1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/filemap.c 4 * 5 * Copyright (C) 1994-1999 Linus Torvalds 6 */ 7 8 /* 9 * This file handles the generic file mmap semantics used by 10 * most "normal" filesystems (but you don't /have/ to use this: 11 * the NFS filesystem used to do this differently, for example) 12 */ 13 #include <linux/export.h> 14 #include <linux/compiler.h> 15 #include <linux/dax.h> 16 #include <linux/fs.h> 17 #include <linux/sched/signal.h> 18 #include <linux/uaccess.h> 19 #include <linux/capability.h> 20 #include <linux/kernel_stat.h> 21 #include <linux/gfp.h> 22 #include <linux/mm.h> 23 #include <linux/swap.h> 24 #include <linux/swapops.h> 25 #include <linux/mman.h> 26 #include <linux/pagemap.h> 27 #include <linux/file.h> 28 #include <linux/uio.h> 29 #include <linux/error-injection.h> 30 #include <linux/hash.h> 31 #include <linux/writeback.h> 32 #include <linux/backing-dev.h> 33 #include <linux/pagevec.h> 34 #include <linux/security.h> 35 #include <linux/cpuset.h> 36 #include <linux/hugetlb.h> 37 #include <linux/memcontrol.h> 38 #include <linux/shmem_fs.h> 39 #include <linux/rmap.h> 40 #include <linux/delayacct.h> 41 #include <linux/psi.h> 42 #include <linux/ramfs.h> 43 #include <linux/page_idle.h> 44 #include <linux/migrate.h> 45 #include <linux/pipe_fs_i.h> 46 #include <linux/splice.h> 47 #include <asm/pgalloc.h> 48 #include <asm/tlbflush.h> 49 #include "internal.h" 50 51 #define CREATE_TRACE_POINTS 52 #include <trace/events/filemap.h> 53 54 /* 55 * FIXME: remove all knowledge of the buffer layer from the core VM 56 */ 57 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 58 59 #include <asm/mman.h> 60 61 /* 62 * Shared mappings implemented 30.11.1994. It's not fully working yet, 63 * though. 64 * 65 * Shared mappings now work. 15.8.1995 Bruno. 66 * 67 * finished 'unifying' the page and buffer cache and SMP-threaded the 68 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 69 * 70 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 71 */ 72 73 /* 74 * Lock ordering: 75 * 76 * ->i_mmap_rwsem (truncate_pagecache) 77 * ->private_lock (__free_pte->block_dirty_folio) 78 * ->swap_lock (exclusive_swap_page, others) 79 * ->i_pages lock 80 * 81 * ->i_rwsem 82 * ->invalidate_lock (acquired by fs in truncate path) 83 * ->i_mmap_rwsem (truncate->unmap_mapping_range) 84 * 85 * ->mmap_lock 86 * ->i_mmap_rwsem 87 * ->page_table_lock or pte_lock (various, mainly in memory.c) 88 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock) 89 * 90 * ->mmap_lock 91 * ->invalidate_lock (filemap_fault) 92 * ->lock_page (filemap_fault, access_process_vm) 93 * 94 * ->i_rwsem (generic_perform_write) 95 * ->mmap_lock (fault_in_readable->do_page_fault) 96 * 97 * bdi->wb.list_lock 98 * sb_lock (fs/fs-writeback.c) 99 * ->i_pages lock (__sync_single_inode) 100 * 101 * ->i_mmap_rwsem 102 * ->anon_vma.lock (vma_merge) 103 * 104 * ->anon_vma.lock 105 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 106 * 107 * ->page_table_lock or pte_lock 108 * ->swap_lock (try_to_unmap_one) 109 * ->private_lock (try_to_unmap_one) 110 * ->i_pages lock (try_to_unmap_one) 111 * ->lruvec->lru_lock (follow_page->mark_page_accessed) 112 * ->lruvec->lru_lock (check_pte_range->isolate_lru_page) 113 * ->private_lock (page_remove_rmap->set_page_dirty) 114 * ->i_pages lock (page_remove_rmap->set_page_dirty) 115 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty) 116 * ->inode->i_lock (page_remove_rmap->set_page_dirty) 117 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg) 118 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 119 * ->inode->i_lock (zap_pte_range->set_page_dirty) 120 * ->private_lock (zap_pte_range->block_dirty_folio) 121 * 122 * ->i_mmap_rwsem 123 * ->tasklist_lock (memory_failure, collect_procs_ao) 124 */ 125 126 static void page_cache_delete(struct address_space *mapping, 127 struct folio *folio, void *shadow) 128 { 129 XA_STATE(xas, &mapping->i_pages, folio->index); 130 long nr = 1; 131 132 mapping_set_update(&xas, mapping); 133 134 /* hugetlb pages are represented by a single entry in the xarray */ 135 if (!folio_test_hugetlb(folio)) { 136 xas_set_order(&xas, folio->index, folio_order(folio)); 137 nr = folio_nr_pages(folio); 138 } 139 140 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 141 142 xas_store(&xas, shadow); 143 xas_init_marks(&xas); 144 145 folio->mapping = NULL; 146 /* Leave page->index set: truncation lookup relies upon it */ 147 mapping->nrpages -= nr; 148 } 149 150 static void filemap_unaccount_folio(struct address_space *mapping, 151 struct folio *folio) 152 { 153 long nr; 154 155 VM_BUG_ON_FOLIO(folio_mapped(folio), folio); 156 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) { 157 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n", 158 current->comm, folio_pfn(folio)); 159 dump_page(&folio->page, "still mapped when deleted"); 160 dump_stack(); 161 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 162 163 if (mapping_exiting(mapping) && !folio_test_large(folio)) { 164 int mapcount = page_mapcount(&folio->page); 165 166 if (folio_ref_count(folio) >= mapcount + 2) { 167 /* 168 * All vmas have already been torn down, so it's 169 * a good bet that actually the page is unmapped 170 * and we'd rather not leak it: if we're wrong, 171 * another bad page check should catch it later. 172 */ 173 page_mapcount_reset(&folio->page); 174 folio_ref_sub(folio, mapcount); 175 } 176 } 177 } 178 179 /* hugetlb folios do not participate in page cache accounting. */ 180 if (folio_test_hugetlb(folio)) 181 return; 182 183 nr = folio_nr_pages(folio); 184 185 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr); 186 if (folio_test_swapbacked(folio)) { 187 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr); 188 if (folio_test_pmd_mappable(folio)) 189 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr); 190 } else if (folio_test_pmd_mappable(folio)) { 191 __lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr); 192 filemap_nr_thps_dec(mapping); 193 } 194 195 /* 196 * At this point folio must be either written or cleaned by 197 * truncate. Dirty folio here signals a bug and loss of 198 * unwritten data - on ordinary filesystems. 199 * 200 * But it's harmless on in-memory filesystems like tmpfs; and can 201 * occur when a driver which did get_user_pages() sets page dirty 202 * before putting it, while the inode is being finally evicted. 203 * 204 * Below fixes dirty accounting after removing the folio entirely 205 * but leaves the dirty flag set: it has no effect for truncated 206 * folio and anyway will be cleared before returning folio to 207 * buddy allocator. 208 */ 209 if (WARN_ON_ONCE(folio_test_dirty(folio) && 210 mapping_can_writeback(mapping))) 211 folio_account_cleaned(folio, inode_to_wb(mapping->host)); 212 } 213 214 /* 215 * Delete a page from the page cache and free it. Caller has to make 216 * sure the page is locked and that nobody else uses it - or that usage 217 * is safe. The caller must hold the i_pages lock. 218 */ 219 void __filemap_remove_folio(struct folio *folio, void *shadow) 220 { 221 struct address_space *mapping = folio->mapping; 222 223 trace_mm_filemap_delete_from_page_cache(folio); 224 filemap_unaccount_folio(mapping, folio); 225 page_cache_delete(mapping, folio, shadow); 226 } 227 228 void filemap_free_folio(struct address_space *mapping, struct folio *folio) 229 { 230 void (*free_folio)(struct folio *); 231 int refs = 1; 232 233 free_folio = mapping->a_ops->free_folio; 234 if (free_folio) 235 free_folio(folio); 236 237 if (folio_test_large(folio) && !folio_test_hugetlb(folio)) 238 refs = folio_nr_pages(folio); 239 folio_put_refs(folio, refs); 240 } 241 242 /** 243 * filemap_remove_folio - Remove folio from page cache. 244 * @folio: The folio. 245 * 246 * This must be called only on folios that are locked and have been 247 * verified to be in the page cache. It will never put the folio into 248 * the free list because the caller has a reference on the page. 249 */ 250 void filemap_remove_folio(struct folio *folio) 251 { 252 struct address_space *mapping = folio->mapping; 253 254 BUG_ON(!folio_test_locked(folio)); 255 spin_lock(&mapping->host->i_lock); 256 xa_lock_irq(&mapping->i_pages); 257 __filemap_remove_folio(folio, NULL); 258 xa_unlock_irq(&mapping->i_pages); 259 if (mapping_shrinkable(mapping)) 260 inode_add_lru(mapping->host); 261 spin_unlock(&mapping->host->i_lock); 262 263 filemap_free_folio(mapping, folio); 264 } 265 266 /* 267 * page_cache_delete_batch - delete several folios from page cache 268 * @mapping: the mapping to which folios belong 269 * @fbatch: batch of folios to delete 270 * 271 * The function walks over mapping->i_pages and removes folios passed in 272 * @fbatch from the mapping. The function expects @fbatch to be sorted 273 * by page index and is optimised for it to be dense. 274 * It tolerates holes in @fbatch (mapping entries at those indices are not 275 * modified). 276 * 277 * The function expects the i_pages lock to be held. 278 */ 279 static void page_cache_delete_batch(struct address_space *mapping, 280 struct folio_batch *fbatch) 281 { 282 XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index); 283 long total_pages = 0; 284 int i = 0; 285 struct folio *folio; 286 287 mapping_set_update(&xas, mapping); 288 xas_for_each(&xas, folio, ULONG_MAX) { 289 if (i >= folio_batch_count(fbatch)) 290 break; 291 292 /* A swap/dax/shadow entry got inserted? Skip it. */ 293 if (xa_is_value(folio)) 294 continue; 295 /* 296 * A page got inserted in our range? Skip it. We have our 297 * pages locked so they are protected from being removed. 298 * If we see a page whose index is higher than ours, it 299 * means our page has been removed, which shouldn't be 300 * possible because we're holding the PageLock. 301 */ 302 if (folio != fbatch->folios[i]) { 303 VM_BUG_ON_FOLIO(folio->index > 304 fbatch->folios[i]->index, folio); 305 continue; 306 } 307 308 WARN_ON_ONCE(!folio_test_locked(folio)); 309 310 folio->mapping = NULL; 311 /* Leave folio->index set: truncation lookup relies on it */ 312 313 i++; 314 xas_store(&xas, NULL); 315 total_pages += folio_nr_pages(folio); 316 } 317 mapping->nrpages -= total_pages; 318 } 319 320 void delete_from_page_cache_batch(struct address_space *mapping, 321 struct folio_batch *fbatch) 322 { 323 int i; 324 325 if (!folio_batch_count(fbatch)) 326 return; 327 328 spin_lock(&mapping->host->i_lock); 329 xa_lock_irq(&mapping->i_pages); 330 for (i = 0; i < folio_batch_count(fbatch); i++) { 331 struct folio *folio = fbatch->folios[i]; 332 333 trace_mm_filemap_delete_from_page_cache(folio); 334 filemap_unaccount_folio(mapping, folio); 335 } 336 page_cache_delete_batch(mapping, fbatch); 337 xa_unlock_irq(&mapping->i_pages); 338 if (mapping_shrinkable(mapping)) 339 inode_add_lru(mapping->host); 340 spin_unlock(&mapping->host->i_lock); 341 342 for (i = 0; i < folio_batch_count(fbatch); i++) 343 filemap_free_folio(mapping, fbatch->folios[i]); 344 } 345 346 int filemap_check_errors(struct address_space *mapping) 347 { 348 int ret = 0; 349 /* Check for outstanding write errors */ 350 if (test_bit(AS_ENOSPC, &mapping->flags) && 351 test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 352 ret = -ENOSPC; 353 if (test_bit(AS_EIO, &mapping->flags) && 354 test_and_clear_bit(AS_EIO, &mapping->flags)) 355 ret = -EIO; 356 return ret; 357 } 358 EXPORT_SYMBOL(filemap_check_errors); 359 360 static int filemap_check_and_keep_errors(struct address_space *mapping) 361 { 362 /* Check for outstanding write errors */ 363 if (test_bit(AS_EIO, &mapping->flags)) 364 return -EIO; 365 if (test_bit(AS_ENOSPC, &mapping->flags)) 366 return -ENOSPC; 367 return 0; 368 } 369 370 /** 371 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range 372 * @mapping: address space structure to write 373 * @wbc: the writeback_control controlling the writeout 374 * 375 * Call writepages on the mapping using the provided wbc to control the 376 * writeout. 377 * 378 * Return: %0 on success, negative error code otherwise. 379 */ 380 int filemap_fdatawrite_wbc(struct address_space *mapping, 381 struct writeback_control *wbc) 382 { 383 int ret; 384 385 if (!mapping_can_writeback(mapping) || 386 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 387 return 0; 388 389 wbc_attach_fdatawrite_inode(wbc, mapping->host); 390 ret = do_writepages(mapping, wbc); 391 wbc_detach_inode(wbc); 392 return ret; 393 } 394 EXPORT_SYMBOL(filemap_fdatawrite_wbc); 395 396 /** 397 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 398 * @mapping: address space structure to write 399 * @start: offset in bytes where the range starts 400 * @end: offset in bytes where the range ends (inclusive) 401 * @sync_mode: enable synchronous operation 402 * 403 * Start writeback against all of a mapping's dirty pages that lie 404 * within the byte offsets <start, end> inclusive. 405 * 406 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 407 * opposed to a regular memory cleansing writeback. The difference between 408 * these two operations is that if a dirty page/buffer is encountered, it must 409 * be waited upon, and not just skipped over. 410 * 411 * Return: %0 on success, negative error code otherwise. 412 */ 413 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 414 loff_t end, int sync_mode) 415 { 416 struct writeback_control wbc = { 417 .sync_mode = sync_mode, 418 .nr_to_write = LONG_MAX, 419 .range_start = start, 420 .range_end = end, 421 }; 422 423 return filemap_fdatawrite_wbc(mapping, &wbc); 424 } 425 426 static inline int __filemap_fdatawrite(struct address_space *mapping, 427 int sync_mode) 428 { 429 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 430 } 431 432 int filemap_fdatawrite(struct address_space *mapping) 433 { 434 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 435 } 436 EXPORT_SYMBOL(filemap_fdatawrite); 437 438 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 439 loff_t end) 440 { 441 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 442 } 443 EXPORT_SYMBOL(filemap_fdatawrite_range); 444 445 /** 446 * filemap_flush - mostly a non-blocking flush 447 * @mapping: target address_space 448 * 449 * This is a mostly non-blocking flush. Not suitable for data-integrity 450 * purposes - I/O may not be started against all dirty pages. 451 * 452 * Return: %0 on success, negative error code otherwise. 453 */ 454 int filemap_flush(struct address_space *mapping) 455 { 456 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 457 } 458 EXPORT_SYMBOL(filemap_flush); 459 460 /** 461 * filemap_range_has_page - check if a page exists in range. 462 * @mapping: address space within which to check 463 * @start_byte: offset in bytes where the range starts 464 * @end_byte: offset in bytes where the range ends (inclusive) 465 * 466 * Find at least one page in the range supplied, usually used to check if 467 * direct writing in this range will trigger a writeback. 468 * 469 * Return: %true if at least one page exists in the specified range, 470 * %false otherwise. 471 */ 472 bool filemap_range_has_page(struct address_space *mapping, 473 loff_t start_byte, loff_t end_byte) 474 { 475 struct folio *folio; 476 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 477 pgoff_t max = end_byte >> PAGE_SHIFT; 478 479 if (end_byte < start_byte) 480 return false; 481 482 rcu_read_lock(); 483 for (;;) { 484 folio = xas_find(&xas, max); 485 if (xas_retry(&xas, folio)) 486 continue; 487 /* Shadow entries don't count */ 488 if (xa_is_value(folio)) 489 continue; 490 /* 491 * We don't need to try to pin this page; we're about to 492 * release the RCU lock anyway. It is enough to know that 493 * there was a page here recently. 