again.
1981 			 */
1982 			unlock_page(page);
1983 			page_cache_release(page);
1984 			if (pos + bytes > isize)
1985 				vmtruncate(inode, isize);
1986 			break;
1987 		}
1988 		if (likely(nr_segs == 1))
1989 			copied = filemap_copy_from_user(page, offset,
1990 							buf, bytes);
1991 		else
1992 			copied = filemap_copy_from_user_iovec(page, offset,
1993 						cur_iov, iov_base, bytes);
1994 		flush_dcache_page(page);
1995 		status = a_ops->commit_write(file, page, offset, offset+bytes);
1996 		if (likely(copied > 0)) {
1997 			if (!status)
1998 				status = copied;
1999 
2000 			if (status >= 0) {
2001 				written += status;
2002 				count -= status;
2003 				pos += status;
2004 				buf += status;
2005 				if (unlikely(nr_segs > 1))
2006 					filemap_set_next_iovec(&cur_iov,
2007 							&iov_base, status);
2008 			}
2009 		}
2010 		if (unlikely(copied != bytes))
2011 			if (status >= 0)
2012 				status = -EFAULT;
2013 		unlock_page(page);
2014 		mark_page_accessed(page);
2015 		page_cache_release(page);
2016 		if (status < 0)
2017 			break;
2018 		balance_dirty_pages_ratelimited(mapping);
2019 		cond_resched();
2020 	} while (count);
2021 	*ppos = pos;
2022 
2023 	if (cached_page)
2024 		page_cache_release(cached_page);
2025 
2026 	/*
2027 	 * For now, when the user asks for O_SYNC, we'll actually give O_DSYNC
2028 	 */
2029 	if (likely(status >= 0)) {
2030 		if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2031 			if (!a_ops->writepage || !is_sync_kiocb(iocb))
2032 				status = generic_osync_inode(inode, mapping,
2033 						OSYNC_METADATA|OSYNC_DATA);
2034 		}
2035   	}
2036 
2037 	/*
2038 	 * If we get here for O_DIRECT writes then we must have fallen through
2039 	 * to buffered writes (block instantiation inside i_size).  So we sync
2040 	 * the file data here, to try to honour O_DIRECT expectations.
2041 	 */
2042 	if (unlikely(file->f_flags & O_DIRECT) && written)
2043 		status = filemap_write_and_wait(mapping);
2044 
2045 	pagevec_lru_add(&lru_pvec);
2046 	return written ? written : status;
2047 }
2048 EXPORT_SYMBOL(generic_file_buffered_write);
2049 
2050 ssize_t
2051 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2052 				unsigned long nr_segs, loff_t *ppos)
2053 {
2054 	struct file *file = iocb->ki_filp;
2055 	struct address_space * mapping = file->f_mapping;
2056 	size_t ocount;		/* original count */
2057 	size_t count;		/* after file limit checks */
2058 	struct inode 	*inode = mapping->host;
2059 	unsigned long	seg;
2060 	loff_t		pos;
2061 	ssize_t		written;
2062 	ssize_t		err;
2063 
2064 	ocount = 0;
2065 	for (seg = 0; seg < nr_segs; seg++) {
2066 		const struct iovec *iv = &iov[seg];
2067 
2068 		/*
2069 		 * If any segment has a negative length, or the cumulative
2070 		 * length ever wraps negative then return -EINVAL.