494 */ 495 break; 496 } 497 rcu_read_unlock(); 498 499 return folio != NULL; 500 } 501 EXPORT_SYMBOL(filemap_range_has_page); 502 503 static void __filemap_fdatawait_range(struct address_space *mapping, 504 loff_t start_byte, loff_t end_byte) 505 { 506 pgoff_t index = start_byte >> PAGE_SHIFT; 507 pgoff_t end = end_byte >> PAGE_SHIFT; 508 struct folio_batch fbatch; 509 unsigned nr_folios; 510 511 folio_batch_init(&fbatch); 512 513 while (index <= end) { 514 unsigned i; 515 516 nr_folios = filemap_get_folios_tag(mapping, &index, end, 517 PAGECACHE_TAG_WRITEBACK, &fbatch); 518 519 if (!nr_folios) 520 break; 521 522 for (i = 0; i < nr_folios; i++) { 523 struct folio *folio = fbatch.folios[i]; 524 525 folio_wait_writeback(folio); 526 folio_clear_error(folio); 527 } 528 folio_batch_release(&fbatch); 529 cond_resched(); 530 } 531 } 532 533 /** 534 * filemap_fdatawait_range - wait for writeback to complete 535 * @mapping: address space structure to wait for 536 * @start_byte: offset in bytes where the range starts 537 * @end_byte: offset in bytes where the range ends (inclusive) 538 * 539 * Walk the list of under-writeback pages of the given address space 540 * in the given range and wait for all of them. Check error status of 541 * the address space and return it. 542 * 543 * Since the error status of the address space is cleared by this function, 544 * callers are responsible for checking the return value and handling and/or 545 * reporting the error. 546 * 547 * Return: error status of the address space. 548 */ 549 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 550 loff_t end_byte) 551 { 552 __filemap_fdatawait_range(mapping, start_byte, end_byte); 553 return filemap_check_errors(mapping); 554 } 555 EXPORT_SYMBOL(filemap_fdatawait_range); 556 557 /** 558 * filemap_fdatawait_range_keep_errors - wait for writeback to complete 559 * @mapping: address space structure to wait for 560 * @start_byte: offset in bytes where the range starts 561 * @end_byte: offset in bytes where the range ends (inclusive) 562 * 563 * Walk the list of under-writeback pages of the given address space in the 564 * given range and wait for all of them. Unlike filemap_fdatawait_range(), 565 * this function does not clear error status of the address space. 566 * 567 * Use this function if callers don't handle errors themselves. Expected 568 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 569 * fsfreeze(8) 570 */ 571 int filemap_fdatawait_range_keep_errors(struct address_space *mapping, 572 loff_t start_byte, loff_t end_byte) 573 { 574 __filemap_fdatawait_range(mapping, start_byte, end_byte); 575 return filemap_check_and_keep_errors(mapping); 576 } 577 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors); 578 579 /** 580 * file_fdatawait_range - wait for writeback to complete 581 * @file: file pointing to address space structure to wait for 582 * @start_byte: offset in bytes where the range starts 583 * @end_byte: offset in bytes where the range ends (inclusive) 584 * 585 * Walk the list of under-writeback pages of the address space that file 586 * refers to, in the given range and wait for all of them. Check error 587 * status of the address space vs. the file->f_wb_err cursor and return it. 588 * 589 * Since the error status of the file is advanced by this function, 590 * callers are responsible for checking the return value and handling and/or 591 * reporting the error. 592 * 593 * Return: error status of the address space vs. the file->f_wb_err cursor. 594 */ 595 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte) 596 { 597 struct address_space *mapping = file->f_mapping; 598 599 __filemap_fdatawait_range(mapping, start_byte, end_byte); 600 return file_check_and_advance_wb_err(file); 601 } 602 EXPORT_SYMBOL(file_fdatawait_range); 603 604 /** 605 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors 606 * @mapping: address space structure to wait for 607 * 608 * Walk the list of under-writeback pages of the given address space 609 * and wait for all of them. Unlike filemap_fdatawait(), this function 610 * does not clear error status of the address space. 611 * 612 * Use this function if callers don't handle errors themselves. Expected 613 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 614 * fsfreeze(8) 615 * 616 * Return: error status of the address space. 617 */ 618 int filemap_fdatawait_keep_errors(struct address_space *mapping) 619 { 620 __filemap_fdatawait_range(mapping, 0, LLONG_MAX); 621 return filemap_check_and_keep_errors(mapping); 622 } 623 EXPORT_SYMBOL(filemap_fdatawait_keep_errors); 624 625 /* Returns true if writeback might be needed or already in progress. */ 626 static bool mapping_needs_writeback(struct address_space *mapping) 627 { 628 return mapping->nrpages; 629 } 630 631 bool filemap_range_has_writeback(struct address_space *mapping, 632 loff_t start_byte, loff_t end_byte) 633 { 634 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 635 pgoff_t max = end_byte >> PAGE_SHIFT; 636 struct folio *folio; 637 638 if (end_byte < start_byte) 639 return false; 640 641 rcu_read_lock(); 642 xas_for_each(&xas, folio, max) { 643 if (xas_retry(&xas, folio)) 644 continue; 645 if (xa_is_value(folio)) 646 continue; 647 if (folio_test_dirty(folio) || folio_test_locked(folio) || 648 folio_test_writeback(folio)) 649 break; 650 } 651 rcu_read_unlock(); 652 return folio != NULL; 653 } 654 EXPORT_SYMBOL_GPL(filemap_range_has_writeback); 655 656 /** 657 * filemap_write_and_wait_range - write out & wait on a file range 658 * @mapping: the address_space for the pages 659 * @lstart: offset in bytes where the range starts 660 * @lend: offset in bytes where the range ends (inclusive) 661 * 662 * Write out and wait upon file offsets lstart->lend, inclusive. 663 * 664 * Note that @lend is inclusive (describes the last byte to be written) so 665 * that this function can be used to write to the very end-of-file (end = -1). 666 * 667 * Return: error status of the address space. 668 */ 669 int filemap_write_and_wait_range(struct address_space *mapping, 670 loff_t lstart, loff_t lend) 671 { 672 int err = 0, err2; 673 674 if (lend < lstart) 675 return 0; 676 677 if (mapping_needs_writeback(mapping)) { 678 err = __filemap_fdatawrite_range(mapping, lstart, lend, 679 WB_SYNC_ALL); 680 /* 681 * Even if the above returned error, the pages may be 682 * written partially (e.g. -ENOSPC), so we wait for it. 683 * But the -EIO is special case, it may indicate the worst 684 * thing (e.g. bug) happened, so we avoid waiting for it. 685 */ 686 if (err != -EIO) 687 __filemap_fdatawait_range(mapping, lstart, lend); 688 } 689 err2 = filemap_check_errors(mapping); 690 if (!err) 691 err = err2; 692 return err; 693 } 694 EXPORT_SYMBOL(filemap_write_and_wait_range); 695 696 void __filemap_set_wb_err(struct address_space *mapping, int err) 697 { 698 errseq_t eseq = errseq_set(&mapping->wb_err, err); 699 700 trace_filemap_set_wb_err(mapping, eseq); 701 } 702 EXPORT_SYMBOL(__filemap_set_wb_err); 703 704 /** 705 * file_check_and_advance_wb_err - report wb error (if any) that was previously 706 * and advance wb_err to current one 707 * @file: struct file on which the error is being reported 708 * 709 * When userland calls fsync (or something like nfsd does the equivalent), we 710 * want to report any writeback errors that occurred since the last fsync (or 711 * since the file was opened if there haven't been any). 712 * 713 * Grab the wb_err from the mapping. If it matches what we have in the file, 714 * then just quickly return 0. The file is all caught up. 715 * 716 * If it doesn't match, then take the mapping value, set the "seen" flag in 717 * it and try to swap it into place. If it works, or another task beat us 718 * to it with the new value, then update the f_wb_err and return the error 719 * portion. The error at this point must be reported via proper channels 720 * (a'la fsync, or NFS COMMIT operation, etc.). 721 * 722 * While we handle mapping->wb_err with atomic operations, the f_wb_err 723 * value is protected by the f_lock since we must ensure that it reflects 724 * the latest value swapped in for this file descriptor. 725 * 726 * Return: %0 on success, negative error code otherwise. 727 */ 728 int file_check_and_advance_wb_err(struct file *file) 729 { 730 int err = 0; 731 errseq_t old = READ_ONCE(file->f_wb_err); 732 struct address_space *mapping = file->f_mapping; 733 734 /* Locklessly handle the common case where nothing has changed */ 735 if (errseq_check(&mapping->wb_err, old)) { 736 /* Something changed, must use slow path */ 737 spin_lock(&file->f_lock); 738 old = file->f_wb_err; 739 err = errseq_check_and_advance(&mapping->wb_err, 740 &file->f_wb_err); 741 trace_file_check_and_advance_wb_err(file, old); 742 spin_unlock(&file->f_lock); 743 } 744 745 /* 746 * We're mostly using this function as a drop in replacement for 747 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect 748 * that the legacy code would have had on these flags. 749 */ 750 clear_bit(AS_EIO, &mapping->flags); 751 clear_bit(AS_ENOSPC, &mapping->flags); 752 return err; 753 } 754 EXPORT_SYMBOL(file_check_and_advance_wb_err); 755 756 /** 757 * file_write_and_wait_range - write out & wait on a file range 758 * @file: file pointing to address_space with pages 759 * @lstart: offset in bytes where the range starts 760 * @lend: offset in bytes where the range ends (inclusive) 761 * 762 * Write out and wait upon file offsets lstart->lend, inclusive. 763 * 764 * Note that @lend is inclusive (describes the last byte to be written) so 765 * that this function can be used to write to the very end-of-file (end = -1). 766 * 767 * After writing out and waiting on the data, we check and advance the 768 * f_wb_err cursor to the latest value, and return any errors detected there. 769 * 770 * Return: %0 on success, negative error code otherwise. 771 */ 772 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend) 773 { 774 int err = 0, err2; 775 struct address_space *mapping = file->f_mapping; 776 777 if (lend < lstart) 778 return 0; 779 780 if (mapping_needs_writeback(mapping)) { 781 err = __filemap_fdatawrite_range(mapping, lstart, lend, 782 WB_SYNC_ALL); 783 /* See comment of filemap_write_and_wait() */ 784 if (err != -EIO) 785 __filemap_fdatawait_range(mapping, lstart, lend); 786 } 787 err2 = file_check_and_advance_wb_err(file); 788 if (!err) 789 err = err2; 790 return err; 791 } 792 EXPORT_SYMBOL(file_write_and_wait_range); 793 794 /** 795 * replace_page_cache_folio - replace a pagecache folio with a new one 796 * @old: folio to be replaced 797 * @new: folio to replace with 798 * 799 * This function replaces a folio in the pagecache with a new one. On 800 * success it acquires the pagecache reference for the new folio and 801 * drops it for the old folio. Both the old and new folios must be 802 * locked. This function does not add the new folio to the LRU, the 803 * caller must do that. 804 * 805 * The remove + add is atomic. This function cannot fail. 806 */ 807 void replace_page_cache_folio(struct folio *old, struct folio *new) 808 { 809 struct address_space *mapping = old->mapping; 810 void (*free_folio)(struct folio *) = mapping->a_ops->free_folio; 811 pgoff_t offset = old->index; 812 XA_STATE(xas, &mapping->i_pages, offset); 813 814 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 815 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 816 VM_BUG_ON_FOLIO(new->mapping, new); 817 818 folio_get(new); 819 new->mapping = mapping; 820 new->index = offset; 821 822 mem_cgroup_migrate(old, new); 823 824 xas_lock_irq(&xas); 825 xas_store(&xas, new); 826 827 old->mapping = NULL; 828 /* hugetlb pages do not participate in page cache accounting. */ 829 if (!folio_test_hugetlb(old)) 830 __lruvec_stat_sub_folio(old, NR_FILE_PAGES); 831 if (!folio_test_hugetlb(new)) 832 __lruvec_stat_add_folio(new, NR_FILE_PAGES); 833 if (folio_test_swapbacked(old)) 834 __lruvec_stat_sub_folio(old, NR_SHMEM); 835 if (folio_test_swapbacked(new)) 836 __lruvec_stat_add_folio(new, NR_SHMEM); 837 xas_unlock_irq(&xas); 838 if (free_folio) 839 free_folio(old); 840 folio_put(old); 841 } 842 EXPORT_SYMBOL_GPL(replace_page_cache_folio); 843 844 noinline int __filemap_add_folio(struct address_space *mapping, 845 struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp) 846 { 847 XA_STATE(xas, &mapping->i_pages, index); 848 int huge = folio_test_hugetlb(folio); 849 bool charged = false; 850 long nr = 1; 851 852 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 853 VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio); 854 mapping_set_update(&xas, mapping); 855 856 if (!huge) { 857 int error = mem_cgroup_charge(folio, NULL, gfp); 858 VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio); 859 if (error) 860 return error; 861 charged = true; 862 xas_set_order(&xas, index, folio_order(folio)); 863 nr = folio_nr_pages(folio); 864 } 865 866 gfp &= GFP_RECLAIM_MASK; 867 folio_ref_add(folio, nr); 868 folio->mapping = mapping; 869 folio->index = xas.xa_index; 870 871 do { 872 unsigned int order = xa_get_order(xas.xa, xas.xa_index); 873 void *entry, *old = NULL; 874 875 if (order > folio_order(folio)) 876 xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index), 877 order, gfp); 878 xas_lock_irq(&xas); 879 xas_for_each_conflict(&xas, entry) { 880 old = entry; 881 if (!xa_is_value(entry)) { 882 xas_set_err(&xas, -EEXIST); 883 goto unlock; 884 } 885 } 886 887 if (old) { 888 if (shadowp) 889 *shadowp = old; 890 /* entry may have been split before we acquired lock */ 891 order = xa_get_order(xas.xa, xas.xa_index); 892 if (order > folio_order(folio)) { 893 /* How to handle large swap entries? */ 894 BUG_ON(shmem_mapping(mapping)); 895 xas_split(&xas, old, order); 896 xas_reset(&xas); 897 } 898 } 899 900 xas_store(&xas, folio); 901 if (xas_error(&xas)) 902 goto unlock; 903 904 mapping->nrpages += nr; 905 906 /* hugetlb pages do not participate in page cache accounting */ 907 if (!huge) { 908 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr); 909 if (folio_test_pmd_mappable(folio)) 910 __lruvec_stat_mod_folio(folio, 911 NR_FILE_THPS, nr); 912 } 913 unlock: 914 xas_unlock_irq(&xas); 915 } while (xas_nomem(&xas, gfp)); 916 917 if (xas_error(&xas)) 918 goto error; 919 920 trace_mm_filemap_add_to_page_cache(folio); 921 return 0; 922 error: 923 if (charged) 924 mem_cgroup_uncharge(folio); 925 folio->mapping = NULL; 926 /* Leave page->index set: truncation relies upon it */ 927 folio_put_refs(folio, nr); 928 return xas_error(&xas); 929 } 930 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO); 931 932 int filemap_add_folio(struct address_space *mapping, struct folio *folio, 933 pgoff_t index, gfp_t gfp) 934 { 935 void *shadow = NULL; 936 int ret; 937 938 __folio_set_locked(folio); 939 ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow); 940 if (unlikely(ret)) 941 __folio_clear_locked(folio); 942 else { 943 /* 944 * The folio might have been evicted from cache only 945 * recently, in which case it should be activated like 946 * any other repeatedly accessed folio. 947 * The exception is folios getting rewritten; evicting other 948 * data from the working set, only to cache data that will 949 * get overwritten with something else, is a waste of memory. 950 */ 951 WARN_ON_ONCE(folio_test_active(folio)); 952 if (!(gfp & __GFP_WRITE) && shadow) 953 workingset_refault(folio, shadow); 954 folio_add_lru(folio); 955 } 956 return ret; 957 } 958 EXPORT_SYMBOL_GPL(filemap_add_folio); 959 960 #ifdef CONFIG_NUMA 961 struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order) 962 { 963 int n; 964 struct folio *folio; 965 966 if (cpuset_do_page_mem_spread()) { 967 unsigned int cpuset_mems_cookie; 968 do { 969 cpuset_mems_cookie = read_mems_allowed_begin(); 970 n = cpuset_mem_spread_node(); 971 folio = __folio_alloc_node(gfp, order, n); 972 } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie)); 973 974 return folio; 975 } 976 return folio_alloc(gfp, order); 977 } 978 EXPORT_SYMBOL(filemap_alloc_folio); 979 #endif 980 981 /* 982 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings 983 * 984 * Lock exclusively invalidate_lock of any passed mapping that is not NULL. 985 * 986 * @mapping1: the first mapping to lock 987 * @mapping2: the second mapping to lock 988 */ 989 void filemap_invalidate_lock_two(struct address_space *mapping1, 990 struct address_space *mapping2) 991 { 992 if (mapping1 > mapping2) 993 swap(mapping1, mapping2); 994 if (mapping1) 995 down_write(&mapping1->invalidate_lock); 996 if (mapping2 && mapping1 != mapping2) 997 down_write_nested(&mapping2->invalidate_lock, 1); 998 } 999 EXPORT_SYMBOL(filemap_invalidate_lock_two); 1000 1001 /* 1002 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings 1003 * 1004 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL. 1005 * 1006 * @mapping1: the first mapping to unlock 1007 * @mapping2: the second mapping to unlock 1008 */ 1009 void filemap_invalidate_unlock_two(struct address_space *mapping1, 1010 struct address_space *mapping2) 1011 { 1012 if (mapping1) 1013 up_write(&mapping1->invalidate_lock); 1014 if (mapping2 && mapping1 != mapping2) 1015 up_write(&mapping2->invalidate_lock); 1016 } 1017 EXPORT_SYMBOL(filemap_invalidate_unlock_two); 1018 1019 /* 1020 * In order to wait for pages to become available there must be 1021 * waitqueues associated with pages. By using a hash table of 1022 * waitqueues where the bucket discipline is to maintain all 1023 * waiters on the same queue and wake all when any of the pages 1024 * become available, and for the woken contexts to check to be 1025 * sure the appropriate page became available, this saves space 1026 * at a cost of "thundering herd" phenomena during rare hash 1027 * collisions. 1028 */ 1029 #define PAGE_WAIT_TABLE_BITS 8 1030 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS) 1031 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned; 1032 1033 static wait_queue_head_t *folio_waitqueue(struct folio *folio) 1034 { 1035 return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)]; 1036 } 1037 1038 void __init pagecache_init(void) 1039 { 1040 int i; 1041 1042 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++) 1043 init_waitqueue_head(&folio_wait_table[i]); 1044 1045 page_writeback_init(); 1046 } 1047 1048 /* 1049 * The page wait code treats the "wait->flags" somewhat unusually, because 1050 * we have multiple different kinds of waits, not just the usual "exclusive" 1051 * one. 1052 * 1053 * We have: 1054 * 1055 * (a) no special bits set: 1056 * 1057 * We're just waiting for the bit to be released, and when a waker 1058 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up, 1059 * and remove it from the wait queue. 1060 * 1061 * Simple and straightforward. 1062 * 1063 * (b) WQ_FLAG_EXCLUSIVE: 1064 * 1065 * The waiter is waiting to get the lock, and only one waiter should 1066 * be woken up to avoid any thundering herd behavior. We'll set the 1067 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue. 1068 * 1069 * This is the traditional exclusive wait. 1070 * 1071 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM: 1072 * 1073 * The waiter is waiting to get the bit, and additionally wants the 1074 * lock to be transferred to it for fair lock behavior. If the lock 1075 * cannot be taken, we stop walking the wait queue without waking 1076 * the waiter. 1077 * 1078 * This is the "fair lock handoff" case, and in addition to setting 1079 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see 1080 * that it now has the lock. 1081 */ 1082 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg) 1083 { 1084 unsigned int flags; 1085 struct wait_page_key *key = arg; 1086 struct wait_page_queue *wait_page 1087 = container_of(wait, struct wait_page_queue, wait); 1088 1089 if (!wake_page_match(wait_page, key)) 1090 return 0; 1091 1092 /* 1093 * If it's a lock handoff wait, we get the bit for it, and 1094 * stop walking (and do not wake it up) if we can't. 1095 */ 1096 flags = wait->flags; 1097 if (flags & WQ_FLAG_EXCLUSIVE) { 1098 if (test_bit(key->bit_nr, &key->folio->flags)) 1099 return -1; 1100 if (flags & WQ_FLAG_CUSTOM) { 1101 if (test_and_set_bit(key->bit_nr, &key->folio->flags)) 1102 return -1; 1103 flags |= WQ_FLAG_DONE; 1104 } 1105 } 1106 1107 /* 1108 * We are holding the wait-queue lock, but the waiter that 1109 * is waiting for this will be checking the flags without 1110 * any locking. 1111 * 1112 * So update the flags atomically, and wake up the waiter 1113 * afterwards to avoid any races. This store-release pairs 1114 * with the load-acquire in folio_wait_bit_common(). 1115 */ 1116 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN); 1117 wake_up_state(wait->private, mode); 1118 1119 /* 1120 * Ok, we have successfully done what we're waiting for, 1121 * and we can unconditionally remove the wait entry. 1122 * 1123 * Note that this pairs with the "finish_wait()" in the 1124 * waiter, and has to be the absolute last thing we do. 1125 * After this list_del_init(&wait->entry) the wait entry 1126 * might be de-allocated and the process might even have 1127 * exited. 1128 */ 1129 list_del_init_careful(&wait->entry); 1130 return (flags & WQ_FLAG_EXCLUSIVE) != 0; 1131 } 1132 1133 static void folio_wake_bit(struct folio *folio, int bit_nr) 1134 { 1135 wait_queue_head_t *q = folio_waitqueue(folio); 1136 struct wait_page_key key; 1137 unsigned long flags; 1138 wait_queue_entry_t bookmark; 1139 1140 key.folio = folio; 1141 key.bit_nr = bit_nr; 1142 key.page_match = 0; 1143 1144 bookmark.flags = 0; 1145 bookmark.private = NULL; 1146 bookmark.func = NULL; 1147 INIT_LIST_HEAD(&bookmark.entry); 1148 1149 spin_lock_irqsave(&q->lock, flags); 1150 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); 1151 1152 while (bookmark.flags & WQ_FLAG_BOOKMARK) { 1153 /* 1154 * Take a breather from holding the lock, 1155 * allow pages that finish wake up asynchronously 1156 * to acquire the lock and remove themselves 1157 * from wait queue 1158 */ 1159 spin_unlock_irqrestore(&q->lock, flags); 1160 cpu_relax(); 1161 spin_lock_irqsave(&q->lock, flags); 1162 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); 1163 } 1164 1165 /* 1166 * It's possible to miss clearing waiters here, when we woke our page 1167 * waiters, but the hashed waitqueue has waiters for other pages on it. 1168 * That's okay, it's a rare case. The next waker will clear it. 1169 * 1170 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE, 1171 * other), the flag may be cleared in the course of freeing the page; 1172 * but that is not required for correctness. 1173 */ 1174 if (!waitqueue_active(q) || !key.page_match) 1175 folio_clear_waiters(folio); 1176 1177 spin_unlock_irqrestore(&q->lock, flags); 1178 } 1179 1180 static void folio_wake(struct folio *folio, int bit) 1181 { 1182 if (!folio_test_waiters(folio)) 1183 return; 1184 folio_wake_bit(folio, bit); 1185 } 1186 1187 /* 1188 * A choice of three behaviors for folio_wait_bit_common(): 1189 */ 1190 enum behavior { 1191 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like 1192 * __folio_lock() waiting on then setting PG_locked. 1193 */ 1194 SHARED, /* Hold ref to page and check the bit when woken, like 1195 * folio_wait_writeback() waiting on PG_writeback. 1196 */ 1197 DROP, /* Drop ref to page before wait, no check when woken, 1198 * like folio_put_wait_locked() on PG_locked. 1199 */ 1200 }; 1201 1202 /* 1203 * Attempt to check (or get) the folio flag, and mark us done 1204 * if successful. 1205 */ 1206 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr, 1207 struct wait_queue_entry *wait) 1208 { 1209 if (wait->flags & WQ_FLAG_EXCLUSIVE) { 1210 if (test_and_set_bit(bit_nr, &folio->flags)) 1211 return false; 1212 } else if (test_bit(bit_nr, &folio->flags)) 1213 return false; 1214 1215 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE; 1216 return true; 1217 } 1218 1219 /* How many times do we accept lock stealing from under a waiter? */ 1220 int sysctl_page_lock_unfairness = 5; 1221 1222 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr, 1223 int state, enum behavior behavior) 1224 { 1225 wait_queue_head_t *q = folio_waitqueue(folio); 1226 int unfairness = sysctl_page_lock_unfairness; 1227 struct wait_page_queue wait_page; 1228 wait_queue_entry_t *wait = &wait_page.wait; 1229 bool thrashing = false; 1230 unsigned long pflags; 1231 bool in_thrashing; 1232 1233 if (bit_nr == PG_locked && 1234 !folio_test_uptodate(folio) && folio_test_workingset(folio)) { 1235 delayacct_thrashing_start(&in_thrashing); 1236 psi_memstall_enter(&pflags); 1237 thrashing = true; 1238 } 1239 1240 init_wait(wait); 1241 wait->func = wake_page_function; 1242 wait_page.folio = folio; 1243 wait_page.bit_nr = bit_nr; 1244 1245 repeat: 1246 wait->flags = 0; 1247 if (behavior == EXCLUSIVE) { 1248 wait->flags = WQ_FLAG_EXCLUSIVE; 1249 if (--unfairness < 0) 1250 wait->flags |= WQ_FLAG_CUSTOM; 1251 } 1252 1253 /* 1254 * Do one last check whether we can get the 1255 * page bit synchronously. 1256 * 1257 * Do the folio_set_waiters() marking before that 1258 * to let any waker we _just_ missed know they 1259 * need to wake us up (otherwise they'll never 1260 * even go to the slow case that looks at the 1261 * page queue), and add ourselves to the wait 1262 * queue if we need to sleep. 1263 * 1264 * This part needs to be done under the queue 1265 * lock to avoid races. 1266 */ 1267 spin_lock_irq(&q->lock); 1268 folio_set_waiters(folio); 1269 if (!folio_trylock_flag(folio, bit_nr, wait)) 1270 __add_wait_queue_entry_tail(q, wait); 1271 spin_unlock_irq(&q->lock); 1272 1273 /* 1274 * From now on, all the logic will be based on 1275 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to 1276 * see whether the page bit testing has already 1277 * been done by the wake function. 1278 * 1279 * We can drop our reference to the folio. 1280 */ 1281 if (behavior == DROP) 1282 folio_put(folio); 1283 1284 /* 1285 * Note that until the "finish_wait()", or until 1286 * we see the WQ_FLAG_WOKEN flag, we need to 1287 * be very careful with the 'wait->flags', because 1288 * we may race with a waker that sets them. 1289 */ 1290 for (;;) { 1291 unsigned int flags; 1292 1293 set_current_state(state); 1294 1295 /* Loop until we've been woken or interrupted */ 1296 flags = smp_load_acquire(&wait->flags); 1297 if (!(flags & WQ_FLAG_WOKEN)) { 1298 if (signal_pending_state(state, current)) 1299 break; 1300 1301 io_schedule(); 1302 continue; 1303 } 1304 1305 /* If we were non-exclusive, we're done */ 1306 if (behavior != EXCLUSIVE) 1307 break; 1308 1309 /* If the waker got the lock for us, we're done */ 1310 if (flags & WQ_FLAG_DONE) 1311 break; 1312 1313 /* 1314 * Otherwise, if we're getting the lock, we need to 1315 * try to get it ourselves. 1316 * 1317 * And if that fails, we'll have to retry this all. 1318 */ 1319 if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0)))) 1320 goto repeat; 1321 1322 wait->flags |= WQ_FLAG_DONE; 1323 break; 1324 } 1325 1326 /* 1327 * If a signal happened, this 'finish_wait()' may remove the last 1328 * waiter from the wait-queues, but the folio waiters bit will remain 1329 * set. That's ok. The next wakeup will take care of it, and trying 1330 * to do it here would be difficult and prone to races. 1331 */ 1332 finish_wait(q, wait); 1333 1334 if (thrashing) { 1335 delayacct_thrashing_end(&in_thrashing); 1336 psi_memstall_leave(&pflags); 1337 } 1338 1339 /* 1340 * NOTE! The wait->flags weren't stable until we've done the 1341 * 'finish_wait()', and we could have exited the loop above due 1342 * to a signal, and had a wakeup event happen after the signal 1343 * test but before the 'finish_wait()'. 1344 * 1345 * So only after the finish_wait() can we reliably determine 1346 * if we got woken up or not, so we can now figure out the final 1347 * return value based on that state without races. 1348 * 1349 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive 1350 * waiter, but an exclusive one requires WQ_FLAG_DONE. 1351 */ 1352 if (behavior == EXCLUSIVE) 1353 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR; 1354 1355 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR; 1356 } 1357 1358 #ifdef CONFIG_MIGRATION 1359 /** 1360 * migration_entry_wait_on_locked - Wait for a migration entry to be removed 1361 * @entry: migration swap entry. 1362 * @ptep: mapped pte pointer. Will return with the ptep unmapped. Only required 1363 * for pte entries, pass NULL for pmd entries. 1364 * @ptl: already locked ptl. This function will drop the lock. 1365 * 1366 * Wait for a migration entry referencing the given page to be removed. This is 1367 * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except 1368 * this can be called without taking a reference on the page. Instead this 1369 * should be called while holding the ptl for the migration entry referencing 1370 * the page. 1371 * 1372 * Returns after unmapping and unlocking the pte/ptl with pte_unmap_unlock(). 1373 * 1374 * This follows the same logic as folio_wait_bit_common() so see the comments 1375 * there. 1376 */ 1377 void migration_entry_wait_on_locked(swp_entry_t entry, pte_t *ptep, 1378 spinlock_t *ptl) 1379 { 1380 struct wait_page_queue wait_page; 1381 wait_queue_entry_t *wait = &wait_page.wait; 1382 bool thrashing = false; 1383 unsigned long pflags; 1384 bool in_thrashing; 1385 wait_queue_head_t *q; 1386 struct folio *folio = page_folio(pfn_swap_entry_to_page(entry)); 1387 1388 q = folio_waitqueue(folio); 1389 if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) { 1390 delayacct_thrashing_start(&in_thrashing); 1391 psi_memstall_enter(&pflags); 1392 thrashing = true; 1393 } 1394 1395 init_wait(wait); 1396 wait->func = wake_page_function; 1397 wait_page.folio = folio; 1398 wait_page.bit_nr = PG_locked; 1399 wait->flags = 0; 1400 1401 spin_lock_irq(&q->lock); 1402 folio_set_waiters(folio); 1403 if (!folio_trylock_flag(folio, PG_locked, wait)) 1404 __add_wait_queue_entry_tail(q, wait); 1405 spin_unlock_irq(&q->lock); 1406 1407 /* 1408 * If a migration entry exists for the page the migration path must hold 1409 * a valid reference to the page, and it must take the ptl to remove the 1410 * migration entry. So the page is valid until the ptl is dropped. 1411 */ 1412 if (ptep) 1413 pte_unmap_unlock(ptep, ptl); 1414 else 1415 spin_unlock(ptl); 1416 1417 for (;;) { 1418 unsigned int flags; 1419 1420 set_current_state(TASK_UNINTERRUPTIBLE); 1421 1422 /* Loop until we've been woken or interrupted */ 1423 flags = smp_load_acquire(&wait->flags); 1424 if (!(flags & WQ_FLAG_WOKEN)) { 1425 if (signal_pending_state(TASK_UNINTERRUPTIBLE, current)) 1426 break; 1427 1428 io_schedule(); 1429 continue; 1430 } 1431 break; 1432 } 1433 1434 finish_wait(q, wait); 1435 1436 if (thrashing) { 1437 delayacct_thrashing_end(&in_thrashing); 1438 psi_memstall_leave(&pflags); 1439 } 1440 } 1441 #endif 1442 1443 void folio_wait_bit(struct folio *folio, int bit_nr) 1444 { 1445 folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED); 1446 } 1447 EXPORT_SYMBOL(folio_wait_bit); 1448 1449 int folio_wait_bit_killable(struct folio *folio, int bit_nr) 1450 { 1451 return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED); 1452 } 1453 EXPORT_SYMBOL(folio_wait_bit_killable); 1454 1455 /** 1456 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked 1457 * @folio: The folio to wait for. 1458 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc). 1459 * 1460 * The caller should hold a reference on @folio. They expect the page to 1461 * become unlocked relatively soon, but do not wish to hold up migration 1462 * (for example) by holding the reference while waiting for the folio to 1463 * come unlocked. After this function returns, the caller should not 1464 * dereference @folio. 1465 * 1466 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal. 1467 */ 1468 static int folio_put_wait_locked(struct folio *folio, int state) 1469 { 1470 return folio_wait_bit_common(folio, PG_locked, state, DROP); 1471 } 1472 1473 /** 1474 * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue 1475 * @folio: Folio defining the wait queue of interest 1476 * @waiter: Waiter to add to the queue 1477 * 1478 * Add an arbitrary @waiter to the wait queue for the nominated @folio. 1479 */ 1480 void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter) 1481 { 1482 wait_queue_head_t *q = folio_waitqueue(folio); 1483 unsigned long flags; 1484 1485 spin_lock_irqsave(&q->lock, flags); 1486 __add_wait_queue_entry_tail(q, waiter); 1487 folio_set_waiters(folio); 1488 spin_unlock_irqrestore(&q->lock, flags); 1489 } 1490 EXPORT_SYMBOL_GPL(folio_add_wait_queue); 1491 1492 #ifndef clear_bit_unlock_is_negative_byte 1493 1494 /* 1495 * PG_waiters is the high bit in the same byte as PG_lock. 1496 * 1497 * On x86 (and on many other architectures), we can clear PG_lock and 1498 * test the sign bit at the same time. But if the architecture does 1499 * not support that special operation, we just do this all by hand 1500 * instead. 1501 * 1502 * The read of PG_waiters has to be after (or concurrently with) PG_locked 1503 * being cleared, but a memory barrier should be unnecessary since it is 1504 * in the same byte as PG_locked. 1505 */ 1506 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem) 1507 { 1508 clear_bit_unlock(nr, mem); 1509 /* smp_mb__after_atomic(); */ 1510 return test_bit(PG_waiters, mem); 1511 } 1512 1513 #endif 1514 1515 /** 1516 * folio_unlock - Unlock a locked folio. 