2071 		 */
2072 		ocount += iv->iov_len;
2073 		if (unlikely((ssize_t)(ocount|iv->iov_len) < 0))
2074 			return -EINVAL;
2075 		if (access_ok(VERIFY_READ, iv->iov_base, iv->iov_len))
2076 			continue;
2077 		if (seg == 0)
2078 			return -EFAULT;
2079 		nr_segs = seg;
2080 		ocount -= iv->iov_len;	/* This segment is no good */
2081 		break;
2082 	}
2083 
2084 	count = ocount;
2085 	pos = *ppos;
2086 
2087 	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2088 
2089 	/* We can write back this queue in page reclaim */
2090 	current->backing_dev_info = mapping->backing_dev_info;
2091 	written = 0;
2092 
2093 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2094 	if (err)
2095 		goto out;
2096 
2097 	if (count == 0)
2098 		goto out;
2099 
2100 	err = remove_suid(file->f_dentry);
2101 	if (err)
2102 		goto out;
2103 
2104 	inode_update_time(inode, 1);
2105 
2106 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2107 	if (unlikely(file->f_flags & O_DIRECT)) {
2108 		written = generic_file_direct_write(iocb, iov,
2109 				&nr_segs, pos, ppos, count, ocount);
2110 		if (written < 0 || written == count)
2111 			goto out;
2112 		/*
2113 		 * direct-io write to a hole: fall through to buffered I/O
2114 		 * for completing the rest of the request.
2115 		 */
2116 		pos += written;
2117 		count -= written;
2118 	}
2119 
2120 	written = generic_file_buffered_write(iocb, iov, nr_segs,
2121 			pos, ppos, count, written);
2122 out:
2123 	current->backing_dev_info = NULL;
2124 	return written ? written : err;
2125 }
2126 EXPORT_SYMBOL(generic_file_aio_write_nolock);
2127 
2128 ssize_t
2129 generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2130 				unsigned long nr_segs, loff_t *ppos)
2131 {
2132 	struct file *file = iocb->ki_filp;
2133 	struct address_space *mapping = file->f_mapping;
2134 	struct inode *inode = mapping->host;
2135 	ssize_t ret;
2136 	loff_t pos = *ppos;
2137 
2138 	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs, ppos);
2139 
2140 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2141 		int err;
2142 
2143 		err = sync_page_range_nolock(inode, mapping, pos, ret);
2144 		if (err < 0)
2145 			ret = err;
2146 	}
2147 	return ret;
2148 }
2149 
2150 ssize_t
2151 __generic_file_write_nolock(struct file *file, const struct iovec *iov,
2152 				unsigned long nr_segs, loff_t *ppos)
2153 {
2154 	struct kiocb kiocb;
2155 	ssize_t ret;
2156 
2157 	init_sync_kiocb(&kiocb, file);
2158 	ret = __generic_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos);
2159 	if (ret == -EIOCBQUEUED)
2160 		ret = wait_on_sync_kiocb(&kiocb);
2161 	return ret;
2162 }
2163 
2164 ssize_t
2165 generic_file_write_nolock(struct file *file, const struct iovec *iov,
2166 				unsigned long nr_segs, loff_t *ppos)
2167 {
2168 	struct kiocb kiocb;
2169 	ssize_t ret;
2170 
2171 	init_sync_kiocb(&kiocb, file);
2172 	ret = generic_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos);
2173 	if (-EIOCBQUEUED == ret)
2174 		ret = wait_on_sync_kiocb(&kiocb);
2175 	return ret;
2176 }
2177 EXPORT_SYMBOL(generic_file_write_nolock);
2178 
2179 ssize_t generic_file_aio_write(struct kiocb *iocb, const char __user *buf,
2180 			       size_t count, loff_t pos)
2181 {
2182 	struct file *file = iocb->ki_filp;
2183 	struct address_space *mapping = file->f_mapping;
2184 	struct inode *inode = mapping->host;
2185 	ssize_t ret;
2186 	struct iovec local_iov = { .iov_base = (void __user *)buf,
2187 					.iov_len = count };
2188 
2189 	BUG_ON(iocb->ki_pos != pos);
2190 
2191 	down(&inode->i_sem);