1517 * @folio: The folio. 1518 * 1519 * Unlocks the folio and wakes up any thread sleeping on the page lock. 1520 * 1521 * Context: May be called from interrupt or process context. May not be 1522 * called from NMI context. 1523 */ 1524 void folio_unlock(struct folio *folio) 1525 { 1526 /* Bit 7 allows x86 to check the byte's sign bit */ 1527 BUILD_BUG_ON(PG_waiters != 7); 1528 BUILD_BUG_ON(PG_locked > 7); 1529 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1530 if (clear_bit_unlock_is_negative_byte(PG_locked, folio_flags(folio, 0))) 1531 folio_wake_bit(folio, PG_locked); 1532 } 1533 EXPORT_SYMBOL(folio_unlock); 1534 1535 /** 1536 * folio_end_private_2 - Clear PG_private_2 and wake any waiters. 1537 * @folio: The folio. 1538 * 1539 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for 1540 * it. The folio reference held for PG_private_2 being set is released. 1541 * 1542 * This is, for example, used when a netfs folio is being written to a local 1543 * disk cache, thereby allowing writes to the cache for the same folio to be 1544 * serialised. 1545 */ 1546 void folio_end_private_2(struct folio *folio) 1547 { 1548 VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio); 1549 clear_bit_unlock(PG_private_2, folio_flags(folio, 0)); 1550 folio_wake_bit(folio, PG_private_2); 1551 folio_put(folio); 1552 } 1553 EXPORT_SYMBOL(folio_end_private_2); 1554 1555 /** 1556 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio. 1557 * @folio: The folio to wait on. 1558 * 1559 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio. 1560 */ 1561 void folio_wait_private_2(struct folio *folio) 1562 { 1563 while (folio_test_private_2(folio)) 1564 folio_wait_bit(folio, PG_private_2); 1565 } 1566 EXPORT_SYMBOL(folio_wait_private_2); 1567 1568 /** 1569 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio. 1570 * @folio: The folio to wait on. 1571 * 1572 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio or until a 1573 * fatal signal is received by the calling task. 1574 * 1575 * Return: 1576 * - 0 if successful. 1577 * - -EINTR if a fatal signal was encountered. 1578 */ 1579 int folio_wait_private_2_killable(struct folio *folio) 1580 { 1581 int ret = 0; 1582 1583 while (folio_test_private_2(folio)) { 1584 ret = folio_wait_bit_killable(folio, PG_private_2); 1585 if (ret < 0) 1586 break; 1587 } 1588 1589 return ret; 1590 } 1591 EXPORT_SYMBOL(folio_wait_private_2_killable); 1592 1593 /** 1594 * folio_end_writeback - End writeback against a folio. 1595 * @folio: The folio. 1596 */ 1597 void folio_end_writeback(struct folio *folio) 1598 { 1599 /* 1600 * folio_test_clear_reclaim() could be used here but it is an 1601 * atomic operation and overkill in this particular case. Failing 1602 * to shuffle a folio marked for immediate reclaim is too mild 1603 * a gain to justify taking an atomic operation penalty at the 1604 * end of every folio writeback. 1605 */ 1606 if (folio_test_reclaim(folio)) { 1607 folio_clear_reclaim(folio); 1608 folio_rotate_reclaimable(folio); 1609 } 1610 1611 /* 1612 * Writeback does not hold a folio reference of its own, relying 1613 * on truncation to wait for the clearing of PG_writeback. 1614 * But here we must make sure that the folio is not freed and 1615 * reused before the folio_wake(). 1616 */ 1617 folio_get(folio); 1618 if (!__folio_end_writeback(folio)) 1619 BUG(); 1620 1621 smp_mb__after_atomic(); 1622 folio_wake(folio, PG_writeback); 1623 acct_reclaim_writeback(folio); 1624 folio_put(folio); 1625 } 1626 EXPORT_SYMBOL(folio_end_writeback); 1627 1628 /* 1629 * After completing I/O on a page, call this routine to update the page 1630 * flags appropriately 1631 */ 1632 void page_endio(struct page *page, bool is_write, int err) 1633 { 1634 struct folio *folio = page_folio(page); 1635 1636 if (!is_write) { 1637 if (!err) { 1638 folio_mark_uptodate(folio); 1639 } else { 1640 folio_clear_uptodate(folio); 1641 folio_set_error(folio); 1642 } 1643 folio_unlock(folio); 1644 } else { 1645 if (err) { 1646 struct address_space *mapping; 1647 1648 folio_set_error(folio); 1649 mapping = folio_mapping(folio); 1650 if (mapping) 1651 mapping_set_error(mapping, err); 1652 } 1653 folio_end_writeback(folio); 1654 } 1655 } 1656 EXPORT_SYMBOL_GPL(page_endio); 1657 1658 /** 1659 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it. 1660 * @folio: The folio to lock 1661 */ 1662 void __folio_lock(struct folio *folio) 1663 { 1664 folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE, 1665 EXCLUSIVE); 1666 } 1667 EXPORT_SYMBOL(__folio_lock); 1668 1669 int __folio_lock_killable(struct folio *folio) 1670 { 1671 return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE, 1672 EXCLUSIVE); 1673 } 1674 EXPORT_SYMBOL_GPL(__folio_lock_killable); 1675 1676 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait) 1677 { 1678 struct wait_queue_head *q = folio_waitqueue(folio); 1679 int ret = 0; 1680 1681 wait->folio = folio; 1682 wait->bit_nr = PG_locked; 1683 1684 spin_lock_irq(&q->lock); 1685 __add_wait_queue_entry_tail(q, &wait->wait); 1686 folio_set_waiters(folio); 1687 ret = !folio_trylock(folio); 1688 /* 1689 * If we were successful now, we know we're still on the 1690 * waitqueue as we're still under the lock. This means it's 1691 * safe to remove and return success, we know the callback 1692 * isn't going to trigger. 1693 */ 1694 if (!ret) 1695 __remove_wait_queue(q, &wait->wait); 1696 else 1697 ret = -EIOCBQUEUED; 1698 spin_unlock_irq(&q->lock); 1699 return ret; 1700 } 1701 1702 /* 1703 * Return values: 1704 * true - folio is locked; mmap_lock is still held. 1705 * false - folio is not locked. 1706 * mmap_lock has been released (mmap_read_unlock(), unless flags had both 1707 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in 1708 * which case mmap_lock is still held. 1709 * 1710 * If neither ALLOW_RETRY nor KILLABLE are set, will always return true 1711 * with the folio locked and the mmap_lock unperturbed. 1712 */ 1713 bool __folio_lock_or_retry(struct folio *folio, struct mm_struct *mm, 1714 unsigned int flags) 1715 { 1716 if (fault_flag_allow_retry_first(flags)) { 1717 /* 1718 * CAUTION! In this case, mmap_lock is not released 1719 * even though return 0. 1720 */ 1721 if (flags & FAULT_FLAG_RETRY_NOWAIT) 1722 return false; 1723 1724 mmap_read_unlock(mm); 1725 if (flags & FAULT_FLAG_KILLABLE) 1726 folio_wait_locked_killable(folio); 1727 else 1728 folio_wait_locked(folio); 1729 return false; 1730 } 1731 if (flags & FAULT_FLAG_KILLABLE) { 1732 bool ret; 1733 1734 ret = __folio_lock_killable(folio); 1735 if (ret) { 1736 mmap_read_unlock(mm); 1737 return false; 1738 } 1739 } else { 1740 __folio_lock(folio); 1741 } 1742 1743 return true; 1744 } 1745 1746 /** 1747 * page_cache_next_miss() - Find the next gap in the page cache. 1748 * @mapping: Mapping. 1749 * @index: Index. 1750 * @max_scan: Maximum range to search. 1751 * 1752 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the 1753 * gap with the lowest index. 1754 * 1755 * This function may be called under the rcu_read_lock. However, this will 1756 * not atomically search a snapshot of the cache at a single point in time. 1757 * For example, if a gap is created at index 5, then subsequently a gap is 1758 * created at index 10, page_cache_next_miss covering both indices may 1759 * return 10 if called under the rcu_read_lock. 1760 * 1761 * Return: The index of the gap if found, otherwise an index outside the 1762 * range specified (in which case 'return - index >= max_scan' will be true). 1763 * In the rare case of index wrap-around, 0 will be returned. 1764 */ 1765 pgoff_t page_cache_next_miss(struct address_space *mapping, 1766 pgoff_t index, unsigned long max_scan) 1767 { 1768 XA_STATE(xas, &mapping->i_pages, index); 1769 1770 while (max_scan--) { 1771 void *entry = xas_next(&xas); 1772 if (!entry || xa_is_value(entry)) 1773 break; 1774 if (xas.xa_index == 0) 1775 break; 1776 } 1777 1778 return xas.xa_index; 1779 } 1780 EXPORT_SYMBOL(page_cache_next_miss); 1781 1782 /** 1783 * page_cache_prev_miss() - Find the previous gap in the page cache. 1784 * @mapping: Mapping. 1785 * @index: Index. 1786 * @max_scan: Maximum range to search. 1787 * 1788 * Search the range [max(index - max_scan + 1, 0), index] for the 1789 * gap with the highest index. 1790 * 1791 * This function may be called under the rcu_read_lock. However, this will 1792 * not atomically search a snapshot of the cache at a single point in time. 1793 * For example, if a gap is created at index 10, then subsequently a gap is 1794 * created at index 5, page_cache_prev_miss() covering both indices may 1795 * return 5 if called under the rcu_read_lock. 1796 * 1797 * Return: The index of the gap if found, otherwise an index outside the 1798 * range specified (in which case 'index - return >= max_scan' will be true). 1799 * In the rare case of wrap-around, ULONG_MAX will be returned. 1800 */ 1801 pgoff_t page_cache_prev_miss(struct address_space *mapping, 1802 pgoff_t index, unsigned long max_scan) 1803 { 1804 XA_STATE(xas, &mapping->i_pages, index); 1805 1806 while (max_scan--) { 1807 void *entry = xas_prev(&xas); 1808 if (!entry || xa_is_value(entry)) 1809 break; 1810 if (xas.xa_index == ULONG_MAX) 1811 break; 1812 } 1813 1814 return xas.xa_index; 1815 } 1816 EXPORT_SYMBOL(page_cache_prev_miss); 1817 1818 /* 1819 * Lockless page cache protocol: 1820 * On the lookup side: 1821 * 1. Load the folio from i_pages 1822 * 2. Increment the refcount if it's not zero 1823 * 3. If the folio is not found by xas_reload(), put the refcount and retry 1824 * 1825 * On the removal side: 1826 * A. Freeze the page (by zeroing the refcount if nobody else has a reference) 1827 * B. Remove the page from i_pages 1828 * C. Return the page to the page allocator 1829 * 1830 * This means that any page may have its reference count temporarily 1831 * increased by a speculative page cache (or fast GUP) lookup as it can 1832 * be allocated by another user before the RCU grace period expires. 1833 * Because the refcount temporarily acquired here may end up being the 1834 * last refcount on the page, any page allocation must be freeable by 1835 * folio_put(). 1836 */ 1837 1838 /* 1839 * mapping_get_entry - Get a page cache entry. 1840 * @mapping: the address_space to search 1841 * @index: The page cache index. 1842 * 1843 * Looks up the page cache entry at @mapping & @index. If it is a folio, 1844 * it is returned with an increased refcount. If it is a shadow entry 1845 * of a previously evicted folio, or a swap entry from shmem/tmpfs, 1846 * it is returned without further action. 1847 * 1848 * Return: The folio, swap or shadow entry, %NULL if nothing is found. 1849 */ 1850 static void *mapping_get_entry(struct address_space *mapping, pgoff_t index) 1851 { 1852 XA_STATE(xas, &mapping->i_pages, index); 1853 struct folio *folio; 1854 1855 rcu_read_lock(); 1856 repeat: 1857 xas_reset(&xas); 1858 folio = xas_load(&xas); 1859 if (xas_retry(&xas, folio)) 1860 goto repeat; 1861 /* 1862 * A shadow entry of a recently evicted page, or a swap entry from 1863 * shmem/tmpfs. Return it without attempting to raise page count. 1864 */ 1865 if (!folio || xa_is_value(folio)) 1866 goto out; 1867 1868 if (!folio_try_get_rcu(folio)) 1869 goto repeat; 1870 1871 if (unlikely(folio != xas_reload(&xas))) { 1872 folio_put(folio); 1873 goto repeat; 1874 } 1875 out: 1876 rcu_read_unlock(); 1877 1878 return folio; 1879 } 1880 1881 /** 1882 * __filemap_get_folio - Find and get a reference to a folio. 1883 * @mapping: The address_space to search. 1884 * @index: The page index. 1885 * @fgp_flags: %FGP flags modify how the folio is returned. 1886 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified. 1887 * 1888 * Looks up the page cache entry at @mapping & @index. 1889 * 1890 * @fgp_flags can be zero or more of these flags: 1891 * 1892 * * %FGP_ACCESSED - The folio will be marked accessed. 1893 * * %FGP_LOCK - The folio is returned locked. 1894 * * %FGP_ENTRY - If there is a shadow / swap / DAX entry, return it 1895 * instead of allocating a new folio to replace it. 1896 * * %FGP_CREAT - If no page is present then a new page is allocated using 1897 * @gfp and added to the page cache and the VM's LRU list. 1898 * The page is returned locked and with an increased refcount. 1899 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the 1900 * page is already in cache. If the page was allocated, unlock it before 1901 * returning so the caller can do the same dance. 1902 * * %FGP_WRITE - The page will be written to by the caller. 1903 * * %FGP_NOFS - __GFP_FS will get cleared in gfp. 1904 * * %FGP_NOWAIT - Don't get blocked by page lock. 1905 * * %FGP_STABLE - Wait for the folio to be stable (finished writeback) 1906 * 1907 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even 1908 * if the %GFP flags specified for %FGP_CREAT are atomic. 1909 * 1910 * If there is a page cache page, it is returned with an increased refcount. 1911 * 1912 * Return: The found folio or %NULL otherwise. 1913 */ 1914 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index, 1915 int fgp_flags, gfp_t gfp) 1916 { 1917 struct folio *folio; 1918 1919 repeat: 1920 folio = mapping_get_entry(mapping, index); 1921 if (xa_is_value(folio)) { 1922 if (fgp_flags & FGP_ENTRY) 1923 return folio; 1924 folio = NULL; 1925 } 1926 if (!folio) 1927 goto no_page; 1928 1929 if (fgp_flags & FGP_LOCK) { 1930 if (fgp_flags & FGP_NOWAIT) { 1931 if (!folio_trylock(folio)) { 1932 folio_put(folio); 1933 return NULL; 1934 } 1935 } else { 1936 folio_lock(folio); 1937 } 1938 1939 /* Has the page been truncated? */ 1940 if (unlikely(folio->mapping != mapping)) { 1941 folio_unlock(folio); 1942 folio_put(folio); 1943 goto repeat; 1944 } 1945 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio); 1946 } 1947 1948 if (fgp_flags & FGP_ACCESSED) 1949 folio_mark_accessed(folio); 1950 else if (fgp_flags & FGP_WRITE) { 1951 /* Clear idle flag for buffer write */ 1952 if (folio_test_idle(folio)) 1953 folio_clear_idle(folio); 1954 } 1955 1956 if (fgp_flags & FGP_STABLE) 1957 folio_wait_stable(folio); 1958 no_page: 1959 if (!folio && (fgp_flags & FGP_CREAT)) { 1960 int err; 1961 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping)) 1962 gfp |= __GFP_WRITE; 1963 if (fgp_flags & FGP_NOFS) 1964 gfp &= ~__GFP_FS; 1965 if (fgp_flags & FGP_NOWAIT) { 1966 gfp &= ~GFP_KERNEL; 1967 gfp |= GFP_NOWAIT | __GFP_NOWARN; 1968 } 1969 1970 folio = filemap_alloc_folio(gfp, 0); 1971 if (!folio) 1972 return NULL; 1973 1974 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP)))) 1975 fgp_flags |= FGP_LOCK; 1976 1977 /* Init accessed so avoid atomic mark_page_accessed later */ 1978 if (fgp_flags & FGP_ACCESSED) 1979 __folio_set_referenced(folio); 1980 1981 err = filemap_add_folio(mapping, folio, index, gfp); 1982 if (unlikely(err)) { 1983 folio_put(folio); 1984 folio = NULL; 1985 if (err == -EEXIST) 1986 goto repeat; 1987 } 1988 1989 /* 1990 * filemap_add_folio locks the page, and for mmap 1991 * we expect an unlocked page. 1992 */ 1993 if (folio && (fgp_flags & FGP_FOR_MMAP)) 1994 folio_unlock(folio); 1995 } 1996 1997 return folio; 1998 } 1999 EXPORT_SYMBOL(__filemap_get_folio); 2000 2001 static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max, 2002 xa_mark_t mark) 2003 { 2004 struct folio *folio; 2005 2006 retry: 2007 if (mark == XA_PRESENT) 2008 folio = xas_find(xas, max); 2009 else 2010 folio = xas_find_marked(xas, max, mark); 2011 2012 if (xas_retry(xas, folio)) 2013 goto retry; 2014 /* 2015 * A shadow entry of a recently evicted page, a swap 2016 * entry from shmem/tmpfs or a DAX entry. Return it 2017 * without attempting to raise page count. 2018 */ 2019 if (!folio || xa_is_value(folio)) 2020 return folio; 2021 2022 if (!folio_try_get_rcu(folio)) 2023 goto reset; 2024 2025 if (unlikely(folio != xas_reload(xas))) { 2026 folio_put(folio); 2027 goto reset; 2028 } 2029 2030 return folio; 2031 reset: 2032 xas_reset(xas); 2033 goto retry; 2034 } 2035 2036 /** 2037 * find_get_entries - gang pagecache lookup 2038 * @mapping: The address_space to search 2039 * @start: The starting page cache index 2040 * @end: The final page index (inclusive). 2041 * @fbatch: Where the resulting entries are placed. 2042 * @indices: The cache indices corresponding to the entries in @entries 2043 * 2044 * find_get_entries() will search for and return a batch of entries in 2045 * the mapping. The entries are placed in @fbatch. find_get_entries() 2046 * takes a reference on any actual folios it returns. 2047 * 2048 * The entries have ascending indexes. The indices may not be consecutive 2049 * due to not-present entries or large folios. 2050 * 2051 * Any shadow entries of evicted folios, or swap entries from 2052 * shmem/tmpfs, are included in the returned array. 2053 * 2054 * Return: The number of entries which were found. 2055 */ 2056 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start, 2057 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices) 2058 { 2059 XA_STATE(xas, &mapping->i_pages, *start); 2060 struct folio *folio; 2061 2062 rcu_read_lock(); 2063 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) { 2064 indices[fbatch->nr] = xas.xa_index; 2065 if (!folio_batch_add(fbatch, folio)) 2066 break; 2067 } 2068 rcu_read_unlock(); 2069 2070 if (folio_batch_count(fbatch)) { 2071 unsigned long nr = 1; 2072 int idx = folio_batch_count(fbatch) - 1; 2073 2074 folio = fbatch->folios[idx]; 2075 if (!xa_is_value(folio) && !folio_test_hugetlb(folio)) 2076 nr = folio_nr_pages(folio); 2077 *start = indices[idx] + nr; 2078 } 2079 return folio_batch_count(fbatch); 2080 } 2081 2082 /** 2083 * find_lock_entries - Find a batch of pagecache entries. 2084 * @mapping: The address_space to search. 2085 * @start: The starting page cache index. 2086 * @end: The final page index (inclusive). 2087 * @fbatch: Where the resulting entries are placed. 2088 * @indices: The cache indices of the entries in @fbatch. 2089 * 2090 * find_lock_entries() will return a batch of entries from @mapping. 2091 * Swap, shadow and DAX entries are included. Folios are returned 2092 * locked and with an incremented refcount. Folios which are locked 2093 * by somebody else or under writeback are skipped. Folios which are 2094 * partially outside the range are not returned. 2095 * 2096 * The entries have ascending indexes. The indices may not be consecutive 2097 * due to not-present entries, large folios, folios which could not be 2098 * locked or folios under writeback. 2099 * 2100 * Return: The number of entries which were found. 2101 */ 2102 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start, 2103 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices) 2104 { 2105 XA_STATE(xas, &mapping->i_pages, *start); 2106 struct folio *folio; 2107 2108 rcu_read_lock(); 2109 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) { 2110 if (!xa_is_value(folio)) { 2111 if (folio->index < *start) 2112 goto put; 2113 if (folio->index + folio_nr_pages(folio) - 1 > end) 2114 goto put; 2115 if (!folio_trylock(folio)) 2116 goto put; 2117 if (folio->mapping != mapping || 2118 folio_test_writeback(folio)) 2119 goto unlock; 2120 VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index), 2121 folio); 2122 } 2123 indices[fbatch->nr] = xas.xa_index; 2124 if (!folio_batch_add(fbatch, folio)) 2125 break; 2126 continue; 2127 unlock: 2128 folio_unlock(folio); 2129 put: 2130 folio_put(folio); 2131 } 2132 rcu_read_unlock(); 2133 2134 if (folio_batch_count(fbatch)) { 2135 unsigned long nr = 1; 2136 int idx = folio_batch_count(fbatch) - 1; 2137 2138 folio = fbatch->folios[idx]; 2139 if (!xa_is_value(folio) && !folio_test_hugetlb(folio)) 2140 nr = folio_nr_pages(folio); 2141 *start = indices[idx] + nr; 2142 } 2143 return folio_batch_count(fbatch); 2144 } 2145 2146 /** 2147 * filemap_get_folios - Get a batch of folios 2148 * @mapping: The address_space to search 2149 * @start: The starting page index 2150 * @end: The final page index (inclusive) 2151 * @fbatch: The batch to fill. 2152 * 2153 * Search for and return a batch of folios in the mapping starting at 2154 * index @start and up to index @end (inclusive). The folios are returned 2155 * in @fbatch with an elevated reference count. 2156 * 2157 * The first folio may start before @start; if it does, it will contain 2158 * @start. The final folio may extend beyond @end; if it does, it will 2159 * contain @end. The folios have ascending indices. There may be gaps 2160 * between the folios if there are indices which have no folio in the 2161 * page cache. If folios are added to or removed from the page cache 2162 * while this is running, they may or may not be found by this call. 2163 * 2164 * Return: The number of folios which were found. 2165 * We also update @start to index the next folio for the traversal. 2166 */ 2167 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start, 2168 pgoff_t end, struct folio_batch *fbatch) 2169 { 2170 XA_STATE(xas, &mapping->i_pages, *start); 2171 struct folio *folio; 2172 2173 rcu_read_lock(); 2174 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) { 2175 /* Skip over shadow, swap and DAX entries */ 2176 if (xa_is_value(folio)) 2177 continue; 2178 if (!folio_batch_add(fbatch, folio)) { 2179 unsigned long nr = folio_nr_pages(folio); 2180 2181 if (folio_test_hugetlb(folio)) 2182 nr = 1; 2183 *start = folio->index + nr; 2184 goto out; 2185 } 2186 } 2187 2188 /* 2189 * We come here when there is no page beyond @end. We take care to not 2190 * overflow the index @start as it confuses some of the callers. This 2191 * breaks the iteration when there is a page at index -1 but that is 2192 * already broken anyway. 2193 */ 2194 if (end == (pgoff_t)-1) 2195 *start = (pgoff_t)-1; 2196 else 2197 *start = end + 1; 2198 out: 2199 rcu_read_unlock(); 2200 2201 return folio_batch_count(fbatch); 2202 } 2203 EXPORT_SYMBOL(filemap_get_folios); 2204 2205 static inline 2206 bool folio_more_pages(struct folio *folio, pgoff_t index, pgoff_t max) 2207 { 2208 if (!folio_test_large(folio) || folio_test_hugetlb(folio)) 2209 return false; 2210 if (index >= max) 2211 return false; 2212 return index < folio->index + folio_nr_pages(folio) - 1; 2213 } 2214 2215 /** 2216 * filemap_get_folios_contig - Get a batch of contiguous folios 2217 * @mapping: The address_space to search 2218 * @start: The starting page index 2219 * @end: The final page index (inclusive) 2220 * @fbatch: The batch to fill 2221 * 2222 * filemap_get_folios_contig() works exactly like filemap_get_folios(), 2223 * except the returned folios are guaranteed to be contiguous. This may 2224 * not return all contiguous folios if the batch gets filled up. 2225 * 2226 * Return: The number of folios found. 2227 * Also update @start to be positioned for traversal of the next folio. 2228 */ 2229 2230 unsigned filemap_get_folios_contig(struct address_space *mapping, 2231 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch) 2232 { 2233 XA_STATE(xas, &mapping->i_pages, *start); 2234 unsigned long nr; 2235 struct folio *folio; 2236 2237 rcu_read_lock(); 2238 2239 for (folio = xas_load(&xas); folio && xas.xa_index <= end; 2240 folio = xas_next(&xas)) { 2241 if (xas_retry(&xas, folio)) 2242 continue; 2243 /* 2244 * If the entry has been swapped out, we can stop looking. 2245 * No current caller is looking for DAX entries. 2246 */ 2247 if (xa_is_value(folio)) 2248 goto update_start; 2249 2250 if (!folio_try_get_rcu(folio)) 2251 goto retry; 2252 2253 if (unlikely(folio != xas_reload(&xas))) 2254 goto put_folio; 2255 2256 if (!folio_batch_add(fbatch, folio)) { 2257 nr = folio_nr_pages(folio); 2258 2259 if (folio_test_hugetlb(folio)) 2260 nr = 1; 2261 *start = folio->index + nr; 2262 goto out; 2263 } 2264 continue; 2265 put_folio: 2266 folio_put(folio); 2267 2268 retry: 2269 xas_reset(&xas); 2270 } 2271 2272 update_start: 2273 nr = folio_batch_count(fbatch); 2274 2275 if (nr) { 2276 folio = fbatch->folios[nr - 1]; 2277 if (folio_test_hugetlb(folio)) 2278 *start = folio->index + 1; 2279 else 2280 *start = folio->index + folio_nr_pages(folio); 2281 } 2282 out: 2283 rcu_read_unlock(); 2284 return folio_batch_count(fbatch); 2285 } 2286 EXPORT_SYMBOL(filemap_get_folios_contig); 2287 2288 /** 2289 * filemap_get_folios_tag - Get a batch of folios matching @tag 2290 * @mapping: The address_space to search 2291 * @start: The starting page index 2292 * @end: The final page index (inclusive) 2293 * @tag: The tag index 2294 * @fbatch: The batch to fill 2295 * 2296 * Same as filemap_get_folios(), but only returning folios tagged with @tag. 2297 * 2298 * Return: The number of folios found. 2299 * Also update @start to index the next folio for traversal. 2300 */ 2301 unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start, 2302 pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch) 2303 { 2304 XA_STATE(xas, &mapping->i_pages, *start); 2305 struct folio *folio; 2306 2307 rcu_read_lock(); 2308 while ((folio = find_get_entry(&xas, end, tag)) != NULL) { 2309 /* 2310 * Shadow entries should never be tagged, but this iteration 2311 * is lockless so there is a window for page reclaim to evict 2312 * a page we saw tagged. Skip over it. 2313 */ 2314 if (xa_is_value(folio)) 2315 continue; 2316 if (!folio_batch_add(fbatch, folio)) { 2317 unsigned long nr = folio_nr_pages(folio); 2318 2319 if (folio_test_hugetlb(folio)) 2320 nr = 1; 2321 *start = folio->index + nr; 2322 goto out; 2323 } 2324 } 2325 /* 2326 * We come here when there is no page beyond @end. We take care to not 2327 * overflow the index @start as it confuses some of the callers. This 2328 * breaks the iteration when there is a page at index -1 but that is 2329 * already broke anyway. 2330 */ 2331 if (end == (pgoff_t)-1) 2332 *start = (pgoff_t)-1; 2333 else 2334 *start = end + 1; 2335 out: 2336 rcu_read_unlock(); 2337 2338 return folio_batch_count(fbatch); 2339 } 2340 EXPORT_SYMBOL(filemap_get_folios_tag); 2341 2342 /* 2343 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 2344 * a _large_ part of the i/o request. Imagine the worst scenario: 2345 * 2346 * ---R__________________________________________B__________ 2347 * ^ reading here ^ bad block(assume 4k) 2348 * 2349 * read(R) => miss => readahead(R...B) => media error => frustrating retries 2350 * => failing the whole request => read(R) => read(R+1) => 2351 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 2352 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 2353 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 2354 * 2355 * It is going insane. Fix it by quickly scaling down the readahead size. 2356 */ 2357 static void shrink_readahead_size_eio(struct file_ra_state *ra) 2358 { 2359 ra->ra_pages /= 4; 2360 } 2361 2362 /* 2363 * filemap_get_read_batch - Get a batch of folios for read 2364 * 2365 * Get a batch of folios which represent a contiguous range of bytes in 2366 * the file. No exceptional entries will be returned. If @index is in 2367 * the middle of a folio, the entire folio will be returned. The last 2368 * folio in the batch may have the readahead flag set or the uptodate flag 2369 * clear so that the caller can take the appropriate action. 2370 */ 2371 static void filemap_get_read_batch(struct address_space *mapping, 2372 pgoff_t index, pgoff_t max, struct folio_batch *fbatch) 2373 { 2374 XA_STATE(xas, &mapping->i_pages, index); 2375 struct folio *folio; 2376 2377 rcu_read_lock(); 2378 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) { 2379 if (xas_retry(&xas, folio)) 2380 continue; 2381 if (xas.xa_index > max || xa_is_value(folio)) 2382 break; 2383 if (xa_is_sibling(folio)) 2384 break; 2385 if (!folio_try_get_rcu(folio)) 2386 goto retry; 2387 2388 if (unlikely(folio != xas_reload(&xas))) 2389 goto put_folio; 2390 2391 if (!folio_batch_add(fbatch, folio)) 2392 break; 2393 if (!folio_test_uptodate(folio)) 2394 break; 2395 if (folio_test_readahead(folio)) 2396 break; 2397 xas_advance(&xas, folio->index + folio_nr_pages(folio) - 1); 2398 continue; 2399 put_folio: 2400 folio_put(folio); 2401 retry: 2402 xas_reset(&xas); 2403 } 2404 rcu_read_unlock(); 2405 } 2406 2407 static int filemap_read_folio(struct file *file, filler_t filler, 2408 struct folio *folio) 2409 { 2410 bool workingset = folio_test_workingset(folio); 2411 unsigned long pflags; 2412 int error; 2413 2414 /* 2415 * A previous I/O error may have been due to temporary failures, 2416 * eg. multipath errors. PG_error will be set again if read_folio 2417 * fails. 2418 */ 2419 folio_clear_error(folio); 2420 2421 /* Start the actual read. The read will unlock the page. */ 2422 if (unlikely(workingset)) 2423 psi_memstall_enter(&pflags); 2424 error = filler(file, folio); 2425 if (unlikely(workingset)) 2426 psi_memstall_leave(&pflags); 2427 if (error) 2428 return error; 2429 2430 error = folio_wait_locked_killable(folio); 2431 if (error) 2432 return error; 2433 if (folio_test_uptodate(folio)) 2434 return 0; 2435 if (file) 2436 shrink_readahead_size_eio(&file->f_ra); 2437 return -EIO; 2438 } 2439 2440 static bool filemap_range_uptodate(struct address_space *mapping, 2441 loff_t pos, size_t count, struct folio *folio, 2442 bool need_uptodate) 2443 { 2444 if (folio_test_uptodate(folio)) 2445 return true; 2446 /* pipes can't handle partially uptodate pages */ 2447 if (need_uptodate) 2448 return false; 2449 if (!mapping->a_ops->is_partially_uptodate) 2450 return false; 2451 if (mapping->host->i_blkbits >= folio_shift(folio)) 2452 return false; 2453 2454 if (folio_pos(folio) > pos) { 2455 count -= folio_pos(folio) - pos; 2456 pos = 0; 2457 } else { 2458 pos -= folio_pos(folio); 2459 } 2460 2461 return mapping->a_ops->is_partially_uptodate(folio, pos, count); 2462 } 2463 2464 static int filemap_update_page(struct kiocb *iocb, 2465 struct address_space *mapping, size_t count, 2466 struct folio *folio, bool need_uptodate) 2467 { 2468 int error; 2469 2470 if (iocb->ki_flags & IOCB_NOWAIT) { 2471 if (!filemap_invalidate_trylock_shared(mapping)) 2472 return -EAGAIN; 2473 } else { 2474 filemap_invalidate_lock_shared(mapping); 2475 } 2476 2477 if (!folio_trylock(folio)) { 2478 error = -EAGAIN; 2479 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) 2480 goto unlock_mapping; 2481 if (!(iocb->ki_flags & IOCB_WAITQ)) { 2482 filemap_invalidate_unlock_shared(mapping); 2483 /* 2484 * This is where we usually end up waiting for a 2485 * previously submitted readahead to finish. 2486 */ 2487 folio_put_wait_locked(folio, TASK_KILLABLE); 2488 return AOP_TRUNCATED_PAGE; 2489 } 2490 error = __folio_lock_async(folio, iocb->ki_waitq); 2491 if (error) 2492 goto unlock_mapping; 2493 } 2494 2495 error = AOP_TRUNCATED_PAGE; 2496 if (!folio->mapping) 2497 goto unlock; 2498 2499 error = 0; 2500 if (filemap_range_uptodate(mapping, iocb->ki_pos, count, folio, 2501 need_uptodate)) 2502 goto unlock; 2503 2504 error = -EAGAIN; 2505 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ)) 2506 goto unlock; 2507 2508 error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio, 2509 folio); 2510 goto unlock_mapping; 2511 unlock: 2512 folio_unlock(folio); 2513 unlock_mapping: 2514 filemap_invalidate_unlock_shared(mapping); 2515 if (error == AOP_TRUNCATED_PAGE) 2516 folio_put(folio); 2517 return error; 2518 } 2519 2520 static int filemap_create_folio(struct file *file, 2521 struct address_space *mapping, pgoff_t index, 2522 struct folio_batch *fbatch) 2523 { 2524 struct folio *folio; 2525 int error; 2526 2527 folio = filemap_alloc_folio(mapping_gfp_mask(mapping), 0); 2528 if (!folio) 2529 return -ENOMEM; 2530 2531 /* 2532 * Protect against truncate / hole punch. Grabbing invalidate_lock 2533 * here assures we cannot instantiate and bring uptodate new 2534 * pagecache folios after evicting page cache during truncate 2535 * and before actually freeing blocks. Note that we could 2536 * release invalidate_lock after inserting the folio into 2537 * the page cache as the locked folio would then be enough to 2538 * synchronize with hole punching. But there are code paths 2539 * such as filemap_update_page() filling in partially uptodate 2540 * pages or ->readahead() that need to hold invalidate_lock 2541 * while mapping blocks for IO so let's hold the lock here as 2542 * well to keep locking rules simple. 