2192 	ret = __generic_file_aio_write_nolock(iocb, &local_iov, 1,
2193 						&iocb->ki_pos);
2194 	up(&inode->i_sem);
2195 
2196 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2197 		ssize_t err;
2198 
2199 		err = sync_page_range(inode, mapping, pos, ret);
2200 		if (err < 0)
2201 			ret = err;
2202 	}
2203 	return ret;
2204 }
2205 EXPORT_SYMBOL(generic_file_aio_write);
2206 
2207 ssize_t generic_file_write(struct file *file, const char __user *buf,
2208 			   size_t count, loff_t *ppos)
2209 {
2210 	struct address_space *mapping = file->f_mapping;
2211 	struct inode *inode = mapping->host;
2212 	ssize_t	ret;
2213 	struct iovec local_iov = { .iov_base = (void __user *)buf,
2214 					.iov_len = count };
2215 
2216 	down(&inode->i_sem);
2217 	ret = __generic_file_write_nolock(file, &local_iov, 1, ppos);
2218 	up(&inode->i_sem);
2219 
2220 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2221 		ssize_t err;
2222 
2223 		err = sync_page_range(inode, mapping, *ppos - ret, ret);
2224 		if (err < 0)
2225 			ret = err;
2226 	}
2227 	return ret;
2228 }
2229 EXPORT_SYMBOL(generic_file_write);
2230 
2231 ssize_t generic_file_readv(struct file *filp, const struct iovec *iov,
2232 			unsigned long nr_segs, loff_t *ppos)
2233 {
2234 	struct kiocb kiocb;
2235 	ssize_t ret;
2236 
2237 	init_sync_kiocb(&kiocb, filp);
2238 	ret = __generic_file_aio_read(&kiocb, iov, nr_segs, ppos);
2239 	if (-EIOCBQUEUED == ret)
2240 		ret = wait_on_sync_kiocb(&kiocb);
2241 	return ret;
2242 }
2243 EXPORT_SYMBOL(generic_file_readv);
2244 
2245 ssize_t generic_file_writev(struct file *file, const struct iovec *iov,
2246 			unsigned long nr_segs, loff_t *ppos)
2247 {
2248 	struct address_space *mapping = file->f_mapping;
2249 	struct inode *inode = mapping->host;
2250 	ssize_t ret;
2251 
2252 	down(&inode->i_sem);
2253 	ret = __generic_file_write_nolock(file, iov, nr_segs, ppos);
2254 	up(&inode->i_sem);
2255 
2256 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2257 		int err;
2258 
2259 		err = sync_page_range(inode, mapping, *ppos - ret, ret);
2260 		if (err < 0)
2261 			ret = err;
2262 	}
2263 	return ret;
2264 }
2265 EXPORT_SYMBOL(generic_file_writev);
2266 
2267 /*
2268  * Called under i_sem for writes to S_ISREG files.   Returns -EIO if something
2269  * went wrong during pagecache shootdown.
2270  */
2271 ssize_t
2272 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
2273 	loff_t offset, unsigned long nr_segs)
2274 {
2275 	struct file *file = iocb->ki_filp;
2276 	struct address_space *mapping = file->f_mapping;
2277 	ssize_t retval;
2278 	size_t write_len = 0;
2279 
2280 	/*
2281 	 * If it's a write, unmap all mmappings of the file up-front.  This
2282 	 * will cause any pte dirty bits to be propagated into the pageframes
2283 	 * for the subsequent filemap_write_and_wait().
2284 	 */
2285 	if (rw == WRITE) {
2286 		write_len = iov_length(iov, nr_segs);
2287 	       	if (mapping_mapped(mapping))
2288 			unmap_mapping_range(mapping, offset, write_len, 0);
2289 	}
2290 
2291 	retval = filemap_write_and_wait(mapping);
2292 	if (retval == 0) {
2293 		retval = mapping->a_ops->direct_IO(rw, iocb, iov,
2294 						offset, nr_segs);
2295 		if (rw == WRITE && mapping->nrpages) {
2296 			pgoff_t end = (offset + write_len - 1)
2297 						>> PAGE_CACHE_SHIFT;
2298 			int err = invalidate_inode_pages2_range(mapping,
2299 					offset >> PAGE_CACHE_SHIFT, end);
2300 			if (err)
2301 				retval = err;
2302 		}
2303 	}
2304 	return retval;
2305 }
2306 EXPORT_SYMBOL_GPL(generic_file_direct_IO);
2307