2543 */ 2544 filemap_invalidate_lock_shared(mapping); 2545 error = filemap_add_folio(mapping, folio, index, 2546 mapping_gfp_constraint(mapping, GFP_KERNEL)); 2547 if (error == -EEXIST) 2548 error = AOP_TRUNCATED_PAGE; 2549 if (error) 2550 goto error; 2551 2552 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio); 2553 if (error) 2554 goto error; 2555 2556 filemap_invalidate_unlock_shared(mapping); 2557 folio_batch_add(fbatch, folio); 2558 return 0; 2559 error: 2560 filemap_invalidate_unlock_shared(mapping); 2561 folio_put(folio); 2562 return error; 2563 } 2564 2565 static int filemap_readahead(struct kiocb *iocb, struct file *file, 2566 struct address_space *mapping, struct folio *folio, 2567 pgoff_t last_index) 2568 { 2569 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index); 2570 2571 if (iocb->ki_flags & IOCB_NOIO) 2572 return -EAGAIN; 2573 page_cache_async_ra(&ractl, folio, last_index - folio->index); 2574 return 0; 2575 } 2576 2577 static int filemap_get_pages(struct kiocb *iocb, size_t count, 2578 struct folio_batch *fbatch, bool need_uptodate) 2579 { 2580 struct file *filp = iocb->ki_filp; 2581 struct address_space *mapping = filp->f_mapping; 2582 struct file_ra_state *ra = &filp->f_ra; 2583 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT; 2584 pgoff_t last_index; 2585 struct folio *folio; 2586 int err = 0; 2587 2588 /* "last_index" is the index of the page beyond the end of the read */ 2589 last_index = DIV_ROUND_UP(iocb->ki_pos + count, PAGE_SIZE); 2590 retry: 2591 if (fatal_signal_pending(current)) 2592 return -EINTR; 2593 2594 filemap_get_read_batch(mapping, index, last_index - 1, fbatch); 2595 if (!folio_batch_count(fbatch)) { 2596 if (iocb->ki_flags & IOCB_NOIO) 2597 return -EAGAIN; 2598 page_cache_sync_readahead(mapping, ra, filp, index, 2599 last_index - index); 2600 filemap_get_read_batch(mapping, index, last_index - 1, fbatch); 2601 } 2602 if (!folio_batch_count(fbatch)) { 2603 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ)) 2604 return -EAGAIN; 2605 err = filemap_create_folio(filp, mapping, 2606 iocb->ki_pos >> PAGE_SHIFT, fbatch); 2607 if (err == AOP_TRUNCATED_PAGE) 2608 goto retry; 2609 return err; 2610 } 2611 2612 folio = fbatch->folios[folio_batch_count(fbatch) - 1]; 2613 if (folio_test_readahead(folio)) { 2614 err = filemap_readahead(iocb, filp, mapping, folio, last_index); 2615 if (err) 2616 goto err; 2617 } 2618 if (!folio_test_uptodate(folio)) { 2619 if ((iocb->ki_flags & IOCB_WAITQ) && 2620 folio_batch_count(fbatch) > 1) 2621 iocb->ki_flags |= IOCB_NOWAIT; 2622 err = filemap_update_page(iocb, mapping, count, folio, 2623 need_uptodate); 2624 if (err) 2625 goto err; 2626 } 2627 2628 return 0; 2629 err: 2630 if (err < 0) 2631 folio_put(folio); 2632 if (likely(--fbatch->nr)) 2633 return 0; 2634 if (err == AOP_TRUNCATED_PAGE) 2635 goto retry; 2636 return err; 2637 } 2638 2639 static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio) 2640 { 2641 unsigned int shift = folio_shift(folio); 2642 2643 return (pos1 >> shift == pos2 >> shift); 2644 } 2645 2646 /** 2647 * filemap_read - Read data from the page cache. 2648 * @iocb: The iocb to read. 2649 * @iter: Destination for the data. 2650 * @already_read: Number of bytes already read by the caller. 2651 * 2652 * Copies data from the page cache. If the data is not currently present, 2653 * uses the readahead and read_folio address_space operations to fetch it. 2654 * 2655 * Return: Total number of bytes copied, including those already read by 2656 * the caller. If an error happens before any bytes are copied, returns 2657 * a negative error number. 2658 */ 2659 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter, 2660 ssize_t already_read) 2661 { 2662 struct file *filp = iocb->ki_filp; 2663 struct file_ra_state *ra = &filp->f_ra; 2664 struct address_space *mapping = filp->f_mapping; 2665 struct inode *inode = mapping->host; 2666 struct folio_batch fbatch; 2667 int i, error = 0; 2668 bool writably_mapped; 2669 loff_t isize, end_offset; 2670 2671 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes)) 2672 return 0; 2673 if (unlikely(!iov_iter_count(iter))) 2674 return 0; 2675 2676 iov_iter_truncate(iter, inode->i_sb->s_maxbytes); 2677 folio_batch_init(&fbatch); 2678 2679 do { 2680 cond_resched(); 2681 2682 /* 2683 * If we've already successfully copied some data, then we 2684 * can no longer safely return -EIOCBQUEUED. Hence mark 2685 * an async read NOWAIT at that point. 2686 */ 2687 if ((iocb->ki_flags & IOCB_WAITQ) && already_read) 2688 iocb->ki_flags |= IOCB_NOWAIT; 2689 2690 if (unlikely(iocb->ki_pos >= i_size_read(inode))) 2691 break; 2692 2693 error = filemap_get_pages(iocb, iter->count, &fbatch, 2694 iov_iter_is_pipe(iter)); 2695 if (error < 0) 2696 break; 2697 2698 /* 2699 * i_size must be checked after we know the pages are Uptodate. 2700 * 2701 * Checking i_size after the check allows us to calculate 2702 * the correct value for "nr", which means the zero-filled 2703 * part of the page is not copied back to userspace (unless 2704 * another truncate extends the file - this is desired though). 2705 */ 2706 isize = i_size_read(inode); 2707 if (unlikely(iocb->ki_pos >= isize)) 2708 goto put_folios; 2709 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count); 2710 2711 /* 2712 * Once we start copying data, we don't want to be touching any 2713 * cachelines that might be contended: 2714 */ 2715 writably_mapped = mapping_writably_mapped(mapping); 2716 2717 /* 2718 * When a read accesses the same folio several times, only 2719 * mark it as accessed the first time. 2720 */ 2721 if (!pos_same_folio(iocb->ki_pos, ra->prev_pos - 1, 2722 fbatch.folios[0])) 2723 folio_mark_accessed(fbatch.folios[0]); 2724 2725 for (i = 0; i < folio_batch_count(&fbatch); i++) { 2726 struct folio *folio = fbatch.folios[i]; 2727 size_t fsize = folio_size(folio); 2728 size_t offset = iocb->ki_pos & (fsize - 1); 2729 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos, 2730 fsize - offset); 2731 size_t copied; 2732 2733 if (end_offset < folio_pos(folio)) 2734 break; 2735 if (i > 0) 2736 folio_mark_accessed(folio); 2737 /* 2738 * If users can be writing to this folio using arbitrary 2739 * virtual addresses, take care of potential aliasing 2740 * before reading the folio on the kernel side. 2741 */ 2742 if (writably_mapped) 2743 flush_dcache_folio(folio); 2744 2745 copied = copy_folio_to_iter(folio, offset, bytes, iter); 2746 2747 already_read += copied; 2748 iocb->ki_pos += copied; 2749 ra->prev_pos = iocb->ki_pos; 2750 2751 if (copied < bytes) { 2752 error = -EFAULT; 2753 break; 2754 } 2755 } 2756 put_folios: 2757 for (i = 0; i < folio_batch_count(&fbatch); i++) 2758 folio_put(fbatch.folios[i]); 2759 folio_batch_init(&fbatch); 2760 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error); 2761 2762 file_accessed(filp); 2763 2764 return already_read ? already_read : error; 2765 } 2766 EXPORT_SYMBOL_GPL(filemap_read); 2767 2768 /** 2769 * generic_file_read_iter - generic filesystem read routine 2770 * @iocb: kernel I/O control block 2771 * @iter: destination for the data read 2772 * 2773 * This is the "read_iter()" routine for all filesystems 2774 * that can use the page cache directly. 2775 * 2776 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall 2777 * be returned when no data can be read without waiting for I/O requests 2778 * to complete; it doesn't prevent readahead. 2779 * 2780 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O 2781 * requests shall be made for the read or for readahead. When no data 2782 * can be read, -EAGAIN shall be returned. When readahead would be 2783 * triggered, a partial, possibly empty read shall be returned. 2784 * 2785 * Return: 2786 * * number of bytes copied, even for partial reads 2787 * * negative error code (or 0 if IOCB_NOIO) if nothing was read 2788 */ 2789 ssize_t 2790 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 2791 { 2792 size_t count = iov_iter_count(iter); 2793 ssize_t retval = 0; 2794 2795 if (!count) 2796 return 0; /* skip atime */ 2797 2798 if (iocb->ki_flags & IOCB_DIRECT) { 2799 struct file *file = iocb->ki_filp; 2800 struct address_space *mapping = file->f_mapping; 2801 struct inode *inode = mapping->host; 2802 2803 if (iocb->ki_flags & IOCB_NOWAIT) { 2804 if (filemap_range_needs_writeback(mapping, iocb->ki_pos, 2805 iocb->ki_pos + count - 1)) 2806 return -EAGAIN; 2807 } else { 2808 retval = filemap_write_and_wait_range(mapping, 2809 iocb->ki_pos, 2810 iocb->ki_pos + count - 1); 2811 if (retval < 0) 2812 return retval; 2813 } 2814 2815 file_accessed(file); 2816 2817 retval = mapping->a_ops->direct_IO(iocb, iter); 2818 if (retval >= 0) { 2819 iocb->ki_pos += retval; 2820 count -= retval; 2821 } 2822 if (retval != -EIOCBQUEUED) 2823 iov_iter_revert(iter, count - iov_iter_count(iter)); 2824 2825 /* 2826 * Btrfs can have a short DIO read if we encounter 2827 * compressed extents, so if there was an error, or if 2828 * we've already read everything we wanted to, or if 2829 * there was a short read because we hit EOF, go ahead 2830 * and return. Otherwise fallthrough to buffered io for 2831 * the rest of the read. Buffered reads will not work for 2832 * DAX files, so don't bother trying. 2833 */ 2834 if (retval < 0 || !count || IS_DAX(inode)) 2835 return retval; 2836 if (iocb->ki_pos >= i_size_read(inode)) 2837 return retval; 2838 } 2839 2840 return filemap_read(iocb, iter, retval); 2841 } 2842 EXPORT_SYMBOL(generic_file_read_iter); 2843 2844 /* 2845 * Splice subpages from a folio into a pipe. 2846 */ 2847 size_t splice_folio_into_pipe(struct pipe_inode_info *pipe, 2848 struct folio *folio, loff_t fpos, size_t size) 2849 { 2850 struct page *page; 2851 size_t spliced = 0, offset = offset_in_folio(folio, fpos); 2852 2853 page = folio_page(folio, offset / PAGE_SIZE); 2854 size = min(size, folio_size(folio) - offset); 2855 offset %= PAGE_SIZE; 2856 2857 while (spliced < size && 2858 !pipe_full(pipe->head, pipe->tail, pipe->max_usage)) { 2859 struct pipe_buffer *buf = pipe_head_buf(pipe); 2860 size_t part = min_t(size_t, PAGE_SIZE - offset, size - spliced); 2861 2862 *buf = (struct pipe_buffer) { 2863 .ops = &page_cache_pipe_buf_ops, 2864 .page = page, 2865 .offset = offset, 2866 .len = part, 2867 }; 2868 folio_get(folio); 2869 pipe->head++; 2870 page++; 2871 spliced += part; 2872 offset = 0; 2873 } 2874 2875 return spliced; 2876 } 2877 2878 /* 2879 * Splice folios from the pagecache of a buffered (ie. non-O_DIRECT) file into 2880 * a pipe. 2881 */ 2882 ssize_t filemap_splice_read(struct file *in, loff_t *ppos, 2883 struct pipe_inode_info *pipe, 2884 size_t len, unsigned int flags) 2885 { 2886 struct folio_batch fbatch; 2887 struct kiocb iocb; 2888 size_t total_spliced = 0, used, npages; 2889 loff_t isize, end_offset; 2890 bool writably_mapped; 2891 int i, error = 0; 2892 2893 init_sync_kiocb(&iocb, in); 2894 iocb.ki_pos = *ppos; 2895 2896 /* Work out how much data we can actually add into the pipe */ 2897 used = pipe_occupancy(pipe->head, pipe->tail); 2898 npages = max_t(ssize_t, pipe->max_usage - used, 0); 2899 len = min_t(size_t, len, npages * PAGE_SIZE); 2900 2901 folio_batch_init(&fbatch); 2902 2903 do { 2904 cond_resched(); 2905 2906 if (*ppos >= i_size_read(file_inode(in))) 2907 break; 2908 2909 iocb.ki_pos = *ppos; 2910 error = filemap_get_pages(&iocb, len, &fbatch, true); 2911 if (error < 0) 2912 break; 2913 2914 /* 2915 * i_size must be checked after we know the pages are Uptodate. 2916 * 2917 * Checking i_size after the check allows us to calculate 2918 * the correct value for "nr", which means the zero-filled 2919 * part of the page is not copied back to userspace (unless 2920 * another truncate extends the file - this is desired though). 2921 */ 2922 isize = i_size_read(file_inode(in)); 2923 if (unlikely(*ppos >= isize)) 2924 break; 2925 end_offset = min_t(loff_t, isize, *ppos + len); 2926 2927 /* 2928 * Once we start copying data, we don't want to be touching any 2929 * cachelines that might be contended: 2930 */ 2931 writably_mapped = mapping_writably_mapped(in->f_mapping); 2932 2933 for (i = 0; i < folio_batch_count(&fbatch); i++) { 2934 struct folio *folio = fbatch.folios[i]; 2935 size_t n; 2936 2937 if (folio_pos(folio) >= end_offset) 2938 goto out; 2939 folio_mark_accessed(folio); 2940 2941 /* 2942 * If users can be writing to this folio using arbitrary 2943 * virtual addresses, take care of potential aliasing 2944 * before reading the folio on the kernel side. 2945 */ 2946 if (writably_mapped) 2947 flush_dcache_folio(folio); 2948 2949 n = min_t(loff_t, len, isize - *ppos); 2950 n = splice_folio_into_pipe(pipe, folio, *ppos, n); 2951 if (!n) 2952 goto out; 2953 len -= n; 2954 total_spliced += n; 2955 *ppos += n; 2956 in->f_ra.prev_pos = *ppos; 2957 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) 2958 goto out; 2959 } 2960 2961 folio_batch_release(&fbatch); 2962 } while (len); 2963 2964 out: 2965 folio_batch_release(&fbatch); 2966 file_accessed(in); 2967 2968 return total_spliced ? total_spliced : error; 2969 } 2970 EXPORT_SYMBOL(filemap_splice_read); 2971 2972 static inline loff_t folio_seek_hole_data(struct xa_state *xas, 2973 struct address_space *mapping, struct folio *folio, 2974 loff_t start, loff_t end, bool seek_data) 2975 { 2976 const struct address_space_operations *ops = mapping->a_ops; 2977 size_t offset, bsz = i_blocksize(mapping->host); 2978 2979 if (xa_is_value(folio) || folio_test_uptodate(folio)) 2980 return seek_data ? start : end; 2981 if (!ops->is_partially_uptodate) 2982 return seek_data ? end : start; 2983 2984 xas_pause(xas); 2985 rcu_read_unlock(); 2986 folio_lock(folio); 2987 if (unlikely(folio->mapping != mapping)) 2988 goto unlock; 2989 2990 offset = offset_in_folio(folio, start) & ~(bsz - 1); 2991 2992 do { 2993 if (ops->is_partially_uptodate(folio, offset, bsz) == 2994 seek_data) 2995 break; 2996 start = (start + bsz) & ~(bsz - 1); 2997 offset += bsz; 2998 } while (offset < folio_size(folio)); 2999 unlock: 3000 folio_unlock(folio); 3001 rcu_read_lock(); 3002 return start; 3003 } 3004 3005 static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio) 3006 { 3007 if (xa_is_value(folio)) 3008 return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index); 3009 return folio_size(folio); 3010 } 3011 3012 /** 3013 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache. 3014 * @mapping: Address space to search. 3015 * @start: First byte to consider. 3016 * @end: Limit of search (exclusive). 3017 * @whence: Either SEEK_HOLE or SEEK_DATA. 3018 * 3019 * If the page cache knows which blocks contain holes and which blocks 3020 * contain data, your filesystem can use this function to implement 3021 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are 3022 * entirely memory-based such as tmpfs, and filesystems which support 3023 * unwritten extents. 3024 * 3025 * Return: The requested offset on success, or -ENXIO if @whence specifies 3026 * SEEK_DATA and there is no data after @start. There is an implicit hole 3027 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start 3028 * and @end contain data. 3029 */ 3030 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start, 3031 loff_t end, int whence) 3032 { 3033 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT); 3034 pgoff_t max = (end - 1) >> PAGE_SHIFT; 3035 bool seek_data = (whence == SEEK_DATA); 3036 struct folio *folio; 3037 3038 if (end <= start) 3039 return -ENXIO; 3040 3041 rcu_read_lock(); 3042 while ((folio = find_get_entry(&xas, max, XA_PRESENT))) { 3043 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT; 3044 size_t seek_size; 3045 3046 if (start < pos) { 3047 if (!seek_data) 3048 goto unlock; 3049 start = pos; 3050 } 3051 3052 seek_size = seek_folio_size(&xas, folio); 3053 pos = round_up((u64)pos + 1, seek_size); 3054 start = folio_seek_hole_data(&xas, mapping, folio, start, pos, 3055 seek_data); 3056 if (start < pos) 3057 goto unlock; 3058 if (start >= end) 3059 break; 3060 if (seek_size > PAGE_SIZE) 3061 xas_set(&xas, pos >> PAGE_SHIFT); 3062 if (!xa_is_value(folio)) 3063 folio_put(folio); 3064 } 3065 if (seek_data) 3066 start = -ENXIO; 3067 unlock: 3068 rcu_read_unlock(); 3069 if (folio && !xa_is_value(folio)) 3070 folio_put(folio); 3071 if (start > end) 3072 return end; 3073 return start; 3074 } 3075 3076 #ifdef CONFIG_MMU 3077 #define MMAP_LOTSAMISS (100) 3078 /* 3079 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock 3080 * @vmf - the vm_fault for this fault. 3081 * @folio - the folio to lock. 3082 * @fpin - the pointer to the file we may pin (or is already pinned). 3083 * 3084 * This works similar to lock_folio_or_retry in that it can drop the 3085 * mmap_lock. It differs in that it actually returns the folio locked 3086 * if it returns 1 and 0 if it couldn't lock the folio. If we did have 3087 * to drop the mmap_lock then fpin will point to the pinned file and 3088 * needs to be fput()'ed at a later point. 3089 */ 3090 static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio, 3091 struct file **fpin) 3092 { 3093 if (folio_trylock(folio)) 3094 return 1; 3095 3096 /* 3097 * NOTE! This will make us return with VM_FAULT_RETRY, but with 3098 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT 3099 * is supposed to work. We have way too many special cases.. 3100 */ 3101 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 3102 return 0; 3103 3104 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin); 3105 if (vmf->flags & FAULT_FLAG_KILLABLE) { 3106 if (__folio_lock_killable(folio)) { 3107 /* 3108 * We didn't have the right flags to drop the mmap_lock, 3109 * but all fault_handlers only check for fatal signals 3110 * if we return VM_FAULT_RETRY, so we need to drop the 3111 * mmap_lock here and return 0 if we don't have a fpin. 3112 */ 3113 if (*fpin == NULL) 3114 mmap_read_unlock(vmf->vma->vm_mm); 3115 return 0; 3116 } 3117 } else 3118 __folio_lock(folio); 3119 3120 return 1; 3121 } 3122 3123 /* 3124 * Synchronous readahead happens when we don't even find a page in the page 3125 * cache at all. We don't want to perform IO under the mmap sem, so if we have 3126 * to drop the mmap sem we return the file that was pinned in order for us to do 3127 * that. If we didn't pin a file then we return NULL. The file that is 3128 * returned needs to be fput()'ed when we're done with it. 3129 */ 3130 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf) 3131 { 3132 struct file *file = vmf->vma->vm_file; 3133 struct file_ra_state *ra = &file->f_ra; 3134 struct address_space *mapping = file->f_mapping; 3135 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff); 3136 struct file *fpin = NULL; 3137 unsigned long vm_flags = vmf->vma->vm_flags; 3138 unsigned int mmap_miss; 3139 3140 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3141 /* Use the readahead code, even if readahead is disabled */ 3142 if (vm_flags & VM_HUGEPAGE) { 3143 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3144 ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1); 3145 ra->size = HPAGE_PMD_NR; 3146 /* 3147 * Fetch two PMD folios, so we get the chance to actually 3148 * readahead, unless we've been told not to. 3149 */ 3150 if (!(vm_flags & VM_RAND_READ)) 3151 ra->size *= 2; 3152 ra->async_size = HPAGE_PMD_NR; 3153 page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER); 3154 return fpin; 3155 } 3156 #endif 3157 3158 /* If we don't want any read-ahead, don't bother */ 3159 if (vm_flags & VM_RAND_READ) 3160 return fpin; 3161 if (!ra->ra_pages) 3162 return fpin; 3163 3164 if (vm_flags & VM_SEQ_READ) { 3165 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3166 page_cache_sync_ra(&ractl, ra->ra_pages); 3167 return fpin; 3168 } 3169 3170 /* Avoid banging the cache line if not needed */ 3171 mmap_miss = READ_ONCE(ra->mmap_miss); 3172 if (mmap_miss < MMAP_LOTSAMISS * 10) 3173 WRITE_ONCE(ra->mmap_miss, ++mmap_miss); 3174 3175 /* 3176 * Do we miss much more than hit in this file? If so, 3177 * stop bothering with read-ahead. It will only hurt. 3178 */ 3179 if (mmap_miss > MMAP_LOTSAMISS) 3180 return fpin; 3181 3182 /* 3183 * mmap read-around 3184 */ 3185 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3186 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2); 3187 ra->size = ra->ra_pages; 3188 ra->async_size = ra->ra_pages / 4; 3189 ractl._index = ra->start; 3190 page_cache_ra_order(&ractl, ra, 0); 3191 return fpin; 3192 } 3193 3194 /* 3195 * Asynchronous readahead happens when we find the page and PG_readahead, 3196 * so we want to possibly extend the readahead further. We return the file that 3197 * was pinned if we have to drop the mmap_lock in order to do IO. 3198 */ 3199 static struct file *do_async_mmap_readahead(struct vm_fault *vmf, 3200 struct folio *folio) 3201 { 3202 struct file *file = vmf->vma->vm_file; 3203 struct file_ra_state *ra = &file->f_ra; 3204 DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff); 3205 struct file *fpin = NULL; 3206 unsigned int mmap_miss; 3207 3208 /* If we don't want any read-ahead, don't bother */ 3209 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages) 3210 return fpin; 3211 3212 mmap_miss = READ_ONCE(ra->mmap_miss); 3213 if (mmap_miss) 3214 WRITE_ONCE(ra->mmap_miss, --mmap_miss); 3215 3216 if (folio_test_readahead(folio)) { 3217 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3218 page_cache_async_ra(&ractl, folio, ra->ra_pages); 3219 } 3220 return fpin; 3221 } 3222 3223 /** 3224 * filemap_fault - read in file data for page fault handling 3225 * @vmf: struct vm_fault containing details of the fault 3226 * 3227 * filemap_fault() is invoked via the vma operations vector for a 3228 * mapped memory region to read in file data during a page fault. 3229 * 3230 * The goto's are kind of ugly, but this streamlines the normal case of having 3231 * it in the page cache, and handles the special cases reasonably without 3232 * having a lot of duplicated code. 3233 * 3234 * vma->vm_mm->mmap_lock must be held on entry. 3235 * 3236 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock 3237 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap(). 3238 * 3239 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock 3240 * has not been released. 3241 * 3242 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. 3243 * 3244 * Return: bitwise-OR of %VM_FAULT_ codes. 3245 */ 3246 vm_fault_t filemap_fault(struct vm_fault *vmf) 3247 { 3248 int error; 3249 struct file *file = vmf->vma->vm_file; 3250 struct file *fpin = NULL; 3251 struct address_space *mapping = file->f_mapping; 3252 struct inode *inode = mapping->host; 3253 pgoff_t max_idx, index = vmf->pgoff; 3254 struct folio *folio; 3255 vm_fault_t ret = 0; 3256 bool mapping_locked = false; 3257 3258 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3259 if (unlikely(index >= max_idx)) 3260 return VM_FAULT_SIGBUS; 3261 3262 /* 3263 * Do we have something in the page cache already? 3264 */ 3265 folio = filemap_get_folio(mapping, index); 3266 if (likely(folio)) { 3267 /* 3268 * We found the page, so try async readahead before waiting for 3269 * the lock. 3270 */ 3271 if (!(vmf->flags & FAULT_FLAG_TRIED)) 3272 fpin = do_async_mmap_readahead(vmf, folio); 3273 if (unlikely(!folio_test_uptodate(folio))) { 3274 filemap_invalidate_lock_shared(mapping); 3275 mapping_locked = true; 3276 } 3277 } else { 3278 /* No page in the page cache at all */ 3279 count_vm_event(PGMAJFAULT); 3280 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); 3281 ret = VM_FAULT_MAJOR; 3282 fpin = do_sync_mmap_readahead(vmf); 3283 retry_find: 3284 /* 3285 * See comment in filemap_create_folio() why we need 3286 * invalidate_lock 3287 */ 3288 if (!mapping_locked) { 3289 filemap_invalidate_lock_shared(mapping); 3290 mapping_locked = true; 3291 } 3292 folio = __filemap_get_folio(mapping, index, 3293 FGP_CREAT|FGP_FOR_MMAP, 3294 vmf->gfp_mask); 3295 if (!folio) { 3296 if (fpin) 3297 goto out_retry; 3298 filemap_invalidate_unlock_shared(mapping); 3299 return VM_FAULT_OOM; 3300 } 3301 } 3302 3303 if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin)) 3304 goto out_retry; 3305 3306 /* Did it get truncated? */ 3307 if (unlikely(folio->mapping != mapping)) { 3308 folio_unlock(folio); 3309 folio_put(folio); 3310 goto retry_find; 3311 } 3312 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio); 3313 3314 /* 3315 * We have a locked page in the page cache, now we need to check 3316 * that it's up-to-date. If not, it is going to be due to an error. 3317 */ 3318 if (unlikely(!folio_test_uptodate(folio))) { 3319 /* 3320 * The page was in cache and uptodate and now it is not. 3321 * Strange but possible since we didn't hold the page lock all 3322 * the time. Let's drop everything get the invalidate lock and 3323 * try again. 3324 */ 3325 if (!mapping_locked) { 3326 folio_unlock(folio); 3327 folio_put(folio); 3328 goto retry_find; 3329 } 3330 goto page_not_uptodate; 3331 } 3332 3333 /* 3334 * We've made it this far and we had to drop our mmap_lock, now is the 3335 * time to return to the upper layer and have it re-find the vma and 3336 * redo the fault. 3337 */ 3338 if (fpin) { 3339 folio_unlock(folio); 3340 goto out_retry; 3341 } 3342 if (mapping_locked) 3343 filemap_invalidate_unlock_shared(mapping); 3344 3345 /* 3346 * Found the page and have a reference on it. 3347 * We must recheck i_size under page lock. 3348 */ 3349 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3350 if (unlikely(index >= max_idx)) { 3351 folio_unlock(folio); 3352 folio_put(folio); 3353 return VM_FAULT_SIGBUS; 3354 } 3355 3356 vmf->page = folio_file_page(folio, index); 3357 return ret | VM_FAULT_LOCKED; 3358 3359 page_not_uptodate: 3360 /* 3361 * Umm, take care of errors if the page isn't up-to-date. 3362 * Try to re-read it _once_. We do this synchronously, 3363 * because there really aren't any performance issues here 3364 * and we need to check for errors. 3365 */ 3366 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3367 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio); 3368 if (fpin) 3369 goto out_retry; 3370 folio_put(folio); 3371 3372 if (!error || error == AOP_TRUNCATED_PAGE) 3373 goto retry_find; 3374 filemap_invalidate_unlock_shared(mapping); 3375 3376 return VM_FAULT_SIGBUS; 3377 3378 out_retry: 3379 /* 3380 * We dropped the mmap_lock, we need to return to the fault handler to 3381 * re-find the vma and come back and find our hopefully still populated 3382 * page. 3383 */ 3384 if (folio) 3385 folio_put(folio); 3386 if (mapping_locked) 3387 filemap_invalidate_unlock_shared(mapping); 3388 if (fpin) 3389 fput(fpin); 3390 return ret | VM_FAULT_RETRY; 3391 } 3392 EXPORT_SYMBOL(filemap_fault); 3393 3394 static bool filemap_map_pmd(struct vm_fault *vmf, struct folio *folio, 3395 pgoff_t start) 3396 { 3397 struct mm_struct *mm = vmf->vma->vm_mm; 3398 3399 /* Huge page is mapped? No need to proceed. */ 3400 if (pmd_trans_huge(*vmf->pmd)) { 3401 folio_unlock(folio); 3402 folio_put(folio); 3403 return true; 3404 } 3405 3406 if (pmd_none(*vmf->pmd) && folio_test_pmd_mappable(folio)) { 3407 struct page *page = folio_file_page(folio, start); 3408 vm_fault_t ret = do_set_pmd(vmf, page); 3409 if (!ret) { 3410 /* The page is mapped successfully, reference consumed. */ 3411 folio_unlock(folio); 3412 return true; 3413 } 3414 } 3415 3416 if (pmd_none(*vmf->pmd)) 3417 pmd_install(mm, vmf->pmd, &vmf->prealloc_pte); 3418 3419 /* See comment in handle_pte_fault() */ 3420 if (pmd_devmap_trans_unstable(vmf->pmd)) { 3421 folio_unlock(folio); 3422 folio_put(folio); 3423 return true; 3424 } 3425 3426 return false; 3427 } 3428 3429 static struct folio *next_uptodate_page(struct folio *folio, 3430 struct address_space *mapping, 3431 struct xa_state *xas, pgoff_t end_pgoff) 3432 { 3433 unsigned long max_idx; 3434 3435 do { 3436 if (!folio) 3437 return NULL; 3438 if (xas_retry(xas, folio)) 3439 continue; 3440 if (xa_is_value(folio)) 3441 continue; 3442 if (folio_test_locked(folio)) 3443 continue; 3444 if (!folio_try_get_rcu(folio)) 3445 continue; 3446 /* Has the page moved or been split? */ 3447 if (unlikely(folio != xas_reload(xas))) 3448 goto skip; 3449 if (!folio_test_uptodate(folio) || folio_test_readahead(folio)) 3450 goto skip; 3451 if (!folio_trylock(folio)) 3452 goto skip; 3453 if (folio->mapping != mapping) 3454 goto unlock; 3455 if (!folio_test_uptodate(folio)) 3456 goto unlock; 3457 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 3458 if (xas->xa_index >= max_idx) 3459 goto unlock; 3460 return folio; 3461 unlock: 3462 folio_unlock(folio); 3463 skip: 3464 folio_put(folio); 3465 } while ((folio = xas_next_entry(xas, end_pgoff)) != NULL); 3466 3467 return NULL; 3468 } 3469 3470 static inline struct folio *first_map_page(struct address_space *mapping, 3471 struct xa_state *xas, 3472 pgoff_t end_pgoff) 3473 { 3474 return next_uptodate_page(xas_find(xas, end_pgoff), 3475 mapping, xas, end_pgoff); 3476 } 3477 3478 static inline struct folio *next_map_page(struct address_space *mapping, 3479 struct xa_state *xas, 3480 pgoff_t end_pgoff) 3481 { 3482 return next_uptodate_page(xas_next_entry(xas, end_pgoff), 3483 mapping, xas, end_pgoff); 3484 } 3485 3486 vm_fault_t filemap_map_pages(struct vm_fault *vmf, 3487 pgoff_t start_pgoff, pgoff_t end_pgoff) 3488 { 3489 struct vm_area_struct *vma = vmf->vma; 3490 struct file *file = vma->vm_file; 3491 struct address_space *mapping = file->f_mapping; 3492 pgoff_t last_pgoff = start_pgoff; 3493 unsigned long addr; 3494 XA_STATE(xas, &mapping->i_pages, start_pgoff); 3495 struct folio *folio; 3496 struct page *page; 3497 unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss); 3498 vm_fault_t ret = 0; 3499 3500 rcu_read_lock(); 3501 folio = first_map_page(mapping, &xas, end_pgoff); 3502 if (!folio) 3503 goto out; 3504 3505 if (filemap_map_pmd(vmf, folio, start_pgoff)) { 3506 ret = VM_FAULT_NOPAGE; 3507 goto out; 3508 } 3509 3510 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT); 3511 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl); 3512 do { 3513 again: 3514 page = folio_file_page(folio, xas.xa_index); 3515 if (PageHWPoison(page)) 3516 goto unlock; 3517 3518 if (mmap_miss > 0) 3519 mmap_miss--; 3520 3521 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT; 3522 vmf->pte += xas.xa_index - last_pgoff; 3523 last_pgoff = xas.xa_index; 3524 3525 /* 3526 * NOTE: If there're PTE markers, we'll leave them to be 3527 * handled in the specific fault path, and it'll prohibit the 3528 * fault-around logic. 3529 */ 3530 if (!pte_none(*vmf->pte)) 3531 goto unlock; 3532 3533 /* We're about to handle the fault */ 3534 if (vmf->address == addr) 3535 ret = VM_FAULT_NOPAGE; 3536 3537 do_set_pte(vmf, page, addr); 3538 /* no need to invalidate: a not-present page won't be cached */ 3539 update_mmu_cache(vma, addr, vmf->pte); 3540 if (folio_more_pages(folio, xas.xa_index, end_pgoff)) { 3541 xas.xa_index++; 3542 folio_ref_inc(folio); 3543 goto again; 3544 } 3545 folio_unlock(folio); 3546 continue; 3547 unlock: 3548 if (folio_more_pages(folio, xas.xa_index, end_pgoff)) { 3549 xas.xa_index++; 3550 goto again; 3551 } 3552 folio_unlock(folio); 3553 folio_put(folio); 3554 } while ((folio = next_map_page(mapping, &xas, end_pgoff)) != NULL); 3555 pte_unmap_unlock(vmf->pte, vmf->ptl); 3556 out: 3557 rcu_read_unlock(); 3558 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss); 3559 return ret; 3560 } 3561 EXPORT_SYMBOL(filemap_map_pages); 3562 3563 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3564 { 3565 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 3566 struct folio *folio = page_folio(vmf->page); 3567 vm_fault_t ret = VM_FAULT_LOCKED; 3568 3569 sb_start_pagefault(mapping->host->i_sb); 3570 file_update_time(vmf->vma->vm_file); 3571 folio_lock(folio); 3572 if (folio->mapping != mapping) { 3573 folio_unlock(folio); 3574 ret = VM_FAULT_NOPAGE; 3575 goto out; 3576 } 3577 /* 3578 * We mark the folio dirty already here so that when freeze is in 3579 * progress, we are guaranteed that writeback during freezing will 3580 * see the dirty folio and writeprotect it again. 3581 */ 3582 folio_mark_dirty(folio); 3583 folio_wait_stable(folio); 3584 out: 3585 sb_end_pagefault(mapping->host->i_sb); 3586 return ret; 3587 } 3588 3589 const struct vm_operations_struct generic_file_vm_ops = { 3590 .fault = filemap_fault, 3591 .map_pages = filemap_map_pages, 3592 .page_mkwrite = filemap_page_mkwrite, 3593 }; 3594 3595 /* This is used for a general mmap of a disk file */ 3596 3597 int generic_file_mmap(struct file *file, struct vm_area_struct *vma) 3598 { 3599 struct address_space *mapping = file->f_mapping; 3600 3601 if (!mapping->a_ops->read_folio) 3602 return -ENOEXEC; 3603 file_accessed(file); 3604 vma->vm_ops = &generic_file_vm_ops; 3605 return 0; 3606 } 3607 3608 /* 3609 * This is for filesystems which do not implement ->writepage. 3610 */ 3611 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3612 { 3613 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 3614 return -EINVAL; 3615 return generic_file_mmap(file, vma); 3616 } 3617 #else 3618 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3619 { 3620 return VM_FAULT_SIGBUS; 3621 } 3622 int generic_file_mmap(struct file *file, struct vm_area_struct *vma) 3623 { 3624 return -ENOSYS; 3625 } 3626 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3627 { 3628 return -ENOSYS; 3629 } 3630 #endif /* CONFIG_MMU */ 3631 3632 EXPORT_SYMBOL(filemap_page_mkwrite); 3633 EXPORT_SYMBOL(generic_file_mmap); 3634 EXPORT_SYMBOL(generic_file_readonly_mmap); 3635 3636 static struct folio *do_read_cache_folio(struct address_space *mapping, 3637 pgoff_t index, filler_t filler, struct file *file, gfp_t gfp) 3638 { 3639 struct folio *folio; 3640 int err; 3641 3642 if (!filler) 3643 filler = mapping->a_ops->read_folio; 3644 repeat: 3645 folio = filemap_get_folio(mapping, index); 3646 if (!folio) { 3647 folio = filemap_alloc_folio(gfp, 0); 3648 if (!folio) 3649 return ERR_PTR(-ENOMEM); 3650 err = filemap_add_folio(mapping, folio, index, gfp); 3651 if (unlikely(err)) { 3652 folio_put(folio); 3653 if (err == -EEXIST) 3654 goto repeat; 3655 /* Presumably ENOMEM for xarray node */ 3656 return ERR_PTR(err); 3657 } 3658 3659 goto filler; 3660 } 3661 if (folio_test_uptodate(folio)) 3662 goto out; 3663 3664 if (!folio_trylock(folio)) { 3665 folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE); 3666 goto repeat; 3667 } 3668 3669 /* Folio was truncated from mapping */ 3670 if (!folio->mapping) { 3671 folio_unlock(folio); 3672 folio_put(folio); 3673 goto repeat; 3674 } 3675 3676 /* Someone else locked and filled the page in a very small window */ 3677 if (folio_test_uptodate(folio)) { 3678 folio_unlock(folio); 3679 goto out; 3680 } 3681 3682 filler: 3683 err = filemap_read_folio(file, filler, folio); 3684 if (err) { 3685 folio_put(folio); 3686 if (err == AOP_TRUNCATED_PAGE) 3687 goto repeat; 3688 return ERR_PTR(err); 3689 } 3690 3691 out: 3692 folio_mark_accessed(folio); 3693 return folio; 3694 } 3695 3696 /** 3697 * read_cache_folio - Read into page cache, fill it if needed. 3698 * @mapping: The address_space to read from. 3699 * @index: The index to read. 3700 * @filler: Function to perform the read, or NULL to use aops->read_folio(). 3701 * @file: Passed to filler function, may be NULL if not required. 3702 * 3703 * Read one page into the page cache. If it succeeds, the folio returned 3704 * will contain @index, but it may not be the first page of the folio. 3705 * 3706 * If the filler function returns an error, it will be returned to the 3707 * caller. 3708 * 3709 * Context: May sleep. Expects mapping->invalidate_lock to be held. 3710 * Return: An uptodate folio on success, ERR_PTR() on failure. 3711 */ 3712 struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index, 3713 filler_t filler, struct file *file) 3714 { 3715 return do_read_cache_folio(mapping, index, filler, file, 3716 mapping_gfp_mask(mapping)); 3717 } 3718 EXPORT_SYMBOL(read_cache_folio); 3719 3720 /** 3721 * mapping_read_folio_gfp - Read into page cache, using specified allocation flags. 3722 * @mapping: The address_space for the folio. 3723 * @index: The index that the allocated folio will contain. 3724 * @gfp: The page allocator flags to use if allocating. 3725 * 3726 * This is the same as "read_cache_folio(mapping, index, NULL, NULL)", but with 3727 * any new memory allocations done using the specified allocation flags. 3728 * 3729 * The most likely error from this function is EIO, but ENOMEM is 3730 * possible and so is EINTR. If ->read_folio returns another error, 3731 * that will be returned to the caller. 3732 * 3733 * The function expects mapping->invalidate_lock to be already held. 3734 * 3735 * Return: Uptodate folio on success, ERR_PTR() on failure. 3736 */ 3737 struct folio *mapping_read_folio_gfp(struct address_space *mapping, 3738 pgoff_t index, gfp_t gfp) 3739 { 3740 return do_read_cache_folio(mapping, index, NULL, NULL, gfp); 3741 } 3742 EXPORT_SYMBOL(mapping_read_folio_gfp); 3743 3744 static struct page *do_read_cache_page(struct address_space *mapping, 3745 pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp) 3746 { 3747 struct folio *folio; 3748 3749 folio = do_read_cache_folio(mapping, index, filler, file, gfp); 3750 if (IS_ERR(folio)) 3751 return &folio->page; 3752 return folio_file_page(folio, index); 3753 } 3754 3755 struct page *read_cache_page(struct address_space *mapping, 3756 pgoff_t index, filler_t *filler, struct file *file) 3757 { 3758 return do_read_cache_page(mapping, index, filler, file, 3759 mapping_gfp_mask(mapping)); 3760 } 3761 EXPORT_SYMBOL(read_cache_page); 3762 3763 /** 3764 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 3765 * @mapping: the page's address_space 3766 * @index: the page index 3767 * @gfp: the page allocator flags to use if allocating 3768 * 3769 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 3770 * any new page allocations done using the specified allocation flags. 3771 * 3772 * If the page does not get brought uptodate, return -EIO. 3773 * 3774 * The function expects mapping->invalidate_lock to be already held. 3775 * 3776 * Return: up to date page on success, ERR_PTR() on failure. 3777 */ 3778 struct page *read_cache_page_gfp(struct address_space *mapping, 3779 pgoff_t index, 3780 gfp_t gfp) 3781 { 3782 return do_read_cache_page(mapping, index, NULL, NULL, gfp); 3783 } 3784 EXPORT_SYMBOL(read_cache_page_gfp); 3785 3786 /* 3787 * Warn about a page cache invalidation failure during a direct I/O write. 3788 */ 3789 void dio_warn_stale_pagecache(struct file *filp) 3790 { 3791 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST); 3792 char pathname[128]; 3793 char *path; 3794 3795 errseq_set(&filp->f_mapping->wb_err, -EIO); 3796 if (__ratelimit(&_rs)) { 3797 path = file_path(filp, pathname, sizeof(pathname)); 3798 if (IS_ERR(path)) 3799 path = "(unknown)"; 3800 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n"); 3801 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid, 3802 current->comm); 3803 } 3804 } 3805 3806 ssize_t 3807 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) 3808 { 3809 struct file *file = iocb->ki_filp; 3810 struct address_space *mapping = file->f_mapping; 3811 struct inode *inode = mapping->host; 3812 loff_t pos = iocb->ki_pos; 3813 ssize_t written; 3814 size_t write_len; 3815 pgoff_t end; 3816 3817 write_len = iov_iter_count(from); 3818 end = (pos + write_len - 1) >> PAGE_SHIFT; 3819 3820 if (iocb->ki_flags & IOCB_NOWAIT) { 3821 /* If there are pages to writeback, return */ 3822 if (filemap_range_has_page(file->f_mapping, pos, 3823 pos + write_len - 1)) 3824 return -EAGAIN; 3825 } else { 3826 written = filemap_write_and_wait_range(mapping, pos, 3827 pos + write_len - 1); 3828 if (written) 3829 goto out; 3830 } 3831 3832 /* 3833 * After a write we want buffered reads to be sure to go to disk to get 3834 * the new data. We invalidate clean cached page from the region we're 3835 * about to write. We do this *before* the write so that we can return 3836 * without clobbering -EIOCBQUEUED from ->direct_IO(). 3837 */ 3838 written = invalidate_inode_pages2_range(mapping, 3839 pos >> PAGE_SHIFT, end); 3840 /* 3841 * If a page can not be invalidated, return 0 to fall back 3842 * to buffered write. 3843 */ 3844 if (written) { 3845 if (written == -EBUSY) 3846 return 0; 3847 goto out; 3848 } 3849 3850 written = mapping->a_ops->direct_IO(iocb, from); 3851 3852 /* 3853 * Finally, try again to invalidate clean pages which might have been 3854 * cached by non-direct readahead, or faulted in by get_user_pages() 3855 * if the source of the write was an mmap'ed region of the file 3856 * we're writing. Either one is a pretty crazy thing to do, 3857 * so we don't support it 100%. If this invalidation 3858 * fails, tough, the write still worked... 3859 * 3860 * Most of the time we do not need this since dio_complete() will do 3861 * the invalidation for us. However there are some file systems that 3862 * do not end up with dio_complete() being called, so let's not break 3863 * them by removing it completely. 3864 * 3865 * Noticeable example is a blkdev_direct_IO(). 3866 * 3867 * Skip invalidation for async writes or if mapping has no pages. 3868 */ 3869 if (written > 0 && mapping->nrpages && 3870 invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end)) 3871 dio_warn_stale_pagecache(file); 3872 3873 if (written > 0) { 3874 pos += written; 3875 write_len -= written; 3876 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 3877 i_size_write(inode, pos); 3878 mark_inode_dirty(inode); 3879 } 3880 iocb->ki_pos = pos; 3881 } 3882 if (written != -EIOCBQUEUED) 3883 iov_iter_revert(from, write_len - iov_iter_count(from)); 3884 out: 3885 return written; 3886 } 3887 EXPORT_SYMBOL(generic_file_direct_write); 3888 3889 ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i) 3890 { 3891 struct file *file = iocb->ki_filp; 3892 loff_t pos = iocb->ki_pos; 3893 struct address_space *mapping = file->f_mapping; 3894 const struct address_space_operations *a_ops = mapping->a_ops; 3895 long status = 0; 3896 ssize_t written = 0; 3897 3898 do { 3899 struct page *page; 3900 unsigned long offset; /* Offset into pagecache page */ 3901 unsigned long bytes; /* Bytes to write to page */ 3902 size_t copied; /* Bytes copied from user */ 3903 void *fsdata = NULL; 3904 3905 offset = (pos & (PAGE_SIZE - 1)); 3906 bytes = min_t(unsigned long, PAGE_SIZE - offset, 3907 iov_iter_count(i)); 3908 3909 again: 3910 /* 3911 * Bring in the user page that we will copy from _first_. 3912 * Otherwise there's a nasty deadlock on copying from the 3913 * same page as we're writing to, without it being marked 3914 * up-to-date. 3915 */ 3916 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) { 3917 status = -EFAULT; 3918 break; 3919 } 3920 3921 if (fatal_signal_pending(current)) { 3922 status = -EINTR; 3923 break; 3924 } 3925 3926 status = a_ops->write_begin(file, mapping, pos, bytes, 3927 &page, &fsdata); 3928 if (unlikely(status < 0)) 3929 break; 3930 3931 if (mapping_writably_mapped(mapping)) 3932 flush_dcache_page(page); 3933 3934 copied = copy_page_from_iter_atomic(page, offset, bytes, i); 3935 flush_dcache_page(page); 3936 3937 status = a_ops->write_end(file, mapping, pos, bytes, copied, 3938 page, fsdata); 3939 if (unlikely(status != copied)) { 3940 iov_iter_revert(i, copied - max(status, 0L)); 3941 if (unlikely(status < 0)) 3942 break; 3943 } 3944 cond_resched(); 3945 3946 if (unlikely(status == 0)) { 3947 /* 3948 * A short copy made ->write_end() reject the 3949 * thing entirely. Might be memory poisoning 3950 * halfway through, might be a race with munmap, 3951 * might be severe memory pressure. 3952 */ 3953 if (copied) 3954 bytes = copied; 3955 goto again; 3956 } 3957 pos += status; 3958 written += status; 3959 3960 balance_dirty_pages_ratelimited(mapping); 3961 } while (iov_iter_count(i)); 3962 3963 return written ? written : status; 3964 } 3965 EXPORT_SYMBOL(generic_perform_write); 3966 3967 /** 3968 * __generic_file_write_iter - write data to a file 3969 * @iocb: IO state structure (file, offset, etc.) 3970 * @from: iov_iter with data to write 3971 * 3972 * This function does all the work needed for actually writing data to a 3973 * file. It does all basic checks, removes SUID from the file, updates 3974 * modification times and calls proper subroutines depending on whether we 3975 * do direct IO or a standard buffered write. 3976 * 3977 * It expects i_rwsem to be grabbed unless we work on a block device or similar 3978 * object which does not need locking at all. 3979 * 3980 * This function does *not* take care of syncing data in case of O_SYNC write. 3981 * A caller has to handle it. This is mainly due to the fact that we want to 3982 * avoid syncing under i_rwsem. 3983 * 3984 * Return: 3985 * * number of bytes written, even for truncated writes 3986 * * negative error code if no data has been written at all 3987 */ 3988 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3989 { 3990 struct file *file = iocb->ki_filp; 3991 struct address_space *mapping = file->f_mapping; 3992 struct inode *inode = mapping->host; 3993 ssize_t written = 0; 3994 ssize_t err; 3995 ssize_t status; 3996 3997 /* We can write back this queue in page reclaim */ 3998 current->backing_dev_info = inode_to_bdi(inode); 3999 err = file_remove_privs(file); 4000 if (err) 4001 goto out; 4002 4003 err = file_update_time(file); 4004 if (err) 4005 goto out; 4006 4007 if (iocb->ki_flags & IOCB_DIRECT) { 4008 loff_t pos, endbyte; 4009 4010 written = generic_file_direct_write(iocb, from); 4011 /* 4012 * If the write stopped short of completing, fall back to 4013 * buffered writes. Some filesystems do this for writes to 4014 * holes, for example. For DAX files, a buffered write will 4015 * not succeed (even if it did, DAX does not handle dirty 4016 * page-cache pages correctly). 4017 */ 4018 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode)) 4019 goto out; 4020 4021 pos = iocb->ki_pos; 4022 status = generic_perform_write(iocb, from); 4023 /* 4024 * If generic_perform_write() returned a synchronous error 4025 * then we want to return the number of bytes which were 4026 * direct-written, or the error code if that was zero. Note 4027 * that this differs from normal direct-io semantics, which 4028 * will return -EFOO even if some bytes were written. 4029 */ 4030 if (unlikely(status < 0)) { 4031 err = status; 4032 goto out; 4033 } 4034 /* 4035 * We need to ensure that the page cache pages are written to 4036 * disk and invalidated to preserve the expected O_DIRECT 4037 * semantics. 4038 */ 4039 endbyte = pos + status - 1; 4040 err = filemap_write_and_wait_range(mapping, pos, endbyte); 4041 if (err == 0) { 4042 iocb->ki_pos = endbyte + 1; 4043 written += status; 4044 invalidate_mapping_pages(mapping, 4045 pos >> PAGE_SHIFT, 4046 endbyte >> PAGE_SHIFT); 4047 } else { 4048 /* 4049 * We don't know how much we wrote, so just return 4050 * the number of bytes which were direct-written 4051 */ 4052 } 4053 } else { 4054 written = generic_perform_write(iocb, from); 4055 if (likely(written > 0)) 4056 iocb->ki_pos += written; 4057 } 4058 out: 4059 current->backing_dev_info = NULL; 4060 return written ? written : err; 4061 } 4062 EXPORT_SYMBOL(__generic_file_write_iter); 4063 4064 /** 4065 * generic_file_write_iter - write data to a file 4066 * @iocb: IO state structure 4067 * @from: iov_iter with data to write 4068 * 4069 * This is a wrapper around __generic_file_write_iter() to be used by most 4070 * filesystems. It takes care of syncing the file in case of O_SYNC file 4071 * and acquires i_rwsem as needed. 4072 * Return: 4073 * * negative error code if no data has been written at all of 4074 * vfs_fsync_range() failed for a synchronous write 4075 * * number of bytes written, even for truncated writes 4076 */ 4077 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 4078 { 4079 struct file *file = iocb->ki_filp; 4080 struct inode *inode = file->f_mapping->host; 4081 ssize_t ret; 4082 4083 inode_lock(inode); 4084 ret = generic_write_checks(iocb, from); 4085 if (ret > 0) 4086 ret = __generic_file_write_iter(iocb, from); 4087 inode_unlock(inode); 4088 4089 if (ret > 0) 4090 ret = generic_write_sync(iocb, ret); 4091 return ret; 4092 } 4093 EXPORT_SYMBOL(generic_file_write_iter); 4094 4095 /** 4096 * filemap_release_folio() - Release fs-specific metadata on a folio. 4097 * @folio: The folio which the kernel is trying to free. 4098 * @gfp: Memory allocation flags (and I/O mode). 4099 * 4100 * The address_space is trying to release any data attached to a folio 4101 * (presumably at folio->private). 4102 * 4103 * This will also be called if the private_2 flag is set on a page, 4104 * indicating that the folio has other metadata associated with it. 4105 * 4106 * The @gfp argument specifies whether I/O may be performed to release 4107 * this page (__GFP_IO), and whether the call may block 4108 * (__GFP_RECLAIM & __GFP_FS). 4109 * 4110 * Return: %true if the release was successful, otherwise %false. 4111 */ 4112 bool filemap_release_folio(struct folio *folio, gfp_t gfp) 4113 { 4114 struct address_space * const mapping = folio->mapping; 4115 4116 BUG_ON(!folio_test_locked(folio)); 4117 if (folio_test_writeback(folio)) 4118 return false; 4119 4120 if (mapping && mapping->a_ops->release_folio) 4121 return mapping->a_ops->release_folio(folio, gfp); 4122 return try_to_free_buffers(folio); 4123 } 4124 EXPORT_SYMBOL(filemap_release_folio); 4125